os/persistentdata/persistentstorage/sqlite3api/TEST/TCL/tcldistribution/generic/regcomp.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2  * re_*comp and friends - compile REs
     3  * This file #includes several others (see the bottom).
     4  *
     5  * Copyright (c) 1998, 1999 Henry Spencer.  All rights reserved.
     6  * 
     7  * Development of this software was funded, in part, by Cray Research Inc.,
     8  * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
     9  * Corporation, none of whom are responsible for the results.  The author
    10  * thanks all of them. 
    11  * 
    12  * Redistribution and use in source and binary forms -- with or without
    13  * modification -- are permitted for any purpose, provided that
    14  * redistributions in source form retain this entire copyright notice and
    15  * indicate the origin and nature of any modifications.
    16  * 
    17  * I'd appreciate being given credit for this package in the documentation
    18  * of software which uses it, but that is not a requirement.
    19  * 
    20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
    21  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
    22  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
    23  * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
    24  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
    25  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
    26  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
    27  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
    28  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
    29  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
    30  *
    31  */
    32 
    33 #include "regguts.h"
    34 
    35 /*
    36  * forward declarations, up here so forward datatypes etc. are defined early
    37  */
    38 /* =====^!^===== begin forwards =====^!^===== */
    39 /* automatically gathered by fwd; do not hand-edit */
    40 /* === regcomp.c === */
    41 int compile _ANSI_ARGS_((regex_t *, CONST chr *, size_t, int));
    42 static VOID moresubs _ANSI_ARGS_((struct vars *, int));
    43 static int freev _ANSI_ARGS_((struct vars *, int));
    44 static VOID makesearch _ANSI_ARGS_((struct vars *, struct nfa *));
    45 static struct subre *parse _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
    46 static struct subre *parsebranch _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, int));
    47 static VOID parseqatom _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, struct subre *));
    48 static VOID nonword _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
    49 static VOID word _ANSI_ARGS_((struct vars *, int, struct state *, struct state *));
    50 static int scannum _ANSI_ARGS_((struct vars *));
    51 static VOID repeat _ANSI_ARGS_((struct vars *, struct state *, struct state *, int, int));
    52 static VOID bracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
    53 static VOID cbracket _ANSI_ARGS_((struct vars *, struct state *, struct state *));
    54 static VOID brackpart _ANSI_ARGS_((struct vars *, struct state *, struct state *));
    55 static chr *scanplain _ANSI_ARGS_((struct vars *));
    56 static VOID leaders _ANSI_ARGS_((struct vars *, struct cvec *));
    57 static VOID onechr _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
    58 static VOID dovec _ANSI_ARGS_((struct vars *, struct cvec *, struct state *, struct state *));
    59 static celt nextleader _ANSI_ARGS_((struct vars *, pchr, pchr));
    60 static VOID wordchrs _ANSI_ARGS_((struct vars *));
    61 static struct subre *subre _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *));
    62 static VOID freesubre _ANSI_ARGS_((struct vars *, struct subre *));
    63 static VOID freesrnode _ANSI_ARGS_((struct vars *, struct subre *));
    64 static VOID optst _ANSI_ARGS_((struct vars *, struct subre *));
    65 static int numst _ANSI_ARGS_((struct subre *, int));
    66 static VOID markst _ANSI_ARGS_((struct subre *));
    67 static VOID cleanst _ANSI_ARGS_((struct vars *));
    68 static long nfatree _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
    69 static long nfanode _ANSI_ARGS_((struct vars *, struct subre *, FILE *));
    70 static int newlacon _ANSI_ARGS_((struct vars *, struct state *, struct state *, int));
    71 static VOID freelacons _ANSI_ARGS_((struct subre *, int));
    72 static VOID rfree _ANSI_ARGS_((regex_t *));
    73 static VOID dump _ANSI_ARGS_((regex_t *, FILE *));
    74 static VOID dumpst _ANSI_ARGS_((struct subre *, FILE *, int));
    75 static VOID stdump _ANSI_ARGS_((struct subre *, FILE *, int));
    76 static char *stid _ANSI_ARGS_((struct subre *, char *, size_t));
    77 /* === regc_lex.c === */
    78 static VOID lexstart _ANSI_ARGS_((struct vars *));
    79 static VOID prefixes _ANSI_ARGS_((struct vars *));
    80 static VOID lexnest _ANSI_ARGS_((struct vars *, chr *, chr *));
    81 static VOID lexword _ANSI_ARGS_((struct vars *));
    82 static int next _ANSI_ARGS_((struct vars *));
    83 static int lexescape _ANSI_ARGS_((struct vars *));
    84 static chr lexdigits _ANSI_ARGS_((struct vars *, int, int, int));
    85 static int brenext _ANSI_ARGS_((struct vars *, pchr));
    86 static VOID skip _ANSI_ARGS_((struct vars *));
    87 static chr newline _ANSI_ARGS_((NOPARMS));
    88 #ifdef REG_DEBUG
    89 static chr *ch _ANSI_ARGS_((NOPARMS));
    90 #endif
    91 static chr chrnamed _ANSI_ARGS_((struct vars *, chr *, chr *, pchr));
    92 /* === regc_color.c === */
    93 static VOID initcm _ANSI_ARGS_((struct vars *, struct colormap *));
    94 static VOID freecm _ANSI_ARGS_((struct colormap *));
    95 static VOID cmtreefree _ANSI_ARGS_((struct colormap *, union tree *, int));
    96 static color setcolor _ANSI_ARGS_((struct colormap *, pchr, pcolor));
    97 static color maxcolor _ANSI_ARGS_((struct colormap *));
    98 static color newcolor _ANSI_ARGS_((struct colormap *));
    99 static VOID freecolor _ANSI_ARGS_((struct colormap *, pcolor));
   100 static color pseudocolor _ANSI_ARGS_((struct colormap *));
   101 static color subcolor _ANSI_ARGS_((struct colormap *, pchr c));
   102 static color newsub _ANSI_ARGS_((struct colormap *, pcolor));
   103 static VOID subrange _ANSI_ARGS_((struct vars *, pchr, pchr, struct state *, struct state *));
   104 static VOID subblock _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *));
   105 static VOID okcolors _ANSI_ARGS_((struct nfa *, struct colormap *));
   106 static VOID colorchain _ANSI_ARGS_((struct colormap *, struct arc *));
   107 static VOID uncolorchain _ANSI_ARGS_((struct colormap *, struct arc *));
   108 static int singleton _ANSI_ARGS_((struct colormap *, pchr c));
   109 static VOID rainbow _ANSI_ARGS_((struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *));
   110 static VOID colorcomplement _ANSI_ARGS_((struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *));
   111 #ifdef REG_DEBUG
   112 static VOID dumpcolors _ANSI_ARGS_((struct colormap *, FILE *));
   113 static VOID fillcheck _ANSI_ARGS_((struct colormap *, union tree *, int, FILE *));
   114 static VOID dumpchr _ANSI_ARGS_((pchr, FILE *));
   115 #endif
   116 /* === regc_nfa.c === */
   117 static struct nfa *newnfa _ANSI_ARGS_((struct vars *, struct colormap *, struct nfa *));
   118 static VOID freenfa _ANSI_ARGS_((struct nfa *));
   119 static struct state *newstate _ANSI_ARGS_((struct nfa *));
   120 static struct state *newfstate _ANSI_ARGS_((struct nfa *, int flag));
   121 static VOID dropstate _ANSI_ARGS_((struct nfa *, struct state *));
   122 static VOID freestate _ANSI_ARGS_((struct nfa *, struct state *));
   123 static VOID destroystate _ANSI_ARGS_((struct nfa *, struct state *));
   124 static VOID newarc _ANSI_ARGS_((struct nfa *, int, pcolor, struct state *, struct state *));
   125 static struct arc *allocarc _ANSI_ARGS_((struct nfa *, struct state *));
   126 static VOID freearc _ANSI_ARGS_((struct nfa *, struct arc *));
   127 static struct arc *findarc _ANSI_ARGS_((struct state *, int, pcolor));
   128 static VOID cparc _ANSI_ARGS_((struct nfa *, struct arc *, struct state *, struct state *));
   129 static VOID moveins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   130 static VOID copyins _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   131 static VOID moveouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   132 static VOID copyouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   133 static VOID cloneouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, int));
   134 static VOID delsub _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   135 static VOID deltraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   136 static VOID dupnfa _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, struct state *));
   137 static VOID duptraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *));
   138 static VOID cleartraverse _ANSI_ARGS_((struct nfa *, struct state *));
   139 static VOID specialcolors _ANSI_ARGS_((struct nfa *));
   140 static long optimize _ANSI_ARGS_((struct nfa *, FILE *));
   141 static VOID pullback _ANSI_ARGS_((struct nfa *, FILE *));
   142 static int pull _ANSI_ARGS_((struct nfa *, struct arc *));
   143 static VOID pushfwd _ANSI_ARGS_((struct nfa *, FILE *));
   144 static int push _ANSI_ARGS_((struct nfa *, struct arc *));
   145 #define	INCOMPATIBLE	1	/* destroys arc */
   146 #define	SATISFIED	2	/* constraint satisfied */
   147 #define	COMPATIBLE	3	/* compatible but not satisfied yet */
   148 static int combine _ANSI_ARGS_((struct arc *, struct arc *));
   149 static VOID fixempties _ANSI_ARGS_((struct nfa *, FILE *));
   150 static int unempty _ANSI_ARGS_((struct nfa *, struct arc *));
   151 static VOID cleanup _ANSI_ARGS_((struct nfa *));
   152 static VOID markreachable _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
   153 static VOID markcanreach _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *));
   154 static long analyze _ANSI_ARGS_((struct nfa *));
   155 static VOID compact _ANSI_ARGS_((struct nfa *, struct cnfa *));
   156 static VOID carcsort _ANSI_ARGS_((struct carc *, struct carc *));
   157 static VOID freecnfa _ANSI_ARGS_((struct cnfa *));
   158 static VOID dumpnfa _ANSI_ARGS_((struct nfa *, FILE *));
   159 #ifdef REG_DEBUG
   160 static VOID dumpstate _ANSI_ARGS_((struct state *, FILE *));
   161 static VOID dumparcs _ANSI_ARGS_((struct state *, FILE *));
   162 static int dumprarcs _ANSI_ARGS_((struct arc *, struct state *, FILE *, int));
   163 static VOID dumparc _ANSI_ARGS_((struct arc *, struct state *, FILE *));
   164 #endif
   165 static VOID dumpcnfa _ANSI_ARGS_((struct cnfa *, FILE *));
   166 #ifdef REG_DEBUG
   167 static VOID dumpcstate _ANSI_ARGS_((int, struct carc *, struct cnfa *, FILE *));
   168 #endif
   169 /* === regc_cvec.c === */
   170 static struct cvec *newcvec _ANSI_ARGS_((int, int, int));
   171 static struct cvec *clearcvec _ANSI_ARGS_((struct cvec *));
   172 static VOID addchr _ANSI_ARGS_((struct cvec *, pchr));
   173 static VOID addrange _ANSI_ARGS_((struct cvec *, pchr, pchr));
   174 static VOID addmcce _ANSI_ARGS_((struct cvec *, chr *, chr *));
   175 static int haschr _ANSI_ARGS_((struct cvec *, pchr));
   176 static struct cvec *getcvec _ANSI_ARGS_((struct vars *, int, int, int));
   177 static VOID freecvec _ANSI_ARGS_((struct cvec *));
   178 /* === regc_locale.c === */
   179 static int nmcces _ANSI_ARGS_((struct vars *));
   180 static int nleaders _ANSI_ARGS_((struct vars *));
   181 static struct cvec *allmcces _ANSI_ARGS_((struct vars *, struct cvec *));
   182 static celt element _ANSI_ARGS_((struct vars *, chr *, chr *));
   183 static struct cvec *range _ANSI_ARGS_((struct vars *, celt, celt, int));
   184 static int before _ANSI_ARGS_((celt, celt));
   185 static struct cvec *eclass _ANSI_ARGS_((struct vars *, celt, int));
   186 static struct cvec *cclass _ANSI_ARGS_((struct vars *, chr *, chr *, int));
   187 static struct cvec *allcases _ANSI_ARGS_((struct vars *, pchr));
   188 static int cmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
   189 static int casecmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t));
   190 /* automatically gathered by fwd; do not hand-edit */
   191 /* =====^!^===== end forwards =====^!^===== */
   192 
   193 
   194 
   195 /* internal variables, bundled for easy passing around */
   196 struct vars {
   197 	regex_t *re;
   198 	chr *now;		/* scan pointer into string */
   199 	chr *stop;		/* end of string */
   200 	chr *savenow;		/* saved now and stop for "subroutine call" */
   201 	chr *savestop;
   202 	int err;		/* error code (0 if none) */
   203 	int cflags;		/* copy of compile flags */
   204 	int lasttype;		/* type of previous token */
   205 	int nexttype;		/* type of next token */
   206 	chr nextvalue;		/* value (if any) of next token */
   207 	int lexcon;		/* lexical context type (see lex.c) */
   208 	int nsubexp;		/* subexpression count */
   209 	struct subre **subs;	/* subRE pointer vector */
   210 	size_t nsubs;		/* length of vector */
   211 	struct subre *sub10[10];	/* initial vector, enough for most */
   212 	struct nfa *nfa;	/* the NFA */
   213 	struct colormap *cm;	/* character color map */
   214 	color nlcolor;		/* color of newline */
   215 	struct state *wordchrs;	/* state in nfa holding word-char outarcs */
   216 	struct subre *tree;	/* subexpression tree */
   217 	struct subre *treechain;	/* all tree nodes allocated */
   218 	struct subre *treefree;		/* any free tree nodes */
   219 	int ntree;		/* number of tree nodes */
   220 	struct cvec *cv;	/* interface cvec */
   221 	struct cvec *cv2;	/* utility cvec */
   222 	struct cvec *mcces;	/* collating-element information */
   223 #		define	ISCELEADER(v,c)	(v->mcces != NULL && haschr(v->mcces, (c)))
   224 	struct state *mccepbegin;	/* in nfa, start of MCCE prototypes */
   225 	struct state *mccepend;	/* in nfa, end of MCCE prototypes */
   226 	struct subre *lacons;	/* lookahead-constraint vector */
   227 	int nlacons;		/* size of lacons */
   228 };
   229 
   230 /* parsing macros; most know that `v' is the struct vars pointer */
   231 #define	NEXT()	(next(v))		/* advance by one token */
   232 #define	SEE(t)	(v->nexttype == (t))	/* is next token this? */
   233 #define	EAT(t)	(SEE(t) && next(v))	/* if next is this, swallow it */
   234 #define	VISERR(vv)	((vv)->err != 0)	/* have we seen an error yet? */
   235 #define	ISERR()	VISERR(v)
   236 #define	VERR(vv,e)	((vv)->nexttype = EOS, ((vv)->err) ? (vv)->err :\
   237 							((vv)->err = (e)))
   238 #define	ERR(e)	VERR(v, e)		/* record an error */
   239 #define	NOERR()	{if (ISERR()) return;}	/* if error seen, return */
   240 #define	NOERRN()	{if (ISERR()) return NULL;}	/* NOERR with retval */
   241 #define	NOERRZ()	{if (ISERR()) return 0;}	/* NOERR with retval */
   242 #define	INSIST(c, e)	((c) ? 0 : ERR(e))	/* if condition false, error */
   243 #define	NOTE(b)	(v->re->re_info |= (b))		/* note visible condition */
   244 #define	EMPTYARC(x, y)	newarc(v->nfa, EMPTY, 0, x, y)
   245 
   246 /* token type codes, some also used as NFA arc types */
   247 #define	EMPTY	'n'		/* no token present */
   248 #define	EOS	'e'		/* end of string */
   249 #define	PLAIN	'p'		/* ordinary character */
   250 #define	DIGIT	'd'		/* digit (in bound) */
   251 #define	BACKREF	'b'		/* back reference */
   252 #define	COLLEL	'I'		/* start of [. */
   253 #define	ECLASS	'E'		/* start of [= */
   254 #define	CCLASS	'C'		/* start of [: */
   255 #define	END	'X'		/* end of [. [= [: */
   256 #define	RANGE	'R'		/* - within [] which might be range delim. */
   257 #define	LACON	'L'		/* lookahead constraint subRE */
   258 #define	AHEAD	'a'		/* color-lookahead arc */
   259 #define	BEHIND	'r'		/* color-lookbehind arc */
   260 #define	WBDRY	'w'		/* word boundary constraint */
   261 #define	NWBDRY	'W'		/* non-word-boundary constraint */
   262 #define	SBEGIN	'A'		/* beginning of string (even if not BOL) */
   263 #define	SEND	'Z'		/* end of string (even if not EOL) */
   264 #define	PREFER	'P'		/* length preference */
   265 
   266 /* is an arc colored, and hence on a color chain? */
   267 #define	COLORED(a)	((a)->type == PLAIN || (a)->type == AHEAD || \
   268 							(a)->type == BEHIND)
   269 
   270 
   271 
   272 /* static function list */
   273 static struct fns functions = {
   274 	rfree,			/* regfree insides */
   275 };
   276 
   277 
   278 
   279 /*
   280  - compile - compile regular expression
   281  ^ int compile(regex_t *, CONST chr *, size_t, int);
   282  */
   283 int
   284 compile(re, string, len, flags)
   285 regex_t *re;
   286 CONST chr *string;
   287 size_t len;
   288 int flags;
   289 {
   290 	struct vars var;
   291 	struct vars *v = &var;
   292 	struct guts *g;
   293 	int i;
   294 	size_t j;
   295 	FILE *debug = (flags&REG_PROGRESS) ? stdout : (FILE *)NULL;
   296 #	define	CNOERR()	{ if (ISERR()) return freev(v, v->err); }
   297 
   298 	/* sanity checks */
   299 
   300 	if (re == NULL || string == NULL)
   301 		return REG_INVARG;
   302 	if ((flags&REG_QUOTE) &&
   303 			(flags&(REG_ADVANCED|REG_EXPANDED|REG_NEWLINE)))
   304 		return REG_INVARG;
   305 	if (!(flags&REG_EXTENDED) && (flags&REG_ADVF))
   306 		return REG_INVARG;
   307 
   308 	/* initial setup (after which freev() is callable) */
   309 	v->re = re;
   310 	v->now = (chr *)string;
   311 	v->stop = v->now + len;
   312 	v->savenow = v->savestop = NULL;
   313 	v->err = 0;
   314 	v->cflags = flags;
   315 	v->nsubexp = 0;
   316 	v->subs = v->sub10;
   317 	v->nsubs = 10;
   318 	for (j = 0; j < v->nsubs; j++)
   319 		v->subs[j] = NULL;
   320 	v->nfa = NULL;
   321 	v->cm = NULL;
   322 	v->nlcolor = COLORLESS;
   323 	v->wordchrs = NULL;
   324 	v->tree = NULL;
   325 	v->treechain = NULL;
   326 	v->treefree = NULL;
   327 	v->cv = NULL;
   328 	v->cv2 = NULL;
   329 	v->mcces = NULL;
   330 	v->lacons = NULL;
   331 	v->nlacons = 0;
   332 	re->re_magic = REMAGIC;
   333 	re->re_info = 0;		/* bits get set during parse */
   334 	re->re_csize = sizeof(chr);
   335 	re->re_guts = NULL;
   336 	re->re_fns = VS(&functions);
   337 
   338 	/* more complex setup, malloced things */
   339 	re->re_guts = VS(MALLOC(sizeof(struct guts)));
   340 	if (re->re_guts == NULL)
   341 		return freev(v, REG_ESPACE);
   342 	g = (struct guts *)re->re_guts;
   343 	g->tree = NULL;
   344 	initcm(v, &g->cmap);
   345 	v->cm = &g->cmap;
   346 	g->lacons = NULL;
   347 	g->nlacons = 0;
   348 	ZAPCNFA(g->search);
   349 	v->nfa = newnfa(v, v->cm, (struct nfa *)NULL);
   350 	CNOERR();
   351 	v->cv = newcvec(100, 20, 10);
   352 	if (v->cv == NULL)
   353 		return freev(v, REG_ESPACE);
   354 	i = nmcces(v);
   355 	if (i > 0) {
   356 		v->mcces = newcvec(nleaders(v), 0, i);
   357 		CNOERR();
   358 		v->mcces = allmcces(v, v->mcces);
   359 		leaders(v, v->mcces);
   360 		addmcce(v->mcces, (chr *)NULL, (chr *)NULL);	/* dummy */
   361 	}
   362 	CNOERR();
   363 
   364 	/* parsing */
   365 	lexstart(v);			/* also handles prefixes */
   366 	if ((v->cflags&REG_NLSTOP) || (v->cflags&REG_NLANCH)) {
   367 		/* assign newline a unique color */
   368 		v->nlcolor = subcolor(v->cm, newline());
   369 		okcolors(v->nfa, v->cm);
   370 	}
   371 	CNOERR();
   372 	v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final);
   373 	assert(SEE(EOS));		/* even if error; ISERR() => SEE(EOS) */
   374 	CNOERR();
   375 	assert(v->tree != NULL);
   376 
   377 	/* finish setup of nfa and its subre tree */
   378 	specialcolors(v->nfa);
   379 	CNOERR();
   380 	if (debug != NULL) {
   381 		fprintf(debug, "\n\n\n========= RAW ==========\n");
   382 		dumpnfa(v->nfa, debug);
   383 		dumpst(v->tree, debug, 1);
   384 	}
   385 	optst(v, v->tree);
   386 	v->ntree = numst(v->tree, 1);
   387 	markst(v->tree);
   388 	cleanst(v);
   389 	if (debug != NULL) {
   390 		fprintf(debug, "\n\n\n========= TREE FIXED ==========\n");
   391 		dumpst(v->tree, debug, 1);
   392 	}
   393 
   394 	/* build compacted NFAs for tree and lacons */
   395 	re->re_info |= nfatree(v, v->tree, debug);
   396 	CNOERR();
   397 	assert(v->nlacons == 0 || v->lacons != NULL);
   398 	for (i = 1; i < v->nlacons; i++) {
   399 		if (debug != NULL)
   400 			fprintf(debug, "\n\n\n========= LA%d ==========\n", i);
   401 		nfanode(v, &v->lacons[i], debug);
   402 	}
   403 	CNOERR();
   404 	if (v->tree->flags&SHORTER)
   405 		NOTE(REG_USHORTEST);
   406 
   407 	/* build compacted NFAs for tree, lacons, fast search */
   408 	if (debug != NULL)
   409 		fprintf(debug, "\n\n\n========= SEARCH ==========\n");
   410 	/* can sacrifice main NFA now, so use it as work area */
   411 	(DISCARD)optimize(v->nfa, debug);
   412 	CNOERR();
   413 	makesearch(v, v->nfa);
   414 	CNOERR();
   415 	compact(v->nfa, &g->search);
   416 	CNOERR();
   417 
   418 	/* looks okay, package it up */
   419 	re->re_nsub = v->nsubexp;
   420 	v->re = NULL;			/* freev no longer frees re */
   421 	g->magic = GUTSMAGIC;
   422 	g->cflags = v->cflags;
   423 	g->info = re->re_info;
   424 	g->nsub = re->re_nsub;
   425 	g->tree = v->tree;
   426 	v->tree = NULL;
   427 	g->ntree = v->ntree;
   428 	g->compare = (v->cflags&REG_ICASE) ? casecmp : cmp;
   429 	g->lacons = v->lacons;
   430 	v->lacons = NULL;
   431 	g->nlacons = v->nlacons;
   432 
   433 	if (flags&REG_DUMP)
   434 		dump(re, stdout);
   435 
   436 	assert(v->err == 0);
   437 	return freev(v, 0);
   438 }
   439 
   440 /*
   441  - moresubs - enlarge subRE vector
   442  ^ static VOID moresubs(struct vars *, int);
   443  */
   444 static VOID
   445 moresubs(v, wanted)
   446 struct vars *v;
   447 int wanted;			/* want enough room for this one */
   448 {
   449 	struct subre **p;
   450 	size_t n;
   451 
   452 	assert(wanted > 0 && (size_t)wanted >= v->nsubs);
   453 	n = (size_t)wanted * 3 / 2 + 1;
   454 	if (v->subs == v->sub10) {
   455 		p = (struct subre **)MALLOC(n * sizeof(struct subre *));
   456 		if (p != NULL)
   457 			memcpy(VS(p), VS(v->subs),
   458 					v->nsubs * sizeof(struct subre *));
   459 	} else
   460 		p = (struct subre **)REALLOC(v->subs, n*sizeof(struct subre *));
   461 	if (p == NULL) {
   462 		ERR(REG_ESPACE);
   463 		return;
   464 	}
   465 	v->subs = p;
   466 	for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++)
   467 		*p = NULL;
   468 	assert(v->nsubs == n);
   469 	assert((size_t)wanted < v->nsubs);
   470 }
   471 
   472 /*
   473  - freev - free vars struct's substructures where necessary
   474  * Optionally does error-number setting, and always returns error code
   475  * (if any), to make error-handling code terser.
   476  ^ static int freev(struct vars *, int);
   477  */
   478 static int
   479 freev(v, err)
   480 struct vars *v;
   481 int err;
   482 {
   483 	if (v->re != NULL)
   484 		rfree(v->re);
   485 	if (v->subs != v->sub10)
   486 		FREE(v->subs);
   487 	if (v->nfa != NULL)
   488 		freenfa(v->nfa);
   489 	if (v->tree != NULL)
   490 		freesubre(v, v->tree);
   491 	if (v->treechain != NULL)
   492 		cleanst(v);
   493 	if (v->cv != NULL)
   494 		freecvec(v->cv);
   495 	if (v->cv2 != NULL)
   496 		freecvec(v->cv2);
   497 	if (v->mcces != NULL)
   498 		freecvec(v->mcces);
   499 	if (v->lacons != NULL)
   500 		freelacons(v->lacons, v->nlacons);
   501 	ERR(err);			/* nop if err==0 */
   502 
   503 	return v->err;
   504 }
   505 
   506 /*
   507  - makesearch - turn an NFA into a search NFA (implicit prepend of .*?)
   508  * NFA must have been optimize()d already.
   509  ^ static VOID makesearch(struct vars *, struct nfa *);
   510  */
   511 static VOID
   512 makesearch(v, nfa)
   513 struct vars *v;
   514 struct nfa *nfa;
   515 {
   516 	struct arc *a;
   517 	struct arc *b;
   518 	struct state *pre = nfa->pre;
   519 	struct state *s;
   520 	struct state *s2;
   521 	struct state *slist;
   522 
   523 	/* no loops are needed if it's anchored */
   524 	for (a = pre->outs; a != NULL; a = a->outchain) {
   525 		assert(a->type == PLAIN);
   526 		if (a->co != nfa->bos[0] && a->co != nfa->bos[1])
   527 			break;
   528 	}
   529 	if (a != NULL) {
   530 		/* add implicit .* in front */
   531 		rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre);
   532 
   533 		/* and ^* and \A* too -- not always necessary, but harmless */
   534 		newarc(nfa, PLAIN, nfa->bos[0], pre, pre);
   535 		newarc(nfa, PLAIN, nfa->bos[1], pre, pre);
   536 	}
   537 
   538 	/*
   539 	 * Now here's the subtle part.  Because many REs have no lookback
   540 	 * constraints, often knowing when you were in the pre state tells
   541 	 * you little; it's the next state(s) that are informative.  But
   542 	 * some of them may have other inarcs, i.e. it may be possible to
   543 	 * make actual progress and then return to one of them.  We must
   544 	 * de-optimize such cases, splitting each such state into progress
   545 	 * and no-progress states.
   546 	 */
   547 
   548 	/* first, make a list of the states */
   549 	slist = NULL;
   550 	for (a = pre->outs; a != NULL; a = a->outchain) {
   551 		s = a->to;
   552 		for (b = s->ins; b != NULL; b = b->inchain)
   553 			if (b->from != pre)
   554 				break;
   555 		if (b != NULL) {		/* must be split */
   556 			if (s->tmp == NULL) {  /* if not already in the list */
   557 			                       /* (fixes bugs 505048, 230589, */
   558 			                       /* 840258, 504785) */
   559 				s->tmp = slist;
   560 				slist = s;
   561 			}
   562 		}
   563 	}
   564 
   565 	/* do the splits */
   566 	for (s = slist; s != NULL; s = s2) {
   567 		s2 = newstate(nfa);
   568 		copyouts(nfa, s, s2);
   569 		for (a = s->ins; a != NULL; a = b) {
   570 			b = a->inchain;
   571 			if (a->from != pre) {
   572 				cparc(nfa, a, a->from, s2);
   573 				freearc(nfa, a);
   574 			}
   575 		}
   576 		s2 = s->tmp;
   577 		s->tmp = NULL;		/* clean up while we're at it */
   578 	}
   579 }
   580 
   581 /*
   582  - parse - parse an RE
   583  * This is actually just the top level, which parses a bunch of branches
   584  * tied together with '|'.  They appear in the tree as the left children
   585  * of a chain of '|' subres.
   586  ^ static struct subre *parse(struct vars *, int, int, struct state *,
   587  ^ 	struct state *);
   588  */
   589 static struct subre *
   590 parse(v, stopper, type, init, final)
   591 struct vars *v;
   592 int stopper;			/* EOS or ')' */
   593 int type;			/* LACON (lookahead subRE) or PLAIN */
   594 struct state *init;		/* initial state */
   595 struct state *final;		/* final state */
   596 {
   597 	struct state *left;	/* scaffolding for branch */
   598 	struct state *right;
   599 	struct subre *branches;	/* top level */
   600 	struct subre *branch;	/* current branch */
   601 	struct subre *t;	/* temporary */
   602 	int firstbranch;	/* is this the first branch? */
   603 
   604 	assert(stopper == ')' || stopper == EOS);
   605 
   606 	branches = subre(v, '|', LONGER, init, final);
   607 	NOERRN();
   608 	branch = branches;
   609 	firstbranch = 1;
   610 	do {	/* a branch */
   611 		if (!firstbranch) {
   612 			/* need a place to hang it */
   613 			branch->right = subre(v, '|', LONGER, init, final);
   614 			NOERRN();
   615 			branch = branch->right;
   616 		}
   617 		firstbranch = 0;
   618 		left = newstate(v->nfa);
   619 		right = newstate(v->nfa);
   620 		NOERRN();
   621 		EMPTYARC(init, left);
   622 		EMPTYARC(right, final);
   623 		NOERRN();
   624 		branch->left = parsebranch(v, stopper, type, left, right, 0);
   625 		NOERRN();
   626 		branch->flags |= UP(branch->flags | branch->left->flags);
   627 		if ((branch->flags &~ branches->flags) != 0)	/* new flags */
   628 			for (t = branches; t != branch; t = t->right)
   629 				t->flags |= branch->flags;
   630 	} while (EAT('|'));
   631 	assert(SEE(stopper) || SEE(EOS));
   632 
   633 	if (!SEE(stopper)) {
   634 		assert(stopper == ')' && SEE(EOS));
   635 		ERR(REG_EPAREN);
   636 	}
   637 
   638 	/* optimize out simple cases */
   639 	if (branch == branches) {	/* only one branch */
   640 		assert(branch->right == NULL);
   641 		t = branch->left;
   642 		branch->left = NULL;
   643 		freesubre(v, branches);
   644 		branches = t;
   645 	} else if (!MESSY(branches->flags)) {	/* no interesting innards */
   646 		freesubre(v, branches->left);
   647 		branches->left = NULL;
   648 		freesubre(v, branches->right);
   649 		branches->right = NULL;
   650 		branches->op = '=';
   651 	}
   652 
   653 	return branches;
   654 }
   655 
   656 /*
   657  - parsebranch - parse one branch of an RE
   658  * This mostly manages concatenation, working closely with parseqatom().
   659  * Concatenated things are bundled up as much as possible, with separate
   660  * ',' nodes introduced only when necessary due to substructure.
   661  ^ static struct subre *parsebranch(struct vars *, int, int, struct state *,
   662  ^ 	struct state *, int);
   663  */
   664 static struct subre *
   665 parsebranch(v, stopper, type, left, right, partial)
   666 struct vars *v;
   667 int stopper;			/* EOS or ')' */
   668 int type;			/* LACON (lookahead subRE) or PLAIN */
   669 struct state *left;		/* leftmost state */
   670 struct state *right;		/* rightmost state */
   671 int partial;			/* is this only part of a branch? */
   672 {
   673 	struct state *lp;	/* left end of current construct */
   674 	int seencontent;	/* is there anything in this branch yet? */
   675 	struct subre *t;
   676 
   677 	lp = left;
   678 	seencontent = 0;
   679 	t = subre(v, '=', 0, left, right);	/* op '=' is tentative */
   680 	NOERRN();
   681 	while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) {
   682 		if (seencontent) {	/* implicit concat operator */
   683 			lp = newstate(v->nfa);
   684 			NOERRN();
   685 			moveins(v->nfa, right, lp);
   686 		}
   687 		seencontent = 1;
   688 
   689 		/* NB, recursion in parseqatom() may swallow rest of branch */
   690 		parseqatom(v, stopper, type, lp, right, t);
   691 	}
   692 
   693 	if (!seencontent) {		/* empty branch */
   694 		if (!partial)
   695 			NOTE(REG_UUNSPEC);
   696 		assert(lp == left);
   697 		EMPTYARC(left, right);
   698 	}
   699 
   700 	return t;
   701 }
   702 
   703 /*
   704  - parseqatom - parse one quantified atom or constraint of an RE
   705  * The bookkeeping near the end cooperates very closely with parsebranch();
   706  * in particular, it contains a recursion that can involve parsing the rest
   707  * of the branch, making this function's name somewhat inaccurate.
   708  ^ static VOID parseqatom(struct vars *, int, int, struct state *,
   709  ^ 	struct state *, struct subre *);
   710  */
   711 static VOID
   712 parseqatom(v, stopper, type, lp, rp, top)
   713 struct vars *v;
   714 int stopper;			/* EOS or ')' */
   715 int type;			/* LACON (lookahead subRE) or PLAIN */
   716 struct state *lp;		/* left state to hang it on */
   717 struct state *rp;		/* right state to hang it on */
   718 struct subre *top;		/* subtree top */
   719 {
   720 	struct state *s;	/* temporaries for new states */
   721 	struct state *s2;
   722 #	define	ARCV(t, val)	newarc(v->nfa, t, val, lp, rp)
   723 	int m, n;
   724 	struct subre *atom;	/* atom's subtree */
   725 	struct subre *t;
   726 	int cap;		/* capturing parens? */
   727 	int pos;		/* positive lookahead? */
   728 	int subno;		/* capturing-parens or backref number */
   729 	int atomtype;
   730 	int qprefer;		/* quantifier short/long preference */
   731 	int f;
   732 	struct subre **atomp;	/* where the pointer to atom is */
   733 
   734 	/* initial bookkeeping */
   735 	atom = NULL;
   736 	assert(lp->nouts == 0);	/* must string new code */
   737 	assert(rp->nins == 0);	/*  between lp and rp */
   738 	subno = 0;		/* just to shut lint up */
   739 
   740 	/* an atom or constraint... */
   741 	atomtype = v->nexttype;
   742 	switch (atomtype) {
   743 	/* first, constraints, which end by returning */
   744 	case '^':
   745 		ARCV('^', 1);
   746 		if (v->cflags&REG_NLANCH)
   747 			ARCV(BEHIND, v->nlcolor);
   748 		NEXT();
   749 		return;
   750 		break;
   751 	case '$':
   752 		ARCV('$', 1);
   753 		if (v->cflags&REG_NLANCH)
   754 			ARCV(AHEAD, v->nlcolor);
   755 		NEXT();
   756 		return;
   757 		break;
   758 	case SBEGIN:
   759 		ARCV('^', 1);	/* BOL */
   760 		ARCV('^', 0);	/* or BOS */
   761 		NEXT();
   762 		return;
   763 		break;
   764 	case SEND:
   765 		ARCV('$', 1);	/* EOL */
   766 		ARCV('$', 0);	/* or EOS */
   767 		NEXT();
   768 		return;
   769 		break;
   770 	case '<':
   771 		wordchrs(v);	/* does NEXT() */
   772 		s = newstate(v->nfa);
   773 		NOERR();
   774 		nonword(v, BEHIND, lp, s);
   775 		word(v, AHEAD, s, rp);
   776 		return;
   777 		break;
   778 	case '>':
   779 		wordchrs(v);	/* does NEXT() */
   780 		s = newstate(v->nfa);
   781 		NOERR();
   782 		word(v, BEHIND, lp, s);
   783 		nonword(v, AHEAD, s, rp);
   784 		return;
   785 		break;
   786 	case WBDRY:
   787 		wordchrs(v);	/* does NEXT() */
   788 		s = newstate(v->nfa);
   789 		NOERR();
   790 		nonword(v, BEHIND, lp, s);
   791 		word(v, AHEAD, s, rp);
   792 		s = newstate(v->nfa);
   793 		NOERR();
   794 		word(v, BEHIND, lp, s);
   795 		nonword(v, AHEAD, s, rp);
   796 		return;
   797 		break;
   798 	case NWBDRY:
   799 		wordchrs(v);	/* does NEXT() */
   800 		s = newstate(v->nfa);
   801 		NOERR();
   802 		word(v, BEHIND, lp, s);
   803 		word(v, AHEAD, s, rp);
   804 		s = newstate(v->nfa);
   805 		NOERR();
   806 		nonword(v, BEHIND, lp, s);
   807 		nonword(v, AHEAD, s, rp);
   808 		return;
   809 		break;
   810 	case LACON:	/* lookahead constraint */
   811 		pos = v->nextvalue;
   812 		NEXT();
   813 		s = newstate(v->nfa);
   814 		s2 = newstate(v->nfa);
   815 		NOERR();
   816 		t = parse(v, ')', LACON, s, s2);
   817 		freesubre(v, t);	/* internal structure irrelevant */
   818 		assert(SEE(')') || ISERR());
   819 		NEXT();
   820 		n = newlacon(v, s, s2, pos);
   821 		NOERR();
   822 		ARCV(LACON, n);
   823 		return;
   824 		break;
   825 	/* then errors, to get them out of the way */
   826 	case '*':
   827 	case '+':
   828 	case '?':
   829 	case '{':
   830 		ERR(REG_BADRPT);
   831 		return;
   832 		break;
   833 	default:
   834 		ERR(REG_ASSERT);
   835 		return;
   836 		break;
   837 	/* then plain characters, and minor variants on that theme */
   838 	case ')':		/* unbalanced paren */
   839 		if ((v->cflags&REG_ADVANCED) != REG_EXTENDED) {
   840 			ERR(REG_EPAREN);
   841 			return;
   842 		}
   843 		/* legal in EREs due to specification botch */
   844 		NOTE(REG_UPBOTCH);
   845 		/* fallthrough into case PLAIN */
   846 	case PLAIN:
   847 		onechr(v, v->nextvalue, lp, rp);
   848 		okcolors(v->nfa, v->cm);
   849 		NOERR();
   850 		NEXT();
   851 		break;
   852 	case '[':
   853 		if (v->nextvalue == 1)
   854 			bracket(v, lp, rp);
   855 		else
   856 			cbracket(v, lp, rp);
   857 		assert(SEE(']') || ISERR());
   858 		NEXT();
   859 		break;
   860 	case '.':
   861 		rainbow(v->nfa, v->cm, PLAIN,
   862 				(v->cflags&REG_NLSTOP) ? v->nlcolor : COLORLESS,
   863 				lp, rp);
   864 		NEXT();
   865 		break;
   866 	/* and finally the ugly stuff */
   867 	case '(':	/* value flags as capturing or non */
   868 		cap = (type == LACON) ? 0 : v->nextvalue;
   869 		if (cap) {
   870 			v->nsubexp++;
   871 			subno = v->nsubexp;
   872 			if ((size_t)subno >= v->nsubs)
   873 				moresubs(v, subno);
   874 			assert((size_t)subno < v->nsubs);
   875 		} else
   876 			atomtype = PLAIN;	/* something that's not '(' */
   877 		NEXT();
   878 		/* need new endpoints because tree will contain pointers */
   879 		s = newstate(v->nfa);
   880 		s2 = newstate(v->nfa);
   881 		NOERR();
   882 		EMPTYARC(lp, s);
   883 		EMPTYARC(s2, rp);
   884 		NOERR();
   885 		atom = parse(v, ')', PLAIN, s, s2);
   886 		assert(SEE(')') || ISERR());
   887 		NEXT();
   888 		NOERR();
   889 		if (cap) {
   890 			v->subs[subno] = atom;
   891 			t = subre(v, '(', atom->flags|CAP, lp, rp);
   892 			NOERR();
   893 			t->subno = subno;
   894 			t->left = atom;
   895 			atom = t;
   896 		}
   897 		/* postpone everything else pending possible {0} */
   898 		break;
   899 	case BACKREF:	/* the Feature From The Black Lagoon */
   900 		INSIST(type != LACON, REG_ESUBREG);
   901 		INSIST(v->nextvalue < v->nsubs, REG_ESUBREG);
   902 		INSIST(v->subs[v->nextvalue] != NULL, REG_ESUBREG);
   903 		NOERR();
   904 		assert(v->nextvalue > 0);
   905 		atom = subre(v, 'b', BACKR, lp, rp);
   906 		subno = v->nextvalue;
   907 		atom->subno = subno;
   908 		EMPTYARC(lp, rp);	/* temporarily, so there's something */
   909 		NEXT();
   910 		break;
   911 	}
   912 
   913 	/* ...and an atom may be followed by a quantifier */
   914 	switch (v->nexttype) {
   915 	case '*':
   916 		m = 0;
   917 		n = INFINITY;
   918 		qprefer = (v->nextvalue) ? LONGER : SHORTER;
   919 		NEXT();
   920 		break;
   921 	case '+':
   922 		m = 1;
   923 		n = INFINITY;
   924 		qprefer = (v->nextvalue) ? LONGER : SHORTER;
   925 		NEXT();
   926 		break;
   927 	case '?':
   928 		m = 0;
   929 		n = 1;
   930 		qprefer = (v->nextvalue) ? LONGER : SHORTER;
   931 		NEXT();
   932 		break;
   933 	case '{':
   934 		NEXT();
   935 		m = scannum(v);
   936 		if (EAT(',')) {
   937 			if (SEE(DIGIT))
   938 				n = scannum(v);
   939 			else
   940 				n = INFINITY;
   941 			if (m > n) {
   942 				ERR(REG_BADBR);
   943 				return;
   944 			}
   945 			/* {m,n} exercises preference, even if it's {m,m} */
   946 			qprefer = (v->nextvalue) ? LONGER : SHORTER;
   947 		} else {
   948 			n = m;
   949 			/* {m} passes operand's preference through */
   950 			qprefer = 0;
   951 		}
   952 		if (!SEE('}')) {	/* catches errors too */
   953 			ERR(REG_BADBR);
   954 			return;
   955 		}
   956 		NEXT();
   957 		break;
   958 	default:		/* no quantifier */
   959 		m = n = 1;
   960 		qprefer = 0;
   961 		break;
   962 	}
   963 
   964 	/* annoying special case:  {0} or {0,0} cancels everything */
   965 	if (m == 0 && n == 0) {
   966 		if (atom != NULL)
   967 			freesubre(v, atom);
   968 		if (atomtype == '(')
   969 			v->subs[subno] = NULL;
   970 		delsub(v->nfa, lp, rp);
   971 		EMPTYARC(lp, rp);
   972 		return;
   973 	}
   974 
   975 	/* if not a messy case, avoid hard part */
   976 	assert(!MESSY(top->flags));
   977 	f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0);
   978 	if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) {
   979 		if (!(m == 1 && n == 1))
   980 			repeat(v, lp, rp, m, n);
   981 		if (atom != NULL)
   982 			freesubre(v, atom);
   983 		top->flags = f;
   984 		return;
   985 	}
   986 
   987 	/*
   988 	 * hard part:  something messy
   989 	 * That is, capturing parens, back reference, short/long clash, or
   990 	 * an atom with substructure containing one of those.
   991 	 */
   992 
   993 	/* now we'll need a subre for the contents even if they're boring */
   994 	if (atom == NULL) {
   995 		atom = subre(v, '=', 0, lp, rp);
   996 		NOERR();
   997 	}
   998 
   999 	/*
  1000 	 * prepare a general-purpose state skeleton
  1001 	 *
  1002 	 *    ---> [s] ---prefix---> [begin] ---atom---> [end] ----rest---> [rp]
  1003 	 *   /                                            /
  1004 	 * [lp] ----> [s2] ----bypass---------------------
  1005 	 *
  1006 	 * where bypass is an empty, and prefix is some repetitions of atom
  1007 	 */
  1008 	s = newstate(v->nfa);		/* first, new endpoints for the atom */
  1009 	s2 = newstate(v->nfa);
  1010 	NOERR();
  1011 	moveouts(v->nfa, lp, s);
  1012 	moveins(v->nfa, rp, s2);
  1013 	NOERR();
  1014 	atom->begin = s;
  1015 	atom->end = s2;
  1016 	s = newstate(v->nfa);		/* and spots for prefix and bypass */
  1017 	s2 = newstate(v->nfa);
  1018 	NOERR();
  1019 	EMPTYARC(lp, s);
  1020 	EMPTYARC(lp, s2);
  1021 	NOERR();
  1022 
  1023 	/* break remaining subRE into x{...} and what follows */
  1024 	t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp);
  1025 	t->left = atom;
  1026 	atomp = &t->left;
  1027 	/* here we should recurse... but we must postpone that to the end */
  1028 
  1029 	/* split top into prefix and remaining */
  1030 	assert(top->op == '=' && top->left == NULL && top->right == NULL);
  1031 	top->left = subre(v, '=', top->flags, top->begin, lp);
  1032 	top->op = '.';
  1033 	top->right = t;
  1034 
  1035 	/* if it's a backref, now is the time to replicate the subNFA */
  1036 	if (atomtype == BACKREF) {
  1037 		assert(atom->begin->nouts == 1);	/* just the EMPTY */
  1038 		delsub(v->nfa, atom->begin, atom->end);
  1039 		assert(v->subs[subno] != NULL);
  1040 		/* and here's why the recursion got postponed:  it must */
  1041 		/* wait until the skeleton is filled in, because it may */
  1042 		/* hit a backref that wants to copy the filled-in skeleton */
  1043 		dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end,
  1044 						atom->begin, atom->end);
  1045 		NOERR();
  1046 	}
  1047 
  1048 	/* it's quantifier time; first, turn x{0,...} into x{1,...}|empty */
  1049 	if (m == 0) {
  1050 		EMPTYARC(s2, atom->end);		/* the bypass */
  1051 		assert(PREF(qprefer) != 0);
  1052 		f = COMBINE(qprefer, atom->flags);
  1053 		t = subre(v, '|', f, lp, atom->end);
  1054 		NOERR();
  1055 		t->left = atom;
  1056 		t->right = subre(v, '|', PREF(f), s2, atom->end);
  1057 		NOERR();
  1058 		t->right->left = subre(v, '=', 0, s2, atom->end);
  1059 		NOERR();
  1060 		*atomp = t;
  1061 		atomp = &t->left;
  1062 		m = 1;
  1063 	}
  1064 
  1065 	/* deal with the rest of the quantifier */
  1066 	if (atomtype == BACKREF) {
  1067 		/* special case:  backrefs have internal quantifiers */
  1068 		EMPTYARC(s, atom->begin);	/* empty prefix */
  1069 		/* just stuff everything into atom */
  1070 		repeat(v, atom->begin, atom->end, m, n);
  1071 		atom->min = (short)m;
  1072 		atom->max = (short)n;
  1073 		atom->flags |= COMBINE(qprefer, atom->flags);
  1074 	} else if (m == 1 && n == 1) {
  1075 		/* no/vacuous quantifier:  done */
  1076 		EMPTYARC(s, atom->begin);	/* empty prefix */
  1077 	} else {
  1078 		/* turn x{m,n} into x{m-1,n-1}x, with capturing */
  1079 		/*  parens in only second x */
  1080 		dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin);
  1081 		assert(m >= 1 && m != INFINITY && n >= 1);
  1082 		repeat(v, s, atom->begin, m-1, (n == INFINITY) ? n : n-1);
  1083 		f = COMBINE(qprefer, atom->flags);
  1084 		t = subre(v, '.', f, s, atom->end);	/* prefix and atom */
  1085 		NOERR();
  1086 		t->left = subre(v, '=', PREF(f), s, atom->begin);
  1087 		NOERR();
  1088 		t->right = atom;
  1089 		*atomp = t;
  1090 	}
  1091 
  1092 	/* and finally, look after that postponed recursion */
  1093 	t = top->right;
  1094 	if (!(SEE('|') || SEE(stopper) || SEE(EOS)))
  1095 		t->right = parsebranch(v, stopper, type, atom->end, rp, 1);
  1096 	else {
  1097 		EMPTYARC(atom->end, rp);
  1098 		t->right = subre(v, '=', 0, atom->end, rp);
  1099 	}
  1100 	assert(SEE('|') || SEE(stopper) || SEE(EOS));
  1101 	t->flags |= COMBINE(t->flags, t->right->flags);
  1102 	top->flags |= COMBINE(top->flags, t->flags);
  1103 }
  1104 
  1105 /*
  1106  - nonword - generate arcs for non-word-character ahead or behind
  1107  ^ static VOID nonword(struct vars *, int, struct state *, struct state *);
  1108  */
  1109 static VOID
  1110 nonword(v, dir, lp, rp)
  1111 struct vars *v;
  1112 int dir;			/* AHEAD or BEHIND */
  1113 struct state *lp;
  1114 struct state *rp;
  1115 {
  1116 	int anchor = (dir == AHEAD) ? '$' : '^';
  1117 
  1118 	assert(dir == AHEAD || dir == BEHIND);
  1119 	newarc(v->nfa, anchor, 1, lp, rp);
  1120 	newarc(v->nfa, anchor, 0, lp, rp);
  1121 	colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp);
  1122 	/* (no need for special attention to \n) */
  1123 }
  1124 
  1125 /*
  1126  - word - generate arcs for word character ahead or behind
  1127  ^ static VOID word(struct vars *, int, struct state *, struct state *);
  1128  */
  1129 static VOID
  1130 word(v, dir, lp, rp)
  1131 struct vars *v;
  1132 int dir;			/* AHEAD or BEHIND */
  1133 struct state *lp;
  1134 struct state *rp;
  1135 {
  1136 	assert(dir == AHEAD || dir == BEHIND);
  1137 	cloneouts(v->nfa, v->wordchrs, lp, rp, dir);
  1138 	/* (no need for special attention to \n) */
  1139 }
  1140 
  1141 /*
  1142  - scannum - scan a number
  1143  ^ static int scannum(struct vars *);
  1144  */
  1145 static int			/* value, <= DUPMAX */
  1146 scannum(v)
  1147 struct vars *v;
  1148 {
  1149 	int n = 0;
  1150 
  1151 	while (SEE(DIGIT) && n < DUPMAX) {
  1152 		n = n*10 + v->nextvalue;
  1153 		NEXT();
  1154 	}
  1155 	if (SEE(DIGIT) || n > DUPMAX) {
  1156 		ERR(REG_BADBR);
  1157 		return 0;
  1158 	}
  1159 	return n;
  1160 }
  1161 
  1162 /*
  1163  - repeat - replicate subNFA for quantifiers
  1164  * The duplication sequences used here are chosen carefully so that any
  1165  * pointers starting out pointing into the subexpression end up pointing into
  1166  * the last occurrence.  (Note that it may not be strung between the same
  1167  * left and right end states, however!)  This used to be important for the
  1168  * subRE tree, although the important bits are now handled by the in-line
  1169  * code in parse(), and when this is called, it doesn't matter any more.
  1170  ^ static VOID repeat(struct vars *, struct state *, struct state *, int, int);
  1171  */
  1172 static VOID
  1173 repeat(v, lp, rp, m, n)
  1174 struct vars *v;
  1175 struct state *lp;
  1176 struct state *rp;
  1177 int m;
  1178 int n;
  1179 {
  1180 #	define	SOME	2
  1181 #	define	INF	3
  1182 #	define	PAIR(x, y)	((x)*4 + (y))
  1183 #	define	REDUCE(x)	( ((x) == INFINITY) ? INF : (((x) > 1) ? SOME : (x)) )
  1184 	CONST int rm = REDUCE(m);
  1185 	CONST int rn = REDUCE(n);
  1186 	struct state *s;
  1187 	struct state *s2;
  1188 
  1189 	switch (PAIR(rm, rn)) {
  1190 	case PAIR(0, 0):		/* empty string */
  1191 		delsub(v->nfa, lp, rp);
  1192 		EMPTYARC(lp, rp);
  1193 		break;
  1194 	case PAIR(0, 1):		/* do as x| */
  1195 		EMPTYARC(lp, rp);
  1196 		break;
  1197 	case PAIR(0, SOME):		/* do as x{1,n}| */
  1198 		repeat(v, lp, rp, 1, n);
  1199 		NOERR();
  1200 		EMPTYARC(lp, rp);
  1201 		break;
  1202 	case PAIR(0, INF):		/* loop x around */
  1203 		s = newstate(v->nfa);
  1204 		NOERR();
  1205 		moveouts(v->nfa, lp, s);
  1206 		moveins(v->nfa, rp, s);
  1207 		EMPTYARC(lp, s);
  1208 		EMPTYARC(s, rp);
  1209 		break;
  1210 	case PAIR(1, 1):		/* no action required */
  1211 		break;
  1212 	case PAIR(1, SOME):		/* do as x{0,n-1}x = (x{1,n-1}|)x */
  1213 		s = newstate(v->nfa);
  1214 		NOERR();
  1215 		moveouts(v->nfa, lp, s);
  1216 		dupnfa(v->nfa, s, rp, lp, s);
  1217 		NOERR();
  1218 		repeat(v, lp, s, 1, n-1);
  1219 		NOERR();
  1220 		EMPTYARC(lp, s);
  1221 		break;
  1222 	case PAIR(1, INF):		/* add loopback arc */
  1223 		s = newstate(v->nfa);
  1224 		s2 = newstate(v->nfa);
  1225 		NOERR();
  1226 		moveouts(v->nfa, lp, s);
  1227 		moveins(v->nfa, rp, s2);
  1228 		EMPTYARC(lp, s);
  1229 		EMPTYARC(s2, rp);
  1230 		EMPTYARC(s2, s);
  1231 		break;
  1232 	case PAIR(SOME, SOME):		/* do as x{m-1,n-1}x */
  1233 		s = newstate(v->nfa);
  1234 		NOERR();
  1235 		moveouts(v->nfa, lp, s);
  1236 		dupnfa(v->nfa, s, rp, lp, s);
  1237 		NOERR();
  1238 		repeat(v, lp, s, m-1, n-1);
  1239 		break;
  1240 	case PAIR(SOME, INF):		/* do as x{m-1,}x */
  1241 		s = newstate(v->nfa);
  1242 		NOERR();
  1243 		moveouts(v->nfa, lp, s);
  1244 		dupnfa(v->nfa, s, rp, lp, s);
  1245 		NOERR();
  1246 		repeat(v, lp, s, m-1, n);
  1247 		break;
  1248 	default:
  1249 		ERR(REG_ASSERT);
  1250 		break;
  1251 	}
  1252 }
  1253 
  1254 /*
  1255  - bracket - handle non-complemented bracket expression
  1256  * Also called from cbracket for complemented bracket expressions.
  1257  ^ static VOID bracket(struct vars *, struct state *, struct state *);
  1258  */
  1259 static VOID
  1260 bracket(v, lp, rp)
  1261 struct vars *v;
  1262 struct state *lp;
  1263 struct state *rp;
  1264 {
  1265 	assert(SEE('['));
  1266 	NEXT();
  1267 	while (!SEE(']') && !SEE(EOS))
  1268 		brackpart(v, lp, rp);
  1269 	assert(SEE(']') || ISERR());
  1270 	okcolors(v->nfa, v->cm);
  1271 }
  1272 
  1273 /*
  1274  - cbracket - handle complemented bracket expression
  1275  * We do it by calling bracket() with dummy endpoints, and then complementing
  1276  * the result.  The alternative would be to invoke rainbow(), and then delete
  1277  * arcs as the b.e. is seen... but that gets messy.
  1278  ^ static VOID cbracket(struct vars *, struct state *, struct state *);
  1279  */
  1280 static VOID
  1281 cbracket(v, lp, rp)
  1282 struct vars *v;
  1283 struct state *lp;
  1284 struct state *rp;
  1285 {
  1286 	struct state *left = newstate(v->nfa);
  1287 	struct state *right = newstate(v->nfa);
  1288 	struct state *s;
  1289 	struct arc *a;			/* arc from lp */
  1290 	struct arc *ba;			/* arc from left, from bracket() */
  1291 	struct arc *pa;			/* MCCE-prototype arc */
  1292 	color co;
  1293 	chr *p;
  1294 	int i;
  1295 
  1296 	NOERR();
  1297 	bracket(v, left, right);
  1298 	if (v->cflags&REG_NLSTOP)
  1299 		newarc(v->nfa, PLAIN, v->nlcolor, left, right);
  1300 	NOERR();
  1301 
  1302 	assert(lp->nouts == 0);		/* all outarcs will be ours */
  1303 
  1304 	/* easy part of complementing */
  1305 	colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp);
  1306 	NOERR();
  1307 	if (v->mcces == NULL) {		/* no MCCEs -- we're done */
  1308 		dropstate(v->nfa, left);
  1309 		assert(right->nins == 0);
  1310 		freestate(v->nfa, right);
  1311 		return;
  1312 	}
  1313 
  1314 	/* but complementing gets messy in the presence of MCCEs... */
  1315 	NOTE(REG_ULOCALE);
  1316 	for (p = v->mcces->chrs, i = v->mcces->nchrs; i > 0; p++, i--) {
  1317 		co = GETCOLOR(v->cm, *p);
  1318 		a = findarc(lp, PLAIN, co);
  1319 		ba = findarc(left, PLAIN, co);
  1320 		if (ba == NULL) {
  1321 			assert(a != NULL);
  1322 			freearc(v->nfa, a);
  1323 		} else {
  1324 			assert(a == NULL);
  1325 		}
  1326 		s = newstate(v->nfa);
  1327 		NOERR();
  1328 		newarc(v->nfa, PLAIN, co, lp, s);
  1329 		NOERR();
  1330 		pa = findarc(v->mccepbegin, PLAIN, co);
  1331 		assert(pa != NULL);
  1332 		if (ba == NULL) {	/* easy case, need all of them */
  1333 			cloneouts(v->nfa, pa->to, s, rp, PLAIN);
  1334 			newarc(v->nfa, '$', 1, s, rp);
  1335 			newarc(v->nfa, '$', 0, s, rp);
  1336 			colorcomplement(v->nfa, v->cm, AHEAD, pa->to, s, rp);
  1337 		} else {		/* must be selective */
  1338 			if (findarc(ba->to, '$', 1) == NULL) {
  1339 				newarc(v->nfa, '$', 1, s, rp);
  1340 				newarc(v->nfa, '$', 0, s, rp);
  1341 				colorcomplement(v->nfa, v->cm, AHEAD, pa->to,
  1342 									 s, rp);
  1343 			}
  1344 			for (pa = pa->to->outs; pa != NULL; pa = pa->outchain)
  1345 				if (findarc(ba->to, PLAIN, pa->co) == NULL)
  1346 					newarc(v->nfa, PLAIN, pa->co, s, rp);
  1347 			if (s->nouts == 0)	/* limit of selectivity: none */
  1348 				dropstate(v->nfa, s);	/* frees arc too */
  1349 		}
  1350 		NOERR();
  1351 	}
  1352 
  1353 	delsub(v->nfa, left, right);
  1354 	assert(left->nouts == 0);
  1355 	freestate(v->nfa, left);
  1356 	assert(right->nins == 0);
  1357 	freestate(v->nfa, right);
  1358 }
  1359 			
  1360 /*
  1361  - brackpart - handle one item (or range) within a bracket expression
  1362  ^ static VOID brackpart(struct vars *, struct state *, struct state *);
  1363  */
  1364 static VOID
  1365 brackpart(v, lp, rp)
  1366 struct vars *v;
  1367 struct state *lp;
  1368 struct state *rp;
  1369 {
  1370 	celt startc;
  1371 	celt endc;
  1372 	struct cvec *cv;
  1373 	chr *startp;
  1374 	chr *endp;
  1375 	chr c[1];
  1376 
  1377 	/* parse something, get rid of special cases, take shortcuts */
  1378 	switch (v->nexttype) {
  1379 	case RANGE:			/* a-b-c or other botch */
  1380 		ERR(REG_ERANGE);
  1381 		return;
  1382 		break;
  1383 	case PLAIN:
  1384 		c[0] = v->nextvalue;
  1385 		NEXT();
  1386 		/* shortcut for ordinary chr (not range, not MCCE leader) */
  1387 		if (!SEE(RANGE) && !ISCELEADER(v, c[0])) {
  1388 			onechr(v, c[0], lp, rp);
  1389 			return;
  1390 		}
  1391 		startc = element(v, c, c+1);
  1392 		NOERR();
  1393 		break;
  1394 	case COLLEL:
  1395 		startp = v->now;
  1396 		endp = scanplain(v);
  1397 		INSIST(startp < endp, REG_ECOLLATE);
  1398 		NOERR();
  1399 		startc = element(v, startp, endp);
  1400 		NOERR();
  1401 		break;
  1402 	case ECLASS:
  1403 		startp = v->now;
  1404 		endp = scanplain(v);
  1405 		INSIST(startp < endp, REG_ECOLLATE);
  1406 		NOERR();
  1407 		startc = element(v, startp, endp);
  1408 		NOERR();
  1409 		cv = eclass(v, startc, (v->cflags&REG_ICASE));
  1410 		NOERR();
  1411 		dovec(v, cv, lp, rp);
  1412 		return;
  1413 		break;
  1414 	case CCLASS:
  1415 		startp = v->now;
  1416 		endp = scanplain(v);
  1417 		INSIST(startp < endp, REG_ECTYPE);
  1418 		NOERR();
  1419 		cv = cclass(v, startp, endp, (v->cflags&REG_ICASE));
  1420 		NOERR();
  1421 		dovec(v, cv, lp, rp);
  1422 		return;
  1423 		break;
  1424 	default:
  1425 		ERR(REG_ASSERT);
  1426 		return;
  1427 		break;
  1428 	}
  1429 
  1430 	if (SEE(RANGE)) {
  1431 		NEXT();
  1432 		switch (v->nexttype) {
  1433 		case PLAIN:
  1434 		case RANGE:
  1435 			c[0] = v->nextvalue;
  1436 			NEXT();
  1437 			endc = element(v, c, c+1);
  1438 			NOERR();
  1439 			break;
  1440 		case COLLEL:
  1441 			startp = v->now;
  1442 			endp = scanplain(v);
  1443 			INSIST(startp < endp, REG_ECOLLATE);
  1444 			NOERR();
  1445 			endc = element(v, startp, endp);
  1446 			NOERR();
  1447 			break;
  1448 		default:
  1449 			ERR(REG_ERANGE);
  1450 			return;
  1451 			break;
  1452 		}
  1453 	} else
  1454 		endc = startc;
  1455 
  1456 	/*
  1457 	 * Ranges are unportable.  Actually, standard C does
  1458 	 * guarantee that digits are contiguous, but making
  1459 	 * that an exception is just too complicated.
  1460 	 */
  1461 	if (startc != endc)
  1462 		NOTE(REG_UUNPORT);
  1463 	cv = range(v, startc, endc, (v->cflags&REG_ICASE));
  1464 	NOERR();
  1465 	dovec(v, cv, lp, rp);
  1466 }
  1467 
  1468 /*
  1469  - scanplain - scan PLAIN contents of [. etc.
  1470  * Certain bits of trickery in lex.c know that this code does not try
  1471  * to look past the final bracket of the [. etc.
  1472  ^ static chr *scanplain(struct vars *);
  1473  */
  1474 static chr *			/* just after end of sequence */
  1475 scanplain(v)
  1476 struct vars *v;
  1477 {
  1478 	chr *endp;
  1479 
  1480 	assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS));
  1481 	NEXT();
  1482 
  1483 	endp = v->now;
  1484 	while (SEE(PLAIN)) {
  1485 		endp = v->now;
  1486 		NEXT();
  1487 	}
  1488 
  1489 	assert(SEE(END) || ISERR());
  1490 	NEXT();
  1491 
  1492 	return endp;
  1493 }
  1494 
  1495 /*
  1496  - leaders - process a cvec of collating elements to also include leaders
  1497  * Also gives all characters involved their own colors, which is almost
  1498  * certainly necessary, and sets up little disconnected subNFA.
  1499  ^ static VOID leaders(struct vars *, struct cvec *);
  1500  */
  1501 static VOID
  1502 leaders(v, cv)
  1503 struct vars *v;
  1504 struct cvec *cv;
  1505 {
  1506 	int mcce;
  1507 	chr *p;
  1508 	chr leader;
  1509 	struct state *s;
  1510 	struct arc *a;
  1511 
  1512 	v->mccepbegin = newstate(v->nfa);
  1513 	v->mccepend = newstate(v->nfa);
  1514 	NOERR();
  1515 
  1516 	for (mcce = 0; mcce < cv->nmcces; mcce++) {
  1517 		p = cv->mcces[mcce];
  1518 		leader = *p;
  1519 		if (!haschr(cv, leader)) {
  1520 			addchr(cv, leader);
  1521 			s = newstate(v->nfa);
  1522 			newarc(v->nfa, PLAIN, subcolor(v->cm, leader),
  1523 							v->mccepbegin, s);
  1524 			okcolors(v->nfa, v->cm);
  1525 		} else {
  1526 			a = findarc(v->mccepbegin, PLAIN,
  1527 						GETCOLOR(v->cm, leader));
  1528 			assert(a != NULL);
  1529 			s = a->to;
  1530 			assert(s != v->mccepend);
  1531 		}
  1532 		p++;
  1533 		assert(*p != 0 && *(p+1) == 0);	/* only 2-char MCCEs for now */
  1534 		newarc(v->nfa, PLAIN, subcolor(v->cm, *p), s, v->mccepend);
  1535 		okcolors(v->nfa, v->cm);
  1536 	}
  1537 }
  1538 
  1539 /*
  1540  - onechr - fill in arcs for a plain character, and possible case complements
  1541  * This is mostly a shortcut for efficient handling of the common case.
  1542  ^ static VOID onechr(struct vars *, pchr, struct state *, struct state *);
  1543  */
  1544 static VOID
  1545 onechr(v, c, lp, rp)
  1546 struct vars *v;
  1547 pchr c;
  1548 struct state *lp;
  1549 struct state *rp;
  1550 {
  1551 	if (!(v->cflags&REG_ICASE)) {
  1552 		newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp);
  1553 		return;
  1554 	}
  1555 
  1556 	/* rats, need general case anyway... */
  1557 	dovec(v, allcases(v, c), lp, rp);
  1558 }
  1559 
  1560 /*
  1561  - dovec - fill in arcs for each element of a cvec
  1562  * This one has to handle the messy cases, like MCCEs and MCCE leaders.
  1563  ^ static VOID dovec(struct vars *, struct cvec *, struct state *,
  1564  ^ 	struct state *);
  1565  */
  1566 static VOID
  1567 dovec(v, cv, lp, rp)
  1568 struct vars *v;
  1569 struct cvec *cv;
  1570 struct state *lp;
  1571 struct state *rp;
  1572 {
  1573 	chr ch, from, to;
  1574 	celt ce;
  1575 	chr *p;
  1576 	int i;
  1577 	color co;
  1578 	struct cvec *leads;
  1579 	struct arc *a;
  1580 	struct arc *pa;		/* arc in prototype */
  1581 	struct state *s;
  1582 	struct state *ps;	/* state in prototype */
  1583 
  1584 	/* need a place to store leaders, if any */
  1585 	if (nmcces(v) > 0) {
  1586 		assert(v->mcces != NULL);
  1587 		if (v->cv2 == NULL || v->cv2->nchrs < v->mcces->nchrs) {
  1588 			if (v->cv2 != NULL)
  1589 				free(v->cv2);
  1590 			v->cv2 = newcvec(v->mcces->nchrs, 0, v->mcces->nmcces);
  1591 			NOERR();
  1592 			leads = v->cv2;
  1593 		} else
  1594 			leads = clearcvec(v->cv2);
  1595 	} else
  1596 		leads = NULL;
  1597 
  1598 	/* first, get the ordinary characters out of the way */
  1599 	for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) {
  1600 		ch = *p;
  1601 		if (!ISCELEADER(v, ch))
  1602 			newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp);
  1603 		else {
  1604 			assert(singleton(v->cm, ch));
  1605 			assert(leads != NULL);
  1606 			if (!haschr(leads, ch))
  1607 				addchr(leads, ch);
  1608 		}
  1609 	}
  1610 
  1611 	/* and the ranges */
  1612 	for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) {
  1613 		from = *p;
  1614 		to = *(p+1);
  1615 		while (from <= to && (ce = nextleader(v, from, to)) != NOCELT) {
  1616 			if (from < ce)
  1617 				subrange(v, from, ce - 1, lp, rp);
  1618 			assert(singleton(v->cm, ce));
  1619 			assert(leads != NULL);
  1620 			if (!haschr(leads, ce))
  1621 				addchr(leads, ce);
  1622 			from = ce + 1;
  1623 		}
  1624 		if (from <= to)
  1625 			subrange(v, from, to, lp, rp);
  1626 	}
  1627 
  1628 	if ((leads == NULL || leads->nchrs == 0) && cv->nmcces == 0)
  1629 		return;
  1630 
  1631 	/* deal with the MCCE leaders */
  1632 	NOTE(REG_ULOCALE);
  1633 	for (p = leads->chrs, i = leads->nchrs; i > 0; p++, i--) {
  1634 		co = GETCOLOR(v->cm, *p);
  1635 		a = findarc(lp, PLAIN, co);
  1636 		if (a != NULL)
  1637 			s = a->to;
  1638 		else {
  1639 			s = newstate(v->nfa);
  1640 			NOERR();
  1641 			newarc(v->nfa, PLAIN, co, lp, s);
  1642 			NOERR();
  1643 		}
  1644 		pa = findarc(v->mccepbegin, PLAIN, co);
  1645 		assert(pa != NULL);
  1646 		ps = pa->to;
  1647 		newarc(v->nfa, '$', 1, s, rp);
  1648 		newarc(v->nfa, '$', 0, s, rp);
  1649 		colorcomplement(v->nfa, v->cm, AHEAD, ps, s, rp);
  1650 		NOERR();
  1651 	}
  1652 
  1653 	/* and the MCCEs */
  1654 	for (i = 0; i < cv->nmcces; i++) {
  1655 		p = cv->mcces[i];
  1656 		assert(singleton(v->cm, *p));
  1657 		if (!singleton(v->cm, *p)) {
  1658 			ERR(REG_ASSERT);
  1659 			return;
  1660 		}
  1661 		ch = *p++;
  1662 		co = GETCOLOR(v->cm, ch);
  1663 		a = findarc(lp, PLAIN, co);
  1664 		if (a != NULL)
  1665 			s = a->to;
  1666 		else {
  1667 			s = newstate(v->nfa);
  1668 			NOERR();
  1669 			newarc(v->nfa, PLAIN, co, lp, s);
  1670 			NOERR();
  1671 		}
  1672 		assert(*p != 0);	/* at least two chars */
  1673 		assert(singleton(v->cm, *p));
  1674 		ch = *p++;
  1675 		co = GETCOLOR(v->cm, ch);
  1676 		assert(*p == 0);	/* and only two, for now */
  1677 		newarc(v->nfa, PLAIN, co, s, rp);
  1678 		NOERR();
  1679 	}
  1680 }
  1681 
  1682 /*
  1683  - nextleader - find next MCCE leader within range
  1684  ^ static celt nextleader(struct vars *, pchr, pchr);
  1685  */
  1686 static celt			/* NOCELT means none */
  1687 nextleader(v, from, to)
  1688 struct vars *v;
  1689 pchr from;
  1690 pchr to;
  1691 {
  1692 	int i;
  1693 	chr *p;
  1694 	chr ch;
  1695 	celt it = NOCELT;
  1696 
  1697 	if (v->mcces == NULL)
  1698 		return it;
  1699 
  1700 	for (i = v->mcces->nchrs, p = v->mcces->chrs; i > 0; i--, p++) {
  1701 		ch = *p;
  1702 		if (from <= ch && ch <= to)
  1703 			if (it == NOCELT || ch < it)
  1704 				it = ch;
  1705 	}
  1706 	return it;
  1707 }
  1708 
  1709 /*
  1710  - wordchrs - set up word-chr list for word-boundary stuff, if needed
  1711  * The list is kept as a bunch of arcs between two dummy states; it's
  1712  * disposed of by the unreachable-states sweep in NFA optimization.
  1713  * Does NEXT().  Must not be called from any unusual lexical context.
  1714  * This should be reconciled with the \w etc. handling in lex.c, and
  1715  * should be cleaned up to reduce dependencies on input scanning.
  1716  ^ static VOID wordchrs(struct vars *);
  1717  */
  1718 static VOID
  1719 wordchrs(v)
  1720 struct vars *v;
  1721 {
  1722 	struct state *left;
  1723 	struct state *right;
  1724 
  1725 	if (v->wordchrs != NULL) {
  1726 		NEXT();		/* for consistency */
  1727 		return;
  1728 	}
  1729 
  1730 	left = newstate(v->nfa);
  1731 	right = newstate(v->nfa);
  1732 	NOERR();
  1733 	/* fine point:  implemented with [::], and lexer will set REG_ULOCALE */
  1734 	lexword(v);
  1735 	NEXT();
  1736 	assert(v->savenow != NULL && SEE('['));
  1737 	bracket(v, left, right);
  1738 	assert((v->savenow != NULL && SEE(']')) || ISERR());
  1739 	NEXT();
  1740 	NOERR();
  1741 	v->wordchrs = left;
  1742 }
  1743 
  1744 /*
  1745  - subre - allocate a subre
  1746  ^ static struct subre *subre(struct vars *, int, int, struct state *,
  1747  ^	struct state *);
  1748  */
  1749 static struct subre *
  1750 subre(v, op, flags, begin, end)
  1751 struct vars *v;
  1752 int op;
  1753 int flags;
  1754 struct state *begin;
  1755 struct state *end;
  1756 {
  1757 	struct subre *ret;
  1758 
  1759 	ret = v->treefree;
  1760 	if (ret != NULL)
  1761 		v->treefree = ret->left;
  1762 	else {
  1763 		ret = (struct subre *)MALLOC(sizeof(struct subre));
  1764 		if (ret == NULL) {
  1765 			ERR(REG_ESPACE);
  1766 			return NULL;
  1767 		}
  1768 		ret->chain = v->treechain;
  1769 		v->treechain = ret;
  1770 	}
  1771 
  1772 	assert(strchr("|.b(=", op) != NULL);
  1773 
  1774 	ret->op = op;
  1775 	ret->flags = flags;
  1776 	ret->retry = 0;
  1777 	ret->subno = 0;
  1778 	ret->min = ret->max = 1;
  1779 	ret->left = NULL;
  1780 	ret->right = NULL;
  1781 	ret->begin = begin;
  1782 	ret->end = end;
  1783 	ZAPCNFA(ret->cnfa);
  1784 
  1785 	return ret;
  1786 }
  1787 
  1788 /*
  1789  - freesubre - free a subRE subtree
  1790  ^ static VOID freesubre(struct vars *, struct subre *);
  1791  */
  1792 static VOID
  1793 freesubre(v, sr)
  1794 struct vars *v;			/* might be NULL */
  1795 struct subre *sr;
  1796 {
  1797 	if (sr == NULL)
  1798 		return;
  1799 
  1800 	if (sr->left != NULL)
  1801 		freesubre(v, sr->left);
  1802 	if (sr->right != NULL)
  1803 		freesubre(v, sr->right);
  1804 
  1805 	freesrnode(v, sr);
  1806 }
  1807 
  1808 /*
  1809  - freesrnode - free one node in a subRE subtree
  1810  ^ static VOID freesrnode(struct vars *, struct subre *);
  1811  */
  1812 static VOID
  1813 freesrnode(v, sr)
  1814 struct vars *v;			/* might be NULL */
  1815 struct subre *sr;
  1816 {
  1817 	if (sr == NULL)
  1818 		return;
  1819 
  1820 	if (!NULLCNFA(sr->cnfa))
  1821 		freecnfa(&sr->cnfa);
  1822 	sr->flags = 0;
  1823 
  1824 	if (v != NULL) {
  1825 		sr->left = v->treefree;
  1826 		v->treefree = sr;
  1827 	} else
  1828 		FREE(sr);
  1829 }
  1830 
  1831 /*
  1832  - optst - optimize a subRE subtree
  1833  ^ static VOID optst(struct vars *, struct subre *);
  1834  */
  1835 static VOID
  1836 optst(v, t)
  1837 struct vars *v;
  1838 struct subre *t;
  1839 {
  1840 	if (t == NULL)
  1841 		return;
  1842 
  1843 	/* recurse through children */
  1844 	if (t->left != NULL)
  1845 		optst(v, t->left);
  1846 	if (t->right != NULL)
  1847 		optst(v, t->right);
  1848 }
  1849 
  1850 /*
  1851  - numst - number tree nodes (assigning retry indexes)
  1852  ^ static int numst(struct subre *, int);
  1853  */
  1854 static int			/* next number */
  1855 numst(t, start)
  1856 struct subre *t;
  1857 int start;			/* starting point for subtree numbers */
  1858 {
  1859 	int i;
  1860 
  1861 	assert(t != NULL);
  1862 
  1863 	i = start;
  1864 	t->retry = (short)i++;
  1865 	if (t->left != NULL)
  1866 		i = numst(t->left, i);
  1867 	if (t->right != NULL)
  1868 		i = numst(t->right, i);
  1869 	return i;
  1870 }
  1871 
  1872 /*
  1873  - markst - mark tree nodes as INUSE
  1874  ^ static VOID markst(struct subre *);
  1875  */
  1876 static VOID
  1877 markst(t)
  1878 struct subre *t;
  1879 {
  1880 	assert(t != NULL);
  1881 
  1882 	t->flags |= INUSE;
  1883 	if (t->left != NULL)
  1884 		markst(t->left);
  1885 	if (t->right != NULL)
  1886 		markst(t->right);
  1887 }
  1888 
  1889 /*
  1890  - cleanst - free any tree nodes not marked INUSE
  1891  ^ static VOID cleanst(struct vars *);
  1892  */
  1893 static VOID
  1894 cleanst(v)
  1895 struct vars *v;
  1896 {
  1897 	struct subre *t;
  1898 	struct subre *next;
  1899 
  1900 	for (t = v->treechain; t != NULL; t = next) {
  1901 		next = t->chain;
  1902 		if (!(t->flags&INUSE))
  1903 			FREE(t);
  1904 	}
  1905 	v->treechain = NULL;
  1906 	v->treefree = NULL;		/* just on general principles */
  1907 }
  1908 
  1909 /*
  1910  - nfatree - turn a subRE subtree into a tree of compacted NFAs
  1911  ^ static long nfatree(struct vars *, struct subre *, FILE *);
  1912  */
  1913 static long			/* optimize results from top node */
  1914 nfatree(v, t, f)
  1915 struct vars *v;
  1916 struct subre *t;
  1917 FILE *f;			/* for debug output */
  1918 {
  1919 	assert(t != NULL && t->begin != NULL);
  1920 
  1921 	if (t->left != NULL)
  1922 		(DISCARD)nfatree(v, t->left, f);
  1923 	if (t->right != NULL)
  1924 		(DISCARD)nfatree(v, t->right, f);
  1925 
  1926 	return nfanode(v, t, f);
  1927 }
  1928 
  1929 /*
  1930  - nfanode - do one NFA for nfatree
  1931  ^ static long nfanode(struct vars *, struct subre *, FILE *);
  1932  */
  1933 static long			/* optimize results */
  1934 nfanode(v, t, f)
  1935 struct vars *v;
  1936 struct subre *t;
  1937 FILE *f;			/* for debug output */
  1938 {
  1939 	struct nfa *nfa;
  1940 	long ret = 0;
  1941 	char idbuf[50];
  1942 
  1943 	assert(t->begin != NULL);
  1944 
  1945 	if (f != NULL)
  1946 		fprintf(f, "\n\n\n========= TREE NODE %s ==========\n",
  1947 						stid(t, idbuf, sizeof(idbuf)));
  1948 	nfa = newnfa(v, v->cm, v->nfa);
  1949 	NOERRZ();
  1950 	dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final);
  1951 	if (!ISERR()) {
  1952 		specialcolors(nfa);
  1953 		ret = optimize(nfa, f);
  1954 	}
  1955 	if (!ISERR())
  1956 		compact(nfa, &t->cnfa);
  1957 
  1958 	freenfa(nfa);
  1959 	return ret;
  1960 }
  1961 
  1962 /*
  1963  - newlacon - allocate a lookahead-constraint subRE
  1964  ^ static int newlacon(struct vars *, struct state *, struct state *, int);
  1965  */
  1966 static int			/* lacon number */
  1967 newlacon(v, begin, end, pos)
  1968 struct vars *v;
  1969 struct state *begin;
  1970 struct state *end;
  1971 int pos;
  1972 {
  1973 	int n;
  1974 	struct subre *sub;
  1975 
  1976 	if (v->nlacons == 0) {
  1977 		v->lacons = (struct subre *)MALLOC(2 * sizeof(struct subre));
  1978 		n = 1;		/* skip 0th */
  1979 		v->nlacons = 2;
  1980 	} else {
  1981 		v->lacons = (struct subre *)REALLOC(v->lacons,
  1982 					(v->nlacons+1)*sizeof(struct subre));
  1983 		n = v->nlacons++;
  1984 	}
  1985 	if (v->lacons == NULL) {
  1986 		ERR(REG_ESPACE);
  1987 		return 0;
  1988 	}
  1989 	sub = &v->lacons[n];
  1990 	sub->begin = begin;
  1991 	sub->end = end;
  1992 	sub->subno = pos;
  1993 	ZAPCNFA(sub->cnfa);
  1994 	return n;
  1995 }
  1996 
  1997 /*
  1998  - freelacons - free lookahead-constraint subRE vector
  1999  ^ static VOID freelacons(struct subre *, int);
  2000  */
  2001 static VOID
  2002 freelacons(subs, n)
  2003 struct subre *subs;
  2004 int n;
  2005 {
  2006 	struct subre *sub;
  2007 	int i;
  2008 
  2009 	assert(n > 0);
  2010 	for (sub = subs + 1, i = n - 1; i > 0; sub++, i--)	/* no 0th */
  2011 		if (!NULLCNFA(sub->cnfa))
  2012 			freecnfa(&sub->cnfa);
  2013 	FREE(subs);
  2014 }
  2015 
  2016 /*
  2017  - rfree - free a whole RE (insides of regfree)
  2018  ^ static VOID rfree(regex_t *);
  2019  */
  2020 static VOID
  2021 rfree(re)
  2022 regex_t *re;
  2023 {
  2024 	struct guts *g;
  2025 
  2026 	if (re == NULL || re->re_magic != REMAGIC)
  2027 		return;
  2028 
  2029 	re->re_magic = 0;	/* invalidate RE */
  2030 	g = (struct guts *)re->re_guts;
  2031 	re->re_guts = NULL;
  2032 	re->re_fns = NULL;
  2033 	g->magic = 0;
  2034 	freecm(&g->cmap);
  2035 	if (g->tree != NULL)
  2036 		freesubre((struct vars *)NULL, g->tree);
  2037 	if (g->lacons != NULL)
  2038 		freelacons(g->lacons, g->nlacons);
  2039 	if (!NULLCNFA(g->search))
  2040 		freecnfa(&g->search);
  2041 	FREE(g);
  2042 }
  2043 
  2044 /*
  2045  - dump - dump an RE in human-readable form
  2046  ^ static VOID dump(regex_t *, FILE *);
  2047  */
  2048 static VOID
  2049 dump(re, f)
  2050 regex_t *re;
  2051 FILE *f;
  2052 {
  2053 #ifdef REG_DEBUG
  2054 	struct guts *g;
  2055 	int i;
  2056 
  2057 	if (re->re_magic != REMAGIC)
  2058 		fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic,
  2059 								REMAGIC);
  2060 	if (re->re_guts == NULL) {
  2061 		fprintf(f, "NULL guts!!!\n");
  2062 		return;
  2063 	}
  2064 	g = (struct guts *)re->re_guts;
  2065 	if (g->magic != GUTSMAGIC)
  2066 		fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic,
  2067 								GUTSMAGIC);
  2068 
  2069 	fprintf(f, "\n\n\n========= DUMP ==========\n");
  2070 	fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n", 
  2071 		re->re_nsub, re->re_info, re->re_csize, g->ntree);
  2072 
  2073 	dumpcolors(&g->cmap, f);
  2074 	if (!NULLCNFA(g->search)) {
  2075 		printf("\nsearch:\n");
  2076 		dumpcnfa(&g->search, f);
  2077 	}
  2078 	for (i = 1; i < g->nlacons; i++) {
  2079 		fprintf(f, "\nla%d (%s):\n", i,
  2080 				(g->lacons[i].subno) ? "positive" : "negative");
  2081 		dumpcnfa(&g->lacons[i].cnfa, f);
  2082 	}
  2083 	fprintf(f, "\n");
  2084 	dumpst(g->tree, f, 0);
  2085 #endif
  2086 }
  2087 
  2088 /*
  2089  - dumpst - dump a subRE tree
  2090  ^ static VOID dumpst(struct subre *, FILE *, int);
  2091  */
  2092 static VOID
  2093 dumpst(t, f, nfapresent)
  2094 struct subre *t;
  2095 FILE *f;
  2096 int nfapresent;			/* is the original NFA still around? */
  2097 {
  2098 	if (t == NULL)
  2099 		fprintf(f, "null tree\n");
  2100 	else
  2101 		stdump(t, f, nfapresent);
  2102 	fflush(f);
  2103 }
  2104 
  2105 /*
  2106  - stdump - recursive guts of dumpst
  2107  ^ static VOID stdump(struct subre *, FILE *, int);
  2108  */
  2109 static VOID
  2110 stdump(t, f, nfapresent)
  2111 struct subre *t;
  2112 FILE *f;
  2113 int nfapresent;			/* is the original NFA still around? */
  2114 {
  2115 	char idbuf[50];
  2116 
  2117 	fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op);
  2118 	if (t->flags&LONGER)
  2119 		fprintf(f, " longest");
  2120 	if (t->flags&SHORTER)
  2121 		fprintf(f, " shortest");
  2122 	if (t->flags&MIXED)
  2123 		fprintf(f, " hasmixed");
  2124 	if (t->flags&CAP)
  2125 		fprintf(f, " hascapture");
  2126 	if (t->flags&BACKR)
  2127 		fprintf(f, " hasbackref");
  2128 	if (!(t->flags&INUSE))
  2129 		fprintf(f, " UNUSED");
  2130 	if (t->subno != 0)
  2131 		fprintf(f, " (#%d)", t->subno);
  2132 	if (t->min != 1 || t->max != 1) {
  2133 		fprintf(f, " {%d,", t->min);
  2134 		if (t->max != INFINITY)
  2135 			fprintf(f, "%d", t->max);
  2136 		fprintf(f, "}");
  2137 	}
  2138 	if (nfapresent)
  2139 		fprintf(f, " %ld-%ld", (long)t->begin->no, (long)t->end->no);
  2140 	if (t->left != NULL)
  2141 		fprintf(f, " L:%s", stid(t->left, idbuf, sizeof(idbuf)));
  2142 	if (t->right != NULL)
  2143 		fprintf(f, " R:%s", stid(t->right, idbuf, sizeof(idbuf)));
  2144 	if (!NULLCNFA(t->cnfa)) {
  2145 		fprintf(f, "\n");
  2146 		dumpcnfa(&t->cnfa, f);
  2147 		fprintf(f, "\n");
  2148 	}
  2149 	if (t->left != NULL)
  2150 		stdump(t->left, f, nfapresent);
  2151 	if (t->right != NULL)
  2152 		stdump(t->right, f, nfapresent);
  2153 }
  2154 
  2155 /*
  2156  - stid - identify a subtree node for dumping
  2157  ^ static char *stid(struct subre *, char *, size_t);
  2158  */
  2159 static char *			/* points to buf or constant string */
  2160 stid(t, buf, bufsize)
  2161 struct subre *t;
  2162 char *buf;
  2163 size_t bufsize;
  2164 {
  2165 	/* big enough for hex int or decimal t->retry? */
  2166 	if (bufsize < sizeof(void*)*2 + 3 || bufsize < sizeof(t->retry)*3 + 1)
  2167 		return "unable";
  2168 	if (t->retry != 0)
  2169 		sprintf(buf, "%d", t->retry);
  2170 	else
  2171 		sprintf(buf, "%p", t);
  2172 	return buf;
  2173 }
  2174 
  2175 #include "regc_lex.c"
  2176 #include "regc_color.c"
  2177 #include "regc_nfa.c"
  2178 #include "regc_cvec.c"
  2179 #include "regc_locale.c"