os/kernelhwsrv/kernel/eka/euser/maths/um_pow.cpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
     1 // Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // e32\euser\maths\um_pow.cpp
    15 // Raise to the power.
    16 // 
    17 //
    18 
    19 #include "um_std.h"
    20 
    21 #if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
    22 #error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
    23 #endif
    24 
    25 
    26 #ifndef __USE_VFP_MATH
    27 
    28 LOCAL_D const TUint32 ArtanhCoeffs[] =
    29 	{
    30 	0x5C17F0BC,0xB8AA3B29,0x80010000,	// polynomial approximation to (4/ln2)artanh(x)
    31 	0xD01FDDD8,0xF6384EE1,0x7FFF0000,	// for |x| <= (sqr2-1)/(sqr2+1)
    32 	0x7D0DDC69,0x93BB6287,0x7FFF0000,
    33 	0x6564D4F5,0xD30BB153,0x7FFE0000,
    34 	0x1546C858,0xA4258A33,0x7FFE0000,
    35 	0xCCE50DA9,0x864D28DF,0x7FFE0000,
    36 	0x8E1A5DBB,0xE35271A0,0x7FFD0000,
    37 	0xF5A67D92,0xC3A36B08,0x7FFD0000,
    38 	0x62D53E02,0xC4A1FFAC,0x7FFD0000
    39 	};
    40 
    41 LOCAL_D const TUint32 TwoToxCoeffs[] =
    42 	{
    43 	0x00000000,0x80000000,0x7FFF0000,	// polynomial approximation to 2^(x/8) for
    44 	0xD1CF79AC,0xB17217F7,0x7FFB0000,	// 0<=x<=1
    45 	0x162CF72B,0xF5FDEFFC,0x7FF60000,
    46 	0x23EC0D04,0xE35846B8,0x7FF10000,
    47 	0xBDB408D7,0x9D955B7E,0x7FEC0000,
    48 	0xFDD8A678,0xAEC3FE73,0x7FE60000,
    49 	0xBD6E3950,0xA184E90A,0x7FE00000,
    50 	0xC1054DA3,0xFFB259D8,0x7FD90000,
    51 	0x70893DE4,0xB8BEDE2F,0x7FD30000
    52 	};
    53 
    54 LOCAL_D const TUint32 TwoToNover8[] =
    55 	{
    56 	0xEA8BD6E7,0x8B95C1E3,0x7FFF0000,	// 2^0.125
    57 	0x8DB8A96F,0x9837F051,0x7FFF0000,	// 2^0.250
    58 	0xB15138EA,0xA5FED6A9,0x7FFF0000,	// 2^0.375
    59 	0xF9DE6484,0xB504F333,0x7FFF0000,	// 2^0.500
    60 	0x5506DADD,0xC5672A11,0x7FFF0000,	// 2^0.625
    61 	0xD69D6AF4,0xD744FCCA,0x7FFF0000,	// 2^0.750
    62 	0xDD24392F,0xEAC0C6E7,0x7FFF0000	// 2^0.875
    63 	};
    64 
    65 LOCAL_D const TUint32 Sqr2data[] = {0xF9DE6484,0xB504F333,0x7FFF0000};		// sqr2
    66 LOCAL_D const TUint32 Sqr2Invdata[] = {0xF9DE6484,0xB504F333,0x7FFE0000};	// 1/sqr2
    67 LOCAL_D const TUint32 Onedata[] = {0x00000000,0x80000000,0x7FFF0000};		// 1.0
    68 
    69 LOCAL_C void Log2(TRealX& y, TRealX& x)
    70 	{
    71 	// Calculate log2(x) and write to y
    72 	// Result to 64-bit precision to allow accurate powers
    73 	// Algorithm:
    74 	//		log2(aSrc)=log2(2^e.m) e=exponent of aSrc, m=mantissa 1<=m<2
    75 	//		log2(aSrc)=e+log2(m)
    76 	//		If e=-1 (0.5<=aSrc<1), let x=aSrc else let x=mantissa(aSrc)
    77 	//		If x>Sqr2, replace x with x/Sqr2
    78 	//		If x<Sqr2/2, replace x with x*Sqr2
    79 	//		Replace x with (x-1)/(x+1)
    80 	//		Use polynomial to calculate artanh(x) for |x| <= (sqr2-1)/(sqr2+1)
    81 	//			( use identity ln(x) = 2artanh((x-1)/(x+1)) )
    82 
    83 	const TRealX& Sqr2=*(const TRealX*)Sqr2data;
    84 	const TRealX& Sqr2Inv=*(const TRealX*)Sqr2Invdata;
    85 	const TRealX& One=*(const TRealX*)Onedata;
    86 
    87 	TInt n=(x.iExp-0x7FFF)<<1;
    88 	x.iExp=0x7FFF;
    89 	if (n!=-2)
    90 		{
    91 		if (x>Sqr2)
    92 			{
    93 			x*=Sqr2Inv;
    94 			n++;
    95 			}
    96 		}
    97 	else 
    98 		{
    99 		n=0;
   100 		x.iExp=0x7FFE;
   101 		if (x<Sqr2Inv)
   102 			{
   103 			x*=Sqr2;
   104 			n--;
   105 			}
   106 		}
   107 	x=(x-One)/(x+One);	// ln(x)=2artanh((x-1)/(x+1))
   108 	Math::PolyX(y,x*x,8,(const TRealX*)ArtanhCoeffs);
   109 	y*=x;
   110 	y+=TRealX(n);
   111 	if (y.iExp>1)
   112 		y.iExp--;
   113 	else
   114 		y.iExp=0;
   115 	}
   116 
   117 LOCAL_C TInt TwoTox(TRealX& y, TRealX& x)
   118 	{
   119 	// Calculate 2^x and write result to y. Result to 64 bit precision.
   120 	// Algorithm:
   121 	//		2^x = 2^int(x).2^frac(x)
   122 	//		2^int(x) just adds int(x) to the final result exponent
   123 	//		Reduce frac(x) to the range [0,0.125] (modulo 0.125)
   124 	//		Use polynomial to calculate 2^x for 0<=x<=0.125
   125 	//		Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)
   126 
   127 	if (x.iExp)
   128 		x.iExp+=3;
   129 	TInt n=(TInt)x;
   130 	if (n<16384 && n>-16384)
   131 		{
   132 		if (x.iSign&1)
   133 			n--;
   134 		x-=TRealX(n);
   135 		Math::PolyX(y,x,8,(const TRealX*)TwoToxCoeffs);
   136 		y.iExp=TUint16(TInt(y.iExp)+(n>>3));
   137 		n&=7;
   138 		if (n)
   139 			y*= (*(const TRealX*)(TwoToNover8+3*n-3));
   140 		return KErrNone;
   141 		}
   142 	else
   143 		{
   144 		if (n<0)
   145 			{
   146 			y.SetZero();
   147 			return KErrUnderflow;
   148 			}
   149 		else
   150 			{
   151 			y.SetInfinite(0);
   152 			return KErrOverflow;
   153 			}
   154 		}
   155 	}
   156 
   157 
   158 
   159 
   160 EXPORT_C TInt Math::Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower)
   161 /**
   162 Calculates the value of x raised to the power of y.
   163 
   164 The behaviour conforms to that specified for pow() in the
   165 ISO C Standard ISO/IEC 9899 (Annex F), although floating-point exceptions
   166 are not supported.
   167 
   168 @param aTrg   A reference containing the result.
   169 @param aSrc   The x argument of the function.
   170 @param aPower The y argument of the function.
   171 
   172 @return KErrNone if successful;
   173 		KErrOverflow if the result is +/- infinity;
   174 	   	KErrUnderflow if the result is too small to be represented;
   175 		KErrArgument if the result is not a number (NaN).
   176 */
   177 //
   178 // Evaluates aSrc raised to the power aPower and places the result in aTrg.
   179 // For non-special values algorithm is aTrg=2^(aPower*log2(aSrc))
   180 //
   181 	{
   182 	TRealX x,p;
   183 
   184 	TInt ret2=p.Set(aPower);
   185 	// pow(x, +/-0) -> 1 for any x, even a NaN
   186 	if (p.IsZero())
   187 		{
   188 		aTrg=1.0;
   189 		return KErrNone;
   190 		}
   191 
   192 	TInt ret1=x.Set(aSrc);
   193 	if (ret1==KErrArgument || ret2==KErrArgument)
   194 		{
   195 		// pow(+1, y) -> 1 for any y, even a NaN
   196 		// XXX First test should not be necessary, but on WINS
   197 		//     aSrc == 1.0 is true when aSrc is NaN.
   198 		if (ret1 != KErrArgument && aSrc == 1.0)
   199 			{
   200 			aTrg=aSrc;
   201 			return KErrNone;
   202 			}
   203 		SetNaN(aTrg);
   204 		return KErrArgument;
   205 		}
   206 
   207 	// Infinite power
   208 	if (ret2==KErrOverflow)
   209 		{
   210 		// figure out which of these cases we have:
   211 		//
   212 		// pow(x, -INF) -> +INF for |x| < 1  } flag = 0
   213 		// pow(x, +INF) -> +INF for |x| > 1  }
   214 		// pow(x, -INF) -> +0 for |x| > 1      } flag = 1
   215 		// pow(x, +INF) -> +0 for |x| < 1      }
   216 		//
   217 		// flag = 2 => |x| == 1.0
   218 		//
   219 		TInt flag=2;
   220 		if (Abs(aSrc)>1.0)
   221 			flag=p.iSign&1;
   222 		if (Abs(aSrc)<1.0)
   223 			flag=1-(p.iSign&1);
   224 		if (flag==0)
   225 			{
   226 			SetInfinite(aTrg,0);
   227 			return KErrOverflow;
   228 			}
   229 		if (flag==1)
   230 			{
   231 			SetZero(aTrg,0);
   232 			return KErrNone;
   233 			}
   234 		if (Abs(aSrc)==1.0)
   235 			{
   236 			// pow(-1, +/-INF) -> 1
   237 			aTrg=1.0;
   238 			return KErrNone;
   239 			}
   240 		// This should never happen (i.e. aSrc is NaN, which
   241 		// should be taken care of above)
   242 		SetNaN(aTrg);
   243 		return KErrArgument;
   244 		}
   245 
   246 	// Negative Base raised to a power
   247 	TInt odd=1;
   248 	if (x.iSign & 1)
   249 		{
   250 		TReal pint;
   251 		Math::Int(pint,aPower);
   252 		if (aPower-pint) // Checks that if aSrc is less than zero, then aPower is integral
   253 			{
   254 			// pow(-INF, y) -> +0 for y < 0 and not an odd integer
   255 			// pow(-INF, y) -> +INF for y > 0 and not an odd integer
   256 			// Since we're here, aPower is not integral, so can't be odd, either
   257 			if (ret1 == KErrOverflow)
   258 				{
   259 				if (aPower < 0)
   260 					{
   261 					SetZero(aTrg);
   262 					return KErrNone;
   263 					}
   264 				else
   265 					{
   266 					SetInfinite(aTrg,0);
   267 					return KErrOverflow;
   268 					}
   269 				}
   270 			SetNaN(aTrg);
   271 			return KErrArgument;
   272 			}
   273 		TReal powerby2=aPower*0.5;
   274 		Math::Int(pint,powerby2);
   275 		if (powerby2-pint)
   276 			odd=(-1);
   277 		x.iSign=0;
   278 		}
   279 
   280 	// Zero or infinity raised to a power
   281 	if (x.IsZero() || ret1==KErrOverflow)
   282 		{
   283 		if (x.IsZero() && p.IsZero())
   284 			{
   285 			aTrg=1.0;
   286 			return KErrNone;
   287 			}
   288 		TInt sign=(odd==-1 ? 1 : 0);
   289 		if ((x.IsZero() && (p.iSign&1)==0) || (ret1==KErrOverflow && (p.iSign&1)))
   290 			{
   291 			SetZero(aTrg,sign);				
   292 			return KErrNone;
   293 			}
   294 		else
   295 			{
   296 			SetInfinite(aTrg,sign);
   297 			return KErrOverflow;
   298 			}
   299 		}
   300 
   301 	TRealX y;
   302 	Log2(y,x);
   303 	x=y*p;			// this cannot overflow or underflow
   304 	TInt r=TwoTox(y,x);
   305 	if (odd<0)
   306 		y.iSign=1;
   307 	TInt r2=y.GetTReal(aTrg);
   308 	return (r==KErrNone)?r2:r;
   309 	}
   310 
   311 #else // __USE_VFP_MATH
   312 
   313 // definitions come from RVCT math library
   314 extern "C" TReal pow(TReal,TReal);
   315 
   316 EXPORT_C TInt Math::Pow(TReal &aTrg,const TReal &aSrc,const TReal &aPower)
   317 	{
   318 	aTrg = pow(aSrc,aPower);
   319 	if (Math::IsZero(aTrg) && !Math::IsZero(aSrc) && !Math::IsInfinite(aSrc) && !Math::IsInfinite(aPower))
   320 		return KErrUnderflow;
   321 	if (Math::IsFinite(aTrg))
   322 		return KErrNone;
   323 	if (Math::IsZero(aPower))	// pow(x, +/-0) -> 1 for any x, even a NaN
   324 		{
   325 		aTrg = 1.0;
   326 		return KErrNone;
   327 		}
   328 	if (Math::IsInfinite(aTrg))
   329 		return KErrOverflow;
   330 	if (aSrc==1.0)				// pow(+1, y) -> 1 for any y, even a NaN
   331 		{
   332 		aTrg=aSrc;
   333 		return KErrNone;
   334 		}
   335 	if (Math::IsInfinite(aPower))
   336 		{
   337 		if (aSrc == -1.0)		// pow(-1, +/-INF) -> 1
   338 			{
   339 			aTrg = 1.0;
   340 			return KErrNone;
   341 			}
   342 		if (((Abs(aSrc) < 1) && (aPower < 0)) ||	// pow(x, -INF) -> +INF for |x| < 1
   343 		    ((Abs(aSrc) > 1) && (aPower > 0)))		// pow(x, +INF) -> +INF for |x| > 1
   344 			{
   345 			SetInfinite(aTrg,0);
   346 			return KErrOverflow;
   347 			}
   348 		}
   349 	// pow(-INF, y) -> +INF for y > 0 and not an odd integer
   350 	if (Math::IsInfinite(aSrc) && (aSrc < 0) && (aPower > 0))
   351 		{
   352 		TBool odd = EFalse;
   353 		TReal pint;
   354 		Math::Int(pint, aPower);
   355 		if (aPower == pint)
   356 			{
   357 			TReal halfPower = aPower * 0.5;
   358 			Math::Int(pint, halfPower);
   359 			if (halfPower != pint)
   360 				odd = ETrue;
   361 			}
   362 		if (odd == EFalse)
   363 			{
   364 			SetInfinite(aTrg,0);
   365 			return KErrOverflow;
   366 			}
   367 		}
   368 
   369 	// Otherwise...
   370 	SetNaN(aTrg);
   371 	return KErrArgument;
   372 	}
   373 
   374 #endif