os/persistentdata/persistentstorage/sqlite3api/SQLite/where.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This module contains C code that generates VDBE code used to process
    13 ** the WHERE clause of SQL statements.  This module is responsible for
    14 ** generating the code that loops through a table looking for applicable
    15 ** rows.  Indices are selected and used to speed the search when doing
    16 ** so is applicable.  Because this module is responsible for selecting
    17 ** indices, you might also think of this module as the "query optimizer".
    18 **
    19 ** $Id: where.c,v 1.323 2008/10/01 08:43:03 danielk1977 Exp $
    20 */
    21 #include "sqliteInt.h"
    22 
    23 /*
    24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
    25 */
    26 #define BMS  (sizeof(Bitmask)*8)
    27 
    28 /*
    29 ** Trace output macros
    30 */
    31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
    32 int sqlite3WhereTrace = 0;
    33 #endif
    34 #if 0
    35 # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
    36 #else
    37 # define WHERETRACE(X)
    38 #endif
    39 
    40 /* Forward reference
    41 */
    42 typedef struct WhereClause WhereClause;
    43 typedef struct ExprMaskSet ExprMaskSet;
    44 
    45 /*
    46 ** The query generator uses an array of instances of this structure to
    47 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
    48 ** clause subexpression is separated from the others by an AND operator.
    49 **
    50 ** All WhereTerms are collected into a single WhereClause structure.  
    51 ** The following identity holds:
    52 **
    53 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
    54 **
    55 ** When a term is of the form:
    56 **
    57 **              X <op> <expr>
    58 **
    59 ** where X is a column name and <op> is one of certain operators,
    60 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
    61 ** cursor number and column number for X.  WhereTerm.operator records
    62 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
    63 ** use of a bitmask encoding for the operator allows us to search
    64 ** quickly for terms that match any of several different operators.
    65 **
    66 ** prereqRight and prereqAll record sets of cursor numbers,
    67 ** but they do so indirectly.  A single ExprMaskSet structure translates
    68 ** cursor number into bits and the translated bit is stored in the prereq
    69 ** fields.  The translation is used in order to maximize the number of
    70 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
    71 ** spread out over the non-negative integers.  For example, the cursor
    72 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
    73 ** translates these sparse cursor numbers into consecutive integers
    74 ** beginning with 0 in order to make the best possible use of the available
    75 ** bits in the Bitmask.  So, in the example above, the cursor numbers
    76 ** would be mapped into integers 0 through 7.
    77 */
    78 typedef struct WhereTerm WhereTerm;
    79 struct WhereTerm {
    80   Expr *pExpr;            /* Pointer to the subexpression */
    81   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
    82   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
    83   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
    84   u16 eOperator;          /* A WO_xx value describing <op> */
    85   u8 flags;               /* Bit flags.  See below */
    86   u8 nChild;              /* Number of children that must disable us */
    87   WhereClause *pWC;       /* The clause this term is part of */
    88   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
    89   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
    90 };
    91 
    92 /*
    93 ** Allowed values of WhereTerm.flags
    94 */
    95 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
    96 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
    97 #define TERM_CODED      0x04   /* This term is already coded */
    98 #define TERM_COPIED     0x08   /* Has a child */
    99 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
   100 
   101 /*
   102 ** An instance of the following structure holds all information about a
   103 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
   104 */
   105 struct WhereClause {
   106   Parse *pParse;           /* The parser context */
   107   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
   108   int nTerm;               /* Number of terms */
   109   int nSlot;               /* Number of entries in a[] */
   110   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
   111   WhereTerm aStatic[10];   /* Initial static space for a[] */
   112 };
   113 
   114 /*
   115 ** An instance of the following structure keeps track of a mapping
   116 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
   117 **
   118 ** The VDBE cursor numbers are small integers contained in 
   119 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE 
   120 ** clause, the cursor numbers might not begin with 0 and they might
   121 ** contain gaps in the numbering sequence.  But we want to make maximum
   122 ** use of the bits in our bitmasks.  This structure provides a mapping
   123 ** from the sparse cursor numbers into consecutive integers beginning
   124 ** with 0.
   125 **
   126 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
   127 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
   128 **
   129 ** For example, if the WHERE clause expression used these VDBE
   130 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
   131 ** would map those cursor numbers into bits 0 through 5.
   132 **
   133 ** Note that the mapping is not necessarily ordered.  In the example
   134 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
   135 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
   136 ** does not really matter.  What is important is that sparse cursor
   137 ** numbers all get mapped into bit numbers that begin with 0 and contain
   138 ** no gaps.
   139 */
   140 struct ExprMaskSet {
   141   int n;                        /* Number of assigned cursor values */
   142   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
   143 };
   144 
   145 
   146 /*
   147 ** Bitmasks for the operators that indices are able to exploit.  An
   148 ** OR-ed combination of these values can be used when searching for
   149 ** terms in the where clause.
   150 */
   151 #define WO_IN     1
   152 #define WO_EQ     2
   153 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
   154 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
   155 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
   156 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
   157 #define WO_MATCH  64
   158 #define WO_ISNULL 128
   159 
   160 /*
   161 ** Value for flags returned by bestIndex().  
   162 **
   163 ** The least significant byte is reserved as a mask for WO_ values above.
   164 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
   165 ** But if the table is the right table of a left join, WhereLevel.flags
   166 ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
   167 ** the "op" parameter to findTerm when we are resolving equality constraints.
   168 ** ISNULL constraints will then not be used on the right table of a left
   169 ** join.  Tickets #2177 and #2189.
   170 */
   171 #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
   172 #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
   173 #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
   174 #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
   175 #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
   176 #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
   177 #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
   178 #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
   179 #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
   180 #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
   181 #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
   182 #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
   183 
   184 /*
   185 ** Initialize a preallocated WhereClause structure.
   186 */
   187 static void whereClauseInit(
   188   WhereClause *pWC,        /* The WhereClause to be initialized */
   189   Parse *pParse,           /* The parsing context */
   190   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
   191 ){
   192   pWC->pParse = pParse;
   193   pWC->pMaskSet = pMaskSet;
   194   pWC->nTerm = 0;
   195   pWC->nSlot = ArraySize(pWC->aStatic);
   196   pWC->a = pWC->aStatic;
   197 }
   198 
   199 /*
   200 ** Deallocate a WhereClause structure.  The WhereClause structure
   201 ** itself is not freed.  This routine is the inverse of whereClauseInit().
   202 */
   203 static void whereClauseClear(WhereClause *pWC){
   204   int i;
   205   WhereTerm *a;
   206   sqlite3 *db = pWC->pParse->db;
   207   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
   208     if( a->flags & TERM_DYNAMIC ){
   209       sqlite3ExprDelete(db, a->pExpr);
   210     }
   211   }
   212   if( pWC->a!=pWC->aStatic ){
   213     sqlite3DbFree(db, pWC->a);
   214   }
   215 }
   216 
   217 /*
   218 ** Add a new entries to the WhereClause structure.  Increase the allocated
   219 ** space as necessary.
   220 **
   221 ** If the flags argument includes TERM_DYNAMIC, then responsibility
   222 ** for freeing the expression p is assumed by the WhereClause object.
   223 **
   224 ** WARNING:  This routine might reallocate the space used to store
   225 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
   226 ** calling this routine.  Such pointers may be reinitialized by referencing
   227 ** the pWC->a[] array.
   228 */
   229 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
   230   WhereTerm *pTerm;
   231   int idx;
   232   if( pWC->nTerm>=pWC->nSlot ){
   233     WhereTerm *pOld = pWC->a;
   234     sqlite3 *db = pWC->pParse->db;
   235     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
   236     if( pWC->a==0 ){
   237       if( flags & TERM_DYNAMIC ){
   238         sqlite3ExprDelete(db, p);
   239       }
   240       pWC->a = pOld;
   241       return 0;
   242     }
   243     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
   244     if( pOld!=pWC->aStatic ){
   245       sqlite3DbFree(db, pOld);
   246     }
   247     pWC->nSlot *= 2;
   248   }
   249   pTerm = &pWC->a[idx = pWC->nTerm];
   250   pWC->nTerm++;
   251   pTerm->pExpr = p;
   252   pTerm->flags = flags;
   253   pTerm->pWC = pWC;
   254   pTerm->iParent = -1;
   255   return idx;
   256 }
   257 
   258 /*
   259 ** This routine identifies subexpressions in the WHERE clause where
   260 ** each subexpression is separated by the AND operator or some other
   261 ** operator specified in the op parameter.  The WhereClause structure
   262 ** is filled with pointers to subexpressions.  For example:
   263 **
   264 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
   265 **           \________/     \_______________/     \________________/
   266 **            slot[0]            slot[1]               slot[2]
   267 **
   268 ** The original WHERE clause in pExpr is unaltered.  All this routine
   269 ** does is make slot[] entries point to substructure within pExpr.
   270 **
   271 ** In the previous sentence and in the diagram, "slot[]" refers to
   272 ** the WhereClause.a[] array.  This array grows as needed to contain
   273 ** all terms of the WHERE clause.
   274 */
   275 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
   276   if( pExpr==0 ) return;
   277   if( pExpr->op!=op ){
   278     whereClauseInsert(pWC, pExpr, 0);
   279   }else{
   280     whereSplit(pWC, pExpr->pLeft, op);
   281     whereSplit(pWC, pExpr->pRight, op);
   282   }
   283 }
   284 
   285 /*
   286 ** Initialize an expression mask set
   287 */
   288 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
   289 
   290 /*
   291 ** Return the bitmask for the given cursor number.  Return 0 if
   292 ** iCursor is not in the set.
   293 */
   294 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
   295   int i;
   296   for(i=0; i<pMaskSet->n; i++){
   297     if( pMaskSet->ix[i]==iCursor ){
   298       return ((Bitmask)1)<<i;
   299     }
   300   }
   301   return 0;
   302 }
   303 
   304 /*
   305 ** Create a new mask for cursor iCursor.
   306 **
   307 ** There is one cursor per table in the FROM clause.  The number of
   308 ** tables in the FROM clause is limited by a test early in the
   309 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
   310 ** array will never overflow.
   311 */
   312 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
   313   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
   314   pMaskSet->ix[pMaskSet->n++] = iCursor;
   315 }
   316 
   317 /*
   318 ** This routine walks (recursively) an expression tree and generates
   319 ** a bitmask indicating which tables are used in that expression
   320 ** tree.
   321 **
   322 ** In order for this routine to work, the calling function must have
   323 ** previously invoked sqlite3ResolveExprNames() on the expression.  See
   324 ** the header comment on that routine for additional information.
   325 ** The sqlite3ResolveExprNames() routines looks for column names and
   326 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
   327 ** the VDBE cursor number of the table.  This routine just has to
   328 ** translate the cursor numbers into bitmask values and OR all
   329 ** the bitmasks together.
   330 */
   331 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
   332 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
   333 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
   334   Bitmask mask = 0;
   335   if( p==0 ) return 0;
   336   if( p->op==TK_COLUMN ){
   337     mask = getMask(pMaskSet, p->iTable);
   338     return mask;
   339   }
   340   mask = exprTableUsage(pMaskSet, p->pRight);
   341   mask |= exprTableUsage(pMaskSet, p->pLeft);
   342   mask |= exprListTableUsage(pMaskSet, p->pList);
   343   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
   344   return mask;
   345 }
   346 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
   347   int i;
   348   Bitmask mask = 0;
   349   if( pList ){
   350     for(i=0; i<pList->nExpr; i++){
   351       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
   352     }
   353   }
   354   return mask;
   355 }
   356 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
   357   Bitmask mask = 0;
   358   while( pS ){
   359     mask |= exprListTableUsage(pMaskSet, pS->pEList);
   360     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
   361     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
   362     mask |= exprTableUsage(pMaskSet, pS->pWhere);
   363     mask |= exprTableUsage(pMaskSet, pS->pHaving);
   364     pS = pS->pPrior;
   365   }
   366   return mask;
   367 }
   368 
   369 /*
   370 ** Return TRUE if the given operator is one of the operators that is
   371 ** allowed for an indexable WHERE clause term.  The allowed operators are
   372 ** "=", "<", ">", "<=", ">=", and "IN".
   373 */
   374 static int allowedOp(int op){
   375   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
   376   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
   377   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
   378   assert( TK_GE==TK_EQ+4 );
   379   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
   380 }
   381 
   382 /*
   383 ** Swap two objects of type T.
   384 */
   385 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
   386 
   387 /*
   388 ** Commute a comparison operator.  Expressions of the form "X op Y"
   389 ** are converted into "Y op X".
   390 **
   391 ** If a collation sequence is associated with either the left or right
   392 ** side of the comparison, it remains associated with the same side after
   393 ** the commutation. So "Y collate NOCASE op X" becomes 
   394 ** "X collate NOCASE op Y". This is because any collation sequence on
   395 ** the left hand side of a comparison overrides any collation sequence 
   396 ** attached to the right. For the same reason the EP_ExpCollate flag
   397 ** is not commuted.
   398 */
   399 static void exprCommute(Parse *pParse, Expr *pExpr){
   400   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
   401   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
   402   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
   403   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
   404   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
   405   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
   406   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
   407   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
   408   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
   409   if( pExpr->op>=TK_GT ){
   410     assert( TK_LT==TK_GT+2 );
   411     assert( TK_GE==TK_LE+2 );
   412     assert( TK_GT>TK_EQ );
   413     assert( TK_GT<TK_LE );
   414     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
   415     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
   416   }
   417 }
   418 
   419 /*
   420 ** Translate from TK_xx operator to WO_xx bitmask.
   421 */
   422 static int operatorMask(int op){
   423   int c;
   424   assert( allowedOp(op) );
   425   if( op==TK_IN ){
   426     c = WO_IN;
   427   }else if( op==TK_ISNULL ){
   428     c = WO_ISNULL;
   429   }else{
   430     c = WO_EQ<<(op-TK_EQ);
   431   }
   432   assert( op!=TK_ISNULL || c==WO_ISNULL );
   433   assert( op!=TK_IN || c==WO_IN );
   434   assert( op!=TK_EQ || c==WO_EQ );
   435   assert( op!=TK_LT || c==WO_LT );
   436   assert( op!=TK_LE || c==WO_LE );
   437   assert( op!=TK_GT || c==WO_GT );
   438   assert( op!=TK_GE || c==WO_GE );
   439   return c;
   440 }
   441 
   442 /*
   443 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
   444 ** where X is a reference to the iColumn of table iCur and <op> is one of
   445 ** the WO_xx operator codes specified by the op parameter.
   446 ** Return a pointer to the term.  Return 0 if not found.
   447 */
   448 static WhereTerm *findTerm(
   449   WhereClause *pWC,     /* The WHERE clause to be searched */
   450   int iCur,             /* Cursor number of LHS */
   451   int iColumn,          /* Column number of LHS */
   452   Bitmask notReady,     /* RHS must not overlap with this mask */
   453   u16 op,               /* Mask of WO_xx values describing operator */
   454   Index *pIdx           /* Must be compatible with this index, if not NULL */
   455 ){
   456   WhereTerm *pTerm;
   457   int k;
   458   assert( iCur>=0 );
   459   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
   460     if( pTerm->leftCursor==iCur
   461        && (pTerm->prereqRight & notReady)==0
   462        && pTerm->leftColumn==iColumn
   463        && (pTerm->eOperator & op)!=0
   464     ){
   465       if( pIdx && pTerm->eOperator!=WO_ISNULL ){
   466         Expr *pX = pTerm->pExpr;
   467         CollSeq *pColl;
   468         char idxaff;
   469         int j;
   470         Parse *pParse = pWC->pParse;
   471 
   472         idxaff = pIdx->pTable->aCol[iColumn].affinity;
   473         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
   474 
   475         /* Figure out the collation sequence required from an index for
   476         ** it to be useful for optimising expression pX. Store this
   477         ** value in variable pColl.
   478         */
   479         assert(pX->pLeft);
   480         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
   481         if( !pColl ){
   482           pColl = pParse->db->pDfltColl;
   483         }
   484 
   485         for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
   486           if( NEVER(j>=pIdx->nColumn) ) return 0;
   487         }
   488         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
   489       }
   490       return pTerm;
   491     }
   492   }
   493   return 0;
   494 }
   495 
   496 /* Forward reference */
   497 static void exprAnalyze(SrcList*, WhereClause*, int);
   498 
   499 /*
   500 ** Call exprAnalyze on all terms in a WHERE clause.  
   501 **
   502 **
   503 */
   504 static void exprAnalyzeAll(
   505   SrcList *pTabList,       /* the FROM clause */
   506   WhereClause *pWC         /* the WHERE clause to be analyzed */
   507 ){
   508   int i;
   509   for(i=pWC->nTerm-1; i>=0; i--){
   510     exprAnalyze(pTabList, pWC, i);
   511   }
   512 }
   513 
   514 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
   515 /*
   516 ** Check to see if the given expression is a LIKE or GLOB operator that
   517 ** can be optimized using inequality constraints.  Return TRUE if it is
   518 ** so and false if not.
   519 **
   520 ** In order for the operator to be optimizible, the RHS must be a string
   521 ** literal that does not begin with a wildcard.  
   522 */
   523 static int isLikeOrGlob(
   524   Parse *pParse,    /* Parsing and code generating context */
   525   Expr *pExpr,      /* Test this expression */
   526   int *pnPattern,   /* Number of non-wildcard prefix characters */
   527   int *pisComplete, /* True if the only wildcard is % in the last character */
   528   int *pnoCase      /* True if uppercase is equivalent to lowercase */
   529 ){
   530   const char *z;
   531   Expr *pRight, *pLeft;
   532   ExprList *pList;
   533   int c, cnt;
   534   char wc[3];
   535   CollSeq *pColl;
   536   sqlite3 *db = pParse->db;
   537 
   538   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
   539     return 0;
   540   }
   541 #ifdef SQLITE_EBCDIC
   542   if( *pnoCase ) return 0;
   543 #endif
   544   pList = pExpr->pList;
   545   pRight = pList->a[0].pExpr;
   546   if( pRight->op!=TK_STRING
   547    && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){
   548     return 0;
   549   }
   550   pLeft = pList->a[1].pExpr;
   551   if( pLeft->op!=TK_COLUMN ){
   552     return 0;
   553   }
   554   pColl = sqlite3ExprCollSeq(pParse, pLeft);
   555   assert( pColl!=0 || pLeft->iColumn==-1 );
   556   if( pColl==0 ){
   557     /* No collation is defined for the ROWID.  Use the default. */
   558     pColl = db->pDfltColl;
   559   }
   560   if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
   561       (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
   562     return 0;
   563   }
   564   sqlite3DequoteExpr(db, pRight);
   565   z = (char *)pRight->token.z;
   566   cnt = 0;
   567   if( z ){
   568     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
   569   }
   570   if( cnt==0 || 255==(u8)z[cnt] ){
   571     return 0;
   572   }
   573   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
   574   *pnPattern = cnt;
   575   return 1;
   576 }
   577 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
   578 
   579 
   580 #ifndef SQLITE_OMIT_VIRTUALTABLE
   581 /*
   582 ** Check to see if the given expression is of the form
   583 **
   584 **         column MATCH expr
   585 **
   586 ** If it is then return TRUE.  If not, return FALSE.
   587 */
   588 static int isMatchOfColumn(
   589   Expr *pExpr      /* Test this expression */
   590 ){
   591   ExprList *pList;
   592 
   593   if( pExpr->op!=TK_FUNCTION ){
   594     return 0;
   595   }
   596   if( pExpr->token.n!=5 ||
   597        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
   598     return 0;
   599   }
   600   pList = pExpr->pList;
   601   if( pList->nExpr!=2 ){
   602     return 0;
   603   }
   604   if( pList->a[1].pExpr->op != TK_COLUMN ){
   605     return 0;
   606   }
   607   return 1;
   608 }
   609 #endif /* SQLITE_OMIT_VIRTUALTABLE */
   610 
   611 /*
   612 ** If the pBase expression originated in the ON or USING clause of
   613 ** a join, then transfer the appropriate markings over to derived.
   614 */
   615 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
   616   pDerived->flags |= pBase->flags & EP_FromJoin;
   617   pDerived->iRightJoinTable = pBase->iRightJoinTable;
   618 }
   619 
   620 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
   621 /*
   622 ** Return TRUE if the given term of an OR clause can be converted
   623 ** into an IN clause.  The iCursor and iColumn define the left-hand
   624 ** side of the IN clause.
   625 **
   626 ** The context is that we have multiple OR-connected equality terms
   627 ** like this:
   628 **
   629 **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
   630 **
   631 ** The pOrTerm input to this routine corresponds to a single term of
   632 ** this OR clause.  In order for the term to be a candidate for
   633 ** conversion to an IN operator, the following must be true:
   634 **
   635 **     *  The left-hand side of the term must be the column which
   636 **        is identified by iCursor and iColumn.
   637 **
   638 **     *  If the right-hand side is also a column, then the affinities
   639 **        of both right and left sides must be such that no type
   640 **        conversions are required on the right.  (Ticket #2249)
   641 **
   642 ** If both of these conditions are true, then return true.  Otherwise
   643 ** return false.
   644 */
   645 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
   646   int affLeft, affRight;
   647   assert( pOrTerm->eOperator==WO_EQ );
   648   if( pOrTerm->leftCursor!=iCursor ){
   649     return 0;
   650   }
   651   if( pOrTerm->leftColumn!=iColumn ){
   652     return 0;
   653   }
   654   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
   655   if( affRight==0 ){
   656     return 1;
   657   }
   658   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
   659   if( affRight!=affLeft ){
   660     return 0;
   661   }
   662   return 1;
   663 }
   664 
   665 /*
   666 ** Return true if the given term of an OR clause can be ignored during
   667 ** a check to make sure all OR terms are candidates for optimization.
   668 ** In other words, return true if a call to the orTermIsOptCandidate()
   669 ** above returned false but it is not necessary to disqualify the
   670 ** optimization.
   671 **
   672 ** Suppose the original OR phrase was this:
   673 **
   674 **           a=4  OR  a=11  OR  a=b
   675 **
   676 ** During analysis, the third term gets flipped around and duplicate
   677 ** so that we are left with this:
   678 **
   679 **           a=4  OR  a=11  OR  a=b  OR  b=a
   680 **
   681 ** Since the last two terms are duplicates, only one of them
   682 ** has to qualify in order for the whole phrase to qualify.  When
   683 ** this routine is called, we know that pOrTerm did not qualify.
   684 ** This routine merely checks to see if pOrTerm has a duplicate that
   685 ** might qualify.  If there is a duplicate that has not yet been
   686 ** disqualified, then return true.  If there are no duplicates, or
   687 ** the duplicate has also been disqualified, return false.
   688 */
   689 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
   690   if( pOrTerm->flags & TERM_COPIED ){
   691     /* This is the original term.  The duplicate is to the left had
   692     ** has not yet been analyzed and thus has not yet been disqualified. */
   693     return 1;
   694   }
   695   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
   696      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
   697     /* This is a duplicate term.  The original qualified so this one
   698     ** does not have to. */
   699     return 1;
   700   }
   701   /* This is either a singleton term or else it is a duplicate for
   702   ** which the original did not qualify.  Either way we are done for. */
   703   return 0;
   704 }
   705 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
   706 
   707 /*
   708 ** The input to this routine is an WhereTerm structure with only the
   709 ** "pExpr" field filled in.  The job of this routine is to analyze the
   710 ** subexpression and populate all the other fields of the WhereTerm
   711 ** structure.
   712 **
   713 ** If the expression is of the form "<expr> <op> X" it gets commuted
   714 ** to the standard form of "X <op> <expr>".  If the expression is of
   715 ** the form "X <op> Y" where both X and Y are columns, then the original
   716 ** expression is unchanged and a new virtual expression of the form
   717 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
   718 */
   719 static void exprAnalyze(
   720   SrcList *pSrc,            /* the FROM clause */
   721   WhereClause *pWC,         /* the WHERE clause */
   722   int idxTerm               /* Index of the term to be analyzed */
   723 ){
   724   WhereTerm *pTerm;
   725   ExprMaskSet *pMaskSet;
   726   Expr *pExpr;
   727   Bitmask prereqLeft;
   728   Bitmask prereqAll;
   729   Bitmask extraRight = 0;
   730   int nPattern;
   731   int isComplete;
   732   int noCase;
   733   int op;
   734   Parse *pParse = pWC->pParse;
   735   sqlite3 *db = pParse->db;
   736 
   737   if( db->mallocFailed ){
   738     return;
   739   }
   740   pTerm = &pWC->a[idxTerm];
   741   pMaskSet = pWC->pMaskSet;
   742   pExpr = pTerm->pExpr;
   743   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
   744   op = pExpr->op;
   745   if( op==TK_IN ){
   746     assert( pExpr->pRight==0 );
   747     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
   748                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
   749   }else if( op==TK_ISNULL ){
   750     pTerm->prereqRight = 0;
   751   }else{
   752     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
   753   }
   754   prereqAll = exprTableUsage(pMaskSet, pExpr);
   755   if( ExprHasProperty(pExpr, EP_FromJoin) ){
   756     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
   757     prereqAll |= x;
   758     extraRight = x-1;  /* ON clause terms may not be used with an index
   759                        ** on left table of a LEFT JOIN.  Ticket #3015 */
   760   }
   761   pTerm->prereqAll = prereqAll;
   762   pTerm->leftCursor = -1;
   763   pTerm->iParent = -1;
   764   pTerm->eOperator = 0;
   765   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
   766     Expr *pLeft = pExpr->pLeft;
   767     Expr *pRight = pExpr->pRight;
   768     if( pLeft->op==TK_COLUMN ){
   769       pTerm->leftCursor = pLeft->iTable;
   770       pTerm->leftColumn = pLeft->iColumn;
   771       pTerm->eOperator = operatorMask(op);
   772     }
   773     if( pRight && pRight->op==TK_COLUMN ){
   774       WhereTerm *pNew;
   775       Expr *pDup;
   776       if( pTerm->leftCursor>=0 ){
   777         int idxNew;
   778         pDup = sqlite3ExprDup(db, pExpr);
   779         if( db->mallocFailed ){
   780           sqlite3ExprDelete(db, pDup);
   781           return;
   782         }
   783         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
   784         if( idxNew==0 ) return;
   785         pNew = &pWC->a[idxNew];
   786         pNew->iParent = idxTerm;
   787         pTerm = &pWC->a[idxTerm];
   788         pTerm->nChild = 1;
   789         pTerm->flags |= TERM_COPIED;
   790       }else{
   791         pDup = pExpr;
   792         pNew = pTerm;
   793       }
   794       exprCommute(pParse, pDup);
   795       pLeft = pDup->pLeft;
   796       pNew->leftCursor = pLeft->iTable;
   797       pNew->leftColumn = pLeft->iColumn;
   798       pNew->prereqRight = prereqLeft;
   799       pNew->prereqAll = prereqAll;
   800       pNew->eOperator = operatorMask(pDup->op);
   801     }
   802   }
   803 
   804 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
   805   /* If a term is the BETWEEN operator, create two new virtual terms
   806   ** that define the range that the BETWEEN implements.
   807   */
   808   else if( pExpr->op==TK_BETWEEN ){
   809     ExprList *pList = pExpr->pList;
   810     int i;
   811     static const u8 ops[] = {TK_GE, TK_LE};
   812     assert( pList!=0 );
   813     assert( pList->nExpr==2 );
   814     for(i=0; i<2; i++){
   815       Expr *pNewExpr;
   816       int idxNew;
   817       pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
   818                              sqlite3ExprDup(db, pList->a[i].pExpr), 0);
   819       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
   820       exprAnalyze(pSrc, pWC, idxNew);
   821       pTerm = &pWC->a[idxTerm];
   822       pWC->a[idxNew].iParent = idxTerm;
   823     }
   824     pTerm->nChild = 2;
   825   }
   826 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
   827 
   828 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
   829   /* Attempt to convert OR-connected terms into an IN operator so that
   830   ** they can make use of indices.  Example:
   831   **
   832   **      x = expr1  OR  expr2 = x  OR  x = expr3
   833   **
   834   ** is converted into
   835   **
   836   **      x IN (expr1,expr2,expr3)
   837   **
   838   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
   839   ** the compiler for the the IN operator is part of sub-queries.
   840   */
   841   else if( pExpr->op==TK_OR ){
   842     int ok;
   843     int i, j;
   844     int iColumn, iCursor;
   845     WhereClause sOr;
   846     WhereTerm *pOrTerm;
   847 
   848     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
   849     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
   850     whereSplit(&sOr, pExpr, TK_OR);
   851     exprAnalyzeAll(pSrc, &sOr);
   852     assert( sOr.nTerm>=2 );
   853     j = 0;
   854     if( db->mallocFailed ) goto or_not_possible;
   855     do{
   856       assert( j<sOr.nTerm );
   857       iColumn = sOr.a[j].leftColumn;
   858       iCursor = sOr.a[j].leftCursor;
   859       ok = iCursor>=0;
   860       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
   861         if( pOrTerm->eOperator!=WO_EQ ){
   862           goto or_not_possible;
   863         }
   864         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
   865           pOrTerm->flags |= TERM_OR_OK;
   866         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
   867           pOrTerm->flags &= ~TERM_OR_OK;
   868         }else{
   869           ok = 0;
   870         }
   871       }
   872     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
   873     if( ok ){
   874       ExprList *pList = 0;
   875       Expr *pNew, *pDup;
   876       Expr *pLeft = 0;
   877       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){
   878         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
   879         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
   880         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
   881         pLeft = pOrTerm->pExpr->pLeft;
   882       }
   883       assert( pLeft!=0 );
   884       pDup = sqlite3ExprDup(db, pLeft);
   885       pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
   886       if( pNew ){
   887         int idxNew;
   888         transferJoinMarkings(pNew, pExpr);
   889         pNew->pList = pList;
   890         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
   891         exprAnalyze(pSrc, pWC, idxNew);
   892         pTerm = &pWC->a[idxTerm];
   893         pWC->a[idxNew].iParent = idxTerm;
   894         pTerm->nChild = 1;
   895       }else{
   896         sqlite3ExprListDelete(db, pList);
   897       }
   898     }
   899 or_not_possible:
   900     whereClauseClear(&sOr);
   901   }
   902 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
   903 
   904 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
   905   /* Add constraints to reduce the search space on a LIKE or GLOB
   906   ** operator.
   907   **
   908   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
   909   **
   910   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
   911   **
   912   ** The last character of the prefix "abc" is incremented to form the
   913   ** termination condition "abd".
   914   */
   915   if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) ){
   916     Expr *pLeft, *pRight;
   917     Expr *pStr1, *pStr2;
   918     Expr *pNewExpr1, *pNewExpr2;
   919     int idxNew1, idxNew2;
   920 
   921     pLeft = pExpr->pList->a[1].pExpr;
   922     pRight = pExpr->pList->a[0].pExpr;
   923     pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
   924     if( pStr1 ){
   925       sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
   926       pStr1->token.n = nPattern;
   927       pStr1->flags = EP_Dequoted;
   928     }
   929     pStr2 = sqlite3ExprDup(db, pStr1);
   930     if( !db->mallocFailed ){
   931       u8 c, *pC;
   932       assert( pStr2->token.dyn );
   933       pC = (u8*)&pStr2->token.z[nPattern-1];
   934       c = *pC;
   935       if( noCase ){
   936         if( c=='@' ) isComplete = 0;
   937         c = sqlite3UpperToLower[c];
   938       }
   939       *pC = c + 1;
   940     }
   941     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
   942     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
   943     exprAnalyze(pSrc, pWC, idxNew1);
   944     pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
   945     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
   946     exprAnalyze(pSrc, pWC, idxNew2);
   947     pTerm = &pWC->a[idxTerm];
   948     if( isComplete ){
   949       pWC->a[idxNew1].iParent = idxTerm;
   950       pWC->a[idxNew2].iParent = idxTerm;
   951       pTerm->nChild = 2;
   952     }
   953   }
   954 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
   955 
   956 #ifndef SQLITE_OMIT_VIRTUALTABLE
   957   /* Add a WO_MATCH auxiliary term to the constraint set if the
   958   ** current expression is of the form:  column MATCH expr.
   959   ** This information is used by the xBestIndex methods of
   960   ** virtual tables.  The native query optimizer does not attempt
   961   ** to do anything with MATCH functions.
   962   */
   963   if( isMatchOfColumn(pExpr) ){
   964     int idxNew;
   965     Expr *pRight, *pLeft;
   966     WhereTerm *pNewTerm;
   967     Bitmask prereqColumn, prereqExpr;
   968 
   969     pRight = pExpr->pList->a[0].pExpr;
   970     pLeft = pExpr->pList->a[1].pExpr;
   971     prereqExpr = exprTableUsage(pMaskSet, pRight);
   972     prereqColumn = exprTableUsage(pMaskSet, pLeft);
   973     if( (prereqExpr & prereqColumn)==0 ){
   974       Expr *pNewExpr;
   975       pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
   976       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
   977       pNewTerm = &pWC->a[idxNew];
   978       pNewTerm->prereqRight = prereqExpr;
   979       pNewTerm->leftCursor = pLeft->iTable;
   980       pNewTerm->leftColumn = pLeft->iColumn;
   981       pNewTerm->eOperator = WO_MATCH;
   982       pNewTerm->iParent = idxTerm;
   983       pTerm = &pWC->a[idxTerm];
   984       pTerm->nChild = 1;
   985       pTerm->flags |= TERM_COPIED;
   986       pNewTerm->prereqAll = pTerm->prereqAll;
   987     }
   988   }
   989 #endif /* SQLITE_OMIT_VIRTUALTABLE */
   990 
   991   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
   992   ** an index for tables to the left of the join.
   993   */
   994   pTerm->prereqRight |= extraRight;
   995 }
   996 
   997 /*
   998 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
   999 ** a reference to any table other than the iBase table.
  1000 */
  1001 static int referencesOtherTables(
  1002   ExprList *pList,          /* Search expressions in ths list */
  1003   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
  1004   int iFirst,               /* Be searching with the iFirst-th expression */
  1005   int iBase                 /* Ignore references to this table */
  1006 ){
  1007   Bitmask allowed = ~getMask(pMaskSet, iBase);
  1008   while( iFirst<pList->nExpr ){
  1009     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
  1010       return 1;
  1011     }
  1012   }
  1013   return 0;
  1014 }
  1015 
  1016 
  1017 /*
  1018 ** This routine decides if pIdx can be used to satisfy the ORDER BY
  1019 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
  1020 ** ORDER BY clause, this routine returns 0.
  1021 **
  1022 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
  1023 ** left-most table in the FROM clause of that same SELECT statement and
  1024 ** the table has a cursor number of "base".  pIdx is an index on pTab.
  1025 **
  1026 ** nEqCol is the number of columns of pIdx that are used as equality
  1027 ** constraints.  Any of these columns may be missing from the ORDER BY
  1028 ** clause and the match can still be a success.
  1029 **
  1030 ** All terms of the ORDER BY that match against the index must be either
  1031 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
  1032 ** index do not need to satisfy this constraint.)  The *pbRev value is
  1033 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
  1034 ** the ORDER BY clause is all ASC.
  1035 */
  1036 static int isSortingIndex(
  1037   Parse *pParse,          /* Parsing context */
  1038   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
  1039   Index *pIdx,            /* The index we are testing */
  1040   int base,               /* Cursor number for the table to be sorted */
  1041   ExprList *pOrderBy,     /* The ORDER BY clause */
  1042   int nEqCol,             /* Number of index columns with == constraints */
  1043   int *pbRev              /* Set to 1 if ORDER BY is DESC */
  1044 ){
  1045   int i, j;                       /* Loop counters */
  1046   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
  1047   int nTerm;                      /* Number of ORDER BY terms */
  1048   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  1049   sqlite3 *db = pParse->db;
  1050 
  1051   assert( pOrderBy!=0 );
  1052   nTerm = pOrderBy->nExpr;
  1053   assert( nTerm>0 );
  1054 
  1055   /* Match terms of the ORDER BY clause against columns of
  1056   ** the index.
  1057   **
  1058   ** Note that indices have pIdx->nColumn regular columns plus
  1059   ** one additional column containing the rowid.  The rowid column
  1060   ** of the index is also allowed to match against the ORDER BY
  1061   ** clause.
  1062   */
  1063   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
  1064     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
  1065     CollSeq *pColl;    /* The collating sequence of pExpr */
  1066     int termSortOrder; /* Sort order for this term */
  1067     int iColumn;       /* The i-th column of the index.  -1 for rowid */
  1068     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
  1069     const char *zColl; /* Name of the collating sequence for i-th index term */
  1070 
  1071     pExpr = pTerm->pExpr;
  1072     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
  1073       /* Can not use an index sort on anything that is not a column in the
  1074       ** left-most table of the FROM clause */
  1075       break;
  1076     }
  1077     pColl = sqlite3ExprCollSeq(pParse, pExpr);
  1078     if( !pColl ){
  1079       pColl = db->pDfltColl;
  1080     }
  1081     if( i<pIdx->nColumn ){
  1082       iColumn = pIdx->aiColumn[i];
  1083       if( iColumn==pIdx->pTable->iPKey ){
  1084         iColumn = -1;
  1085       }
  1086       iSortOrder = pIdx->aSortOrder[i];
  1087       zColl = pIdx->azColl[i];
  1088     }else{
  1089       iColumn = -1;
  1090       iSortOrder = 0;
  1091       zColl = pColl->zName;
  1092     }
  1093     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
  1094       /* Term j of the ORDER BY clause does not match column i of the index */
  1095       if( i<nEqCol ){
  1096         /* If an index column that is constrained by == fails to match an
  1097         ** ORDER BY term, that is OK.  Just ignore that column of the index
  1098         */
  1099         continue;
  1100       }else if( i==pIdx->nColumn ){
  1101         /* Index column i is the rowid.  All other terms match. */
  1102         break;
  1103       }else{
  1104         /* If an index column fails to match and is not constrained by ==
  1105         ** then the index cannot satisfy the ORDER BY constraint.
  1106         */
  1107         return 0;
  1108       }
  1109     }
  1110     assert( pIdx->aSortOrder!=0 );
  1111     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
  1112     assert( iSortOrder==0 || iSortOrder==1 );
  1113     termSortOrder = iSortOrder ^ pTerm->sortOrder;
  1114     if( i>nEqCol ){
  1115       if( termSortOrder!=sortOrder ){
  1116         /* Indices can only be used if all ORDER BY terms past the
  1117         ** equality constraints are all either DESC or ASC. */
  1118         return 0;
  1119       }
  1120     }else{
  1121       sortOrder = termSortOrder;
  1122     }
  1123     j++;
  1124     pTerm++;
  1125     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
  1126       /* If the indexed column is the primary key and everything matches
  1127       ** so far and none of the ORDER BY terms to the right reference other
  1128       ** tables in the join, then we are assured that the index can be used 
  1129       ** to sort because the primary key is unique and so none of the other
  1130       ** columns will make any difference
  1131       */
  1132       j = nTerm;
  1133     }
  1134   }
  1135 
  1136   *pbRev = sortOrder!=0;
  1137   if( j>=nTerm ){
  1138     /* All terms of the ORDER BY clause are covered by this index so
  1139     ** this index can be used for sorting. */
  1140     return 1;
  1141   }
  1142   if( pIdx->onError!=OE_None && i==pIdx->nColumn
  1143       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
  1144     /* All terms of this index match some prefix of the ORDER BY clause
  1145     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
  1146     ** clause reference other tables in a join.  If this is all true then
  1147     ** the order by clause is superfluous. */
  1148     return 1;
  1149   }
  1150   return 0;
  1151 }
  1152 
  1153 /*
  1154 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
  1155 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
  1156 ** true for reverse ROWID and false for forward ROWID order.
  1157 */
  1158 static int sortableByRowid(
  1159   int base,               /* Cursor number for table to be sorted */
  1160   ExprList *pOrderBy,     /* The ORDER BY clause */
  1161   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
  1162   int *pbRev              /* Set to 1 if ORDER BY is DESC */
  1163 ){
  1164   Expr *p;
  1165 
  1166   assert( pOrderBy!=0 );
  1167   assert( pOrderBy->nExpr>0 );
  1168   p = pOrderBy->a[0].pExpr;
  1169   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
  1170     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
  1171     *pbRev = pOrderBy->a[0].sortOrder;
  1172     return 1;
  1173   }
  1174   return 0;
  1175 }
  1176 
  1177 /*
  1178 ** Prepare a crude estimate of the logarithm of the input value.
  1179 ** The results need not be exact.  This is only used for estimating
  1180 ** the total cost of performing operations with O(logN) or O(NlogN)
  1181 ** complexity.  Because N is just a guess, it is no great tragedy if
  1182 ** logN is a little off.
  1183 */
  1184 static double estLog(double N){
  1185   double logN = 1;
  1186   double x = 10;
  1187   while( N>x ){
  1188     logN += 1;
  1189     x *= 10;
  1190   }
  1191   return logN;
  1192 }
  1193 
  1194 /*
  1195 ** Two routines for printing the content of an sqlite3_index_info
  1196 ** structure.  Used for testing and debugging only.  If neither
  1197 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
  1198 ** are no-ops.
  1199 */
  1200 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
  1201 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
  1202   int i;
  1203   if( !sqlite3WhereTrace ) return;
  1204   for(i=0; i<p->nConstraint; i++){
  1205     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
  1206        i,
  1207        p->aConstraint[i].iColumn,
  1208        p->aConstraint[i].iTermOffset,
  1209        p->aConstraint[i].op,
  1210        p->aConstraint[i].usable);
  1211   }
  1212   for(i=0; i<p->nOrderBy; i++){
  1213     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
  1214        i,
  1215        p->aOrderBy[i].iColumn,
  1216        p->aOrderBy[i].desc);
  1217   }
  1218 }
  1219 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
  1220   int i;
  1221   if( !sqlite3WhereTrace ) return;
  1222   for(i=0; i<p->nConstraint; i++){
  1223     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
  1224        i,
  1225        p->aConstraintUsage[i].argvIndex,
  1226        p->aConstraintUsage[i].omit);
  1227   }
  1228   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
  1229   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
  1230   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
  1231   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
  1232 }
  1233 #else
  1234 #define TRACE_IDX_INPUTS(A)
  1235 #define TRACE_IDX_OUTPUTS(A)
  1236 #endif
  1237 
  1238 #ifndef SQLITE_OMIT_VIRTUALTABLE
  1239 /*
  1240 ** Compute the best index for a virtual table.
  1241 **
  1242 ** The best index is computed by the xBestIndex method of the virtual
  1243 ** table module.  This routine is really just a wrapper that sets up
  1244 ** the sqlite3_index_info structure that is used to communicate with
  1245 ** xBestIndex.
  1246 **
  1247 ** In a join, this routine might be called multiple times for the
  1248 ** same virtual table.  The sqlite3_index_info structure is created
  1249 ** and initialized on the first invocation and reused on all subsequent
  1250 ** invocations.  The sqlite3_index_info structure is also used when
  1251 ** code is generated to access the virtual table.  The whereInfoDelete() 
  1252 ** routine takes care of freeing the sqlite3_index_info structure after
  1253 ** everybody has finished with it.
  1254 */
  1255 static double bestVirtualIndex(
  1256   Parse *pParse,                 /* The parsing context */
  1257   WhereClause *pWC,              /* The WHERE clause */
  1258   struct SrcList_item *pSrc,     /* The FROM clause term to search */
  1259   Bitmask notReady,              /* Mask of cursors that are not available */
  1260   ExprList *pOrderBy,            /* The order by clause */
  1261   int orderByUsable,             /* True if we can potential sort */
  1262   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
  1263 ){
  1264   Table *pTab = pSrc->pTab;
  1265   sqlite3_vtab *pVtab = pTab->pVtab;
  1266   sqlite3_index_info *pIdxInfo;
  1267   struct sqlite3_index_constraint *pIdxCons;
  1268   struct sqlite3_index_orderby *pIdxOrderBy;
  1269   struct sqlite3_index_constraint_usage *pUsage;
  1270   WhereTerm *pTerm;
  1271   int i, j;
  1272   int nOrderBy;
  1273   int rc;
  1274 
  1275   /* If the sqlite3_index_info structure has not been previously
  1276   ** allocated and initialized for this virtual table, then allocate
  1277   ** and initialize it now
  1278   */
  1279   pIdxInfo = *ppIdxInfo;
  1280   if( pIdxInfo==0 ){
  1281     WhereTerm *pTerm;
  1282     int nTerm;
  1283     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
  1284 
  1285     /* Count the number of possible WHERE clause constraints referring
  1286     ** to this virtual table */
  1287     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
  1288       if( pTerm->leftCursor != pSrc->iCursor ) continue;
  1289       assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
  1290       testcase( pTerm->eOperator==WO_IN );
  1291       testcase( pTerm->eOperator==WO_ISNULL );
  1292       if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
  1293       nTerm++;
  1294     }
  1295 
  1296     /* If the ORDER BY clause contains only columns in the current 
  1297     ** virtual table then allocate space for the aOrderBy part of
  1298     ** the sqlite3_index_info structure.
  1299     */
  1300     nOrderBy = 0;
  1301     if( pOrderBy ){
  1302       for(i=0; i<pOrderBy->nExpr; i++){
  1303         Expr *pExpr = pOrderBy->a[i].pExpr;
  1304         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
  1305       }
  1306       if( i==pOrderBy->nExpr ){
  1307         nOrderBy = pOrderBy->nExpr;
  1308       }
  1309     }
  1310 
  1311     /* Allocate the sqlite3_index_info structure
  1312     */
  1313     pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
  1314                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
  1315                              + sizeof(*pIdxOrderBy)*nOrderBy );
  1316     if( pIdxInfo==0 ){
  1317       sqlite3ErrorMsg(pParse, "out of memory");
  1318       return 0.0;
  1319     }
  1320     *ppIdxInfo = pIdxInfo;
  1321 
  1322     /* Initialize the structure.  The sqlite3_index_info structure contains
  1323     ** many fields that are declared "const" to prevent xBestIndex from
  1324     ** changing them.  We have to do some funky casting in order to
  1325     ** initialize those fields.
  1326     */
  1327     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
  1328     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
  1329     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
  1330     *(int*)&pIdxInfo->nConstraint = nTerm;
  1331     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  1332     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
  1333     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
  1334     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
  1335                                                                      pUsage;
  1336 
  1337     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
  1338       if( pTerm->leftCursor != pSrc->iCursor ) continue;
  1339       assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
  1340       testcase( pTerm->eOperator==WO_IN );
  1341       testcase( pTerm->eOperator==WO_ISNULL );
  1342       if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
  1343       pIdxCons[j].iColumn = pTerm->leftColumn;
  1344       pIdxCons[j].iTermOffset = i;
  1345       pIdxCons[j].op = pTerm->eOperator;
  1346       /* The direct assignment in the previous line is possible only because
  1347       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
  1348       ** following asserts verify this fact. */
  1349       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
  1350       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
  1351       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
  1352       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
  1353       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
  1354       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
  1355       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
  1356       j++;
  1357     }
  1358     for(i=0; i<nOrderBy; i++){
  1359       Expr *pExpr = pOrderBy->a[i].pExpr;
  1360       pIdxOrderBy[i].iColumn = pExpr->iColumn;
  1361       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
  1362     }
  1363   }
  1364 
  1365   /* At this point, the sqlite3_index_info structure that pIdxInfo points
  1366   ** to will have been initialized, either during the current invocation or
  1367   ** during some prior invocation.  Now we just have to customize the
  1368   ** details of pIdxInfo for the current invocation and pass it to
  1369   ** xBestIndex.
  1370   */
  1371 
  1372   /* The module name must be defined. Also, by this point there must
  1373   ** be a pointer to an sqlite3_vtab structure. Otherwise
  1374   ** sqlite3ViewGetColumnNames() would have picked up the error. 
  1375   */
  1376   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  1377   assert( pVtab );
  1378 #if 0
  1379   if( pTab->pVtab==0 ){
  1380     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
  1381         pTab->azModuleArg[0], pTab->zName);
  1382     return 0.0;
  1383   }
  1384 #endif
  1385 
  1386   /* Set the aConstraint[].usable fields and initialize all 
  1387   ** output variables to zero.
  1388   **
  1389   ** aConstraint[].usable is true for constraints where the right-hand
  1390   ** side contains only references to tables to the left of the current
  1391   ** table.  In other words, if the constraint is of the form:
  1392   **
  1393   **           column = expr
  1394   **
  1395   ** and we are evaluating a join, then the constraint on column is 
  1396   ** only valid if all tables referenced in expr occur to the left
  1397   ** of the table containing column.
  1398   **
  1399   ** The aConstraints[] array contains entries for all constraints
  1400   ** on the current table.  That way we only have to compute it once
  1401   ** even though we might try to pick the best index multiple times.
  1402   ** For each attempt at picking an index, the order of tables in the
  1403   ** join might be different so we have to recompute the usable flag
  1404   ** each time.
  1405   */
  1406   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  1407   pUsage = pIdxInfo->aConstraintUsage;
  1408   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
  1409     j = pIdxCons->iTermOffset;
  1410     pTerm = &pWC->a[j];
  1411     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
  1412   }
  1413   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
  1414   if( pIdxInfo->needToFreeIdxStr ){
  1415     sqlite3_free(pIdxInfo->idxStr);
  1416   }
  1417   pIdxInfo->idxStr = 0;
  1418   pIdxInfo->idxNum = 0;
  1419   pIdxInfo->needToFreeIdxStr = 0;
  1420   pIdxInfo->orderByConsumed = 0;
  1421   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
  1422   nOrderBy = pIdxInfo->nOrderBy;
  1423   if( pIdxInfo->nOrderBy && !orderByUsable ){
  1424     *(int*)&pIdxInfo->nOrderBy = 0;
  1425   }
  1426 
  1427   (void)sqlite3SafetyOff(pParse->db);
  1428   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
  1429   TRACE_IDX_INPUTS(pIdxInfo);
  1430   rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo);
  1431   TRACE_IDX_OUTPUTS(pIdxInfo);
  1432   (void)sqlite3SafetyOn(pParse->db);
  1433 
  1434   if( rc!=SQLITE_OK ){
  1435     if( rc==SQLITE_NOMEM ){
  1436       pParse->db->mallocFailed = 1;
  1437     }else if( !pVtab->zErrMsg ){
  1438       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
  1439     }else{
  1440       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
  1441     }
  1442   }
  1443   sqlite3DbFree(pParse->db, pVtab->zErrMsg);
  1444   pVtab->zErrMsg = 0;
  1445 
  1446   for(i=0; i<pIdxInfo->nConstraint; i++){
  1447     if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){
  1448       sqlite3ErrorMsg(pParse, 
  1449           "table %s: xBestIndex returned an invalid plan", pTab->zName);
  1450       return 0.0;
  1451     }
  1452   }
  1453 
  1454   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
  1455   return pIdxInfo->estimatedCost;
  1456 }
  1457 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  1458 
  1459 /*
  1460 ** Find the best index for accessing a particular table.  Return a pointer
  1461 ** to the index, flags that describe how the index should be used, the
  1462 ** number of equality constraints, and the "cost" for this index.
  1463 **
  1464 ** The lowest cost index wins.  The cost is an estimate of the amount of
  1465 ** CPU and disk I/O need to process the request using the selected index.
  1466 ** Factors that influence cost include:
  1467 **
  1468 **    *  The estimated number of rows that will be retrieved.  (The
  1469 **       fewer the better.)
  1470 **
  1471 **    *  Whether or not sorting must occur.
  1472 **
  1473 **    *  Whether or not there must be separate lookups in the
  1474 **       index and in the main table.
  1475 **
  1476 */
  1477 static double bestIndex(
  1478   Parse *pParse,              /* The parsing context */
  1479   WhereClause *pWC,           /* The WHERE clause */
  1480   struct SrcList_item *pSrc,  /* The FROM clause term to search */
  1481   Bitmask notReady,           /* Mask of cursors that are not available */
  1482   ExprList *pOrderBy,         /* The order by clause */
  1483   Index **ppIndex,            /* Make *ppIndex point to the best index */
  1484   int *pFlags,                /* Put flags describing this choice in *pFlags */
  1485   int *pnEq                   /* Put the number of == or IN constraints here */
  1486 ){
  1487   WhereTerm *pTerm;
  1488   Index *bestIdx = 0;         /* Index that gives the lowest cost */
  1489   double lowestCost;          /* The cost of using bestIdx */
  1490   int bestFlags = 0;          /* Flags associated with bestIdx */
  1491   int bestNEq = 0;            /* Best value for nEq */
  1492   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  1493   Index *pProbe;              /* An index we are evaluating */
  1494   int rev;                    /* True to scan in reverse order */
  1495   int flags;                  /* Flags associated with pProbe */
  1496   int nEq;                    /* Number of == or IN constraints */
  1497   int eqTermMask;             /* Mask of valid equality operators */
  1498   double cost;                /* Cost of using pProbe */
  1499 
  1500   WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady));
  1501   lowestCost = SQLITE_BIG_DBL;
  1502   pProbe = pSrc->pTab->pIndex;
  1503 
  1504   /* If the table has no indices and there are no terms in the where
  1505   ** clause that refer to the ROWID, then we will never be able to do
  1506   ** anything other than a full table scan on this table.  We might as
  1507   ** well put it first in the join order.  That way, perhaps it can be
  1508   ** referenced by other tables in the join.
  1509   */
  1510   if( pProbe==0 &&
  1511      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
  1512      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
  1513     *pFlags = 0;
  1514     *ppIndex = 0;
  1515     *pnEq = 0;
  1516     return 0.0;
  1517   }
  1518 
  1519   /* Check for a rowid=EXPR or rowid IN (...) constraints
  1520   */
  1521   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
  1522   if( pTerm ){
  1523     Expr *pExpr;
  1524     *ppIndex = 0;
  1525     bestFlags = WHERE_ROWID_EQ;
  1526     if( pTerm->eOperator & WO_EQ ){
  1527       /* Rowid== is always the best pick.  Look no further.  Because only
  1528       ** a single row is generated, output is always in sorted order */
  1529       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
  1530       *pnEq = 1;
  1531       WHERETRACE(("... best is rowid\n"));
  1532       return 0.0;
  1533     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
  1534       /* Rowid IN (LIST): cost is NlogN where N is the number of list
  1535       ** elements.  */
  1536       lowestCost = pExpr->pList->nExpr;
  1537       lowestCost *= estLog(lowestCost);
  1538     }else{
  1539       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
  1540       ** in the result of the inner select.  We have no way to estimate
  1541       ** that value so make a wild guess. */
  1542       lowestCost = 200;
  1543     }
  1544     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
  1545   }
  1546 
  1547   /* Estimate the cost of a table scan.  If we do not know how many
  1548   ** entries are in the table, use 1 million as a guess.
  1549   */
  1550   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
  1551   WHERETRACE(("... table scan base cost: %.9g\n", cost));
  1552   flags = WHERE_ROWID_RANGE;
  1553 
  1554   /* Check for constraints on a range of rowids in a table scan.
  1555   */
  1556   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
  1557   if( pTerm ){
  1558     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
  1559       flags |= WHERE_TOP_LIMIT;
  1560       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
  1561     }
  1562     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
  1563       flags |= WHERE_BTM_LIMIT;
  1564       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
  1565     }
  1566     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
  1567   }else{
  1568     flags = 0;
  1569   }
  1570 
  1571   /* If the table scan does not satisfy the ORDER BY clause, increase
  1572   ** the cost by NlogN to cover the expense of sorting. */
  1573   if( pOrderBy ){
  1574     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
  1575       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
  1576       if( rev ){
  1577         flags |= WHERE_REVERSE;
  1578       }
  1579     }else{
  1580       cost += cost*estLog(cost);
  1581       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
  1582     }
  1583   }
  1584   if( cost<lowestCost ){
  1585     lowestCost = cost;
  1586     bestFlags = flags;
  1587   }
  1588 
  1589   /* If the pSrc table is the right table of a LEFT JOIN then we may not
  1590   ** use an index to satisfy IS NULL constraints on that table.  This is
  1591   ** because columns might end up being NULL if the table does not match -
  1592   ** a circumstance which the index cannot help us discover.  Ticket #2177.
  1593   */
  1594   if( (pSrc->jointype & JT_LEFT)!=0 ){
  1595     eqTermMask = WO_EQ|WO_IN;
  1596   }else{
  1597     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
  1598   }
  1599 
  1600   /* Look at each index.
  1601   */
  1602   for(; pProbe; pProbe=pProbe->pNext){
  1603     int i;                       /* Loop counter */
  1604     double inMultiplier = 1;
  1605 
  1606     WHERETRACE(("... index %s:\n", pProbe->zName));
  1607 
  1608     /* Count the number of columns in the index that are satisfied
  1609     ** by x=EXPR constraints or x IN (...) constraints.
  1610     */
  1611     flags = 0;
  1612     for(i=0; i<pProbe->nColumn; i++){
  1613       int j = pProbe->aiColumn[i];
  1614       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
  1615       if( pTerm==0 ) break;
  1616       flags |= WHERE_COLUMN_EQ;
  1617       if( pTerm->eOperator & WO_IN ){
  1618         Expr *pExpr = pTerm->pExpr;
  1619         flags |= WHERE_COLUMN_IN;
  1620         if( pExpr->pSelect!=0 ){
  1621           inMultiplier *= 25;
  1622         }else if( ALWAYS(pExpr->pList) ){
  1623           inMultiplier *= pExpr->pList->nExpr + 1;
  1624         }
  1625       }
  1626     }
  1627     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
  1628     nEq = i;
  1629     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
  1630          && nEq==pProbe->nColumn ){
  1631       flags |= WHERE_UNIQUE;
  1632     }
  1633     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
  1634 
  1635     /* Look for range constraints
  1636     */
  1637     if( nEq<pProbe->nColumn ){
  1638       int j = pProbe->aiColumn[nEq];
  1639       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
  1640       if( pTerm ){
  1641         flags |= WHERE_COLUMN_RANGE;
  1642         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
  1643           flags |= WHERE_TOP_LIMIT;
  1644           cost /= 3;
  1645         }
  1646         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
  1647           flags |= WHERE_BTM_LIMIT;
  1648           cost /= 3;
  1649         }
  1650         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
  1651       }
  1652     }
  1653 
  1654     /* Add the additional cost of sorting if that is a factor.
  1655     */
  1656     if( pOrderBy ){
  1657       if( (flags & WHERE_COLUMN_IN)==0 &&
  1658            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
  1659         if( flags==0 ){
  1660           flags = WHERE_COLUMN_RANGE;
  1661         }
  1662         flags |= WHERE_ORDERBY;
  1663         if( rev ){
  1664           flags |= WHERE_REVERSE;
  1665         }
  1666       }else{
  1667         cost += cost*estLog(cost);
  1668         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
  1669       }
  1670     }
  1671 
  1672     /* Check to see if we can get away with using just the index without
  1673     ** ever reading the table.  If that is the case, then halve the
  1674     ** cost of this index.
  1675     */
  1676     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
  1677       Bitmask m = pSrc->colUsed;
  1678       int j;
  1679       for(j=0; j<pProbe->nColumn; j++){
  1680         int x = pProbe->aiColumn[j];
  1681         if( x<BMS-1 ){
  1682           m &= ~(((Bitmask)1)<<x);
  1683         }
  1684       }
  1685       if( m==0 ){
  1686         flags |= WHERE_IDX_ONLY;
  1687         cost /= 2;
  1688         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
  1689       }
  1690     }
  1691 
  1692     /* If this index has achieved the lowest cost so far, then use it.
  1693     */
  1694     if( flags && cost < lowestCost ){
  1695       bestIdx = pProbe;
  1696       lowestCost = cost;
  1697       bestFlags = flags;
  1698       bestNEq = nEq;
  1699     }
  1700   }
  1701 
  1702   /* Report the best result
  1703   */
  1704   *ppIndex = bestIdx;
  1705   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
  1706         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
  1707   *pFlags = bestFlags | eqTermMask;
  1708   *pnEq = bestNEq;
  1709   return lowestCost;
  1710 }
  1711 
  1712 
  1713 /*
  1714 ** Disable a term in the WHERE clause.  Except, do not disable the term
  1715 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
  1716 ** or USING clause of that join.
  1717 **
  1718 ** Consider the term t2.z='ok' in the following queries:
  1719 **
  1720 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
  1721 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
  1722 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
  1723 **
  1724 ** The t2.z='ok' is disabled in the in (2) because it originates
  1725 ** in the ON clause.  The term is disabled in (3) because it is not part
  1726 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
  1727 **
  1728 ** Disabling a term causes that term to not be tested in the inner loop
  1729 ** of the join.  Disabling is an optimization.  When terms are satisfied
  1730 ** by indices, we disable them to prevent redundant tests in the inner
  1731 ** loop.  We would get the correct results if nothing were ever disabled,
  1732 ** but joins might run a little slower.  The trick is to disable as much
  1733 ** as we can without disabling too much.  If we disabled in (1), we'd get
  1734 ** the wrong answer.  See ticket #813.
  1735 */
  1736 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  1737   if( pTerm
  1738       && ALWAYS((pTerm->flags & TERM_CODED)==0)
  1739       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
  1740   ){
  1741     pTerm->flags |= TERM_CODED;
  1742     if( pTerm->iParent>=0 ){
  1743       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
  1744       if( (--pOther->nChild)==0 ){
  1745         disableTerm(pLevel, pOther);
  1746       }
  1747     }
  1748   }
  1749 }
  1750 
  1751 /*
  1752 ** Apply the affinities associated with the first n columns of index
  1753 ** pIdx to the values in the n registers starting at base.
  1754 */
  1755 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
  1756   if( n>0 ){
  1757     Vdbe *v = pParse->pVdbe;
  1758     assert( v!=0 );
  1759     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
  1760     sqlite3IndexAffinityStr(v, pIdx);
  1761     sqlite3ExprCacheAffinityChange(pParse, base, n);
  1762   }
  1763 }
  1764 
  1765 
  1766 /*
  1767 ** Generate code for a single equality term of the WHERE clause.  An equality
  1768 ** term can be either X=expr or X IN (...).   pTerm is the term to be 
  1769 ** coded.
  1770 **
  1771 ** The current value for the constraint is left in register iReg.
  1772 **
  1773 ** For a constraint of the form X=expr, the expression is evaluated and its
  1774 ** result is left on the stack.  For constraints of the form X IN (...)
  1775 ** this routine sets up a loop that will iterate over all values of X.
  1776 */
  1777 static int codeEqualityTerm(
  1778   Parse *pParse,      /* The parsing context */
  1779   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  1780   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
  1781   int iTarget         /* Attempt to leave results in this register */
  1782 ){
  1783   Expr *pX = pTerm->pExpr;
  1784   Vdbe *v = pParse->pVdbe;
  1785   int iReg;                  /* Register holding results */
  1786 
  1787   assert( iTarget>0 );
  1788   if( pX->op==TK_EQ ){
  1789     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
  1790   }else if( pX->op==TK_ISNULL ){
  1791     iReg = iTarget;
  1792     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
  1793 #ifndef SQLITE_OMIT_SUBQUERY
  1794   }else{
  1795     int eType;
  1796     int iTab;
  1797     struct InLoop *pIn;
  1798 
  1799     assert( pX->op==TK_IN );
  1800     iReg = iTarget;
  1801     eType = sqlite3FindInIndex(pParse, pX, 0);
  1802     iTab = pX->iTable;
  1803     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
  1804     VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
  1805     if( pLevel->nIn==0 ){
  1806       pLevel->nxt = sqlite3VdbeMakeLabel(v);
  1807     }
  1808     pLevel->nIn++;
  1809     pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
  1810                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
  1811     pIn = pLevel->aInLoop;
  1812     if( pIn ){
  1813       pIn += pLevel->nIn - 1;
  1814       pIn->iCur = iTab;
  1815       if( eType==IN_INDEX_ROWID ){
  1816         pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
  1817       }else{
  1818         pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
  1819       }
  1820       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
  1821     }else{
  1822       pLevel->nIn = 0;
  1823     }
  1824 #endif
  1825   }
  1826   disableTerm(pLevel, pTerm);
  1827   return iReg;
  1828 }
  1829 
  1830 /*
  1831 ** Generate code that will evaluate all == and IN constraints for an
  1832 ** index.  The values for all constraints are left on the stack.
  1833 **
  1834 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
  1835 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
  1836 ** The index has as many as three equality constraints, but in this
  1837 ** example, the third "c" value is an inequality.  So only two 
  1838 ** constraints are coded.  This routine will generate code to evaluate
  1839 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
  1840 ** on the stack - a is the deepest and b the shallowest.
  1841 **
  1842 ** In the example above nEq==2.  But this subroutine works for any value
  1843 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
  1844 ** The only thing it does is allocate the pLevel->iMem memory cell.
  1845 **
  1846 ** This routine always allocates at least one memory cell and puts
  1847 ** the address of that memory cell in pLevel->iMem.  The code that
  1848 ** calls this routine will use pLevel->iMem to store the termination
  1849 ** key value of the loop.  If one or more IN operators appear, then
  1850 ** this routine allocates an additional nEq memory cells for internal
  1851 ** use.
  1852 */
  1853 static int codeAllEqualityTerms(
  1854   Parse *pParse,        /* Parsing context */
  1855   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  1856   WhereClause *pWC,     /* The WHERE clause */
  1857   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
  1858   int nExtraReg         /* Number of extra registers to allocate */
  1859 ){
  1860   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
  1861   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
  1862   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
  1863   int iCur = pLevel->iTabCur;   /* The cursor of the table */
  1864   WhereTerm *pTerm;             /* A single constraint term */
  1865   int j;                        /* Loop counter */
  1866   int regBase;                  /* Base register */
  1867 
  1868   /* Figure out how many memory cells we will need then allocate them.
  1869   ** We always need at least one used to store the loop terminator
  1870   ** value.  If there are IN operators we'll need one for each == or
  1871   ** IN constraint.
  1872   */
  1873   pLevel->iMem = pParse->nMem + 1;
  1874   regBase = pParse->nMem + 2;
  1875   pParse->nMem += pLevel->nEq + 2 + nExtraReg;
  1876 
  1877   /* Evaluate the equality constraints
  1878   */
  1879   assert( pIdx->nColumn>=nEq );
  1880   for(j=0; j<nEq; j++){
  1881     int r1;
  1882     int k = pIdx->aiColumn[j];
  1883     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
  1884     if( NEVER(pTerm==0) ) break;
  1885     assert( (pTerm->flags & TERM_CODED)==0 );
  1886     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
  1887     if( r1!=regBase+j ){
  1888       sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
  1889     }
  1890     testcase( pTerm->eOperator & WO_ISNULL );
  1891     testcase( pTerm->eOperator & WO_IN );
  1892     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
  1893       sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk);
  1894     }
  1895   }
  1896   return regBase;
  1897 }
  1898 
  1899 #if defined(SQLITE_TEST)
  1900 /*
  1901 ** The following variable holds a text description of query plan generated
  1902 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
  1903 ** overwrites the previous.  This information is used for testing and
  1904 ** analysis only.
  1905 */
  1906 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
  1907 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
  1908 
  1909 #endif /* SQLITE_TEST */
  1910 
  1911 
  1912 /*
  1913 ** Free a WhereInfo structure
  1914 */
  1915 static void whereInfoFree(WhereInfo *pWInfo){
  1916   if( pWInfo ){
  1917     int i;
  1918     sqlite3 *db = pWInfo->pParse->db;
  1919     for(i=0; i<pWInfo->nLevel; i++){
  1920       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
  1921       if( pInfo ){
  1922         assert( pInfo->needToFreeIdxStr==0 );
  1923         sqlite3DbFree(db, pInfo);
  1924       }
  1925     }
  1926     sqlite3DbFree(db, pWInfo);
  1927   }
  1928 }
  1929 
  1930 
  1931 /*
  1932 ** Generate the beginning of the loop used for WHERE clause processing.
  1933 ** The return value is a pointer to an opaque structure that contains
  1934 ** information needed to terminate the loop.  Later, the calling routine
  1935 ** should invoke sqlite3WhereEnd() with the return value of this function
  1936 ** in order to complete the WHERE clause processing.
  1937 **
  1938 ** If an error occurs, this routine returns NULL.
  1939 **
  1940 ** The basic idea is to do a nested loop, one loop for each table in
  1941 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
  1942 ** same as a SELECT with only a single table in the FROM clause.)  For
  1943 ** example, if the SQL is this:
  1944 **
  1945 **       SELECT * FROM t1, t2, t3 WHERE ...;
  1946 **
  1947 ** Then the code generated is conceptually like the following:
  1948 **
  1949 **      foreach row1 in t1 do       \    Code generated
  1950 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
  1951 **          foreach row3 in t3 do   /
  1952 **            ...
  1953 **          end                     \    Code generated
  1954 **        end                        |-- by sqlite3WhereEnd()
  1955 **      end                         /
  1956 **
  1957 ** Note that the loops might not be nested in the order in which they
  1958 ** appear in the FROM clause if a different order is better able to make
  1959 ** use of indices.  Note also that when the IN operator appears in
  1960 ** the WHERE clause, it might result in additional nested loops for
  1961 ** scanning through all values on the right-hand side of the IN.
  1962 **
  1963 ** There are Btree cursors associated with each table.  t1 uses cursor
  1964 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
  1965 ** And so forth.  This routine generates code to open those VDBE cursors
  1966 ** and sqlite3WhereEnd() generates the code to close them.
  1967 **
  1968 ** The code that sqlite3WhereBegin() generates leaves the cursors named
  1969 ** in pTabList pointing at their appropriate entries.  The [...] code
  1970 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
  1971 ** data from the various tables of the loop.
  1972 **
  1973 ** If the WHERE clause is empty, the foreach loops must each scan their
  1974 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
  1975 ** the tables have indices and there are terms in the WHERE clause that
  1976 ** refer to those indices, a complete table scan can be avoided and the
  1977 ** code will run much faster.  Most of the work of this routine is checking
  1978 ** to see if there are indices that can be used to speed up the loop.
  1979 **
  1980 ** Terms of the WHERE clause are also used to limit which rows actually
  1981 ** make it to the "..." in the middle of the loop.  After each "foreach",
  1982 ** terms of the WHERE clause that use only terms in that loop and outer
  1983 ** loops are evaluated and if false a jump is made around all subsequent
  1984 ** inner loops (or around the "..." if the test occurs within the inner-
  1985 ** most loop)
  1986 **
  1987 ** OUTER JOINS
  1988 **
  1989 ** An outer join of tables t1 and t2 is conceptally coded as follows:
  1990 **
  1991 **    foreach row1 in t1 do
  1992 **      flag = 0
  1993 **      foreach row2 in t2 do
  1994 **        start:
  1995 **          ...
  1996 **          flag = 1
  1997 **      end
  1998 **      if flag==0 then
  1999 **        move the row2 cursor to a null row
  2000 **        goto start
  2001 **      fi
  2002 **    end
  2003 **
  2004 ** ORDER BY CLAUSE PROCESSING
  2005 **
  2006 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
  2007 ** if there is one.  If there is no ORDER BY clause or if this routine
  2008 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
  2009 **
  2010 ** If an index can be used so that the natural output order of the table
  2011 ** scan is correct for the ORDER BY clause, then that index is used and
  2012 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
  2013 ** unnecessary sort of the result set if an index appropriate for the
  2014 ** ORDER BY clause already exists.
  2015 **
  2016 ** If the where clause loops cannot be arranged to provide the correct
  2017 ** output order, then the *ppOrderBy is unchanged.
  2018 */
  2019 WhereInfo *sqlite3WhereBegin(
  2020   Parse *pParse,        /* The parser context */
  2021   SrcList *pTabList,    /* A list of all tables to be scanned */
  2022   Expr *pWhere,         /* The WHERE clause */
  2023   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  2024   u8 wflags             /* One of the WHERE_* flags defined in sqliteInt.h */
  2025 ){
  2026   int i;                     /* Loop counter */
  2027   WhereInfo *pWInfo;         /* Will become the return value of this function */
  2028   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  2029   int brk, cont = 0;         /* Addresses used during code generation */
  2030   Bitmask notReady;          /* Cursors that are not yet positioned */
  2031   WhereTerm *pTerm;          /* A single term in the WHERE clause */
  2032   ExprMaskSet maskSet;       /* The expression mask set */
  2033   WhereClause wc;            /* The WHERE clause is divided into these terms */
  2034   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
  2035   WhereLevel *pLevel;             /* A single level in the pWInfo list */
  2036   int iFrom;                      /* First unused FROM clause element */
  2037   int andFlags;              /* AND-ed combination of all wc.a[].flags */
  2038   sqlite3 *db;               /* Database connection */
  2039   ExprList *pOrderBy = 0;
  2040 
  2041   /* The number of tables in the FROM clause is limited by the number of
  2042   ** bits in a Bitmask 
  2043   */
  2044   if( pTabList->nSrc>BMS ){
  2045     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
  2046     return 0;
  2047   }
  2048 
  2049   if( ppOrderBy ){
  2050     pOrderBy = *ppOrderBy;
  2051   }
  2052 
  2053   /* Split the WHERE clause into separate subexpressions where each
  2054   ** subexpression is separated by an AND operator.
  2055   */
  2056   initMaskSet(&maskSet);
  2057   whereClauseInit(&wc, pParse, &maskSet);
  2058   sqlite3ExprCodeConstants(pParse, pWhere);
  2059   whereSplit(&wc, pWhere, TK_AND);
  2060     
  2061   /* Allocate and initialize the WhereInfo structure that will become the
  2062   ** return value.
  2063   */
  2064   db = pParse->db;
  2065   pWInfo = sqlite3DbMallocZero(db,  
  2066                       sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
  2067   if( db->mallocFailed ){
  2068     goto whereBeginNoMem;
  2069   }
  2070   pWInfo->nLevel = pTabList->nSrc;
  2071   pWInfo->pParse = pParse;
  2072   pWInfo->pTabList = pTabList;
  2073   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  2074 
  2075   /* Special case: a WHERE clause that is constant.  Evaluate the
  2076   ** expression and either jump over all of the code or fall thru.
  2077   */
  2078   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
  2079     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
  2080     pWhere = 0;
  2081   }
  2082 
  2083   /* Assign a bit from the bitmask to every term in the FROM clause.
  2084   **
  2085   ** When assigning bitmask values to FROM clause cursors, it must be
  2086   ** the case that if X is the bitmask for the N-th FROM clause term then
  2087   ** the bitmask for all FROM clause terms to the left of the N-th term
  2088   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
  2089   ** its Expr.iRightJoinTable value to find the bitmask of the right table
  2090   ** of the join.  Subtracting one from the right table bitmask gives a
  2091   ** bitmask for all tables to the left of the join.  Knowing the bitmask
  2092   ** for all tables to the left of a left join is important.  Ticket #3015.
  2093   */
  2094   for(i=0; i<pTabList->nSrc; i++){
  2095     createMask(&maskSet, pTabList->a[i].iCursor);
  2096   }
  2097 #ifndef NDEBUG
  2098   {
  2099     Bitmask toTheLeft = 0;
  2100     for(i=0; i<pTabList->nSrc; i++){
  2101       Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor);
  2102       assert( (m-1)==toTheLeft );
  2103       toTheLeft |= m;
  2104     }
  2105   }
  2106 #endif
  2107 
  2108   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  2109   ** add new virtual terms onto the end of the WHERE clause.  We do not
  2110   ** want to analyze these virtual terms, so start analyzing at the end
  2111   ** and work forward so that the added virtual terms are never processed.
  2112   */
  2113   exprAnalyzeAll(pTabList, &wc);
  2114   if( db->mallocFailed ){
  2115     goto whereBeginNoMem;
  2116   }
  2117 
  2118   /* Chose the best index to use for each table in the FROM clause.
  2119   **
  2120   ** This loop fills in the following fields:
  2121   **
  2122   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
  2123   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
  2124   **   pWInfo->a[].nEq       The number of == and IN constraints
  2125   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
  2126   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
  2127   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
  2128   **
  2129   ** This loop also figures out the nesting order of tables in the FROM
  2130   ** clause.
  2131   */
  2132   notReady = ~(Bitmask)0;
  2133   pTabItem = pTabList->a;
  2134   pLevel = pWInfo->a;
  2135   andFlags = ~0;
  2136   WHERETRACE(("*** Optimizer Start ***\n"));
  2137   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
  2138     Index *pIdx;                /* Index for FROM table at pTabItem */
  2139     int flags;                  /* Flags asssociated with pIdx */
  2140     int nEq;                    /* Number of == or IN constraints */
  2141     double cost;                /* The cost for pIdx */
  2142     int j;                      /* For looping over FROM tables */
  2143     Index *pBest = 0;           /* The best index seen so far */
  2144     int bestFlags = 0;          /* Flags associated with pBest */
  2145     int bestNEq = 0;            /* nEq associated with pBest */
  2146     double lowestCost;          /* Cost of the pBest */
  2147     int bestJ = 0;              /* The value of j */
  2148     Bitmask m;                  /* Bitmask value for j or bestJ */
  2149     int once = 0;               /* True when first table is seen */
  2150     sqlite3_index_info *pIndex; /* Current virtual index */
  2151 
  2152     lowestCost = SQLITE_BIG_DBL;
  2153     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
  2154       int doNotReorder;  /* True if this table should not be reordered */
  2155 
  2156       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
  2157       if( once && doNotReorder ) break;
  2158       m = getMask(&maskSet, pTabItem->iCursor);
  2159       if( (m & notReady)==0 ){
  2160         if( j==iFrom ) iFrom++;
  2161         continue;
  2162       }
  2163       assert( pTabItem->pTab );
  2164 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2165       if( IsVirtual(pTabItem->pTab) ){
  2166         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
  2167         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
  2168                                 ppOrderBy ? *ppOrderBy : 0, i==0,
  2169                                 ppIdxInfo);
  2170         flags = WHERE_VIRTUALTABLE;
  2171         pIndex = *ppIdxInfo;
  2172         if( pIndex && pIndex->orderByConsumed ){
  2173           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
  2174         }
  2175         pIdx = 0;
  2176         nEq = 0;
  2177         if( (SQLITE_BIG_DBL/2.0)<cost ){
  2178           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
  2179           ** inital value of lowestCost in this loop. If it is, then
  2180           ** the (cost<lowestCost) test below will never be true and
  2181           ** pLevel->pBestIdx never set.
  2182           */ 
  2183           cost = (SQLITE_BIG_DBL/2.0);
  2184         }
  2185       }else 
  2186 #endif
  2187       {
  2188         cost = bestIndex(pParse, &wc, pTabItem, notReady,
  2189                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
  2190                          &pIdx, &flags, &nEq);
  2191         pIndex = 0;
  2192       }
  2193       if( cost<lowestCost ){
  2194         once = 1;
  2195         lowestCost = cost;
  2196         pBest = pIdx;
  2197         bestFlags = flags;
  2198         bestNEq = nEq;
  2199         bestJ = j;
  2200         pLevel->pBestIdx = pIndex;
  2201       }
  2202       if( doNotReorder ) break;
  2203     }
  2204     WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
  2205            pLevel-pWInfo->a));
  2206     if( (bestFlags & WHERE_ORDERBY)!=0 ){
  2207       *ppOrderBy = 0;
  2208     }
  2209     andFlags &= bestFlags;
  2210     pLevel->flags = bestFlags;
  2211     pLevel->pIdx = pBest;
  2212     pLevel->nEq = bestNEq;
  2213     pLevel->aInLoop = 0;
  2214     pLevel->nIn = 0;
  2215     if( pBest ){
  2216       pLevel->iIdxCur = pParse->nTab++;
  2217     }else{
  2218       pLevel->iIdxCur = -1;
  2219     }
  2220     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
  2221     pLevel->iFrom = bestJ;
  2222   }
  2223   WHERETRACE(("*** Optimizer Finished ***\n"));
  2224 
  2225   /* If the total query only selects a single row, then the ORDER BY
  2226   ** clause is irrelevant.
  2227   */
  2228   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
  2229     *ppOrderBy = 0;
  2230   }
  2231 
  2232   /* If the caller is an UPDATE or DELETE statement that is requesting
  2233   ** to use a one-pass algorithm, determine if this is appropriate.
  2234   ** The one-pass algorithm only works if the WHERE clause constraints
  2235   ** the statement to update a single row.
  2236   */
  2237   assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  2238   if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
  2239     pWInfo->okOnePass = 1;
  2240     pWInfo->a[0].flags &= ~WHERE_IDX_ONLY;
  2241   }
  2242 
  2243   /* Open all tables in the pTabList and any indices selected for
  2244   ** searching those tables.
  2245   */
  2246   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  2247   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
  2248     Table *pTab;     /* Table to open */
  2249     Index *pIx;      /* Index used to access pTab (if any) */
  2250     int iDb;         /* Index of database containing table/index */
  2251     int iIdxCur = pLevel->iIdxCur;
  2252 
  2253 #ifndef SQLITE_OMIT_EXPLAIN
  2254     if( pParse->explain==2 ){
  2255       char *zMsg;
  2256       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
  2257       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
  2258       if( pItem->zAlias ){
  2259         zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
  2260       }
  2261       if( (pIx = pLevel->pIdx)!=0 ){
  2262         zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName);
  2263       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
  2264         zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
  2265       }
  2266 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2267       else if( pLevel->pBestIdx ){
  2268         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
  2269         zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
  2270                     pBestIdx->idxNum, pBestIdx->idxStr);
  2271       }
  2272 #endif
  2273       if( pLevel->flags & WHERE_ORDERBY ){
  2274         zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
  2275       }
  2276       sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
  2277     }
  2278 #endif /* SQLITE_OMIT_EXPLAIN */
  2279     pTabItem = &pTabList->a[pLevel->iFrom];
  2280     pTab = pTabItem->pTab;
  2281     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  2282     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
  2283 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2284     if( pLevel->pBestIdx ){
  2285       int iCur = pTabItem->iCursor;
  2286       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
  2287                         (const char*)pTab->pVtab, P4_VTAB);
  2288     }else
  2289 #endif
  2290     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
  2291       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
  2292       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
  2293       if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){
  2294         Bitmask b = pTabItem->colUsed;
  2295         int n = 0;
  2296         for(; b; b=b>>1, n++){}
  2297         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n);
  2298         assert( n<=pTab->nCol );
  2299       }
  2300     }else{
  2301       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
  2302     }
  2303     pLevel->iTabCur = pTabItem->iCursor;
  2304     if( (pIx = pLevel->pIdx)!=0 ){
  2305       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
  2306       assert( pIx->pSchema==pTab->pSchema );
  2307       sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1);
  2308       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
  2309                         (char*)pKey, P4_KEYINFO_HANDOFF);
  2310       VdbeComment((v, "%s", pIx->zName));
  2311     }
  2312     sqlite3CodeVerifySchema(pParse, iDb);
  2313   }
  2314   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  2315 
  2316   /* Generate the code to do the search.  Each iteration of the for
  2317   ** loop below generates code for a single nested loop of the VM
  2318   ** program.
  2319   */
  2320   notReady = ~(Bitmask)0;
  2321   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
  2322     int j;
  2323     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
  2324     Index *pIdx;       /* The index we will be using */
  2325     int nxt;           /* Where to jump to continue with the next IN case */
  2326     int iIdxCur;       /* The VDBE cursor for the index */
  2327     int omitTable;     /* True if we use the index only */
  2328     int bRev;          /* True if we need to scan in reverse order */
  2329 
  2330     pTabItem = &pTabList->a[pLevel->iFrom];
  2331     iCur = pTabItem->iCursor;
  2332     pIdx = pLevel->pIdx;
  2333     iIdxCur = pLevel->iIdxCur;
  2334     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
  2335     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
  2336 
  2337     /* Create labels for the "break" and "continue" instructions
  2338     ** for the current loop.  Jump to brk to break out of a loop.
  2339     ** Jump to cont to go immediately to the next iteration of the
  2340     ** loop.
  2341     **
  2342     ** When there is an IN operator, we also have a "nxt" label that
  2343     ** means to continue with the next IN value combination.  When
  2344     ** there are no IN operators in the constraints, the "nxt" label
  2345     ** is the same as "brk".
  2346     */
  2347     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
  2348     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
  2349 
  2350     /* If this is the right table of a LEFT OUTER JOIN, allocate and
  2351     ** initialize a memory cell that records if this table matches any
  2352     ** row of the left table of the join.
  2353     */
  2354     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
  2355       pLevel->iLeftJoin = ++pParse->nMem;
  2356       sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
  2357       VdbeComment((v, "init LEFT JOIN no-match flag"));
  2358     }
  2359 
  2360 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2361     if( pLevel->pBestIdx ){
  2362       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
  2363       **          to access the data.
  2364       */
  2365       int j;
  2366       int iReg;   /* P3 Value for OP_VFilter */
  2367       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
  2368       int nConstraint = pBestIdx->nConstraint;
  2369       struct sqlite3_index_constraint_usage *aUsage =
  2370                                                   pBestIdx->aConstraintUsage;
  2371       const struct sqlite3_index_constraint *aConstraint =
  2372                                                   pBestIdx->aConstraint;
  2373 
  2374       iReg = sqlite3GetTempRange(pParse, nConstraint+2);
  2375       pParse->disableColCache++;
  2376       for(j=1; j<=nConstraint; j++){
  2377         int k;
  2378         for(k=0; k<nConstraint; k++){
  2379           if( aUsage[k].argvIndex==j ){
  2380             int iTerm = aConstraint[k].iTermOffset;
  2381             assert( pParse->disableColCache );
  2382             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1);
  2383             break;
  2384           }
  2385         }
  2386         if( k==nConstraint ) break;
  2387       }
  2388       assert( pParse->disableColCache );
  2389       pParse->disableColCache--;
  2390       sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg);
  2391       sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
  2392       sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr,
  2393                         pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
  2394       sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
  2395       pBestIdx->needToFreeIdxStr = 0;
  2396       for(j=0; j<nConstraint; j++){
  2397         if( aUsage[j].omit ){
  2398           int iTerm = aConstraint[j].iTermOffset;
  2399           disableTerm(pLevel, &wc.a[iTerm]);
  2400         }
  2401       }
  2402       pLevel->op = OP_VNext;
  2403       pLevel->p1 = iCur;
  2404       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
  2405     }else
  2406 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  2407 
  2408     if( pLevel->flags & WHERE_ROWID_EQ ){
  2409       /* Case 1:  We can directly reference a single row using an
  2410       **          equality comparison against the ROWID field.  Or
  2411       **          we reference multiple rows using a "rowid IN (...)"
  2412       **          construct.
  2413       */
  2414       int r1;
  2415       int rtmp = sqlite3GetTempReg(pParse);
  2416       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
  2417       assert( pTerm!=0 );
  2418       assert( pTerm->pExpr!=0 );
  2419       assert( pTerm->leftCursor==iCur );
  2420       assert( omitTable==0 );
  2421       r1 = codeEqualityTerm(pParse, pTerm, pLevel, rtmp);
  2422       nxt = pLevel->nxt;
  2423       sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt);
  2424       sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1);
  2425       sqlite3ReleaseTempReg(pParse, rtmp);
  2426       VdbeComment((v, "pk"));
  2427       pLevel->op = OP_Noop;
  2428     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
  2429       /* Case 2:  We have an inequality comparison against the ROWID field.
  2430       */
  2431       int testOp = OP_Noop;
  2432       int start;
  2433       WhereTerm *pStart, *pEnd;
  2434 
  2435       assert( omitTable==0 );
  2436       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
  2437       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
  2438       if( bRev ){
  2439         pTerm = pStart;
  2440         pStart = pEnd;
  2441         pEnd = pTerm;
  2442       }
  2443       if( pStart ){
  2444         Expr *pX;
  2445         int r1, regFree1;
  2446         pX = pStart->pExpr;
  2447         assert( pX!=0 );
  2448         assert( pStart->leftCursor==iCur );
  2449         r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &regFree1);
  2450         sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, 
  2451                              pX->op==TK_LE || pX->op==TK_GT);
  2452         sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1);
  2453         VdbeComment((v, "pk"));
  2454         sqlite3ReleaseTempReg(pParse, regFree1);
  2455         disableTerm(pLevel, pStart);
  2456       }else{
  2457         sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
  2458       }
  2459       if( pEnd ){
  2460         Expr *pX;
  2461         pX = pEnd->pExpr;
  2462         assert( pX!=0 );
  2463         assert( pEnd->leftCursor==iCur );
  2464         pLevel->iMem = ++pParse->nMem;
  2465         sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem);
  2466         if( pX->op==TK_LT || pX->op==TK_GT ){
  2467           testOp = bRev ? OP_Le : OP_Ge;
  2468         }else{
  2469           testOp = bRev ? OP_Lt : OP_Gt;
  2470         }
  2471         disableTerm(pLevel, pEnd);
  2472       }
  2473       start = sqlite3VdbeCurrentAddr(v);
  2474       pLevel->op = bRev ? OP_Prev : OP_Next;
  2475       pLevel->p1 = iCur;
  2476       pLevel->p2 = start;
  2477       if( testOp!=OP_Noop ){
  2478         int r1 = sqlite3GetTempReg(pParse);
  2479         sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
  2480         /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */
  2481         sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1);
  2482         sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
  2483         sqlite3ReleaseTempReg(pParse, r1);
  2484       }
  2485     }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
  2486       /* Case 3: A scan using an index.
  2487       **
  2488       **         The WHERE clause may contain zero or more equality 
  2489       **         terms ("==" or "IN" operators) that refer to the N
  2490       **         left-most columns of the index. It may also contain
  2491       **         inequality constraints (>, <, >= or <=) on the indexed
  2492       **         column that immediately follows the N equalities. Only 
  2493       **         the right-most column can be an inequality - the rest must
  2494       **         use the "==" and "IN" operators. For example, if the 
  2495       **         index is on (x,y,z), then the following clauses are all 
  2496       **         optimized:
  2497       **
  2498       **            x=5
  2499       **            x=5 AND y=10
  2500       **            x=5 AND y<10
  2501       **            x=5 AND y>5 AND y<10
  2502       **            x=5 AND y=5 AND z<=10
  2503       **
  2504       **         The z<10 term of the following cannot be used, only
  2505       **         the x=5 term:
  2506       **
  2507       **            x=5 AND z<10
  2508       **
  2509       **         N may be zero if there are inequality constraints.
  2510       **         If there are no inequality constraints, then N is at
  2511       **         least one.
  2512       **
  2513       **         This case is also used when there are no WHERE clause
  2514       **         constraints but an index is selected anyway, in order
  2515       **         to force the output order to conform to an ORDER BY.
  2516       */  
  2517       int aStartOp[] = {
  2518         0,
  2519         0,
  2520         OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
  2521         OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
  2522         OP_MoveGt,           /* 4: (start_constraints  && !startEq && !bRev) */
  2523         OP_MoveLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
  2524         OP_MoveGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
  2525         OP_MoveLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
  2526       };
  2527       int aEndOp[] = {
  2528         OP_Noop,             /* 0: (!end_constraints) */
  2529         OP_IdxGE,            /* 1: (end_constraints && !bRev) */
  2530         OP_IdxLT             /* 2: (end_constraints && bRev) */
  2531       };
  2532       int nEq = pLevel->nEq;
  2533       int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
  2534       int regBase;                 /* Base register holding constraint values */
  2535       int r1;                      /* Temp register */
  2536       WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
  2537       WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
  2538       int startEq;                 /* True if range start uses ==, >= or <= */
  2539       int endEq;                   /* True if range end uses ==, >= or <= */
  2540       int start_constraints;       /* Start of range is constrained */
  2541       int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
  2542       int nConstraint;             /* Number of constraint terms */
  2543       int op;
  2544 
  2545       /* Generate code to evaluate all constraint terms using == or IN
  2546       ** and store the values of those terms in an array of registers
  2547       ** starting at regBase.
  2548       */
  2549       regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2);
  2550       nxt = pLevel->nxt;
  2551 
  2552       /* If this loop satisfies a sort order (pOrderBy) request that 
  2553       ** was passed to this function to implement a "SELECT min(x) ..." 
  2554       ** query, then the caller will only allow the loop to run for
  2555       ** a single iteration. This means that the first row returned
  2556       ** should not have a NULL value stored in 'x'. If column 'x' is
  2557       ** the first one after the nEq equality constraints in the index,
  2558       ** this requires some special handling.
  2559       */
  2560       if( (wflags&WHERE_ORDERBY_MIN)!=0
  2561        && (pLevel->flags&WHERE_ORDERBY)
  2562        && (pIdx->nColumn>nEq)
  2563       ){
  2564         assert( pOrderBy->nExpr==1 );
  2565         assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] );
  2566         isMinQuery = 1;
  2567       }
  2568 
  2569       /* Find any inequality constraint terms for the start and end 
  2570       ** of the range. 
  2571       */
  2572       if( pLevel->flags & WHERE_TOP_LIMIT ){
  2573         pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
  2574       }
  2575       if( pLevel->flags & WHERE_BTM_LIMIT ){
  2576         pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
  2577       }
  2578 
  2579       /* If we are doing a reverse order scan on an ascending index, or
  2580       ** a forward order scan on a descending index, interchange the 
  2581       ** start and end terms (pRangeStart and pRangeEnd).
  2582       */
  2583       if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
  2584         SWAP(WhereTerm *, pRangeEnd, pRangeStart);
  2585       }
  2586 
  2587       testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
  2588       testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
  2589       testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
  2590       testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
  2591       startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
  2592       endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
  2593       start_constraints = pRangeStart || nEq>0;
  2594 
  2595       /* Seek the index cursor to the start of the range. */
  2596       nConstraint = nEq;
  2597       if( pRangeStart ){
  2598         int dcc = pParse->disableColCache;
  2599         if( pRangeEnd ){
  2600           pParse->disableColCache++;
  2601         }
  2602         sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
  2603         pParse->disableColCache = dcc;
  2604         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
  2605         nConstraint++;
  2606       }else if( isMinQuery ){
  2607         sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
  2608         nConstraint++;
  2609         startEq = 0;
  2610         start_constraints = 1;
  2611       }
  2612       codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
  2613       op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
  2614       assert( op!=0 );
  2615       testcase( op==OP_Rewind );
  2616       testcase( op==OP_Last );
  2617       testcase( op==OP_MoveGt );
  2618       testcase( op==OP_MoveGe );
  2619       testcase( op==OP_MoveLe );
  2620       testcase( op==OP_MoveLt );
  2621       sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, 
  2622                         SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
  2623 
  2624       /* Load the value for the inequality constraint at the end of the
  2625       ** range (if any).
  2626       */
  2627       nConstraint = nEq;
  2628       if( pRangeEnd ){
  2629         sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
  2630         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt);
  2631         codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
  2632         nConstraint++;
  2633       }
  2634 
  2635       /* Top of the loop body */
  2636       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
  2637 
  2638       /* Check if the index cursor is past the end of the range. */
  2639       op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
  2640       testcase( op==OP_Noop );
  2641       testcase( op==OP_IdxGE );
  2642       testcase( op==OP_IdxLT );
  2643       sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase,
  2644                         SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
  2645       sqlite3VdbeChangeP5(v, endEq!=bRev);
  2646 
  2647       /* If there are inequality constraints, check that the value
  2648       ** of the table column that the inequality contrains is not NULL.
  2649       ** If it is, jump to the next iteration of the loop.
  2650       */
  2651       r1 = sqlite3GetTempReg(pParse);
  2652       testcase( pLevel->flags & WHERE_BTM_LIMIT );
  2653       testcase( pLevel->flags & WHERE_TOP_LIMIT );
  2654       if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
  2655         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
  2656         sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont);
  2657       }
  2658 
  2659       /* Seek the table cursor, if required */
  2660       if( !omitTable ){
  2661         sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1);
  2662         sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1);  /* Deferred seek */
  2663       }
  2664       sqlite3ReleaseTempReg(pParse, r1);
  2665 
  2666       /* Record the instruction used to terminate the loop. Disable 
  2667       ** WHERE clause terms made redundant by the index range scan.
  2668       */
  2669       pLevel->op = bRev ? OP_Prev : OP_Next;
  2670       pLevel->p1 = iIdxCur;
  2671       disableTerm(pLevel, pRangeStart);
  2672       disableTerm(pLevel, pRangeEnd);
  2673     }else{
  2674       /* Case 4:  There is no usable index.  We must do a complete
  2675       **          scan of the entire table.
  2676       */
  2677       assert( omitTable==0 );
  2678       assert( bRev==0 );
  2679       pLevel->op = OP_Next;
  2680       pLevel->p1 = iCur;
  2681       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk);
  2682     }
  2683     notReady &= ~getMask(&maskSet, iCur);
  2684 
  2685     /* Insert code to test every subexpression that can be completely
  2686     ** computed using the current set of tables.
  2687     */
  2688     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
  2689       Expr *pE;
  2690       testcase( pTerm->flags & TERM_VIRTUAL );
  2691       testcase( pTerm->flags & TERM_CODED );
  2692       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
  2693       if( (pTerm->prereqAll & notReady)!=0 ) continue;
  2694       pE = pTerm->pExpr;
  2695       assert( pE!=0 );
  2696       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
  2697         continue;
  2698       }
  2699       sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL);
  2700       pTerm->flags |= TERM_CODED;
  2701     }
  2702 
  2703     /* For a LEFT OUTER JOIN, generate code that will record the fact that
  2704     ** at least one row of the right table has matched the left table.  
  2705     */
  2706     if( pLevel->iLeftJoin ){
  2707       pLevel->top = sqlite3VdbeCurrentAddr(v);
  2708       sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
  2709       VdbeComment((v, "record LEFT JOIN hit"));
  2710       sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur);
  2711       sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur);
  2712       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
  2713         testcase( pTerm->flags & TERM_VIRTUAL );
  2714         testcase( pTerm->flags & TERM_CODED );
  2715         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
  2716         if( (pTerm->prereqAll & notReady)!=0 ) continue;
  2717         assert( pTerm->pExpr );
  2718         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL);
  2719         pTerm->flags |= TERM_CODED;
  2720       }
  2721     }
  2722   }
  2723 
  2724 #ifdef SQLITE_TEST  /* For testing and debugging use only */
  2725   /* Record in the query plan information about the current table
  2726   ** and the index used to access it (if any).  If the table itself
  2727   ** is not used, its name is just '{}'.  If no index is used
  2728   ** the index is listed as "{}".  If the primary key is used the
  2729   ** index name is '*'.
  2730   */
  2731   for(i=0; i<pTabList->nSrc; i++){
  2732     char *z;
  2733     int n;
  2734     pLevel = &pWInfo->a[i];
  2735     pTabItem = &pTabList->a[pLevel->iFrom];
  2736     z = pTabItem->zAlias;
  2737     if( z==0 ) z = pTabItem->pTab->zName;
  2738     n = strlen(z);
  2739     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
  2740       if( pLevel->flags & WHERE_IDX_ONLY ){
  2741         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
  2742         nQPlan += 2;
  2743       }else{
  2744         memcpy(&sqlite3_query_plan[nQPlan], z, n);
  2745         nQPlan += n;
  2746       }
  2747       sqlite3_query_plan[nQPlan++] = ' ';
  2748     }
  2749     testcase( pLevel->flags & WHERE_ROWID_EQ );
  2750     testcase( pLevel->flags & WHERE_ROWID_RANGE );
  2751     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
  2752       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
  2753       nQPlan += 2;
  2754     }else if( pLevel->pIdx==0 ){
  2755       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
  2756       nQPlan += 3;
  2757     }else{
  2758       n = strlen(pLevel->pIdx->zName);
  2759       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
  2760         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
  2761         nQPlan += n;
  2762         sqlite3_query_plan[nQPlan++] = ' ';
  2763       }
  2764     }
  2765   }
  2766   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
  2767     sqlite3_query_plan[--nQPlan] = 0;
  2768   }
  2769   sqlite3_query_plan[nQPlan] = 0;
  2770   nQPlan = 0;
  2771 #endif /* SQLITE_TEST // Testing and debugging use only */
  2772 
  2773   /* Record the continuation address in the WhereInfo structure.  Then
  2774   ** clean up and return.
  2775   */
  2776   pWInfo->iContinue = cont;
  2777   whereClauseClear(&wc);
  2778   return pWInfo;
  2779 
  2780   /* Jump here if malloc fails */
  2781 whereBeginNoMem:
  2782   whereClauseClear(&wc);
  2783   whereInfoFree(pWInfo);
  2784   return 0;
  2785 }
  2786 
  2787 /*
  2788 ** Generate the end of the WHERE loop.  See comments on 
  2789 ** sqlite3WhereBegin() for additional information.
  2790 */
  2791 void sqlite3WhereEnd(WhereInfo *pWInfo){
  2792   Parse *pParse = pWInfo->pParse;
  2793   Vdbe *v = pParse->pVdbe;
  2794   int i;
  2795   WhereLevel *pLevel;
  2796   SrcList *pTabList = pWInfo->pTabList;
  2797   sqlite3 *db = pParse->db;
  2798 
  2799   /* Generate loop termination code.
  2800   */
  2801   sqlite3ExprClearColumnCache(pParse, -1);
  2802   for(i=pTabList->nSrc-1; i>=0; i--){
  2803     pLevel = &pWInfo->a[i];
  2804     sqlite3VdbeResolveLabel(v, pLevel->cont);
  2805     if( pLevel->op!=OP_Noop ){
  2806       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
  2807     }
  2808     if( pLevel->nIn ){
  2809       struct InLoop *pIn;
  2810       int j;
  2811       sqlite3VdbeResolveLabel(v, pLevel->nxt);
  2812       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
  2813         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
  2814         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr);
  2815         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
  2816       }
  2817       sqlite3DbFree(db, pLevel->aInLoop);
  2818     }
  2819     sqlite3VdbeResolveLabel(v, pLevel->brk);
  2820     if( pLevel->iLeftJoin ){
  2821       int addr;
  2822       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
  2823       sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
  2824       if( pLevel->iIdxCur>=0 ){
  2825         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
  2826       }
  2827       sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top);
  2828       sqlite3VdbeJumpHere(v, addr);
  2829     }
  2830   }
  2831 
  2832   /* The "break" point is here, just past the end of the outer loop.
  2833   ** Set it.
  2834   */
  2835   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
  2836 
  2837   /* Close all of the cursors that were opened by sqlite3WhereBegin.
  2838   */
  2839   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
  2840     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
  2841     Table *pTab = pTabItem->pTab;
  2842     assert( pTab!=0 );
  2843     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
  2844     if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){
  2845       sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
  2846     }
  2847     if( pLevel->pIdx!=0 ){
  2848       sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
  2849     }
  2850 
  2851     /* If this scan uses an index, make code substitutions to read data
  2852     ** from the index in preference to the table. Sometimes, this means
  2853     ** the table need never be read from. This is a performance boost,
  2854     ** as the vdbe level waits until the table is read before actually
  2855     ** seeking the table cursor to the record corresponding to the current
  2856     ** position in the index.
  2857     ** 
  2858     ** Calls to the code generator in between sqlite3WhereBegin and
  2859     ** sqlite3WhereEnd will have created code that references the table
  2860     ** directly.  This loop scans all that code looking for opcodes
  2861     ** that reference the table and converts them into opcodes that
  2862     ** reference the index.
  2863     */
  2864     if( pLevel->pIdx ){
  2865       int k, j, last;
  2866       VdbeOp *pOp;
  2867       Index *pIdx = pLevel->pIdx;
  2868       int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
  2869 
  2870       assert( pIdx!=0 );
  2871       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
  2872       last = sqlite3VdbeCurrentAddr(v);
  2873       for(k=pWInfo->iTop; k<last; k++, pOp++){
  2874         if( pOp->p1!=pLevel->iTabCur ) continue;
  2875         if( pOp->opcode==OP_Column ){
  2876           for(j=0; j<pIdx->nColumn; j++){
  2877             if( pOp->p2==pIdx->aiColumn[j] ){
  2878               pOp->p2 = j;
  2879               pOp->p1 = pLevel->iIdxCur;
  2880               break;
  2881             }
  2882           }
  2883           assert(!useIndexOnly || j<pIdx->nColumn);
  2884         }else if( pOp->opcode==OP_Rowid ){
  2885           pOp->p1 = pLevel->iIdxCur;
  2886           pOp->opcode = OP_IdxRowid;
  2887         }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
  2888           pOp->opcode = OP_Noop;
  2889         }
  2890       }
  2891     }
  2892   }
  2893 
  2894   /* Final cleanup
  2895   */
  2896   whereInfoFree(pWInfo);
  2897   return;
  2898 }