Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 ** $Id: where.c,v 1.323 2008/10/01 08:43:03 danielk1977 Exp $
21 #include "sqliteInt.h"
24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size".
26 #define BMS (sizeof(Bitmask)*8)
29 ** Trace output macros
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
32 int sqlite3WhereTrace = 0;
35 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
37 # define WHERETRACE(X)
42 typedef struct WhereClause WhereClause;
43 typedef struct ExprMaskSet ExprMaskSet;
46 ** The query generator uses an array of instances of this structure to
47 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
48 ** clause subexpression is separated from the others by an AND operator.
50 ** All WhereTerms are collected into a single WhereClause structure.
51 ** The following identity holds:
53 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
55 ** When a term is of the form:
59 ** where X is a column name and <op> is one of certain operators,
60 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
61 ** cursor number and column number for X. WhereTerm.operator records
62 ** the <op> using a bitmask encoding defined by WO_xxx below. The
63 ** use of a bitmask encoding for the operator allows us to search
64 ** quickly for terms that match any of several different operators.
66 ** prereqRight and prereqAll record sets of cursor numbers,
67 ** but they do so indirectly. A single ExprMaskSet structure translates
68 ** cursor number into bits and the translated bit is stored in the prereq
69 ** fields. The translation is used in order to maximize the number of
70 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
71 ** spread out over the non-negative integers. For example, the cursor
72 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet
73 ** translates these sparse cursor numbers into consecutive integers
74 ** beginning with 0 in order to make the best possible use of the available
75 ** bits in the Bitmask. So, in the example above, the cursor numbers
76 ** would be mapped into integers 0 through 7.
78 typedef struct WhereTerm WhereTerm;
80 Expr *pExpr; /* Pointer to the subexpression */
81 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */
82 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */
83 i16 leftColumn; /* Column number of X in "X <op> <expr>" */
84 u16 eOperator; /* A WO_xx value describing <op> */
85 u8 flags; /* Bit flags. See below */
86 u8 nChild; /* Number of children that must disable us */
87 WhereClause *pWC; /* The clause this term is part of */
88 Bitmask prereqRight; /* Bitmask of tables used by pRight */
89 Bitmask prereqAll; /* Bitmask of tables referenced by p */
93 ** Allowed values of WhereTerm.flags
95 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
96 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
97 #define TERM_CODED 0x04 /* This term is already coded */
98 #define TERM_COPIED 0x08 /* Has a child */
99 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */
102 ** An instance of the following structure holds all information about a
103 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
106 Parse *pParse; /* The parser context */
107 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */
108 int nTerm; /* Number of terms */
109 int nSlot; /* Number of entries in a[] */
110 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
111 WhereTerm aStatic[10]; /* Initial static space for a[] */
115 ** An instance of the following structure keeps track of a mapping
116 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
118 ** The VDBE cursor numbers are small integers contained in
119 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
120 ** clause, the cursor numbers might not begin with 0 and they might
121 ** contain gaps in the numbering sequence. But we want to make maximum
122 ** use of the bits in our bitmasks. This structure provides a mapping
123 ** from the sparse cursor numbers into consecutive integers beginning
126 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
127 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
129 ** For example, if the WHERE clause expression used these VDBE
130 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure
131 ** would map those cursor numbers into bits 0 through 5.
133 ** Note that the mapping is not necessarily ordered. In the example
134 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
135 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
136 ** does not really matter. What is important is that sparse cursor
137 ** numbers all get mapped into bit numbers that begin with 0 and contain
141 int n; /* Number of assigned cursor values */
142 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */
147 ** Bitmasks for the operators that indices are able to exploit. An
148 ** OR-ed combination of these values can be used when searching for
149 ** terms in the where clause.
153 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
154 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
155 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
156 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
158 #define WO_ISNULL 128
161 ** Value for flags returned by bestIndex().
163 ** The least significant byte is reserved as a mask for WO_ values above.
164 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
165 ** But if the table is the right table of a left join, WhereLevel.flags
166 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as
167 ** the "op" parameter to findTerm when we are resolving equality constraints.
168 ** ISNULL constraints will then not be used on the right table of a left
169 ** join. Tickets #2177 and #2189.
171 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */
172 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */
173 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */
174 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */
175 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */
176 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */
177 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */
178 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */
179 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */
180 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */
181 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */
182 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */
185 ** Initialize a preallocated WhereClause structure.
187 static void whereClauseInit(
188 WhereClause *pWC, /* The WhereClause to be initialized */
189 Parse *pParse, /* The parsing context */
190 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */
192 pWC->pParse = pParse;
193 pWC->pMaskSet = pMaskSet;
195 pWC->nSlot = ArraySize(pWC->aStatic);
196 pWC->a = pWC->aStatic;
200 ** Deallocate a WhereClause structure. The WhereClause structure
201 ** itself is not freed. This routine is the inverse of whereClauseInit().
203 static void whereClauseClear(WhereClause *pWC){
206 sqlite3 *db = pWC->pParse->db;
207 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
208 if( a->flags & TERM_DYNAMIC ){
209 sqlite3ExprDelete(db, a->pExpr);
212 if( pWC->a!=pWC->aStatic ){
213 sqlite3DbFree(db, pWC->a);
218 ** Add a new entries to the WhereClause structure. Increase the allocated
219 ** space as necessary.
221 ** If the flags argument includes TERM_DYNAMIC, then responsibility
222 ** for freeing the expression p is assumed by the WhereClause object.
224 ** WARNING: This routine might reallocate the space used to store
225 ** WhereTerms. All pointers to WhereTerms should be invalidated after
226 ** calling this routine. Such pointers may be reinitialized by referencing
227 ** the pWC->a[] array.
229 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
232 if( pWC->nTerm>=pWC->nSlot ){
233 WhereTerm *pOld = pWC->a;
234 sqlite3 *db = pWC->pParse->db;
235 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
237 if( flags & TERM_DYNAMIC ){
238 sqlite3ExprDelete(db, p);
243 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
244 if( pOld!=pWC->aStatic ){
245 sqlite3DbFree(db, pOld);
249 pTerm = &pWC->a[idx = pWC->nTerm];
252 pTerm->flags = flags;
259 ** This routine identifies subexpressions in the WHERE clause where
260 ** each subexpression is separated by the AND operator or some other
261 ** operator specified in the op parameter. The WhereClause structure
262 ** is filled with pointers to subexpressions. For example:
264 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
265 ** \________/ \_______________/ \________________/
266 ** slot[0] slot[1] slot[2]
268 ** The original WHERE clause in pExpr is unaltered. All this routine
269 ** does is make slot[] entries point to substructure within pExpr.
271 ** In the previous sentence and in the diagram, "slot[]" refers to
272 ** the WhereClause.a[] array. This array grows as needed to contain
273 ** all terms of the WHERE clause.
275 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
276 if( pExpr==0 ) return;
278 whereClauseInsert(pWC, pExpr, 0);
280 whereSplit(pWC, pExpr->pLeft, op);
281 whereSplit(pWC, pExpr->pRight, op);
286 ** Initialize an expression mask set
288 #define initMaskSet(P) memset(P, 0, sizeof(*P))
291 ** Return the bitmask for the given cursor number. Return 0 if
292 ** iCursor is not in the set.
294 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
296 for(i=0; i<pMaskSet->n; i++){
297 if( pMaskSet->ix[i]==iCursor ){
298 return ((Bitmask)1)<<i;
305 ** Create a new mask for cursor iCursor.
307 ** There is one cursor per table in the FROM clause. The number of
308 ** tables in the FROM clause is limited by a test early in the
309 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
310 ** array will never overflow.
312 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
313 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
314 pMaskSet->ix[pMaskSet->n++] = iCursor;
318 ** This routine walks (recursively) an expression tree and generates
319 ** a bitmask indicating which tables are used in that expression
322 ** In order for this routine to work, the calling function must have
323 ** previously invoked sqlite3ResolveExprNames() on the expression. See
324 ** the header comment on that routine for additional information.
325 ** The sqlite3ResolveExprNames() routines looks for column names and
326 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
327 ** the VDBE cursor number of the table. This routine just has to
328 ** translate the cursor numbers into bitmask values and OR all
329 ** the bitmasks together.
331 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
332 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
333 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
336 if( p->op==TK_COLUMN ){
337 mask = getMask(pMaskSet, p->iTable);
340 mask = exprTableUsage(pMaskSet, p->pRight);
341 mask |= exprTableUsage(pMaskSet, p->pLeft);
342 mask |= exprListTableUsage(pMaskSet, p->pList);
343 mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
346 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
350 for(i=0; i<pList->nExpr; i++){
351 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
356 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
359 mask |= exprListTableUsage(pMaskSet, pS->pEList);
360 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
361 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
362 mask |= exprTableUsage(pMaskSet, pS->pWhere);
363 mask |= exprTableUsage(pMaskSet, pS->pHaving);
370 ** Return TRUE if the given operator is one of the operators that is
371 ** allowed for an indexable WHERE clause term. The allowed operators are
372 ** "=", "<", ">", "<=", ">=", and "IN".
374 static int allowedOp(int op){
375 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
376 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
377 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
378 assert( TK_GE==TK_EQ+4 );
379 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
383 ** Swap two objects of type T.
385 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
388 ** Commute a comparison operator. Expressions of the form "X op Y"
389 ** are converted into "Y op X".
391 ** If a collation sequence is associated with either the left or right
392 ** side of the comparison, it remains associated with the same side after
393 ** the commutation. So "Y collate NOCASE op X" becomes
394 ** "X collate NOCASE op Y". This is because any collation sequence on
395 ** the left hand side of a comparison overrides any collation sequence
396 ** attached to the right. For the same reason the EP_ExpCollate flag
399 static void exprCommute(Parse *pParse, Expr *pExpr){
400 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
401 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
402 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
403 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
404 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
405 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
406 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
407 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
408 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
409 if( pExpr->op>=TK_GT ){
410 assert( TK_LT==TK_GT+2 );
411 assert( TK_GE==TK_LE+2 );
412 assert( TK_GT>TK_EQ );
413 assert( TK_GT<TK_LE );
414 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
415 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
420 ** Translate from TK_xx operator to WO_xx bitmask.
422 static int operatorMask(int op){
424 assert( allowedOp(op) );
427 }else if( op==TK_ISNULL ){
430 c = WO_EQ<<(op-TK_EQ);
432 assert( op!=TK_ISNULL || c==WO_ISNULL );
433 assert( op!=TK_IN || c==WO_IN );
434 assert( op!=TK_EQ || c==WO_EQ );
435 assert( op!=TK_LT || c==WO_LT );
436 assert( op!=TK_LE || c==WO_LE );
437 assert( op!=TK_GT || c==WO_GT );
438 assert( op!=TK_GE || c==WO_GE );
443 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
444 ** where X is a reference to the iColumn of table iCur and <op> is one of
445 ** the WO_xx operator codes specified by the op parameter.
446 ** Return a pointer to the term. Return 0 if not found.
448 static WhereTerm *findTerm(
449 WhereClause *pWC, /* The WHERE clause to be searched */
450 int iCur, /* Cursor number of LHS */
451 int iColumn, /* Column number of LHS */
452 Bitmask notReady, /* RHS must not overlap with this mask */
453 u16 op, /* Mask of WO_xx values describing operator */
454 Index *pIdx /* Must be compatible with this index, if not NULL */
459 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
460 if( pTerm->leftCursor==iCur
461 && (pTerm->prereqRight & notReady)==0
462 && pTerm->leftColumn==iColumn
463 && (pTerm->eOperator & op)!=0
465 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
466 Expr *pX = pTerm->pExpr;
470 Parse *pParse = pWC->pParse;
472 idxaff = pIdx->pTable->aCol[iColumn].affinity;
473 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
475 /* Figure out the collation sequence required from an index for
476 ** it to be useful for optimising expression pX. Store this
477 ** value in variable pColl.
480 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
482 pColl = pParse->db->pDfltColl;
485 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
486 if( NEVER(j>=pIdx->nColumn) ) return 0;
488 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
496 /* Forward reference */
497 static void exprAnalyze(SrcList*, WhereClause*, int);
500 ** Call exprAnalyze on all terms in a WHERE clause.
504 static void exprAnalyzeAll(
505 SrcList *pTabList, /* the FROM clause */
506 WhereClause *pWC /* the WHERE clause to be analyzed */
509 for(i=pWC->nTerm-1; i>=0; i--){
510 exprAnalyze(pTabList, pWC, i);
514 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
516 ** Check to see if the given expression is a LIKE or GLOB operator that
517 ** can be optimized using inequality constraints. Return TRUE if it is
518 ** so and false if not.
520 ** In order for the operator to be optimizible, the RHS must be a string
521 ** literal that does not begin with a wildcard.
523 static int isLikeOrGlob(
524 Parse *pParse, /* Parsing and code generating context */
525 Expr *pExpr, /* Test this expression */
526 int *pnPattern, /* Number of non-wildcard prefix characters */
527 int *pisComplete, /* True if the only wildcard is % in the last character */
528 int *pnoCase /* True if uppercase is equivalent to lowercase */
531 Expr *pRight, *pLeft;
536 sqlite3 *db = pParse->db;
538 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
542 if( *pnoCase ) return 0;
544 pList = pExpr->pList;
545 pRight = pList->a[0].pExpr;
546 if( pRight->op!=TK_STRING
547 && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
550 pLeft = pList->a[1].pExpr;
551 if( pLeft->op!=TK_COLUMN ){
554 pColl = sqlite3ExprCollSeq(pParse, pLeft);
555 assert( pColl!=0 || pLeft->iColumn==-1 );
557 /* No collation is defined for the ROWID. Use the default. */
558 pColl = db->pDfltColl;
560 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
561 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
564 sqlite3DequoteExpr(db, pRight);
565 z = (char *)pRight->token.z;
568 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
570 if( cnt==0 || 255==(u8)z[cnt] ){
573 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
577 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
580 #ifndef SQLITE_OMIT_VIRTUALTABLE
582 ** Check to see if the given expression is of the form
586 ** If it is then return TRUE. If not, return FALSE.
588 static int isMatchOfColumn(
589 Expr *pExpr /* Test this expression */
593 if( pExpr->op!=TK_FUNCTION ){
596 if( pExpr->token.n!=5 ||
597 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
600 pList = pExpr->pList;
601 if( pList->nExpr!=2 ){
604 if( pList->a[1].pExpr->op != TK_COLUMN ){
609 #endif /* SQLITE_OMIT_VIRTUALTABLE */
612 ** If the pBase expression originated in the ON or USING clause of
613 ** a join, then transfer the appropriate markings over to derived.
615 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
616 pDerived->flags |= pBase->flags & EP_FromJoin;
617 pDerived->iRightJoinTable = pBase->iRightJoinTable;
620 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
622 ** Return TRUE if the given term of an OR clause can be converted
623 ** into an IN clause. The iCursor and iColumn define the left-hand
624 ** side of the IN clause.
626 ** The context is that we have multiple OR-connected equality terms
629 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ...
631 ** The pOrTerm input to this routine corresponds to a single term of
632 ** this OR clause. In order for the term to be a candidate for
633 ** conversion to an IN operator, the following must be true:
635 ** * The left-hand side of the term must be the column which
636 ** is identified by iCursor and iColumn.
638 ** * If the right-hand side is also a column, then the affinities
639 ** of both right and left sides must be such that no type
640 ** conversions are required on the right. (Ticket #2249)
642 ** If both of these conditions are true, then return true. Otherwise
645 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
646 int affLeft, affRight;
647 assert( pOrTerm->eOperator==WO_EQ );
648 if( pOrTerm->leftCursor!=iCursor ){
651 if( pOrTerm->leftColumn!=iColumn ){
654 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
658 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
659 if( affRight!=affLeft ){
666 ** Return true if the given term of an OR clause can be ignored during
667 ** a check to make sure all OR terms are candidates for optimization.
668 ** In other words, return true if a call to the orTermIsOptCandidate()
669 ** above returned false but it is not necessary to disqualify the
672 ** Suppose the original OR phrase was this:
674 ** a=4 OR a=11 OR a=b
676 ** During analysis, the third term gets flipped around and duplicate
677 ** so that we are left with this:
679 ** a=4 OR a=11 OR a=b OR b=a
681 ** Since the last two terms are duplicates, only one of them
682 ** has to qualify in order for the whole phrase to qualify. When
683 ** this routine is called, we know that pOrTerm did not qualify.
684 ** This routine merely checks to see if pOrTerm has a duplicate that
685 ** might qualify. If there is a duplicate that has not yet been
686 ** disqualified, then return true. If there are no duplicates, or
687 ** the duplicate has also been disqualified, return false.
689 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
690 if( pOrTerm->flags & TERM_COPIED ){
691 /* This is the original term. The duplicate is to the left had
692 ** has not yet been analyzed and thus has not yet been disqualified. */
695 if( (pOrTerm->flags & TERM_VIRTUAL)!=0
696 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
697 /* This is a duplicate term. The original qualified so this one
698 ** does not have to. */
701 /* This is either a singleton term or else it is a duplicate for
702 ** which the original did not qualify. Either way we are done for. */
705 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
708 ** The input to this routine is an WhereTerm structure with only the
709 ** "pExpr" field filled in. The job of this routine is to analyze the
710 ** subexpression and populate all the other fields of the WhereTerm
713 ** If the expression is of the form "<expr> <op> X" it gets commuted
714 ** to the standard form of "X <op> <expr>". If the expression is of
715 ** the form "X <op> Y" where both X and Y are columns, then the original
716 ** expression is unchanged and a new virtual expression of the form
717 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
719 static void exprAnalyze(
720 SrcList *pSrc, /* the FROM clause */
721 WhereClause *pWC, /* the WHERE clause */
722 int idxTerm /* Index of the term to be analyzed */
725 ExprMaskSet *pMaskSet;
729 Bitmask extraRight = 0;
734 Parse *pParse = pWC->pParse;
735 sqlite3 *db = pParse->db;
737 if( db->mallocFailed ){
740 pTerm = &pWC->a[idxTerm];
741 pMaskSet = pWC->pMaskSet;
742 pExpr = pTerm->pExpr;
743 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
746 assert( pExpr->pRight==0 );
747 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
748 | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
749 }else if( op==TK_ISNULL ){
750 pTerm->prereqRight = 0;
752 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
754 prereqAll = exprTableUsage(pMaskSet, pExpr);
755 if( ExprHasProperty(pExpr, EP_FromJoin) ){
756 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
758 extraRight = x-1; /* ON clause terms may not be used with an index
759 ** on left table of a LEFT JOIN. Ticket #3015 */
761 pTerm->prereqAll = prereqAll;
762 pTerm->leftCursor = -1;
764 pTerm->eOperator = 0;
765 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
766 Expr *pLeft = pExpr->pLeft;
767 Expr *pRight = pExpr->pRight;
768 if( pLeft->op==TK_COLUMN ){
769 pTerm->leftCursor = pLeft->iTable;
770 pTerm->leftColumn = pLeft->iColumn;
771 pTerm->eOperator = operatorMask(op);
773 if( pRight && pRight->op==TK_COLUMN ){
776 if( pTerm->leftCursor>=0 ){
778 pDup = sqlite3ExprDup(db, pExpr);
779 if( db->mallocFailed ){
780 sqlite3ExprDelete(db, pDup);
783 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
784 if( idxNew==0 ) return;
785 pNew = &pWC->a[idxNew];
786 pNew->iParent = idxTerm;
787 pTerm = &pWC->a[idxTerm];
789 pTerm->flags |= TERM_COPIED;
794 exprCommute(pParse, pDup);
796 pNew->leftCursor = pLeft->iTable;
797 pNew->leftColumn = pLeft->iColumn;
798 pNew->prereqRight = prereqLeft;
799 pNew->prereqAll = prereqAll;
800 pNew->eOperator = operatorMask(pDup->op);
804 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
805 /* If a term is the BETWEEN operator, create two new virtual terms
806 ** that define the range that the BETWEEN implements.
808 else if( pExpr->op==TK_BETWEEN ){
809 ExprList *pList = pExpr->pList;
811 static const u8 ops[] = {TK_GE, TK_LE};
813 assert( pList->nExpr==2 );
817 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
818 sqlite3ExprDup(db, pList->a[i].pExpr), 0);
819 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
820 exprAnalyze(pSrc, pWC, idxNew);
821 pTerm = &pWC->a[idxTerm];
822 pWC->a[idxNew].iParent = idxTerm;
826 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
828 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
829 /* Attempt to convert OR-connected terms into an IN operator so that
830 ** they can make use of indices. Example:
832 ** x = expr1 OR expr2 = x OR x = expr3
836 ** x IN (expr1,expr2,expr3)
838 ** This optimization must be omitted if OMIT_SUBQUERY is defined because
839 ** the compiler for the the IN operator is part of sub-queries.
841 else if( pExpr->op==TK_OR ){
844 int iColumn, iCursor;
848 assert( (pTerm->flags & TERM_DYNAMIC)==0 );
849 whereClauseInit(&sOr, pWC->pParse, pMaskSet);
850 whereSplit(&sOr, pExpr, TK_OR);
851 exprAnalyzeAll(pSrc, &sOr);
852 assert( sOr.nTerm>=2 );
854 if( db->mallocFailed ) goto or_not_possible;
856 assert( j<sOr.nTerm );
857 iColumn = sOr.a[j].leftColumn;
858 iCursor = sOr.a[j].leftCursor;
860 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
861 if( pOrTerm->eOperator!=WO_EQ ){
862 goto or_not_possible;
864 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
865 pOrTerm->flags |= TERM_OR_OK;
866 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
867 pOrTerm->flags &= ~TERM_OR_OK;
872 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
877 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){
878 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
879 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
880 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
881 pLeft = pOrTerm->pExpr->pLeft;
884 pDup = sqlite3ExprDup(db, pLeft);
885 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
888 transferJoinMarkings(pNew, pExpr);
890 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
891 exprAnalyze(pSrc, pWC, idxNew);
892 pTerm = &pWC->a[idxTerm];
893 pWC->a[idxNew].iParent = idxTerm;
896 sqlite3ExprListDelete(db, pList);
900 whereClauseClear(&sOr);
902 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
904 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
905 /* Add constraints to reduce the search space on a LIKE or GLOB
908 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
910 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
912 ** The last character of the prefix "abc" is incremented to form the
913 ** termination condition "abd".
915 if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) ){
916 Expr *pLeft, *pRight;
918 Expr *pNewExpr1, *pNewExpr2;
919 int idxNew1, idxNew2;
921 pLeft = pExpr->pList->a[1].pExpr;
922 pRight = pExpr->pList->a[0].pExpr;
923 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
925 sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
926 pStr1->token.n = nPattern;
927 pStr1->flags = EP_Dequoted;
929 pStr2 = sqlite3ExprDup(db, pStr1);
930 if( !db->mallocFailed ){
932 assert( pStr2->token.dyn );
933 pC = (u8*)&pStr2->token.z[nPattern-1];
936 if( c=='@' ) isComplete = 0;
937 c = sqlite3UpperToLower[c];
941 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
942 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
943 exprAnalyze(pSrc, pWC, idxNew1);
944 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
945 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
946 exprAnalyze(pSrc, pWC, idxNew2);
947 pTerm = &pWC->a[idxTerm];
949 pWC->a[idxNew1].iParent = idxTerm;
950 pWC->a[idxNew2].iParent = idxTerm;
954 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
956 #ifndef SQLITE_OMIT_VIRTUALTABLE
957 /* Add a WO_MATCH auxiliary term to the constraint set if the
958 ** current expression is of the form: column MATCH expr.
959 ** This information is used by the xBestIndex methods of
960 ** virtual tables. The native query optimizer does not attempt
961 ** to do anything with MATCH functions.
963 if( isMatchOfColumn(pExpr) ){
965 Expr *pRight, *pLeft;
967 Bitmask prereqColumn, prereqExpr;
969 pRight = pExpr->pList->a[0].pExpr;
970 pLeft = pExpr->pList->a[1].pExpr;
971 prereqExpr = exprTableUsage(pMaskSet, pRight);
972 prereqColumn = exprTableUsage(pMaskSet, pLeft);
973 if( (prereqExpr & prereqColumn)==0 ){
975 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
976 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
977 pNewTerm = &pWC->a[idxNew];
978 pNewTerm->prereqRight = prereqExpr;
979 pNewTerm->leftCursor = pLeft->iTable;
980 pNewTerm->leftColumn = pLeft->iColumn;
981 pNewTerm->eOperator = WO_MATCH;
982 pNewTerm->iParent = idxTerm;
983 pTerm = &pWC->a[idxTerm];
985 pTerm->flags |= TERM_COPIED;
986 pNewTerm->prereqAll = pTerm->prereqAll;
989 #endif /* SQLITE_OMIT_VIRTUALTABLE */
991 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
992 ** an index for tables to the left of the join.
994 pTerm->prereqRight |= extraRight;
998 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
999 ** a reference to any table other than the iBase table.
1001 static int referencesOtherTables(
1002 ExprList *pList, /* Search expressions in ths list */
1003 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
1004 int iFirst, /* Be searching with the iFirst-th expression */
1005 int iBase /* Ignore references to this table */
1007 Bitmask allowed = ~getMask(pMaskSet, iBase);
1008 while( iFirst<pList->nExpr ){
1009 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1018 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1019 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
1020 ** ORDER BY clause, this routine returns 0.
1022 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1023 ** left-most table in the FROM clause of that same SELECT statement and
1024 ** the table has a cursor number of "base". pIdx is an index on pTab.
1026 ** nEqCol is the number of columns of pIdx that are used as equality
1027 ** constraints. Any of these columns may be missing from the ORDER BY
1028 ** clause and the match can still be a success.
1030 ** All terms of the ORDER BY that match against the index must be either
1031 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1032 ** index do not need to satisfy this constraint.) The *pbRev value is
1033 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1034 ** the ORDER BY clause is all ASC.
1036 static int isSortingIndex(
1037 Parse *pParse, /* Parsing context */
1038 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */
1039 Index *pIdx, /* The index we are testing */
1040 int base, /* Cursor number for the table to be sorted */
1041 ExprList *pOrderBy, /* The ORDER BY clause */
1042 int nEqCol, /* Number of index columns with == constraints */
1043 int *pbRev /* Set to 1 if ORDER BY is DESC */
1045 int i, j; /* Loop counters */
1046 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
1047 int nTerm; /* Number of ORDER BY terms */
1048 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
1049 sqlite3 *db = pParse->db;
1051 assert( pOrderBy!=0 );
1052 nTerm = pOrderBy->nExpr;
1055 /* Match terms of the ORDER BY clause against columns of
1058 ** Note that indices have pIdx->nColumn regular columns plus
1059 ** one additional column containing the rowid. The rowid column
1060 ** of the index is also allowed to match against the ORDER BY
1063 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1064 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1065 CollSeq *pColl; /* The collating sequence of pExpr */
1066 int termSortOrder; /* Sort order for this term */
1067 int iColumn; /* The i-th column of the index. -1 for rowid */
1068 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1069 const char *zColl; /* Name of the collating sequence for i-th index term */
1071 pExpr = pTerm->pExpr;
1072 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1073 /* Can not use an index sort on anything that is not a column in the
1074 ** left-most table of the FROM clause */
1077 pColl = sqlite3ExprCollSeq(pParse, pExpr);
1079 pColl = db->pDfltColl;
1081 if( i<pIdx->nColumn ){
1082 iColumn = pIdx->aiColumn[i];
1083 if( iColumn==pIdx->pTable->iPKey ){
1086 iSortOrder = pIdx->aSortOrder[i];
1087 zColl = pIdx->azColl[i];
1091 zColl = pColl->zName;
1093 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1094 /* Term j of the ORDER BY clause does not match column i of the index */
1096 /* If an index column that is constrained by == fails to match an
1097 ** ORDER BY term, that is OK. Just ignore that column of the index
1100 }else if( i==pIdx->nColumn ){
1101 /* Index column i is the rowid. All other terms match. */
1104 /* If an index column fails to match and is not constrained by ==
1105 ** then the index cannot satisfy the ORDER BY constraint.
1110 assert( pIdx->aSortOrder!=0 );
1111 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1112 assert( iSortOrder==0 || iSortOrder==1 );
1113 termSortOrder = iSortOrder ^ pTerm->sortOrder;
1115 if( termSortOrder!=sortOrder ){
1116 /* Indices can only be used if all ORDER BY terms past the
1117 ** equality constraints are all either DESC or ASC. */
1121 sortOrder = termSortOrder;
1125 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1126 /* If the indexed column is the primary key and everything matches
1127 ** so far and none of the ORDER BY terms to the right reference other
1128 ** tables in the join, then we are assured that the index can be used
1129 ** to sort because the primary key is unique and so none of the other
1130 ** columns will make any difference
1136 *pbRev = sortOrder!=0;
1138 /* All terms of the ORDER BY clause are covered by this index so
1139 ** this index can be used for sorting. */
1142 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1143 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1144 /* All terms of this index match some prefix of the ORDER BY clause
1145 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1146 ** clause reference other tables in a join. If this is all true then
1147 ** the order by clause is superfluous. */
1154 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1155 ** by sorting in order of ROWID. Return true if so and set *pbRev to be
1156 ** true for reverse ROWID and false for forward ROWID order.
1158 static int sortableByRowid(
1159 int base, /* Cursor number for table to be sorted */
1160 ExprList *pOrderBy, /* The ORDER BY clause */
1161 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
1162 int *pbRev /* Set to 1 if ORDER BY is DESC */
1166 assert( pOrderBy!=0 );
1167 assert( pOrderBy->nExpr>0 );
1168 p = pOrderBy->a[0].pExpr;
1169 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1170 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1171 *pbRev = pOrderBy->a[0].sortOrder;
1178 ** Prepare a crude estimate of the logarithm of the input value.
1179 ** The results need not be exact. This is only used for estimating
1180 ** the total cost of performing operations with O(logN) or O(NlogN)
1181 ** complexity. Because N is just a guess, it is no great tragedy if
1182 ** logN is a little off.
1184 static double estLog(double N){
1195 ** Two routines for printing the content of an sqlite3_index_info
1196 ** structure. Used for testing and debugging only. If neither
1197 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1200 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1201 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1203 if( !sqlite3WhereTrace ) return;
1204 for(i=0; i<p->nConstraint; i++){
1205 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1207 p->aConstraint[i].iColumn,
1208 p->aConstraint[i].iTermOffset,
1209 p->aConstraint[i].op,
1210 p->aConstraint[i].usable);
1212 for(i=0; i<p->nOrderBy; i++){
1213 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1215 p->aOrderBy[i].iColumn,
1216 p->aOrderBy[i].desc);
1219 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1221 if( !sqlite3WhereTrace ) return;
1222 for(i=0; i<p->nConstraint; i++){
1223 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1225 p->aConstraintUsage[i].argvIndex,
1226 p->aConstraintUsage[i].omit);
1228 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1229 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1230 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1231 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1234 #define TRACE_IDX_INPUTS(A)
1235 #define TRACE_IDX_OUTPUTS(A)
1238 #ifndef SQLITE_OMIT_VIRTUALTABLE
1240 ** Compute the best index for a virtual table.
1242 ** The best index is computed by the xBestIndex method of the virtual
1243 ** table module. This routine is really just a wrapper that sets up
1244 ** the sqlite3_index_info structure that is used to communicate with
1247 ** In a join, this routine might be called multiple times for the
1248 ** same virtual table. The sqlite3_index_info structure is created
1249 ** and initialized on the first invocation and reused on all subsequent
1250 ** invocations. The sqlite3_index_info structure is also used when
1251 ** code is generated to access the virtual table. The whereInfoDelete()
1252 ** routine takes care of freeing the sqlite3_index_info structure after
1253 ** everybody has finished with it.
1255 static double bestVirtualIndex(
1256 Parse *pParse, /* The parsing context */
1257 WhereClause *pWC, /* The WHERE clause */
1258 struct SrcList_item *pSrc, /* The FROM clause term to search */
1259 Bitmask notReady, /* Mask of cursors that are not available */
1260 ExprList *pOrderBy, /* The order by clause */
1261 int orderByUsable, /* True if we can potential sort */
1262 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1264 Table *pTab = pSrc->pTab;
1265 sqlite3_vtab *pVtab = pTab->pVtab;
1266 sqlite3_index_info *pIdxInfo;
1267 struct sqlite3_index_constraint *pIdxCons;
1268 struct sqlite3_index_orderby *pIdxOrderBy;
1269 struct sqlite3_index_constraint_usage *pUsage;
1275 /* If the sqlite3_index_info structure has not been previously
1276 ** allocated and initialized for this virtual table, then allocate
1277 ** and initialize it now
1279 pIdxInfo = *ppIdxInfo;
1283 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
1285 /* Count the number of possible WHERE clause constraints referring
1286 ** to this virtual table */
1287 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1288 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1289 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1290 testcase( pTerm->eOperator==WO_IN );
1291 testcase( pTerm->eOperator==WO_ISNULL );
1292 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1296 /* If the ORDER BY clause contains only columns in the current
1297 ** virtual table then allocate space for the aOrderBy part of
1298 ** the sqlite3_index_info structure.
1302 for(i=0; i<pOrderBy->nExpr; i++){
1303 Expr *pExpr = pOrderBy->a[i].pExpr;
1304 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1306 if( i==pOrderBy->nExpr ){
1307 nOrderBy = pOrderBy->nExpr;
1311 /* Allocate the sqlite3_index_info structure
1313 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1314 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1315 + sizeof(*pIdxOrderBy)*nOrderBy );
1317 sqlite3ErrorMsg(pParse, "out of memory");
1320 *ppIdxInfo = pIdxInfo;
1322 /* Initialize the structure. The sqlite3_index_info structure contains
1323 ** many fields that are declared "const" to prevent xBestIndex from
1324 ** changing them. We have to do some funky casting in order to
1325 ** initialize those fields.
1327 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1328 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1329 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1330 *(int*)&pIdxInfo->nConstraint = nTerm;
1331 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1332 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1333 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1334 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1337 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1338 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1339 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1340 testcase( pTerm->eOperator==WO_IN );
1341 testcase( pTerm->eOperator==WO_ISNULL );
1342 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1343 pIdxCons[j].iColumn = pTerm->leftColumn;
1344 pIdxCons[j].iTermOffset = i;
1345 pIdxCons[j].op = pTerm->eOperator;
1346 /* The direct assignment in the previous line is possible only because
1347 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1348 ** following asserts verify this fact. */
1349 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1350 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1351 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1352 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1353 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1354 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1355 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1358 for(i=0; i<nOrderBy; i++){
1359 Expr *pExpr = pOrderBy->a[i].pExpr;
1360 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1361 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1365 /* At this point, the sqlite3_index_info structure that pIdxInfo points
1366 ** to will have been initialized, either during the current invocation or
1367 ** during some prior invocation. Now we just have to customize the
1368 ** details of pIdxInfo for the current invocation and pass it to
1372 /* The module name must be defined. Also, by this point there must
1373 ** be a pointer to an sqlite3_vtab structure. Otherwise
1374 ** sqlite3ViewGetColumnNames() would have picked up the error.
1376 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1379 if( pTab->pVtab==0 ){
1380 sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1381 pTab->azModuleArg[0], pTab->zName);
1386 /* Set the aConstraint[].usable fields and initialize all
1387 ** output variables to zero.
1389 ** aConstraint[].usable is true for constraints where the right-hand
1390 ** side contains only references to tables to the left of the current
1391 ** table. In other words, if the constraint is of the form:
1395 ** and we are evaluating a join, then the constraint on column is
1396 ** only valid if all tables referenced in expr occur to the left
1397 ** of the table containing column.
1399 ** The aConstraints[] array contains entries for all constraints
1400 ** on the current table. That way we only have to compute it once
1401 ** even though we might try to pick the best index multiple times.
1402 ** For each attempt at picking an index, the order of tables in the
1403 ** join might be different so we have to recompute the usable flag
1406 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1407 pUsage = pIdxInfo->aConstraintUsage;
1408 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1409 j = pIdxCons->iTermOffset;
1411 pIdxCons->usable = (pTerm->prereqRight & notReady)==0;
1413 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1414 if( pIdxInfo->needToFreeIdxStr ){
1415 sqlite3_free(pIdxInfo->idxStr);
1417 pIdxInfo->idxStr = 0;
1418 pIdxInfo->idxNum = 0;
1419 pIdxInfo->needToFreeIdxStr = 0;
1420 pIdxInfo->orderByConsumed = 0;
1421 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1422 nOrderBy = pIdxInfo->nOrderBy;
1423 if( pIdxInfo->nOrderBy && !orderByUsable ){
1424 *(int*)&pIdxInfo->nOrderBy = 0;
1427 (void)sqlite3SafetyOff(pParse->db);
1428 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1429 TRACE_IDX_INPUTS(pIdxInfo);
1430 rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo);
1431 TRACE_IDX_OUTPUTS(pIdxInfo);
1432 (void)sqlite3SafetyOn(pParse->db);
1434 if( rc!=SQLITE_OK ){
1435 if( rc==SQLITE_NOMEM ){
1436 pParse->db->mallocFailed = 1;
1437 }else if( !pVtab->zErrMsg ){
1438 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1440 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1443 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
1446 for(i=0; i<pIdxInfo->nConstraint; i++){
1447 if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
1448 sqlite3ErrorMsg(pParse,
1449 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1454 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1455 return pIdxInfo->estimatedCost;
1457 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1460 ** Find the best index for accessing a particular table. Return a pointer
1461 ** to the index, flags that describe how the index should be used, the
1462 ** number of equality constraints, and the "cost" for this index.
1464 ** The lowest cost index wins. The cost is an estimate of the amount of
1465 ** CPU and disk I/O need to process the request using the selected index.
1466 ** Factors that influence cost include:
1468 ** * The estimated number of rows that will be retrieved. (The
1469 ** fewer the better.)
1471 ** * Whether or not sorting must occur.
1473 ** * Whether or not there must be separate lookups in the
1474 ** index and in the main table.
1477 static double bestIndex(
1478 Parse *pParse, /* The parsing context */
1479 WhereClause *pWC, /* The WHERE clause */
1480 struct SrcList_item *pSrc, /* The FROM clause term to search */
1481 Bitmask notReady, /* Mask of cursors that are not available */
1482 ExprList *pOrderBy, /* The order by clause */
1483 Index **ppIndex, /* Make *ppIndex point to the best index */
1484 int *pFlags, /* Put flags describing this choice in *pFlags */
1485 int *pnEq /* Put the number of == or IN constraints here */
1488 Index *bestIdx = 0; /* Index that gives the lowest cost */
1489 double lowestCost; /* The cost of using bestIdx */
1490 int bestFlags = 0; /* Flags associated with bestIdx */
1491 int bestNEq = 0; /* Best value for nEq */
1492 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1493 Index *pProbe; /* An index we are evaluating */
1494 int rev; /* True to scan in reverse order */
1495 int flags; /* Flags associated with pProbe */
1496 int nEq; /* Number of == or IN constraints */
1497 int eqTermMask; /* Mask of valid equality operators */
1498 double cost; /* Cost of using pProbe */
1500 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady));
1501 lowestCost = SQLITE_BIG_DBL;
1502 pProbe = pSrc->pTab->pIndex;
1504 /* If the table has no indices and there are no terms in the where
1505 ** clause that refer to the ROWID, then we will never be able to do
1506 ** anything other than a full table scan on this table. We might as
1507 ** well put it first in the join order. That way, perhaps it can be
1508 ** referenced by other tables in the join.
1511 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1512 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1519 /* Check for a rowid=EXPR or rowid IN (...) constraints
1521 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1525 bestFlags = WHERE_ROWID_EQ;
1526 if( pTerm->eOperator & WO_EQ ){
1527 /* Rowid== is always the best pick. Look no further. Because only
1528 ** a single row is generated, output is always in sorted order */
1529 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1531 WHERETRACE(("... best is rowid\n"));
1533 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1534 /* Rowid IN (LIST): cost is NlogN where N is the number of list
1536 lowestCost = pExpr->pList->nExpr;
1537 lowestCost *= estLog(lowestCost);
1539 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1540 ** in the result of the inner select. We have no way to estimate
1541 ** that value so make a wild guess. */
1544 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
1547 /* Estimate the cost of a table scan. If we do not know how many
1548 ** entries are in the table, use 1 million as a guess.
1550 cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1551 WHERETRACE(("... table scan base cost: %.9g\n", cost));
1552 flags = WHERE_ROWID_RANGE;
1554 /* Check for constraints on a range of rowids in a table scan.
1556 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1558 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1559 flags |= WHERE_TOP_LIMIT;
1560 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */
1562 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1563 flags |= WHERE_BTM_LIMIT;
1564 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */
1566 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
1571 /* If the table scan does not satisfy the ORDER BY clause, increase
1572 ** the cost by NlogN to cover the expense of sorting. */
1574 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1575 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1577 flags |= WHERE_REVERSE;
1580 cost += cost*estLog(cost);
1581 WHERETRACE(("... sorting increases cost to %.9g\n", cost));
1584 if( cost<lowestCost ){
1589 /* If the pSrc table is the right table of a LEFT JOIN then we may not
1590 ** use an index to satisfy IS NULL constraints on that table. This is
1591 ** because columns might end up being NULL if the table does not match -
1592 ** a circumstance which the index cannot help us discover. Ticket #2177.
1594 if( (pSrc->jointype & JT_LEFT)!=0 ){
1595 eqTermMask = WO_EQ|WO_IN;
1597 eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1600 /* Look at each index.
1602 for(; pProbe; pProbe=pProbe->pNext){
1603 int i; /* Loop counter */
1604 double inMultiplier = 1;
1606 WHERETRACE(("... index %s:\n", pProbe->zName));
1608 /* Count the number of columns in the index that are satisfied
1609 ** by x=EXPR constraints or x IN (...) constraints.
1612 for(i=0; i<pProbe->nColumn; i++){
1613 int j = pProbe->aiColumn[i];
1614 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1615 if( pTerm==0 ) break;
1616 flags |= WHERE_COLUMN_EQ;
1617 if( pTerm->eOperator & WO_IN ){
1618 Expr *pExpr = pTerm->pExpr;
1619 flags |= WHERE_COLUMN_IN;
1620 if( pExpr->pSelect!=0 ){
1622 }else if( ALWAYS(pExpr->pList) ){
1623 inMultiplier *= pExpr->pList->nExpr + 1;
1627 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1629 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1630 && nEq==pProbe->nColumn ){
1631 flags |= WHERE_UNIQUE;
1633 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
1635 /* Look for range constraints
1637 if( nEq<pProbe->nColumn ){
1638 int j = pProbe->aiColumn[nEq];
1639 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1641 flags |= WHERE_COLUMN_RANGE;
1642 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1643 flags |= WHERE_TOP_LIMIT;
1646 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1647 flags |= WHERE_BTM_LIMIT;
1650 WHERETRACE(("...... range reduces cost to %.9g\n", cost));
1654 /* Add the additional cost of sorting if that is a factor.
1657 if( (flags & WHERE_COLUMN_IN)==0 &&
1658 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
1660 flags = WHERE_COLUMN_RANGE;
1662 flags |= WHERE_ORDERBY;
1664 flags |= WHERE_REVERSE;
1667 cost += cost*estLog(cost);
1668 WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
1672 /* Check to see if we can get away with using just the index without
1673 ** ever reading the table. If that is the case, then halve the
1674 ** cost of this index.
1676 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1677 Bitmask m = pSrc->colUsed;
1679 for(j=0; j<pProbe->nColumn; j++){
1680 int x = pProbe->aiColumn[j];
1682 m &= ~(((Bitmask)1)<<x);
1686 flags |= WHERE_IDX_ONLY;
1688 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
1692 /* If this index has achieved the lowest cost so far, then use it.
1694 if( flags && cost < lowestCost ){
1702 /* Report the best result
1705 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1706 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1707 *pFlags = bestFlags | eqTermMask;
1714 ** Disable a term in the WHERE clause. Except, do not disable the term
1715 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1716 ** or USING clause of that join.
1718 ** Consider the term t2.z='ok' in the following queries:
1720 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1721 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1722 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1724 ** The t2.z='ok' is disabled in the in (2) because it originates
1725 ** in the ON clause. The term is disabled in (3) because it is not part
1726 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
1728 ** Disabling a term causes that term to not be tested in the inner loop
1729 ** of the join. Disabling is an optimization. When terms are satisfied
1730 ** by indices, we disable them to prevent redundant tests in the inner
1731 ** loop. We would get the correct results if nothing were ever disabled,
1732 ** but joins might run a little slower. The trick is to disable as much
1733 ** as we can without disabling too much. If we disabled in (1), we'd get
1734 ** the wrong answer. See ticket #813.
1736 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1738 && ALWAYS((pTerm->flags & TERM_CODED)==0)
1739 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1741 pTerm->flags |= TERM_CODED;
1742 if( pTerm->iParent>=0 ){
1743 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1744 if( (--pOther->nChild)==0 ){
1745 disableTerm(pLevel, pOther);
1752 ** Apply the affinities associated with the first n columns of index
1753 ** pIdx to the values in the n registers starting at base.
1755 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
1757 Vdbe *v = pParse->pVdbe;
1759 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
1760 sqlite3IndexAffinityStr(v, pIdx);
1761 sqlite3ExprCacheAffinityChange(pParse, base, n);
1767 ** Generate code for a single equality term of the WHERE clause. An equality
1768 ** term can be either X=expr or X IN (...). pTerm is the term to be
1771 ** The current value for the constraint is left in register iReg.
1773 ** For a constraint of the form X=expr, the expression is evaluated and its
1774 ** result is left on the stack. For constraints of the form X IN (...)
1775 ** this routine sets up a loop that will iterate over all values of X.
1777 static int codeEqualityTerm(
1778 Parse *pParse, /* The parsing context */
1779 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
1780 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
1781 int iTarget /* Attempt to leave results in this register */
1783 Expr *pX = pTerm->pExpr;
1784 Vdbe *v = pParse->pVdbe;
1785 int iReg; /* Register holding results */
1787 assert( iTarget>0 );
1788 if( pX->op==TK_EQ ){
1789 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
1790 }else if( pX->op==TK_ISNULL ){
1792 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
1793 #ifndef SQLITE_OMIT_SUBQUERY
1799 assert( pX->op==TK_IN );
1801 eType = sqlite3FindInIndex(pParse, pX, 0);
1803 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
1804 VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
1805 if( pLevel->nIn==0 ){
1806 pLevel->nxt = sqlite3VdbeMakeLabel(v);
1809 pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
1810 sizeof(pLevel->aInLoop[0])*pLevel->nIn);
1811 pIn = pLevel->aInLoop;
1813 pIn += pLevel->nIn - 1;
1815 if( eType==IN_INDEX_ROWID ){
1816 pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
1818 pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
1820 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
1826 disableTerm(pLevel, pTerm);
1831 ** Generate code that will evaluate all == and IN constraints for an
1832 ** index. The values for all constraints are left on the stack.
1834 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1835 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
1836 ** The index has as many as three equality constraints, but in this
1837 ** example, the third "c" value is an inequality. So only two
1838 ** constraints are coded. This routine will generate code to evaluate
1839 ** a==5 and b IN (1,2,3). The current values for a and b will be left
1840 ** on the stack - a is the deepest and b the shallowest.
1842 ** In the example above nEq==2. But this subroutine works for any value
1843 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
1844 ** The only thing it does is allocate the pLevel->iMem memory cell.
1846 ** This routine always allocates at least one memory cell and puts
1847 ** the address of that memory cell in pLevel->iMem. The code that
1848 ** calls this routine will use pLevel->iMem to store the termination
1849 ** key value of the loop. If one or more IN operators appear, then
1850 ** this routine allocates an additional nEq memory cells for internal
1853 static int codeAllEqualityTerms(
1854 Parse *pParse, /* Parsing context */
1855 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
1856 WhereClause *pWC, /* The WHERE clause */
1857 Bitmask notReady, /* Which parts of FROM have not yet been coded */
1858 int nExtraReg /* Number of extra registers to allocate */
1860 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */
1861 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */
1862 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */
1863 int iCur = pLevel->iTabCur; /* The cursor of the table */
1864 WhereTerm *pTerm; /* A single constraint term */
1865 int j; /* Loop counter */
1866 int regBase; /* Base register */
1868 /* Figure out how many memory cells we will need then allocate them.
1869 ** We always need at least one used to store the loop terminator
1870 ** value. If there are IN operators we'll need one for each == or
1873 pLevel->iMem = pParse->nMem + 1;
1874 regBase = pParse->nMem + 2;
1875 pParse->nMem += pLevel->nEq + 2 + nExtraReg;
1877 /* Evaluate the equality constraints
1879 assert( pIdx->nColumn>=nEq );
1880 for(j=0; j<nEq; j++){
1882 int k = pIdx->aiColumn[j];
1883 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
1884 if( NEVER(pTerm==0) ) break;
1885 assert( (pTerm->flags & TERM_CODED)==0 );
1886 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
1887 if( r1!=regBase+j ){
1888 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
1890 testcase( pTerm->eOperator & WO_ISNULL );
1891 testcase( pTerm->eOperator & WO_IN );
1892 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
1893 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
1899 #if defined(SQLITE_TEST)
1901 ** The following variable holds a text description of query plan generated
1902 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
1903 ** overwrites the previous. This information is used for testing and
1906 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
1907 static int nQPlan = 0; /* Next free slow in _query_plan[] */
1909 #endif /* SQLITE_TEST */
1913 ** Free a WhereInfo structure
1915 static void whereInfoFree(WhereInfo *pWInfo){
1918 sqlite3 *db = pWInfo->pParse->db;
1919 for(i=0; i<pWInfo->nLevel; i++){
1920 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1922 assert( pInfo->needToFreeIdxStr==0 );
1923 sqlite3DbFree(db, pInfo);
1926 sqlite3DbFree(db, pWInfo);
1932 ** Generate the beginning of the loop used for WHERE clause processing.
1933 ** The return value is a pointer to an opaque structure that contains
1934 ** information needed to terminate the loop. Later, the calling routine
1935 ** should invoke sqlite3WhereEnd() with the return value of this function
1936 ** in order to complete the WHERE clause processing.
1938 ** If an error occurs, this routine returns NULL.
1940 ** The basic idea is to do a nested loop, one loop for each table in
1941 ** the FROM clause of a select. (INSERT and UPDATE statements are the
1942 ** same as a SELECT with only a single table in the FROM clause.) For
1943 ** example, if the SQL is this:
1945 ** SELECT * FROM t1, t2, t3 WHERE ...;
1947 ** Then the code generated is conceptually like the following:
1949 ** foreach row1 in t1 do \ Code generated
1950 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
1951 ** foreach row3 in t3 do /
1953 ** end \ Code generated
1954 ** end |-- by sqlite3WhereEnd()
1957 ** Note that the loops might not be nested in the order in which they
1958 ** appear in the FROM clause if a different order is better able to make
1959 ** use of indices. Note also that when the IN operator appears in
1960 ** the WHERE clause, it might result in additional nested loops for
1961 ** scanning through all values on the right-hand side of the IN.
1963 ** There are Btree cursors associated with each table. t1 uses cursor
1964 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
1965 ** And so forth. This routine generates code to open those VDBE cursors
1966 ** and sqlite3WhereEnd() generates the code to close them.
1968 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1969 ** in pTabList pointing at their appropriate entries. The [...] code
1970 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1971 ** data from the various tables of the loop.
1973 ** If the WHERE clause is empty, the foreach loops must each scan their
1974 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
1975 ** the tables have indices and there are terms in the WHERE clause that
1976 ** refer to those indices, a complete table scan can be avoided and the
1977 ** code will run much faster. Most of the work of this routine is checking
1978 ** to see if there are indices that can be used to speed up the loop.
1980 ** Terms of the WHERE clause are also used to limit which rows actually
1981 ** make it to the "..." in the middle of the loop. After each "foreach",
1982 ** terms of the WHERE clause that use only terms in that loop and outer
1983 ** loops are evaluated and if false a jump is made around all subsequent
1984 ** inner loops (or around the "..." if the test occurs within the inner-
1989 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1991 ** foreach row1 in t1 do
1993 ** foreach row2 in t2 do
1999 ** move the row2 cursor to a null row
2004 ** ORDER BY CLAUSE PROCESSING
2006 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
2007 ** if there is one. If there is no ORDER BY clause or if this routine
2008 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
2010 ** If an index can be used so that the natural output order of the table
2011 ** scan is correct for the ORDER BY clause, then that index is used and
2012 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
2013 ** unnecessary sort of the result set if an index appropriate for the
2014 ** ORDER BY clause already exists.
2016 ** If the where clause loops cannot be arranged to provide the correct
2017 ** output order, then the *ppOrderBy is unchanged.
2019 WhereInfo *sqlite3WhereBegin(
2020 Parse *pParse, /* The parser context */
2021 SrcList *pTabList, /* A list of all tables to be scanned */
2022 Expr *pWhere, /* The WHERE clause */
2023 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
2024 u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */
2026 int i; /* Loop counter */
2027 WhereInfo *pWInfo; /* Will become the return value of this function */
2028 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
2029 int brk, cont = 0; /* Addresses used during code generation */
2030 Bitmask notReady; /* Cursors that are not yet positioned */
2031 WhereTerm *pTerm; /* A single term in the WHERE clause */
2032 ExprMaskSet maskSet; /* The expression mask set */
2033 WhereClause wc; /* The WHERE clause is divided into these terms */
2034 struct SrcList_item *pTabItem; /* A single entry from pTabList */
2035 WhereLevel *pLevel; /* A single level in the pWInfo list */
2036 int iFrom; /* First unused FROM clause element */
2037 int andFlags; /* AND-ed combination of all wc.a[].flags */
2038 sqlite3 *db; /* Database connection */
2039 ExprList *pOrderBy = 0;
2041 /* The number of tables in the FROM clause is limited by the number of
2042 ** bits in a Bitmask
2044 if( pTabList->nSrc>BMS ){
2045 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
2050 pOrderBy = *ppOrderBy;
2053 /* Split the WHERE clause into separate subexpressions where each
2054 ** subexpression is separated by an AND operator.
2056 initMaskSet(&maskSet);
2057 whereClauseInit(&wc, pParse, &maskSet);
2058 sqlite3ExprCodeConstants(pParse, pWhere);
2059 whereSplit(&wc, pWhere, TK_AND);
2061 /* Allocate and initialize the WhereInfo structure that will become the
2065 pWInfo = sqlite3DbMallocZero(db,
2066 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
2067 if( db->mallocFailed ){
2068 goto whereBeginNoMem;
2070 pWInfo->nLevel = pTabList->nSrc;
2071 pWInfo->pParse = pParse;
2072 pWInfo->pTabList = pTabList;
2073 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
2075 /* Special case: a WHERE clause that is constant. Evaluate the
2076 ** expression and either jump over all of the code or fall thru.
2078 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
2079 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
2083 /* Assign a bit from the bitmask to every term in the FROM clause.
2085 ** When assigning bitmask values to FROM clause cursors, it must be
2086 ** the case that if X is the bitmask for the N-th FROM clause term then
2087 ** the bitmask for all FROM clause terms to the left of the N-th term
2088 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
2089 ** its Expr.iRightJoinTable value to find the bitmask of the right table
2090 ** of the join. Subtracting one from the right table bitmask gives a
2091 ** bitmask for all tables to the left of the join. Knowing the bitmask
2092 ** for all tables to the left of a left join is important. Ticket #3015.
2094 for(i=0; i<pTabList->nSrc; i++){
2095 createMask(&maskSet, pTabList->a[i].iCursor);
2099 Bitmask toTheLeft = 0;
2100 for(i=0; i<pTabList->nSrc; i++){
2101 Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor);
2102 assert( (m-1)==toTheLeft );
2108 /* Analyze all of the subexpressions. Note that exprAnalyze() might
2109 ** add new virtual terms onto the end of the WHERE clause. We do not
2110 ** want to analyze these virtual terms, so start analyzing at the end
2111 ** and work forward so that the added virtual terms are never processed.
2113 exprAnalyzeAll(pTabList, &wc);
2114 if( db->mallocFailed ){
2115 goto whereBeginNoMem;
2118 /* Chose the best index to use for each table in the FROM clause.
2120 ** This loop fills in the following fields:
2122 ** pWInfo->a[].pIdx The index to use for this level of the loop.
2123 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx
2124 ** pWInfo->a[].nEq The number of == and IN constraints
2125 ** pWInfo->a[].iFrom When term of the FROM clause is being coded
2126 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
2127 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
2129 ** This loop also figures out the nesting order of tables in the FROM
2132 notReady = ~(Bitmask)0;
2133 pTabItem = pTabList->a;
2136 WHERETRACE(("*** Optimizer Start ***\n"));
2137 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2138 Index *pIdx; /* Index for FROM table at pTabItem */
2139 int flags; /* Flags asssociated with pIdx */
2140 int nEq; /* Number of == or IN constraints */
2141 double cost; /* The cost for pIdx */
2142 int j; /* For looping over FROM tables */
2143 Index *pBest = 0; /* The best index seen so far */
2144 int bestFlags = 0; /* Flags associated with pBest */
2145 int bestNEq = 0; /* nEq associated with pBest */
2146 double lowestCost; /* Cost of the pBest */
2147 int bestJ = 0; /* The value of j */
2148 Bitmask m; /* Bitmask value for j or bestJ */
2149 int once = 0; /* True when first table is seen */
2150 sqlite3_index_info *pIndex; /* Current virtual index */
2152 lowestCost = SQLITE_BIG_DBL;
2153 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
2154 int doNotReorder; /* True if this table should not be reordered */
2156 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
2157 if( once && doNotReorder ) break;
2158 m = getMask(&maskSet, pTabItem->iCursor);
2159 if( (m & notReady)==0 ){
2160 if( j==iFrom ) iFrom++;
2163 assert( pTabItem->pTab );
2164 #ifndef SQLITE_OMIT_VIRTUALTABLE
2165 if( IsVirtual(pTabItem->pTab) ){
2166 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
2167 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
2168 ppOrderBy ? *ppOrderBy : 0, i==0,
2170 flags = WHERE_VIRTUALTABLE;
2171 pIndex = *ppIdxInfo;
2172 if( pIndex && pIndex->orderByConsumed ){
2173 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
2177 if( (SQLITE_BIG_DBL/2.0)<cost ){
2178 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2179 ** inital value of lowestCost in this loop. If it is, then
2180 ** the (cost<lowestCost) test below will never be true and
2181 ** pLevel->pBestIdx never set.
2183 cost = (SQLITE_BIG_DBL/2.0);
2188 cost = bestIndex(pParse, &wc, pTabItem, notReady,
2189 (i==0 && ppOrderBy) ? *ppOrderBy : 0,
2190 &pIdx, &flags, &nEq);
2193 if( cost<lowestCost ){
2200 pLevel->pBestIdx = pIndex;
2202 if( doNotReorder ) break;
2204 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
2206 if( (bestFlags & WHERE_ORDERBY)!=0 ){
2209 andFlags &= bestFlags;
2210 pLevel->flags = bestFlags;
2211 pLevel->pIdx = pBest;
2212 pLevel->nEq = bestNEq;
2213 pLevel->aInLoop = 0;
2216 pLevel->iIdxCur = pParse->nTab++;
2218 pLevel->iIdxCur = -1;
2220 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
2221 pLevel->iFrom = bestJ;
2223 WHERETRACE(("*** Optimizer Finished ***\n"));
2225 /* If the total query only selects a single row, then the ORDER BY
2226 ** clause is irrelevant.
2228 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
2232 /* If the caller is an UPDATE or DELETE statement that is requesting
2233 ** to use a one-pass algorithm, determine if this is appropriate.
2234 ** The one-pass algorithm only works if the WHERE clause constraints
2235 ** the statement to update a single row.
2237 assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
2238 if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
2239 pWInfo->okOnePass = 1;
2240 pWInfo->a[0].flags &= ~WHERE_IDX_ONLY;
2243 /* Open all tables in the pTabList and any indices selected for
2244 ** searching those tables.
2246 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
2247 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2248 Table *pTab; /* Table to open */
2249 Index *pIx; /* Index used to access pTab (if any) */
2250 int iDb; /* Index of database containing table/index */
2251 int iIdxCur = pLevel->iIdxCur;
2253 #ifndef SQLITE_OMIT_EXPLAIN
2254 if( pParse->explain==2 ){
2256 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2257 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
2258 if( pItem->zAlias ){
2259 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
2261 if( (pIx = pLevel->pIdx)!=0 ){
2262 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName);
2263 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2264 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
2266 #ifndef SQLITE_OMIT_VIRTUALTABLE
2267 else if( pLevel->pBestIdx ){
2268 sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2269 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
2270 pBestIdx->idxNum, pBestIdx->idxStr);
2273 if( pLevel->flags & WHERE_ORDERBY ){
2274 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
2276 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
2278 #endif /* SQLITE_OMIT_EXPLAIN */
2279 pTabItem = &pTabList->a[pLevel->iFrom];
2280 pTab = pTabItem->pTab;
2281 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2282 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
2283 #ifndef SQLITE_OMIT_VIRTUALTABLE
2284 if( pLevel->pBestIdx ){
2285 int iCur = pTabItem->iCursor;
2286 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
2287 (const char*)pTab->pVtab, P4_VTAB);
2290 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2291 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
2292 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
2293 if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){
2294 Bitmask b = pTabItem->colUsed;
2296 for(; b; b=b>>1, n++){}
2297 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n);
2298 assert( n<=pTab->nCol );
2301 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2303 pLevel->iTabCur = pTabItem->iCursor;
2304 if( (pIx = pLevel->pIdx)!=0 ){
2305 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2306 assert( pIx->pSchema==pTab->pSchema );
2307 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1);
2308 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
2309 (char*)pKey, P4_KEYINFO_HANDOFF);
2310 VdbeComment((v, "%s", pIx->zName));
2312 sqlite3CodeVerifySchema(pParse, iDb);
2314 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2316 /* Generate the code to do the search. Each iteration of the for
2317 ** loop below generates code for a single nested loop of the VM
2320 notReady = ~(Bitmask)0;
2321 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2323 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */
2324 Index *pIdx; /* The index we will be using */
2325 int nxt; /* Where to jump to continue with the next IN case */
2326 int iIdxCur; /* The VDBE cursor for the index */
2327 int omitTable; /* True if we use the index only */
2328 int bRev; /* True if we need to scan in reverse order */
2330 pTabItem = &pTabList->a[pLevel->iFrom];
2331 iCur = pTabItem->iCursor;
2332 pIdx = pLevel->pIdx;
2333 iIdxCur = pLevel->iIdxCur;
2334 bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2335 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2337 /* Create labels for the "break" and "continue" instructions
2338 ** for the current loop. Jump to brk to break out of a loop.
2339 ** Jump to cont to go immediately to the next iteration of the
2342 ** When there is an IN operator, we also have a "nxt" label that
2343 ** means to continue with the next IN value combination. When
2344 ** there are no IN operators in the constraints, the "nxt" label
2345 ** is the same as "brk".
2347 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
2348 cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2350 /* If this is the right table of a LEFT OUTER JOIN, allocate and
2351 ** initialize a memory cell that records if this table matches any
2352 ** row of the left table of the join.
2354 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2355 pLevel->iLeftJoin = ++pParse->nMem;
2356 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2357 VdbeComment((v, "init LEFT JOIN no-match flag"));
2360 #ifndef SQLITE_OMIT_VIRTUALTABLE
2361 if( pLevel->pBestIdx ){
2362 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
2363 ** to access the data.
2366 int iReg; /* P3 Value for OP_VFilter */
2367 sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2368 int nConstraint = pBestIdx->nConstraint;
2369 struct sqlite3_index_constraint_usage *aUsage =
2370 pBestIdx->aConstraintUsage;
2371 const struct sqlite3_index_constraint *aConstraint =
2372 pBestIdx->aConstraint;
2374 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
2375 pParse->disableColCache++;
2376 for(j=1; j<=nConstraint; j++){
2378 for(k=0; k<nConstraint; k++){
2379 if( aUsage[k].argvIndex==j ){
2380 int iTerm = aConstraint[k].iTermOffset;
2381 assert( pParse->disableColCache );
2382 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
2386 if( k==nConstraint ) break;
2388 assert( pParse->disableColCache );
2389 pParse->disableColCache--;
2390 sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
2391 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
2392 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
2393 pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
2394 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
2395 pBestIdx->needToFreeIdxStr = 0;
2396 for(j=0; j<nConstraint; j++){
2397 if( aUsage[j].omit ){
2398 int iTerm = aConstraint[j].iTermOffset;
2399 disableTerm(pLevel, &wc.a[iTerm]);
2402 pLevel->op = OP_VNext;
2404 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2406 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2408 if( pLevel->flags & WHERE_ROWID_EQ ){
2409 /* Case 1: We can directly reference a single row using an
2410 ** equality comparison against the ROWID field. Or
2411 ** we reference multiple rows using a "rowid IN (...)"
2415 int rtmp = sqlite3GetTempReg(pParse);
2416 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2418 assert( pTerm->pExpr!=0 );
2419 assert( pTerm->leftCursor==iCur );
2420 assert( omitTable==0 );
2421 r1 = codeEqualityTerm(pParse, pTerm, pLevel, rtmp);
2423 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt);
2424 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
2425 sqlite3ReleaseTempReg(pParse, rtmp);
2426 VdbeComment((v, "pk"));
2427 pLevel->op = OP_Noop;
2428 }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2429 /* Case 2: We have an inequality comparison against the ROWID field.
2431 int testOp = OP_Noop;
2433 WhereTerm *pStart, *pEnd;
2435 assert( omitTable==0 );
2436 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2437 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2448 assert( pStart->leftCursor==iCur );
2449 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1);
2450 sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk,
2451 pX->op==TK_LE || pX->op==TK_GT);
2452 sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
2453 VdbeComment((v, "pk"));
2454 sqlite3ReleaseTempReg(pParse, regFree1);
2455 disableTerm(pLevel, pStart);
2457 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2463 assert( pEnd->leftCursor==iCur );
2464 pLevel->iMem = ++pParse->nMem;
2465 sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
2466 if( pX->op==TK_LT || pX->op==TK_GT ){
2467 testOp = bRev ? OP_Le : OP_Ge;
2469 testOp = bRev ? OP_Lt : OP_Gt;
2471 disableTerm(pLevel, pEnd);
2473 start = sqlite3VdbeCurrentAddr(v);
2474 pLevel->op = bRev ? OP_Prev : OP_Next;
2477 if( testOp!=OP_Noop ){
2478 int r1 = sqlite3GetTempReg(pParse);
2479 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
2480 /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
2481 sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
2482 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
2483 sqlite3ReleaseTempReg(pParse, r1);
2485 }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
2486 /* Case 3: A scan using an index.
2488 ** The WHERE clause may contain zero or more equality
2489 ** terms ("==" or "IN" operators) that refer to the N
2490 ** left-most columns of the index. It may also contain
2491 ** inequality constraints (>, <, >= or <=) on the indexed
2492 ** column that immediately follows the N equalities. Only
2493 ** the right-most column can be an inequality - the rest must
2494 ** use the "==" and "IN" operators. For example, if the
2495 ** index is on (x,y,z), then the following clauses are all
2501 ** x=5 AND y>5 AND y<10
2502 ** x=5 AND y=5 AND z<=10
2504 ** The z<10 term of the following cannot be used, only
2509 ** N may be zero if there are inequality constraints.
2510 ** If there are no inequality constraints, then N is at
2513 ** This case is also used when there are no WHERE clause
2514 ** constraints but an index is selected anyway, in order
2515 ** to force the output order to conform to an ORDER BY.
2520 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
2521 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
2522 OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */
2523 OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */
2524 OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */
2525 OP_MoveLe /* 7: (start_constraints && startEq && bRev) */
2528 OP_Noop, /* 0: (!end_constraints) */
2529 OP_IdxGE, /* 1: (end_constraints && !bRev) */
2530 OP_IdxLT /* 2: (end_constraints && bRev) */
2532 int nEq = pLevel->nEq;
2533 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
2534 int regBase; /* Base register holding constraint values */
2535 int r1; /* Temp register */
2536 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
2537 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
2538 int startEq; /* True if range start uses ==, >= or <= */
2539 int endEq; /* True if range end uses ==, >= or <= */
2540 int start_constraints; /* Start of range is constrained */
2541 int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
2542 int nConstraint; /* Number of constraint terms */
2545 /* Generate code to evaluate all constraint terms using == or IN
2546 ** and store the values of those terms in an array of registers
2547 ** starting at regBase.
2549 regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
2552 /* If this loop satisfies a sort order (pOrderBy) request that
2553 ** was passed to this function to implement a "SELECT min(x) ..."
2554 ** query, then the caller will only allow the loop to run for
2555 ** a single iteration. This means that the first row returned
2556 ** should not have a NULL value stored in 'x'. If column 'x' is
2557 ** the first one after the nEq equality constraints in the index,
2558 ** this requires some special handling.
2560 if( (wflags&WHERE_ORDERBY_MIN)!=0
2561 && (pLevel->flags&WHERE_ORDERBY)
2562 && (pIdx->nColumn>nEq)
2564 assert( pOrderBy->nExpr==1 );
2565 assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] );
2569 /* Find any inequality constraint terms for the start and end
2572 if( pLevel->flags & WHERE_TOP_LIMIT ){
2573 pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
2575 if( pLevel->flags & WHERE_BTM_LIMIT ){
2576 pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
2579 /* If we are doing a reverse order scan on an ascending index, or
2580 ** a forward order scan on a descending index, interchange the
2581 ** start and end terms (pRangeStart and pRangeEnd).
2583 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
2584 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
2587 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
2588 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
2589 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
2590 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
2591 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
2592 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
2593 start_constraints = pRangeStart || nEq>0;
2595 /* Seek the index cursor to the start of the range. */
2598 int dcc = pParse->disableColCache;
2600 pParse->disableColCache++;
2602 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
2603 pParse->disableColCache = dcc;
2604 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
2606 }else if( isMinQuery ){
2607 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2610 start_constraints = 1;
2612 codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
2613 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2615 testcase( op==OP_Rewind );
2616 testcase( op==OP_Last );
2617 testcase( op==OP_MoveGt );
2618 testcase( op==OP_MoveGe );
2619 testcase( op==OP_MoveLe );
2620 testcase( op==OP_MoveLt );
2621 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
2622 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2624 /* Load the value for the inequality constraint at the end of the
2629 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
2630 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
2631 codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
2635 /* Top of the loop body */
2636 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2638 /* Check if the index cursor is past the end of the range. */
2639 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
2640 testcase( op==OP_Noop );
2641 testcase( op==OP_IdxGE );
2642 testcase( op==OP_IdxLT );
2643 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
2644 SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2645 sqlite3VdbeChangeP5(v, endEq!=bRev);
2647 /* If there are inequality constraints, check that the value
2648 ** of the table column that the inequality contrains is not NULL.
2649 ** If it is, jump to the next iteration of the loop.
2651 r1 = sqlite3GetTempReg(pParse);
2652 testcase( pLevel->flags & WHERE_BTM_LIMIT );
2653 testcase( pLevel->flags & WHERE_TOP_LIMIT );
2654 if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
2655 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
2656 sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
2659 /* Seek the table cursor, if required */
2661 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
2662 sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */
2664 sqlite3ReleaseTempReg(pParse, r1);
2666 /* Record the instruction used to terminate the loop. Disable
2667 ** WHERE clause terms made redundant by the index range scan.
2669 pLevel->op = bRev ? OP_Prev : OP_Next;
2670 pLevel->p1 = iIdxCur;
2671 disableTerm(pLevel, pRangeStart);
2672 disableTerm(pLevel, pRangeEnd);
2674 /* Case 4: There is no usable index. We must do a complete
2675 ** scan of the entire table.
2677 assert( omitTable==0 );
2679 pLevel->op = OP_Next;
2681 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
2683 notReady &= ~getMask(&maskSet, iCur);
2685 /* Insert code to test every subexpression that can be completely
2686 ** computed using the current set of tables.
2688 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2690 testcase( pTerm->flags & TERM_VIRTUAL );
2691 testcase( pTerm->flags & TERM_CODED );
2692 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2693 if( (pTerm->prereqAll & notReady)!=0 ) continue;
2696 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2699 sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
2700 pTerm->flags |= TERM_CODED;
2703 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2704 ** at least one row of the right table has matched the left table.
2706 if( pLevel->iLeftJoin ){
2707 pLevel->top = sqlite3VdbeCurrentAddr(v);
2708 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2709 VdbeComment((v, "record LEFT JOIN hit"));
2710 sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur);
2711 sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur);
2712 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2713 testcase( pTerm->flags & TERM_VIRTUAL );
2714 testcase( pTerm->flags & TERM_CODED );
2715 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2716 if( (pTerm->prereqAll & notReady)!=0 ) continue;
2717 assert( pTerm->pExpr );
2718 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
2719 pTerm->flags |= TERM_CODED;
2724 #ifdef SQLITE_TEST /* For testing and debugging use only */
2725 /* Record in the query plan information about the current table
2726 ** and the index used to access it (if any). If the table itself
2727 ** is not used, its name is just '{}'. If no index is used
2728 ** the index is listed as "{}". If the primary key is used the
2729 ** index name is '*'.
2731 for(i=0; i<pTabList->nSrc; i++){
2734 pLevel = &pWInfo->a[i];
2735 pTabItem = &pTabList->a[pLevel->iFrom];
2736 z = pTabItem->zAlias;
2737 if( z==0 ) z = pTabItem->pTab->zName;
2739 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2740 if( pLevel->flags & WHERE_IDX_ONLY ){
2741 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
2744 memcpy(&sqlite3_query_plan[nQPlan], z, n);
2747 sqlite3_query_plan[nQPlan++] = ' ';
2749 testcase( pLevel->flags & WHERE_ROWID_EQ );
2750 testcase( pLevel->flags & WHERE_ROWID_RANGE );
2751 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2752 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
2754 }else if( pLevel->pIdx==0 ){
2755 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
2758 n = strlen(pLevel->pIdx->zName);
2759 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2760 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
2762 sqlite3_query_plan[nQPlan++] = ' ';
2766 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2767 sqlite3_query_plan[--nQPlan] = 0;
2769 sqlite3_query_plan[nQPlan] = 0;
2771 #endif /* SQLITE_TEST // Testing and debugging use only */
2773 /* Record the continuation address in the WhereInfo structure. Then
2774 ** clean up and return.
2776 pWInfo->iContinue = cont;
2777 whereClauseClear(&wc);
2780 /* Jump here if malloc fails */
2782 whereClauseClear(&wc);
2783 whereInfoFree(pWInfo);
2788 ** Generate the end of the WHERE loop. See comments on
2789 ** sqlite3WhereBegin() for additional information.
2791 void sqlite3WhereEnd(WhereInfo *pWInfo){
2792 Parse *pParse = pWInfo->pParse;
2793 Vdbe *v = pParse->pVdbe;
2796 SrcList *pTabList = pWInfo->pTabList;
2797 sqlite3 *db = pParse->db;
2799 /* Generate loop termination code.
2801 sqlite3ExprClearColumnCache(pParse, -1);
2802 for(i=pTabList->nSrc-1; i>=0; i--){
2803 pLevel = &pWInfo->a[i];
2804 sqlite3VdbeResolveLabel(v, pLevel->cont);
2805 if( pLevel->op!=OP_Noop ){
2806 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
2811 sqlite3VdbeResolveLabel(v, pLevel->nxt);
2812 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
2813 sqlite3VdbeJumpHere(v, pIn->topAddr+1);
2814 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
2815 sqlite3VdbeJumpHere(v, pIn->topAddr-1);
2817 sqlite3DbFree(db, pLevel->aInLoop);
2819 sqlite3VdbeResolveLabel(v, pLevel->brk);
2820 if( pLevel->iLeftJoin ){
2822 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
2823 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
2824 if( pLevel->iIdxCur>=0 ){
2825 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
2827 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
2828 sqlite3VdbeJumpHere(v, addr);
2832 /* The "break" point is here, just past the end of the outer loop.
2835 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2837 /* Close all of the cursors that were opened by sqlite3WhereBegin.
2839 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2840 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2841 Table *pTab = pTabItem->pTab;
2843 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
2844 if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2845 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
2847 if( pLevel->pIdx!=0 ){
2848 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
2851 /* If this scan uses an index, make code substitutions to read data
2852 ** from the index in preference to the table. Sometimes, this means
2853 ** the table need never be read from. This is a performance boost,
2854 ** as the vdbe level waits until the table is read before actually
2855 ** seeking the table cursor to the record corresponding to the current
2856 ** position in the index.
2858 ** Calls to the code generator in between sqlite3WhereBegin and
2859 ** sqlite3WhereEnd will have created code that references the table
2860 ** directly. This loop scans all that code looking for opcodes
2861 ** that reference the table and converts them into opcodes that
2862 ** reference the index.
2867 Index *pIdx = pLevel->pIdx;
2868 int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
2871 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2872 last = sqlite3VdbeCurrentAddr(v);
2873 for(k=pWInfo->iTop; k<last; k++, pOp++){
2874 if( pOp->p1!=pLevel->iTabCur ) continue;
2875 if( pOp->opcode==OP_Column ){
2876 for(j=0; j<pIdx->nColumn; j++){
2877 if( pOp->p2==pIdx->aiColumn[j] ){
2879 pOp->p1 = pLevel->iIdxCur;
2883 assert(!useIndexOnly || j<pIdx->nColumn);
2884 }else if( pOp->opcode==OP_Rowid ){
2885 pOp->p1 = pLevel->iIdxCur;
2886 pOp->opcode = OP_IdxRowid;
2887 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
2888 pOp->opcode = OP_Noop;
2896 whereInfoFree(pWInfo);