sl@0: // Copyright (c) 1999-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0: // All rights reserved.
sl@0: // This component and the accompanying materials are made available
sl@0: // under the terms of the License "Eclipse Public License v1.0"
sl@0: // which accompanies this distribution, and is available
sl@0: // at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0: //
sl@0: // Initial Contributors:
sl@0: // Nokia Corporation - initial contribution.
sl@0: //
sl@0: // Contributors:
sl@0: //
sl@0: // Description:
sl@0: //
sl@0: 
sl@0: #include <drivers/sdcard.h>
sl@0: #include "OstTraceDefinitions.h"
sl@0: #ifdef OST_TRACE_COMPILER_IN_USE
sl@0: #include "locmedia_ost.h"
sl@0: #ifdef __VC32__
sl@0: #pragma warning(disable: 4127) // disabling warning "conditional expression is constant"
sl@0: #endif
sl@0: #include "sdcardTraces.h"
sl@0: #endif
sl@0: 
sl@0: 
sl@0: // ======== TSDCard ========
sl@0: 
sl@0: TSDCard::TSDCard()
sl@0: :	iProtectedAreaSize(0), iPARootDirEnd(KPARootDirEndUnknown)
sl@0: 	{
sl@0: 	// empty
sl@0: 	}
sl@0: 
sl@0: TInt64 TSDCard::DeviceSize64() const
sl@0: //
sl@0: // returns the SD device size
sl@0: //
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARD_DEVICESIZE64_ENTRY, this );
sl@0: 	if(iFlags & KSDCardIsSDCard)
sl@0: 		{	
sl@0: 		return (IsHighCapacity()) ? 512 * 1024 * (TInt64)(1 + CSD().CSDField(69, 48)) : TMMCard::DeviceSize64();
sl@0: 		}
sl@0: 		
sl@0: 	return(TMMCard::DeviceSize64());
sl@0: 	}
sl@0: 
sl@0: TUint32 TSDCard::PreferredWriteGroupLength() const
sl@0: //
sl@0: // return SD erase sector size, (SECTOR_SIZE + 1) * 2 ** WRITE_BLK_LEN
sl@0: //
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARD_PREFERREDWRITEGROUPLENGTH_ENTRY, this );
sl@0: 	if(iFlags & KSDCardIsSDCard)
sl@0: 		{	
sl@0: 		TSDCSD sdcsd(CSD());
sl@0: 		return (sdcsd.SDSectorSize() + 1) * (1 << sdcsd.WriteBlLen());
sl@0: 		}
sl@0: 		
sl@0: 	return(TMMCard::PreferredWriteGroupLength());
sl@0: 	}
sl@0: 
sl@0: TInt TSDCard::GetFormatInfo(TLDFormatInfo& /*aFormatInfo*/) const
sl@0: 	{
sl@0: 	return KErrNotSupported;
sl@0: 	}
sl@0: 
sl@0: TUint32 TSDCard::MinEraseSectorSize() const
sl@0: 	{
sl@0: 	if(iFlags&KSDCardIsSDCard)
sl@0: 		{	
sl@0: 		TSDCSD sdcsd(CSD());
sl@0: 		if (sdcsd.SDEraseBlkEn())
sl@0: 			return sdcsd.WriteBlockLength();		// raised logarithm
sl@0: 		else
sl@0: 			return (sdcsd.SDSectorSize() + 1) * sdcsd.WriteBlockLength();
sl@0: 		}
sl@0: 
sl@0: 	return TMMCard::MinEraseSectorSize();
sl@0: 	}
sl@0: 
sl@0: 
sl@0: const TUint32 KEraseSectorSizeShift = 8;	// KEraseSectorSizeShift determines the multiple of the sector size 
sl@0: 											// that can be erased in one operation
sl@0: TUint32 TSDCard::EraseSectorSize() const
sl@0: 	{
sl@0: 	if(iFlags&KSDCardIsSDCard)
sl@0: 		{	
sl@0: 		TSDCSD sdcsd(CSD());
sl@0: 		return ((sdcsd.SDSectorSize() + 1) * sdcsd.WriteBlockLength()) << KEraseSectorSizeShift;
sl@0: 		}
sl@0: 
sl@0: 	return TMMCard::EraseSectorSize();
sl@0: 	}
sl@0: 
sl@0: const TInt KDefaultBlockLen		   = 9;							// 2^9 = 512 bytes
sl@0: const TInt KDefaultBlockLenInBytes = 1 << KDefaultBlockLen;		// 2^9 = 512 bytes
sl@0: const TInt KTwoGbyteSDBlockLen	   = 10;						// 2^10 = 1024 bytes
sl@0: const TInt KFourGbyteSDBlockLen	   = 11;						// 2^11 = 2048 bytes
sl@0: 
sl@0: TInt TSDCard::GetEraseInfo(TMMCEraseInfo& aEraseInfo) const
sl@0: //
sl@0: // Return info. on erase services for this card
sl@0: //
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARD_GETERASEINFO_ENTRY, this );
sl@0: 	
sl@0: 	// SD Controllers support MMC cards too. Check if we are really dealing with an SD card
sl@0: 	if(!(iFlags&KSDCardIsSDCard))
sl@0: 		return(TMMCard::GetEraseInfo(aEraseInfo));
sl@0: 		
sl@0: 	if (CSD().CCC() & KMMCCmdClassErase)
sl@0: 		{
sl@0: 		// This card supports erase cmds. However, SD cards don't support Erase Group commands (i.e. CMD35, CMD36).
sl@0: 		OstTrace0( TRACE_INTERNALS, TSDCARD_GETERASEINFO, "Card supports erase class commands" );		
sl@0: 		aEraseInfo.iEraseFlags=KMMCEraseClassCmdsSupported; 
sl@0: 		
sl@0: 		// Return the preferred size to be used as the unit for erase operations.
sl@0: 		TSDCSD sdcsd(CSD());
sl@0: 		TUint32 prefSize=((sdcsd.SDSectorSize() + 1) * sdcsd.WriteBlockLength());
sl@0: 		prefSize<<=KEraseSectorSizeShift;		// Use multiples of the sector size for each erase operation
sl@0: 		aEraseInfo.iPreferredEraseUnitSize=prefSize;
sl@0: 	
sl@0: 		// Return the smallest size that can be used as the unit for erase operations
sl@0: 		if (sdcsd.SDEraseBlkEn())
sl@0: 			{
sl@0: 			aEraseInfo.iMinEraseSectorSize = KDefaultBlockLenInBytes;
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			aEraseInfo.iMinEraseSectorSize=(sdcsd.SDSectorSize() + 1) * sdcsd.WriteBlockLength();
sl@0: 			}
sl@0: 		}
sl@0: 	else		
sl@0: 		aEraseInfo.iEraseFlags=0;
sl@0: 		
sl@0: 	OstTraceFunctionExitExt( TSDCARD_GETERASEINFO_EXIT, this, KErrNone );
sl@0: 	return KErrNone;	
sl@0: 	}
sl@0: 
sl@0: TInt TSDCard::MaxReadBlLen() const
sl@0: /**
sl@0:  * Returns the maximum read block length supported by the card encoded as a logarithm
sl@0:  * Normally this is the same as the READ_BL_LEN field in the CSD register,
sl@0:  * but for high capacity cards (> 2GB) this is set to a maximum of 512 bytes,
sl@0:  * if possible, to try to avoid compatibility issues.
sl@0:  */
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARD_MAXREADBLLEN_ENTRY, this );
sl@0: 	if (IsSDCard())
sl@0: 		{
sl@0: 		TInt blkLenLog2 = CSD().ReadBlLen();
sl@0: 		if (blkLenLog2 == KTwoGbyteSDBlockLen || blkLenLog2 == KFourGbyteSDBlockLen)
sl@0: 			{
sl@0: 			// The SD card spec. makes a special case for 2GByte cards,
sl@0: 			// ...and some manufacturers apply the same method to support 4G cards
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("=mmc:mrbl > 2GB SD"));
sl@0: 			OstTrace0( TRACE_INTERNALS, TSDCARD_MAXREADBLLEN, "SD Card > 2GB" );
sl@0: 			blkLenLog2 = KDefaultBlockLen;
sl@0: 			}
sl@0: 		OstTraceFunctionExitExt( TSDCARD_MAXREADBLLEN_EXIT, this, blkLenLog2 );
sl@0: 		return blkLenLog2;
sl@0: 		}
sl@0: 	else		// MMC card
sl@0: 		{
sl@0: 		TInt ret = TMMCard::MaxReadBlLen();
sl@0: 		OstTraceFunctionExitExt( DUP1_TSDCARD_MAXREADBLLEN_EXIT, this, ret );
sl@0: 		return ret;
sl@0: 		}
sl@0: 	}
sl@0: 
sl@0: TInt TSDCard::MaxWriteBlLen() const
sl@0: /**
sl@0:  * Returns the maximum write block length supported by the card encoded as a logarithm
sl@0:  * Normally this is the same as the WRITE_BL_LEN field in the CSD register,
sl@0:  * but for high capacity cards (> 2GB) this is set to a maximum of 512 bytes,
sl@0:  * if possible, to try to avoid compatibility issues.
sl@0:  */
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARD_MAXWRITEBLLEN_ENTRY, this );
sl@0: 	if (IsSDCard())
sl@0: 		{
sl@0: 		TInt blkLenLog2 = CSD().WriteBlLen();
sl@0: 		if (blkLenLog2 == KTwoGbyteSDBlockLen || blkLenLog2 == KFourGbyteSDBlockLen)
sl@0: 			{
sl@0: 			// The SD card spec. makes a special case for 2GByte cards,
sl@0: 			// ...and some manufacturers apply the same method to support 4G cards
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("=mmc:mwbl > 2GB SD"));
sl@0: 			OstTrace0( TRACE_INTERNALS, TSDCARD_MAXWRITEBLLEN, "SD Card > 2GB" );
sl@0: 			blkLenLog2 = KDefaultBlockLen;
sl@0: 			}
sl@0: 		OstTraceFunctionExitExt( TSDCARD_MAXWRITEBLLEN_EXIT, this, blkLenLog2 );
sl@0: 		return blkLenLog2;
sl@0: 		}
sl@0: 	else		// MMC card
sl@0: 		{
sl@0: 		TInt ret = TMMCard::MaxWriteBlLen();
sl@0: 		OstTraceFunctionExitExt( DUP1_TSDCARD_MAXWRITEBLLEN_EXIT, this, ret );
sl@0: 		return ret;
sl@0: 		}
sl@0: 	}
sl@0: 	
sl@0: TUint TSDCard::MaxTranSpeedInKilohertz() const
sl@0: /**
sl@0:  * Returns the maximum supported clock rate for the card, in Kilohertz.
sl@0:  * @return Speed, in Kilohertz
sl@0:  */
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARD_MAXTRANSPEEDINKILOHERTZ_ENTRY, this );
sl@0: 	TUint maxClk = TMMCard::MaxTranSpeedInKilohertz();
sl@0: 	
sl@0: 	if (IsSDCard())
sl@0: 		{
sl@0: 		__KTRACE_OPT(KPBUS1, Kern::Printf("\t >TSDCard(%d): MaxTranSpeedInKilohertz: %d",(iIndex-1),maxClk));
sl@0: 		
sl@0: #ifdef _DEBUG
sl@0: 		//MaxClk for SD should only be either 25000KHz or 50000KHz
sl@0: 		if ( (maxClk != KSDDTClk25MHz) && (maxClk != KSDDTClk50MHz) )
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack: Non-Compliant DT Clock"));
sl@0: 			OstTrace0( TRACE_INTERNALS, TSDCARD_MAXTRANSPEEDINKILOHERTZ, "Non-Compliant DT Clock" );			
sl@0: 			}
sl@0: #endif
sl@0: 		if (maxClk > KSDDTClk50MHz)
sl@0: 			{
sl@0: 			//Clock rate exceeds SD possible max clock rate
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack: Tuning DT Clock down to 50MHz"));
sl@0: 			OstTrace0( TRACE_INTERNALS, TSDCARD_MAXTRANSPEEDINKILOHERTZ1, "Tuning DT Clock down to 50MHz" );			
sl@0: 			maxClk = KSDDTClk50MHz;
sl@0: 			}
sl@0: 		}
sl@0: 		
sl@0: 	OstTraceFunctionExitExt( TSDCARD_MAXTRANSPEEDINKILOHERTZ_EXIT, this, maxClk );
sl@0: 	return maxClk;
sl@0: 	}
sl@0: 
sl@0: // ======== TSDCardArray ========
sl@0: 
sl@0: EXPORT_C TInt TSDCardArray::AllocCards()
sl@0: // 
sl@0: // allocate TSDCard objects for iCards and iNewCardsArray.  This function
sl@0: // is called at bootup as part of stack allocation so there is no cleanup
sl@0: // if it fails.
sl@0: //
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( TSDCARDARRAY_ALLOCCARDS_ENTRY, this );
sl@0: 	for (TInt i = 0; i < (TInt) KMaxMMCardsPerStack; ++i)
sl@0: 		{
sl@0: 		// zeroing the card data used to be implicit because embedded in
sl@0: 		// CBase-derived DMMCStack.
sl@0: 		if ((iCards[i] = new TSDCard) == 0)
sl@0: 		    {
sl@0: 			OstTraceFunctionExitExt( TSDCARDARRAY_ALLOCCARDS_EXIT, this, KErrNoMemory );
sl@0: 			return KErrNoMemory;
sl@0: 		    }
sl@0: 		iCards[i]->iUsingSessionP = 0;
sl@0: 		if ((iNewCards[i] = new TSDCard) == 0)
sl@0: 		    {
sl@0: 			OstTraceFunctionExitExt( DUP1_TSDCARDARRAY_ALLOCCARDS_EXIT, this, KErrNoMemory );
sl@0: 			return KErrNoMemory;
sl@0: 			}
sl@0: 		}
sl@0: 
sl@0: 	OstTraceFunctionExitExt( DUP2_TSDCARDARRAY_ALLOCCARDS_EXIT, this, KErrNone );
sl@0: 	return KErrNone;
sl@0: 	}
sl@0: 
sl@0: void TSDCardArray::AddCardSDMode(TUint aCardNumber,const TUint8* aCID,TRCA* aNewRCA)
sl@0: //
sl@0: // Add an MMC card straight to the main card array in slot 'aCardNumber'. Save
sl@0: // the CID value in the slot. Return a RCA for the card.
sl@0: //
sl@0: 	{
sl@0: 	OstTraceFunctionEntryExt( TSDCARDARRAY_ADDCARDSDMODE_ENTRY, this );
sl@0: 
sl@0: 	TRCA rca=0;
sl@0: 	
sl@0: 	// First, lets check if the same card was here before. If it was, keep the same RCA
sl@0: 	if (Card(aCardNumber).IsPresent() && Card(aCardNumber).iCID==aCID)
sl@0: 		rca=Card(aCardNumber).iRCA;
sl@0: 	else
sl@0: 		{
sl@0: 		// Allocate and new RCA and store the CID in the slot selected
sl@0: 		__ASSERT_ALWAYS( (rca=iOwningStack->iRCAPool.GetFreeRCA())!=0,DMMCSocket::Panic(DMMCSocket::EMMCNoFreeRCA) );
sl@0: 		Card(aCardNumber).iCID=aCID;
sl@0: 		if ( Card(aCardNumber).iRCA != 0 )
sl@0: 			iOwningStack->iRCAPool.UnlockRCA(Card(aCardNumber).iRCA);
sl@0: 		Card(aCardNumber).iRCA=rca;
sl@0: 		iOwningStack->iRCAPool.LockRCA(Card(aCardNumber).iRCA);
sl@0: 		}
sl@0: 
sl@0: 	Card(aCardNumber).iIndex=(aCardNumber+1); // Mark card as being present
sl@0: 	*aNewRCA=rca;
sl@0: 	OstTraceFunctionExit1( TSDCARDARRAY_ADDCARDSDMODE_EXIT, this );
sl@0: 	}
sl@0: 
sl@0: TInt TSDCardArray::StoreRCAIfUnique(TUint aCardNumber,TRCA& anRCA)
sl@0: //
sl@0: // Check that no other array element has the same RCA value 'anRCA'. If no
sl@0: // no duplication then store in slot 'aCardNumber'.
sl@0: //
sl@0: 	{
sl@0: 	OstTraceExt3(TRACE_FLOW, TSDCARDARRAY_STORERCAIFUNIQUE_ENTRY ,"TSDCardArray::StoreRCAIfUnique;aCardNumber=%x;anRCA=%x;this=%x", aCardNumber, (TUint) anRCA, (TUint) this);
sl@0: 
sl@0: 	if (anRCA==0)
sl@0: 		{
sl@0: 		OstTraceFunctionExitExt( TSDCARDARRAY_STORERCAIFUNIQUE_EXIT, this, KErrGeneral );
sl@0: 		return KErrGeneral;
sl@0: 		}
sl@0: 	Card(aCardNumber).iRCA=0;
sl@0: 
sl@0: 	// Now let's look if we've seen this card before
sl@0: 	for ( TUint i=0 ; i<iOwningStack->iMaxCardsInStack ; i++ )
sl@0: 		{
sl@0: 		if ( Card(i).IsPresent() && Card(i).iRCA==anRCA )
sl@0: 			{
sl@0: 			OstTraceFunctionExitExt( DUP1_TSDCARDARRAY_STORERCAIFUNIQUE_EXIT, this, KErrInUse );
sl@0: 			return KErrInUse;
sl@0: 			}
sl@0: 		}
sl@0: 	Card(aCardNumber).iRCA=anRCA;
sl@0: 	Card(aCardNumber).iIndex=(aCardNumber+1); // Mark card as being present
sl@0: 	OstTraceFunctionExitExt( DUP2_TSDCARDARRAY_STORERCAIFUNIQUE_EXIT, this, KErrNone );
sl@0: 	return KErrNone;
sl@0: 	}
sl@0: 
sl@0: EXPORT_C void TSDCardArray::DeclareCardAsGone(TUint aCardNumber)
sl@0: //
sl@0: // reset SD specific fields to initial values and then reset generic MultiMediaCard
sl@0: //
sl@0: 	{
sl@0: 	OstTraceFunctionEntryExt( TSDCARDARRAY_DECLARECARDASGONE_ENTRY, this );
sl@0: 	Card(aCardNumber).SetBusWidth(1);
sl@0: 	TMMCardArray::DeclareCardAsGone(aCardNumber);
sl@0: 	OstTraceFunctionExit1( TSDCARDARRAY_DECLARECARDASGONE_EXIT, this );
sl@0: 	}
sl@0: 
sl@0: // ======== DSDSession ========
sl@0: 
sl@0: void DSDSession::FillAppCommandDesc(TMMCCommandDesc& aDesc, TSDAppCmd aCmd)
sl@0: 	{
sl@0: 	OstTraceFunctionEntry0( DSDSESSION_FILLAPPCOMMANDDESC_ENTRY );
sl@0: 	aDesc.iCommand = (TMMCCommandEnum) aCmd;
sl@0: 	aDesc.iArgument = 0;						// set stuff bits to zero
sl@0: 	FillAppCommandDesc(aDesc);
sl@0: 	OstTraceFunctionExit0( DSDSESSION_FILLAPPCOMMANDDESC_EXIT );
sl@0: 	}
sl@0: 
sl@0: void DSDSession::FillAppCommandDesc(TMMCCommandDesc& aDesc, TSDAppCmd aCmd, TMMCArgument aArg)
sl@0: 	{
sl@0: 	OstTraceFunctionEntry0( DUP1_DSDSESSION_FILLAPPCOMMANDDESC_ENTRY );
sl@0: 	aDesc.iCommand = (TMMCCommandEnum) aCmd;
sl@0: 	aDesc.iArgument = aArg;
sl@0: 	FillAppCommandDesc(aDesc);
sl@0: 	OstTraceFunctionExit0( DUP1_DSDSESSION_FILLAPPCOMMANDDESC_EXIT );
sl@0: 	}
sl@0: 
sl@0: const TUint32 CCA = KMMCCmdClassApplication;
sl@0: const TMMCIdxCommandSpec AppCmdSpecTable[] =
sl@0: 	{						//	Class	Type		Dir			MBlk	StopT	Rsp Type		Len
sl@0: 	{ESDACmdSetBusWidth,		{CCA,ECmdTypeACS,	EDirNone,	EFalse, EFalse, ERespTypeR1,	4}}, //ACMD6
sl@0: 	{ESDACmdSDStatus,			{CCA,ECmdTypeADTCS,	EDirRead,	EFalse, EFalse, ERespTypeR1,	4}}, //ACMD13
sl@0: 	{ESDACmdSendNumWrBlocks,	{CCA,ECmdTypeADTCS,	EDirRead,	EFalse, EFalse, ERespTypeR1,	4}}, //ACMD22
sl@0: 	{ESDACmdSetWrBlkEraseCount,	{CCA,ECmdTypeACS,	EDirNone,	EFalse, EFalse, ERespTypeR1,	4}}, //ACMD23
sl@0: 	{ESDACmdSDAppOpCond,		{CCA,ECmdTypeBCR,	EDirNone,	EFalse, EFalse, ERespTypeR3,	4}}, //ACMD41
sl@0: 	{ESDACmdSetClrCardDetect,	{CCA,ECmdTypeAC,	EDirNone,	EFalse, EFalse, ERespTypeR1,	4}}, //ACMD42
sl@0: 	{ESDACmdSendSCR,			{CCA,ECmdTypeADTCS,	EDirRead,	EFalse, EFalse, ERespTypeR1,	4}}  //ACMD51
sl@0: };
sl@0: 
sl@0: void DSDSession::FillAppCommandDesc(TMMCCommandDesc& aDesc)
sl@0: 	{
sl@0: 	OstTraceFunctionEntry0( DUP2_DSDSESSION_FILLAPPCOMMANDDESC_ENTRY );
sl@0: 	aDesc.iSpec = FindCommandSpec(AppCmdSpecTable, aDesc.iCommand);
sl@0: 	aDesc.iFlags = 0;
sl@0: 	aDesc.iBytesDone = 0;
sl@0: 	OstTraceFunctionExit0( DUP2_DSDSESSION_FILLAPPCOMMANDDESC_EXIT );
sl@0: 	}
sl@0: 
sl@0: const TMMCIdxCommandSpec SdSpecificCmdSpecTable[] =
sl@0: /**
sl@0:  * SD Specific Command Table
sl@0:  *
sl@0:  *  - Some commands defined in the SD specification overload those defined in the MMC specification.
sl@0:  *    This table contains the SD specific versions of those commands.
sl@0:  */
sl@0: 	{
sl@0: 							//   Class				Type			Dir			MBlk	StopT	Rsp Type		Len
sl@0: 	{ESDCmdSendRelativeAddress,	{KMMCCmdClassBasic,	ECmdTypeBCR,	EDirNone,	EFalse,	EFalse,	ERespTypeR6,	4}},	// CMD3 : SEND_RELATIVE_ADDRESS
sl@0: 	{ESDCmdSwitchFunction,		{KMMCCmdClassSwitch,ECmdTypeADTCS,	EDirRead,	EFalse,	EFalse,	ERespTypeR1,	4}},	// CMD6 : SWITCH_FUNCTION
sl@0: 	{ESDCmdSendIfCond,			{KMMCCmdClassBasic,	ECmdTypeBCR,	EDirNone,	EFalse,	EFalse,	ERespTypeR7,	4}}		// CMD8 : SEND_IF_COND
sl@0: 	};
sl@0: 
sl@0: void DSDSession::FillSdSpecificCommandDesc(TMMCCommandDesc& aDesc, TSDSpecificCmd aCmd, TMMCArgument aArg)
sl@0: 	{
sl@0: 	OstTraceFunctionEntry0( DSDSESSION_FILLSDSPECIFICCOMMANDDESC_ENTRY );
sl@0: 	aDesc.iCommand = (TMMCCommandEnum) aCmd;
sl@0: 	aDesc.iArgument = aArg;
sl@0: 	FillSdSpecificCommandDesc(aDesc);
sl@0: 	OstTraceFunctionExit0( DSDSESSION_FILLSDSPECIFICCOMMANDDESC_EXIT );
sl@0: 	}
sl@0: 
sl@0: void DSDSession::FillSdSpecificCommandDesc(TMMCCommandDesc& aDesc, TSDSpecificCmd aCmd)
sl@0: 	{
sl@0: 	OstTraceFunctionEntry0( DUP1_DSDSESSION_FILLSDSPECIFICCOMMANDDESC_ENTRY );
sl@0: 	aDesc.iCommand = (TMMCCommandEnum) aCmd;
sl@0: 	aDesc.iArgument = 0;						// set stuff bits to zero
sl@0: 	FillSdSpecificCommandDesc(aDesc);
sl@0: 	OstTraceFunctionExit0( DUP1_DSDSESSION_FILLSDSPECIFICCOMMANDDESC_EXIT );
sl@0: 	}
sl@0: 
sl@0: void DSDSession::FillSdSpecificCommandDesc(TMMCCommandDesc& aDesc)
sl@0: 	{
sl@0: 	OstTraceFunctionEntry0( DUP2_DSDSESSION_FILLSDSPECIFICCOMMANDDESC_ENTRY );
sl@0: 	aDesc.iSpec = FindCommandSpec(SdSpecificCmdSpecTable, aDesc.iCommand);
sl@0: 	aDesc.iFlags = 0;
sl@0: 	aDesc.iBytesDone = 0;
sl@0: 	OstTraceFunctionExit0( DUP2_DSDSESSION_FILLSDSPECIFICCOMMANDDESC_EXIT );
sl@0: 	}
sl@0: 
sl@0: 
sl@0: // ======== DSDStack ========
sl@0: 
sl@0: EXPORT_C TInt DSDStack::Init()
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( DSDSTACK_INIT_ENTRY, this );
sl@0: 	TInt ret = DMMCStack::Init();
sl@0: 	OstTraceFunctionExitExt( DSDSTACK_INIT_EXIT, this, ret );
sl@0: 	return ret;
sl@0: 	}
sl@0: 
sl@0: 
sl@0: const TInt KMaxRCASendLoops=3;
sl@0: const TUint KSDMaxPollAttempts=25;
sl@0: EXPORT_C TMMCErr DSDStack::AcquireStackSM()
sl@0: //
sl@0: // This macro acquires new cards in an SD Card - star topology stack.
sl@0: // This means each card has its own CMD and DAT lines and can be addressed
sl@0: // individually by the Controller in turn. Commands can also be broadcast 
sl@0: // simultaneously to the entire stack. 
sl@0: // It starts with the Controller reading the operating conditions of each 
sl@0: // card in the stack (SEND_OP_COND - ACMD41). Then, the following
sl@0: // initialisation sequence is performed to each card in turn:-
sl@0: // New cards in the stack are identified (ALL_SEND_CID - CMD2) and each one
sl@0: // is requested to publish a relative card address (SEND_RCA - CMD3). Finally,
sl@0: // the card specific data (SEND_CSD - CMD9) is read from each card.
sl@0: // Note that the initialization of MMC cards are supported by this function
sl@0: // if they are encountered. These require a slightly different init. procdure.
sl@0: //
sl@0: 	{
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EStNextFullRange,
sl@0: 			EStSendCIDIssued,
sl@0: 			EStIssueSendRCA,
sl@0: 			EStSendRCACheck,
sl@0: 			EStRCADone,
sl@0: 			EStMoreCardsCheck,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 		DMMCSession& s=Session();
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM, "Current session = 0x%x", &s );
sl@0: 
sl@0: 	SMF_BEGIN
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM1, "EStBegin" );
sl@0:         __KTRACE_OPT(KPBUS1, Kern::Printf(">DSDStack::AcquireStackSM()"));
sl@0:         
sl@0: 		iRCAPool.ReleaseUnlocked();
sl@0: 		iCxCardCount=0; 		// Reset current card number
sl@0: 
sl@0: 	SMF_STATE(EStNextFullRange)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM2, "EStNextFullRange" );
sl@0: 		iCxCardType = ESDCardTypeUnknown;
sl@0: 
sl@0: 		AddressCard(iCxCardCount); 	// Address the next card
sl@0: 
sl@0: 		// Before issueing commands, see if there's actually a card present
sl@0: 		if (!CardDetect(iCxCardCount))
sl@0: 			SMF_GOTOS(EStMoreCardsCheck)
sl@0: 
sl@0: 		m.SetTraps(KMMCErrResponseTimeOut);
sl@0: 		SMF_INVOKES(InitialiseMemoryCardSMST, EStSendCIDIssued)
sl@0: 
sl@0: 	SMF_STATE(EStSendCIDIssued)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM3, "EStSendCIDIssued" );
sl@0: 		if( !err )
sl@0: 			{
sl@0: 			// The card responded with a CID. We need to initialise the
sl@0: 			// appropriate entry in the card array with the CID. 
sl@0: 			if (iCxCardType==ESDCardTypeIsSD)
sl@0: 				{
sl@0: 				// Now prepare to recieve an RCA from to the card
sl@0: 				CardArray().CardP(iCxCardCount)->iCID=s.ResponseP();
sl@0: 				DSDSession::FillSdSpecificCommandDesc(Command(), ESDCmdSendRelativeAddress,0); // SEND_RCA with argument just stuff bits
sl@0: 
sl@0: 				m.ResetTraps();
sl@0: 				iCxPollRetryCount=0; // Init count of send RCA attempts 
sl@0: 				SMF_GOTOS(EStIssueSendRCA)
sl@0: 				}
sl@0: 			else
sl@0: 				{
sl@0: 				// The card array allocates an RCA, either the old RCA
sl@0: 				// if we have seen this card before, or a new one.
sl@0: 				TRCA rca;
sl@0: 				CardArray().AddCardSDMode(iCxCardCount,s.ResponseP(),&rca);
sl@0: 
sl@0: 				// Now assign the new RCA to the card
sl@0: 				s.FillCommandDesc(ECmdSetRelativeAddr,TMMCArgument(rca));
sl@0: 				m.ResetTraps();							
sl@0: 				SMF_INVOKES(ExecCommandSMST,EStRCADone)
sl@0: 				}
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			m.ResetTraps();
sl@0: 			SMF_GOTOS(EStMoreCardsCheck) // Timed out, try the next card slot
sl@0: 			}
sl@0: 
sl@0: 	SMF_STATE(EStIssueSendRCA)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM4, "EStIssueSendRCA" );
sl@0: 		SMF_INVOKES(ExecCommandSMST,EStSendRCACheck)
sl@0: 
sl@0: 	SMF_STATE(EStSendRCACheck)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM5, "EStSendRCACheck" );
sl@0: 		// We need to check that the RCA recieved from the card doesn't clash
sl@0: 		// with any others in this stack. RCA is first 2 bytes of response buffer (in big endian)
sl@0: 		TRCA rca=(TUint16)((s.ResponseP()[0]<<8) | s.ResponseP()[1]);
sl@0: 		if (CardArray().StoreRCAIfUnique(iCxCardCount,rca)!=KErrNone)
sl@0: 			SMF_GOTOS( ((++iCxPollRetryCount<KMaxRCASendLoops)?EStIssueSendRCA:EStMoreCardsCheck) )
sl@0: 
sl@0: 	SMF_STATE(EStRCADone)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM6, "EStRCADone" );
sl@0: 		SMF_INVOKES(ConfigureMemoryCardSMST, EStMoreCardsCheck)
sl@0: 
sl@0: 	SMF_STATE(EStMoreCardsCheck)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_ATTACHCARDSM7, "EStMoreCardsCheck" );
sl@0: 		if (++iCxCardCount < (TInt)iMaxCardsInStack)
sl@0: 		    {
sl@0: 		    __KTRACE_OPT(KPBUS1, Kern::Printf(">DSDStack::AcquireStackSM(): More Cards to check: %d",iCxCardCount));
sl@0: 			OstTrace1( TRACE_INTERNALS, DSDSTACK_ACQUIRESTACKSM8, "More Cards to check: iCxCardCount=%d", iCxCardCount );		    
sl@0: 			SMF_GOTOS(EStNextFullRange)
sl@0: 		    }
sl@0: 		else
sl@0: 		    {		   
sl@0: 			AddressCard(KBroadcastToAllCards); // Set back to broadcast mode
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("<DSDStack::AcquireStackSM()"));
sl@0: 		    }
sl@0: 
sl@0: 	SMF_END
sl@0: 	}
sl@0: 
sl@0: 
sl@0: TMMCErr DSDStack::InitialiseMemoryCardSMST(TAny* aStackP)
sl@0: 	{ return static_cast<DSDStack*>(aStackP)->InitialiseMemoryCardSM(); }
sl@0: 
sl@0: 	
sl@0: TMMCErr DSDStack::InitialiseMemoryCardSM()
sl@0: /**
sl@0: */
sl@0: 	{
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EStSendInterfaceCondition,
sl@0: 			EStSentInterfaceCondition,
sl@0: 			EStSetFullRangeCmd,
sl@0: 			EStCheckForFullRangeCmd41Timeout,
sl@0: 			EStSentAppCommandBeforeCheckVoltage,
sl@0: 			EStCheckVoltage,
sl@0: 			EStFullRangeDone,
sl@0: 			EStSetRangeCmd,
sl@0: 			EStCheckForRangeCmd41Timeout,
sl@0: 			EStSetRangeBusyCheck,
sl@0: 			EStCIDCmd,
sl@0: 			EStSendCIDIssued,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 		DMMCSession& s=Session();
sl@0: 		DMMCPsu* psu=(DMMCPsu*)MMCSocket()->iVcc;
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM, "Current session = 0x%x", &s );
sl@0: 			
sl@0: 		static const TUint32 KCmd8Param		= 0x0100 | 0x00AA;	// Voltage supplied : 2.7-3.6V, Check Pattern 10101010b
sl@0: 		static const TUint32 KCmd8CheckMask = 0x00000FFF;
sl@0: 
sl@0: 	SMF_BEGIN
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM1, "EStBegin" );
sl@0: 		iCxCardType = ESDCardTypeUnknown;
sl@0: 		s.iCardP = NULL;	// This stops ExecCommandSM() from setting old RCA when sending CMD55
sl@0: 
sl@0: 		// Send CMD0 to initialise memory
sl@0: 		SMF_INVOKES(GoIdleSMST, EStSendInterfaceCondition);
sl@0: 
sl@0: 	SMF_STATE(EStSendInterfaceCondition)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM2, "EStSendInterfaceCondition" );
sl@0: 		iCxPollRetryCount=0; 						 // Reset max number of poll attempts on card busy
sl@0: 		iConfig.SetPollAttempts(KSDMaxPollAttempts); // Increase card busy timeout to 1 Sec for SD Cards
sl@0: 
sl@0: 		iConfig.RemoveMode( KMMCModeEnableTimeOutRetry ); // Temporarily disable timeout retries - since we use a timeout event to distinguish between MMC and SD
sl@0: 
sl@0: 		DSDSession::FillSdSpecificCommandDesc(Command(), ESDCmdSendIfCond, KCmd8Param);
sl@0: 
sl@0: 		// SD2.0 defines CMD8 as having a new response type - R7
sl@0: 		// if the PSL doesn't indicate support for R7, use R1 instead
sl@0: 		if (!(MMCSocket()->MachineInfo().iFlags & TMMCMachineInfo::ESupportsR7))
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("R7 not supported."));
sl@0: 			OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM3, "R7 not supported" );
sl@0: 			Command().iSpec.iResponseType = ERespTypeR1;
sl@0: 			}
sl@0: 
sl@0:  
sl@0:  		m.SetTraps(KMMCErrAll);
sl@0:  		SMF_INVOKES(ExecCommandSMST, EStSentInterfaceCondition)
sl@0:  
sl@0:  	SMF_STATE(EStSentInterfaceCondition)
sl@0:  
sl@0:  		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM4, "EStSentInterfaceCondition" );
sl@0:  		if (err == KMMCErrNone)
sl@0:  			{
sl@0:  			// Check the response for voltage and check pattern
sl@0:  			const TUint32 status = TMMC::BigEndian32(s.ResponseP());
sl@0:  			if((status & KCmd8CheckMask) == KCmd8Param)
sl@0:  				{
sl@0:  				__KTRACE_OPT(KPBUS1, Kern::Printf("Found v2 card."));
sl@0:  				OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM5, "Found v2 card" );
sl@0: 				iCurrentOpRange |= KMMCOCRAccessModeHCS;
sl@0:  				}
sl@0:  			else
sl@0:  				{
sl@0:  				// Pattern Mis-match, card does not support the specified voltage range
sl@0:  				OstTraceFunctionExitExt( DSDSTACK_INITIALISEMEMORYCARDSM_EXIT, this, (TInt) KMMCErrNotSupported );
sl@0:  				return KMMCErrNotSupported;
sl@0:  				}
sl@0: 
sl@0: 			SMF_GOTOS(EStCheckVoltage);
sl@0:  			}
sl@0: 
sl@0: 		// Go idle again after CMD8 failure
sl@0: 		SMF_INVOKES(GoIdleSMST, EStCheckVoltage);
sl@0: 
sl@0: 
sl@0: 	SMF_STATE(EStCheckVoltage)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM6, "EStCheckVoltage" );
sl@0: 		// If platform doesn't support an adjustable voltage PSU then there's no
sl@0: 		// point in doing a full range for its supported range. To support range
sl@0: 		// checking on a multi-card stack would require a complete scan of all
sl@0: 		// cards before actually setting the range. This would over-complicate things
sl@0: 		// and make the more normal single card/none adjustable cases less efficient.
sl@0: 		if ( !(psu->VoltageSupported()&KMMCAdjustableOpVoltage) || iMaxCardsInStack>1)
sl@0: 			{
sl@0: 			// if the PSU isn't adjustable then it can't support low voltage mode
sl@0: 			iCurrentOpRange&= ~KMMCOCRLowVoltage;
sl@0: 
sl@0: 			SMF_GOTOS(EStSetRangeCmd)
sl@0: 			}
sl@0: 
sl@0: 	SMF_STATE(EStSetFullRangeCmd)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM7, "EStSetFullRangeCmd" );
sl@0: 		// Issue ACMD41/CMD1 with omitted voltage range
sl@0: 		if (iCxCardType==ESDCardTypeIsMMC)
sl@0: 			{
sl@0: 			s.FillCommandDesc(ECmdSendOpCond, KMMCOCRAccessModeHCS | KMMCOCRBusy); // Full range + Sector Access + Busy bit (iArgument==KBit31)
sl@0: 			SMF_NEXTS(EStFullRangeDone)
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			DSDSession::FillAppCommandDesc(Command(), ESDACmdSDAppOpCond, TMMCArgument(0));
sl@0: 			SMF_NEXTS(EStCheckForFullRangeCmd41Timeout)
sl@0: 			}
sl@0: 					
sl@0: 		m.SetTraps(KMMCErrResponseTimeOut);
sl@0: 		SMF_CALL(ExecCommandSMST)
sl@0: 
sl@0: 	SMF_STATE(EStCheckForFullRangeCmd41Timeout)
sl@0: 	
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM8, "EStCheckForFullRangeCmd41Timeout" );
sl@0: 		if (err==KMMCErrResponseTimeOut)	
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("ACMD 41 not supported - Assuming MMC"));
sl@0: 			OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM9, "ACMD 41 not supported - Assuming MMC" );
sl@0: 			iCxCardType=ESDCardTypeIsMMC;
sl@0: 
sl@0: 			// Send CMD0 to re-initialise the card - otherwise we may get 
sl@0: 			// KMMCStatErrIllegalCommand returned for the next command
sl@0: 			// expecting an R1 response. NB The SD spec recommends ignoring the error
sl@0: 			// whereas the SDIO spec recommends this approach (ignoring the error
sl@0: 			// would be difficult to code anyway, since by then we're no longer
sl@0: 			// in this state machine).
sl@0: 			SMF_INVOKES(GoIdleSMST, EStSetFullRangeCmd);	// Repeat - but using CMD1
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			// No response timeout - so it must be an SD Card
sl@0: 			(CardArray().CardP(iCxCardCount)->iFlags)|=KSDCardIsSDCard;
sl@0: 			iCxCardType=ESDCardTypeIsSD;
sl@0: 			}
sl@0: 
sl@0: 	SMF_STATE(EStFullRangeDone)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM10, "EStFullRangeDone" );
sl@0: 		if (!err)												
sl@0: 			{
sl@0: 			// Card responded with Op range - evaluate the common subset with the current setting.
sl@0: 			// Dont worry about the busy bit for now, we'll check that when we repeat the command
sl@0: 			const TUint32 range = (iCurrentOpRange & ~KMMCOCRAccessModeHCS) & (TMMC::BigEndian32(s.ResponseP()) & ~KMMCOCRBusy);
sl@0: 			if(range == 0)
sl@0: 				{
sl@0: 				OstTraceFunctionExitExt( DSDSTACK_INITIALISEMEMORYCARDSM_EXIT1, this, (TInt) KMMCErrNotSupported );
sl@0: 				return KMMCErrNotSupported; // Card is incompatible with our h/w
sl@0: 				}
sl@0: 			iCurrentOpRange = range | (iCurrentOpRange & KMMCOCRAccessModeHCS);
sl@0: 			}
sl@0: 
sl@0: 		// Repeat SEND_OP_COND this time setting Current Op Range
sl@0: 		if (iCxCardType==ESDCardTypeIsMMC)
sl@0: 			{
sl@0: 			// If platform and the card both support low voltage mode (1.65 - 1.95v), switch
sl@0: 			// NB If this fails then there is no recovery.
sl@0: 			if (iCurrentOpRange & KMMCOCRLowVoltage)
sl@0: 				{
sl@0: 				iCurrentOpRange = KMMCOCRLowVoltage;
sl@0: 				SMF_INVOKES( SwitchToLowVoltageSMST, EStSetRangeCmd )
sl@0: 				}
sl@0: 			}
sl@0: 
sl@0: 	SMF_STATE(EStSetRangeCmd)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM11, "EStSetRangeCmd" );
sl@0: 		// Issue ACMD41/CMD1 with voltage range
sl@0: 		if (iCxCardType==ESDCardTypeIsMMC)
sl@0: 			{
sl@0: 			s.FillCommandDesc(ECmdSendOpCond,(iCurrentOpRange | KMMCOCRAccessModeHCS | KMMCOCRBusy)); // Range supported + Sector Access Busy bit (iArgument==KBit31)
sl@0: 			SMF_NEXTS(EStSetRangeBusyCheck)
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			TUint arg = (iCurrentOpRange & ~KMMCOCRAccessModeHCS); // Range supported
sl@0: 			if((iCurrentOpRange & KMMCOCRAccessModeHCS) != 0)
sl@0: 				{
sl@0: 				arg |= KMMCOCRAccessModeHCS;
sl@0: 				}
sl@0: 			DSDSession::FillAppCommandDesc(Command(), ESDACmdSDAppOpCond, arg);
sl@0: 			SMF_NEXTS((iCxCardType == ESDCardTypeUnknown)? EStCheckForRangeCmd41Timeout : EStSetRangeBusyCheck)
sl@0: 			}
sl@0: 
sl@0: 		m.SetTraps(KMMCErrResponseTimeOut);
sl@0: 		SMF_CALL(ExecCommandSMST)
sl@0: 
sl@0: 	SMF_STATE(EStCheckForRangeCmd41Timeout)
sl@0: 	
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM12, "EStCheckForRangeCmd41Timeout" );
sl@0: 		__KTRACE_OPT(KPBUS1, Kern::Printf("-mst:ascs:crct:%d", err));
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM13, "err=%d", (TInt) err);
sl@0: 		if (err==KMMCErrResponseTimeOut)	
sl@0: 			{
sl@0: 			iCxCardType=ESDCardTypeIsMMC;
sl@0: 			// Send CMD0 to re-initialise the card - otherwise we may get 
sl@0: 			// KMMCStatErrIllegalCommand returned for the next command
sl@0: 			// expecting an R1 response. NB The SD spec recommends ignoring the error
sl@0: 			// whereas the SDIO spec recommends this approach (ignoring the error
sl@0: 			// would be difficult to code anyway, since by then we're no longer
sl@0: 			// in this state machine).
sl@0: 			SMF_INVOKES(GoIdleSMST, EStSetRangeCmd);	// Repeat - but using CMD1
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			// No response timeout - so it must be an SD Card
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("-mst:ascs:crct2:%x", iCardArray));
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("-mst:ascs:crct3:%x", iCxCardCount));
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("-mst:ascs:crct4:%x", CardArray().CardP(iCxCardCount)));
sl@0: 			OstTraceExt3(TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM14, "iCardArray=0x%x;iCxCardCount=%d;CardArray().CardP(iCxCardCount)=%d", (TUint) iCardArray, (TInt) iCxCardCount, (TInt) CardArray().CardP(iCxCardCount));
sl@0: 
sl@0: 			(CardArray().CardP(iCxCardCount)->iFlags)|=KSDCardIsSDCard;
sl@0: 			iCxCardType=ESDCardTypeIsSD;
sl@0: 			}
sl@0: 			
sl@0: 	SMF_STATE(EStSetRangeBusyCheck)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM15, "EStSetRangeBusyCheck" );
sl@0: 		__KTRACE_OPT(KPBUS1, Kern::Printf("-mst:ascs:src:%d",iCxCardType)); // 1:MMC, 2:SD
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM16, "iCxCardType=%d", iCxCardType);
sl@0: 		
sl@0: 		if ( !err )
sl@0: 			{
sl@0: 			const TUint32 ocrResponse = TMMC::BigEndian32(s.ResponseP());
sl@0: 
sl@0: 			if ((ocrResponse & KMMCOCRBusy) == 0)	
sl@0: 				{
sl@0: 				__KTRACE_OPT(KPBUS1,Kern::Printf("-sd:upd:bsy"));
sl@0: 				// Card is still busy powering up. Check if we should timeout
sl@0: 				if ( ++iCxPollRetryCount > iConfig.OpCondBusyTimeout() )
sl@0: 					{
sl@0: 					__KTRACE_OPT2(KPBUS1, KPANIC, Kern::Printf("-sd:ocr busy timed out"));
sl@0: 					OstTraceFunctionExitExt( DSDSTACK_INITIALISEMEMORYCARDSM_EXIT2, this, (TInt) KMMCErrBusTimeOut );
sl@0: 					return KMMCErrBusTimeOut;
sl@0: 					}
sl@0: 					
sl@0: #ifdef _DEBUG
sl@0: 				if ( iCxPollRetryCount > KMMCSpecOpCondBusyTimeout )
sl@0: 					{
sl@0: 					__KTRACE_OPT2(KPBUS1, KPANIC, Kern::Printf("-sd:ocr exceeded spec timeout!! (%d ms)", (iCxPollRetryCount*KMMCRetryGapInMilliseconds)));
sl@0: 					OstTrace1( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM17, "Exceeded spec timeout (%d ms)", (iCxPollRetryCount*KMMCRetryGapInMilliseconds));
sl@0: 					}
sl@0: #endif
sl@0: 				m.ResetTraps(); 
sl@0: 
sl@0: 				SMF_INVOKES(RetryGapTimerSMST,EStSetRangeCmd)
sl@0: 				}
sl@0: 			else
sl@0: 				{
sl@0: 				if(ocrResponse & KMMCOCRAccessModeHCS)
sl@0: 					{
sl@0: 					CardArray().CardP(iCxCardCount)->iFlags |= KMMCardIsHighCapacity;
sl@0: #ifdef _DEBUG				
sl@0: 					if(iCxCardType == ESDCardTypeIsSD)
sl@0: 						{
sl@0: 						__KTRACE_OPT(KPBUS1, Kern::Printf("Found large SD card."));
sl@0: 						OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM18, "Found large SD card" );
sl@0: 						}
sl@0: 					else if(iCxCardType == ESDCardTypeIsMMC)
sl@0: 						{
sl@0: 						__KTRACE_OPT(KPBUS1, Kern::Printf("Found large MMC card."));
sl@0: 						OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM19, "Found large MMC card" );
sl@0: 						}
sl@0: #endif
sl@0: 					}
sl@0: 				}
sl@0: 			}
sl@0: 
sl@0: 		// Restore original settings
sl@0: 		iConfig.SetMode( EffectiveModes(s.iConfig) & KMMCModeEnableTimeOutRetry );
sl@0: 		iConfig.SetPollAttempts(KMMCMaxPollAttempts);
sl@0: 
sl@0: 		// All cards are now ready and notified of the voltage range - ask ASSP to set it up
sl@0: 		if (iCxCardType==ESDCardTypeIsMMC)
sl@0: 			{
sl@0: 			iCurrentOpRange &= ~KMMCOCRAccessModeMask;
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			iCurrentOpRange &= ~KMMCOCRAccessModeHCS;
sl@0: 			}
sl@0: 
sl@0: 		psu->SetVoltage(iCurrentOpRange);
sl@0: 		if (psu->SetState(EPsuOnFull) != KErrNone)
sl@0: 			{
sl@0: 			OstTraceFunctionExitExt( DSDSTACK_INITIALISEMEMORYCARDSM_EXIT3, this, (TInt) KMMCErrHardware );
sl@0: 			return KMMCErrHardware;
sl@0: 			}
sl@0: 
sl@0: 	SMF_STATE(EStCIDCmd)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM20, "EStCIDCmd" );
sl@0: 		s.FillCommandDesc(ECmdAllSendCID,0);
sl@0: 		m.ResetTraps();
sl@0: 		SMF_INVOKES(ExecCommandSMST,EStSendCIDIssued)
sl@0: 
sl@0: 	SMF_STATE(EStSendCIDIssued)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITIALISEMEMORYCARDSM21, "EStSendCIDIssued" );
sl@0: 		// All done - Higher level state machine expects CID in s.ResponseP()
sl@0: 
sl@0: 	SMF_END
sl@0: 	}
sl@0: 
sl@0: TMMCErr DSDStack::ConfigureMemoryCardSMST(TAny* aStackP)
sl@0: 	{ return static_cast<DSDStack*>(aStackP)->ConfigureMemoryCardSM(); }
sl@0: 
sl@0: TMMCErr DSDStack::ConfigureMemoryCardSM()
sl@0: /**
sl@0: */
sl@0: 	{
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EStSendCSDDone,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 		DMMCSession& s=Session();
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_CONFIGUREMEMORYCARDSM, "Current session = 0x%x", &s );
sl@0: 
sl@0: 	//coverity[UNREACHABLE]
sl@0: 	//Part of state machine design.
sl@0: 	SMF_BEGIN
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_CONFIGUREMEMORYCARDSM1, "EStBegin" );
sl@0: 		// Cards is initialised so get its CSD
sl@0: 
sl@0: 		s.FillCommandDesc(ECmdSendCSD, TUint32(CardArray().CardP(iCxCardCount)->iRCA) << 16);
sl@0: 		SMF_INVOKES(ExecCommandSMST, EStSendCSDDone)
sl@0: 
sl@0: 	SMF_STATE(EStSendCSDDone)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_CONFIGUREMEMORYCARDSM2, "EStSendCSDDone" );
sl@0: 		// Store the CSD in the new card entry
sl@0: 		TMMCard* cardP = CardArray().CardP(iCxCardCount);
sl@0: 		cardP->iCSD = s.ResponseP();
sl@0: 
sl@0: 		if(CardArray().Card(iCxCardCount).IsSDCard())
sl@0: 			{
sl@0: 			// Perform SD Specific parsing of the CSD structure
sl@0: 			if(cardP->CSD().CCC() & KMMCCmdClassLockCard)
sl@0: 				{
sl@0: 				cardP->iFlags |= KMMCardIsLockable;
sl@0: 				}
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			// Perform MMC Specific parsing of the CSD structure
sl@0: 			TUint specVers = cardP->CSD().SpecVers();	// 1 => 1.4, 2 => 2.0 - 2.2, 3 => 3.1
sl@0: 			if ((specVers >= 2) && (cardP->CSD().CCC() & KMMCCmdClassLockCard))
sl@0: 				{
sl@0: 				cardP->iFlags |= KMMCardIsLockable;
sl@0: 				}
sl@0: 			}
sl@0: 		
sl@0: 		// Check the state of the mechanical write protect switch
sl@0: 		if (WriteProtected(iCxCardCount))
sl@0: 			{
sl@0: 			cardP->iFlags |= KMMCardIsWriteProtected;
sl@0: 			}
sl@0: 
sl@0: 	SMF_END
sl@0: 	}
sl@0: 
sl@0: EXPORT_C TMMCErr DSDStack::InitStackAfterUnlockSM()
sl@0: //
sl@0: // Performs initialisation of the SD card after the card has been unlocked
sl@0: //
sl@0: 	{
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EStNextCard,
sl@0: 			EStSelectCard,
sl@0: 			EStSetBusWidth,
sl@0: 			EStSetBusWidth1,
sl@0: 			EStGetSDStatus,
sl@0: 			EStGetSDStatus1,
sl@0: 			EStDecodeSDStatus,
sl@0: 			EStDeselectCard,
sl@0: 			EStCardDeselectedReadCSD,
sl@0: 			EStCSDCmdSent,
sl@0: 			EStMoreCardsCheck,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 		DMMCSession& s=Session();
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM, "Current session = 0x%x", &s );
sl@0: 
sl@0: 	SMF_BEGIN
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM1, "EStBegin" );
sl@0:         __KTRACE_OPT(KPBUS1, Kern::Printf(">DSDStack::InitStackAfterUnlockSM()"));
sl@0: 		iRCAPool.ReleaseUnlocked();
sl@0: 		iCxCardCount=0; 		// Reset current card number
sl@0: 
sl@0: 	SMF_STATE(EStNextCard)	    
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM2, "EStNextCard" );
sl@0: 		AddressCard(iCxCardCount); 	// Address the next card
sl@0: 
sl@0: 		if (!CardDetect(iCxCardCount))
sl@0: 			SMF_GOTOS(EStMoreCardsCheck)
sl@0: 
sl@0: 		s.SetCard(CardArray().CardP(iCxCardCount));
sl@0: 
sl@0: 		if (!CardArray().Card(iCxCardCount).IsSDCard())
sl@0: 			{
sl@0: 			SMF_INVOKES( DMMCStack::InitCurrentCardAfterUnlockSMST, EStMoreCardsCheck )
sl@0: 			}
sl@0: 
sl@0: 	SMF_STATE(EStSelectCard)
sl@0: 
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM3, "EStSelectCard" );
sl@0: 		TRCA targetRCA = CardArray().Card(iCxCardCount).RCA();
sl@0: 		if (targetRCA == SelectedCard())
sl@0: 			{
sl@0: 			SMF_GOTOS(EStSetBusWidth)
sl@0: 			}
sl@0: 
sl@0: 		s.FillCommandDesc(ECmdSelectCard, targetRCA);
sl@0: 		SMF_INVOKES(ExecCommandSMST,EStSetBusWidth)
sl@0: 
sl@0: 	SMF_STATE(EStSetBusWidth)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM4, "EStSetBusWidth" );
sl@0: 		const TMMCStatus status = s.LastStatus();
sl@0: 		if((status & KMMCStatCardIsLocked) != 0)
sl@0: 			SMF_GOTOS(EStDeselectCard)
sl@0: 
sl@0: 		// set bus width with ACMD6
sl@0: 		TUint32 arg = TUint32(CardArray().Card(iCxCardCount).RCA()) << 16;
sl@0: 		s.FillCommandDesc(ECmdAppCmd, arg);
sl@0: 		SMF_INVOKES(IssueCommandCheckResponseSMST,EStSetBusWidth1)
sl@0: 
sl@0: 	SMF_STATE(EStSetBusWidth1)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM5, "EStSetBusWidth1" );
sl@0: 		CardArray().Card(iCxCardCount).SetBusWidth(4);
sl@0: 		DSDSession::FillAppCommandDesc(Command(), ESDACmdSetBusWidth, KSDBusWidth4);
sl@0: 		SMF_INVOKES(IssueCommandCheckResponseSMST,EStGetSDStatus)
sl@0: 
sl@0: 	SMF_STATE(EStGetSDStatus)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM6, "EStGetSDStatus" );
sl@0: 		// Now we have sent ACMD6, ask the controller to set the bus width to 4
sl@0: 		DoSetBusWidth(EBusWidth4);
sl@0: 
sl@0: 		// get protected area size with ACMD13
sl@0: 		TUint32 arg = TUint32(CardArray().Card(iCxCardCount).RCA()) << 16;
sl@0: 		s.FillCommandDesc(ECmdAppCmd,arg);
sl@0: 		SMF_INVOKES(IssueCommandCheckResponseSMST,EStGetSDStatus1)
sl@0: 
sl@0: 	SMF_STATE(EStGetSDStatus1)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM7, "EStGetSDStatus1" );
sl@0: 		DSDSession::FillAppCommandDesc(Command(), ESDACmdSDStatus);
sl@0: 		s.FillCommandArgs(0, KSDStatusBlockLength, iPSLBuf, KSDStatusBlockLength);
sl@0: 		SMF_INVOKES(IssueCommandCheckResponseSMST,EStDecodeSDStatus);
sl@0: 
sl@0: 	SMF_STATE(EStDecodeSDStatus)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM8, "EStDecodeSDStatus" );
sl@0: #ifdef _DEBUG
sl@0: 		for (TUint i = 0; i < KSDStatusBlockLength; ++i)
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("SD_STATUS[0x%x] = %x", i, iPSLBuf[i]));
sl@0: 			OstTraceExt2( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM9, "SD_STATUS[0x%x]=0x%x", i, (TUint) iPSLBuf[i]);
sl@0: 			}
sl@0: #endif
sl@0: 		// bits 495:480 are SD_CARD_TYPE.  Check this is 00xxh (x = don't care).
sl@0: 
sl@0: 		if (iPSLBuf[2] != 0)
sl@0: 		    {
sl@0: 			OstTraceFunctionExitExt( DSDSTACK_INITSTACKAFTERUNLOCKSM_EXIT, this, (TInt) KMMCErrNotSupported );
sl@0: 			return KMMCErrNotSupported;
sl@0: 		    }
sl@0: 
sl@0: 		// bits 479:448 contain SIZE_OF_PROTECTED_AREA.  
sl@0: 		// (This is bytes 4 to 7 in big-endian format.)
sl@0: 
sl@0: 		TSDCard& sdc = CardArray().Card(iCxCardCount);
sl@0: 		__KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack: Card %d", iCxCardCount));
sl@0: 		TUint32 size_of_protected_area = TMMC::BigEndian32(&iPSLBuf[4]);
sl@0: 		__KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack: SizeOfProtectedArea: %d", size_of_protected_area));
sl@0: 		OstTraceExt2( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM10, "iCxCardCount=%d;SizeOfProtectedArea=%d", iCxCardCount, (TInt) size_of_protected_area);
sl@0: 		const TCSD& csd = sdc.CSD();
sl@0: 		TUint32 pas = 0;
sl@0: 		
sl@0: 		if (sdc.IsHighCapacity())
sl@0: 			{
sl@0: 			// High Capacity Card
sl@0: 			// Protected Area = SIZE_OF_PROTECTED_AREA
sl@0: 			pas = size_of_protected_area;
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack(SDHC): SetProtectedAreaSize: %d", pas));
sl@0: 			OstTrace1( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM11, "SDHC: SetProtectedAreaSize=%d", pas);
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			// Standard Capacity Card
sl@0: 			// Protected Area = SIZE_OF_PROTECTED_AREA * C_SIZE_MULT * BLOCK_LEN
sl@0: 			pas = size_of_protected_area * (1 << (csd.CSizeMult() + 2 + csd.ReadBlLen()));
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack(SDSC): SetProtectedAreaSize: %d", pas));
sl@0: 			OstTrace1( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM12, "SDSC: SetProtectedAreaSize=%d", pas);
sl@0: 			}		
sl@0: 
sl@0: 		sdc.SetProtectedAreaSize(pas);
sl@0: 
sl@0: 		//bits 431:428 contain AU_SIZE
sl@0: 		//(This is higher order 4 bits of 10th byte in big endian format)
sl@0: 		TUint8 au = TUint8(iPSLBuf[10] >> 4);
sl@0: 		if(au == 0)	    //AU_SIZE field in SD status register is undefined.
sl@0: 			au = 6;		//Defaulting to value corresponding to 512K	
sl@0: 		sdc.SetAUSize(au);
sl@0: 
sl@0: 		SMF_INVOKES(SwitchToHighSpeedModeSMST, EStDeselectCard)
sl@0: 
sl@0: 	SMF_STATE(EStDeselectCard)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM13, "EStDeselectCard" );
sl@0: 		s.FillCommandDesc(ECmdSelectCard, 0);
sl@0: 		SMF_INVOKES(ExecCommandSMST, EStCardDeselectedReadCSD)
sl@0:     
sl@0: 	SMF_STATE(EStCardDeselectedReadCSD)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM14, "EStCardDeselectedReadCSD" );
sl@0: 		//
sl@0:       	// Read the card's CSD register (again)
sl@0: 		//
sl@0: 		//  - We re-read the CSD, as the TRAN_SPEED field may have changed due to a switch to HS Mode
sl@0: 		//
sl@0:       	TUint32 arg = TUint32(CardArray().Card(iCxCardCount).RCA()) << 16;
sl@0:       	s.FillCommandDesc( ECmdSendCSD, arg );
sl@0:       	SMF_INVOKES(ExecCommandSMST, EStCSDCmdSent)
sl@0: 
sl@0: 	SMF_STATE(EStCSDCmdSent)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM15, "EStCSDCmdSent" );
sl@0: 		//
sl@0:       	// Store the CSD in the card entry
sl@0: 		//
sl@0:       	TMMCard* cardP = iCardArray->CardP(iCxCardCount);
sl@0:       	cardP->iCSD = s.ResponseP();
sl@0: 
sl@0: 	SMF_STATE(EStMoreCardsCheck)
sl@0: 		OstTrace0( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM16, "EStMoreCardsCheck" );
sl@0: 		if (++iCxCardCount < (TInt)iMaxCardsInStack)
sl@0: 		    {
sl@0: 		    __KTRACE_OPT(KPBUS1, Kern::Printf("\t >DSDStack: Address Next card: %d",iCxCardCount));
sl@0: 		    OstTrace1( TRACE_INTERNALS, DSDSTACK_INITSTACKAFTERUNLOCKSM17, "Address Next card=%d", iCxCardCount);
sl@0: 			SMF_GOTOS(EStNextCard)
sl@0: 		    }
sl@0: 		else
sl@0: 		    {
sl@0: 			AddressCard(KBroadcastToAllCards);
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("<DSDStack::InitStackAfterUnlockSM()"));
sl@0: 		    }
sl@0: 
sl@0: 	SMF_END
sl@0: 	
sl@0: 	}
sl@0: 
sl@0: TMMCErr DSDStack::CIMReadWriteMemoryBlocksSMST(TAny* aStackP)
sl@0: 	{ return( static_cast<DSDStack *>(aStackP)->DMMCStack::CIMReadWriteBlocksSM() ); }
sl@0: 
sl@0: 
sl@0: EXPORT_C TMMCErr DSDStack::CIMReadWriteBlocksSM()
sl@0: //
sl@0: // This macro performs single/multiple block reads and writes
sl@0: // For normal read/write block operations, this function determines the appropriate
sl@0: // MMC command to send and fills the command descriptor accordingly based on 
sl@0: // the value of the session ID set. However, it is necessary to have set the
sl@0: // command arguments (with DMMCSession::FillCommandArgs()) before this function
sl@0: // is called.
sl@0: // For special block read/write operations, e.g. lock/unlock, it is required to
sl@0: // have already filled the command descriptor (with DMMCSession::FillCommandDesc())
sl@0: // for the special command required - in addition to have setup the command arguments.
sl@0: //
sl@0: 	{
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EStRestart,
sl@0: 			EStAttached,
sl@0: 			EStLength1,
sl@0: 			EStLengthSet,
sl@0: 			EStIssued,
sl@0: 			EStWaitFinish,
sl@0: 			EStWaitFinish1,
sl@0: 			EStRWFinish,
sl@0: 			EStDone,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 		DMMCSession& s = Session();
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM, "Current session = 0x%x", &s );
sl@0: 
sl@0: 		__KTRACE_OPT(KPBUS1,Kern::Printf(">SD:RWBlocksSM %x",TUint(s.iLastStatus)));
sl@0: 
sl@0: 	SMF_BEGIN
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM1, "EStBegin" );
sl@0: 		TSDCard& sdCard = *static_cast<TSDCard*>(s.iCardP);
sl@0: 		AddressCard(sdCard.iIndex-1);
sl@0: 
sl@0: 		if(sdCard.IsSDCard() == EFalse)
sl@0: 			{
sl@0: 			//
sl@0: 			// If this is not an SD card, then use the more appropriate
sl@0: 			// MMC state machine as this is optimised for MMC performance
sl@0: 			//
sl@0: 			SMF_INVOKES(CIMReadWriteMemoryBlocksSMST, EStDone);
sl@0: 			}
sl@0: 
sl@0: 		if(s.iSessionID == ECIMWriteBlock || s.iSessionID == ECIMWriteMBlock)
sl@0: 			{
sl@0: 			// Check that the card supports class 4 (Write) commands
sl@0: 			const TUint ccc = s.iCardP->CSD().CCC();
sl@0: 			if(!(ccc & KMMCCmdClassBlockWrite))
sl@0: 			    {
sl@0: 				OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT, this, (TInt) KMMCErrNotSupported );
sl@0: 				return KMMCErrNotSupported;
sl@0: 			    }
sl@0: 			}
sl@0: 
sl@0: 		Command().iCustomRetries = 0;			// MBW retries
sl@0: 		s.iState |= KMMCSessStateInProgress;
sl@0: 		m.SetTraps(KMMCErrInitContext);
sl@0: 
sl@0: 	SMF_STATE(EStRestart)		// NB: ErrBypass is not processed here
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM2, "EStRestart" );
sl@0: 		SMF_CALLMEWR(EStRestart) // Create a recursive call entry to recover from the errors trapped
sl@0: 		m.SetTraps(KMMCErrStatus);
sl@0: 		if (s.Command().iSpec.iCommandClass!=KMMCCmdClassApplication || s.Command().iCommand==ECmdAppCmd )
sl@0: 			{
sl@0: 			s.ResetCommandStack();
sl@0: 			SMF_INVOKES( AttachCardSMST, EStAttached )	// attachment is mandatory here
sl@0: 			}
sl@0: 
sl@0: 	SMF_BPOINT(EStAttached)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM3, "EStAttached" );
sl@0: 		TMMCCommandDesc& cmd = s.Command();
sl@0: 
sl@0: 		const TUint32 blockLength = cmd.BlockLength();
sl@0: 		if((blockLength == 0) || (blockLength > (TUint)KDefaultBlockLenInBytes))
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1,Kern::Printf(">SD:RWBlocksSM err BlockLen:%d",blockLength));
sl@0: 			OstTrace1( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM4, "blockLength=%d", blockLength );
sl@0: 			OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT1, this, (TInt) KMMCErrArgument );
sl@0: 			return KMMCErrArgument;
sl@0: 			}
sl@0: 
sl@0: 		if(s.iSessionID == ECIMReadBlock	||
sl@0: 		   s.iSessionID == ECIMWriteBlock	||
sl@0: 		   s.iSessionID == ECIMReadMBlock	||
sl@0: 		   s.iSessionID == ECIMWriteMBlock)
sl@0: 			{	
sl@0: 			// read/write operation
sl@0: 			if(!cmd.AdjustForBlockOrByteAccess(s))
sl@0: 				{
sl@0: 				// unable to convert command arguments to suit the underlying block/byte access mode
sl@0: 				OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT2, this, (TInt) KMMCErrArgument );
sl@0: 				return KMMCErrArgument;
sl@0: 				}
sl@0: 			}
sl@0: 
sl@0: 		// Set the block length if it has changed. Always set for ECIMLockUnlock.
sl@0: 		if ((blockLength == s.iCardP->iSetBlockLen) && (s.iSessionID != ECIMLockUnlock))
sl@0: 			{
sl@0: 			SMF_GOTOS( EStLengthSet )
sl@0: 			}
sl@0: 
sl@0: 		s.iCardP->iSetBlockLen = 0;
sl@0: 		s.PushCommandStack();
sl@0: 		s.FillCommandDesc( ECmdSetBlockLen, blockLength );
sl@0: 		SMF_INVOKES( ExecCommandSMST, EStLength1 )
sl@0: 
sl@0: 	SMF_STATE(EStLength1)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM5, "EStLength1" );
sl@0: 		const TMMCStatus status(s.ResponseP());
sl@0: 		s.PopCommandStack();
sl@0: 		if (status.Error())
sl@0: 		    {
sl@0: 		    OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT3, this, (TInt) KMMCErrStatus );
sl@0: 			SMF_RETURN(KMMCErrStatus)
sl@0: 		    }
sl@0: 		s.iCardP->iSetBlockLen = s.Command().BlockLength();
sl@0: 
sl@0: 	SMF_STATE(EStLengthSet)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM6, "EStLengthSet" );
sl@0: 		TMMCCommandDesc& cmd = s.Command();
sl@0: 		TUint opType = 0;
sl@0: 		const TUint kTypeWrite =	KBit0;
sl@0: 		const TUint kTypeMultiple =	KBit1;
sl@0: 		const TUint kTypeSpecial =	KBit2;
sl@0: 		static const TMMCCommandEnum cmdCodes[4] =
sl@0: 			{ECmdReadSingleBlock, ECmdWriteBlock, ECmdReadMultipleBlock, ECmdWriteMultipleBlock};
sl@0: 
sl@0: 		switch( s.iSessionID )
sl@0: 			{
sl@0: 			case ECIMReadBlock:
sl@0: 				break;
sl@0: 			case ECIMWriteBlock:
sl@0: 				opType=kTypeWrite;
sl@0: 				break;
sl@0: 			case ECIMReadMBlock:
sl@0: 				opType=kTypeMultiple;
sl@0: 				break;
sl@0: 			case ECIMWriteMBlock:
sl@0: 				opType=kTypeWrite|kTypeMultiple;
sl@0: 				break;
sl@0: 			case ECIMLockUnlock:
sl@0: 			default:
sl@0: 				opType=kTypeSpecial;
sl@0: 				break;
sl@0: 			}
sl@0: 
sl@0: 		const TUint blocks = cmd.iTotalLength / cmd.BlockLength();
sl@0: 		if ( blocks * cmd.BlockLength() != cmd.iTotalLength )
sl@0: 		    {
sl@0: 			OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT4, this, (TInt) KMMCErrArgument );
sl@0: 			return KMMCErrArgument;
sl@0: 		    }
sl@0: 
sl@0: 		if ( !(opType & kTypeSpecial) )	// A special session has already set its command descriptor
sl@0: 			{
sl@0: 			if (blocks==1)
sl@0: 				opType &= ~kTypeMultiple;
sl@0: 
sl@0: 			TUint32 oldFlags = cmd.iFlags;		// Store the existing command flags, as they will be reset by FillCommandDesc()
sl@0: 			cmd.iCommand = cmdCodes[opType];
sl@0: 			s.FillCommandDesc();
sl@0: 			cmd.iFlags = oldFlags;				// ...and restore the old command flags
sl@0: 			}
sl@0: 
sl@0: 		// NB We need to trap KMMCErrStatus errors, because if one occurs, 
sl@0: 		// we still need to wait to exit PRG/RCV/DATA state 
sl@0: 		if (Command().iCommand == ECmdWriteMultipleBlock)
sl@0: 			{
sl@0: 			Command().iExecNotHandle = KMMCErrDataCRC | KMMCErrDataTimeOut;
sl@0: 			m.SetTraps(KMMCErrStatus | KMMCErrDataCRC | KMMCErrDataTimeOut);
sl@0: 			}
sl@0: 		else
sl@0: 			{
sl@0: 			m.SetTraps(KMMCErrStatus);
sl@0: 			}
sl@0: 
sl@0: 		SMF_INVOKES( ExecCommandSMST, EStIssued )
sl@0: 
sl@0: 	SMF_STATE(EStIssued)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM7, "EStIssued" );
sl@0: 		// check state of card after data transfer with CMD13.
sl@0: 		if (s.Command().Direction() != 0)
sl@0: 			{
sl@0: 			SMF_GOTOS(EStWaitFinish)
sl@0: 			}
sl@0: 
sl@0: 		SMF_GOTOS(EStRWFinish);
sl@0: 
sl@0: 	SMF_STATE(EStWaitFinish)
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM8, "EStWaitFinish" );
sl@0: 		// if MBW fail, then recover by rewriting ALL blocks...
sl@0: 		// (used to recover using ACMD22, but this has been changed
sl@0: 		// as is difficult to test for little gain in efficiency)
sl@0: 		if (Command().iCommand == ECmdWriteMultipleBlock && err != 0)
sl@0: 			{
sl@0: 			if (Command().iCustomRetries++ >= (TInt) KSDMaxMBWRetries)
sl@0: 				{
sl@0: 				OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT5, this, (TInt) err );
sl@0: 				SMF_RETURN(err)
sl@0: 				}
sl@0: 
sl@0: 			m.Pop();		// remove recursive call to EStRestart
sl@0: 			SMF_GOTOS(EStRestart)			
sl@0: 			}
sl@0: 
sl@0: 		// Save the status and examine it after issuing CMD13...
sl@0: 		// NB We don't know where in the command stack the last response is stored (e.g. there may 
sl@0: 		// have bee a Deselect/Select issued), but we do know last response is stored in iLastStatus
sl@0: 		TMMC::BigEndian4Bytes(s.ResponseP(), s.iLastStatus);
sl@0: 
sl@0: 		// ...else issue CMD13 to poll for the card finishing and check for errors
sl@0: 		s.PushCommandStack();
sl@0: 		s.FillCommandDesc(ECmdSendStatus, 0);
sl@0: 		SMF_INVOKES(ExecCommandSMST, EStWaitFinish1)
sl@0: 
sl@0: 	SMF_STATE(EStWaitFinish1)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM9, "EStWaitFinish1" );
sl@0: 		const TMMCStatus status(s.ResponseP());
sl@0: 		s.PopCommandStack();
sl@0: 
sl@0: #ifdef __WINS__
sl@0: 		SMF_GOTOS(EStRWFinish);
sl@0: #else
sl@0: 		const TMMCardStateEnum st1 = status.State();
sl@0: 
sl@0: 		if (st1 == ECardStatePrg || st1 == ECardStateRcv || st1 == ECardStateData)
sl@0: 			{
sl@0: 			SMF_INVOKES(ProgramTimerSMST, EStWaitFinish);
sl@0: 			}
sl@0: 
sl@0: 		if (status.Error())
sl@0: 		    {
sl@0: 			OstTraceFunctionExitExt( DUP7_DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT, this, (TInt) KMMCErrStatus );
sl@0: 			SMF_RETURN(KMMCErrStatus)
sl@0: 		    }
sl@0: #endif
sl@0: 		
sl@0: 		// Fall through if CURRENT_STATE is not PGM or DATA
sl@0: 	SMF_STATE(EStRWFinish)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM10, "EStRWFinish" );
sl@0: 		if (TMMCStatus(s.ResponseP()).Error() != 0)
sl@0: 		    {
sl@0: 		    OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT6, this, (TInt) KMMCErrStatus );
sl@0: 			SMF_RETURN(KMMCErrStatus);
sl@0: 		    }
sl@0: 
sl@0: 		s.iState &= ~KMMCSessStateInProgress;
sl@0: 
sl@0: 		// skip over recursive entry or throw error and catch in CIMLockUnlockSM()
sl@0: 		TMMCErr ret = (s.Command().iCommand == ECmdLockUnlock) ? KMMCErrUpdPswd : KMMCErrBypass; 
sl@0: 		OstTraceFunctionExitExt( DSDSTACK_CIMREADWRITEBLOCKSSM_EXIT7, this, (TInt) ret );
sl@0: 		return ret;
sl@0: 
sl@0: 	SMF_STATE(EStDone)
sl@0: 	    
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_CIMREADWRITEBLOCKSSM11, "EStDone" );
sl@0: 	    __KTRACE_OPT(KPBUS1,Kern::Printf("<SD:RWBlocksSM()"));
sl@0: 
sl@0: 	SMF_END
sl@0: 	}
sl@0: 
sl@0: EXPORT_C TMMCErr DSDStack::ModifyCardCapabilitySM()
sl@0: //
sl@0: // This function provides a chance to modify the capability of paticular cards.
sl@0: // Licensee may overide this function to modify certain card's capability as needed.
sl@0: // A state machine is needed in derived function and function of base class should be
sl@0: // called in order to act more generic behaviour.
sl@0: //
sl@0:     {
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EStDone,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 	//coverity[unreachable]
sl@0: 	//Part of state machine design.
sl@0: 	SMF_BEGIN
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_MODIFYCARDCAPABILITYSM, "EStBegin" );
sl@0:     	SMF_INVOKES( DMMCStack::BaseModifyCardCapabilitySMST, EStDone )
sl@0: 
sl@0:     SMF_STATE(EStDone)
sl@0:     
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_MODIFYCARDCAPABILITYSM1, "EStDone" );
sl@0: 
sl@0:     SMF_END
sl@0: 	}
sl@0: 
sl@0: inline TMMCErr DSDStack::SwitchToHighSpeedModeSMST( TAny* aStackP )
sl@0: 	{ return( static_cast<DSDStack *>(aStackP)->DSDStack::SwitchToHighSpeedModeSM() ); }
sl@0: 
sl@0: TMMCErr DSDStack::SwitchToHighSpeedModeSM()
sl@0: 	{
sl@0: 		enum states
sl@0: 			{
sl@0: 			EStBegin=0,
sl@0: 			EstCheckController,
sl@0: 			EStSendSCRCmd,
sl@0: 			EStCheckSpecVer,
sl@0: 			EStCheckFunction,
sl@0: 			EStCheckFunctionSent,
sl@0: 			EStSwitchFunctionSent,
sl@0: 			EStDone,
sl@0: 			EStEnd
sl@0: 			};
sl@0: 
sl@0: 		__KTRACE_OPT(KPBUS1,Kern::Printf(">SD:SwitchToHighSpeedModeSM "));
sl@0: 
sl@0: 		DMMCSession& s = Session();
sl@0: 		OstTrace1( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM, "Current session = 0x%x", &s );
sl@0: 
sl@0: 	SMF_BEGIN
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM1, "EStBegin");
sl@0: 	
sl@0: 	SMF_STATE(EstCheckController) 	
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM2, "EstCheckController");
sl@0: 	  	// Get the clock speed supported by the controller
sl@0: 		TMMCMachineInfoV4 machineInfo;
sl@0: 		TMMCMachineInfoV4Pckg machineInfoPckg(machineInfo);
sl@0: 		MachineInfo(machineInfoPckg);
sl@0: 		
sl@0: 		if (machineInfo.iVersion >= TMMCMachineInfoV4::EVersion4)
sl@0: 			{
sl@0: 			if (machineInfo.iMaxClockSpeedInMhz < (KSDDTClk50MHz/1000) )
sl@0: 				{
sl@0: 				__KTRACE_OPT(KPBUS1, Kern::Printf("High speed mode not supported by controller"));
sl@0: 				OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM3, "High speed mode not supported by controller");
sl@0: 				SMF_GOTOS(EStDone);
sl@0: 				}
sl@0: 			}	
sl@0: 
sl@0: 	SMF_STATE(EStSendSCRCmd)
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM4, "EStSendSCRCmd");
sl@0: 		//
sl@0:       	// ACMD51 Read the SD Configuration Register
sl@0:       	//
sl@0: 		DSDSession::FillAppCommandDesc(Command(), ESDACmdSendSCR);
sl@0:       	s.FillCommandArgs(0, KSDSCRLength, iPSLBuf, KSDSCRLength);
sl@0:       	SMF_INVOKES(ExecCommandSMST, EStCheckSpecVer);
sl@0: 
sl@0: 	SMF_STATE(EStCheckSpecVer)
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM5, "EStCheckSpecVer");
sl@0:       	//	
sl@0:       	// Check the SD version
sl@0: 		//
sl@0:       	// 0 : version 1.0-1.01	: SDHS Is NOT Supported
sl@0:       	// 1 : version 1.10+	: SDHS Is Supported
sl@0: 		//
sl@0:       	__KTRACE_OPT(KPBUS1,Kern::Printf("   SD Configuration Register received"));
sl@0:       	__KTRACE_OPT(KPBUS1,Kern::Printf("   ...card_status=%x", TUint(s.iLastStatus)));
sl@0:       	OstTrace1( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM6, "SD Configuration Register received: card_status=0x%x", (TUint) s.iLastStatus);
sl@0: 
sl@0: #ifdef _DEBUG
sl@0:       	for (TUint32 i = 0; i < KSDSCRLength; ++i)
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1, Kern::Printf("   ...SCR_STATUS[0x%x] = %x", i, iPSLBuf[i]));
sl@0: 			}
sl@0: #endif
sl@0: 
sl@0:       	if(iPSLBuf[0]==2)
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1,Kern::Printf("   ...SD Spec Version 2"));
sl@0: 			OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM7, "SD Spec Version 2");
sl@0: 			SMF_GOTOS(EStCheckFunction);
sl@0: 			}
sl@0:   
sl@0:       	if(iPSLBuf[0]==1)
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1,Kern::Printf("   ...SD Spec Version 1.10"));
sl@0: 			OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM8, "SD Spec Version 1.10");
sl@0: 			SMF_GOTOS(EStCheckFunction);
sl@0: 			}
sl@0:   
sl@0:       	if(iPSLBuf[0]==0)
sl@0: 			{
sl@0: 			__KTRACE_OPT(KPBUS1,Kern::Printf("   ...SD Spec Version 1.01"));
sl@0: 			OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM9, "SD Spec Version 1.01");
sl@0: 			SMF_GOTOS(EStDone);
sl@0:         	}
sl@0: 
sl@0: 	__KTRACE_OPT(KPBUS1,Kern::Printf("   ...SD Spec Version > 2 !"));
sl@0: 	OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM10, "SD Spec Version > 2");
sl@0: 
sl@0: 	SMF_STATE(EStCheckFunction)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM11, "EStCheckFunction");
sl@0: 		m.SetTraps(KMMCErrResponseTimeOut | KMMCErrNotSupported);
sl@0: 
sl@0:  		//
sl@0: 		// SD1.1 uses CMD6 which is not defined by the MMCA
sl@0: 		//  - fill in command details using the SD Specific command description table
sl@0: 		//
sl@0: 
sl@0: 		DSDSession::FillSdSpecificCommandDesc(Command(), ESDCmdSwitchFunction);
sl@0: 		s.FillCommandArgs(KSDCheckFunctionHighSpeed, KSDSwitchFuncLength, iPSLBuf, KSDSwitchFuncLength);
sl@0: 
sl@0: 		SMF_INVOKES(IssueCommandCheckResponseSMST,EStCheckFunctionSent)
sl@0: 
sl@0: 	SMF_STATE(EStCheckFunctionSent)
sl@0:  
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM12, "EStCheckFunctionSent");
sl@0:        	__KTRACE_OPT(KPBUS1,Kern::Printf("   CheckFunctionSent %x",TUint(s.iLastStatus)));
sl@0:        	OstTrace1( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM13, "CheckFunctionSent=0x%x", (TUint) s.iLastStatus);
sl@0: 
sl@0: 		m.ResetTraps();
sl@0: 
sl@0: 		if(err == KMMCErrResponseTimeOut)
sl@0: 			{
sl@0: 	       	__KTRACE_OPT(KPBUS1,Kern::Printf("   ...CMD6 [Read] Response Timeout"));
sl@0: 	       	OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM14, "CMD6 [Read] Response Timeout");
sl@0: 			SMF_GOTOS(EStDone);
sl@0: 			}
sl@0: 		else if(err == KMMCErrNotSupported)
sl@0: 			{
sl@0: 	       	__KTRACE_OPT(KPBUS1,Kern::Printf("   ...CMD6 [Read] Not Supported"));
sl@0: 	       	OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM15, "CMD6 [Read] Not Supported");
sl@0: 			SMF_GOTOS(EStDone);
sl@0: 			}
sl@0: 
sl@0: #ifdef _DEBUG
sl@0: 		for (TUint32 i = 0; i < KSDSwitchFuncLength; ++i)
sl@0: 			{
sl@0: 	  		__KTRACE_OPT(KPBUS1, Kern::Printf("   ...SD Switch Func Status[0x%x] = %x", i, iPSLBuf[i]));
sl@0: 			}
sl@0: 
sl@0: 		m.SetTraps(KMMCErrResponseTimeOut);
sl@0: #endif
sl@0: 
sl@0:  		//
sl@0: 		// SD1.1 uses CMD6 which is not defined by the MMCA
sl@0: 		//  - fill in command details using the SD Specific command description table
sl@0: 		//
sl@0: 
sl@0: 		DSDSession::FillSdSpecificCommandDesc(Command(), ESDCmdSwitchFunction);
sl@0:       	s.FillCommandArgs(KSDSwitchFunctionHighSpeed, KSDSwitchFuncLength, iPSLBuf, KSDSwitchFuncLength);
sl@0: 
sl@0:       	SMF_INVOKES(IssueCommandCheckResponseSMST,EStSwitchFunctionSent)
sl@0: 	
sl@0: 	SMF_STATE(EStSwitchFunctionSent)
sl@0: 
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM16, "EStSwitchFunctionSent");
sl@0: #ifdef _DEBUG
sl@0: 		m.ResetTraps();
sl@0: 
sl@0: 		if(err == KMMCErrResponseTimeOut)
sl@0: 			{
sl@0: 	       	__KTRACE_OPT(KPBUS1,Kern::Printf("   ...CMD6 [Write] Response Timeout"));
sl@0: 	       	OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM17, "CMD6 [Write] Response Timeout");
sl@0: 			}
sl@0: 
sl@0: 		for (TUint32 i = 0; i < KSDSwitchFuncLength; ++i)
sl@0: 			{
sl@0: 	  		__KTRACE_OPT(KPBUS1, Kern::Printf("   ...SD Switch[0x%x] = %x", i, iPSLBuf[i]));
sl@0: 	  		OstTraceExt2( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM18, "SD Switch[0x%x]=0x%x", (TUint) i, (TUint) iPSLBuf[i]);
sl@0: 			}
sl@0: #endif
sl@0: 
sl@0: 	SMF_STATE(EStDone)
sl@0: 	
sl@0:         OstTrace0( TRACE_INTERNALS, DSDSTACK_SWITCHTOHIGHSPEEDMODESM19, "EStSwitchFunctionSent");
sl@0:       
sl@0: 	SMF_END
sl@0: 	}
sl@0: 
sl@0: 
sl@0: EXPORT_C DMMCSession* DSDStack::AllocSession(const TMMCCallBack& aCallBack) const
sl@0: /**
sl@0: * Factory function to create DMMCSession derived object.  Non-generic MMC
sl@0: * controllers can override this to generate more specific objects.
sl@0: * @param aCallBack Callback function to notify the client that a session has completed
sl@0: * @return A pointer to the new session
sl@0: */
sl@0: 	{
sl@0: 	OstTraceFunctionEntry1( DSDSTACK_ALLOCSESSION_ENTRY, this );
sl@0: 	return new DSDSession(aCallBack);
sl@0: 	}
sl@0: 
sl@0: EXPORT_C void DSDStack::Dummy1() {}
sl@0: EXPORT_C void DSDStack::Dummy2() {}
sl@0: EXPORT_C void DSDStack::Dummy3() {}
sl@0: EXPORT_C void DSDStack::Dummy4() {}