First public contribution.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 ** $Id: vdbemem.c,v 1.121 2008/08/01 20:10:09 drh Exp $
20 #include "sqliteInt.h"
25 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
28 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
31 ** If pMem is an object with a valid string representation, this routine
32 ** ensures the internal encoding for the string representation is
33 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
35 ** If pMem is not a string object, or the encoding of the string
36 ** representation is already stored using the requested encoding, then this
37 ** routine is a no-op.
39 ** SQLITE_OK is returned if the conversion is successful (or not required).
40 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
43 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
45 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
48 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
49 #ifdef SQLITE_OMIT_UTF16
53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
54 ** then the encoding of the value may not have changed.
56 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
57 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
65 ** Make sure pMem->z points to a writable allocation of at least
68 ** If the memory cell currently contains string or blob data
69 ** and the third argument passed to this function is true, the
70 ** current content of the cell is preserved. Otherwise, it may
73 ** This function sets the MEM_Dyn flag and clears any xDel callback.
74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
75 ** not set, Mem.n is zeroed.
77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
81 ((pMem->flags&MEM_Ephem) ? 1 : 0) +
82 ((pMem->flags&MEM_Static) ? 1 : 0)
86 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
87 if( preserve && pMem->z==pMem->zMalloc ){
88 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
90 pMem->flags = MEM_Null;
94 sqlite3DbFree(pMem->db, pMem->zMalloc);
95 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
99 if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
100 memcpy(pMem->zMalloc, pMem->z, pMem->n);
102 if( pMem->flags&MEM_Dyn && pMem->xDel ){
103 pMem->xDel((void *)(pMem->z));
106 pMem->z = pMem->zMalloc;
107 pMem->flags &= ~(MEM_Ephem|MEM_Static);
109 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
113 ** Make the given Mem object MEM_Dyn. In other words, make it so
114 ** that any TEXT or BLOB content is stored in memory obtained from
115 ** malloc(). In this way, we know that the memory is safe to be
116 ** overwritten or altered.
118 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
120 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
122 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
125 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
126 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
129 pMem->z[pMem->n] = 0;
130 pMem->z[pMem->n+1] = 0;
131 pMem->flags |= MEM_Term;
138 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
139 ** blob stored in dynamically allocated space.
141 #ifndef SQLITE_OMIT_INCRBLOB
142 int sqlite3VdbeMemExpandBlob(Mem *pMem){
143 if( pMem->flags & MEM_Zero ){
145 assert( pMem->flags&MEM_Blob );
146 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
148 /* Set nByte to the number of bytes required to store the expanded blob. */
149 nByte = pMem->n + pMem->u.i;
153 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
157 memset(&pMem->z[pMem->n], 0, pMem->u.i);
158 pMem->n += pMem->u.i;
159 pMem->flags &= ~(MEM_Zero|MEM_Term);
167 ** Make sure the given Mem is \u0000 terminated.
169 int sqlite3VdbeMemNulTerminate(Mem *pMem){
170 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
171 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
172 return SQLITE_OK; /* Nothing to do */
174 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
177 pMem->z[pMem->n] = 0;
178 pMem->z[pMem->n+1] = 0;
179 pMem->flags |= MEM_Term;
184 ** Add MEM_Str to the set of representations for the given Mem. Numbers
185 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
188 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
190 ** A MEM_Null value will never be passed to this function. This function is
191 ** used for converting values to text for returning to the user (i.e. via
192 ** sqlite3_value_text()), or for ensuring that values to be used as btree
193 ** keys are strings. In the former case a NULL pointer is returned the
194 ** user and the later is an internal programming error.
196 int sqlite3VdbeMemStringify(Mem *pMem, int enc){
198 int fg = pMem->flags;
199 const int nByte = 32;
201 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
202 assert( !(fg&MEM_Zero) );
203 assert( !(fg&(MEM_Str|MEM_Blob)) );
204 assert( fg&(MEM_Int|MEM_Real) );
206 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
210 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
211 ** string representation of the value. Then, if the required encoding
212 ** is UTF-16le or UTF-16be do a translation.
214 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
217 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
219 assert( fg & MEM_Real );
220 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
222 pMem->n = strlen(pMem->z);
223 pMem->enc = SQLITE_UTF8;
224 pMem->flags |= MEM_Str|MEM_Term;
225 sqlite3VdbeChangeEncoding(pMem, enc);
230 ** Memory cell pMem contains the context of an aggregate function.
231 ** This routine calls the finalize method for that function. The
232 ** result of the aggregate is stored back into pMem.
234 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
237 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
239 if( pFunc && pFunc->xFinalize ){
241 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
242 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
243 ctx.s.flags = MEM_Null;
249 pFunc->xFinalize(&ctx);
250 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
251 sqlite3DbFree(pMem->db, pMem->zMalloc);
253 rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
259 ** If the memory cell contains a string value that must be freed by
260 ** invoking an external callback, free it now. Calling this function
261 ** does not free any Mem.zMalloc buffer.
263 void sqlite3VdbeMemReleaseExternal(Mem *p){
264 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
265 if( p->flags&MEM_Agg ){
266 sqlite3VdbeMemFinalize(p, p->u.pDef);
267 assert( (p->flags & MEM_Agg)==0 );
268 sqlite3VdbeMemRelease(p);
269 }else if( p->flags&MEM_Dyn && p->xDel ){
270 p->xDel((void *)p->z);
276 ** Release any memory held by the Mem. This may leave the Mem in an
277 ** inconsistent state, for example with (Mem.z==0) and
278 ** (Mem.type==SQLITE_TEXT).
280 void sqlite3VdbeMemRelease(Mem *p){
281 sqlite3VdbeMemReleaseExternal(p);
282 sqlite3DbFree(p->db, p->zMalloc);
289 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
290 ** If the double is too large, return 0x8000000000000000.
292 ** Most systems appear to do this simply by assigning
293 ** variables and without the extra range tests. But
294 ** there are reports that windows throws an expection
295 ** if the floating point value is out of range. (See ticket #2880.)
296 ** Because we do not completely understand the problem, we will
297 ** take the conservative approach and always do range tests
298 ** before attempting the conversion.
300 static i64 doubleToInt64(double r){
302 ** Many compilers we encounter do not define constants for the
303 ** minimum and maximum 64-bit integers, or they define them
304 ** inconsistently. And many do not understand the "LL" notation.
305 ** So we define our own static constants here using nothing
306 ** larger than a 32-bit integer constant.
308 static const i64 maxInt = LARGEST_INT64;
309 static const i64 minInt = SMALLEST_INT64;
311 if( r<(double)minInt ){
313 }else if( r>(double)maxInt ){
321 ** Return some kind of integer value which is the best we can do
322 ** at representing the value that *pMem describes as an integer.
323 ** If pMem is an integer, then the value is exact. If pMem is
324 ** a floating-point then the value returned is the integer part.
325 ** If pMem is a string or blob, then we make an attempt to convert
326 ** it into a integer and return that. If pMem is NULL, return 0.
328 ** If pMem is a string, its encoding might be changed.
330 i64 sqlite3VdbeIntValue(Mem *pMem){
332 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
334 if( flags & MEM_Int ){
336 }else if( flags & MEM_Real ){
337 return doubleToInt64(pMem->r);
338 }else if( flags & (MEM_Str|MEM_Blob) ){
340 pMem->flags |= MEM_Str;
341 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
342 || sqlite3VdbeMemNulTerminate(pMem) ){
346 sqlite3Atoi64(pMem->z, &value);
354 ** Return the best representation of pMem that we can get into a
355 ** double. If pMem is already a double or an integer, return its
356 ** value. If it is a string or blob, try to convert it to a double.
357 ** If it is a NULL, return 0.0.
359 double sqlite3VdbeRealValue(Mem *pMem){
360 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
361 if( pMem->flags & MEM_Real ){
363 }else if( pMem->flags & MEM_Int ){
364 return (double)pMem->u.i;
365 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
367 pMem->flags |= MEM_Str;
368 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
369 || sqlite3VdbeMemNulTerminate(pMem) ){
373 sqlite3AtoF(pMem->z, &val);
381 ** The MEM structure is already a MEM_Real. Try to also make it a
382 ** MEM_Int if we can.
384 void sqlite3VdbeIntegerAffinity(Mem *pMem){
385 assert( pMem->flags & MEM_Real );
386 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
388 pMem->u.i = doubleToInt64(pMem->r);
389 if( pMem->r==(double)pMem->u.i ){
390 pMem->flags |= MEM_Int;
394 static void setTypeFlag(Mem *pMem, int f){
395 MemSetTypeFlag(pMem, f);
399 ** Convert pMem to type integer. Invalidate any prior representations.
401 int sqlite3VdbeMemIntegerify(Mem *pMem){
402 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
403 pMem->u.i = sqlite3VdbeIntValue(pMem);
404 setTypeFlag(pMem, MEM_Int);
409 ** Convert pMem so that it is of type MEM_Real.
410 ** Invalidate any prior representations.
412 int sqlite3VdbeMemRealify(Mem *pMem){
413 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
414 pMem->r = sqlite3VdbeRealValue(pMem);
415 setTypeFlag(pMem, MEM_Real);
420 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
421 ** Invalidate any prior representations.
423 int sqlite3VdbeMemNumerify(Mem *pMem){
426 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
427 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
428 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
429 r1 = sqlite3VdbeRealValue(pMem);
430 i = doubleToInt64(r1);
433 sqlite3VdbeMemIntegerify(pMem);
436 setTypeFlag(pMem, MEM_Real);
442 ** Delete any previous value and set the value stored in *pMem to NULL.
444 void sqlite3VdbeMemSetNull(Mem *pMem){
445 setTypeFlag(pMem, MEM_Null);
446 pMem->type = SQLITE_NULL;
450 ** Delete any previous value and set the value to be a BLOB of length
451 ** n containing all zeros.
453 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
454 sqlite3VdbeMemRelease(pMem);
455 setTypeFlag(pMem, MEM_Blob);
456 pMem->flags = MEM_Blob|MEM_Zero;
457 pMem->type = SQLITE_BLOB;
461 pMem->enc = SQLITE_UTF8;
465 ** Delete any previous value and set the value stored in *pMem to val,
466 ** manifest type INTEGER.
468 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
469 sqlite3VdbeMemRelease(pMem);
471 pMem->flags = MEM_Int;
472 pMem->type = SQLITE_INTEGER;
476 ** Delete any previous value and set the value stored in *pMem to val,
477 ** manifest type REAL.
479 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
480 if( sqlite3IsNaN(val) ){
481 sqlite3VdbeMemSetNull(pMem);
483 sqlite3VdbeMemRelease(pMem);
485 pMem->flags = MEM_Real;
486 pMem->type = SQLITE_FLOAT;
491 ** Return true if the Mem object contains a TEXT or BLOB that is
492 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
494 int sqlite3VdbeMemTooBig(Mem *p){
496 if( p->flags & (MEM_Str|MEM_Blob) ){
498 if( p->flags & MEM_Zero ){
501 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
507 ** Size of struct Mem not including the Mem.zMalloc member.
509 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
512 ** Make an shallow copy of pFrom into pTo. Prior contents of
513 ** pTo are freed. The pFrom->z field is not duplicated. If
514 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
515 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
517 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
518 sqlite3VdbeMemReleaseExternal(pTo);
519 memcpy(pTo, pFrom, MEMCELLSIZE);
521 if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
522 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
523 assert( srcType==MEM_Ephem || srcType==MEM_Static );
524 pTo->flags |= srcType;
529 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
530 ** freed before the copy is made.
532 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
535 sqlite3VdbeMemReleaseExternal(pTo);
536 memcpy(pTo, pFrom, MEMCELLSIZE);
537 pTo->flags &= ~MEM_Dyn;
539 if( pTo->flags&(MEM_Str|MEM_Blob) ){
540 if( 0==(pFrom->flags&MEM_Static) ){
541 pTo->flags |= MEM_Ephem;
542 rc = sqlite3VdbeMemMakeWriteable(pTo);
550 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
551 ** freed. If pFrom contains ephemeral data, a copy is made.
553 ** pFrom contains an SQL NULL when this routine returns.
555 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
556 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
557 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
558 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
560 sqlite3VdbeMemRelease(pTo);
561 memcpy(pTo, pFrom, sizeof(Mem));
562 pFrom->flags = MEM_Null;
568 ** Change the value of a Mem to be a string or a BLOB.
570 ** The memory management strategy depends on the value of the xDel
571 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
572 ** string is copied into a (possibly existing) buffer managed by the
573 ** Mem structure. Otherwise, any existing buffer is freed and the
576 int sqlite3VdbeMemSetStr(
577 Mem *pMem, /* Memory cell to set to string value */
578 const char *z, /* String pointer */
579 int n, /* Bytes in string, or negative */
580 u8 enc, /* Encoding of z. 0 for BLOBs */
581 void (*xDel)(void*) /* Destructor function */
583 int nByte = n; /* New value for pMem->n */
584 int iLimit; /* Maximum allowed string or blob size */
585 int flags = 0; /* New value for pMem->flags */
587 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
589 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
591 sqlite3VdbeMemSetNull(pMem);
596 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
598 iLimit = SQLITE_MAX_LENGTH;
600 flags = (enc==0?MEM_Blob:MEM_Str);
603 if( enc==SQLITE_UTF8 ){
604 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
606 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
611 return SQLITE_TOOBIG;
614 /* The following block sets the new values of Mem.z and Mem.xDel. It
615 ** also sets a flag in local variable "flags" to indicate the memory
616 ** management (one of MEM_Dyn or MEM_Static).
618 if( xDel==SQLITE_TRANSIENT ){
620 if( flags&MEM_Term ){
621 nAlloc += (enc==SQLITE_UTF8?1:2);
623 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
626 memcpy(pMem->z, z, nAlloc);
627 }else if( xDel==SQLITE_DYNAMIC ){
628 sqlite3VdbeMemRelease(pMem);
629 pMem->zMalloc = pMem->z = (char *)z;
632 sqlite3VdbeMemRelease(pMem);
635 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
640 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
641 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
643 #ifndef SQLITE_OMIT_UTF16
644 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
653 ** Compare the values contained by the two memory cells, returning
654 ** negative, zero or positive if pMem1 is less than, equal to, or greater
655 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
656 ** and reals) sorted numerically, followed by text ordered by the collating
657 ** sequence pColl and finally blob's ordered by memcmp().
659 ** Two NULL values are considered equal by this function.
661 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
666 /* Interchange pMem1 and pMem2 if the collating sequence specifies
671 combined_flags = f1|f2;
673 /* If one value is NULL, it is less than the other. If both values
674 ** are NULL, return 0.
676 if( combined_flags&MEM_Null ){
677 return (f2&MEM_Null) - (f1&MEM_Null);
680 /* If one value is a number and the other is not, the number is less.
681 ** If both are numbers, compare as reals if one is a real, or as integers
682 ** if both values are integers.
684 if( combined_flags&(MEM_Int|MEM_Real) ){
685 if( !(f1&(MEM_Int|MEM_Real)) ){
688 if( !(f2&(MEM_Int|MEM_Real)) ){
691 if( (f1 & f2 & MEM_Int)==0 ){
693 if( (f1&MEM_Real)==0 ){
698 if( (f2&MEM_Real)==0 ){
703 if( r1<r2 ) return -1;
704 if( r1>r2 ) return 1;
707 assert( f1&MEM_Int );
708 assert( f2&MEM_Int );
709 if( pMem1->u.i < pMem2->u.i ) return -1;
710 if( pMem1->u.i > pMem2->u.i ) return 1;
715 /* If one value is a string and the other is a blob, the string is less.
716 ** If both are strings, compare using the collating functions.
718 if( combined_flags&MEM_Str ){
719 if( (f1 & MEM_Str)==0 ){
722 if( (f2 & MEM_Str)==0 ){
726 assert( pMem1->enc==pMem2->enc );
727 assert( pMem1->enc==SQLITE_UTF8 ||
728 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
730 /* The collation sequence must be defined at this point, even if
731 ** the user deletes the collation sequence after the vdbe program is
732 ** compiled (this was not always the case).
734 assert( !pColl || pColl->xCmp );
737 if( pMem1->enc==pColl->enc ){
738 /* The strings are already in the correct encoding. Call the
739 ** comparison function directly */
740 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
742 u8 origEnc = pMem1->enc;
745 /* Convert the strings into the encoding that the comparison
746 ** function expects */
747 v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc);
748 n1 = v1==0 ? 0 : pMem1->n;
749 assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) );
750 v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc);
751 n2 = v2==0 ? 0 : pMem2->n;
752 assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) );
753 /* Do the comparison */
754 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
755 /* Convert the strings back into the database encoding */
756 sqlite3ValueText((sqlite3_value*)pMem1, origEnc);
757 sqlite3ValueText((sqlite3_value*)pMem2, origEnc);
761 /* If a NULL pointer was passed as the collate function, fall through
762 ** to the blob case and use memcmp(). */
765 /* Both values must be blobs. Compare using memcmp(). */
766 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
768 rc = pMem1->n - pMem2->n;
774 ** Move data out of a btree key or data field and into a Mem structure.
775 ** The data or key is taken from the entry that pCur is currently pointing
776 ** to. offset and amt determine what portion of the data or key to retrieve.
777 ** key is true to get the key or false to get data. The result is written
778 ** into the pMem element.
780 ** The pMem structure is assumed to be uninitialized. Any prior content
781 ** is overwritten without being freed.
783 ** If this routine fails for any reason (malloc returns NULL or unable
784 ** to read from the disk) then the pMem is left in an inconsistent state.
786 int sqlite3VdbeMemFromBtree(
787 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
788 int offset, /* Offset from the start of data to return bytes from. */
789 int amt, /* Number of bytes to return. */
790 int key, /* If true, retrieve from the btree key, not data. */
791 Mem *pMem /* OUT: Return data in this Mem structure. */
793 char *zData; /* Data from the btree layer */
794 int available = 0; /* Number of bytes available on the local btree page */
795 sqlite3 *db; /* Database connection */
798 db = sqlite3BtreeCursorDb(pCur);
799 assert( sqlite3_mutex_held(db->mutex) );
801 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
803 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
807 if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
808 sqlite3VdbeMemRelease(pMem);
809 pMem->z = &zData[offset];
810 pMem->flags = MEM_Blob|MEM_Ephem;
811 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
812 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
814 pMem->type = SQLITE_BLOB;
816 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
818 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
823 sqlite3VdbeMemRelease(pMem);
833 ** Perform various checks on the memory cell pMem. An assert() will
834 ** fail if pMem is internally inconsistent.
836 void sqlite3VdbeMemSanity(Mem *pMem){
837 int flags = pMem->flags;
838 assert( flags!=0 ); /* Must define some type */
839 if( flags & (MEM_Str|MEM_Blob) ){
840 int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
841 assert( x!=0 ); /* Strings must define a string subtype */
842 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */
843 assert( pMem->z!=0 ); /* Strings must have a value */
844 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
845 assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
846 assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
847 /* No destructor unless there is MEM_Dyn */
848 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
850 if( (flags & MEM_Str) ){
851 assert( pMem->enc==SQLITE_UTF8 ||
852 pMem->enc==SQLITE_UTF16BE ||
853 pMem->enc==SQLITE_UTF16LE
855 /* If the string is UTF-8 encoded and nul terminated, then pMem->n
856 ** must be the length of the string. (Later:) If the database file
857 ** has been corrupted, '\000' characters might have been inserted
858 ** into the middle of the string. In that case, the strlen() might
861 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){
862 assert( strlen(pMem->z)<=pMem->n );
863 assert( pMem->z[pMem->n]==0 );
867 /* Cannot define a string subtype for non-string objects */
868 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
869 assert( pMem->xDel==0 );
871 /* MEM_Null excludes all other types */
872 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
873 || (pMem->flags&MEM_Null)==0 );
874 /* If the MEM is both real and integer, the values are equal */
875 assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real)
876 || pMem->r==pMem->u.i );
880 /* This function is only available internally, it is not part of the
881 ** external API. It works in a similar way to sqlite3_value_text(),
882 ** except the data returned is in the encoding specified by the second
883 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
886 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
887 ** If that is the case, then the result must be aligned on an even byte
890 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
891 if( !pVal ) return 0;
893 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
894 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
896 if( pVal->flags&MEM_Null ){
899 assert( (MEM_Blob>>3) == MEM_Str );
900 pVal->flags |= (pVal->flags & MEM_Blob)>>3;
902 if( pVal->flags&MEM_Str ){
903 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
904 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
905 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
906 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
910 sqlite3VdbeMemNulTerminate(pVal);
912 assert( (pVal->flags&MEM_Blob)==0 );
913 sqlite3VdbeMemStringify(pVal, enc);
914 assert( 0==(1&(int)pVal->z) );
916 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
917 || pVal->db->mallocFailed );
918 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
926 ** Create a new sqlite3_value object.
928 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
929 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
932 p->type = SQLITE_NULL;
939 ** Create a new sqlite3_value object, containing the value of pExpr.
941 ** This only works for very simple expressions that consist of one constant
942 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
943 ** be converted directly into a value, then the value is allocated and
944 ** a pointer written to *ppVal. The caller is responsible for deallocating
945 ** the value by passing it to sqlite3ValueFree() later on. If the expression
946 ** cannot be converted to a value, then *ppVal is set to NULL.
948 int sqlite3ValueFromExpr(
949 sqlite3 *db, /* The database connection */
950 Expr *pExpr, /* The expression to evaluate */
951 u8 enc, /* Encoding to use */
952 u8 affinity, /* Affinity to use */
953 sqlite3_value **ppVal /* Write the new value here */
957 sqlite3_value *pVal = 0;
965 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
966 zVal = sqlite3DbStrNDup(db, (char*)pExpr->token.z, pExpr->token.n);
967 pVal = sqlite3ValueNew(db);
968 if( !zVal || !pVal ) goto no_mem;
969 sqlite3Dequote(zVal);
970 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
971 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
972 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
974 sqlite3ValueApplyAffinity(pVal, affinity, enc);
976 }else if( op==TK_UMINUS ) {
977 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
978 pVal->u.i = -1 * pVal->u.i;
979 pVal->r = -1.0 * pVal->r;
982 #ifndef SQLITE_OMIT_BLOB_LITERAL
983 else if( op==TK_BLOB ){
985 assert( pExpr->token.n>=3 );
986 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
987 assert( pExpr->token.z[1]=='\'' );
988 assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
989 pVal = sqlite3ValueNew(db);
990 nVal = pExpr->token.n - 3;
991 zVal = (char*)pExpr->token.z + 2;
992 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1001 db->mallocFailed = 1;
1002 sqlite3DbFree(db, zVal);
1003 sqlite3ValueFree(pVal);
1005 return SQLITE_NOMEM;
1009 ** Change the string value of an sqlite3_value object
1011 void sqlite3ValueSetStr(
1012 sqlite3_value *v, /* Value to be set */
1013 int n, /* Length of string z */
1014 const void *z, /* Text of the new string */
1015 u8 enc, /* Encoding to use */
1016 void (*xDel)(void*) /* Destructor for the string */
1018 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1022 ** Free an sqlite3_value object
1024 void sqlite3ValueFree(sqlite3_value *v){
1026 sqlite3VdbeMemRelease((Mem *)v);
1027 sqlite3DbFree(((Mem*)v)->db, v);
1031 ** Return the number of bytes in the sqlite3_value object assuming
1032 ** that it uses the encoding "enc"
1034 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1035 Mem *p = (Mem*)pVal;
1036 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
1037 if( p->flags & MEM_Zero ){