sl@0: // Copyright (c) 2006-2010 Nokia Corporation and/or its subsidiary(-ies). sl@0: // All rights reserved. sl@0: // This component and the accompanying materials are made available sl@0: // under the terms of "Eclipse Public License v1.0" sl@0: // which accompanies this distribution, and is available sl@0: // at the URL "http://www.eclipse.org/legal/epl-v10.html". sl@0: // sl@0: // Initial Contributors: sl@0: // Nokia Corporation - initial contribution. sl@0: // sl@0: // Contributors: sl@0: // sl@0: // Description: sl@0: // This module implements the functions that create the screen class depending sl@0: // on the screen type. sl@0: // Include files sl@0: // sl@0: // sl@0: sl@0: /** sl@0: @file sl@0: */ sl@0: /********************************************************************/ sl@0: #include "BITDRAW.H" sl@0: #include sl@0: #include "ScreenInfo.h" sl@0: #include "scdraw.h" sl@0: #include "scdraw.inl" sl@0: #include sl@0: #include sl@0: /** sl@0: Creates an instance of CFbsDrawDevice class. sl@0: @param aScreenNo Screen number sl@0: @param aDispMode Display mode sl@0: @param aScreenInfo Screen parameters: video memory address and screen size sl@0: @return A pointer to the created CFbsDrawDevice object sl@0: @leave System-wide error code including KErrNoMemory sl@0: @internalComponent sl@0: */ sl@0: static CFbsDrawDevice* CreateInstanceL(TInt aScreenNo, sl@0: TDisplayMode aDispMode, sl@0: const TScreenInfo& aScreenInfo) sl@0: { sl@0: CFbsDrawDevice* drawDevice = NULL; sl@0: sl@0: TInt modeCount; sl@0: TInt matchedMode=-1; sl@0: //there is some "ambiguity" about 24 and 32 bit modes... sl@0: //They are both byte per color component, and both actually have 32 bits per pixel memory use. sl@0: //This ambiguity does not exist between 12 and 16 bit modes, sl@0: //because they are distinct color component patterns (x444, 565) sl@0: //but for now 24 and 32 bit modes are considered equivalent here. sl@0: sl@0: if (HAL::Get(aScreenNo, HALData::EDisplayNumModes,modeCount)== KErrNone && modeCount>=1) sl@0: { //If multiple modes are supported then the highest bpp must be found sl@0: sl@0: TInt reqBpp= TDisplayModeUtils::NumDisplayModeBitsPerPixel(aDispMode); sl@0: TInt reqBpp2=reqBpp; sl@0: if ( reqBpp==24 || reqBpp==32 ) //Best to be specific here. Who knows how likely is 30 or 64 bpp support? sl@0: { sl@0: reqBpp2=32+24 - reqBpp; //reflect 24<==>32 sl@0: //Important compile-time decision embedded here: Only one 32-bit mode is supported sl@0: if(CFbsDrawDevice::DisplayMode16M() != aDispMode) sl@0: { sl@0: User::Leave(KErrNotSupported); sl@0: } sl@0: } sl@0: for (TInt mode=0; modeConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: /** Four grayscales display mode (2 bpp) */ sl@0: case EGray4: sl@0: { sl@0: CDrawTwoBppScreenBitmap* drawDeviceX = new (ELeave) CDrawTwoBppScreenBitmap; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: /** 16 grayscales display mode (4 bpp) */ sl@0: case EGray16: sl@0: { sl@0: CDrawFourBppScreenBitmapGray* drawDeviceX = new (ELeave) CDrawFourBppScreenBitmapGray; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: /** 256 grayscales display mode (8 bpp) */ sl@0: case EGray256: sl@0: { sl@0: CDrawEightBppScreenBitmapGray* drawDeviceX = new (ELeave) CDrawEightBppScreenBitmapGray; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: /** Low colour EGA 16 colour display mode (4 bpp) */ sl@0: case EColor16: sl@0: { sl@0: CDrawFourBppScreenBitmapColor* drawDeviceX = new (ELeave) CDrawFourBppScreenBitmapColor; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: /** 256 colour display mode (8 bpp) */ sl@0: case EColor256: sl@0: { sl@0: CDrawEightBppScreenBitmapColor* drawDeviceX = new (ELeave) CDrawEightBppScreenBitmapColor; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: /** 4,000 colour display mode (16 bpp) */ sl@0: case EColor4K: // 12 Bpp color mode sl@0: { sl@0: CDrawTwelveBppScreenBitmapColor* drawDeviceX = new (ELeave) CDrawTwelveBppScreenBitmapColor; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: sl@0: case EColor64K: // 16 Bpp color mode sl@0: { sl@0: CDrawSixteenBppScreenBitmap* drawDeviceX = new (ELeave) CDrawSixteenBppScreenBitmap; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: case EColor16MU: sl@0: { sl@0: CDrawUTwentyFourBppScreenBitmap* drawDeviceX = new (ELeave) CDrawUTwentyFourBppScreenBitmap; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: case EColor16MA: sl@0: { sl@0: CDrawThirtyTwoBppScreenBitmapAlpha* drawDeviceX = new (ELeave) CDrawThirtyTwoBppScreenBitmapAlpha; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: case EColor16MAP: sl@0: { sl@0: CDrawThirtyTwoBppScreenBitmapAlphaPM* drawDeviceX = new (ELeave) CDrawThirtyTwoBppScreenBitmapAlphaPM; sl@0: drawDevice=drawDeviceX; sl@0: CleanupStack::PushL(drawDevice) ; sl@0: User::LeaveIfError(drawDeviceX->ConstructScreen( sl@0: aScreenNo, sl@0: aScreenInfo.iAddress, sl@0: aScreenInfo.iSize,matchedMode)); sl@0: } sl@0: break; sl@0: default: sl@0: User::Leave(KErrNotSupported); sl@0: } sl@0: sl@0: CleanupStack::Pop(drawDevice); sl@0: return drawDevice; sl@0: } sl@0: sl@0: sl@0: /********************************************************************/ sl@0: /* Implementation of CFbsDrawDevice class */ sl@0: /********************************************************************/ sl@0: sl@0: /** sl@0: This function calls the correct constructor in function of the display mode. sl@0: @param aInfo, Structure of the LCD info sl@0: @param aDispMode, display mode sl@0: @return A pointer to just created screen device, which implements CFbsDrawDevice interface sl@0: @deprecated Use CFbsDrawDevice::NewScreenDeviceL(TInt aScreenNo, TDisplayMode aDispMode) sl@0: */ sl@0: EXPORT_C CFbsDrawDevice* CFbsDrawDevice::NewScreenDeviceL(TScreenInfoV01 aInfo, TDisplayMode aDispMode) sl@0: { sl@0: __ASSERT_ALWAYS(aInfo.iScreenAddressValid, Panic(EScreenDriverPanicInvalidWindowHandle)); sl@0: TScreenInfo screenInfo(aInfo.iScreenAddress, aInfo.iScreenSize); sl@0: return ::CreateInstanceL(KDefaultScreenNo, aDispMode, screenInfo); sl@0: } sl@0: sl@0: sl@0: sl@0: /** sl@0: Creates a new screen device instance, which implements CFbsDrawDevice interface. sl@0: The method has to be implemented for each type of supported video hardware. sl@0: @param aScreenNo Screen number sl@0: @param aDispMode Requested display mode sl@0: @return A pointer to just created screen device, which implements CFbsDrawDevice interface sl@0: @leave KErrNoMemory Not enough memory sl@0: KErrNotSupported The requested screen device type is not supported sl@0: */ sl@0: EXPORT_C CFbsDrawDevice* CFbsDrawDevice::NewScreenDeviceL(TInt aScreenNo, sl@0: TDisplayMode aDispMode) sl@0: { sl@0: TInt width = 0, height = 0; sl@0: User::LeaveIfError(HAL::Get(aScreenNo, HALData::EDisplayXPixels, width)); sl@0: User::LeaveIfError(HAL::Get(aScreenNo, HALData::EDisplayYPixels, height)); sl@0: __ASSERT_ALWAYS(width > 0 && height > 0, Panic(EScreenDriverPanicInvalidHalValue)); sl@0: sl@0: TUint8* address = 0; sl@0: sl@0: TScreenInfo screenInfo(address, TSize(width, height)); sl@0: return ::CreateInstanceL(aScreenNo, aDispMode, screenInfo); sl@0: } sl@0: sl@0: /** sl@0: Depending on the current graphics hardware this sl@0: will return one of the 16M video modes defined in sl@0: TDisplayMode, or ENone if a 16M video mode is not supported. sl@0: The method has to be implemented on all hardware platforms. sl@0: @return a 16M display mode or ENone. sl@0: ENone - it means that current hardware doesn't have 16M color mode. sl@0: */ sl@0: EXPORT_C TDisplayMode CFbsDrawDevice::DisplayMode16M() sl@0: { sl@0: return EColor16MA; sl@0: } sl@0: sl@0: sl@0: /** sl@0: Complete construction of the helper object. sl@0: @param aScreenNo The screen number, starting from 0. sl@0: @param aPixelFormat Pixel format UID or 0 for default based on bpp sl@0: @return KErrNone or a system wide error value. sl@0: */ sl@0: TInt CScreenDeviceHelper::Construct(TInt aScreenNo, TUidPixelFormat aPixelFormat, TUint aHalMode) sl@0: { sl@0: iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EScreenField] = aScreenNo; // Screen number sl@0: iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField] = aHalMode; // Rotation and hal mode index sl@0: iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::ETypeGuidField] = aPixelFormat; //May be zero for non-GCE modes sl@0: iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::ETypeClassField] sl@0: = ((TUint32)(TSurfaceId::EScreenSurface) << TSurfaceId::TScreenSurfaceUsage::ETypeClassShift); // Type sl@0: iAssignedOrientation = EDeviceOrientationNormal; // Actual rotation is held seperately from surface ID sl@0: sl@0: TInt val = 0; sl@0: iHasChunk = EFalse; sl@0: TInt ret = HAL::Get(aScreenNo,HALData::EDisplayMemoryHandle,val); sl@0: if (ret == KErrNone) sl@0: { sl@0: __ASSERT_DEBUG(val != 0, Panic(EScreenDriverPanicInvalidHalValue)); sl@0: RChunk chunk; sl@0: ret = chunk.SetReturnedHandle(val); sl@0: if (ret != KErrNone) sl@0: { sl@0: return ret; sl@0: } sl@0: iChunk = chunk; sl@0: ret = iChunk.Duplicate(RThread(), EOwnerProcess); sl@0: // Close before checking for errors, as we don't want to leave the sl@0: // temporary chunk handle floating about. sl@0: chunk.Close(); sl@0: if (ret != KErrNone) sl@0: { sl@0: return ret; sl@0: } sl@0: iHasChunk = ETrue; sl@0: } sl@0: // KErrNotSupported is returned if we can't get the Handle because it's not a driver sl@0: // that supports the concept. We don't return that error, since it's perfectly valid sl@0: // to not support this. sl@0: else if (ret != KErrNotSupported) sl@0: { sl@0: return ret; sl@0: } sl@0: return iSurfaceUpdateSession.Connect(); sl@0: } sl@0: sl@0: CScreenDeviceHelper::~CScreenDeviceHelper() sl@0: { sl@0: sl@0: iSurfaceUpdateSession.Close(); sl@0: iChunk.Close(); sl@0: } sl@0: sl@0: void CScreenDeviceHelper::NotifyWhenAvailable(TRequestStatus& aStatus) sl@0: { sl@0: iSurfaceUpdateSession.NotifyWhenAvailable(aStatus); sl@0: } sl@0: sl@0: void CScreenDeviceHelper::CancelUpdateNotification() sl@0: { sl@0: iSurfaceUpdateSession.CancelAllUpdateNotifications(); sl@0: } sl@0: sl@0: /** sl@0: Implementation of corresponding function in CDrawDevice, utilizing a tracked sl@0: update region. Updates the screen from the surface, if the update region is sl@0: not empty. sl@0: */ sl@0: void CScreenDeviceHelper::Update() sl@0: { sl@0: TRequestStatus updateComplete = KRequestPending; sl@0: Update(updateComplete); sl@0: User::WaitForRequest(updateComplete); sl@0: } sl@0: sl@0: void CScreenDeviceHelper::Update(TRequestStatus& aStatus) sl@0: { sl@0: if (!iUpdateRegion.IsEmpty()) sl@0: { sl@0: iSurfaceUpdateSession.NotifyWhenAvailable(aStatus); sl@0: iSurfaceUpdateSession.SubmitUpdate(KAllScreens, iSurface, 0, &iUpdateRegion); sl@0: iUpdateRegion.Clear(); sl@0: } sl@0: else sl@0: { sl@0: TRequestStatus* pComplete=&aStatus; sl@0: User::RequestComplete(pComplete,KErrNone); sl@0: } sl@0: } sl@0: sl@0: sl@0: /** sl@0: Implementation of corresponding function in CDrawDevice, utilizing a tracked sl@0: update region. Adds the given rectangle to the update region. sl@0: @param aRect Rectangle to be added to the update region. sl@0: */ sl@0: void CScreenDeviceHelper::UpdateRegion(const TRect& aRect) sl@0: { sl@0: if (aRect.IsEmpty()) sl@0: { sl@0: // Adding an empty rectangle should have no effect. sl@0: return; sl@0: } sl@0: sl@0: if (iUpdateRegion.CheckError()) sl@0: { sl@0: // Try to ensure the region doesn't keep an error forever. sl@0: iUpdateRegion.Clear(); sl@0: } sl@0: sl@0: TRect bounds(iUpdateRegion.BoundingRect()); sl@0: iUpdateRegion.AddRect(aRect); sl@0: sl@0: // If the region fills up, start again with the old bounding box plus this sl@0: // rectangle. sl@0: if (iUpdateRegion.CheckError()) sl@0: { sl@0: iUpdateRegion.Clear(); sl@0: iUpdateRegion.AddRect(bounds); sl@0: iUpdateRegion.AddRect(aRect); sl@0: } sl@0: } sl@0: sl@0: /** sl@0: Reset the update region to be empty without submitting any outstanding updates. sl@0: */ sl@0: void CScreenDeviceHelper::ResetUpdateRegion() sl@0: { sl@0: iUpdateRegion.Clear(); sl@0: } sl@0: sl@0: /** sl@0: This function returns the current surface in use for this screen. sl@0: @param aSurface The identifier to be updated with the current screen surface. sl@0: */ sl@0: void CScreenDeviceHelper::GetSurface(TSurfaceId& aSid) const sl@0: { sl@0: aSid = iSurface; sl@0: } sl@0: sl@0: /** sl@0: This function is used to request the device orientations supported by the sl@0: screen device. sl@0: @return A bitwise combination of one or more TDeviceOrientation enumerated sl@0: values indicating the device orientations that are supported by this device. sl@0: */ sl@0: TUint CScreenDeviceHelper::DeviceOrientationsAvailable(const TSize& aScreenSize) const sl@0: { sl@0: //All that can be reported here is what the CScreenDevice can support via HAL sl@0: //With generic driver, the runtime can be further restricted by the GCE sl@0: if ( aScreenSize.iWidth && aScreenSize.iWidth==aScreenSize.iHeight ) sl@0: { sl@0: return EDeviceOrientationNormal | EDeviceOrientation90CW | sl@0: EDeviceOrientation180 | EDeviceOrientation270CW; sl@0: } sl@0: //Query base HAL for rotated view support sl@0: TInt offset1=iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]|TSurfaceId::TScreenSurfaceUsage::EHalFlippedFlag; sl@0: if ( HAL::Get(ScreenNumber(), HALData::EDisplayOffsetBetweenLines, offset1)==KErrNone sl@0: && offset1!=0) sl@0: { sl@0: return EDeviceOrientationNormal | EDeviceOrientation90CW | sl@0: EDeviceOrientation180 | EDeviceOrientation270CW; sl@0: } sl@0: else sl@0: return EDeviceOrientationNormal | EDeviceOrientation180; sl@0: } sl@0: sl@0: /** sl@0: This function selects the surface and device buffer to use in the screen sl@0: driver for this screen. Normal and 180° rotations will generally use the same sl@0: surface, while 90° and 270° will use another. The surfaces may have different sl@0: width, height, stride and surface ID, so functions that make use of any of sl@0: these may be affected after a change in surface orientation, and the return sl@0: value should be checked for this reason. sl@0: sl@0: This call does not change the way rendering is performed, but may operate on sl@0: the underlying memory using a new shape. The call does not change the display sl@0: controller's settings, as this is handled via the GCE. All this changes are the sl@0: internal attributes of the screen device and driver objects. A CFbsBitGc object sl@0: activated on the device should be reactivated, to update its own attributes, or sl@0: drawing may be corrupted. sl@0: sl@0: Note: while TDeviceOrientation values do not directly correspond to sl@0: CFbsBitGc::TGraphicsOrientation values, and cannot be used interchangeably, it sl@0: is simple to generate the former from the latter using the left-shift operator sl@0: (i.e. device == (1 << graphics)). In particular a device orientation of sl@0: 90 degrees clockwise is equivalent to a content orientation of 90 degrees anti- sl@0: clockwise, which is what TGraphicsOrientation refers to for the equivalent sl@0: setting. The letters "CW" in the TDeviceOrientation enumeration refer sl@0: to a clockwise device rotation, so EDeviceOrientation90CW is a 90 degree sl@0: clockwise rotation of the device. sl@0: sl@0: @param aOrientation The new device orientation, relative to the normal physical sl@0: screen orientation. sl@0: @param aNewSize The new pixel dimensions of the surface to be used. sl@0: @return ETrue is returned if any of the surface, width, height or stride sl@0: attributes of the screen device have changed as a result of the call or EFalse sl@0: if none of the attributes have changed. sl@0: */ sl@0: TBool CScreenDeviceHelper::SetDeviceOrientation(TDeviceOrientation aOrientation, TSize& aNewSize) sl@0: { sl@0: // Check only one orientation bit is set sl@0: if (((TInt)aOrientation - 1) & aOrientation) sl@0: { sl@0: Panic(EScreenDriverPanicInvalidParameter); sl@0: } sl@0: sl@0: // Check the orientation is supported sl@0: if ((DeviceOrientationsAvailable(aNewSize) & aOrientation) == 0) sl@0: { sl@0: Panic(EScreenDriverPanicInvalidParameter); sl@0: } sl@0: sl@0: iAssignedOrientation=aOrientation; sl@0: sl@0: return SetDeviceFlipMode(ConvertFlip(aOrientation),aNewSize); sl@0: } sl@0: /** Sets or clears the flipped flag indicating that the width and height have been swapped for a +/-90 deg rotation sl@0: * Rotation is not required for square displays unless the Hal wants one. sl@0: **/ sl@0: TBool CScreenDeviceHelper::SetDeviceFlipMode(TBool aFlip, TSize& aNewSize) sl@0: { sl@0: //This is now a private method that doesn't validate aFlip sl@0: TInt newFlipMode= iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]; sl@0: if (aFlip) sl@0: { sl@0: newFlipMode|=TSurfaceId::TScreenSurfaceUsage::EHalFlippedFlag; sl@0: } sl@0: else sl@0: { sl@0: newFlipMode&=~TSurfaceId::TScreenSurfaceUsage::EHalFlippedFlag; sl@0: } sl@0: if (newFlipMode == iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]) sl@0: { sl@0: // No change to mode requested. sl@0: return EFalse; sl@0: } sl@0: TInt err=0; sl@0: err|=HAL::Get(ScreenNumber(), HALData::EDisplayXPixels, aNewSize.iWidth); sl@0: err|=HAL::Get(ScreenNumber(), HALData::EDisplayYPixels, aNewSize.iHeight); sl@0: __ASSERT_ALWAYS(err==KErrNone,Panic(EScreenDriverPanicInvalidHalValue)); sl@0: if (aNewSize.iWidth==aNewSize.iHeight) sl@0: { //Attempt optimisation to not flip if the screen is square, so avoid recomposition. sl@0: TInt stride1=iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]; sl@0: TInt stride2=stride1^TSurfaceId::TScreenSurfaceUsage::EHalFlippedFlag; sl@0: TInt offset1=stride1; sl@0: TInt offset2=stride2; sl@0: //Does the rotated mode have any other attributes that differ? sl@0: //It is just about possible to imagine that the rotated display sl@0: //wants to use a different setting for the flipped legacy buffer for optimisation purposes. sl@0: err|=HAL::Get(ScreenNumber(), HALData::EDisplayOffsetToFirstPixel, offset1); sl@0: err|=HAL::Get(ScreenNumber(), HALData::EDisplayOffsetBetweenLines, stride1); sl@0: //The existing mode settings should not fail... we are already in this mode! sl@0: __ASSERT_ALWAYS(err==KErrNone,Panic(EScreenDriverPanicInvalidHalValue)); sl@0: sl@0: TInt rotatedErr = HAL::Get(ScreenNumber(), HALData::EDisplayOffsetToFirstPixel, offset2); sl@0: rotatedErr |= HAL::Get(ScreenNumber(), HALData::EDisplayOffsetBetweenLines, stride2); sl@0: //The HAL may indicate rotation is not required by failing to return data or returning the same data sl@0: if ( rotatedErr!=KErrNone || stride2==0 ) //Offset can legitimately be zero. sl@0: { sl@0: // No change to mode supported. sl@0: return EFalse; sl@0: } sl@0: if ( stride1==stride2 && offset1==offset2 ) sl@0: { sl@0: // No change to mode needed. sl@0: return EFalse; sl@0: } sl@0: } sl@0: sl@0: iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField] = newFlipMode; sl@0: if (aFlip) sl@0: { sl@0: // Swap width and height in the alternate orientation. sl@0: aNewSize.SetSize(aNewSize.iHeight, aNewSize.iWidth); sl@0: } sl@0: return ETrue; sl@0: } sl@0: /** Returns the stride for the given mode. sl@0: * This method must not panic if it should fail! sl@0: **/ sl@0: TUint CScreenDeviceHelper::BytesPerScanline() const sl@0: { sl@0: TInt linepitchInBytes = iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]; sl@0: TInt ret = HAL::Get(ScreenNumber(),HALData::EDisplayOffsetBetweenLines,linepitchInBytes); sl@0: if (ret!=KErrNone) sl@0: { sl@0: return 0; sl@0: } sl@0: return linepitchInBytes ; sl@0: } sl@0: /** Returns the address for the image data sl@0: * This method must not panic if it should fail! sl@0: **/ sl@0: void* CScreenDeviceHelper::AddressFirstPixel() const sl@0: { sl@0: TInt bufferStartAddress = iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]; sl@0: TInt ret = KErrNone; sl@0: if (iHasChunk) sl@0: { sl@0: // The "chunk" way to do this is to get the handle of the chunk, and then the base address of the sl@0: // chunk itself. sl@0: bufferStartAddress = (TInt)iChunk.Base(); sl@0: } sl@0: else sl@0: { sl@0: // Chunk not supported, use older HAL call to get the buffer address. sl@0: ret = HAL::Get(ScreenNumber(),HALData::EDisplayMemoryAddress,bufferStartAddress); sl@0: if (ret!=KErrNone) sl@0: { sl@0: return 0; sl@0: } sl@0: } sl@0: TInt bufferOffsetFirstPixel = iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField]; sl@0: ret = HAL::Get(ScreenNumber(),HALData::EDisplayOffsetToFirstPixel,bufferOffsetFirstPixel); sl@0: if (ret!=KErrNone) sl@0: { sl@0: return 0; sl@0: } sl@0: return (void*)(bufferStartAddress+bufferOffsetFirstPixel); sl@0: } sl@0: sl@0: /** sl@0: Returns the current device width/height flip state of this surface, representing a +/-90 deg rotation. sl@0: **/ sl@0: TBool CScreenDeviceHelper::DeviceFlipped() const sl@0: { sl@0: return (iSurface.iInternal[TSurfaceId::TScreenSurfaceUsage::EHalField] & TSurfaceId::TScreenSurfaceUsage::EHalFlippedFlag) != 0; //!=0 forces true --> 1 sl@0: } sl@0: sl@0: sl@0: /** sl@0: Returns the current device orientation. sl@0: */ sl@0: TDeviceOrientation CScreenDeviceHelper::DeviceOrientation() const sl@0: { sl@0: return iAssignedOrientation; sl@0: } sl@0: /** Returns an accurate scaling factor between twips and pixels in width. sl@0: sl@0: **/ sl@0: TInt CScreenDeviceHelper::HorzTwipsPerThousandPixels(const TSize& aPixels)const sl@0: { sl@0: __ASSERT_DEBUG(aPixels.iWidth, Panic(EScreenDriverPanicInvalidSize)); sl@0: sl@0: TInt width = 0; sl@0: TInt r = HAL::Get(ScreenNumber(), SecondIfFlipped(HAL::EDisplayXTwips,HAL::EDisplayYTwips), width); sl@0: __ASSERT_DEBUG(r==KErrNone && width!=0, Panic(EScreenDriverPanicInvalidHalValue)); sl@0: sl@0: return (width * 1000) / aPixels.iWidth; sl@0: } sl@0: /** Returns an accurate scaling factor between twips and pixels in height. sl@0: **/ sl@0: TInt CScreenDeviceHelper::VertTwipsPerThousandPixels(const TSize& aPixels)const sl@0: { sl@0: __ASSERT_DEBUG(aPixels.iHeight, Panic(EScreenDriverPanicInvalidSize)); sl@0: sl@0: TInt height = 0; sl@0: TInt r = HAL::Get(ScreenNumber(), SecondIfFlipped(HAL::EDisplayYTwips,HAL::EDisplayXTwips), height); sl@0: __ASSERT_DEBUG(r==KErrNone && height!=0, Panic(EScreenDriverPanicInvalidHalValue)); sl@0: sl@0: return (height * 1000) / aPixels.iHeight; sl@0: } sl@0: sl@0: