os/ossrv/compressionlibs/ziplib/test/oldezlib/Zlib/trees.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
     1 /* trees.c -- output deflated data using Huffman coding
     2  * Copyright (C) 1995-1998 Jean-loup Gailly
     3  * For conditions of distribution and use, see copyright notice in zlib.h 
     4  */
     5 
     6 /*
     7  *  ALGORITHM
     8  *
     9  *      The "deflation" process uses several Huffman trees. The more
    10  *      common source values are represented by shorter bit sequences.
    11  *
    12  *      Each code tree is stored in a compressed form which is itself
    13  * a Huffman encoding of the lengths of all the code strings (in
    14  * ascending order by source values).  The actual code strings are
    15  * reconstructed from the lengths in the inflate process, as described
    16  * in the deflate specification.
    17  *
    18  *  REFERENCES
    19  *
    20  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
    21  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
    22  *
    23  *      Storer, James A.
    24  *          Data Compression:  Methods and Theory, pp. 49-50.
    25  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
    26  *
    27  *      Sedgewick, R.
    28  *          Algorithms, p290.
    29  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
    30  */
    31 
    32 /* @(#) $Id$ */
    33 
    34 /* #define GEN_TREES_H */
    35 
    36 #include "deflate.h"
    37 
    38 #ifdef DEBUG
    39 #  include <ctype.h>
    40 #endif
    41 
    42 /* ===========================================================================
    43  * Constants
    44  */
    45 
    46 #define MAX_BL_BITS 7
    47 /* Bit length codes must not exceed MAX_BL_BITS bits */
    48 
    49 #define END_BLOCK 256
    50 /* end of block literal code */
    51 
    52 #define REP_3_6      16
    53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
    54 
    55 #define REPZ_3_10    17
    56 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
    57 
    58 #define REPZ_11_138  18
    59 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
    60 
    61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
    62    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
    63 
    64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
    65    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
    66 
    67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
    68    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
    69 
    70 local const uch bl_order[BL_CODES]
    71    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
    72 /* The lengths of the bit length codes are sent in order of decreasing
    73  * probability, to avoid transmitting the lengths for unused bit length codes.
    74  */
    75 
    76 #define Buf_size (8 * 2*sizeof(char))
    77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
    78  * more than 16 bits on some systems.)
    79  */
    80 
    81 /* ===========================================================================
    82  * Local data. These are initialized only once.
    83  */
    84 
    85 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
    86 
    87 #if defined(GEN_TREES_H) || !defined(STDC)
    88 /* non ANSI compilers may not accept trees.h */
    89 
    90 local ct_data static_ltree[L_CODES+2];
    91 /* The static literal tree. Since the bit lengths are imposed, there is no
    92  * need for the L_CODES extra codes used during heap construction. However
    93  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
    94  * below).
    95  */
    96 
    97 local ct_data static_dtree[D_CODES];
    98 /* The static distance tree. (Actually a trivial tree since all codes use
    99  * 5 bits.)
   100  */
   101 
   102 uch _dist_code[DIST_CODE_LEN];
   103 /* Distance codes. The first 256 values correspond to the distances
   104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   105  * the 15 bit distances.
   106  */
   107 
   108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   109 /* length code for each normalized match length (0 == MIN_MATCH) */
   110 
   111 local int base_length[LENGTH_CODES];
   112 /* First normalized length for each code (0 = MIN_MATCH) */
   113 
   114 local int base_dist[D_CODES];
   115 /* First normalized distance for each code (0 = distance of 1) */
   116 
   117 #else
   118 #  include "trees.h"
   119 #endif /* GEN_TREES_H */
   120 
   121 struct static_tree_desc_s {
   122     const ct_data *static_tree;  /* static tree or NULL */
   123     const intf *extra_bits;      /* extra bits for each code or NULL */
   124     int     extra_base;          /* base index for extra_bits */
   125     int     elems;               /* max number of elements in the tree */
   126     int     max_length;          /* max bit length for the codes */
   127 };
   128 
   129 local static_tree_desc  static_l_desc =
   130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   131 
   132 local static_tree_desc  static_d_desc =
   133 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   134 
   135 local static_tree_desc  static_bl_desc =
   136 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   137 
   138 /* ===========================================================================
   139  * Local (static) routines in this file.
   140  */
   141 
   142 local void tr_static_init OF((void));
   143 local void init_block     OF((deflate_state *s));
   144 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
   145 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
   146 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
   147 local void build_tree     OF((deflate_state *s, tree_desc *desc));
   148 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   149 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   150 local int  build_bl_tree  OF((deflate_state *s));
   151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
   152                               int blcodes));
   153 local void compress_block OF((deflate_state *s, ct_data *ltree,
   154                               ct_data *dtree));
   155 local void set_data_type  OF((deflate_state *s));
   156 local unsigned bi_reverse OF((unsigned value, int length));
   157 local void bi_windup      OF((deflate_state *s));
   158 local void bi_flush       OF((deflate_state *s));
   159 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
   160                               int header));
   161 
   162 #ifdef GEN_TREES_H
   163 local void gen_trees_header OF((void));
   164 #endif
   165 
   166 #ifndef DEBUG
   167 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   168    /* Send a code of the given tree. c and tree must not have side effects */
   169 
   170 #else /* DEBUG */
   171 #  define send_code(s, c, tree) \
   172      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   173        send_bits(s, tree[c].Code, tree[c].Len); }
   174 #endif
   175 
   176 /* ===========================================================================
   177  * Output a short LSB first on the stream.
   178  * IN assertion: there is enough room in pendingBuf.
   179  */
   180 #define put_short(s, w) { \
   181     put_byte(s, (uch)((w) & 0xff)); \
   182     put_byte(s, (uch)((ush)(w) >> 8)); \
   183 }
   184 
   185 /* ===========================================================================
   186  * Send a value on a given number of bits.
   187  * IN assertion: length <= 16 and value fits in length bits.
   188  */
   189 #ifdef DEBUG
   190 local void send_bits      OF((deflate_state *s, int value, int length));
   191 
   192 local void send_bits(deflate_state *s, int value, int length)
   193 /* int value;   value to send */
   194 /* int length;  number of bits */
   195 
   196 {
   197     Tracevv((stderr," l %2d v %4x ", length, value));
   198     Assert(length > 0 && length <= 15, "invalid length");
   199     s->bits_sent += (ulg)length;
   200 
   201     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   202      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   203      * unused bits in value.
   204      */
   205     if (s->bi_valid > (int)Buf_size - length) {
   206         s->bi_buf |= (value << s->bi_valid);
   207         put_short(s, s->bi_buf);
   208         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   209         s->bi_valid += length - Buf_size;
   210     } else {
   211         s->bi_buf |= value << s->bi_valid;
   212         s->bi_valid += length;
   213     }
   214 }
   215 #else /* !DEBUG */
   216 
   217 #define send_bits(s, value, length) \
   218 { int len = length;\
   219   if (s->bi_valid > (int)Buf_size - len) {\
   220     int val = value;\
   221     s->bi_buf |= (val << s->bi_valid);\
   222     put_short(s, s->bi_buf);\
   223     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   224     s->bi_valid += len - Buf_size;\
   225   } else {\
   226     s->bi_buf |= (value) << s->bi_valid;\
   227     s->bi_valid += len;\
   228   }\
   229 }
   230 #endif /* DEBUG */
   231 
   232 
   233 #define MAX(a,b) (a >= b ? a : b)
   234 /* the arguments must not have side effects */
   235 
   236 /* ===========================================================================
   237  * Initialize the various 'constant' tables.
   238  */
   239 local void tr_static_init()
   240 {
   241 #if defined(GEN_TREES_H) || !defined(STDC)
   242     static int static_init_done = 0;
   243     int n;        /* iterates over tree elements */
   244     int bits;     /* bit counter */
   245     int length;   /* length value */
   246     int code;     /* code value */
   247     int dist;     /* distance index */
   248     ush bl_count[MAX_BITS+1];
   249     /* number of codes at each bit length for an optimal tree */
   250 
   251     if (static_init_done) return;
   252 
   253     /* For some embedded targets, global variables are not initialized: */
   254     static_l_desc.static_tree = static_ltree;
   255     static_l_desc.extra_bits = extra_lbits;
   256     static_d_desc.static_tree = static_dtree;
   257     static_d_desc.extra_bits = extra_dbits;
   258     static_bl_desc.extra_bits = extra_blbits;
   259 
   260     /* Initialize the mapping length (0..255) -> length code (0..28) */
   261     length = 0;
   262     for (code = 0; code < LENGTH_CODES-1; code++) {
   263         base_length[code] = length;
   264         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   265             _length_code[length++] = (uch)code;
   266         }
   267     }
   268     Assert (length == 256, "tr_static_init: length != 256");
   269     /* Note that the length 255 (match length 258) can be represented
   270      * in two different ways: code 284 + 5 bits or code 285, so we
   271      * overwrite length_code[255] to use the best encoding:
   272      */
   273     _length_code[length-1] = (uch)code;
   274 
   275     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   276     dist = 0;
   277     for (code = 0 ; code < 16; code++) {
   278         base_dist[code] = dist;
   279         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   280             _dist_code[dist++] = (uch)code;
   281         }
   282     }
   283     Assert (dist == 256, "tr_static_init: dist != 256");
   284     dist >>= 7; /* from now on, all distances are divided by 128 */
   285     for ( ; code < D_CODES; code++) {
   286         base_dist[code] = dist << 7;
   287         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   288             _dist_code[256 + dist++] = (uch)code;
   289         }
   290     }
   291     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   292 
   293     /* Construct the codes of the static literal tree */
   294     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   295     n = 0;
   296     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   297     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   298     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   299     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   300     /* Codes 286 and 287 do not exist, but we must include them in the
   301      * tree construction to get a canonical Huffman tree (longest code
   302      * all ones)
   303      */
   304     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   305 
   306     /* The static distance tree is trivial: */
   307     for (n = 0; n < D_CODES; n++) {
   308         static_dtree[n].Len = 5;
   309         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   310     }
   311     static_init_done = 1;
   312 
   313 #  ifdef GEN_TREES_H
   314     gen_trees_header();
   315 #  endif
   316 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   317 }
   318 
   319 /* ===========================================================================
   320  * Genererate the file trees.h describing the static trees.
   321  */
   322 #ifdef GEN_TREES_H
   323 #  ifndef DEBUG
   324 #    include <stdio.h>
   325 #  endif
   326 
   327 #  define SEPARATOR(i, last, width) \
   328       ((i) == (last)? "\n};\n\n" :    \
   329        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   330 
   331 void gen_trees_header()
   332 {
   333     FILE *header = fopen("trees.h", "w");
   334     int i;
   335 
   336     Assert (header != NULL, "Can't open trees.h");
   337     fprintf(header,
   338 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
   339 
   340     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   341     for (i = 0; i < L_CODES+2; i++) {
   342 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   343 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   344     }
   345 
   346     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   347     for (i = 0; i < D_CODES; i++) {
   348 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   349 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   350     }
   351 
   352     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   353     for (i = 0; i < DIST_CODE_LEN; i++) {
   354 	fprintf(header, "%2u%s", _dist_code[i],
   355 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
   356     }
   357 
   358     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   359     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   360 	fprintf(header, "%2u%s", _length_code[i],
   361 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   362     }
   363 
   364     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   365     for (i = 0; i < LENGTH_CODES; i++) {
   366 	fprintf(header, "%1u%s", base_length[i],
   367 		SEPARATOR(i, LENGTH_CODES-1, 20));
   368     }
   369 
   370     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   371     for (i = 0; i < D_CODES; i++) {
   372 	fprintf(header, "%5u%s", base_dist[i],
   373 		SEPARATOR(i, D_CODES-1, 10));
   374     }
   375 
   376     fclose(header);
   377 }
   378 #endif /* GEN_TREES_H */
   379 
   380 /* ===========================================================================
   381  * Initialize the tree data structures for a new zlib stream.
   382  */
   383 void _tr_init(deflate_state *s)
   384 {
   385     tr_static_init();
   386 
   387     s->l_desc.dyn_tree = s->dyn_ltree;
   388     s->l_desc.stat_desc = &static_l_desc;
   389 
   390     s->d_desc.dyn_tree = s->dyn_dtree;
   391     s->d_desc.stat_desc = &static_d_desc;
   392 
   393     s->bl_desc.dyn_tree = s->bl_tree;
   394     s->bl_desc.stat_desc = &static_bl_desc;
   395 
   396     s->bi_buf = 0;
   397     s->bi_valid = 0;
   398     s->last_eob_len = 8; /* enough lookahead for inflate */
   399 #ifdef DEBUG
   400     s->compressed_len = 0L;
   401     s->bits_sent = 0L;
   402 #endif
   403 
   404     /* Initialize the first block of the first file: */
   405     init_block(s);
   406 }
   407 
   408 /* ===========================================================================
   409  * Initialize a new block.
   410  */
   411 local void init_block(deflate_state *s)
   412 {
   413     int n; /* iterates over tree elements */
   414 
   415     /* Initialize the trees. */
   416     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   417     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   418     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   419 
   420     s->dyn_ltree[END_BLOCK].Freq = 1;
   421     s->opt_len = s->static_len = 0L;
   422     s->last_lit = s->matches = 0;
   423 }
   424 
   425 #define SMALLEST 1
   426 /* Index within the heap array of least frequent node in the Huffman tree */
   427 
   428 
   429 /* ===========================================================================
   430  * Remove the smallest element from the heap and recreate the heap with
   431  * one less element. Updates heap and heap_len.
   432  */
   433 #define pqremove(s, tree, top) \
   434 {\
   435     top = s->heap[SMALLEST]; \
   436     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   437     pqdownheap(s, tree, SMALLEST); \
   438 }
   439 
   440 /* ===========================================================================
   441  * Compares to subtrees, using the tree depth as tie breaker when
   442  * the subtrees have equal frequency. This minimizes the worst case length.
   443  */
   444 #define smaller(tree, n, m, depth) \
   445    (tree[n].Freq < tree[m].Freq || \
   446    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   447 
   448 /* ===========================================================================
   449  * Restore the heap property by moving down the tree starting at node k,
   450  * exchanging a node with the smallest of its two sons if necessary, stopping
   451  * when the heap property is re-established (each father smaller than its
   452  * two sons).
   453  */
   454 local void pqdownheap(deflate_state *s, ct_data *tree, int k)
   455 /* ct_data *tree;      the tree to restore */
   456 /* int k;              node to move down */
   457 {
   458     int v = s->heap[k];
   459     int j = k << 1;  /* left son of k */
   460     while (j <= s->heap_len) {
   461         /* Set j to the smallest of the two sons: */
   462         if (j < s->heap_len &&
   463             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   464             j++;
   465         }
   466         /* Exit if v is smaller than both sons */
   467         if (smaller(tree, v, s->heap[j], s->depth)) break;
   468 
   469         /* Exchange v with the smallest son */
   470         s->heap[k] = s->heap[j];  k = j;
   471 
   472         /* And continue down the tree, setting j to the left son of k */
   473         j <<= 1;
   474     }
   475     s->heap[k] = v;
   476 }
   477 
   478 /* ===========================================================================
   479  * Compute the optimal bit lengths for a tree and update the total bit length
   480  * for the current block.
   481  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   482  *    above are the tree nodes sorted by increasing frequency.
   483  * OUT assertions: the field len is set to the optimal bit length, the
   484  *     array bl_count contains the frequencies for each bit length.
   485  *     The length opt_len is updated; static_len is also updated if stree is
   486  *     not null.
   487  */
   488 local void gen_bitlen(deflate_state *s, tree_desc *desc)
   489 /* tree_desc *desc;     the tree descriptor */
   490 {
   491     ct_data *tree        = desc->dyn_tree;
   492     int max_code         = desc->max_code;
   493     const ct_data *stree = desc->stat_desc->static_tree;
   494     const intf *extra    = desc->stat_desc->extra_bits;
   495     int base             = desc->stat_desc->extra_base;
   496     int max_length       = desc->stat_desc->max_length;
   497     int h;              /* heap index */
   498     int n, m;           /* iterate over the tree elements */
   499     int bits;           /* bit length */
   500     int xbits;          /* extra bits */
   501     ush f;              /* frequency */
   502     int overflow = 0;   /* number of elements with bit length too large */
   503 
   504     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   505 
   506     /* In a first pass, compute the optimal bit lengths (which may
   507      * overflow in the case of the bit length tree).
   508      */
   509     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   510 
   511     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   512         n = s->heap[h];
   513         bits = tree[tree[n].Dad].Len + 1;
   514         if (bits > max_length) bits = max_length, overflow++;
   515         tree[n].Len = (ush)bits;
   516         /* We overwrite tree[n].Dad which is no longer needed */
   517 
   518         if (n > max_code) continue; /* not a leaf node */
   519 
   520         s->bl_count[bits]++;
   521         xbits = 0;
   522         if (n >= base) xbits = extra[n-base];
   523         f = tree[n].Freq;
   524         s->opt_len += (ulg)f * (bits + xbits);
   525         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   526     }
   527     if (overflow == 0) return;
   528 
   529     Trace((stderr,"\nbit length overflow\n"));
   530     /* This happens for example on obj2 and pic of the Calgary corpus */
   531 
   532     /* Find the first bit length which could increase: */
   533     do {
   534         bits = max_length-1;
   535         while (s->bl_count[bits] == 0) bits--;
   536         s->bl_count[bits]--;      /* move one leaf down the tree */
   537         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   538         s->bl_count[max_length]--;
   539         /* The brother of the overflow item also moves one step up,
   540          * but this does not affect bl_count[max_length]
   541          */
   542         overflow -= 2;
   543     } while (overflow > 0);
   544 
   545     /* Now recompute all bit lengths, scanning in increasing frequency.
   546      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   547      * lengths instead of fixing only the wrong ones. This idea is taken
   548      * from 'ar' written by Haruhiko Okumura.)
   549      */
   550     for (bits = max_length; bits != 0; bits--) {
   551         n = s->bl_count[bits];
   552         while (n != 0) {
   553             m = s->heap[--h];
   554             if (m > max_code) continue;
   555             if (tree[m].Len != (unsigned) bits) {
   556                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   557                 s->opt_len += ((long)bits - (long)tree[m].Len)
   558                               *(long)tree[m].Freq;
   559                 tree[m].Len = (ush)bits;
   560             }
   561             n--;
   562         }
   563     }
   564 }
   565 
   566 /* ===========================================================================
   567  * Generate the codes for a given tree and bit counts (which need not be
   568  * optimal).
   569  * IN assertion: the array bl_count contains the bit length statistics for
   570  * the given tree and the field len is set for all tree elements.
   571  * OUT assertion: the field code is set for all tree elements of non
   572  *     zero code length.
   573  */
   574 local void gen_codes (ct_data *tree, int max_code, ushf *bl_count)
   575 /* ct_data *tree;              the tree to decorate */
   576 /* int max_code;               largest code with non zero frequency */
   577 /* ushf *bl_count;             number of codes at each bit length */
   578 {
   579     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   580     ush code = 0;              /* running code value */
   581     int bits;                  /* bit index */
   582     int n;                     /* code index */
   583 
   584     /* The distribution counts are first used to generate the code values
   585      * without bit reversal.
   586      */
   587     for (bits = 1; bits <= MAX_BITS; bits++) {
   588         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   589     }
   590     /* Check that the bit counts in bl_count are consistent. The last code
   591      * must be all ones.
   592      */
   593     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   594             "inconsistent bit counts");
   595     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   596 
   597     for (n = 0;  n <= max_code; n++) {
   598         int len = tree[n].Len;
   599         if (len == 0) continue;
   600         /* Now reverse the bits */
   601         tree[n].Code = bi_reverse(next_code[len]++, len);
   602 
   603         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   604              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   605     }
   606 }
   607 
   608 /* ===========================================================================
   609  * Construct one Huffman tree and assigns the code bit strings and lengths.
   610  * Update the total bit length for the current block.
   611  * IN assertion: the field freq is set for all tree elements.
   612  * OUT assertions: the fields len and code are set to the optimal bit length
   613  *     and corresponding code. The length opt_len is updated; static_len is
   614  *     also updated if stree is not null. The field max_code is set.
   615  */
   616 local void build_tree(deflate_state *s, tree_desc *desc)
   617 /* tree_desc *desc;        the tree descriptor */
   618 {
   619     ct_data *tree         = desc->dyn_tree;
   620     const ct_data *stree  = desc->stat_desc->static_tree;
   621     int elems             = desc->stat_desc->elems;
   622     int n, m;          /* iterate over heap elements */
   623     int max_code = -1; /* largest code with non zero frequency */
   624     int node;          /* new node being created */
   625 
   626     /* Construct the initial heap, with least frequent element in
   627      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   628      * heap[0] is not used.
   629      */
   630     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   631 
   632     for (n = 0; n < elems; n++) {
   633         if (tree[n].Freq != 0) {
   634             s->heap[++(s->heap_len)] = max_code = n;
   635             s->depth[n] = 0;
   636         } else {
   637             tree[n].Len = 0;
   638         }
   639     }
   640 
   641     /* The pkzip format requires that at least one distance code exists,
   642      * and that at least one bit should be sent even if there is only one
   643      * possible code. So to avoid special checks later on we force at least
   644      * two codes of non zero frequency.
   645      */
   646     while (s->heap_len < 2) {
   647         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   648         tree[node].Freq = 1;
   649         s->depth[node] = 0;
   650         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   651         /* node is 0 or 1 so it does not have extra bits */
   652     }
   653     desc->max_code = max_code;
   654 
   655     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   656      * establish sub-heaps of increasing lengths:
   657      */
   658     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   659 
   660     /* Construct the Huffman tree by repeatedly combining the least two
   661      * frequent nodes.
   662      */
   663     node = elems;              /* next internal node of the tree */
   664     do {
   665         pqremove(s, tree, n);  /* n = node of least frequency */
   666         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   667 
   668         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   669         s->heap[--(s->heap_max)] = m;
   670 
   671         /* Create a new node father of n and m */
   672         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   673         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
   674         tree[n].Dad = tree[m].Dad = (ush)node;
   675 #ifdef DUMP_BL_TREE
   676         if (tree == s->bl_tree) {
   677             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   678                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   679         }
   680 #endif
   681         /* and insert the new node in the heap */
   682         s->heap[SMALLEST] = node++;
   683         pqdownheap(s, tree, SMALLEST);
   684 
   685     } while (s->heap_len >= 2);
   686 
   687     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   688 
   689     /* At this point, the fields freq and dad are set. We can now
   690      * generate the bit lengths.
   691      */
   692     gen_bitlen(s, (tree_desc *)desc);
   693 
   694     /* The field len is now set, we can generate the bit codes */
   695     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   696 }
   697 
   698 /* ===========================================================================
   699  * Scan a literal or distance tree to determine the frequencies of the codes
   700  * in the bit length tree.
   701  */
   702 local void scan_tree (deflate_state *s, ct_data *tree, int max_code)
   703 /* ct_data *tree;         the tree to be scanned */
   704 /* int max_code;          and its largest code of non zero frequency */
   705 {
   706     int n;                     /* iterates over all tree elements */
   707     int prevlen = -1;          /* last emitted length */
   708     int curlen;                /* length of current code */
   709     int nextlen = tree[0].Len; /* length of next code */
   710     int count = 0;             /* repeat count of the current code */
   711     int max_count = 7;         /* max repeat count */
   712     int min_count = 4;         /* min repeat count */
   713 
   714     if (nextlen == 0) max_count = 138, min_count = 3;
   715     tree[max_code+1].Len = (ush)0xffff; /* guard */
   716 
   717     for (n = 0; n <= max_code; n++) {
   718         curlen = nextlen; nextlen = tree[n+1].Len;
   719         if (++count < max_count && curlen == nextlen) {
   720             continue;
   721         } else if (count < min_count) {
   722             s->bl_tree[curlen].Freq += count;
   723         } else if (curlen != 0) {
   724             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   725             s->bl_tree[REP_3_6].Freq++;
   726         } else if (count <= 10) {
   727             s->bl_tree[REPZ_3_10].Freq++;
   728         } else {
   729             s->bl_tree[REPZ_11_138].Freq++;
   730         }
   731         count = 0; prevlen = curlen;
   732         if (nextlen == 0) {
   733             max_count = 138, min_count = 3;
   734         } else if (curlen == nextlen) {
   735             max_count = 6, min_count = 3;
   736         } else {
   737             max_count = 7, min_count = 4;
   738         }
   739     }
   740 }
   741 
   742 /* ===========================================================================
   743  * Send a literal or distance tree in compressed form, using the codes in
   744  * bl_tree.
   745  */
   746 local void send_tree (deflate_state *s, ct_data *tree, int max_code)
   747 /* ct_data *tree;        the tree to be scanned */
   748 /* int max_code;         and its largest code of non zero frequency */
   749 {
   750     int n;                     /* iterates over all tree elements */
   751     int prevlen = -1;          /* last emitted length */
   752     int curlen;                /* length of current code */
   753     int nextlen = tree[0].Len; /* length of next code */
   754     int count = 0;             /* repeat count of the current code */
   755     int max_count = 7;         /* max repeat count */
   756     int min_count = 4;         /* min repeat count */
   757 
   758     /* tree[max_code+1].Len = -1; */  /* guard already set */
   759     if (nextlen == 0) max_count = 138, min_count = 3;
   760 
   761     for (n = 0; n <= max_code; n++) {
   762         curlen = nextlen; nextlen = tree[n+1].Len;
   763         if (++count < max_count && curlen == nextlen) {
   764             continue;
   765         } else if (count < min_count) {
   766             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   767 
   768         } else if (curlen != 0) {
   769             if (curlen != prevlen) {
   770                 send_code(s, curlen, s->bl_tree); count--;
   771             }
   772             Assert(count >= 3 && count <= 6, " 3_6?");
   773             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   774 
   775         } else if (count <= 10) {
   776             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   777 
   778         } else {
   779             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   780         }
   781         count = 0; prevlen = curlen;
   782         if (nextlen == 0) {
   783             max_count = 138, min_count = 3;
   784         } else if (curlen == nextlen) {
   785             max_count = 6, min_count = 3;
   786         } else {
   787             max_count = 7, min_count = 4;
   788         }
   789     }
   790 }
   791 
   792 /* ===========================================================================
   793  * Construct the Huffman tree for the bit lengths and return the index in
   794  * bl_order of the last bit length code to send.
   795  */
   796 local int build_bl_tree(deflate_state *s)
   797 {
   798     int max_blindex;  /* index of last bit length code of non zero freq */
   799 
   800     /* Determine the bit length frequencies for literal and distance trees */
   801     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   802     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   803 
   804     /* Build the bit length tree: */
   805     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   806     /* opt_len now includes the length of the tree representations, except
   807      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   808      */
   809 
   810     /* Determine the number of bit length codes to send. The pkzip format
   811      * requires that at least 4 bit length codes be sent. (appnote.txt says
   812      * 3 but the actual value used is 4.)
   813      */
   814     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   815         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   816     }
   817     /* Update opt_len to include the bit length tree and counts */
   818     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   819     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   820             s->opt_len, s->static_len));
   821 
   822     return max_blindex;
   823 }
   824 
   825 /* ===========================================================================
   826  * Send the header for a block using dynamic Huffman trees: the counts, the
   827  * lengths of the bit length codes, the literal tree and the distance tree.
   828  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   829  */
   830 local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
   831 /* int lcodes, dcodes, blcodes;          number of codes for each tree */
   832 {
   833     int rank;                    /* index in bl_order */
   834 
   835     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   836     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   837             "too many codes");
   838     Tracev((stderr, "\nbl counts: "));
   839     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   840     send_bits(s, dcodes-1,   5);
   841     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   842     for (rank = 0; rank < blcodes; rank++) {
   843         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   844         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   845     }
   846     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   847 
   848     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   849     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   850 
   851     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   852     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   853 }
   854 
   855 /* ===========================================================================
   856  * Send a stored block
   857  */
   858 void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
   859 /* charf *buf;        input block */
   860 /* ulg stored_len;    length of input block */
   861 /* int eof;           true if this is the last block for a file */
   862 {
   863     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   864 #ifdef DEBUG
   865     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   866     s->compressed_len += (stored_len + 4) << 3;
   867 #endif
   868     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   869 }
   870 
   871 /* ===========================================================================
   872  * Send one empty static block to give enough lookahead for inflate.
   873  * This takes 10 bits, of which 7 may remain in the bit buffer.
   874  * The current inflate code requires 9 bits of lookahead. If the
   875  * last two codes for the previous block (real code plus EOB) were coded
   876  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   877  * the last real code. In this case we send two empty static blocks instead
   878  * of one. (There are no problems if the previous block is stored or fixed.)
   879  * To simplify the code, we assume the worst case of last real code encoded
   880  * on one bit only.
   881  */
   882 void _tr_align(deflate_state *s)
   883 {
   884     send_bits(s, STATIC_TREES<<1, 3);
   885     send_code(s, END_BLOCK, static_ltree);
   886 #ifdef DEBUG
   887     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   888 #endif
   889     bi_flush(s);
   890     /* Of the 10 bits for the empty block, we have already sent
   891      * (10 - bi_valid) bits. The lookahead for the last real code (before
   892      * the EOB of the previous block) was thus at least one plus the length
   893      * of the EOB plus what we have just sent of the empty static block.
   894      */
   895     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   896         send_bits(s, STATIC_TREES<<1, 3);
   897         send_code(s, END_BLOCK, static_ltree);
   898 #ifdef DEBUG
   899         s->compressed_len += 10L;
   900 #endif
   901         bi_flush(s);
   902     }
   903     s->last_eob_len = 7;
   904 }
   905 
   906 /* ===========================================================================
   907  * Determine the best encoding for the current block: dynamic trees, static
   908  * trees or store, and output the encoded block to the zip file.
   909  */
   910 void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
   911 /* charf *buf;            input block, or NULL if too old */
   912 /* ulg stored_len;        length of input block */
   913 /* int eof;               true if this is the last block for a file */
   914 {
   915     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   916     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   917 
   918     /* Build the Huffman trees unless a stored block is forced */
   919     if (s->level > 0) {
   920 
   921 	 /* Check if the file is ascii or binary */
   922 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
   923 
   924 	/* Construct the literal and distance trees */
   925 	build_tree(s, (tree_desc *)(&(s->l_desc)));
   926 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   927 		s->static_len));
   928 
   929 	build_tree(s, (tree_desc *)(&(s->d_desc)));
   930 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   931 		s->static_len));
   932 	/* At this point, opt_len and static_len are the total bit lengths of
   933 	 * the compressed block data, excluding the tree representations.
   934 	 */
   935 
   936 	/* Build the bit length tree for the above two trees, and get the index
   937 	 * in bl_order of the last bit length code to send.
   938 	 */
   939 	max_blindex = build_bl_tree(s);
   940 
   941 	/* Determine the best encoding. Compute first the block length in bytes*/
   942 	opt_lenb = (s->opt_len+3+7)>>3;
   943 	static_lenb = (s->static_len+3+7)>>3;
   944 
   945 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   946 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   947 		s->last_lit));
   948 
   949 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
   950 
   951     } else {
   952         Assert(buf != (char*)0, "lost buf");
   953 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   954     }
   955 
   956 #ifdef FORCE_STORED
   957     if (buf != (char*)0) { /* force stored block */
   958 #else
   959     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
   960                        /* 4: two words for the lengths */
   961 #endif
   962         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   963          * Otherwise we can't have processed more than WSIZE input bytes since
   964          * the last block flush, because compression would have been
   965          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   966          * transform a block into a stored block.
   967          */
   968         _tr_stored_block(s, buf, stored_len, eof);
   969 
   970 #ifdef FORCE_STATIC
   971     } else if (static_lenb >= 0) { /* force static trees */
   972 #else
   973     } else if (static_lenb == opt_lenb) {
   974 #endif
   975         send_bits(s, (STATIC_TREES<<1)+eof, 3);
   976         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
   977 #ifdef DEBUG
   978         s->compressed_len += 3 + s->static_len;
   979 #endif
   980     } else {
   981         send_bits(s, (DYN_TREES<<1)+eof, 3);
   982         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
   983                        max_blindex+1);
   984         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
   985 #ifdef DEBUG
   986         s->compressed_len += 3 + s->opt_len;
   987 #endif
   988     }
   989     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   990     /* The above check is made mod 2^32, for files larger than 512 MB
   991      * and uLong implemented on 32 bits.
   992      */
   993     init_block(s);
   994 
   995     if (eof) {
   996         bi_windup(s);
   997 #ifdef DEBUG
   998         s->compressed_len += 7;  /* align on byte boundary */
   999 #endif
  1000     }
  1001     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  1002            s->compressed_len-7*eof));
  1003 }
  1004 
  1005 /* ===========================================================================
  1006  * Save the match info and tally the frequency counts. Return true if
  1007  * the current block must be flushed.
  1008  */
  1009 int _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
  1010 /* unsigned dist;      distance of matched string */
  1011 /* unsigned lc;        match length-MIN_MATCH or unmatched char (if dist==0) */
  1012 {
  1013     s->d_buf[s->last_lit] = (ush)dist;
  1014     s->l_buf[s->last_lit++] = (uch)lc;
  1015     if (dist == 0) {
  1016         /* lc is the unmatched char */
  1017         s->dyn_ltree[lc].Freq++;
  1018     } else {
  1019         s->matches++;
  1020         /* Here, lc is the match length - MIN_MATCH */
  1021         dist--;             /* dist = match distance - 1 */
  1022         Assert((ush)dist < (ush)MAX_DIST(s) &&
  1023                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
  1024                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
  1025 
  1026         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
  1027         s->dyn_dtree[d_code(dist)].Freq++;
  1028     }
  1029 
  1030 #ifdef TRUNCATE_BLOCK
  1031     /* Try to guess if it is profitable to stop the current block here */
  1032     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
  1033         /* Compute an upper bound for the compressed length */
  1034         ulg out_length = (ulg)s->last_lit*8L;
  1035         ulg in_length = (ulg)((long)s->strstart - s->block_start);
  1036         int dcode;
  1037         for (dcode = 0; dcode < D_CODES; dcode++) {
  1038             out_length += (ulg)s->dyn_dtree[dcode].Freq *
  1039                 (5L+extra_dbits[dcode]);
  1040         }
  1041         out_length >>= 3;
  1042         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
  1043                s->last_lit, in_length, out_length,
  1044                100L - out_length*100L/in_length));
  1045         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
  1046     }
  1047 #endif
  1048     return (s->last_lit == s->lit_bufsize-1);
  1049     /* We avoid equality with lit_bufsize because of wraparound at 64K
  1050      * on 16 bit machines and because stored blocks are restricted to
  1051      * 64K-1 bytes.
  1052      */
  1053 }
  1054 
  1055 /* ===========================================================================
  1056  * Send the block data compressed using the given Huffman trees
  1057  */
  1058 local void compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
  1059 {
  1060     unsigned dist;      /* distance of matched string */
  1061     int lc;             /* match length or unmatched char (if dist == 0) */
  1062     unsigned lx = 0;    /* running index in l_buf */
  1063     unsigned code;      /* the code to send */
  1064     int extra;          /* number of extra bits to send */
  1065 
  1066     if (s->last_lit != 0) do {
  1067         dist = s->d_buf[lx];
  1068         lc = s->l_buf[lx++];
  1069         if (dist == 0) {
  1070             send_code(s, lc, ltree); /* send a literal byte */
  1071             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
  1072         } else {
  1073             /* Here, lc is the match length - MIN_MATCH */
  1074             code = _length_code[lc];
  1075             send_code(s, code+LITERALS+1, ltree); /* send the length code */
  1076             extra = extra_lbits[code];
  1077             if (extra != 0) {
  1078                 lc -= base_length[code];
  1079                 send_bits(s, lc, extra);       /* send the extra length bits */
  1080             }
  1081             dist--; /* dist is now the match distance - 1 */
  1082             code = d_code(dist);
  1083             Assert (code < D_CODES, "bad d_code");
  1084 
  1085             send_code(s, code, dtree);       /* send the distance code */
  1086             extra = extra_dbits[code];
  1087             if (extra != 0) {
  1088                 dist -= base_dist[code];
  1089                 send_bits(s, dist, extra);   /* send the extra distance bits */
  1090             }
  1091         } /* literal or match pair ? */
  1092 
  1093         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
  1094         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
  1095 
  1096     } while (lx < s->last_lit);
  1097 
  1098     send_code(s, END_BLOCK, ltree);
  1099     s->last_eob_len = ltree[END_BLOCK].Len;
  1100 }
  1101 
  1102 /* ===========================================================================
  1103  * Set the data type to ASCII or BINARY, using a crude approximation:
  1104  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
  1105  * IN assertion: the fields freq of dyn_ltree are set and the total of all
  1106  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
  1107  */
  1108 local void set_data_type(deflate_state *s)
  1109 {
  1110     int n = 0;
  1111     unsigned ascii_freq = 0;
  1112     unsigned bin_freq = 0;
  1113     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
  1114     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
  1115     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
  1116     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
  1117 }
  1118 
  1119 /* ===========================================================================
  1120  * Reverse the first len bits of a code, using straightforward code (a faster
  1121  * method would use a table)
  1122  * IN assertion: 1 <= len <= 15
  1123  */
  1124 local unsigned bi_reverse(unsigned code, int len)
  1125 /* unsigned code;      the value to invert */
  1126 /* int len;            its bit length */
  1127 {
  1128     register unsigned res = 0;
  1129     do {
  1130         res |= code & 1;
  1131         code >>= 1, res <<= 1;
  1132     } while (--len > 0);
  1133     return res >> 1;
  1134 }
  1135 
  1136 /* ===========================================================================
  1137  * Flush the bit buffer, keeping at most 7 bits in it.
  1138  */
  1139 local void bi_flush(deflate_state *s)
  1140 {
  1141     if (s->bi_valid == 16) {
  1142         put_short(s, s->bi_buf);
  1143         s->bi_buf = 0;
  1144         s->bi_valid = 0;
  1145     } else if (s->bi_valid >= 8) {
  1146         put_byte(s, (Byte)s->bi_buf);
  1147         s->bi_buf >>= 8;
  1148         s->bi_valid -= 8;
  1149     }
  1150 }
  1151 
  1152 /* ===========================================================================
  1153  * Flush the bit buffer and align the output on a byte boundary
  1154  */
  1155 local void bi_windup(deflate_state *s)
  1156 {
  1157     if (s->bi_valid > 8) {
  1158         put_short(s, s->bi_buf);
  1159     } else if (s->bi_valid > 0) {
  1160         put_byte(s, (Byte)s->bi_buf);
  1161     }
  1162     s->bi_buf = 0;
  1163     s->bi_valid = 0;
  1164 #ifdef DEBUG
  1165     s->bits_sent = (s->bits_sent+7) & ~7;
  1166 #endif
  1167 }
  1168 
  1169 /* ===========================================================================
  1170  * Copy a stored block, storing first the length and its
  1171  * one's complement if requested.
  1172  */
  1173 local void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
  1174 /* charf    *buf;         the input data */
  1175 /* unsigned len;          its length */
  1176 /* int      header;       true if block header must be written */
  1177 {
  1178     bi_windup(s);        /* align on byte boundary */
  1179     s->last_eob_len = 8; /* enough lookahead for inflate */
  1180 
  1181     if (header) {
  1182         put_short(s, (ush)len);   
  1183         put_short(s, (ush)~len);
  1184 #ifdef DEBUG
  1185         s->bits_sent += 2*16;
  1186 #endif
  1187     }
  1188 #ifdef DEBUG
  1189     s->bits_sent += (ulg)len<<3;
  1190 #endif
  1191     while (len--) {
  1192         put_byte(s, *buf++);
  1193     }
  1194 }