First public contribution.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 ** $Id: malloc.c,v 1.45 2008/10/12 00:27:53 shane Exp $
17 #include "sqliteInt.h"
22 ** This routine runs when the memory allocator sees that the
23 ** total memory allocation is about to exceed the soft heap
26 static void softHeapLimitEnforcer(
31 sqlite3_release_memory(allocSize);
35 ** Set the soft heap-size limit for the library. Passing a zero or
36 ** negative value indicates no limit.
38 void sqlite3_soft_heap_limit(int n){
39 sqlite3_uint64 iLimit;
48 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
50 sqlite3MemoryAlarm(0, 0, 0);
52 overage = sqlite3_memory_used() - n;
54 sqlite3_release_memory(overage);
59 ** Attempt to release up to n bytes of non-essential memory currently
60 ** held by SQLite. An example of non-essential memory is memory used to
61 ** cache database pages that are not currently in use.
63 int sqlite3_release_memory(int n){
64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
67 nRet += sqlite3VdbeReleaseMemory(n);
69 nRet += sqlite3PcacheReleaseMemory(n-nRet);
77 ** State information local to the memory allocation subsystem.
79 static SQLITE_WSD struct Mem0Global {
80 /* Number of free pages for scratch and page-cache memory */
84 sqlite3_mutex *mutex; /* Mutex to serialize access */
87 ** The alarm callback and its arguments. The mem0.mutex lock will
88 ** be held while the callback is running. Recursive calls into
89 ** the memory subsystem are allowed, but no new callbacks will be
90 ** issued. The alarmBusy variable is set to prevent recursive
93 sqlite3_int64 alarmThreshold;
94 void (*alarmCallback)(void*, sqlite3_int64,int);
99 ** Pointers to the end of sqlite3GlobalConfig.pScratch and
100 ** sqlite3GlobalConfig.pPage to a block of memory that records
101 ** which pages are available.
105 } mem0 = { 62560955 };
107 #define mem0 GLOBAL(struct Mem0Global, mem0)
110 ** Initialize the memory allocation subsystem.
112 int sqlite3MallocInit(void){
113 if( sqlite3GlobalConfig.m.xMalloc==0 ){
114 sqlite3MemSetDefault();
116 memset(&mem0, 0, sizeof(mem0));
117 if( sqlite3GlobalConfig.bCoreMutex ){
118 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
120 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
121 && sqlite3GlobalConfig.nScratch>=0 ){
123 sqlite3GlobalConfig.szScratch -= 4;
124 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
125 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
126 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
127 mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
129 sqlite3GlobalConfig.pScratch = 0;
130 sqlite3GlobalConfig.szScratch = 0;
132 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
133 && sqlite3GlobalConfig.nPage>=1 ){
136 int sz = sqlite3GlobalConfig.szPage;
137 int n = sqlite3GlobalConfig.nPage;
138 overhead = (4*n + sz - 1)/sz;
139 sqlite3GlobalConfig.nPage -= overhead;
140 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
141 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
142 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
143 mem0.nPageFree = sqlite3GlobalConfig.nPage;
145 sqlite3GlobalConfig.pPage = 0;
146 sqlite3GlobalConfig.szPage = 0;
148 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
152 ** Deinitialize the memory allocation subsystem.
154 void sqlite3MallocEnd(void){
155 if( sqlite3GlobalConfig.m.xShutdown ){
156 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
158 memset(&mem0, 0, sizeof(mem0));
162 ** Return the amount of memory currently checked out.
164 sqlite3_int64 sqlite3_memory_used(void){
167 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
168 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
173 ** Return the maximum amount of memory that has ever been
174 ** checked out since either the beginning of this process
175 ** or since the most recent reset.
177 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
180 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
181 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
186 ** Change the alarm callback
188 int sqlite3MemoryAlarm(
189 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
191 sqlite3_int64 iThreshold
193 sqlite3_mutex_enter(mem0.mutex);
194 mem0.alarmCallback = xCallback;
195 mem0.alarmArg = pArg;
196 mem0.alarmThreshold = iThreshold;
197 sqlite3_mutex_leave(mem0.mutex);
201 #ifndef SQLITE_OMIT_DEPRECATED
203 ** Deprecated external interface. Internal/core SQLite code
204 ** should call sqlite3MemoryAlarm.
206 int sqlite3_memory_alarm(
207 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
209 sqlite3_int64 iThreshold
211 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
218 static void sqlite3MallocAlarm(int nByte){
219 void (*xCallback)(void*,sqlite3_int64,int);
220 sqlite3_int64 nowUsed;
222 if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
224 xCallback = mem0.alarmCallback;
225 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
226 pArg = mem0.alarmArg;
227 sqlite3_mutex_leave(mem0.mutex);
228 xCallback(pArg, nowUsed, nByte);
229 sqlite3_mutex_enter(mem0.mutex);
234 ** Do a memory allocation with statistics and alarms. Assume the
235 ** lock is already held.
237 static int mallocWithAlarm(int n, void **pp){
240 assert( sqlite3_mutex_held(mem0.mutex) );
241 nFull = sqlite3GlobalConfig.m.xRoundup(n);
242 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
243 if( mem0.alarmCallback!=0 ){
244 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
245 if( nUsed+nFull >= mem0.alarmThreshold ){
246 sqlite3MallocAlarm(nFull);
249 p = sqlite3GlobalConfig.m.xMalloc(nFull);
250 if( p==0 && mem0.alarmCallback ){
251 sqlite3MallocAlarm(nFull);
252 p = sqlite3GlobalConfig.m.xMalloc(nFull);
255 nFull = sqlite3MallocSize(p);
256 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
263 ** Allocate memory. This routine is like sqlite3_malloc() except that it
264 ** assumes the memory subsystem has already been initialized.
266 void *sqlite3Malloc(int n){
270 }else if( sqlite3GlobalConfig.bMemstat ){
271 sqlite3_mutex_enter(mem0.mutex);
272 mallocWithAlarm(n, &p);
273 sqlite3_mutex_leave(mem0.mutex);
275 p = sqlite3GlobalConfig.m.xMalloc(n);
281 ** This version of the memory allocation is for use by the application.
282 ** First make sure the memory subsystem is initialized, then do the
285 void *sqlite3_malloc(int n){
286 #ifndef SQLITE_OMIT_AUTOINIT
287 if( sqlite3_initialize() ) return 0;
289 return sqlite3Malloc(n);
293 ** Each thread may only have a single outstanding allocation from
294 ** xScratchMalloc(). We verify this constraint in the single-threaded
295 ** case by setting scratchAllocOut to 1 when an allocation
296 ** is outstanding clearing it when the allocation is freed.
298 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
299 static int scratchAllocOut = 0;
304 ** Allocate memory that is to be used and released right away.
305 ** This routine is similar to alloca() in that it is not intended
306 ** for situations where the memory might be held long-term. This
307 ** routine is intended to get memory to old large transient data
308 ** structures that would not normally fit on the stack of an
309 ** embedded processor.
311 void *sqlite3ScratchMalloc(int n){
315 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
316 /* Verify that no more than one scratch allocation per thread
317 ** is outstanding at one time. (This is only checked in the
318 ** single-threaded case since checking in the multi-threaded case
319 ** would be much more complicated.) */
320 assert( scratchAllocOut==0 );
323 if( sqlite3GlobalConfig.szScratch<n ){
324 goto scratch_overflow;
326 sqlite3_mutex_enter(mem0.mutex);
327 if( mem0.nScratchFree==0 ){
328 sqlite3_mutex_leave(mem0.mutex);
329 goto scratch_overflow;
332 i = mem0.aScratchFree[--mem0.nScratchFree];
333 i *= sqlite3GlobalConfig.szScratch;
334 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
335 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
336 sqlite3_mutex_leave(mem0.mutex);
337 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
340 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
341 scratchAllocOut = p!=0;
347 if( sqlite3GlobalConfig.bMemstat ){
348 sqlite3_mutex_enter(mem0.mutex);
349 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
350 n = mallocWithAlarm(n, &p);
351 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
352 sqlite3_mutex_leave(mem0.mutex);
354 p = sqlite3GlobalConfig.m.xMalloc(n);
356 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
357 scratchAllocOut = p!=0;
361 void sqlite3ScratchFree(void *p){
364 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
365 /* Verify that no more than one scratch allocation per thread
366 ** is outstanding at one time. (This is only checked in the
367 ** single-threaded case since checking in the multi-threaded case
368 ** would be much more complicated.) */
369 assert( scratchAllocOut==1 );
373 if( sqlite3GlobalConfig.pScratch==0
374 || p<sqlite3GlobalConfig.pScratch
375 || p>=(void*)mem0.aScratchFree ){
376 if( sqlite3GlobalConfig.bMemstat ){
377 int iSize = sqlite3MallocSize(p);
378 sqlite3_mutex_enter(mem0.mutex);
379 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
380 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
381 sqlite3GlobalConfig.m.xFree(p);
382 sqlite3_mutex_leave(mem0.mutex);
384 sqlite3GlobalConfig.m.xFree(p);
388 i = (u8 *)p - (u8 *)sqlite3GlobalConfig.pScratch;
389 i /= sqlite3GlobalConfig.szScratch;
390 assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
391 sqlite3_mutex_enter(mem0.mutex);
392 assert( mem0.nScratchFree<sqlite3GlobalConfig.nScratch );
393 mem0.aScratchFree[mem0.nScratchFree++] = i;
394 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
395 sqlite3_mutex_leave(mem0.mutex);
401 ** Allocate memory to be used by the page cache. Make use of the
402 ** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
403 ** and that memory is of the right size and is not completely
404 ** consumed. Otherwise, failover to sqlite3Malloc().
407 void *sqlite3PageMalloc(int n){
410 assert( (n & (n-1))==0 );
411 assert( n>=512 && n<=32768 );
413 if( sqlite3GlobalConfig.szPage<n ){
416 sqlite3_mutex_enter(mem0.mutex);
417 if( mem0.nPageFree==0 ){
418 sqlite3_mutex_leave(mem0.mutex);
422 i = mem0.aPageFree[--mem0.nPageFree];
423 sqlite3_mutex_leave(mem0.mutex);
424 i *= sqlite3GlobalConfig.szPage;
425 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
426 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
427 p = (void*)&((char*)sqlite3GlobalConfig.pPage)[i];
433 if( sqlite3GlobalConfig.bMemstat ){
434 sqlite3_mutex_enter(mem0.mutex);
435 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
436 n = mallocWithAlarm(n, &p);
437 if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
438 sqlite3_mutex_leave(mem0.mutex);
440 p = sqlite3GlobalConfig.m.xMalloc(n);
444 void sqlite3PageFree(void *p){
446 if( sqlite3GlobalConfig.pPage==0
447 || p<sqlite3GlobalConfig.pPage
448 || p>=(void*)mem0.aPageFree ){
449 /* In this case, the page allocation was obtained from a regular
450 ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
451 ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
453 if( sqlite3GlobalConfig.bMemstat ){
454 int iSize = sqlite3MallocSize(p);
455 sqlite3_mutex_enter(mem0.mutex);
456 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
457 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
458 sqlite3GlobalConfig.m.xFree(p);
459 sqlite3_mutex_leave(mem0.mutex);
461 sqlite3GlobalConfig.m.xFree(p);
464 /* The page allocation was allocated from the sqlite3GlobalConfig.pPage
465 ** buffer. In this case all that is add the index of the page in
466 ** the sqlite3GlobalConfig.pPage array to the set of free indexes stored
467 ** in the mem0.aPageFree[] array.
470 i = (u8 *)p - (u8 *)sqlite3GlobalConfig.pPage;
471 i /= sqlite3GlobalConfig.szPage;
472 assert( i>=0 && i<sqlite3GlobalConfig.nPage );
473 sqlite3_mutex_enter(mem0.mutex);
474 assert( mem0.nPageFree<sqlite3GlobalConfig.nPage );
475 mem0.aPageFree[mem0.nPageFree++] = i;
476 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
477 sqlite3_mutex_leave(mem0.mutex);
478 #if !defined(NDEBUG) && 0
479 /* Assert that a duplicate was not just inserted into aPageFree[]. */
480 for(i=0; i<mem0.nPageFree-1; i++){
481 assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
490 ** TRUE if p is a lookaside memory allocation from db
492 #ifndef SQLITE_OMIT_LOOKASIDE
493 static int isLookaside(sqlite3 *db, void *p){
494 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
497 #define isLookaside(A,B) 0
501 ** Return the size of a memory allocation previously obtained from
502 ** sqlite3Malloc() or sqlite3_malloc().
504 int sqlite3MallocSize(void *p){
505 return sqlite3GlobalConfig.m.xSize(p);
507 int sqlite3DbMallocSize(sqlite3 *db, void *p){
508 if( isLookaside(db, p) ){
509 return db->lookaside.sz;
511 return sqlite3GlobalConfig.m.xSize(p);
516 ** Free memory previously obtained from sqlite3Malloc().
518 void sqlite3_free(void *p){
520 if( sqlite3GlobalConfig.bMemstat ){
521 sqlite3_mutex_enter(mem0.mutex);
522 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
523 sqlite3GlobalConfig.m.xFree(p);
524 sqlite3_mutex_leave(mem0.mutex);
526 sqlite3GlobalConfig.m.xFree(p);
531 ** Free memory that might be associated with a particular database
534 void sqlite3DbFree(sqlite3 *db, void *p){
535 if( isLookaside(db, p) ){
536 LookasideSlot *pBuf = (LookasideSlot*)p;
537 pBuf->pNext = db->lookaside.pFree;
538 db->lookaside.pFree = pBuf;
539 db->lookaside.nOut--;
546 ** Change the size of an existing memory allocation
548 void *sqlite3Realloc(void *pOld, int nBytes){
552 return sqlite3Malloc(nBytes);
558 nOld = sqlite3MallocSize(pOld);
559 if( sqlite3GlobalConfig.bMemstat ){
560 sqlite3_mutex_enter(mem0.mutex);
561 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
562 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
566 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
567 mem0.alarmThreshold ){
568 sqlite3MallocAlarm(nNew-nOld);
570 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
571 if( pNew==0 && mem0.alarmCallback ){
572 sqlite3MallocAlarm(nBytes);
573 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
576 nNew = sqlite3MallocSize(pNew);
577 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
580 sqlite3_mutex_leave(mem0.mutex);
582 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes);
588 ** The public interface to sqlite3Realloc. Make sure that the memory
589 ** subsystem is initialized prior to invoking sqliteRealloc.
591 void *sqlite3_realloc(void *pOld, int n){
592 #ifndef SQLITE_OMIT_AUTOINIT
593 if( sqlite3_initialize() ) return 0;
595 return sqlite3Realloc(pOld, n);
600 ** Allocate and zero memory.
602 void *sqlite3MallocZero(int n){
603 void *p = sqlite3Malloc(n);
611 ** Allocate and zero memory. If the allocation fails, make
612 ** the mallocFailed flag in the connection pointer.
614 void *sqlite3DbMallocZero(sqlite3 *db, int n){
615 void *p = sqlite3DbMallocRaw(db, n);
623 ** Allocate and zero memory. If the allocation fails, make
624 ** the mallocFailed flag in the connection pointer.
626 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
627 ** failure on the same database connection) then always return 0.
628 ** Hence for a particular database connection, once malloc starts
629 ** failing, it fails consistently until mallocFailed is reset.
630 ** This is an important assumption. There are many places in the
631 ** code that do things like this:
633 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
634 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
635 ** if( b ) a[10] = 9;
637 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
638 ** that all prior mallocs (ex: "a") worked too.
640 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
642 #ifndef SQLITE_OMIT_LOOKASIDE
645 if( db->mallocFailed ){
648 if( db->lookaside.bEnabled && n<=db->lookaside.sz
649 && (pBuf = db->lookaside.pFree)!=0 ){
650 db->lookaside.pFree = pBuf->pNext;
651 db->lookaside.nOut++;
652 if( db->lookaside.nOut>db->lookaside.mxOut ){
653 db->lookaside.mxOut = db->lookaside.nOut;
659 if( db && db->mallocFailed ){
663 p = sqlite3Malloc(n);
665 db->mallocFailed = 1;
671 ** Resize the block of memory pointed to by p to n bytes. If the
672 ** resize fails, set the mallocFailed flag in the connection object.
674 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
676 if( db->mallocFailed==0 ){
678 return sqlite3DbMallocRaw(db, n);
680 if( isLookaside(db, p) ){
681 if( n<=db->lookaside.sz ){
684 pNew = sqlite3DbMallocRaw(db, n);
686 memcpy(pNew, p, db->lookaside.sz);
687 sqlite3DbFree(db, p);
690 pNew = sqlite3_realloc(p, n);
692 db->mallocFailed = 1;
700 ** Attempt to reallocate p. If the reallocation fails, then free p
701 ** and set the mallocFailed flag in the database connection.
703 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
705 pNew = sqlite3DbRealloc(db, p, n);
707 sqlite3DbFree(db, p);
713 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
714 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
715 ** is because when memory debugging is turned on, these two functions are
716 ** called via macros that record the current file and line number in the
717 ** ThreadData structure.
719 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
726 assert( (n&0x7fffffff)==n );
727 zNew = sqlite3DbMallocRaw(db, (int)n);
733 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
738 assert( (n&0x7fffffff)==n );
739 zNew = sqlite3DbMallocRaw(db, n+1);
748 ** Create a string from the zFromat argument and the va_list that follows.
749 ** Store the string in memory obtained from sqliteMalloc() and make *pz
750 ** point to that string.
752 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
756 va_start(ap, zFormat);
757 z = sqlite3VMPrintf(db, zFormat, ap);
759 sqlite3DbFree(db, *pz);
765 ** This function must be called before exiting any API function (i.e.
766 ** returning control to the user) that has called sqlite3_malloc or
769 ** The returned value is normally a copy of the second argument to this
770 ** function. However, if a malloc() failure has occured since the previous
771 ** invocation SQLITE_NOMEM is returned instead.
773 ** If the first argument, db, is not NULL and a malloc() error has occured,
774 ** then the connection error-code (the value returned by sqlite3_errcode())
775 ** is set to SQLITE_NOMEM.
777 int sqlite3ApiExit(sqlite3* db, int rc){
778 /* If the db handle is not NULL, then we must hold the connection handle
779 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
780 ** is unsafe, as is the call to sqlite3Error().
782 assert( !db || sqlite3_mutex_held(db->mutex) );
783 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
784 sqlite3Error(db, SQLITE_NOMEM, 0);
785 db->mallocFailed = 0;
788 return rc & (db ? db->errMask : 0xff);