First public contribution.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 ** $Id: vdbeapi.c,v 1.141 2008/09/04 12:03:43 shane Exp $
18 #include "sqliteInt.h"
21 #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
23 ** The following structure contains pointers to the end points of a
24 ** doubly-linked list of all compiled SQL statements that may be holding
25 ** buffers eligible for release when the sqlite3_release_memory() interface is
26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
29 ** Statements are added to the end of this list when sqlite3_reset() is
30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
31 ** is called. When statements are added to this list, the associated
32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
33 ** can be freed using sqlite3VdbeReleaseMemory().
35 ** When statements are added or removed from this list, the mutex
36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
40 struct StatementLruList {
44 static struct StatementLruList sqlite3LruStatements;
47 ** Check that the list looks to be internally consistent. This is used
48 ** as part of an assert() statement as follows:
50 ** assert( stmtLruCheck() );
53 static int stmtLruCheck(){
55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
56 assert(p->pLruNext || p==sqlite3LruStatements.pLast);
57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
66 ** Add vdbe p to the end of the statement lru list. It is assumed that
67 ** p is not already part of the list when this is called. The lru list
68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
70 static void stmtLruAdd(Vdbe *p){
71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
78 assert( stmtLruCheck() );
80 if( !sqlite3LruStatements.pFirst ){
81 assert( !sqlite3LruStatements.pLast );
82 sqlite3LruStatements.pFirst = p;
83 sqlite3LruStatements.pLast = p;
85 assert( !sqlite3LruStatements.pLast->pLruNext );
86 p->pLruPrev = sqlite3LruStatements.pLast;
87 sqlite3LruStatements.pLast->pLruNext = p;
88 sqlite3LruStatements.pLast = p;
91 assert( stmtLruCheck() );
93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
98 ** statement p from the least-recently-used statement list. If the
99 ** statement is not currently part of the list, this call is a no-op.
101 static void stmtLruRemoveNomutex(Vdbe *p){
102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
103 assert( stmtLruCheck() );
105 p->pLruNext->pLruPrev = p->pLruPrev;
107 sqlite3LruStatements.pLast = p->pLruPrev;
110 p->pLruPrev->pLruNext = p->pLruNext;
112 sqlite3LruStatements.pFirst = p->pLruNext;
116 assert( stmtLruCheck() );
121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
122 ** statement p from the least-recently-used statement list. If the
123 ** statement is not currently part of the list, this call is a no-op.
125 static void stmtLruRemove(Vdbe *p){
126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
127 stmtLruRemoveNomutex(p);
128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
132 ** Try to release n bytes of memory by freeing buffers associated
133 ** with the memory registers of currently unused vdbes.
135 int sqlite3VdbeReleaseMemory(int n){
140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
144 /* For each statement handle in the lru list, attempt to obtain the
145 ** associated database mutex. If it cannot be obtained, continue
146 ** to the next statement handle. It is not possible to block on
147 ** the database mutex - that could cause deadlock.
149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
150 nFree += sqlite3VdbeReleaseBuffers(p);
151 stmtLruRemoveNomutex(p);
152 sqlite3_mutex_leave(p->db->mutex);
155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
161 ** Call sqlite3Reprepare() on the statement. Remove it from the
162 ** lru list before doing so, as Reprepare() will free all the
163 ** memory register buffers anyway.
165 int vdbeReprepare(Vdbe *p){
167 return sqlite3Reprepare(p);
170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
171 #define stmtLruRemove(x)
172 #define stmtLruAdd(x)
173 #define vdbeReprepare(x) sqlite3Reprepare(x)
178 ** Return TRUE (non-zero) of the statement supplied as an argument needs
179 ** to be recompiled. A statement needs to be recompiled whenever the
180 ** execution environment changes in a way that would alter the program
181 ** that sqlite3_prepare() generates. For example, if new functions or
182 ** collating sequences are registered or if an authorizer function is
185 SQLITE_EXPORT int sqlite3_expired(sqlite3_stmt *pStmt){
186 Vdbe *p = (Vdbe*)pStmt;
187 return p==0 || p->expired;
191 ** The following routine destroys a virtual machine that is created by
192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
193 ** success/failure code that describes the result of executing the virtual
196 ** This routine sets the error code and string returned by
197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
199 SQLITE_EXPORT int sqlite3_finalize(sqlite3_stmt *pStmt){
204 Vdbe *v = (Vdbe*)pStmt;
205 #ifndef SQLITE_MUTEX_NOOP
206 sqlite3_mutex *mutex = v->db->mutex;
208 sqlite3_mutex_enter(mutex);
210 rc = sqlite3VdbeFinalize(v);
211 sqlite3_mutex_leave(mutex);
217 ** Terminate the current execution of an SQL statement and reset it
218 ** back to its starting state so that it can be reused. A success code from
219 ** the prior execution is returned.
221 ** This routine sets the error code and string returned by
222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
224 SQLITE_EXPORT int sqlite3_reset(sqlite3_stmt *pStmt){
229 Vdbe *v = (Vdbe*)pStmt;
230 sqlite3_mutex_enter(v->db->mutex);
231 rc = sqlite3VdbeReset(v);
233 sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
234 assert( (rc & (v->db->errMask))==rc );
235 sqlite3_mutex_leave(v->db->mutex);
241 ** Set all the parameters in the compiled SQL statement to NULL.
243 SQLITE_EXPORT int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
246 Vdbe *p = (Vdbe*)pStmt;
247 #ifndef SQLITE_MUTEX_NOOP
248 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
250 sqlite3_mutex_enter(mutex);
251 for(i=0; i<p->nVar; i++){
252 sqlite3VdbeMemRelease(&p->aVar[i]);
253 p->aVar[i].flags = MEM_Null;
255 sqlite3_mutex_leave(mutex);
260 /**************************** sqlite3_value_ *******************************
261 ** The following routines extract information from a Mem or sqlite3_value
264 SQLITE_EXPORT const void *sqlite3_value_blob(sqlite3_value *pVal){
266 if( p->flags & (MEM_Blob|MEM_Str) ){
267 sqlite3VdbeMemExpandBlob(p);
268 p->flags &= ~MEM_Str;
269 p->flags |= MEM_Blob;
272 return sqlite3_value_text(pVal);
275 SQLITE_EXPORT int sqlite3_value_bytes(sqlite3_value *pVal){
276 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
278 SQLITE_EXPORT int sqlite3_value_bytes16(sqlite3_value *pVal){
279 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
281 SQLITE_EXPORT double sqlite3_value_double(sqlite3_value *pVal){
282 return sqlite3VdbeRealValue((Mem*)pVal);
284 SQLITE_EXPORT int sqlite3_value_int(sqlite3_value *pVal){
285 return sqlite3VdbeIntValue((Mem*)pVal);
287 SQLITE_EXPORT sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
288 return sqlite3VdbeIntValue((Mem*)pVal);
290 SQLITE_EXPORT const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
291 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
293 #ifndef SQLITE_OMIT_UTF16
294 SQLITE_EXPORT const void *sqlite3_value_text16(sqlite3_value* pVal){
295 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
297 SQLITE_EXPORT const void *sqlite3_value_text16be(sqlite3_value *pVal){
298 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
300 SQLITE_EXPORT const void *sqlite3_value_text16le(sqlite3_value *pVal){
301 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
303 #endif /* SQLITE_OMIT_UTF16 */
304 SQLITE_EXPORT int sqlite3_value_type(sqlite3_value* pVal){
308 /**************************** sqlite3_result_ *******************************
309 ** The following routines are used by user-defined functions to specify
310 ** the function result.
312 SQLITE_EXPORT void sqlite3_result_blob(
313 sqlite3_context *pCtx,
319 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
320 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
322 SQLITE_EXPORT void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
323 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
324 sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
326 SQLITE_EXPORT void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
327 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
328 pCtx->isError = SQLITE_ERROR;
329 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
331 #ifndef SQLITE_OMIT_UTF16
332 SQLITE_EXPORT void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
333 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
334 pCtx->isError = SQLITE_ERROR;
335 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
338 SQLITE_EXPORT void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
339 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
340 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
342 SQLITE_EXPORT void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
343 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
344 sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
346 SQLITE_EXPORT void sqlite3_result_null(sqlite3_context *pCtx){
347 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
348 sqlite3VdbeMemSetNull(&pCtx->s);
350 SQLITE_EXPORT void sqlite3_result_text(
351 sqlite3_context *pCtx,
356 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
357 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
359 #ifndef SQLITE_OMIT_UTF16
360 SQLITE_EXPORT void sqlite3_result_text16(
361 sqlite3_context *pCtx,
366 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
367 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
369 SQLITE_EXPORT void sqlite3_result_text16be(
370 sqlite3_context *pCtx,
375 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
376 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
378 SQLITE_EXPORT void sqlite3_result_text16le(
379 sqlite3_context *pCtx,
384 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
385 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
387 #endif /* SQLITE_OMIT_UTF16 */
388 SQLITE_EXPORT void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
389 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
390 sqlite3VdbeMemCopy(&pCtx->s, pValue);
392 SQLITE_EXPORT void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
393 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
394 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
396 SQLITE_EXPORT void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
397 pCtx->isError = errCode;
400 /* Force an SQLITE_TOOBIG error. */
401 SQLITE_EXPORT void sqlite3_result_error_toobig(sqlite3_context *pCtx){
402 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
403 pCtx->isError = SQLITE_TOOBIG;
404 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
405 SQLITE_UTF8, SQLITE_STATIC);
408 /* An SQLITE_NOMEM error. */
409 SQLITE_EXPORT void sqlite3_result_error_nomem(sqlite3_context *pCtx){
410 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
411 sqlite3VdbeMemSetNull(&pCtx->s);
412 pCtx->isError = SQLITE_NOMEM;
413 pCtx->s.db->mallocFailed = 1;
417 ** Execute the statement pStmt, either until a row of data is ready, the
418 ** statement is completely executed or an error occurs.
420 ** This routine implements the bulk of the logic behind the sqlite_step()
421 ** API. The only thing omitted is the automatic recompile if a
422 ** schema change has occurred. That detail is handled by the
423 ** outer sqlite3_step() wrapper procedure.
425 static int sqlite3Step(Vdbe *p){
430 if( p->magic!=VDBE_MAGIC_RUN ){
431 return SQLITE_MISUSE;
434 /* Assert that malloc() has not failed */
436 if( db->mallocFailed ){
440 if( p->pc<=0 && p->expired ){
441 if( p->rc==SQLITE_OK ){
442 p->rc = SQLITE_SCHEMA;
447 if( sqlite3SafetyOn(db) ){
448 p->rc = SQLITE_MISUSE;
449 return SQLITE_MISUSE;
452 /* If there are no other statements currently running, then
453 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
454 ** from interrupting a statement that has not yet started.
456 if( db->activeVdbeCnt==0 ){
457 db->u1.isInterrupted = 0;
460 #ifndef SQLITE_OMIT_TRACE
461 if( db->xProfile && !db->init.busy ){
463 sqlite3OsCurrentTime(db->pVfs, &rNow);
464 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
472 #ifndef SQLITE_OMIT_EXPLAIN
474 rc = sqlite3VdbeList(p);
476 #endif /* SQLITE_OMIT_EXPLAIN */
478 rc = sqlite3VdbeExec(p);
481 if( sqlite3SafetyOff(db) ){
485 #ifndef SQLITE_OMIT_TRACE
486 /* Invoke the profile callback if there is one
488 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
489 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
493 sqlite3OsCurrentTime(db->pVfs, &rNow);
494 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
495 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
500 /*sqlite3Error(p->db, rc, 0);*/
501 p->rc = sqlite3ApiExit(p->db, p->rc);
503 assert( (rc&0xff)==rc );
504 if( p->zSql && (rc&0xff)<SQLITE_ROW ){
505 /* This behavior occurs if sqlite3_prepare_v2() was used to build
506 ** the prepared statement. Return error codes directly */
507 p->db->errCode = p->rc;
508 /* sqlite3Error(p->db, p->rc, 0); */
511 /* This is for legacy sqlite3_prepare() builds and when the code
512 ** is SQLITE_ROW or SQLITE_DONE */
518 ** This is the top-level implementation of sqlite3_step(). Call
519 ** sqlite3Step() to do most of the work. If a schema error occurs,
520 ** call sqlite3Reprepare() and try again.
522 #ifdef SQLITE_OMIT_PARSER
523 int sqlite3_step(sqlite3_stmt *pStmt){
524 int rc = SQLITE_MISUSE;
528 sqlite3_mutex_enter(v->db->mutex);
530 sqlite3_mutex_leave(v->db->mutex);
535 SQLITE_EXPORT int sqlite3_step(sqlite3_stmt *pStmt){
536 int rc = SQLITE_MISUSE;
539 Vdbe *v = (Vdbe*)pStmt;
541 sqlite3_mutex_enter(db->mutex);
542 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
544 && vdbeReprepare(v) ){
545 sqlite3_reset(pStmt);
548 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
549 /* This case occurs after failing to recompile an sql statement.
550 ** The error message from the SQL compiler has already been loaded
551 ** into the database handle. This block copies the error message
552 ** from the database handle into the statement and sets the statement
553 ** program counter to 0 to ensure that when the statement is
554 ** finalized or reset the parser error message is available via
555 ** sqlite3_errmsg() and sqlite3_errcode().
557 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
558 sqlite3DbFree(db, v->zErrMsg);
559 if( !db->mallocFailed ){
560 v->zErrMsg = sqlite3DbStrDup(db, zErr);
563 v->rc = SQLITE_NOMEM;
566 rc = sqlite3ApiExit(db, rc);
567 sqlite3_mutex_leave(db->mutex);
574 ** Extract the user data from a sqlite3_context structure and return a
577 SQLITE_EXPORT void *sqlite3_user_data(sqlite3_context *p){
578 assert( p && p->pFunc );
579 return p->pFunc->pUserData;
583 ** Extract the user data from a sqlite3_context structure and return a
586 SQLITE_EXPORT sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
587 assert( p && p->pFunc );
592 ** The following is the implementation of an SQL function that always
593 ** fails with an error message stating that the function is used in the
594 ** wrong context. The sqlite3_overload_function() API might construct
595 ** SQL function that use this routine so that the functions will exist
596 ** for name resolution but are actually overloaded by the xFindFunction
597 ** method of virtual tables.
599 void sqlite3InvalidFunction(
600 sqlite3_context *context, /* The function calling context */
601 int argc, /* Number of arguments to the function */
602 sqlite3_value **argv /* Value of each argument */
604 const char *zName = context->pFunc->zName;
606 zErr = sqlite3MPrintf(0,
607 "unable to use function %s in the requested context", zName);
608 sqlite3_result_error(context, zErr, -1);
613 ** Allocate or return the aggregate context for a user function. A new
614 ** context is allocated on the first call. Subsequent calls return the
615 ** same context that was returned on prior calls.
617 SQLITE_EXPORT void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
619 assert( p && p->pFunc && p->pFunc->xStep );
620 assert( sqlite3_mutex_held(p->s.db->mutex) );
622 if( (pMem->flags & MEM_Agg)==0 ){
624 sqlite3VdbeMemReleaseExternal(pMem);
625 pMem->flags = MEM_Null;
628 sqlite3VdbeMemGrow(pMem, nByte, 0);
629 pMem->flags = MEM_Agg;
630 pMem->u.pDef = p->pFunc;
632 memset(pMem->z, 0, nByte);
636 return (void*)pMem->z;
640 ** Return the auxilary data pointer, if any, for the iArg'th argument to
641 ** the user-function defined by pCtx.
643 SQLITE_EXPORT void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
646 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
647 pVdbeFunc = pCtx->pVdbeFunc;
648 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
651 return pVdbeFunc->apAux[iArg].pAux;
655 ** Set the auxilary data pointer and delete function, for the iArg'th
656 ** argument to the user-function defined by pCtx. Any previous value is
657 ** deleted by calling the delete function specified when it was set.
659 SQLITE_EXPORT void sqlite3_set_auxdata(
660 sqlite3_context *pCtx,
663 void (*xDelete)(void*)
665 struct AuxData *pAuxData;
667 if( iArg<0 ) goto failed;
669 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
670 pVdbeFunc = pCtx->pVdbeFunc;
671 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
672 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
673 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
674 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
678 pCtx->pVdbeFunc = pVdbeFunc;
679 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
680 pVdbeFunc->nAux = iArg+1;
681 pVdbeFunc->pFunc = pCtx->pFunc;
684 pAuxData = &pVdbeFunc->apAux[iArg];
685 if( pAuxData->pAux && pAuxData->xDelete ){
686 pAuxData->xDelete(pAuxData->pAux);
688 pAuxData->pAux = pAux;
689 pAuxData->xDelete = xDelete;
699 ** Return the number of times the Step function of a aggregate has been
702 ** This function is deprecated. Do not use it for new code. It is
703 ** provide only to avoid breaking legacy code. New aggregate function
704 ** implementations should keep their own counts within their aggregate
707 SQLITE_EXPORT int sqlite3_aggregate_count(sqlite3_context *p){
708 assert( p && p->pFunc && p->pFunc->xStep );
713 ** Return the number of columns in the result set for the statement pStmt.
715 SQLITE_EXPORT int sqlite3_column_count(sqlite3_stmt *pStmt){
716 Vdbe *pVm = (Vdbe *)pStmt;
717 return pVm ? pVm->nResColumn : 0;
721 ** Return the number of values available from the current row of the
722 ** currently executing statement pStmt.
724 SQLITE_EXPORT int sqlite3_data_count(sqlite3_stmt *pStmt){
725 Vdbe *pVm = (Vdbe *)pStmt;
726 if( pVm==0 || pVm->pResultSet==0 ) return 0;
727 return pVm->nResColumn;
732 ** Check to see if column iCol of the given statement is valid. If
733 ** it is, return a pointer to the Mem for the value of that column.
734 ** If iCol is not valid, return a pointer to a Mem which has a value
737 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
743 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
744 sqlite3_mutex_enter(pVm->db->mutex);
745 vals = sqlite3_data_count(pStmt);
746 pOut = &pVm->pResultSet[i];
748 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
750 sqlite3_mutex_enter(pVm->db->mutex);
751 sqlite3Error(pVm->db, SQLITE_RANGE, 0);
753 pOut = (Mem*)&nullMem;
759 ** This function is called after invoking an sqlite3_value_XXX function on a
760 ** column value (i.e. a value returned by evaluating an SQL expression in the
761 ** select list of a SELECT statement) that may cause a malloc() failure. If
762 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
763 ** code of statement pStmt set to SQLITE_NOMEM.
765 ** Specifically, this is called from within:
767 ** sqlite3_column_int()
768 ** sqlite3_column_int64()
769 ** sqlite3_column_text()
770 ** sqlite3_column_text16()
771 ** sqlite3_column_real()
772 ** sqlite3_column_bytes()
773 ** sqlite3_column_bytes16()
775 ** But not for sqlite3_column_blob(), which never calls malloc().
777 static void columnMallocFailure(sqlite3_stmt *pStmt)
779 /* If malloc() failed during an encoding conversion within an
780 ** sqlite3_column_XXX API, then set the return code of the statement to
781 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
782 ** and _finalize() will return NOMEM.
784 Vdbe *p = (Vdbe *)pStmt;
786 p->rc = sqlite3ApiExit(p->db, p->rc);
787 sqlite3_mutex_leave(p->db->mutex);
791 /**************************** sqlite3_column_ *******************************
792 ** The following routines are used to access elements of the current row
793 ** in the result set.
795 SQLITE_EXPORT const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
797 val = sqlite3_value_blob( columnMem(pStmt,i) );
798 /* Even though there is no encoding conversion, value_blob() might
799 ** need to call malloc() to expand the result of a zeroblob()
802 columnMallocFailure(pStmt);
805 SQLITE_EXPORT int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
806 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
807 columnMallocFailure(pStmt);
810 SQLITE_EXPORT int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
811 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
812 columnMallocFailure(pStmt);
815 SQLITE_EXPORT double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
816 double val = sqlite3_value_double( columnMem(pStmt,i) );
817 columnMallocFailure(pStmt);
820 SQLITE_EXPORT int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
821 int val = sqlite3_value_int( columnMem(pStmt,i) );
822 columnMallocFailure(pStmt);
825 SQLITE_EXPORT sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
826 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
827 columnMallocFailure(pStmt);
830 SQLITE_EXPORT const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
831 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
832 columnMallocFailure(pStmt);
835 SQLITE_EXPORT sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
836 sqlite3_value *pOut = columnMem(pStmt, i);
837 columnMallocFailure(pStmt);
840 #ifndef SQLITE_OMIT_UTF16
841 SQLITE_EXPORT const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
842 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
843 columnMallocFailure(pStmt);
846 #endif /* SQLITE_OMIT_UTF16 */
847 SQLITE_EXPORT int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
848 int iType = sqlite3_value_type( columnMem(pStmt,i) );
849 columnMallocFailure(pStmt);
853 /* The following function is experimental and subject to change or
855 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
856 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
861 ** Convert the N-th element of pStmt->pColName[] into a string using
862 ** xFunc() then return that string. If N is out of range, return 0.
864 ** There are up to 5 names for each column. useType determines which
865 ** name is returned. Here are the names:
867 ** 0 The column name as it should be displayed for output
868 ** 1 The datatype name for the column
869 ** 2 The name of the database that the column derives from
870 ** 3 The name of the table that the column derives from
871 ** 4 The name of the table column that the result column derives from
873 ** If the result is not a simple column reference (if it is an expression
874 ** or a constant) then useTypes 2, 3, and 4 return NULL.
876 static const void *columnName(
879 const void *(*xFunc)(Mem*),
883 Vdbe *p = (Vdbe *)pStmt;
888 n = sqlite3_column_count(pStmt);
891 sqlite3_mutex_enter(p->db->mutex);
892 ret = xFunc(&p->aColName[N]);
894 /* A malloc may have failed inside of the xFunc() call. If this
895 ** is the case, clear the mallocFailed flag and return NULL.
897 if( p->db && p->db->mallocFailed ){
898 p->db->mallocFailed = 0;
901 sqlite3_mutex_leave(p->db->mutex);
908 ** Return the name of the Nth column of the result set returned by SQL
911 SQLITE_EXPORT const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
913 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
915 #ifndef SQLITE_OMIT_UTF16
916 SQLITE_EXPORT const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
918 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
923 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
924 ** not define OMIT_DECLTYPE.
926 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
927 # error "Must not define both SQLITE_OMIT_DECLTYPE \
928 and SQLITE_ENABLE_COLUMN_METADATA"
931 #ifndef SQLITE_OMIT_DECLTYPE
933 ** Return the column declaration type (if applicable) of the 'i'th column
934 ** of the result set of SQL statement pStmt.
936 SQLITE_EXPORT const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
938 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
940 #ifndef SQLITE_OMIT_UTF16
941 SQLITE_EXPORT const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
943 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
945 #endif /* SQLITE_OMIT_UTF16 */
946 #endif /* SQLITE_OMIT_DECLTYPE */
948 #ifdef SQLITE_ENABLE_COLUMN_METADATA
950 ** Return the name of the database from which a result column derives.
951 ** NULL is returned if the result column is an expression or constant or
952 ** anything else which is not an unabiguous reference to a database column.
954 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
956 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
958 #ifndef SQLITE_OMIT_UTF16
959 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
961 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
963 #endif /* SQLITE_OMIT_UTF16 */
966 ** Return the name of the table from which a result column derives.
967 ** NULL is returned if the result column is an expression or constant or
968 ** anything else which is not an unabiguous reference to a database column.
970 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
972 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
974 #ifndef SQLITE_OMIT_UTF16
975 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
977 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
979 #endif /* SQLITE_OMIT_UTF16 */
982 ** Return the name of the table column from which a result column derives.
983 ** NULL is returned if the result column is an expression or constant or
984 ** anything else which is not an unabiguous reference to a database column.
986 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
988 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
990 #ifndef SQLITE_OMIT_UTF16
991 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
993 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
995 #endif /* SQLITE_OMIT_UTF16 */
996 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
999 /******************************* sqlite3_bind_ ***************************
1001 ** Routines used to attach values to wildcards in a compiled SQL statement.
1004 ** Unbind the value bound to variable i in virtual machine p. This is the
1005 ** the same as binding a NULL value to the column. If the "i" parameter is
1006 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1008 ** The error code stored in database p->db is overwritten with the return
1009 ** value in any case.
1011 static int vdbeUnbind(Vdbe *p, int i){
1013 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1014 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
1015 return SQLITE_MISUSE;
1017 if( i<1 || i>p->nVar ){
1018 sqlite3Error(p->db, SQLITE_RANGE, 0);
1019 return SQLITE_RANGE;
1023 sqlite3VdbeMemRelease(pVar);
1024 pVar->flags = MEM_Null;
1025 sqlite3Error(p->db, SQLITE_OK, 0);
1030 ** Bind a text or BLOB value.
1032 static int bindText(
1033 sqlite3_stmt *pStmt, /* The statement to bind against */
1034 int i, /* Index of the parameter to bind */
1035 const void *zData, /* Pointer to the data to be bound */
1036 int nData, /* Number of bytes of data to be bound */
1037 void (*xDel)(void*), /* Destructor for the data */
1038 int encoding /* Encoding for the data */
1040 Vdbe *p = (Vdbe *)pStmt;
1045 return SQLITE_MISUSE;
1047 sqlite3_mutex_enter(p->db->mutex);
1048 rc = vdbeUnbind(p, i);
1049 if( rc==SQLITE_OK && zData!=0 ){
1050 pVar = &p->aVar[i-1];
1051 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1052 if( rc==SQLITE_OK && encoding!=0 ){
1053 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1055 sqlite3Error(p->db, rc, 0);
1056 rc = sqlite3ApiExit(p->db, rc);
1058 sqlite3_mutex_leave(p->db->mutex);
1064 ** Bind a blob value to an SQL statement variable.
1066 SQLITE_EXPORT int sqlite3_bind_blob(
1067 sqlite3_stmt *pStmt,
1073 return bindText(pStmt, i, zData, nData, xDel, 0);
1075 SQLITE_EXPORT int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1077 Vdbe *p = (Vdbe *)pStmt;
1078 sqlite3_mutex_enter(p->db->mutex);
1079 rc = vdbeUnbind(p, i);
1080 if( rc==SQLITE_OK ){
1081 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1083 sqlite3_mutex_leave(p->db->mutex);
1086 SQLITE_EXPORT int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1087 return sqlite3_bind_int64(p, i, (i64)iValue);
1089 SQLITE_EXPORT int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1091 Vdbe *p = (Vdbe *)pStmt;
1092 sqlite3_mutex_enter(p->db->mutex);
1093 rc = vdbeUnbind(p, i);
1094 if( rc==SQLITE_OK ){
1095 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1097 sqlite3_mutex_leave(p->db->mutex);
1100 SQLITE_EXPORT int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1102 Vdbe *p = (Vdbe*)pStmt;
1103 sqlite3_mutex_enter(p->db->mutex);
1104 rc = vdbeUnbind(p, i);
1105 sqlite3_mutex_leave(p->db->mutex);
1108 SQLITE_EXPORT int sqlite3_bind_text(
1109 sqlite3_stmt *pStmt,
1115 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1117 #ifndef SQLITE_OMIT_UTF16
1118 SQLITE_EXPORT int sqlite3_bind_text16(
1119 sqlite3_stmt *pStmt,
1125 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1127 #endif /* SQLITE_OMIT_UTF16 */
1128 SQLITE_EXPORT int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1130 Vdbe *p = (Vdbe *)pStmt;
1131 sqlite3_mutex_enter(p->db->mutex);
1132 rc = vdbeUnbind(p, i);
1133 if( rc==SQLITE_OK ){
1134 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
1135 if( rc==SQLITE_OK ){
1136 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
1139 rc = sqlite3ApiExit(p->db, rc);
1140 sqlite3_mutex_leave(p->db->mutex);
1143 SQLITE_EXPORT int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1145 Vdbe *p = (Vdbe *)pStmt;
1146 sqlite3_mutex_enter(p->db->mutex);
1147 rc = vdbeUnbind(p, i);
1148 if( rc==SQLITE_OK ){
1149 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1151 sqlite3_mutex_leave(p->db->mutex);
1156 ** Return the number of wildcards that can be potentially bound to.
1157 ** This routine is added to support DBD::SQLite.
1159 SQLITE_EXPORT int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1160 Vdbe *p = (Vdbe*)pStmt;
1161 return p ? p->nVar : 0;
1165 ** Create a mapping from variable numbers to variable names
1166 ** in the Vdbe.azVar[] array, if such a mapping does not already
1169 static void createVarMap(Vdbe *p){
1171 sqlite3_mutex_enter(p->db->mutex);
1175 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1176 if( pOp->opcode==OP_Variable ){
1177 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1178 p->azVar[pOp->p1-1] = pOp->p4.z;
1183 sqlite3_mutex_leave(p->db->mutex);
1188 ** Return the name of a wildcard parameter. Return NULL if the index
1189 ** is out of range or if the wildcard is unnamed.
1191 ** The result is always UTF-8.
1193 SQLITE_EXPORT const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1194 Vdbe *p = (Vdbe*)pStmt;
1195 if( p==0 || i<1 || i>p->nVar ){
1199 return p->azVar[i-1];
1203 ** Given a wildcard parameter name, return the index of the variable
1204 ** with that name. If there is no variable with the given name,
1207 SQLITE_EXPORT int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1208 Vdbe *p = (Vdbe*)pStmt;
1215 for(i=0; i<p->nVar; i++){
1216 const char *z = p->azVar[i];
1217 if( z && strcmp(z,zName)==0 ){
1226 ** Transfer all bindings from the first statement over to the second.
1227 ** If the two statements contain a different number of bindings, then
1228 ** an SQLITE_ERROR is returned.
1230 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1231 Vdbe *pFrom = (Vdbe*)pFromStmt;
1232 Vdbe *pTo = (Vdbe*)pToStmt;
1233 int i, rc = SQLITE_OK;
1234 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1235 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1236 || pTo->db!=pFrom->db ){
1237 return SQLITE_MISUSE;
1239 if( pFrom->nVar!=pTo->nVar ){
1240 return SQLITE_ERROR;
1242 sqlite3_mutex_enter(pTo->db->mutex);
1243 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1244 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1246 sqlite3_mutex_leave(pTo->db->mutex);
1247 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1252 ** Deprecated external interface. Internal/core SQLite code
1253 ** should call sqlite3TransferBindings.
1255 SQLITE_EXPORT int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1256 return sqlite3TransferBindings(pFromStmt, pToStmt);
1260 ** Return the sqlite3* database handle to which the prepared statement given
1261 ** in the argument belongs. This is the same database handle that was
1262 ** the first argument to the sqlite3_prepare() that was used to create
1263 ** the statement in the first place.
1265 SQLITE_EXPORT sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1266 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1270 ** Return a pointer to the next prepared statement after pStmt associated
1271 ** with database connection pDb. If pStmt is NULL, return the first
1272 ** prepared statement for the database connection. Return NULL if there
1275 SQLITE_EXPORT sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1276 sqlite3_stmt *pNext;
1277 sqlite3_mutex_enter(pDb->mutex);
1279 pNext = (sqlite3_stmt*)pDb->pVdbe;
1281 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1283 sqlite3_mutex_leave(pDb->mutex);