sl@0: /* inftrees.c -- generate Huffman trees for efficient decoding sl@0: * Copyright (C) 1995-1998 Mark Adler sl@0: * For conditions of distribution and use, see copyright notice in zlib.h sl@0: */ sl@0: sl@0: #include "zutil.h" sl@0: #include "inftrees.h" sl@0: sl@0: #if !defined(BUILDFIXED) && !defined(STDC) sl@0: # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */ sl@0: #endif sl@0: sl@0: const char inflate_copyright[] = sl@0: " inflate 1.1.3 Copyright 1995-1998 Mark Adler "; sl@0: /* sl@0: If you use the zlib library in a product, an acknowledgment is welcome sl@0: in the documentation of your product. If for some reason you cannot sl@0: include such an acknowledgment, I would appreciate that you keep this sl@0: copyright string in the executable of your product. sl@0: */ sl@0: struct internal_state {int dummy;}; /* for buggy compilers */ sl@0: sl@0: /* simplify the use of the inflate_huft type with some defines */ sl@0: #define exop word.what.Exop sl@0: #define bits word.what.Bits sl@0: sl@0: sl@0: local int huft_build OF(( sl@0: uIntf *, /* code lengths in bits */ sl@0: uInt, /* number of codes */ sl@0: uInt, /* number of "simple" codes */ sl@0: const uIntf *, /* list of base values for non-simple codes */ sl@0: const uIntf *, /* list of extra bits for non-simple codes */ sl@0: inflate_huft * FAR*,/* result: starting table */ sl@0: uIntf *, /* maximum lookup bits (returns actual) */ sl@0: inflate_huft *, /* space for trees */ sl@0: uInt *, /* hufts used in space */ sl@0: uIntf * )); /* space for values */ sl@0: sl@0: /* Tables for deflate from PKZIP's appnote.txt. */ sl@0: local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */ sl@0: 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, sl@0: 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; sl@0: /* see note #13 above about 258 */ sl@0: local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */ sl@0: 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, sl@0: 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */ sl@0: local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */ sl@0: 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, sl@0: 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, sl@0: 8193, 12289, 16385, 24577}; sl@0: local const uInt cpdext[30] = { /* Extra bits for distance codes */ sl@0: 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, sl@0: 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, sl@0: 12, 12, 13, 13}; sl@0: sl@0: /* sl@0: Huffman code decoding is performed using a multi-level table lookup. sl@0: The fastest way to decode is to simply build a lookup table whose sl@0: size is determined by the longest code. However, the time it takes sl@0: to build this table can also be a factor if the data being decoded sl@0: is not very long. The most common codes are necessarily the sl@0: shortest codes, so those codes dominate the decoding time, and hence sl@0: the speed. The idea is you can have a shorter table that decodes the sl@0: shorter, more probable codes, and then point to subsidiary tables for sl@0: the longer codes. The time it costs to decode the longer codes is sl@0: then traded against the time it takes to make longer tables. sl@0: sl@0: This results of this trade are in the variables lbits and dbits sl@0: below. lbits is the number of bits the first level table for literal/ sl@0: length codes can decode in one step, and dbits is the same thing for sl@0: the distance codes. Subsequent tables are also less than or equal to sl@0: those sizes. These values may be adjusted either when all of the sl@0: codes are shorter than that, in which case the longest code length in sl@0: bits is used, or when the shortest code is *longer* than the requested sl@0: table size, in which case the length of the shortest code in bits is sl@0: used. sl@0: sl@0: There are two different values for the two tables, since they code a sl@0: different number of possibilities each. The literal/length table sl@0: codes 286 possible values, or in a flat code, a little over eight sl@0: bits. The distance table codes 30 possible values, or a little less sl@0: than five bits, flat. The optimum values for speed end up being sl@0: about one bit more than those, so lbits is 8+1 and dbits is 5+1. sl@0: The optimum values may differ though from machine to machine, and sl@0: possibly even between compilers. Your mileage may vary. sl@0: */ sl@0: sl@0: sl@0: /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ sl@0: #define BMAX 15 /* maximum bit length of any code */ sl@0: sl@0: local int huft_build(uIntf *b, uInt n, uInt s, const uIntf *d, const uIntf *e, inflate_huft * FAR *t, uIntf *m, inflate_huft *hp, uInt *hn, uIntf *v) sl@0: /* uIntf *b; code lengths in bits (all assumed <= BMAX) */ sl@0: /* uInt n; number of codes (assumed <= 288) */ sl@0: /* uInt s; number of simple-valued codes (0..s-1) */ sl@0: /* const uIntf *d; list of base values for non-simple codes */ sl@0: /* const uIntf *e; list of extra bits for non-simple codes */ sl@0: /* inflate_huft * FAR *t; result: starting table */ sl@0: /* uIntf *m; maximum lookup bits, returns actual */ sl@0: /* inflate_huft *hp; space for trees */ sl@0: /* uInt *hn; hufts used in space */ sl@0: /* uIntf *v; working area: values in order of bit length */ sl@0: sl@0: /* Given a list of code lengths and a maximum table size, make a set of sl@0: tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR sl@0: if the given code set is incomplete (the tables are still built in this sl@0: case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of sl@0: lengths), or Z_MEM_ERROR if not enough memory. */ sl@0: { sl@0: sl@0: uInt a; /* counter for codes of length k */ sl@0: uInt c[BMAX+1]; /* bit length count table */ sl@0: uInt f; /* i repeats in table every f entries */ sl@0: int g; /* maximum code length */ sl@0: int h; /* table level */ sl@0: register uInt i; /* counter, current code */ sl@0: register uInt j; /* counter */ sl@0: register int k; /* number of bits in current code */ sl@0: int l; /* bits per table (returned in m) */ sl@0: uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */ sl@0: register uIntf *p; /* pointer into c[], b[], or v[] */ sl@0: inflate_huft *q; /* points to current table */ sl@0: struct inflate_huft_s r; /* table entry for structure assignment */ sl@0: inflate_huft *u[BMAX]; /* table stack */ sl@0: register int w; /* bits before this table == (l * h) */ sl@0: uInt x[BMAX+1]; /* bit offsets, then code stack */ sl@0: uIntf *xp; /* pointer into x */ sl@0: int y; /* number of dummy codes added */ sl@0: uInt z; /* number of entries in current table */ sl@0: sl@0: sl@0: /* Generate counts for each bit length */ sl@0: p = c; sl@0: #define C0 *p++ = 0; sl@0: #define C2 C0 C0 C0 C0 sl@0: #define C4 C2 C2 C2 C2 sl@0: C4 /* clear c[]--assume BMAX+1 is 16 */ sl@0: p = b; i = n; sl@0: do { sl@0: c[*p++]++; /* assume all entries <= BMAX */ sl@0: } while (--i); sl@0: if (c[0] == n) /* null input--all zero length codes */ sl@0: { sl@0: *t = (inflate_huft *)Z_NULL; sl@0: *m = 0; sl@0: return Z_OK; sl@0: } sl@0: sl@0: sl@0: /* Find minimum and maximum length, bound *m by those */ sl@0: l = *m; sl@0: for (j = 1; j <= BMAX; j++) sl@0: if (c[j]) sl@0: break; sl@0: k = j; /* minimum code length */ sl@0: if ((uInt)l < j) sl@0: l = j; sl@0: for (i = BMAX; i; i--) sl@0: if (c[i]) sl@0: break; sl@0: g = i; /* maximum code length */ sl@0: if ((uInt)l > i) sl@0: l = i; sl@0: *m = l; sl@0: sl@0: sl@0: /* Adjust last length count to fill out codes, if needed */ sl@0: for (y = 1 << j; j < i; j++, y <<= 1) sl@0: if ((y -= c[j]) < 0) sl@0: return Z_DATA_ERROR; sl@0: if ((y -= c[i]) < 0) sl@0: return Z_DATA_ERROR; sl@0: c[i] += y; sl@0: sl@0: sl@0: /* Generate starting offsets into the value table for each length */ sl@0: x[1] = j = 0; sl@0: p = c + 1; xp = x + 2; sl@0: while (--i) { /* note that i == g from above */ sl@0: *xp++ = (j += *p++); sl@0: } sl@0: sl@0: sl@0: /* Make a table of values in order of bit lengths */ sl@0: p = b; i = 0; sl@0: do { sl@0: if ((j = *p++) != 0) sl@0: v[x[j]++] = i; sl@0: } while (++i < n); sl@0: n = x[g]; /* set n to length of v */ sl@0: sl@0: sl@0: /* Generate the Huffman codes and for each, make the table entries */ sl@0: x[0] = i = 0; /* first Huffman code is zero */ sl@0: p = v; /* grab values in bit order */ sl@0: h = -1; /* no tables yet--level -1 */ sl@0: w = -l; /* bits decoded == (l * h) */ sl@0: u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ sl@0: q = (inflate_huft *)Z_NULL; /* ditto */ sl@0: z = 0; /* ditto */ sl@0: sl@0: /* go through the bit lengths (k already is bits in shortest code) */ sl@0: for (; k <= g; k++) sl@0: { sl@0: a = c[k]; sl@0: while (a--) sl@0: { sl@0: /* here i is the Huffman code of length k bits for value *p */ sl@0: /* make tables up to required level */ sl@0: while (k > w + l) sl@0: { sl@0: h++; sl@0: w += l; /* previous table always l bits */ sl@0: sl@0: /* compute minimum size table less than or equal to l bits */ sl@0: z = g - w; sl@0: z = z > (uInt)l ? l : z; /* table size upper limit */ sl@0: if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ sl@0: { /* too few codes for k-w bit table */ sl@0: f -= a + 1; /* deduct codes from patterns left */ sl@0: xp = c + k; sl@0: if (j < z) sl@0: while (++j < z) /* try smaller tables up to z bits */ sl@0: { sl@0: if ((f <<= 1) <= *++xp) sl@0: break; /* enough codes to use up j bits */ sl@0: f -= *xp; /* else deduct codes from patterns */ sl@0: } sl@0: } sl@0: z = 1 << j; /* table entries for j-bit table */ sl@0: sl@0: /* allocate new table */ sl@0: if (*hn + z > MANY) /* (note: doesn't matter for fixed) */ sl@0: return Z_MEM_ERROR; /* not enough memory */ sl@0: u[h] = q = hp + *hn; sl@0: *hn += z; sl@0: sl@0: /* connect to last table, if there is one */ sl@0: if (h) sl@0: { sl@0: x[h] = i; /* save pattern for backing up */ sl@0: r.bits = (Byte)l; /* bits to dump before this table */ sl@0: r.exop = (Byte)j; /* bits in this table */ sl@0: j = i >> (w - l); sl@0: r.base = (uInt)(q - u[h-1] - j); /* offset to this table */ sl@0: u[h-1][j] = r; /* connect to last table */ sl@0: } sl@0: else sl@0: *t = q; /* first table is returned result */ sl@0: } sl@0: sl@0: /* set up table entry in r */ sl@0: r.bits = (Byte)(k - w); sl@0: if (p >= v + n) sl@0: r.exop = 128 + 64; /* out of values--invalid code */ sl@0: else if (*p < s) sl@0: { sl@0: r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ sl@0: r.base = *p++; /* simple code is just the value */ sl@0: } sl@0: else sl@0: { sl@0: r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ sl@0: r.base = d[*p++ - s]; sl@0: } sl@0: sl@0: /* fill code-like entries with r */ sl@0: f = 1 << (k - w); sl@0: for (j = i >> w; j < z; j += f) sl@0: q[j] = r; sl@0: sl@0: /* backwards increment the k-bit code i */ sl@0: for (j = 1 << (k - 1); i & j; j >>= 1) sl@0: i ^= j; sl@0: i ^= j; sl@0: sl@0: /* backup over finished tables */ sl@0: mask = (1 << w) - 1; /* needed on HP, cc -O bug */ sl@0: while ((i & mask) != x[h]) sl@0: { sl@0: h--; /* don't need to update q */ sl@0: w -= l; sl@0: mask = (1 << w) - 1; sl@0: } sl@0: } sl@0: } sl@0: sl@0: sl@0: /* Return Z_BUF_ERROR if we were given an incomplete table */ sl@0: return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; sl@0: } sl@0: sl@0: sl@0: int inflate_trees_bits(uIntf *c, uIntf *bb, inflate_huft * FAR *tb, inflate_huft *hp, z_streamp z) sl@0: /* uIntf *c; 19 code lengths */ sl@0: /* uIntf *bb; bits tree desired/actual depth */ sl@0: /* inflate_huft * FAR *tb; bits tree result */ sl@0: /* inflate_huft *hp; space for trees */ sl@0: /* z_streamp z; for messages */ sl@0: sl@0: sl@0: { sl@0: int r; sl@0: uInt hn = 0; /* hufts used in space */ sl@0: uIntf *v; /* work area for huft_build */ sl@0: sl@0: if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) sl@0: return Z_MEM_ERROR; sl@0: r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, sl@0: tb, bb, hp, &hn, v); sl@0: if (r == Z_DATA_ERROR) sl@0: z->msg = (char*)"oversubscribed dynamic bit lengths tree"; sl@0: else if (r == Z_BUF_ERROR || *bb == 0) sl@0: { sl@0: z->msg = (char*)"incomplete dynamic bit lengths tree"; sl@0: r = Z_DATA_ERROR; sl@0: } sl@0: ZFREE(z, v); sl@0: return r; sl@0: } sl@0: sl@0: sl@0: int inflate_trees_dynamic(uInt nl, uInt nd, uIntf *c, uIntf *bl, uIntf *bd, inflate_huft * FAR *tl, inflate_huft * FAR *td, inflate_huft *hp, z_streamp z) sl@0: /* uInt nl; number of literal/length codes */ sl@0: /* uInt nd; number of distance codes */ sl@0: /* uIntf *c; that many (total) code lengths */ sl@0: /* uIntf *bl; literal desired/actual bit depth */ sl@0: /* uIntf *bd; distance desired/actual bit depth */ sl@0: /* inflate_huft * FAR *tl; literal/length tree result */ sl@0: /* inflate_huft * FAR *td; distance tree result */ sl@0: /* inflate_huft *hp; space for trees */ sl@0: /* z_streamp z; for messages */ sl@0: sl@0: sl@0: { sl@0: int r; sl@0: uInt hn = 0; /* hufts used in space */ sl@0: uIntf *v; /* work area for huft_build */ sl@0: sl@0: /* allocate work area */ sl@0: if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) sl@0: return Z_MEM_ERROR; sl@0: sl@0: /* build literal/length tree */ sl@0: r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v); sl@0: if (r != Z_OK || *bl == 0) sl@0: { sl@0: if (r == Z_DATA_ERROR) sl@0: z->msg = (char*)"oversubscribed literal/length tree"; sl@0: else if (r != Z_MEM_ERROR) sl@0: { sl@0: z->msg = (char*)"incomplete literal/length tree"; sl@0: r = Z_DATA_ERROR; sl@0: } sl@0: ZFREE(z, v); sl@0: return r; sl@0: } sl@0: sl@0: /* build distance tree */ sl@0: r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v); sl@0: if (r != Z_OK || (*bd == 0 && nl > 257)) sl@0: { sl@0: if (r == Z_DATA_ERROR) sl@0: z->msg = (char*)"oversubscribed distance tree"; sl@0: else if (r == Z_BUF_ERROR) { sl@0: #ifdef PKZIP_BUG_WORKAROUND sl@0: r = Z_OK; sl@0: } sl@0: #else sl@0: z->msg = (char*)"incomplete distance tree"; sl@0: r = Z_DATA_ERROR; sl@0: } sl@0: else if (r != Z_MEM_ERROR) sl@0: { sl@0: z->msg = (char*)"empty distance tree with lengths"; sl@0: r = Z_DATA_ERROR; sl@0: } sl@0: ZFREE(z, v); sl@0: return r; sl@0: #endif sl@0: } sl@0: sl@0: /* done */ sl@0: ZFREE(z, v); sl@0: return Z_OK; sl@0: } sl@0: sl@0: sl@0: /* build fixed tables only once--keep them here */ sl@0: #ifdef BUILDFIXED sl@0: local int fixed_built = 0; sl@0: #define FIXEDH 544 /* number of hufts used by fixed tables */ sl@0: local inflate_huft fixed_mem[FIXEDH]; sl@0: local uInt fixed_bl; sl@0: local uInt fixed_bd; sl@0: local inflate_huft *fixed_tl; sl@0: local inflate_huft *fixed_td; sl@0: #else sl@0: #include "inffixed.h" sl@0: #endif sl@0: sl@0: int inflate_trees_fixed(uIntf *bl, uIntf *bd, inflate_huft * FAR *tl, inflate_huft * FAR *td, z_streamp z) sl@0: /* uIntf *bl; literal desired/actual bit depth */ sl@0: /* uIntf *bd; distance desired/actual bit depth */ sl@0: /* inflate_huft * FAR *tl; literal/length tree result */ sl@0: /* inflate_huft * FAR *td; distance tree result */ sl@0: /* z_streamp z; for memory allocation */ sl@0: { sl@0: #ifdef BUILDFIXED sl@0: /* build fixed tables if not already */ sl@0: if (!fixed_built) sl@0: { sl@0: int k; /* temporary variable */ sl@0: uInt f = 0; /* number of hufts used in fixed_mem */ sl@0: uIntf *c; /* length list for huft_build */ sl@0: uIntf *v; /* work area for huft_build */ sl@0: sl@0: /* allocate memory */ sl@0: if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) sl@0: return Z_MEM_ERROR; sl@0: if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) sl@0: { sl@0: ZFREE(z, c); sl@0: return Z_MEM_ERROR; sl@0: } sl@0: sl@0: /* literal table */ sl@0: for (k = 0; k < 144; k++) sl@0: c[k] = 8; sl@0: for (; k < 256; k++) sl@0: c[k] = 9; sl@0: for (; k < 280; k++) sl@0: c[k] = 7; sl@0: for (; k < 288; k++) sl@0: c[k] = 8; sl@0: fixed_bl = 9; sl@0: huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, sl@0: fixed_mem, &f, v); sl@0: sl@0: /* distance table */ sl@0: for (k = 0; k < 30; k++) sl@0: c[k] = 5; sl@0: fixed_bd = 5; sl@0: huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, sl@0: fixed_mem, &f, v); sl@0: sl@0: /* done */ sl@0: ZFREE(z, v); sl@0: ZFREE(z, c); sl@0: fixed_built = 1; sl@0: } sl@0: #endif sl@0: *bl = fixed_bl; sl@0: *bd = fixed_bd; sl@0: *tl = fixed_tl; sl@0: *td = fixed_td; sl@0: z->data_type = z->data_type; /* Here to prevent TOOLS2 warning about z being unused. */ sl@0: return Z_OK; sl@0: }