Update contrib.
     2 * Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
 
     4 * This component and the accompanying materials are made available
 
     5 * under the terms of the License "Eclipse Public License v1.0"
 
     6 * which accompanies this distribution, and is available
 
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
 
     9 * Initial Contributors:
 
    10 * Nokia Corporation - initial contribution.
 
    15 * Software Mac Implementation
 
    25 #include "pluginconfig.h"
 
    26 #include <cryptospi/cryptomacapi.h>
 
    28  * Headers from CryptoSpi framework
 
    30 #include <cryptospi/cryptospidef.h>
 
    32 using namespace SoftwareCrypto;
 
    33 using namespace CryptoSpi;
 
    36  * Constants used to generate Key1, Key2 and Key3
 
    38 const TUint8 K1Constant[] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
 
    39 const TUint8 K2Constant[] = {0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02};
 
    40 const TUint8 K3Constant[] = {0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
 
    42 const TInt KAesXcbcMac96Size = 12;
 
    45 CCMacImpl* CCMacImpl::NewL(const CKey& aKey, CSymmetricCipher* aSymmetricCipher, TInt32 aAlgorithmUid)
 
    47 	CCMacImpl* self = CCMacImpl::NewLC(aKey, aSymmetricCipher, aAlgorithmUid);
 
    48 	CleanupStack::Pop(self);
 
    52 CCMacImpl* CCMacImpl::NewLC(const CKey& aKey, CSymmetricCipher* aSymmetricCipher, TInt32 aAlgorithmUid)
 
    54 	CCMacImpl* self = NULL;
 
    55  	TRAPD(err, self = new (ELeave) CCMacImpl(aSymmetricCipher));
 
    58   		delete aSymmetricCipher;
 
    61 	CleanupStack::PushL(self);
 
    62 	self->ConstructL(aKey, aAlgorithmUid);
 
    66 CKey* CCMacImpl::Create128bitKeyL(const CKey& aKey)
 
    68 	TBuf8<KMacBlockSize> keybuffer;
 
    69 	CryptoSpi::CKey* key = NULL;
 
    71 	const TDesC8& keyContent=aKey.GetTDesC8L(CryptoSpi::KSymmetricKeyParameterUid);
 
    73 	if( (TUint32)keyContent.Size() > KMacBlockSize)
 
    76 		CryptoSpi::CCryptoParams* keyParams = CryptoSpi::CCryptoParams::NewLC();
 
    77 		keybuffer.SetLength(KMacBlockSize);
 
    79 		// 'keybuffer' is the key with 128 zero bits.
 
    80 		keyParams->AddL(keybuffer, CryptoSpi::KSymmetricKeyParameterUid);
 
    81 		key=CryptoSpi::CKey::NewLC(aKey.KeyProperty(),*keyParams);
 
    82 		// evaluate final key data.
 
    84 		CleanupStack::PopAndDestroy(2, keyParams);
 
    85 		keybuffer.Copy(FinalL(keyContent));
 
    86 		// 'keybuffer' contains the final key data.
 
    90 		keybuffer.Copy(keyContent);
 
    92 		for (i=keybuffer.Size();i<KMacBlockSize;++i)
 
    96 		// 'keybuffer' contains the final key data.
 
    99 	// create a new CKey instance and assign it to iKey using 'keybuffer'.
 
   100 	CryptoSpi::CCryptoParams* keyParams = CryptoSpi::CCryptoParams::NewLC();
 
   101 	keyParams->AddL(keybuffer, CryptoSpi::KSymmetricKeyParameterUid);
 
   102 	key=CryptoSpi::CKey::NewL(aKey.KeyProperty(),*keyParams);
 
   103 	CleanupStack::PopAndDestroy(keyParams);	
 
   105 	// 'key' will contain the final CKey instance.
 
   109 void CCMacImpl::SetKeyL(const CKey& aKey)
 
   111 	const TPtrC8 KeyConstant1(K1Constant, KMacBlockSize);
 
   112 	const TPtrC8 KeyConstant2(K2Constant, KMacBlockSize);
 
   113 	const TPtrC8 KeyConstant3(K3Constant, KMacBlockSize);
 
   115 	// Initialize the cipher class to encrypt Keyconstants to generate additional keys.
 
   116 	if (iImplementationUid == CryptoSpi::KAlgorithmCipherAesXcbcPrf128)
 
   118 		// RFC 4434: keys that were not equal in length to 128 bits will no longer be
 
   119 		// rejected but instead will be made 128 bits for AES-XCBC-PRF-128 Algorithm only.
 
   120 		CryptoSpi::CKey* key = Create128bitKeyL(aKey);
 
   121 		CleanupStack::PushL(key);
 
   122 		iCipherImpl->SetKeyL(*key);
 
   123 		CleanupStack::PopAndDestroy(key);	
 
   127 		iCipherImpl->SetKeyL(aKey);
 
   129 	iCipherImpl->SetCryptoModeL(CryptoSpi::KCryptoModeEncryptUid);
 
   130 	iCipherImpl->SetOperationModeL(CryptoSpi::KOperationModeNoneUid);
 
   132 	// cipher class expects the output buffer to be empty.
 
   137 	// aKey is used to generate Key1, Key2 and Key3.
 
   138 	// Where Key1 = encrypt KeyConstant1 with aKey
 
   139 	// Where Key2 = encrypt KeyConstant2 with aKey
 
   140 	// Where Key3 = encrypt KeyConstant3 with aKey
 
   142 	// Key1 is used to encrypt the data whereas
 
   143 	// Key2 and Key3 is used to XOR with the last 
 
   145     iCipherImpl->ProcessFinalL(KeyConstant1, iKey1);
 
   146 	iCipherImpl->ProcessFinalL(KeyConstant2, iKey2);
 
   147 	iCipherImpl->ProcessFinalL(KeyConstant3, iKey3);
 
   149 	// Create CKey instance with key1
 
   150 	CCryptoParams* keyParam =CCryptoParams::NewLC();
 
   151  	keyParam->AddL(iKey1, CryptoSpi::KSymmetricKeyParameterUid);
 
   155  	iKey=CKey::NewL(aKey.KeyProperty(), *keyParam);
 
   156  	// Initialize the cipher class for MAC calculation.
 
   157 	iCipherImpl->SetKeyL(*iKey);
 
   158  	iCipherImpl->SetOperationModeL(CryptoSpi::KOperationModeCBCUid);
 
   159  	Mem::FillZ(iE, sizeof(iE));
 
   160  	iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
 
   162  	CleanupStack::PopAndDestroy(keyParam);
 
   165 CCMacImpl::~CCMacImpl()
 
   171 CCMacImpl::CCMacImpl(const CCMacImpl& aCCMacImpl)
 
   173 	iImplementationUid = aCCMacImpl.iImplementationUid;
 
   174 	iKey1.Copy(aCCMacImpl.iKey1);
 
   175 	iKey2.Copy(aCCMacImpl.iKey2);
 
   176 	iKey3.Copy(aCCMacImpl.iKey3);
 
   178 	(void)Mem::Copy(iE, aCCMacImpl.iE, sizeof(iE));
 
   179 	(void)Mem::Copy(iData, aCCMacImpl.iData, sizeof(iData));
 
   181 	iCurrentTotalLength = aCCMacImpl.iCurrentTotalLength;
 
   184 const CExtendedCharacteristics* CCMacImpl::GetExtendedCharacteristicsL()
 
   186 	return iCipherImpl->GetExtendedCharacteristicsL();
 
   189 CCMacImpl::CCMacImpl(CryptoSpi::CSymmetricCipher* aSymmetricCipher)
 
   191 	iCipherImpl = aSymmetricCipher;
 
   192 	aSymmetricCipher = NULL;
 
   193 	iMacValue.SetLength(KMacBlockSize);
 
   196 void CCMacImpl::ConstructL(const CKey& aKey, TInt32 aAlgorithmUid) 
 
   198 	iImplementationUid = aAlgorithmUid;
 
   200     switch(aAlgorithmUid)
 
   202     	case CryptoSpi::KAlgorithmCipherAesXcbcMac96:
 
   203     	case CryptoSpi::KAlgorithmCipherAesXcbcPrf128:
 
   210     		User::Leave(KErrNotSupported);
 
   216  * Takes the message and XOR it with iData.
 
   218  * @param aKey 128bit key. This key will be XORed with iData.
 
   219  * @param aOutput  The result of the XOR operation will be copied to this.
 
   220  * 				   Its length should be 128bit (16bytes).
 
   223 void CCMacImpl::XORKeyWithData(const TDesC8& aKey, TDes8& aOutput)
 
   225 	for (TInt i = 0; i < KMacBlockSize; ++i)
 
   227 		aOutput[i] = iData[i] ^ aKey[i];
 
   232  * This function is used to pad message M to make the total message
 
   233  * length multiple of block size (128bit). The last block M[n] will be 
 
   234  * padded with a single "1" bit followed by the number of "0" bits required
 
   235  * to increase M[n]'s size to 128 bits (Block Size).
 
   237  * Used in AES-XCBC-MAC-96 and AES-XCBC-PRF-128 Mac algorithms.
 
   239 void CCMacImpl::PadMessage()
 
   241 	if(iCurrentTotalLength < KMacBlockSize)
 
   243 		iData[iCurrentTotalLength] = 0x80;
 
   244 		Mem::FillZ(iData + iCurrentTotalLength+1, KMacBlockSize - iCurrentTotalLength - 1);
 
   248 void CCMacImpl::Reset()
 
   250 	Mem::FillZ(iE,sizeof(iE));
 
   251 	iCurrentTotalLength =0;
 
   252 	// record for Reset, for the next time MacL, UpdateL or FinalL is called as we
 
   253 	// cannot leave in Reset.
 
   254 	TRAP(iDelayedReset, iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)));
 
   257 TPtrC8 CCMacImpl::MacL(const TDesC8& aMessage)
 
   259 	// Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset. 
 
   260 	if (iDelayedReset != KErrNone)
 
   262 		// iE was reset to 128 zero bits in previous call to Reset which leaved.
 
   263 		iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
 
   264 		iDelayedReset = KErrNone; 
 
   267 	if (aMessage!=KNullDesC8())
 
   273 	TPtrC8 macPtr(KNullDesC8());
 
   274 	macPtr.Set(DoFinalL());
 
   276 	// Restore the internal state.
 
   277 	// We don't want to save any state change happened in 
 
   279 	// iE is not updated in DoFinalL function and hence
 
   280 	// can be used to reset iCipherImpl to previous state.
 
   281 	iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
 
   286 TPtrC8 CCMacImpl::FinalL(const TDesC8& aMessage)
 
   288 	// Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset. 
 
   289 	if (iDelayedReset == KErrNone)
 
   291 		// iE was reset to 128 zero bits in previous call to Reset which leaved.
 
   292 		iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
 
   293 		iDelayedReset = KErrNone;
 
   296 	if (aMessage!=KNullDesC8())
 
   300 	TPtrC8 macPtr(KNullDesC8());
 
   301 	macPtr.Set(DoFinalL());
 
   306 void CCMacImpl::UpdateL(const TDesC8& aMessage)
 
   308 	// Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset. 
 
   309 	if (iDelayedReset == KErrNone)
 
   311 		// iE was reset to 128 zero bits in previous call to Reset which leaved.
 
   312 		iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
 
   313 		iDelayedReset = KErrNone;
 
   316 	if (aMessage!=KNullDesC8())
 
   322 void CCMacImpl::ProcessBlockL()
 
   324 	TPtrC8 dataPtr(iData, KMacBlockSize);
 
   325 	TPtr8 intermediateCipherPtr(iE,0,KMacBlockSize);
 
   326 	// iData (Block) should be XORed with iE calculated
 
   327 	// from previoue processing. If it's the first processing
 
   328 	// then iE will be zero.
 
   329 	// Here we are not doing explicit XORing because iCpherImpl 
 
   330 	// is set in CBC mode. Therefore this operation will be
 
   331 	// done by iCipherImpl
 
   332 	iCipherImpl->ProcessL(dataPtr, intermediateCipherPtr);
 
   333 	// After processing discard the block.
 
   334 	iCurrentTotalLength = 0;
 
   337 void CCMacImpl::DoUpdateL(const TDesC8& aMessage)
 
   339 	TInt curLength = aMessage.Length();
 
   340 	const TUint8* msgPtr = aMessage.Ptr();
 
   344 		// If block is formed then process it.
 
   345 		if(iCurrentTotalLength == KMacBlockSize)
 
   348 		// Check the space left in the block.
 
   349 		TUint remainingLength = KMacBlockSize - iCurrentTotalLength;
 
   350 		// If unprocesed message length is less then remainingLength
 
   351 		// then copy the entire data to iData else copy till iData
 
   353 		TUint length = Min(curLength, remainingLength);
 
   354 		Mem::Copy(iData+iCurrentTotalLength, msgPtr, length);
 
   355 		// Update data offset
 
   356 		iCurrentTotalLength += length;
 
   362 TPtrC8 CCMacImpl::DoFinalL()
 
   364 	TBuf8<KMacBlockSize> finalBlock;
 
   365 	finalBlock.SetLength(KMacBlockSize);
 
   367 	// If padding is required then use Key3
 
   369 	if(iCurrentTotalLength < KMacBlockSize)
 
   372 		XORKeyWithData(iKey3, finalBlock);
 
   376 		XORKeyWithData(iKey2, finalBlock);
 
   379 	// cipher class expects the output buffer to be empty.
 
   382 	iCipherImpl->ProcessFinalL(finalBlock, iMacValue);
 
   384     return (iImplementationUid == CryptoSpi::KAlgorithmCipherAesXcbcMac96)? iMacValue.Left(KAesXcbcMac96Size): TPtrC8(iMacValue);
 
   387 void CCMacImpl::ReInitialiseAndSetKeyL(const CKey& aKey)
 
   394 CCMacImpl* CCMacImpl::CopyL()
 
   396 	CCMacImpl* clone = new(ELeave) CCMacImpl(*this);
 
   397 	CleanupStack::PushL(clone);
 
   398 	clone->iKey = CKey::NewL(*iKey);
 
   399 	CryptoSpi::CSymmetricCipherFactory::CreateSymmetricCipherL(clone->iCipherImpl,
 
   402 												CryptoSpi::KCryptoModeEncryptUid,
 
   403 												CryptoSpi::KOperationModeCBCUid,
 
   404 												CryptoSpi::KPaddingModeNoneUid,
 
   406 	clone->iCipherImpl->SetIvL(TPtrC8(clone->iE, KMacBlockSize));
 
   411 CCMacImpl* CCMacImpl::ReplicateL()
 
   413 	CCMacImpl* replica = CopyL();