sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // foreach.hpp header file sl@0: // sl@0: // Copyright 2004 Eric Niebler. sl@0: // Distributed under the Boost Software License, Version 1.0. (See sl@0: // accompanying file LICENSE_1_0.txt or copy at sl@0: // http://www.boost.org/LICENSE_1_0.txt) sl@0: // sl@0: // Credits: sl@0: // Anson Tsao - for the initial inspiration and several good suggestions. sl@0: // Thorsten Ottosen - for Boost.Range, and for suggesting a way to detect sl@0: // const-qualified rvalues at compile time on VC7.1+ sl@0: // Russell Hind - For help porting to Borland sl@0: // Alisdair Meredith - For help porting to Borland sl@0: // Stefan Slapeta - For help porting to Intel sl@0: sl@0: #ifndef BOOST_FOREACH sl@0: sl@0: // MS compatible compilers support #pragma once sl@0: #if defined(_MSC_VER) && (_MSC_VER >= 1020) sl@0: # pragma once sl@0: #endif sl@0: sl@0: #include sl@0: #include // for std::pair sl@0: sl@0: #include sl@0: #include sl@0: sl@0: // Some compilers let us detect even const-qualified rvalues at compile-time sl@0: #if BOOST_WORKAROUND(BOOST_MSVC, >= 1310) \ sl@0: || (BOOST_WORKAROUND(__GNUC__, >= 4) && !defined(BOOST_INTEL)) \ sl@0: || (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ >= 4) && !defined(BOOST_INTEL)) sl@0: # define BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION sl@0: #else sl@0: // Some compilers allow temporaries to be bound to non-const references. sl@0: // These compilers make it impossible to for BOOST_FOREACH to detect sl@0: // temporaries and avoid reevaluation of the collection expression. sl@0: # if BOOST_WORKAROUND(BOOST_MSVC, <= 1300) \ sl@0: || BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) \ sl@0: || (BOOST_WORKAROUND(BOOST_INTEL_CXX_VERSION, <= 700) && defined(_MSC_VER)) \ sl@0: || BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x570)) \ sl@0: || BOOST_WORKAROUND(__DECCXX_VER, BOOST_TESTED_AT(60590042)) sl@0: # define BOOST_FOREACH_NO_RVALUE_DETECTION sl@0: # endif sl@0: // Some compilers do not correctly implement the lvalue/rvalue conversion sl@0: // rules of the ternary conditional operator. sl@0: # if defined(BOOST_FOREACH_NO_RVALUE_DETECTION) \ sl@0: || defined(BOOST_NO_SFINAE) \ sl@0: || BOOST_WORKAROUND(BOOST_MSVC, BOOST_TESTED_AT(1400)) \ sl@0: || BOOST_WORKAROUND(BOOST_INTEL_WIN, <= 810) \ sl@0: || BOOST_WORKAROUND(__GNUC__, < 3) \ sl@0: || (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ <= 2)) \ sl@0: || (BOOST_WORKAROUND(__GNUC__, == 3) && (__GNUC_MINOR__ <= 3) && defined(__APPLE_CC__)) \ sl@0: || BOOST_WORKAROUND(__IBMCPP__, BOOST_TESTED_AT(600)) \ sl@0: || BOOST_WORKAROUND(__MWERKS__, BOOST_TESTED_AT(0x3206)) sl@0: # define BOOST_FOREACH_NO_CONST_RVALUE_DETECTION sl@0: # else sl@0: # define BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION sl@0: # endif sl@0: #endif sl@0: sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION sl@0: # include sl@0: # include sl@0: # include sl@0: # include sl@0: #endif sl@0: sl@0: // This must be at global scope, hence the uglified name sl@0: enum boost_foreach_argument_dependent_lookup_hack sl@0: { sl@0: boost_foreach_argument_dependent_lookup_hack_value sl@0: }; sl@0: sl@0: namespace boost sl@0: { sl@0: sl@0: // forward declarations for iterator_range sl@0: template sl@0: class iterator_range; sl@0: sl@0: // forward declarations for sub_range sl@0: template sl@0: class sub_range; sl@0: sl@0: namespace foreach sl@0: { sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // in_range sl@0: // sl@0: template sl@0: inline std::pair in_range(T begin, T end) sl@0: { sl@0: return std::make_pair(begin, end); sl@0: } sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // boost::foreach::tag sl@0: // sl@0: typedef boost_foreach_argument_dependent_lookup_hack tag; sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // boost::foreach::is_lightweight_proxy sl@0: // Specialize this for user-defined collection types if they are inexpensive to copy. sl@0: // This tells BOOST_FOREACH it can avoid the rvalue/lvalue detection stuff. sl@0: template sl@0: struct is_lightweight_proxy sl@0: : boost::mpl::false_ sl@0: { sl@0: }; sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // boost::foreach::is_noncopyable sl@0: // Specialize this for user-defined collection types if they cannot be copied. sl@0: // This also tells BOOST_FOREACH to avoid the rvalue/lvalue detection stuff. sl@0: template sl@0: struct is_noncopyable sl@0: #if !defined(BOOST_BROKEN_IS_BASE_AND_DERIVED) && !defined(BOOST_NO_IS_ABSTRACT) sl@0: : boost::mpl::or_< sl@0: boost::is_abstract sl@0: , boost::is_base_and_derived sl@0: > sl@0: #elif !defined(BOOST_BROKEN_IS_BASE_AND_DERIVED) sl@0: : boost::is_base_and_derived sl@0: #elif !defined(BOOST_NO_IS_ABSTRACT) sl@0: : boost::is_abstract sl@0: #else sl@0: : boost::mpl::false_ sl@0: #endif sl@0: { sl@0: }; sl@0: sl@0: } // namespace foreach sl@0: sl@0: } // namespace boost sl@0: sl@0: // vc6/7 needs help ordering the following overloads sl@0: #ifdef BOOST_NO_FUNCTION_TEMPLATE_ORDERING sl@0: # define BOOST_FOREACH_TAG_DEFAULT ... sl@0: #else sl@0: # define BOOST_FOREACH_TAG_DEFAULT boost::foreach::tag sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // boost_foreach_is_lightweight_proxy sl@0: // Another customization point for the is_lightweight_proxy optimization, sl@0: // this one works on legacy compilers. Overload boost_foreach_is_lightweight_proxy sl@0: // at the global namespace for your type. sl@0: template sl@0: inline boost::foreach::is_lightweight_proxy * sl@0: boost_foreach_is_lightweight_proxy(T *&, BOOST_FOREACH_TAG_DEFAULT) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::true_ * sl@0: boost_foreach_is_lightweight_proxy(std::pair *&, boost::foreach::tag) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::true_ * sl@0: boost_foreach_is_lightweight_proxy(boost::iterator_range *&, boost::foreach::tag) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::true_ * sl@0: boost_foreach_is_lightweight_proxy(boost::sub_range *&, boost::foreach::tag) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::true_ * sl@0: boost_foreach_is_lightweight_proxy(T **&, boost::foreach::tag) { return 0; } sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // boost_foreach_is_noncopyable sl@0: // Another customization point for the is_noncopyable trait, sl@0: // this one works on legacy compilers. Overload boost_foreach_is_noncopyable sl@0: // at the global namespace for your type. sl@0: template sl@0: inline boost::foreach::is_noncopyable * sl@0: boost_foreach_is_noncopyable(T *&, BOOST_FOREACH_TAG_DEFAULT) { return 0; } sl@0: sl@0: namespace boost sl@0: { sl@0: sl@0: namespace foreach_detail_ sl@0: { sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // Define some utilities for assessing the properties of expressions sl@0: // sl@0: typedef char yes_type; sl@0: typedef char (&no_type)[2]; sl@0: yes_type is_true(boost::mpl::true_ *); sl@0: no_type is_true(boost::mpl::false_ *); sl@0: sl@0: // Extracts the desired property from the expression without evaluating it sl@0: #define BOOST_FOREACH_PROTECT(expr) \ sl@0: (static_cast *>(0)) sl@0: sl@0: template sl@0: inline boost::mpl::and_ *and_(Bool1 *, Bool2 *) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::and_ *and_(Bool1 *, Bool2 *, Bool3 *) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::or_ *or_(Bool1 *, Bool2 *) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::or_ *or_(Bool1 *, Bool2 *, Bool3 *) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::not_ *not_(Bool *) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::false_ *is_rvalue_(T &, int) { return 0; } sl@0: sl@0: template sl@0: inline boost::mpl::true_ *is_rvalue_(T const &, ...) { return 0; } sl@0: sl@0: template sl@0: inline boost::is_array *is_array_(T const &) { return 0; } sl@0: sl@0: template sl@0: inline boost::is_const *is_const_(T &) { return 0; } sl@0: sl@0: #ifndef BOOST_FOREACH_NO_RVALUE_DETECTION sl@0: template sl@0: inline boost::mpl::true_ *is_const_(T const &) { return 0; } sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // auto_any_t/auto_any sl@0: // General utility for putting an object of any type into automatic storage sl@0: struct auto_any_base sl@0: { sl@0: // auto_any_base must evaluate to false in boolean context so that sl@0: // they can be declared in if() statements. sl@0: operator bool() const sl@0: { sl@0: return false; sl@0: } sl@0: }; sl@0: sl@0: template sl@0: struct auto_any : auto_any_base sl@0: { sl@0: auto_any(T const &t) sl@0: : item(t) sl@0: { sl@0: } sl@0: sl@0: // temporaries of type auto_any will be bound to const auto_any_base sl@0: // references, but we still want to be able to mutate the stored sl@0: // data, so declare it as mutable. sl@0: mutable T item; sl@0: }; sl@0: sl@0: typedef auto_any_base const &auto_any_t; sl@0: sl@0: template sl@0: inline BOOST_DEDUCED_TYPENAME boost::mpl::if_::type &auto_any_cast(auto_any_t a) sl@0: { sl@0: return static_cast const &>(a).item; sl@0: } sl@0: sl@0: typedef boost::mpl::true_ const_; sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // type2type sl@0: // sl@0: template sl@0: struct type2type sl@0: : boost::mpl::if_ sl@0: { sl@0: }; sl@0: sl@0: template sl@0: struct foreach_iterator sl@0: { sl@0: typedef BOOST_DEDUCED_TYPENAME boost::mpl::eval_if< sl@0: C sl@0: , range_const_iterator sl@0: , range_iterator sl@0: >::type type; sl@0: }; sl@0: sl@0: template sl@0: struct foreach_reference sl@0: : iterator_reference::type> sl@0: { sl@0: }; sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // encode_type sl@0: // sl@0: template sl@0: inline type2type *encode_type(T &, boost::mpl::false_ *) { return 0; } sl@0: sl@0: template sl@0: inline type2type *encode_type(T const &, boost::mpl::true_ *) { return 0; } sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // set_false sl@0: // sl@0: inline bool set_false(bool &b) { return b = false; } sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // to_ptr sl@0: // sl@0: template sl@0: inline T *&to_ptr(T const &) sl@0: { sl@0: static T *t = 0; sl@0: return t; sl@0: } sl@0: sl@0: // Borland needs a little extra help with arrays sl@0: #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564)) sl@0: template sl@0: inline T (*&to_ptr(T (&)[N]))[N] sl@0: { sl@0: static T (*t)[N] = 0; sl@0: return t; sl@0: } sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // derefof sl@0: // sl@0: template sl@0: inline T &derefof(T *t) sl@0: { sl@0: // This is a work-around for a compiler bug in Borland. If T* is a pointer to array type U(*)[N], sl@0: // then dereferencing it results in a U* instead of U(&)[N]. The cast forces the issue. sl@0: return reinterpret_cast( sl@0: *const_cast( sl@0: reinterpret_cast(t) sl@0: ) sl@0: ); sl@0: } sl@0: sl@0: #ifdef BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // Detect at compile-time whether an expression yields an rvalue or sl@0: // an lvalue. This is rather non-standard, but some popular compilers sl@0: // accept it. sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // rvalue_probe sl@0: // sl@0: template sl@0: struct rvalue_probe sl@0: { sl@0: struct private_type_ {}; sl@0: // can't ever return an array by value sl@0: typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_< sl@0: boost::mpl::or_, boost::is_array >, private_type_, T sl@0: >::type value_type; sl@0: operator value_type(); sl@0: operator T &() const; sl@0: }; sl@0: sl@0: template sl@0: rvalue_probe const make_probe(T const &t); sl@0: sl@0: # define BOOST_FOREACH_IS_RVALUE(COL) \ sl@0: boost::foreach_detail_::and_( \ sl@0: boost::foreach_detail_::not_(boost::foreach_detail_::is_array_(COL)) \ sl@0: , BOOST_FOREACH_PROTECT(boost::foreach_detail_::is_rvalue_( \ sl@0: (true ? boost::foreach_detail_::make_probe(COL) : (COL)), 0))) sl@0: sl@0: #elif defined(BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION) sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // Detect at run-time whether an expression yields an rvalue sl@0: // or an lvalue. This is 100% standard C++, but not all compilers sl@0: // accept it. Also, it causes FOREACH to break when used with non- sl@0: // copyable collection types. sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // rvalue_probe sl@0: // sl@0: template sl@0: struct rvalue_probe sl@0: { sl@0: rvalue_probe(T &t, bool &b) sl@0: : value(t) sl@0: , is_rvalue(b) sl@0: { sl@0: } sl@0: sl@0: struct private_type_ {}; sl@0: // can't ever return an array or an abstract type by value sl@0: #ifdef BOOST_NO_IS_ABSTRACT sl@0: typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_< sl@0: boost::is_array, private_type_, T sl@0: >::type value_type; sl@0: #else sl@0: typedef BOOST_DEDUCED_TYPENAME boost::mpl::if_< sl@0: boost::mpl::or_, boost::is_array >, private_type_, T sl@0: >::type value_type; sl@0: #endif sl@0: sl@0: operator value_type() sl@0: { sl@0: this->is_rvalue = true; sl@0: return this->value; sl@0: } sl@0: sl@0: operator T &() const sl@0: { sl@0: return this->value; sl@0: } sl@0: sl@0: private: sl@0: T &value; sl@0: bool &is_rvalue; sl@0: }; sl@0: sl@0: template sl@0: rvalue_probe make_probe(T &t, bool &b) { return rvalue_probe(t, b); } sl@0: sl@0: template sl@0: rvalue_probe make_probe(T const &t, bool &b) { return rvalue_probe(t, b); } sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // simple_variant sl@0: // holds either a T or a T const* sl@0: template sl@0: struct simple_variant sl@0: { sl@0: simple_variant(T const *t) sl@0: : is_rvalue(false) sl@0: { sl@0: *static_cast(this->data.address()) = t; sl@0: } sl@0: sl@0: simple_variant(T const &t) sl@0: : is_rvalue(true) sl@0: { sl@0: ::new(this->data.address()) T(t); sl@0: } sl@0: sl@0: simple_variant(simple_variant const &that) sl@0: : is_rvalue(that.is_rvalue) sl@0: { sl@0: if(this->is_rvalue) sl@0: ::new(this->data.address()) T(*that.get()); sl@0: else sl@0: *static_cast(this->data.address()) = that.get(); sl@0: } sl@0: sl@0: ~simple_variant() sl@0: { sl@0: if(this->is_rvalue) sl@0: this->get()->~T(); sl@0: } sl@0: sl@0: T const *get() const sl@0: { sl@0: if(this->is_rvalue) sl@0: return static_cast(this->data.address()); sl@0: else sl@0: return *static_cast(this->data.address()); sl@0: } sl@0: sl@0: private: sl@0: enum size_type { size = sizeof(T) > sizeof(T*) ? sizeof(T) : sizeof(T*) }; sl@0: simple_variant &operator =(simple_variant const &); sl@0: bool const is_rvalue; sl@0: aligned_storage data; sl@0: }; sl@0: sl@0: // If the collection is an array or is noncopyable, it must be an lvalue. sl@0: // If the collection is a lightweight proxy, treat it as an rvalue sl@0: // BUGBUG what about a noncopyable proxy? sl@0: template sl@0: inline BOOST_DEDUCED_TYPENAME boost::enable_if, IsProxy>::type * sl@0: should_copy_impl(LValue *, IsProxy *, bool *) sl@0: { sl@0: return 0; sl@0: } sl@0: sl@0: // Otherwise, we must determine at runtime whether it's an lvalue or rvalue sl@0: inline bool * sl@0: should_copy_impl(boost::mpl::false_ *, boost::mpl::false_ *, bool *is_rvalue) sl@0: { sl@0: return is_rvalue; sl@0: } sl@0: sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // contain sl@0: // sl@0: template sl@0: inline auto_any contain(T const &t, boost::mpl::true_ *) // rvalue sl@0: { sl@0: return t; sl@0: } sl@0: sl@0: template sl@0: inline auto_any contain(T &t, boost::mpl::false_ *) // lvalue sl@0: { sl@0: // Cannot seem to get sunpro to handle addressof() with array types. sl@0: #if BOOST_WORKAROUND(__SUNPRO_CC, BOOST_TESTED_AT(0x570)) sl@0: return &t; sl@0: #else sl@0: return boost::addressof(t); sl@0: #endif sl@0: } sl@0: sl@0: #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION sl@0: template sl@0: auto_any > sl@0: contain(T const &t, bool *rvalue) sl@0: { sl@0: return *rvalue ? simple_variant(t) : simple_variant(&t); sl@0: } sl@0: #endif sl@0: sl@0: ///////////////////////////////////////////////////////////////////////////// sl@0: // begin sl@0: // sl@0: template sl@0: inline auto_any::type> sl@0: begin(auto_any_t col, type2type *, boost::mpl::true_ *) // rvalue sl@0: { sl@0: return boost::begin(auto_any_cast(col)); sl@0: } sl@0: sl@0: template sl@0: inline auto_any::type> sl@0: begin(auto_any_t col, type2type *, boost::mpl::false_ *) // lvalue sl@0: { sl@0: typedef BOOST_DEDUCED_TYPENAME type2type::type type; sl@0: typedef BOOST_DEDUCED_TYPENAME foreach_iterator::type iterator; sl@0: return iterator(boost::begin(derefof(auto_any_cast(col)))); sl@0: } sl@0: sl@0: #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION sl@0: template sl@0: auto_any::type> sl@0: begin(auto_any_t col, type2type *, bool *) sl@0: { sl@0: return boost::begin(*auto_any_cast, boost::mpl::false_>(col).get()); sl@0: } sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // end sl@0: // sl@0: template sl@0: inline auto_any::type> sl@0: end(auto_any_t col, type2type *, boost::mpl::true_ *) // rvalue sl@0: { sl@0: return boost::end(auto_any_cast(col)); sl@0: } sl@0: sl@0: template sl@0: inline auto_any::type> sl@0: end(auto_any_t col, type2type *, boost::mpl::false_ *) // lvalue sl@0: { sl@0: typedef BOOST_DEDUCED_TYPENAME type2type::type type; sl@0: typedef BOOST_DEDUCED_TYPENAME foreach_iterator::type iterator; sl@0: return iterator(boost::end(derefof(auto_any_cast(col)))); sl@0: } sl@0: sl@0: #ifdef BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION sl@0: template sl@0: auto_any::type> sl@0: end(auto_any_t col, type2type *, bool *) sl@0: { sl@0: return boost::end(*auto_any_cast, boost::mpl::false_>(col).get()); sl@0: } sl@0: #endif sl@0: sl@0: #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING sl@0: template sl@0: inline auto_any sl@0: end(auto_any_t col, type2type *, boost::mpl::true_ *) // null-terminated C-style strings sl@0: { sl@0: return 0; // not used sl@0: } sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // done sl@0: // sl@0: template sl@0: inline bool done(auto_any_t cur, auto_any_t end, type2type *) sl@0: { sl@0: typedef BOOST_DEDUCED_TYPENAME foreach_iterator::type iter_t; sl@0: return auto_any_cast(cur) == auto_any_cast(end); sl@0: } sl@0: sl@0: #ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING sl@0: template sl@0: inline bool done(auto_any_t cur, auto_any_t, type2type *) // null-terminated C-style strings sl@0: { sl@0: return ! *auto_any_cast(cur); sl@0: } sl@0: #endif sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // next sl@0: // sl@0: template sl@0: inline void next(auto_any_t cur, type2type *) sl@0: { sl@0: typedef BOOST_DEDUCED_TYPENAME foreach_iterator::type iter_t; sl@0: ++auto_any_cast(cur); sl@0: } sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // deref sl@0: // sl@0: template sl@0: inline BOOST_DEDUCED_TYPENAME foreach_reference::type sl@0: deref(auto_any_t cur, type2type *) sl@0: { sl@0: typedef BOOST_DEDUCED_TYPENAME foreach_iterator::type iter_t; sl@0: return *auto_any_cast(cur); sl@0: } sl@0: sl@0: } // namespace foreach_detail_ sl@0: } // namespace boost sl@0: sl@0: // A sneaky way to get the type of the collection without evaluating the expression sl@0: #define BOOST_FOREACH_TYPEOF(COL) \ sl@0: (true ? 0 : boost::foreach_detail_::encode_type(COL, boost::foreach_detail_::is_const_(COL))) sl@0: sl@0: // returns true_* if the type is noncopyable sl@0: #define BOOST_FOREACH_IS_NONCOPYABLE(COL) \ sl@0: boost_foreach_is_noncopyable( \ sl@0: boost::foreach_detail_::to_ptr(COL) \ sl@0: , boost_foreach_argument_dependent_lookup_hack_value) sl@0: sl@0: // returns true_* if the type is a lightweight proxy (and is not noncopyable) sl@0: #define BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL) \ sl@0: boost::foreach_detail_::and_( \ sl@0: boost::foreach_detail_::not_(BOOST_FOREACH_IS_NONCOPYABLE(COL)) \ sl@0: , boost_foreach_is_lightweight_proxy( \ sl@0: boost::foreach_detail_::to_ptr(COL) \ sl@0: , boost_foreach_argument_dependent_lookup_hack_value)) sl@0: sl@0: #ifdef BOOST_FOREACH_COMPILE_TIME_CONST_RVALUE_DETECTION sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // R-values and const R-values supported here with zero runtime overhead sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: sl@0: // No variable is needed to track the rvalue-ness of the collection expression sl@0: # define BOOST_FOREACH_PREAMBLE() \ sl@0: /**/ sl@0: sl@0: // Evaluate the collection expression sl@0: # define BOOST_FOREACH_EVALUATE(COL) \ sl@0: (COL) sl@0: sl@0: # define BOOST_FOREACH_SHOULD_COPY(COL) \ sl@0: (true ? 0 : boost::foreach_detail_::or_( \ sl@0: BOOST_FOREACH_IS_RVALUE(COL) \ sl@0: , BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL))) sl@0: sl@0: #elif defined(BOOST_FOREACH_RUN_TIME_CONST_RVALUE_DETECTION) sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // R-values and const R-values supported here sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: sl@0: // Declare a variable to track the rvalue-ness of the collection expression sl@0: # define BOOST_FOREACH_PREAMBLE() \ sl@0: if (bool _foreach_is_rvalue = false) {} else sl@0: sl@0: // Evaluate the collection expression, and detect if it is an lvalue or and rvalue sl@0: # define BOOST_FOREACH_EVALUATE(COL) \ sl@0: (true ? boost::foreach_detail_::make_probe((COL), _foreach_is_rvalue) : (COL)) sl@0: sl@0: // The rvalue/lvalue-ness of the collection expression is determined dynamically, unless sl@0: // type type is an array or is noncopyable or is non-const, in which case we know it's an lvalue. sl@0: // If the type happens to be a lightweight proxy, always make a copy. sl@0: # define BOOST_FOREACH_SHOULD_COPY(COL) \ sl@0: (boost::foreach_detail_::should_copy_impl( \ sl@0: true ? 0 : boost::foreach_detail_::or_( \ sl@0: boost::foreach_detail_::is_array_(COL) \ sl@0: , BOOST_FOREACH_IS_NONCOPYABLE(COL) \ sl@0: , boost::foreach_detail_::not_(boost::foreach_detail_::is_const_(COL))) \ sl@0: , true ? 0 : BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL) \ sl@0: , &_foreach_is_rvalue)) sl@0: sl@0: #elif !defined(BOOST_FOREACH_NO_RVALUE_DETECTION) sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // R-values supported here, const R-values NOT supported here sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: sl@0: // No variable is needed to track the rvalue-ness of the collection expression sl@0: # define BOOST_FOREACH_PREAMBLE() \ sl@0: /**/ sl@0: sl@0: // Evaluate the collection expression sl@0: # define BOOST_FOREACH_EVALUATE(COL) \ sl@0: (COL) sl@0: sl@0: // Determine whether the collection expression is an lvalue or an rvalue. sl@0: // NOTE: this gets the answer wrong for const rvalues. sl@0: # define BOOST_FOREACH_SHOULD_COPY(COL) \ sl@0: (true ? 0 : boost::foreach_detail_::or_( \ sl@0: boost::foreach_detail_::is_rvalue_((COL), 0) \ sl@0: , BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL))) sl@0: sl@0: #else sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // R-values NOT supported here sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: sl@0: // No variable is needed to track the rvalue-ness of the collection expression sl@0: # define BOOST_FOREACH_PREAMBLE() \ sl@0: /**/ sl@0: sl@0: // Evaluate the collection expression sl@0: # define BOOST_FOREACH_EVALUATE(COL) \ sl@0: (COL) sl@0: sl@0: // Can't use rvalues with BOOST_FOREACH (unless they are lightweight proxies) sl@0: # define BOOST_FOREACH_SHOULD_COPY(COL) \ sl@0: (true ? 0 : BOOST_FOREACH_IS_LIGHTWEIGHT_PROXY(COL)) sl@0: sl@0: #endif sl@0: sl@0: #define BOOST_FOREACH_CONTAIN(COL) \ sl@0: boost::foreach_detail_::contain( \ sl@0: BOOST_FOREACH_EVALUATE(COL) \ sl@0: , BOOST_FOREACH_SHOULD_COPY(COL)) sl@0: sl@0: #define BOOST_FOREACH_BEGIN(COL) \ sl@0: boost::foreach_detail_::begin( \ sl@0: _foreach_col \ sl@0: , BOOST_FOREACH_TYPEOF(COL) \ sl@0: , BOOST_FOREACH_SHOULD_COPY(COL)) sl@0: sl@0: #define BOOST_FOREACH_END(COL) \ sl@0: boost::foreach_detail_::end( \ sl@0: _foreach_col \ sl@0: , BOOST_FOREACH_TYPEOF(COL) \ sl@0: , BOOST_FOREACH_SHOULD_COPY(COL)) sl@0: sl@0: #define BOOST_FOREACH_DONE(COL) \ sl@0: boost::foreach_detail_::done( \ sl@0: _foreach_cur \ sl@0: , _foreach_end \ sl@0: , BOOST_FOREACH_TYPEOF(COL)) sl@0: sl@0: #define BOOST_FOREACH_NEXT(COL) \ sl@0: boost::foreach_detail_::next( \ sl@0: _foreach_cur \ sl@0: , BOOST_FOREACH_TYPEOF(COL)) sl@0: sl@0: #define BOOST_FOREACH_DEREF(COL) \ sl@0: boost::foreach_detail_::deref( \ sl@0: _foreach_cur \ sl@0: , BOOST_FOREACH_TYPEOF(COL)) sl@0: sl@0: /////////////////////////////////////////////////////////////////////////////// sl@0: // BOOST_FOREACH sl@0: // sl@0: // For iterating over collections. Collections can be sl@0: // arrays, null-terminated strings, or STL containers. sl@0: // The loop variable can be a value or reference. For sl@0: // example: sl@0: // sl@0: // std::list int_list(/*stuff*/); sl@0: // BOOST_FOREACH(int &i, int_list) sl@0: // { sl@0: // /* sl@0: // * loop body goes here. sl@0: // * i is a reference to the int in int_list. sl@0: // */ sl@0: // } sl@0: // sl@0: // Alternately, you can declare the loop variable first, sl@0: // so you can access it after the loop finishes. Obviously, sl@0: // if you do it this way, then the loop variable cannot be sl@0: // a reference. sl@0: // sl@0: // int i; sl@0: // BOOST_FOREACH(i, int_list) sl@0: // { ... } sl@0: // sl@0: #define BOOST_FOREACH(VAR, COL) \ sl@0: BOOST_FOREACH_PREAMBLE() \ sl@0: if (boost::foreach_detail_::auto_any_t _foreach_col = BOOST_FOREACH_CONTAIN(COL)) {} else \ sl@0: if (boost::foreach_detail_::auto_any_t _foreach_cur = BOOST_FOREACH_BEGIN(COL)) {} else \ sl@0: if (boost::foreach_detail_::auto_any_t _foreach_end = BOOST_FOREACH_END(COL)) {} else \ sl@0: for (bool _foreach_continue = true; \ sl@0: _foreach_continue && !BOOST_FOREACH_DONE(COL); \ sl@0: _foreach_continue ? BOOST_FOREACH_NEXT(COL) : (void)0) \ sl@0: if (boost::foreach_detail_::set_false(_foreach_continue)) {} else \ sl@0: for (VAR = BOOST_FOREACH_DEREF(COL); !_foreach_continue; _foreach_continue = true) sl@0: sl@0: #endif