os/persistentdata/persistentstorage/sqlite3api/SQLite/vdbe.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** The code in this file implements execution method of the 
    13 ** Virtual Database Engine (VDBE).  A separate file ("vdbeaux.c")
    14 ** handles housekeeping details such as creating and deleting
    15 ** VDBE instances.  This file is solely interested in executing
    16 ** the VDBE program.
    17 **
    18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
    19 ** to a VDBE.
    20 **
    21 ** The SQL parser generates a program which is then executed by
    22 ** the VDBE to do the work of the SQL statement.  VDBE programs are 
    23 ** similar in form to assembly language.  The program consists of
    24 ** a linear sequence of operations.  Each operation has an opcode 
    25 ** and 5 operands.  Operands P1, P2, and P3 are integers.  Operand P4 
    26 ** is a null-terminated string.  Operand P5 is an unsigned character.
    27 ** Few opcodes use all 5 operands.
    28 **
    29 ** Computation results are stored on a set of registers numbered beginning
    30 ** with 1 and going up to Vdbe.nMem.  Each register can store
    31 ** either an integer, a null-terminated string, a floating point
    32 ** number, or the SQL "NULL" value.  An implicit conversion from one
    33 ** type to the other occurs as necessary.
    34 ** 
    35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
    36 ** function which does the work of interpreting a VDBE program.
    37 ** But other routines are also provided to help in building up
    38 ** a program instruction by instruction.
    39 **
    40 ** Various scripts scan this source file in order to generate HTML
    41 ** documentation, headers files, or other derived files.  The formatting
    42 ** of the code in this file is, therefore, important.  See other comments
    43 ** in this file for details.  If in doubt, do not deviate from existing
    44 ** commenting and indentation practices when changing or adding code.
    45 **
    46 ** $Id: vdbe.c,v 1.779 2008/09/22 06:13:32 danielk1977 Exp $
    47 */
    48 #include "sqliteInt.h"
    49 #include <ctype.h>
    50 #include "vdbeInt.h"
    51 
    52 /*
    53 ** The following global variable is incremented every time a cursor
    54 ** moves, either by the OP_MoveXX, OP_Next, or OP_Prev opcodes.  The test
    55 ** procedures use this information to make sure that indices are
    56 ** working correctly.  This variable has no function other than to
    57 ** help verify the correct operation of the library.
    58 */
    59 #ifdef SQLITE_TEST
    60 int sqlite3_search_count = 0;
    61 #endif
    62 
    63 /*
    64 ** When this global variable is positive, it gets decremented once before
    65 ** each instruction in the VDBE.  When reaches zero, the u1.isInterrupted
    66 ** field of the sqlite3 structure is set in order to simulate and interrupt.
    67 **
    68 ** This facility is used for testing purposes only.  It does not function
    69 ** in an ordinary build.
    70 */
    71 #ifdef SQLITE_TEST
    72 int sqlite3_interrupt_count = 0;
    73 #endif
    74 
    75 /*
    76 ** The next global variable is incremented each type the OP_Sort opcode
    77 ** is executed.  The test procedures use this information to make sure that
    78 ** sorting is occurring or not occurring at appropriate times.   This variable
    79 ** has no function other than to help verify the correct operation of the
    80 ** library.
    81 */
    82 #ifdef SQLITE_TEST
    83 int sqlite3_sort_count = 0;
    84 #endif
    85 
    86 /*
    87 ** The next global variable records the size of the largest MEM_Blob
    88 ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
    89 ** use this information to make sure that the zero-blob functionality
    90 ** is working correctly.   This variable has no function other than to
    91 ** help verify the correct operation of the library.
    92 */
    93 #ifdef SQLITE_TEST
    94 int sqlite3_max_blobsize = 0;
    95 static void updateMaxBlobsize(Mem *p){
    96   if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
    97     sqlite3_max_blobsize = p->n;
    98   }
    99 }
   100 #endif
   101 
   102 /*
   103 ** Test a register to see if it exceeds the current maximum blob size.
   104 ** If it does, record the new maximum blob size.
   105 */
   106 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
   107 # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
   108 #else
   109 # define UPDATE_MAX_BLOBSIZE(P)
   110 #endif
   111 
   112 /*
   113 ** Convert the given register into a string if it isn't one
   114 ** already. Return non-zero if a malloc() fails.
   115 */
   116 #define Stringify(P, enc) \
   117    if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
   118      { goto no_mem; }
   119 
   120 /*
   121 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
   122 ** a pointer to a dynamically allocated string where some other entity
   123 ** is responsible for deallocating that string.  Because the register
   124 ** does not control the string, it might be deleted without the register
   125 ** knowing it.
   126 **
   127 ** This routine converts an ephemeral string into a dynamically allocated
   128 ** string that the register itself controls.  In other words, it
   129 ** converts an MEM_Ephem string into an MEM_Dyn string.
   130 */
   131 #define Deephemeralize(P) \
   132    if( ((P)->flags&MEM_Ephem)!=0 \
   133        && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
   134 
   135 /*
   136 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
   137 ** P if required.
   138 */
   139 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
   140 
   141 /*
   142 ** Argument pMem points at a register that will be passed to a
   143 ** user-defined function or returned to the user as the result of a query.
   144 ** The second argument, 'db_enc' is the text encoding used by the vdbe for
   145 ** register variables.  This routine sets the pMem->enc and pMem->type
   146 ** variables used by the sqlite3_value_*() routines.
   147 */
   148 #define storeTypeInfo(A,B) _storeTypeInfo(A)
   149 static void _storeTypeInfo(Mem *pMem){
   150   int flags = pMem->flags;
   151   if( flags & MEM_Null ){
   152     pMem->type = SQLITE_NULL;
   153   }
   154   else if( flags & MEM_Int ){
   155     pMem->type = SQLITE_INTEGER;
   156   }
   157   else if( flags & MEM_Real ){
   158     pMem->type = SQLITE_FLOAT;
   159   }
   160   else if( flags & MEM_Str ){
   161     pMem->type = SQLITE_TEXT;
   162   }else{
   163     pMem->type = SQLITE_BLOB;
   164   }
   165 }
   166 
   167 /*
   168 ** Properties of opcodes.  The OPFLG_INITIALIZER macro is
   169 ** created by mkopcodeh.awk during compilation.  Data is obtained
   170 ** from the comments following the "case OP_xxxx:" statements in
   171 ** this file.  
   172 */
   173 static const unsigned char opcodeProperty[] = OPFLG_INITIALIZER;
   174 
   175 /*
   176 ** Return true if an opcode has any of the OPFLG_xxx properties
   177 ** specified by mask.
   178 */
   179 int sqlite3VdbeOpcodeHasProperty(int opcode, int mask){
   180   assert( opcode>0 && opcode<sizeof(opcodeProperty) );
   181   return (opcodeProperty[opcode]&mask)!=0;
   182 }
   183 
   184 /*
   185 ** Allocate cursor number iCur.  Return a pointer to it.  Return NULL
   186 ** if we run out of memory.
   187 */
   188 static Cursor *allocateCursor(
   189   Vdbe *p, 
   190   int iCur, 
   191   Op *pOp,
   192   int iDb, 
   193   int isBtreeCursor
   194 ){
   195   /* Find the memory cell that will be used to store the blob of memory
   196   ** required for this Cursor structure. It is convenient to use a 
   197   ** vdbe memory cell to manage the memory allocation required for a
   198   ** Cursor structure for the following reasons:
   199   **
   200   **   * Sometimes cursor numbers are used for a couple of different
   201   **     purposes in a vdbe program. The different uses might require
   202   **     different sized allocations. Memory cells provide growable
   203   **     allocations.
   204   **
   205   **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
   206   **     be freed lazily via the sqlite3_release_memory() API. This
   207   **     minimizes the number of malloc calls made by the system.
   208   **
   209   ** Memory cells for cursors are allocated at the top of the address
   210   ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
   211   ** cursor 1 is managed by memory cell (p->nMem-1), etc.
   212   */
   213   Mem *pMem = &p->aMem[p->nMem-iCur];
   214 
   215   int nByte;
   216   Cursor *pCx = 0;
   217   /* If the opcode of pOp is OP_SetNumColumns, then pOp->p2 contains
   218   ** the number of fields in the records contained in the table or
   219   ** index being opened. Use this to reserve space for the 
   220   ** Cursor.aType[] array.
   221   */
   222   int nField = 0;
   223   if( pOp->opcode==OP_SetNumColumns || pOp->opcode==OP_OpenEphemeral ){
   224     nField = pOp->p2;
   225   }
   226   nByte = 
   227       sizeof(Cursor) + 
   228       (isBtreeCursor?sqlite3BtreeCursorSize():0) + 
   229       2*nField*sizeof(u32);
   230 
   231   assert( iCur<p->nCursor );
   232   if( p->apCsr[iCur] ){
   233     sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
   234     p->apCsr[iCur] = 0;
   235   }
   236   if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
   237     p->apCsr[iCur] = pCx = (Cursor *)pMem->z;
   238     memset(pMem->z, 0, nByte);
   239     pCx->iDb = iDb;
   240     pCx->nField = nField;
   241     if( nField ){
   242       pCx->aType = (u32 *)&pMem->z[sizeof(Cursor)];
   243     }
   244     if( isBtreeCursor ){
   245       pCx->pCursor = (BtCursor *)&pMem->z[sizeof(Cursor)+2*nField*sizeof(u32)];
   246     }
   247   }
   248   return pCx;
   249 }
   250 
   251 /*
   252 ** Try to convert a value into a numeric representation if we can
   253 ** do so without loss of information.  In other words, if the string
   254 ** looks like a number, convert it into a number.  If it does not
   255 ** look like a number, leave it alone.
   256 */
   257 static void applyNumericAffinity(Mem *pRec){
   258   if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
   259     int realnum;
   260     sqlite3VdbeMemNulTerminate(pRec);
   261     if( (pRec->flags&MEM_Str)
   262          && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
   263       i64 value;
   264       sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
   265       if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
   266         pRec->u.i = value;
   267         MemSetTypeFlag(pRec, MEM_Int);
   268       }else{
   269         sqlite3VdbeMemRealify(pRec);
   270       }
   271     }
   272   }
   273 }
   274 
   275 /*
   276 ** Processing is determine by the affinity parameter:
   277 **
   278 ** SQLITE_AFF_INTEGER:
   279 ** SQLITE_AFF_REAL:
   280 ** SQLITE_AFF_NUMERIC:
   281 **    Try to convert pRec to an integer representation or a 
   282 **    floating-point representation if an integer representation
   283 **    is not possible.  Note that the integer representation is
   284 **    always preferred, even if the affinity is REAL, because
   285 **    an integer representation is more space efficient on disk.
   286 **
   287 ** SQLITE_AFF_TEXT:
   288 **    Convert pRec to a text representation.
   289 **
   290 ** SQLITE_AFF_NONE:
   291 **    No-op.  pRec is unchanged.
   292 */
   293 static void applyAffinity(
   294   Mem *pRec,          /* The value to apply affinity to */
   295   char affinity,      /* The affinity to be applied */
   296   u8 enc              /* Use this text encoding */
   297 ){
   298   if( affinity==SQLITE_AFF_TEXT ){
   299     /* Only attempt the conversion to TEXT if there is an integer or real
   300     ** representation (blob and NULL do not get converted) but no string
   301     ** representation.
   302     */
   303     if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
   304       sqlite3VdbeMemStringify(pRec, enc);
   305     }
   306     pRec->flags &= ~(MEM_Real|MEM_Int);
   307   }else if( affinity!=SQLITE_AFF_NONE ){
   308     assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
   309              || affinity==SQLITE_AFF_NUMERIC );
   310     applyNumericAffinity(pRec);
   311     if( pRec->flags & MEM_Real ){
   312       sqlite3VdbeIntegerAffinity(pRec);
   313     }
   314   }
   315 }
   316 
   317 /*
   318 ** Try to convert the type of a function argument or a result column
   319 ** into a numeric representation.  Use either INTEGER or REAL whichever
   320 ** is appropriate.  But only do the conversion if it is possible without
   321 ** loss of information and return the revised type of the argument.
   322 **
   323 ** This is an EXPERIMENTAL api and is subject to change or removal.
   324 */
   325 SQLITE_EXPORT int sqlite3_value_numeric_type(sqlite3_value *pVal){
   326   Mem *pMem = (Mem*)pVal;
   327   applyNumericAffinity(pMem);
   328   storeTypeInfo(pMem, 0);
   329   return pMem->type;
   330 }
   331 
   332 /*
   333 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 
   334 ** not the internal Mem* type.
   335 */
   336 void sqlite3ValueApplyAffinity(
   337   sqlite3_value *pVal, 
   338   u8 affinity, 
   339   u8 enc
   340 ){
   341   applyAffinity((Mem *)pVal, affinity, enc);
   342 }
   343 
   344 #ifdef SQLITE_DEBUG
   345 /*
   346 ** Write a nice string representation of the contents of cell pMem
   347 ** into buffer zBuf, length nBuf.
   348 */
   349 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
   350   char *zCsr = zBuf;
   351   int f = pMem->flags;
   352 
   353   static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
   354 
   355   if( f&MEM_Blob ){
   356     int i;
   357     char c;
   358     if( f & MEM_Dyn ){
   359       c = 'z';
   360       assert( (f & (MEM_Static|MEM_Ephem))==0 );
   361     }else if( f & MEM_Static ){
   362       c = 't';
   363       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
   364     }else if( f & MEM_Ephem ){
   365       c = 'e';
   366       assert( (f & (MEM_Static|MEM_Dyn))==0 );
   367     }else{
   368       c = 's';
   369     }
   370 
   371     sqlite3_snprintf(100, zCsr, "%c", c);
   372     zCsr += strlen(zCsr);
   373     sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
   374     zCsr += strlen(zCsr);
   375     for(i=0; i<16 && i<pMem->n; i++){
   376       sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
   377       zCsr += strlen(zCsr);
   378     }
   379     for(i=0; i<16 && i<pMem->n; i++){
   380       char z = pMem->z[i];
   381       if( z<32 || z>126 ) *zCsr++ = '.';
   382       else *zCsr++ = z;
   383     }
   384 
   385     sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
   386     zCsr += strlen(zCsr);
   387     if( f & MEM_Zero ){
   388       sqlite3_snprintf(100, zCsr,"+%lldz",pMem->u.i);
   389       zCsr += strlen(zCsr);
   390     }
   391     *zCsr = '\0';
   392   }else if( f & MEM_Str ){
   393     int j, k;
   394     zBuf[0] = ' ';
   395     if( f & MEM_Dyn ){
   396       zBuf[1] = 'z';
   397       assert( (f & (MEM_Static|MEM_Ephem))==0 );
   398     }else if( f & MEM_Static ){
   399       zBuf[1] = 't';
   400       assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
   401     }else if( f & MEM_Ephem ){
   402       zBuf[1] = 'e';
   403       assert( (f & (MEM_Static|MEM_Dyn))==0 );
   404     }else{
   405       zBuf[1] = 's';
   406     }
   407     k = 2;
   408     sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
   409     k += strlen(&zBuf[k]);
   410     zBuf[k++] = '[';
   411     for(j=0; j<15 && j<pMem->n; j++){
   412       u8 c = pMem->z[j];
   413       if( c>=0x20 && c<0x7f ){
   414         zBuf[k++] = c;
   415       }else{
   416         zBuf[k++] = '.';
   417       }
   418     }
   419     zBuf[k++] = ']';
   420     sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
   421     k += strlen(&zBuf[k]);
   422     zBuf[k++] = 0;
   423   }
   424 }
   425 #endif
   426 
   427 #ifdef SQLITE_DEBUG
   428 /*
   429 ** Print the value of a register for tracing purposes:
   430 */
   431 static void memTracePrint(FILE *out, Mem *p){
   432   if( p->flags & MEM_Null ){
   433     fprintf(out, " NULL");
   434   }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
   435     fprintf(out, " si:%lld", p->u.i);
   436   }else if( p->flags & MEM_Int ){
   437     fprintf(out, " i:%lld", p->u.i);
   438   }else if( p->flags & MEM_Real ){
   439     fprintf(out, " r:%g", p->r);
   440   }else{
   441     char zBuf[200];
   442     sqlite3VdbeMemPrettyPrint(p, zBuf);
   443     fprintf(out, " ");
   444     fprintf(out, "%s", zBuf);
   445   }
   446 }
   447 static void registerTrace(FILE *out, int iReg, Mem *p){
   448   fprintf(out, "REG[%d] = ", iReg);
   449   memTracePrint(out, p);
   450   fprintf(out, "\n");
   451 }
   452 #endif
   453 
   454 #ifdef SQLITE_DEBUG
   455 #  define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
   456 #else
   457 #  define REGISTER_TRACE(R,M)
   458 #endif
   459 
   460 
   461 #ifdef VDBE_PROFILE
   462 
   463 /* 
   464 ** hwtime.h contains inline assembler code for implementing 
   465 ** high-performance timing routines.
   466 */
   467 #include "hwtime.h"
   468 
   469 #endif
   470 
   471 /*
   472 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
   473 ** sqlite3_interrupt() routine has been called.  If it has been, then
   474 ** processing of the VDBE program is interrupted.
   475 **
   476 ** This macro added to every instruction that does a jump in order to
   477 ** implement a loop.  This test used to be on every single instruction,
   478 ** but that meant we more testing that we needed.  By only testing the
   479 ** flag on jump instructions, we get a (small) speed improvement.
   480 */
   481 #define CHECK_FOR_INTERRUPT \
   482    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
   483 
   484 #ifdef SQLITE_DEBUG
   485 static int fileExists(sqlite3 *db, const char *zFile){
   486   int res = 0;
   487   int rc = SQLITE_OK;
   488 #ifdef SQLITE_TEST
   489   /* If we are currently testing IO errors, then do not call OsAccess() to
   490   ** test for the presence of zFile. This is because any IO error that
   491   ** occurs here will not be reported, causing the test to fail.
   492   */
   493   extern int sqlite3_io_error_pending;
   494   if( sqlite3_io_error_pending<=0 )
   495 #endif
   496     rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
   497   return (res && rc==SQLITE_OK);
   498 }
   499 #endif
   500 
   501 /*
   502 ** Execute as much of a VDBE program as we can then return.
   503 **
   504 ** sqlite3VdbeMakeReady() must be called before this routine in order to
   505 ** close the program with a final OP_Halt and to set up the callbacks
   506 ** and the error message pointer.
   507 **
   508 ** Whenever a row or result data is available, this routine will either
   509 ** invoke the result callback (if there is one) or return with
   510 ** SQLITE_ROW.
   511 **
   512 ** If an attempt is made to open a locked database, then this routine
   513 ** will either invoke the busy callback (if there is one) or it will
   514 ** return SQLITE_BUSY.
   515 **
   516 ** If an error occurs, an error message is written to memory obtained
   517 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
   518 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
   519 **
   520 ** If the callback ever returns non-zero, then the program exits
   521 ** immediately.  There will be no error message but the p->rc field is
   522 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
   523 **
   524 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
   525 ** routine to return SQLITE_ERROR.
   526 **
   527 ** Other fatal errors return SQLITE_ERROR.
   528 **
   529 ** After this routine has finished, sqlite3VdbeFinalize() should be
   530 ** used to clean up the mess that was left behind.
   531 */
   532 int sqlite3VdbeExec(
   533   Vdbe *p                    /* The VDBE */
   534 ){
   535   int pc;                    /* The program counter */
   536   Op *pOp;                   /* Current operation */
   537   int rc = SQLITE_OK;        /* Value to return */
   538   sqlite3 *db = p->db;       /* The database */
   539   u8 encoding = ENC(db);     /* The database encoding */
   540   Mem *pIn1, *pIn2, *pIn3;   /* Input operands */
   541   Mem *pOut;                 /* Output operand */
   542   u8 opProperty;
   543   int iCompare = 0;          /* Result of last OP_Compare operation */
   544   int *aPermute = 0;         /* Permuation of columns for OP_Compare */
   545 #ifdef VDBE_PROFILE
   546   u64 start;                 /* CPU clock count at start of opcode */
   547   int origPc;                /* Program counter at start of opcode */
   548 #endif
   549 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
   550   int nProgressOps = 0;      /* Opcodes executed since progress callback. */
   551 #endif
   552   UnpackedRecord aTempRec[16]; /* Space to hold a transient UnpackedRecord */
   553 
   554 
   555   assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
   556   assert( db->magic==SQLITE_MAGIC_BUSY );
   557   sqlite3BtreeMutexArrayEnter(&p->aMutex);
   558   if( p->rc==SQLITE_NOMEM ){
   559     /* This happens if a malloc() inside a call to sqlite3_column_text() or
   560     ** sqlite3_column_text16() failed.  */
   561     goto no_mem;
   562   }
   563   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
   564   p->rc = SQLITE_OK;
   565   assert( p->explain==0 );
   566   p->pResultSet = 0;
   567   db->busyHandler.nBusy = 0;
   568   CHECK_FOR_INTERRUPT;
   569   sqlite3VdbeIOTraceSql(p);
   570 #ifdef SQLITE_DEBUG
   571   sqlite3BeginBenignMalloc();
   572   if( p->pc==0 
   573    && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
   574   ){
   575     int i;
   576     printf("VDBE Program Listing:\n");
   577     sqlite3VdbePrintSql(p);
   578     for(i=0; i<p->nOp; i++){
   579       sqlite3VdbePrintOp(stdout, i, &p->aOp[i]);
   580     }
   581   }
   582   if( fileExists(db, "vdbe_trace") ){
   583     p->trace = stdout;
   584   }
   585   sqlite3EndBenignMalloc();
   586 #endif
   587   for(pc=p->pc; rc==SQLITE_OK; pc++){
   588     assert( pc>=0 && pc<p->nOp );
   589     if( db->mallocFailed ) goto no_mem;
   590 #ifdef VDBE_PROFILE
   591     origPc = pc;
   592     start = sqlite3Hwtime();
   593 #endif
   594     pOp = &p->aOp[pc];
   595 
   596     /* Only allow tracing if SQLITE_DEBUG is defined.
   597     */
   598 #ifdef SQLITE_DEBUG
   599     if( p->trace ){
   600       if( pc==0 ){
   601         printf("VDBE Execution Trace:\n");
   602         sqlite3VdbePrintSql(p);
   603       }
   604       sqlite3VdbePrintOp(p->trace, pc, pOp);
   605     }
   606     if( p->trace==0 && pc==0 ){
   607       sqlite3BeginBenignMalloc();
   608       if( fileExists(db, "vdbe_sqltrace") ){
   609         sqlite3VdbePrintSql(p);
   610       }
   611       sqlite3EndBenignMalloc();
   612     }
   613 #endif
   614       
   615 
   616     /* Check to see if we need to simulate an interrupt.  This only happens
   617     ** if we have a special test build.
   618     */
   619 #ifdef SQLITE_TEST
   620     if( sqlite3_interrupt_count>0 ){
   621       sqlite3_interrupt_count--;
   622       if( sqlite3_interrupt_count==0 ){
   623         sqlite3_interrupt(db);
   624       }
   625     }
   626 #endif
   627 
   628 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
   629     /* Call the progress callback if it is configured and the required number
   630     ** of VDBE ops have been executed (either since this invocation of
   631     ** sqlite3VdbeExec() or since last time the progress callback was called).
   632     ** If the progress callback returns non-zero, exit the virtual machine with
   633     ** a return code SQLITE_ABORT.
   634     */
   635     if( db->xProgress ){
   636       if( db->nProgressOps==nProgressOps ){
   637         int prc;
   638         if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
   639         prc =db->xProgress(db->pProgressArg);
   640         if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
   641         if( prc!=0 ){
   642           rc = SQLITE_INTERRUPT;
   643           goto vdbe_error_halt;
   644         }
   645         nProgressOps = 0;
   646       }
   647       nProgressOps++;
   648     }
   649 #endif
   650 
   651     /* Do common setup processing for any opcode that is marked
   652     ** with the "out2-prerelease" tag.  Such opcodes have a single
   653     ** output which is specified by the P2 parameter.  The P2 register
   654     ** is initialized to a NULL.
   655     */
   656     opProperty = opcodeProperty[pOp->opcode];
   657     if( (opProperty & OPFLG_OUT2_PRERELEASE)!=0 ){
   658       assert( pOp->p2>0 );
   659       assert( pOp->p2<=p->nMem );
   660       pOut = &p->aMem[pOp->p2];
   661       sqlite3VdbeMemReleaseExternal(pOut);
   662       pOut->flags = MEM_Null;
   663     }else
   664  
   665     /* Do common setup for opcodes marked with one of the following
   666     ** combinations of properties.
   667     **
   668     **           in1
   669     **           in1 in2
   670     **           in1 in2 out3
   671     **           in1 in3
   672     **
   673     ** Variables pIn1, pIn2, and pIn3 are made to point to appropriate
   674     ** registers for inputs.  Variable pOut points to the output register.
   675     */
   676     if( (opProperty & OPFLG_IN1)!=0 ){
   677       assert( pOp->p1>0 );
   678       assert( pOp->p1<=p->nMem );
   679       pIn1 = &p->aMem[pOp->p1];
   680       REGISTER_TRACE(pOp->p1, pIn1);
   681       if( (opProperty & OPFLG_IN2)!=0 ){
   682         assert( pOp->p2>0 );
   683         assert( pOp->p2<=p->nMem );
   684         pIn2 = &p->aMem[pOp->p2];
   685         REGISTER_TRACE(pOp->p2, pIn2);
   686         if( (opProperty & OPFLG_OUT3)!=0 ){
   687           assert( pOp->p3>0 );
   688           assert( pOp->p3<=p->nMem );
   689           pOut = &p->aMem[pOp->p3];
   690         }
   691       }else if( (opProperty & OPFLG_IN3)!=0 ){
   692         assert( pOp->p3>0 );
   693         assert( pOp->p3<=p->nMem );
   694         pIn3 = &p->aMem[pOp->p3];
   695         REGISTER_TRACE(pOp->p3, pIn3);
   696       }
   697     }else if( (opProperty & OPFLG_IN2)!=0 ){
   698       assert( pOp->p2>0 );
   699       assert( pOp->p2<=p->nMem );
   700       pIn2 = &p->aMem[pOp->p2];
   701       REGISTER_TRACE(pOp->p2, pIn2);
   702     }else if( (opProperty & OPFLG_IN3)!=0 ){
   703       assert( pOp->p3>0 );
   704       assert( pOp->p3<=p->nMem );
   705       pIn3 = &p->aMem[pOp->p3];
   706       REGISTER_TRACE(pOp->p3, pIn3);
   707     }
   708 
   709     switch( pOp->opcode ){
   710 
   711 /*****************************************************************************
   712 ** What follows is a massive switch statement where each case implements a
   713 ** separate instruction in the virtual machine.  If we follow the usual
   714 ** indentation conventions, each case should be indented by 6 spaces.  But
   715 ** that is a lot of wasted space on the left margin.  So the code within
   716 ** the switch statement will break with convention and be flush-left. Another
   717 ** big comment (similar to this one) will mark the point in the code where
   718 ** we transition back to normal indentation.
   719 **
   720 ** The formatting of each case is important.  The makefile for SQLite
   721 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
   722 ** file looking for lines that begin with "case OP_".  The opcodes.h files
   723 ** will be filled with #defines that give unique integer values to each
   724 ** opcode and the opcodes.c file is filled with an array of strings where
   725 ** each string is the symbolic name for the corresponding opcode.  If the
   726 ** case statement is followed by a comment of the form "/# same as ... #/"
   727 ** that comment is used to determine the particular value of the opcode.
   728 **
   729 ** Other keywords in the comment that follows each case are used to
   730 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
   731 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
   732 ** the mkopcodeh.awk script for additional information.
   733 **
   734 ** Documentation about VDBE opcodes is generated by scanning this file
   735 ** for lines of that contain "Opcode:".  That line and all subsequent
   736 ** comment lines are used in the generation of the opcode.html documentation
   737 ** file.
   738 **
   739 ** SUMMARY:
   740 **
   741 **     Formatting is important to scripts that scan this file.
   742 **     Do not deviate from the formatting style currently in use.
   743 **
   744 *****************************************************************************/
   745 
   746 /* Opcode:  Goto * P2 * * *
   747 **
   748 ** An unconditional jump to address P2.
   749 ** The next instruction executed will be 
   750 ** the one at index P2 from the beginning of
   751 ** the program.
   752 */
   753 case OP_Goto: {             /* jump */
   754   CHECK_FOR_INTERRUPT;
   755   pc = pOp->p2 - 1;
   756   break;
   757 }
   758 
   759 /* Opcode:  Gosub P1 P2 * * *
   760 **
   761 ** Write the current address onto register P1
   762 ** and then jump to address P2.
   763 */
   764 case OP_Gosub: {            /* jump */
   765   assert( pOp->p1>0 );
   766   assert( pOp->p1<=p->nMem );
   767   pIn1 = &p->aMem[pOp->p1];
   768   assert( (pIn1->flags & MEM_Dyn)==0 );
   769   pIn1->flags = MEM_Int;
   770   pIn1->u.i = pc;
   771   REGISTER_TRACE(pOp->p1, pIn1);
   772   pc = pOp->p2 - 1;
   773   break;
   774 }
   775 
   776 /* Opcode:  Return P1 * * * *
   777 **
   778 ** Jump to the next instruction after the address in register P1.
   779 */
   780 case OP_Return: {           /* in1 */
   781   assert( pIn1->flags & MEM_Int );
   782   pc = pIn1->u.i;
   783   break;
   784 }
   785 
   786 /* Opcode:  Yield P1 * * * *
   787 **
   788 ** Swap the program counter with the value in register P1.
   789 */
   790 case OP_Yield: {
   791   int pcDest;
   792   assert( pOp->p1>0 );
   793   assert( pOp->p1<=p->nMem );
   794   pIn1 = &p->aMem[pOp->p1];
   795   assert( (pIn1->flags & MEM_Dyn)==0 );
   796   pIn1->flags = MEM_Int;
   797   pcDest = pIn1->u.i;
   798   pIn1->u.i = pc;
   799   REGISTER_TRACE(pOp->p1, pIn1);
   800   pc = pcDest;
   801   break;
   802 }
   803 
   804 
   805 /* Opcode:  Halt P1 P2 * P4 *
   806 **
   807 ** Exit immediately.  All open cursors, Fifos, etc are closed
   808 ** automatically.
   809 **
   810 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
   811 ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
   812 ** For errors, it can be some other value.  If P1!=0 then P2 will determine
   813 ** whether or not to rollback the current transaction.  Do not rollback
   814 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
   815 ** then back out all changes that have occurred during this execution of the
   816 ** VDBE, but do not rollback the transaction. 
   817 **
   818 ** If P4 is not null then it is an error message string.
   819 **
   820 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
   821 ** every program.  So a jump past the last instruction of the program
   822 ** is the same as executing Halt.
   823 */
   824 case OP_Halt: {
   825   p->rc = pOp->p1;
   826   p->pc = pc;
   827   p->errorAction = pOp->p2;
   828   if( pOp->p4.z ){
   829     sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
   830   }
   831   rc = sqlite3VdbeHalt(p);
   832   assert( rc==SQLITE_BUSY || rc==SQLITE_OK );
   833   if( rc==SQLITE_BUSY ){
   834     p->rc = rc = SQLITE_BUSY;
   835   }else{
   836     rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
   837   }
   838   goto vdbe_return;
   839 }
   840 
   841 /* Opcode: Integer P1 P2 * * *
   842 **
   843 ** The 32-bit integer value P1 is written into register P2.
   844 */
   845 case OP_Integer: {         /* out2-prerelease */
   846   pOut->flags = MEM_Int;
   847   pOut->u.i = pOp->p1;
   848   break;
   849 }
   850 
   851 /* Opcode: Int64 * P2 * P4 *
   852 **
   853 ** P4 is a pointer to a 64-bit integer value.
   854 ** Write that value into register P2.
   855 */
   856 case OP_Int64: {           /* out2-prerelease */
   857   assert( pOp->p4.pI64!=0 );
   858   pOut->flags = MEM_Int;
   859   pOut->u.i = *pOp->p4.pI64;
   860   break;
   861 }
   862 
   863 /* Opcode: Real * P2 * P4 *
   864 **
   865 ** P4 is a pointer to a 64-bit floating point value.
   866 ** Write that value into register P2.
   867 */
   868 case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */
   869   pOut->flags = MEM_Real;
   870   assert( !sqlite3IsNaN(*pOp->p4.pReal) );
   871   pOut->r = *pOp->p4.pReal;
   872   break;
   873 }
   874 
   875 /* Opcode: String8 * P2 * P4 *
   876 **
   877 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
   878 ** into an OP_String before it is executed for the first time.
   879 */
   880 case OP_String8: {         /* same as TK_STRING, out2-prerelease */
   881   assert( pOp->p4.z!=0 );
   882   pOp->opcode = OP_String;
   883   pOp->p1 = strlen(pOp->p4.z);
   884 
   885 #ifndef SQLITE_OMIT_UTF16
   886   if( encoding!=SQLITE_UTF8 ){
   887     sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
   888     if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
   889     if( SQLITE_OK!=sqlite3VdbeMemMakeWriteable(pOut) ) goto no_mem;
   890     pOut->zMalloc = 0;
   891     pOut->flags |= MEM_Static;
   892     pOut->flags &= ~MEM_Dyn;
   893     if( pOp->p4type==P4_DYNAMIC ){
   894       sqlite3DbFree(db, pOp->p4.z);
   895     }
   896     pOp->p4type = P4_DYNAMIC;
   897     pOp->p4.z = pOut->z;
   898     pOp->p1 = pOut->n;
   899     if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
   900       goto too_big;
   901     }
   902     UPDATE_MAX_BLOBSIZE(pOut);
   903     break;
   904   }
   905 #endif
   906   if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
   907     goto too_big;
   908   }
   909   /* Fall through to the next case, OP_String */
   910 }
   911   
   912 /* Opcode: String P1 P2 * P4 *
   913 **
   914 ** The string value P4 of length P1 (bytes) is stored in register P2.
   915 */
   916 case OP_String: {          /* out2-prerelease */
   917   assert( pOp->p4.z!=0 );
   918   pOut->flags = MEM_Str|MEM_Static|MEM_Term;
   919   pOut->z = pOp->p4.z;
   920   pOut->n = pOp->p1;
   921   pOut->enc = encoding;
   922   UPDATE_MAX_BLOBSIZE(pOut);
   923   break;
   924 }
   925 
   926 /* Opcode: Null * P2 * * *
   927 **
   928 ** Write a NULL into register P2.
   929 */
   930 case OP_Null: {           /* out2-prerelease */
   931   break;
   932 }
   933 
   934 
   935 #ifndef SQLITE_OMIT_BLOB_LITERAL
   936 /* Opcode: Blob P1 P2 * P4
   937 **
   938 ** P4 points to a blob of data P1 bytes long.  Store this
   939 ** blob in register P2. This instruction is not coded directly
   940 ** by the compiler. Instead, the compiler layer specifies
   941 ** an OP_HexBlob opcode, with the hex string representation of
   942 ** the blob as P4. This opcode is transformed to an OP_Blob
   943 ** the first time it is executed.
   944 */
   945 case OP_Blob: {                /* out2-prerelease */
   946   assert( pOp->p1 <= SQLITE_MAX_LENGTH );
   947   sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
   948   pOut->enc = encoding;
   949   UPDATE_MAX_BLOBSIZE(pOut);
   950   break;
   951 }
   952 #endif /* SQLITE_OMIT_BLOB_LITERAL */
   953 
   954 /* Opcode: Variable P1 P2 * * *
   955 **
   956 ** The value of variable P1 is written into register P2. A variable is
   957 ** an unknown in the original SQL string as handed to sqlite3_compile().
   958 ** Any occurrence of the '?' character in the original SQL is considered
   959 ** a variable.  Variables in the SQL string are number from left to
   960 ** right beginning with 1.  The values of variables are set using the
   961 ** sqlite3_bind() API.
   962 */
   963 case OP_Variable: {           /* out2-prerelease */
   964   int j = pOp->p1 - 1;
   965   Mem *pVar;
   966   assert( j>=0 && j<p->nVar );
   967 
   968   pVar = &p->aVar[j];
   969   if( sqlite3VdbeMemTooBig(pVar) ){
   970     goto too_big;
   971   }
   972   sqlite3VdbeMemShallowCopy(pOut, &p->aVar[j], MEM_Static);
   973   UPDATE_MAX_BLOBSIZE(pOut);
   974   break;
   975 }
   976 
   977 /* Opcode: Move P1 P2 P3 * *
   978 **
   979 ** Move the values in register P1..P1+P3-1 over into
   980 ** registers P2..P2+P3-1.  Registers P1..P1+P1-1 are
   981 ** left holding a NULL.  It is an error for register ranges
   982 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
   983 */
   984 case OP_Move: {
   985   char *zMalloc;
   986   int n = pOp->p3;
   987   int p1 = pOp->p1;
   988   int p2 = pOp->p2;
   989   assert( n>0 );
   990   assert( p1>0 );
   991   assert( p1+n<p->nMem );
   992   pIn1 = &p->aMem[p1];
   993   assert( p2>0 );
   994   assert( p2+n<p->nMem );
   995   pOut = &p->aMem[p2];
   996   assert( p1+n<=p2 || p2+n<=p1 );
   997   while( n-- ){
   998     zMalloc = pOut->zMalloc;
   999     pOut->zMalloc = 0;
  1000     sqlite3VdbeMemMove(pOut, pIn1);
  1001     pIn1->zMalloc = zMalloc;
  1002     REGISTER_TRACE(p2++, pOut);
  1003     pIn1++;
  1004     pOut++;
  1005   }
  1006   break;
  1007 }
  1008 
  1009 /* Opcode: Copy P1 P2 * * *
  1010 **
  1011 ** Make a copy of register P1 into register P2.
  1012 **
  1013 ** This instruction makes a deep copy of the value.  A duplicate
  1014 ** is made of any string or blob constant.  See also OP_SCopy.
  1015 */
  1016 case OP_Copy: {
  1017   assert( pOp->p1>0 );
  1018   assert( pOp->p1<=p->nMem );
  1019   pIn1 = &p->aMem[pOp->p1];
  1020   assert( pOp->p2>0 );
  1021   assert( pOp->p2<=p->nMem );
  1022   pOut = &p->aMem[pOp->p2];
  1023   assert( pOut!=pIn1 );
  1024   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
  1025   Deephemeralize(pOut);
  1026   REGISTER_TRACE(pOp->p2, pOut);
  1027   break;
  1028 }
  1029 
  1030 /* Opcode: SCopy P1 P2 * * *
  1031 **
  1032 ** Make a shallow copy of register P1 into register P2.
  1033 **
  1034 ** This instruction makes a shallow copy of the value.  If the value
  1035 ** is a string or blob, then the copy is only a pointer to the
  1036 ** original and hence if the original changes so will the copy.
  1037 ** Worse, if the original is deallocated, the copy becomes invalid.
  1038 ** Thus the program must guarantee that the original will not change
  1039 ** during the lifetime of the copy.  Use OP_Copy to make a complete
  1040 ** copy.
  1041 */
  1042 case OP_SCopy: {
  1043   assert( pOp->p1>0 );
  1044   assert( pOp->p1<=p->nMem );
  1045   pIn1 = &p->aMem[pOp->p1];
  1046   REGISTER_TRACE(pOp->p1, pIn1);
  1047   assert( pOp->p2>0 );
  1048   assert( pOp->p2<=p->nMem );
  1049   pOut = &p->aMem[pOp->p2];
  1050   assert( pOut!=pIn1 );
  1051   sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
  1052   REGISTER_TRACE(pOp->p2, pOut);
  1053   break;
  1054 }
  1055 
  1056 /* Opcode: ResultRow P1 P2 * * *
  1057 **
  1058 ** The registers P1 through P1+P2-1 contain a single row of
  1059 ** results. This opcode causes the sqlite3_step() call to terminate
  1060 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
  1061 ** structure to provide access to the top P1 values as the result
  1062 ** row.
  1063 */
  1064 case OP_ResultRow: {
  1065   Mem *pMem;
  1066   int i;
  1067   assert( p->nResColumn==pOp->p2 );
  1068   assert( pOp->p1>0 );
  1069   assert( pOp->p1+pOp->p2<=p->nMem );
  1070 
  1071   /* Invalidate all ephemeral cursor row caches */
  1072   p->cacheCtr = (p->cacheCtr + 2)|1;
  1073 
  1074   /* Make sure the results of the current row are \000 terminated
  1075   ** and have an assigned type.  The results are de-ephemeralized as
  1076   ** as side effect.
  1077   */
  1078   pMem = p->pResultSet = &p->aMem[pOp->p1];
  1079   for(i=0; i<pOp->p2; i++){
  1080     sqlite3VdbeMemNulTerminate(&pMem[i]);
  1081     storeTypeInfo(&pMem[i], encoding);
  1082     REGISTER_TRACE(pOp->p1+i, &pMem[i]);
  1083   }
  1084   if( db->mallocFailed ) goto no_mem;
  1085 
  1086   /* Return SQLITE_ROW
  1087   */
  1088   p->nCallback++;
  1089   p->pc = pc + 1;
  1090   rc = SQLITE_ROW;
  1091   goto vdbe_return;
  1092 }
  1093 
  1094 /* Opcode: Concat P1 P2 P3 * *
  1095 **
  1096 ** Add the text in register P1 onto the end of the text in
  1097 ** register P2 and store the result in register P3.
  1098 ** If either the P1 or P2 text are NULL then store NULL in P3.
  1099 **
  1100 **   P3 = P2 || P1
  1101 **
  1102 ** It is illegal for P1 and P3 to be the same register. Sometimes,
  1103 ** if P3 is the same register as P2, the implementation is able
  1104 ** to avoid a memcpy().
  1105 */
  1106 case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
  1107   i64 nByte;
  1108 
  1109   assert( pIn1!=pOut );
  1110   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
  1111     sqlite3VdbeMemSetNull(pOut);
  1112     break;
  1113   }
  1114   ExpandBlob(pIn1);
  1115   Stringify(pIn1, encoding);
  1116   ExpandBlob(pIn2);
  1117   Stringify(pIn2, encoding);
  1118   nByte = pIn1->n + pIn2->n;
  1119   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  1120     goto too_big;
  1121   }
  1122   MemSetTypeFlag(pOut, MEM_Str);
  1123   if( sqlite3VdbeMemGrow(pOut, nByte+2, pOut==pIn2) ){
  1124     goto no_mem;
  1125   }
  1126   if( pOut!=pIn2 ){
  1127     memcpy(pOut->z, pIn2->z, pIn2->n);
  1128   }
  1129   memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
  1130   pOut->z[nByte] = 0;
  1131   pOut->z[nByte+1] = 0;
  1132   pOut->flags |= MEM_Term;
  1133   pOut->n = nByte;
  1134   pOut->enc = encoding;
  1135   UPDATE_MAX_BLOBSIZE(pOut);
  1136   break;
  1137 }
  1138 
  1139 /* Opcode: Add P1 P2 P3 * *
  1140 **
  1141 ** Add the value in register P1 to the value in register P2
  1142 ** and store the result in register P3.
  1143 ** If either input is NULL, the result is NULL.
  1144 */
  1145 /* Opcode: Multiply P1 P2 P3 * *
  1146 **
  1147 **
  1148 ** Multiply the value in register P1 by the value in register P2
  1149 ** and store the result in register P3.
  1150 ** If either input is NULL, the result is NULL.
  1151 */
  1152 /* Opcode: Subtract P1 P2 P3 * *
  1153 **
  1154 ** Subtract the value in register P1 from the value in register P2
  1155 ** and store the result in register P3.
  1156 ** If either input is NULL, the result is NULL.
  1157 */
  1158 /* Opcode: Divide P1 P2 P3 * *
  1159 **
  1160 ** Divide the value in register P1 by the value in register P2
  1161 ** and store the result in register P3.  If the value in register P2
  1162 ** is zero, then the result is NULL.
  1163 ** If either input is NULL, the result is NULL.
  1164 */
  1165 /* Opcode: Remainder P1 P2 P3 * *
  1166 **
  1167 ** Compute the remainder after integer division of the value in
  1168 ** register P1 by the value in register P2 and store the result in P3. 
  1169 ** If the value in register P2 is zero the result is NULL.
  1170 ** If either operand is NULL, the result is NULL.
  1171 */
  1172 case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
  1173 case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
  1174 case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
  1175 case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
  1176 case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
  1177   int flags;
  1178   applyNumericAffinity(pIn1);
  1179   applyNumericAffinity(pIn2);
  1180   flags = pIn1->flags | pIn2->flags;
  1181   if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
  1182   if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
  1183     i64 a, b;
  1184     a = pIn1->u.i;
  1185     b = pIn2->u.i;
  1186     switch( pOp->opcode ){
  1187       case OP_Add:         b += a;       break;
  1188       case OP_Subtract:    b -= a;       break;
  1189       case OP_Multiply:    b *= a;       break;
  1190       case OP_Divide: {
  1191         if( a==0 ) goto arithmetic_result_is_null;
  1192         /* Dividing the largest possible negative 64-bit integer (1<<63) by 
  1193         ** -1 returns an integer too large to store in a 64-bit data-type. On
  1194         ** some architectures, the value overflows to (1<<63). On others,
  1195         ** a SIGFPE is issued. The following statement normalizes this
  1196         ** behavior so that all architectures behave as if integer 
  1197         ** overflow occurred.
  1198         */
  1199         if( a==-1 && b==SMALLEST_INT64 ) a = 1;
  1200         b /= a;
  1201         break;
  1202       }
  1203       default: {
  1204         if( a==0 ) goto arithmetic_result_is_null;
  1205         if( a==-1 ) a = 1;
  1206         b %= a;
  1207         break;
  1208       }
  1209     }
  1210     pOut->u.i = b;
  1211     MemSetTypeFlag(pOut, MEM_Int);
  1212   }else{
  1213     double a, b;
  1214     a = sqlite3VdbeRealValue(pIn1);
  1215     b = sqlite3VdbeRealValue(pIn2);
  1216     switch( pOp->opcode ){
  1217       case OP_Add:         b += a;       break;
  1218       case OP_Subtract:    b -= a;       break;
  1219       case OP_Multiply:    b *= a;       break;
  1220       case OP_Divide: {
  1221         if( a==0.0 ) goto arithmetic_result_is_null;
  1222         b /= a;
  1223         break;
  1224       }
  1225       default: {
  1226         i64 ia = (i64)a;
  1227         i64 ib = (i64)b;
  1228         if( ia==0 ) goto arithmetic_result_is_null;
  1229         if( ia==-1 ) ia = 1;
  1230         b = ib % ia;
  1231         break;
  1232       }
  1233     }
  1234     if( sqlite3IsNaN(b) ){
  1235       goto arithmetic_result_is_null;
  1236     }
  1237     pOut->r = b;
  1238     MemSetTypeFlag(pOut, MEM_Real);
  1239     if( (flags & MEM_Real)==0 ){
  1240       sqlite3VdbeIntegerAffinity(pOut);
  1241     }
  1242   }
  1243   break;
  1244 
  1245 arithmetic_result_is_null:
  1246   sqlite3VdbeMemSetNull(pOut);
  1247   break;
  1248 }
  1249 
  1250 /* Opcode: CollSeq * * P4
  1251 **
  1252 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
  1253 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
  1254 ** be returned. This is used by the built-in min(), max() and nullif()
  1255 ** functions.
  1256 **
  1257 ** The interface used by the implementation of the aforementioned functions
  1258 ** to retrieve the collation sequence set by this opcode is not available
  1259 ** publicly, only to user functions defined in func.c.
  1260 */
  1261 case OP_CollSeq: {
  1262   assert( pOp->p4type==P4_COLLSEQ );
  1263   break;
  1264 }
  1265 
  1266 /* Opcode: Function P1 P2 P3 P4 P5
  1267 **
  1268 ** Invoke a user function (P4 is a pointer to a Function structure that
  1269 ** defines the function) with P5 arguments taken from register P2 and
  1270 ** successors.  The result of the function is stored in register P3.
  1271 ** Register P3 must not be one of the function inputs.
  1272 **
  1273 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 
  1274 ** function was determined to be constant at compile time. If the first
  1275 ** argument was constant then bit 0 of P1 is set. This is used to determine
  1276 ** whether meta data associated with a user function argument using the
  1277 ** sqlite3_set_auxdata() API may be safely retained until the next
  1278 ** invocation of this opcode.
  1279 **
  1280 ** See also: AggStep and AggFinal
  1281 */
  1282 case OP_Function: {
  1283   int i;
  1284   Mem *pArg;
  1285   sqlite3_context ctx;
  1286   sqlite3_value **apVal;
  1287   int n = pOp->p5;
  1288 
  1289   apVal = p->apArg;
  1290   assert( apVal || n==0 );
  1291 
  1292   assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem) );
  1293   assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
  1294   pArg = &p->aMem[pOp->p2];
  1295   for(i=0; i<n; i++, pArg++){
  1296     apVal[i] = pArg;
  1297     storeTypeInfo(pArg, encoding);
  1298     REGISTER_TRACE(pOp->p2, pArg);
  1299   }
  1300 
  1301   assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
  1302   if( pOp->p4type==P4_FUNCDEF ){
  1303     ctx.pFunc = pOp->p4.pFunc;
  1304     ctx.pVdbeFunc = 0;
  1305   }else{
  1306     ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
  1307     ctx.pFunc = ctx.pVdbeFunc->pFunc;
  1308   }
  1309 
  1310   assert( pOp->p3>0 && pOp->p3<=p->nMem );
  1311   pOut = &p->aMem[pOp->p3];
  1312   ctx.s.flags = MEM_Null;
  1313   ctx.s.db = db;
  1314   ctx.s.xDel = 0;
  1315   ctx.s.zMalloc = 0;
  1316 
  1317   /* The output cell may already have a buffer allocated. Move
  1318   ** the pointer to ctx.s so in case the user-function can use
  1319   ** the already allocated buffer instead of allocating a new one.
  1320   */
  1321   sqlite3VdbeMemMove(&ctx.s, pOut);
  1322   MemSetTypeFlag(&ctx.s, MEM_Null);
  1323 
  1324   ctx.isError = 0;
  1325   if( ctx.pFunc->needCollSeq ){
  1326     assert( pOp>p->aOp );
  1327     assert( pOp[-1].p4type==P4_COLLSEQ );
  1328     assert( pOp[-1].opcode==OP_CollSeq );
  1329     ctx.pColl = pOp[-1].p4.pColl;
  1330   }
  1331   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  1332   (*ctx.pFunc->xFunc)(&ctx, n, apVal);
  1333   if( sqlite3SafetyOn(db) ){
  1334     sqlite3VdbeMemRelease(&ctx.s);
  1335     goto abort_due_to_misuse;
  1336   }
  1337   if( db->mallocFailed ){
  1338     /* Even though a malloc() has failed, the implementation of the
  1339     ** user function may have called an sqlite3_result_XXX() function
  1340     ** to return a value. The following call releases any resources
  1341     ** associated with such a value.
  1342     **
  1343     ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
  1344     ** fails also (the if(...) statement above). But if people are
  1345     ** misusing sqlite, they have bigger problems than a leaked value.
  1346     */
  1347     sqlite3VdbeMemRelease(&ctx.s);
  1348     goto no_mem;
  1349   }
  1350 
  1351   /* If any auxiliary data functions have been called by this user function,
  1352   ** immediately call the destructor for any non-static values.
  1353   */
  1354   if( ctx.pVdbeFunc ){
  1355     sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
  1356     pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
  1357     pOp->p4type = P4_VDBEFUNC;
  1358   }
  1359 
  1360   /* If the function returned an error, throw an exception */
  1361   if( ctx.isError ){
  1362     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
  1363     rc = ctx.isError;
  1364   }
  1365 
  1366   /* Copy the result of the function into register P3 */
  1367   sqlite3VdbeChangeEncoding(&ctx.s, encoding);
  1368   sqlite3VdbeMemMove(pOut, &ctx.s);
  1369   if( sqlite3VdbeMemTooBig(pOut) ){
  1370     goto too_big;
  1371   }
  1372   REGISTER_TRACE(pOp->p3, pOut);
  1373   UPDATE_MAX_BLOBSIZE(pOut);
  1374   break;
  1375 }
  1376 
  1377 /* Opcode: BitAnd P1 P2 P3 * *
  1378 **
  1379 ** Take the bit-wise AND of the values in register P1 and P2 and
  1380 ** store the result in register P3.
  1381 ** If either input is NULL, the result is NULL.
  1382 */
  1383 /* Opcode: BitOr P1 P2 P3 * *
  1384 **
  1385 ** Take the bit-wise OR of the values in register P1 and P2 and
  1386 ** store the result in register P3.
  1387 ** If either input is NULL, the result is NULL.
  1388 */
  1389 /* Opcode: ShiftLeft P1 P2 P3 * *
  1390 **
  1391 ** Shift the integer value in register P2 to the left by the
  1392 ** number of bits specified by the integer in regiser P1.
  1393 ** Store the result in register P3.
  1394 ** If either input is NULL, the result is NULL.
  1395 */
  1396 /* Opcode: ShiftRight P1 P2 P3 * *
  1397 **
  1398 ** Shift the integer value in register P2 to the right by the
  1399 ** number of bits specified by the integer in register P1.
  1400 ** Store the result in register P3.
  1401 ** If either input is NULL, the result is NULL.
  1402 */
  1403 case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
  1404 case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
  1405 case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
  1406 case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
  1407   i64 a, b;
  1408 
  1409   if( (pIn1->flags | pIn2->flags) & MEM_Null ){
  1410     sqlite3VdbeMemSetNull(pOut);
  1411     break;
  1412   }
  1413   a = sqlite3VdbeIntValue(pIn2);
  1414   b = sqlite3VdbeIntValue(pIn1);
  1415   switch( pOp->opcode ){
  1416     case OP_BitAnd:      a &= b;     break;
  1417     case OP_BitOr:       a |= b;     break;
  1418     case OP_ShiftLeft:   a <<= b;    break;
  1419     default:  assert( pOp->opcode==OP_ShiftRight );
  1420                          a >>= b;    break;
  1421   }
  1422   pOut->u.i = a;
  1423   MemSetTypeFlag(pOut, MEM_Int);
  1424   break;
  1425 }
  1426 
  1427 /* Opcode: AddImm  P1 P2 * * *
  1428 ** 
  1429 ** Add the constant P2 to the value in register P1.
  1430 ** The result is always an integer.
  1431 **
  1432 ** To force any register to be an integer, just add 0.
  1433 */
  1434 case OP_AddImm: {            /* in1 */
  1435   sqlite3VdbeMemIntegerify(pIn1);
  1436   pIn1->u.i += pOp->p2;
  1437   break;
  1438 }
  1439 
  1440 /* Opcode: ForceInt P1 P2 P3 * *
  1441 **
  1442 ** Convert value in register P1 into an integer.  If the value 
  1443 ** in P1 is not numeric (meaning that is is a NULL or a string that
  1444 ** does not look like an integer or floating point number) then
  1445 ** jump to P2.  If the value in P1 is numeric then
  1446 ** convert it into the least integer that is greater than or equal to its
  1447 ** current value if P3==0, or to the least integer that is strictly
  1448 ** greater than its current value if P3==1.
  1449 */
  1450 case OP_ForceInt: {            /* jump, in1 */
  1451   i64 v;
  1452   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
  1453   if( (pIn1->flags & (MEM_Int|MEM_Real))==0 ){
  1454     pc = pOp->p2 - 1;
  1455     break;
  1456   }
  1457   if( pIn1->flags & MEM_Int ){
  1458     v = pIn1->u.i + (pOp->p3!=0);
  1459   }else{
  1460     assert( pIn1->flags & MEM_Real );
  1461     v = (sqlite3_int64)pIn1->r;
  1462     if( pIn1->r>(double)v ) v++;
  1463     if( pOp->p3 && pIn1->r==(double)v ) v++;
  1464   }
  1465   pIn1->u.i = v;
  1466   MemSetTypeFlag(pIn1, MEM_Int);
  1467   break;
  1468 }
  1469 
  1470 /* Opcode: MustBeInt P1 P2 * * *
  1471 ** 
  1472 ** Force the value in register P1 to be an integer.  If the value
  1473 ** in P1 is not an integer and cannot be converted into an integer
  1474 ** without data loss, then jump immediately to P2, or if P2==0
  1475 ** raise an SQLITE_MISMATCH exception.
  1476 */
  1477 case OP_MustBeInt: {            /* jump, in1 */
  1478   applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
  1479   if( (pIn1->flags & MEM_Int)==0 ){
  1480     if( pOp->p2==0 ){
  1481       rc = SQLITE_MISMATCH;
  1482       goto abort_due_to_error;
  1483     }else{
  1484       pc = pOp->p2 - 1;
  1485     }
  1486   }else{
  1487     MemSetTypeFlag(pIn1, MEM_Int);
  1488   }
  1489   break;
  1490 }
  1491 
  1492 /* Opcode: RealAffinity P1 * * * *
  1493 **
  1494 ** If register P1 holds an integer convert it to a real value.
  1495 **
  1496 ** This opcode is used when extracting information from a column that
  1497 ** has REAL affinity.  Such column values may still be stored as
  1498 ** integers, for space efficiency, but after extraction we want them
  1499 ** to have only a real value.
  1500 */
  1501 case OP_RealAffinity: {                  /* in1 */
  1502   if( pIn1->flags & MEM_Int ){
  1503     sqlite3VdbeMemRealify(pIn1);
  1504   }
  1505   break;
  1506 }
  1507 
  1508 #ifndef SQLITE_OMIT_CAST
  1509 /* Opcode: ToText P1 * * * *
  1510 **
  1511 ** Force the value in register P1 to be text.
  1512 ** If the value is numeric, convert it to a string using the
  1513 ** equivalent of printf().  Blob values are unchanged and
  1514 ** are afterwards simply interpreted as text.
  1515 **
  1516 ** A NULL value is not changed by this routine.  It remains NULL.
  1517 */
  1518 case OP_ToText: {                  /* same as TK_TO_TEXT, in1 */
  1519   if( pIn1->flags & MEM_Null ) break;
  1520   assert( MEM_Str==(MEM_Blob>>3) );
  1521   pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
  1522   applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
  1523   rc = ExpandBlob(pIn1);
  1524   assert( pIn1->flags & MEM_Str || db->mallocFailed );
  1525   pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob);
  1526   UPDATE_MAX_BLOBSIZE(pIn1);
  1527   break;
  1528 }
  1529 
  1530 /* Opcode: ToBlob P1 * * * *
  1531 **
  1532 ** Force the value in register P1 to be a BLOB.
  1533 ** If the value is numeric, convert it to a string first.
  1534 ** Strings are simply reinterpreted as blobs with no change
  1535 ** to the underlying data.
  1536 **
  1537 ** A NULL value is not changed by this routine.  It remains NULL.
  1538 */
  1539 case OP_ToBlob: {                  /* same as TK_TO_BLOB, in1 */
  1540   if( pIn1->flags & MEM_Null ) break;
  1541   if( (pIn1->flags & MEM_Blob)==0 ){
  1542     applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
  1543     assert( pIn1->flags & MEM_Str || db->mallocFailed );
  1544   }
  1545   MemSetTypeFlag(pIn1, MEM_Blob);
  1546   UPDATE_MAX_BLOBSIZE(pIn1);
  1547   break;
  1548 }
  1549 
  1550 /* Opcode: ToNumeric P1 * * * *
  1551 **
  1552 ** Force the value in register P1 to be numeric (either an
  1553 ** integer or a floating-point number.)
  1554 ** If the value is text or blob, try to convert it to an using the
  1555 ** equivalent of atoi() or atof() and store 0 if no such conversion 
  1556 ** is possible.
  1557 **
  1558 ** A NULL value is not changed by this routine.  It remains NULL.
  1559 */
  1560 case OP_ToNumeric: {                  /* same as TK_TO_NUMERIC, in1 */
  1561   if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
  1562     sqlite3VdbeMemNumerify(pIn1);
  1563   }
  1564   break;
  1565 }
  1566 #endif /* SQLITE_OMIT_CAST */
  1567 
  1568 /* Opcode: ToInt P1 * * * *
  1569 **
  1570 ** Force the value in register P1 be an integer.  If
  1571 ** The value is currently a real number, drop its fractional part.
  1572 ** If the value is text or blob, try to convert it to an integer using the
  1573 ** equivalent of atoi() and store 0 if no such conversion is possible.
  1574 **
  1575 ** A NULL value is not changed by this routine.  It remains NULL.
  1576 */
  1577 case OP_ToInt: {                  /* same as TK_TO_INT, in1 */
  1578   if( (pIn1->flags & MEM_Null)==0 ){
  1579     sqlite3VdbeMemIntegerify(pIn1);
  1580   }
  1581   break;
  1582 }
  1583 
  1584 #ifndef SQLITE_OMIT_CAST
  1585 /* Opcode: ToReal P1 * * * *
  1586 **
  1587 ** Force the value in register P1 to be a floating point number.
  1588 ** If The value is currently an integer, convert it.
  1589 ** If the value is text or blob, try to convert it to an integer using the
  1590 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
  1591 **
  1592 ** A NULL value is not changed by this routine.  It remains NULL.
  1593 */
  1594 case OP_ToReal: {                  /* same as TK_TO_REAL, in1 */
  1595   if( (pIn1->flags & MEM_Null)==0 ){
  1596     sqlite3VdbeMemRealify(pIn1);
  1597   }
  1598   break;
  1599 }
  1600 #endif /* SQLITE_OMIT_CAST */
  1601 
  1602 /* Opcode: Lt P1 P2 P3 P4 P5
  1603 **
  1604 ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
  1605 ** jump to address P2.  
  1606 **
  1607 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
  1608 ** reg(P3) is NULL then take the jump.  If the SQLITE_JUMPIFNULL 
  1609 ** bit is clear then fall thru if either operand is NULL.
  1610 **
  1611 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
  1612 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
  1613 ** to coerce both inputs according to this affinity before the
  1614 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
  1615 ** affinity is used. Note that the affinity conversions are stored
  1616 ** back into the input registers P1 and P3.  So this opcode can cause
  1617 ** persistent changes to registers P1 and P3.
  1618 **
  1619 ** Once any conversions have taken place, and neither value is NULL, 
  1620 ** the values are compared. If both values are blobs then memcmp() is
  1621 ** used to determine the results of the comparison.  If both values
  1622 ** are text, then the appropriate collating function specified in
  1623 ** P4 is  used to do the comparison.  If P4 is not specified then
  1624 ** memcmp() is used to compare text string.  If both values are
  1625 ** numeric, then a numeric comparison is used. If the two values
  1626 ** are of different types, then numbers are considered less than
  1627 ** strings and strings are considered less than blobs.
  1628 **
  1629 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump.  Instead,
  1630 ** store a boolean result (either 0, or 1, or NULL) in register P2.
  1631 */
  1632 /* Opcode: Ne P1 P2 P3 P4 P5
  1633 **
  1634 ** This works just like the Lt opcode except that the jump is taken if
  1635 ** the operands in registers P1 and P3 are not equal.  See the Lt opcode for
  1636 ** additional information.
  1637 */
  1638 /* Opcode: Eq P1 P2 P3 P4 P5
  1639 **
  1640 ** This works just like the Lt opcode except that the jump is taken if
  1641 ** the operands in registers P1 and P3 are equal.
  1642 ** See the Lt opcode for additional information.
  1643 */
  1644 /* Opcode: Le P1 P2 P3 P4 P5
  1645 **
  1646 ** This works just like the Lt opcode except that the jump is taken if
  1647 ** the content of register P3 is less than or equal to the content of
  1648 ** register P1.  See the Lt opcode for additional information.
  1649 */
  1650 /* Opcode: Gt P1 P2 P3 P4 P5
  1651 **
  1652 ** This works just like the Lt opcode except that the jump is taken if
  1653 ** the content of register P3 is greater than the content of
  1654 ** register P1.  See the Lt opcode for additional information.
  1655 */
  1656 /* Opcode: Ge P1 P2 P3 P4 P5
  1657 **
  1658 ** This works just like the Lt opcode except that the jump is taken if
  1659 ** the content of register P3 is greater than or equal to the content of
  1660 ** register P1.  See the Lt opcode for additional information.
  1661 */
  1662 case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
  1663 case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
  1664 case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
  1665 case OP_Le:               /* same as TK_LE, jump, in1, in3 */
  1666 case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
  1667 case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
  1668   int flags;
  1669   int res;
  1670   char affinity;
  1671 
  1672   flags = pIn1->flags|pIn3->flags;
  1673 
  1674   if( flags&MEM_Null ){
  1675     /* If either operand is NULL then the result is always NULL.
  1676     ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
  1677     */
  1678     if( pOp->p5 & SQLITE_STOREP2 ){
  1679       pOut = &p->aMem[pOp->p2];
  1680       MemSetTypeFlag(pOut, MEM_Null);
  1681       REGISTER_TRACE(pOp->p2, pOut);
  1682     }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
  1683       pc = pOp->p2-1;
  1684     }
  1685     break;
  1686   }
  1687 
  1688   affinity = pOp->p5 & SQLITE_AFF_MASK;
  1689   if( affinity ){
  1690     applyAffinity(pIn1, affinity, encoding);
  1691     applyAffinity(pIn3, affinity, encoding);
  1692   }
  1693 
  1694   assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
  1695   ExpandBlob(pIn1);
  1696   ExpandBlob(pIn3);
  1697   res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  1698   switch( pOp->opcode ){
  1699     case OP_Eq:    res = res==0;     break;
  1700     case OP_Ne:    res = res!=0;     break;
  1701     case OP_Lt:    res = res<0;      break;
  1702     case OP_Le:    res = res<=0;     break;
  1703     case OP_Gt:    res = res>0;      break;
  1704     default:       res = res>=0;     break;
  1705   }
  1706 
  1707   if( pOp->p5 & SQLITE_STOREP2 ){
  1708     pOut = &p->aMem[pOp->p2];
  1709     MemSetTypeFlag(pOut, MEM_Int);
  1710     pOut->u.i = res;
  1711     REGISTER_TRACE(pOp->p2, pOut);
  1712   }else if( res ){
  1713     pc = pOp->p2-1;
  1714   }
  1715   break;
  1716 }
  1717 
  1718 /* Opcode: Permutation * * * P4 *
  1719 **
  1720 ** Set the permuation used by the OP_Compare operator to be the array
  1721 ** of integers in P4.
  1722 **
  1723 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
  1724 ** OP_Halt, or OP_ResultRow.  Typically the OP_Permutation should occur
  1725 ** immediately prior to the OP_Compare.
  1726 */
  1727 case OP_Permutation: {
  1728   assert( pOp->p4type==P4_INTARRAY );
  1729   assert( pOp->p4.ai );
  1730   aPermute = pOp->p4.ai;
  1731   break;
  1732 }
  1733 
  1734 /* Opcode: Compare P1 P2 P3 P4 *
  1735 **
  1736 ** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
  1737 ** one "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
  1738 ** the comparison for use by the next OP_Jump instruct.
  1739 **
  1740 ** P4 is a KeyInfo structure that defines collating sequences and sort
  1741 ** orders for the comparison.  The permutation applies to registers
  1742 ** only.  The KeyInfo elements are used sequentially.
  1743 **
  1744 ** The comparison is a sort comparison, so NULLs compare equal,
  1745 ** NULLs are less than numbers, numbers are less than strings,
  1746 ** and strings are less than blobs.
  1747 */
  1748 case OP_Compare: {
  1749   int n = pOp->p3;
  1750   int i, p1, p2;
  1751   const KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
  1752   assert( n>0 );
  1753   assert( pKeyInfo!=0 );
  1754   p1 = pOp->p1;
  1755   assert( p1>0 && p1+n-1<p->nMem );
  1756   p2 = pOp->p2;
  1757   assert( p2>0 && p2+n-1<p->nMem );
  1758   for(i=0; i<n; i++){
  1759     int idx = aPermute ? aPermute[i] : i;
  1760     CollSeq *pColl;    /* Collating sequence to use on this term */
  1761     int bRev;          /* True for DESCENDING sort order */
  1762     REGISTER_TRACE(p1+idx, &p->aMem[p1+idx]);
  1763     REGISTER_TRACE(p2+idx, &p->aMem[p2+idx]);
  1764     assert( i<pKeyInfo->nField );
  1765     pColl = pKeyInfo->aColl[i];
  1766     bRev = pKeyInfo->aSortOrder[i];
  1767     iCompare = sqlite3MemCompare(&p->aMem[p1+idx], &p->aMem[p2+idx], pColl);
  1768     if( iCompare ){
  1769       if( bRev ) iCompare = -iCompare;
  1770       break;
  1771     }
  1772   }
  1773   aPermute = 0;
  1774   break;
  1775 }
  1776 
  1777 /* Opcode: Jump P1 P2 P3 * *
  1778 **
  1779 ** Jump to the instruction at address P1, P2, or P3 depending on whether
  1780 ** in the most recent OP_Compare instruction the P1 vector was less than
  1781 ** equal to, or greater than the P2 vector, respectively.
  1782 */
  1783 case OP_Jump: {             /* jump */
  1784   if( iCompare<0 ){
  1785     pc = pOp->p1 - 1;
  1786   }else if( iCompare==0 ){
  1787     pc = pOp->p2 - 1;
  1788   }else{
  1789     pc = pOp->p3 - 1;
  1790   }
  1791   break;
  1792 }
  1793 
  1794 /* Opcode: And P1 P2 P3 * *
  1795 **
  1796 ** Take the logical AND of the values in registers P1 and P2 and
  1797 ** write the result into register P3.
  1798 **
  1799 ** If either P1 or P2 is 0 (false) then the result is 0 even if
  1800 ** the other input is NULL.  A NULL and true or two NULLs give
  1801 ** a NULL output.
  1802 */
  1803 /* Opcode: Or P1 P2 P3 * *
  1804 **
  1805 ** Take the logical OR of the values in register P1 and P2 and
  1806 ** store the answer in register P3.
  1807 **
  1808 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
  1809 ** even if the other input is NULL.  A NULL and false or two NULLs
  1810 ** give a NULL output.
  1811 */
  1812 case OP_And:              /* same as TK_AND, in1, in2, out3 */
  1813 case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
  1814   int v1, v2;    /* 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
  1815 
  1816   if( pIn1->flags & MEM_Null ){
  1817     v1 = 2;
  1818   }else{
  1819     v1 = sqlite3VdbeIntValue(pIn1)!=0;
  1820   }
  1821   if( pIn2->flags & MEM_Null ){
  1822     v2 = 2;
  1823   }else{
  1824     v2 = sqlite3VdbeIntValue(pIn2)!=0;
  1825   }
  1826   if( pOp->opcode==OP_And ){
  1827     static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
  1828     v1 = and_logic[v1*3+v2];
  1829   }else{
  1830     static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
  1831     v1 = or_logic[v1*3+v2];
  1832   }
  1833   if( v1==2 ){
  1834     MemSetTypeFlag(pOut, MEM_Null);
  1835   }else{
  1836     pOut->u.i = v1;
  1837     MemSetTypeFlag(pOut, MEM_Int);
  1838   }
  1839   break;
  1840 }
  1841 
  1842 /* Opcode: Not P1 * * * *
  1843 **
  1844 ** Interpret the value in register P1 as a boolean value.  Replace it
  1845 ** with its complement.  If the value in register P1 is NULL its value
  1846 ** is unchanged.
  1847 */
  1848 case OP_Not: {                /* same as TK_NOT, in1 */
  1849   if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  1850   sqlite3VdbeMemIntegerify(pIn1);
  1851   pIn1->u.i = !pIn1->u.i;
  1852   assert( pIn1->flags&MEM_Int );
  1853   break;
  1854 }
  1855 
  1856 /* Opcode: BitNot P1 * * * *
  1857 **
  1858 ** Interpret the content of register P1 as an integer.  Replace it
  1859 ** with its ones-complement.  If the value is originally NULL, leave
  1860 ** it unchanged.
  1861 */
  1862 case OP_BitNot: {             /* same as TK_BITNOT, in1 */
  1863   if( pIn1->flags & MEM_Null ) break;  /* Do nothing to NULLs */
  1864   sqlite3VdbeMemIntegerify(pIn1);
  1865   pIn1->u.i = ~pIn1->u.i;
  1866   assert( pIn1->flags&MEM_Int );
  1867   break;
  1868 }
  1869 
  1870 /* Opcode: If P1 P2 P3 * *
  1871 **
  1872 ** Jump to P2 if the value in register P1 is true.  The value is
  1873 ** is considered true if it is numeric and non-zero.  If the value
  1874 ** in P1 is NULL then take the jump if P3 is true.
  1875 */
  1876 /* Opcode: IfNot P1 P2 P3 * *
  1877 **
  1878 ** Jump to P2 if the value in register P1 is False.  The value is
  1879 ** is considered true if it has a numeric value of zero.  If the value
  1880 ** in P1 is NULL then take the jump if P3 is true.
  1881 */
  1882 case OP_If:                 /* jump, in1 */
  1883 case OP_IfNot: {            /* jump, in1 */
  1884   int c;
  1885   if( pIn1->flags & MEM_Null ){
  1886     c = pOp->p3;
  1887   }else{
  1888 #ifdef SQLITE_OMIT_FLOATING_POINT
  1889     c = sqlite3VdbeIntValue(pIn1);
  1890 #else
  1891     c = sqlite3VdbeRealValue(pIn1)!=0.0;
  1892 #endif
  1893     if( pOp->opcode==OP_IfNot ) c = !c;
  1894   }
  1895   if( c ){
  1896     pc = pOp->p2-1;
  1897   }
  1898   break;
  1899 }
  1900 
  1901 /* Opcode: IsNull P1 P2 P3 * *
  1902 **
  1903 ** Jump to P2 if the value in register P1 is NULL.  If P3 is greater
  1904 ** than zero, then check all values reg(P1), reg(P1+1), 
  1905 ** reg(P1+2), ..., reg(P1+P3-1).
  1906 */
  1907 case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
  1908   int n = pOp->p3;
  1909   assert( pOp->p3==0 || pOp->p1>0 );
  1910   do{
  1911     if( (pIn1->flags & MEM_Null)!=0 ){
  1912       pc = pOp->p2 - 1;
  1913       break;
  1914     }
  1915     pIn1++;
  1916   }while( --n > 0 );
  1917   break;
  1918 }
  1919 
  1920 /* Opcode: NotNull P1 P2 * * *
  1921 **
  1922 ** Jump to P2 if the value in register P1 is not NULL.  
  1923 */
  1924 case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
  1925   if( (pIn1->flags & MEM_Null)==0 ){
  1926     pc = pOp->p2 - 1;
  1927   }
  1928   break;
  1929 }
  1930 
  1931 /* Opcode: SetNumColumns * P2 * * *
  1932 **
  1933 ** This opcode sets the number of columns for the cursor opened by the
  1934 ** following instruction to P2.
  1935 **
  1936 ** An OP_SetNumColumns is only useful if it occurs immediately before 
  1937 ** one of the following opcodes:
  1938 **
  1939 **     OpenRead
  1940 **     OpenWrite
  1941 **     OpenPseudo
  1942 **
  1943 ** If the OP_Column opcode is to be executed on a cursor, then
  1944 ** this opcode must be present immediately before the opcode that
  1945 ** opens the cursor.
  1946 */
  1947 case OP_SetNumColumns: {
  1948   break;
  1949 }
  1950 
  1951 /* Opcode: Column P1 P2 P3 P4 *
  1952 **
  1953 ** Interpret the data that cursor P1 points to as a structure built using
  1954 ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
  1955 ** information about the format of the data.)  Extract the P2-th column
  1956 ** from this record.  If there are less that (P2+1) 
  1957 ** values in the record, extract a NULL.
  1958 **
  1959 ** The value extracted is stored in register P3.
  1960 **
  1961 ** If the KeyAsData opcode has previously executed on this cursor, then the
  1962 ** field might be extracted from the key rather than the data.
  1963 **
  1964 ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
  1965 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
  1966 ** the result.
  1967 */
  1968 case OP_Column: {
  1969   u32 payloadSize;   /* Number of bytes in the record */
  1970   int p1 = pOp->p1;  /* P1 value of the opcode */
  1971   int p2 = pOp->p2;  /* column number to retrieve */
  1972   Cursor *pC = 0;    /* The VDBE cursor */
  1973   char *zRec;        /* Pointer to complete record-data */
  1974   BtCursor *pCrsr;   /* The BTree cursor */
  1975   u32 *aType;        /* aType[i] holds the numeric type of the i-th column */
  1976   u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
  1977   u32 nField;        /* number of fields in the record */
  1978   int len;           /* The length of the serialized data for the column */
  1979   int i;             /* Loop counter */
  1980   char *zData;       /* Part of the record being decoded */
  1981   Mem *pDest;        /* Where to write the extracted value */
  1982   Mem sMem;          /* For storing the record being decoded */
  1983 
  1984   sMem.flags = 0;
  1985   sMem.db = 0;
  1986   sMem.zMalloc = 0;
  1987   assert( p1<p->nCursor );
  1988   assert( pOp->p3>0 && pOp->p3<=p->nMem );
  1989   pDest = &p->aMem[pOp->p3];
  1990   MemSetTypeFlag(pDest, MEM_Null);
  1991 
  1992   /* This block sets the variable payloadSize to be the total number of
  1993   ** bytes in the record.
  1994   **
  1995   ** zRec is set to be the complete text of the record if it is available.
  1996   ** The complete record text is always available for pseudo-tables
  1997   ** If the record is stored in a cursor, the complete record text
  1998   ** might be available in the  pC->aRow cache.  Or it might not be.
  1999   ** If the data is unavailable,  zRec is set to NULL.
  2000   **
  2001   ** We also compute the number of columns in the record.  For cursors,
  2002   ** the number of columns is stored in the Cursor.nField element.
  2003   */
  2004   pC = p->apCsr[p1];
  2005   assert( pC!=0 );
  2006 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2007   assert( pC->pVtabCursor==0 );
  2008 #endif
  2009   if( pC->pCursor!=0 ){
  2010     /* The record is stored in a B-Tree */
  2011     rc = sqlite3VdbeCursorMoveto(pC);
  2012     if( rc ) goto abort_due_to_error;
  2013     zRec = 0;
  2014     pCrsr = pC->pCursor;
  2015     if( pC->nullRow ){
  2016       payloadSize = 0;
  2017     }else if( pC->cacheStatus==p->cacheCtr ){
  2018       payloadSize = pC->payloadSize;
  2019       zRec = (char*)pC->aRow;
  2020     }else if( pC->isIndex ){
  2021       i64 payloadSize64;
  2022       sqlite3BtreeKeySize(pCrsr, &payloadSize64);
  2023       payloadSize = payloadSize64;
  2024     }else{
  2025       sqlite3BtreeDataSize(pCrsr, &payloadSize);
  2026     }
  2027     nField = pC->nField;
  2028   }else{
  2029     assert( pC->pseudoTable );
  2030     /* The record is the sole entry of a pseudo-table */
  2031     payloadSize = pC->nData;
  2032     zRec = pC->pData;
  2033     pC->cacheStatus = CACHE_STALE;
  2034     assert( payloadSize==0 || zRec!=0 );
  2035     nField = pC->nField;
  2036     pCrsr = 0;
  2037   }
  2038 
  2039   /* If payloadSize is 0, then just store a NULL */
  2040   if( payloadSize==0 ){
  2041     assert( pDest->flags&MEM_Null );
  2042     goto op_column_out;
  2043   }
  2044   if( payloadSize>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  2045     goto too_big;
  2046   }
  2047 
  2048   assert( p2<nField );
  2049 
  2050   /* Read and parse the table header.  Store the results of the parse
  2051   ** into the record header cache fields of the cursor.
  2052   */
  2053   aType = pC->aType;
  2054   if( pC->cacheStatus==p->cacheCtr ){
  2055     aOffset = pC->aOffset;
  2056   }else{
  2057     u8 *zIdx;        /* Index into header */
  2058     u8 *zEndHdr;     /* Pointer to first byte after the header */
  2059     u32 offset;      /* Offset into the data */
  2060     int szHdrSz;     /* Size of the header size field at start of record */
  2061     int avail;       /* Number of bytes of available data */
  2062 
  2063     assert(aType);
  2064     pC->aOffset = aOffset = &aType[nField];
  2065     pC->payloadSize = payloadSize;
  2066     pC->cacheStatus = p->cacheCtr;
  2067 
  2068     /* Figure out how many bytes are in the header */
  2069     if( zRec ){
  2070       zData = zRec;
  2071     }else{
  2072       if( pC->isIndex ){
  2073         zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
  2074       }else{
  2075         zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
  2076       }
  2077       /* If KeyFetch()/DataFetch() managed to get the entire payload,
  2078       ** save the payload in the pC->aRow cache.  That will save us from
  2079       ** having to make additional calls to fetch the content portion of
  2080       ** the record.
  2081       */
  2082       if( avail>=payloadSize ){
  2083         zRec = zData;
  2084         pC->aRow = (u8*)zData;
  2085       }else{
  2086         pC->aRow = 0;
  2087       }
  2088     }
  2089     /* The following assert is true in all cases accept when
  2090     ** the database file has been corrupted externally.
  2091     **    assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
  2092     szHdrSz = getVarint32((u8*)zData, offset);
  2093 
  2094     /* The KeyFetch() or DataFetch() above are fast and will get the entire
  2095     ** record header in most cases.  But they will fail to get the complete
  2096     ** record header if the record header does not fit on a single page
  2097     ** in the B-Tree.  When that happens, use sqlite3VdbeMemFromBtree() to
  2098     ** acquire the complete header text.
  2099     */
  2100     if( !zRec && avail<offset ){
  2101       sMem.flags = 0;
  2102       sMem.db = 0;
  2103       rc = sqlite3VdbeMemFromBtree(pCrsr, 0, offset, pC->isIndex, &sMem);
  2104       if( rc!=SQLITE_OK ){
  2105         goto op_column_out;
  2106       }
  2107       zData = sMem.z;
  2108     }
  2109     zEndHdr = (u8 *)&zData[offset];
  2110     zIdx = (u8 *)&zData[szHdrSz];
  2111 
  2112     /* Scan the header and use it to fill in the aType[] and aOffset[]
  2113     ** arrays.  aType[i] will contain the type integer for the i-th
  2114     ** column and aOffset[i] will contain the offset from the beginning
  2115     ** of the record to the start of the data for the i-th column
  2116     */
  2117     for(i=0; i<nField; i++){
  2118       if( zIdx<zEndHdr ){
  2119         aOffset[i] = offset;
  2120         zIdx += getVarint32(zIdx, aType[i]);
  2121         offset += sqlite3VdbeSerialTypeLen(aType[i]);
  2122       }else{
  2123         /* If i is less that nField, then there are less fields in this
  2124         ** record than SetNumColumns indicated there are columns in the
  2125         ** table. Set the offset for any extra columns not present in
  2126         ** the record to 0. This tells code below to store a NULL
  2127         ** instead of deserializing a value from the record.
  2128         */
  2129         aOffset[i] = 0;
  2130       }
  2131     }
  2132     sqlite3VdbeMemRelease(&sMem);
  2133     sMem.flags = MEM_Null;
  2134 
  2135     /* If we have read more header data than was contained in the header,
  2136     ** or if the end of the last field appears to be past the end of the
  2137     ** record, or if the end of the last field appears to be before the end
  2138     ** of the record (when all fields present), then we must be dealing 
  2139     ** with a corrupt database.
  2140     */
  2141     if( zIdx>zEndHdr || offset>payloadSize 
  2142      || (zIdx==zEndHdr && offset!=payloadSize) ){
  2143       rc = SQLITE_CORRUPT_BKPT;
  2144       goto op_column_out;
  2145     }
  2146   }
  2147 
  2148   /* Get the column information. If aOffset[p2] is non-zero, then 
  2149   ** deserialize the value from the record. If aOffset[p2] is zero,
  2150   ** then there are not enough fields in the record to satisfy the
  2151   ** request.  In this case, set the value NULL or to P4 if P4 is
  2152   ** a pointer to a Mem object.
  2153   */
  2154   if( aOffset[p2] ){
  2155     assert( rc==SQLITE_OK );
  2156     if( zRec ){
  2157       sqlite3VdbeMemReleaseExternal(pDest);
  2158       sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
  2159     }else{
  2160       len = sqlite3VdbeSerialTypeLen(aType[p2]);
  2161       sqlite3VdbeMemMove(&sMem, pDest);
  2162       rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
  2163       if( rc!=SQLITE_OK ){
  2164         goto op_column_out;
  2165       }
  2166       zData = sMem.z;
  2167       sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
  2168     }
  2169     pDest->enc = encoding;
  2170   }else{
  2171     if( pOp->p4type==P4_MEM ){
  2172       sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
  2173     }else{
  2174       assert( pDest->flags&MEM_Null );
  2175     }
  2176   }
  2177 
  2178   /* If we dynamically allocated space to hold the data (in the
  2179   ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
  2180   ** dynamically allocated space over to the pDest structure.
  2181   ** This prevents a memory copy.
  2182   */
  2183   if( sMem.zMalloc ){
  2184     assert( sMem.z==sMem.zMalloc );
  2185     assert( !(pDest->flags & MEM_Dyn) );
  2186     assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
  2187     pDest->flags &= ~(MEM_Ephem|MEM_Static);
  2188     pDest->flags |= MEM_Term;
  2189     pDest->z = sMem.z;
  2190     pDest->zMalloc = sMem.zMalloc;
  2191   }
  2192 
  2193   rc = sqlite3VdbeMemMakeWriteable(pDest);
  2194 
  2195 op_column_out:
  2196   UPDATE_MAX_BLOBSIZE(pDest);
  2197   REGISTER_TRACE(pOp->p3, pDest);
  2198   break;
  2199 }
  2200 
  2201 /* Opcode: Affinity P1 P2 * P4 *
  2202 **
  2203 ** Apply affinities to a range of P2 registers starting with P1.
  2204 **
  2205 ** P4 is a string that is P2 characters long. The nth character of the
  2206 ** string indicates the column affinity that should be used for the nth
  2207 ** memory cell in the range.
  2208 */
  2209 case OP_Affinity: {
  2210   char *zAffinity = pOp->p4.z;
  2211   Mem *pData0 = &p->aMem[pOp->p1];
  2212   Mem *pLast = &pData0[pOp->p2-1];
  2213   Mem *pRec;
  2214 
  2215   for(pRec=pData0; pRec<=pLast; pRec++){
  2216     ExpandBlob(pRec);
  2217     applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
  2218   }
  2219   break;
  2220 }
  2221 
  2222 /* Opcode: MakeRecord P1 P2 P3 P4 *
  2223 **
  2224 ** Convert P2 registers beginning with P1 into a single entry
  2225 ** suitable for use as a data record in a database table or as a key
  2226 ** in an index.  The details of the format are irrelevant as long as
  2227 ** the OP_Column opcode can decode the record later.
  2228 ** Refer to source code comments for the details of the record
  2229 ** format.
  2230 **
  2231 ** P4 may be a string that is P2 characters long.  The nth character of the
  2232 ** string indicates the column affinity that should be used for the nth
  2233 ** field of the index key.
  2234 **
  2235 ** The mapping from character to affinity is given by the SQLITE_AFF_
  2236 ** macros defined in sqliteInt.h.
  2237 **
  2238 ** If P4 is NULL then all index fields have the affinity NONE.
  2239 */
  2240 case OP_MakeRecord: {
  2241   /* Assuming the record contains N fields, the record format looks
  2242   ** like this:
  2243   **
  2244   ** ------------------------------------------------------------------------
  2245   ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  2246   ** ------------------------------------------------------------------------
  2247   **
  2248   ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
  2249   ** and so froth.
  2250   **
  2251   ** Each type field is a varint representing the serial type of the 
  2252   ** corresponding data element (see sqlite3VdbeSerialType()). The
  2253   ** hdr-size field is also a varint which is the offset from the beginning
  2254   ** of the record to data0.
  2255   */
  2256   u8 *zNewRecord;        /* A buffer to hold the data for the new record */
  2257   Mem *pRec;             /* The new record */
  2258   u64 nData = 0;         /* Number of bytes of data space */
  2259   int nHdr = 0;          /* Number of bytes of header space */
  2260   u64 nByte = 0;         /* Data space required for this record */
  2261   int nZero = 0;         /* Number of zero bytes at the end of the record */
  2262   int nVarint;           /* Number of bytes in a varint */
  2263   u32 serial_type;       /* Type field */
  2264   Mem *pData0;           /* First field to be combined into the record */
  2265   Mem *pLast;            /* Last field of the record */
  2266   int nField;            /* Number of fields in the record */
  2267   char *zAffinity;       /* The affinity string for the record */
  2268   int file_format;       /* File format to use for encoding */
  2269   int i;                 /* Space used in zNewRecord[] */
  2270 
  2271   nField = pOp->p1;
  2272   zAffinity = pOp->p4.z;
  2273   assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem );
  2274   pData0 = &p->aMem[nField];
  2275   nField = pOp->p2;
  2276   pLast = &pData0[nField-1];
  2277   file_format = p->minWriteFileFormat;
  2278 
  2279   /* Loop through the elements that will make up the record to figure
  2280   ** out how much space is required for the new record.
  2281   */
  2282   for(pRec=pData0; pRec<=pLast; pRec++){
  2283     int len;
  2284     if( zAffinity ){
  2285       applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
  2286     }
  2287     if( pRec->flags&MEM_Zero && pRec->n>0 ){
  2288       sqlite3VdbeMemExpandBlob(pRec);
  2289     }
  2290     serial_type = sqlite3VdbeSerialType(pRec, file_format);
  2291     len = sqlite3VdbeSerialTypeLen(serial_type);
  2292     nData += len;
  2293     nHdr += sqlite3VarintLen(serial_type);
  2294     if( pRec->flags & MEM_Zero ){
  2295       /* Only pure zero-filled BLOBs can be input to this Opcode.
  2296       ** We do not allow blobs with a prefix and a zero-filled tail. */
  2297       nZero += pRec->u.i;
  2298     }else if( len ){
  2299       nZero = 0;
  2300     }
  2301   }
  2302 
  2303   /* Add the initial header varint and total the size */
  2304   nHdr += nVarint = sqlite3VarintLen(nHdr);
  2305   if( nVarint<sqlite3VarintLen(nHdr) ){
  2306     nHdr++;
  2307   }
  2308   nByte = nHdr+nData-nZero;
  2309   if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  2310     goto too_big;
  2311   }
  2312 
  2313   /* Make sure the output register has a buffer large enough to store 
  2314   ** the new record. The output register (pOp->p3) is not allowed to
  2315   ** be one of the input registers (because the following call to
  2316   ** sqlite3VdbeMemGrow() could clobber the value before it is used).
  2317   */
  2318   assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
  2319   pOut = &p->aMem[pOp->p3];
  2320   if( sqlite3VdbeMemGrow(pOut, nByte, 0) ){
  2321     goto no_mem;
  2322   }
  2323   zNewRecord = (u8 *)pOut->z;
  2324 
  2325   /* Write the record */
  2326   i = putVarint32(zNewRecord, nHdr);
  2327   for(pRec=pData0; pRec<=pLast; pRec++){
  2328     serial_type = sqlite3VdbeSerialType(pRec, file_format);
  2329     i += putVarint32(&zNewRecord[i], serial_type);      /* serial type */
  2330   }
  2331   for(pRec=pData0; pRec<=pLast; pRec++){  /* serial data */
  2332     i += sqlite3VdbeSerialPut(&zNewRecord[i], nByte-i, pRec, file_format);
  2333   }
  2334   assert( i==nByte );
  2335 
  2336   assert( pOp->p3>0 && pOp->p3<=p->nMem );
  2337   pOut->n = nByte;
  2338   pOut->flags = MEM_Blob | MEM_Dyn;
  2339   pOut->xDel = 0;
  2340   if( nZero ){
  2341     pOut->u.i = nZero;
  2342     pOut->flags |= MEM_Zero;
  2343   }
  2344   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
  2345   REGISTER_TRACE(pOp->p3, pOut);
  2346   UPDATE_MAX_BLOBSIZE(pOut);
  2347   break;
  2348 }
  2349 
  2350 /* Opcode: Statement P1 * * * *
  2351 **
  2352 ** Begin an individual statement transaction which is part of a larger
  2353 ** transaction.  This is needed so that the statement
  2354 ** can be rolled back after an error without having to roll back the
  2355 ** entire transaction.  The statement transaction will automatically
  2356 ** commit when the VDBE halts.
  2357 **
  2358 ** If the database connection is currently in autocommit mode (that 
  2359 ** is to say, if it is in between BEGIN and COMMIT)
  2360 ** and if there are no other active statements on the same database
  2361 ** connection, then this operation is a no-op.  No statement transaction
  2362 ** is needed since any error can use the normal ROLLBACK process to
  2363 ** undo changes.
  2364 **
  2365 ** If a statement transaction is started, then a statement journal file
  2366 ** will be allocated and initialized.
  2367 **
  2368 ** The statement is begun on the database file with index P1.  The main
  2369 ** database file has an index of 0 and the file used for temporary tables
  2370 ** has an index of 1.
  2371 */
  2372 case OP_Statement: {
  2373   if( db->autoCommit==0 || db->activeVdbeCnt>1 ){
  2374     int i = pOp->p1;
  2375     Btree *pBt;
  2376     assert( i>=0 && i<db->nDb );
  2377     assert( db->aDb[i].pBt!=0 );
  2378     pBt = db->aDb[i].pBt;
  2379     assert( sqlite3BtreeIsInTrans(pBt) );
  2380     assert( (p->btreeMask & (1<<i))!=0 );
  2381     if( !sqlite3BtreeIsInStmt(pBt) ){
  2382       rc = sqlite3BtreeBeginStmt(pBt);
  2383       p->openedStatement = 1;
  2384     }
  2385   }
  2386   break;
  2387 }
  2388 
  2389 /* Opcode: AutoCommit P1 P2 * * *
  2390 **
  2391 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
  2392 ** back any currently active btree transactions. If there are any active
  2393 ** VMs (apart from this one), then the COMMIT or ROLLBACK statement fails.
  2394 **
  2395 ** This instruction causes the VM to halt.
  2396 */
  2397 case OP_AutoCommit: {
  2398   u8 i = pOp->p1;
  2399   u8 rollback = pOp->p2;
  2400 
  2401   assert( i==1 || i==0 );
  2402   assert( i==1 || rollback==0 );
  2403 
  2404   assert( db->activeVdbeCnt>0 );  /* At least this one VM is active */
  2405 
  2406   if( db->activeVdbeCnt>1 && i && !db->autoCommit ){
  2407     /* If this instruction implements a COMMIT or ROLLBACK, other VMs are
  2408     ** still running, and a transaction is active, return an error indicating
  2409     ** that the other VMs must complete first. 
  2410     */
  2411     sqlite3SetString(&p->zErrMsg, db, "cannot %s transaction - "
  2412         "SQL statements in progress",
  2413         rollback ? "rollback" : "commit");
  2414     rc = SQLITE_ERROR;
  2415   }else if( i!=db->autoCommit ){
  2416     if( pOp->p2 ){
  2417       assert( i==1 );
  2418       sqlite3RollbackAll(db);
  2419       db->autoCommit = 1;
  2420     }else{
  2421       db->autoCommit = i;
  2422       if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
  2423         p->pc = pc;
  2424         db->autoCommit = 1-i;
  2425         p->rc = rc = SQLITE_BUSY;
  2426         goto vdbe_return;
  2427       }
  2428     }
  2429     if( p->rc==SQLITE_OK ){
  2430       rc = SQLITE_DONE;
  2431     }else{
  2432       rc = SQLITE_ERROR;
  2433     }
  2434     goto vdbe_return;
  2435   }else{
  2436     sqlite3SetString(&p->zErrMsg, db,
  2437         (!i)?"cannot start a transaction within a transaction":(
  2438         (rollback)?"cannot rollback - no transaction is active":
  2439                    "cannot commit - no transaction is active"));
  2440          
  2441     rc = SQLITE_ERROR;
  2442   }
  2443   break;
  2444 }
  2445 
  2446 /* Opcode: Transaction P1 P2 * * *
  2447 **
  2448 ** Begin a transaction.  The transaction ends when a Commit or Rollback
  2449 ** opcode is encountered.  Depending on the ON CONFLICT setting, the
  2450 ** transaction might also be rolled back if an error is encountered.
  2451 **
  2452 ** P1 is the index of the database file on which the transaction is
  2453 ** started.  Index 0 is the main database file and index 1 is the
  2454 ** file used for temporary tables.  Indices of 2 or more are used for
  2455 ** attached databases.
  2456 **
  2457 ** If P2 is non-zero, then a write-transaction is started.  A RESERVED lock is
  2458 ** obtained on the database file when a write-transaction is started.  No
  2459 ** other process can start another write transaction while this transaction is
  2460 ** underway.  Starting a write transaction also creates a rollback journal. A
  2461 ** write transaction must be started before any changes can be made to the
  2462 ** database.  If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
  2463 ** on the file.
  2464 **
  2465 ** If P2 is zero, then a read-lock is obtained on the database file.
  2466 */
  2467 case OP_Transaction: {
  2468   int i = pOp->p1;
  2469   Btree *pBt;
  2470 
  2471   assert( i>=0 && i<db->nDb );
  2472   assert( (p->btreeMask & (1<<i))!=0 );
  2473   pBt = db->aDb[i].pBt;
  2474 
  2475   if( pBt ){
  2476     rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
  2477     if( rc==SQLITE_BUSY ){
  2478       p->pc = pc;
  2479       p->rc = rc = SQLITE_BUSY;
  2480       goto vdbe_return;
  2481     }
  2482     if( rc!=SQLITE_OK && rc!=SQLITE_READONLY /* && rc!=SQLITE_BUSY */ ){
  2483       goto abort_due_to_error;
  2484     }
  2485   }
  2486   break;
  2487 }
  2488 
  2489 /* Opcode: ReadCookie P1 P2 P3 * *
  2490 **
  2491 ** Read cookie number P3 from database P1 and write it into register P2.
  2492 ** P3==0 is the schema version.  P3==1 is the database format.
  2493 ** P3==2 is the recommended pager cache size, and so forth.  P1==0 is
  2494 ** the main database file and P1==1 is the database file used to store
  2495 ** temporary tables.
  2496 **
  2497 ** If P1 is negative, then this is a request to read the size of a
  2498 ** databases free-list. P3 must be set to 1 in this case. The actual
  2499 ** database accessed is ((P1+1)*-1). For example, a P1 parameter of -1
  2500 ** corresponds to database 0 ("main"), a P1 of -2 is database 1 ("temp").
  2501 **
  2502 ** There must be a read-lock on the database (either a transaction
  2503 ** must be started or there must be an open cursor) before
  2504 ** executing this instruction.
  2505 */
  2506 case OP_ReadCookie: {               /* out2-prerelease */
  2507   int iMeta;
  2508   int iDb = pOp->p1;
  2509   int iCookie = pOp->p3;
  2510 
  2511   assert( pOp->p3<SQLITE_N_BTREE_META );
  2512   if( iDb<0 ){
  2513     iDb = (-1*(iDb+1));
  2514     iCookie *= -1;
  2515   }
  2516   assert( iDb>=0 && iDb<db->nDb );
  2517   assert( db->aDb[iDb].pBt!=0 );
  2518   assert( (p->btreeMask & (1<<iDb))!=0 );
  2519   /* The indexing of meta values at the schema layer is off by one from
  2520   ** the indexing in the btree layer.  The btree considers meta[0] to
  2521   ** be the number of free pages in the database (a read-only value)
  2522   ** and meta[1] to be the schema cookie.  The schema layer considers
  2523   ** meta[1] to be the schema cookie.  So we have to shift the index
  2524   ** by one in the following statement.
  2525   */
  2526   rc = sqlite3BtreeGetMeta(db->aDb[iDb].pBt, 1 + iCookie, (u32 *)&iMeta);
  2527   pOut->u.i = iMeta;
  2528   MemSetTypeFlag(pOut, MEM_Int);
  2529   break;
  2530 }
  2531 
  2532 /* Opcode: SetCookie P1 P2 P3 * *
  2533 **
  2534 ** Write the content of register P3 (interpreted as an integer)
  2535 ** into cookie number P2 of database P1.
  2536 ** P2==0 is the schema version.  P2==1 is the database format.
  2537 ** P2==2 is the recommended pager cache size, and so forth.  P1==0 is
  2538 ** the main database file and P1==1 is the database file used to store
  2539 ** temporary tables.
  2540 **
  2541 ** A transaction must be started before executing this opcode.
  2542 */
  2543 case OP_SetCookie: {       /* in3 */
  2544   Db *pDb;
  2545   assert( pOp->p2<SQLITE_N_BTREE_META );
  2546   assert( pOp->p1>=0 && pOp->p1<db->nDb );
  2547   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  2548   pDb = &db->aDb[pOp->p1];
  2549   assert( pDb->pBt!=0 );
  2550   sqlite3VdbeMemIntegerify(pIn3);
  2551   /* See note about index shifting on OP_ReadCookie */
  2552   rc = sqlite3BtreeUpdateMeta(pDb->pBt, 1+pOp->p2, (int)pIn3->u.i);
  2553   if( pOp->p2==0 ){
  2554     /* When the schema cookie changes, record the new cookie internally */
  2555     pDb->pSchema->schema_cookie = pIn3->u.i;
  2556     db->flags |= SQLITE_InternChanges;
  2557   }else if( pOp->p2==1 ){
  2558     /* Record changes in the file format */
  2559     pDb->pSchema->file_format = pIn3->u.i;
  2560   }
  2561   if( pOp->p1==1 ){
  2562     /* Invalidate all prepared statements whenever the TEMP database
  2563     ** schema is changed.  Ticket #1644 */
  2564     sqlite3ExpirePreparedStatements(db);
  2565   }
  2566   break;
  2567 }
  2568 
  2569 /* Opcode: VerifyCookie P1 P2 *
  2570 **
  2571 ** Check the value of global database parameter number 0 (the
  2572 ** schema version) and make sure it is equal to P2.  
  2573 ** P1 is the database number which is 0 for the main database file
  2574 ** and 1 for the file holding temporary tables and some higher number
  2575 ** for auxiliary databases.
  2576 **
  2577 ** The cookie changes its value whenever the database schema changes.
  2578 ** This operation is used to detect when that the cookie has changed
  2579 ** and that the current process needs to reread the schema.
  2580 **
  2581 ** Either a transaction needs to have been started or an OP_Open needs
  2582 ** to be executed (to establish a read lock) before this opcode is
  2583 ** invoked.
  2584 */
  2585 case OP_VerifyCookie: {
  2586   int iMeta;
  2587   Btree *pBt;
  2588   assert( pOp->p1>=0 && pOp->p1<db->nDb );
  2589   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  2590   pBt = db->aDb[pOp->p1].pBt;
  2591   if( pBt ){
  2592     rc = sqlite3BtreeGetMeta(pBt, 1, (u32 *)&iMeta);
  2593   }else{
  2594     rc = SQLITE_OK;
  2595     iMeta = 0;
  2596   }
  2597   if( rc==SQLITE_OK && iMeta!=pOp->p2 ){
  2598     sqlite3DbFree(db, p->zErrMsg);
  2599     p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
  2600     /* If the schema-cookie from the database file matches the cookie 
  2601     ** stored with the in-memory representation of the schema, do
  2602     ** not reload the schema from the database file.
  2603     **
  2604     ** If virtual-tables are in use, this is not just an optimization.
  2605     ** Often, v-tables store their data in other SQLite tables, which
  2606     ** are queried from within xNext() and other v-table methods using
  2607     ** prepared queries. If such a query is out-of-date, we do not want to
  2608     ** discard the database schema, as the user code implementing the
  2609     ** v-table would have to be ready for the sqlite3_vtab structure itself
  2610     ** to be invalidated whenever sqlite3_step() is called from within 
  2611     ** a v-table method.
  2612     */
  2613     if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
  2614       sqlite3ResetInternalSchema(db, pOp->p1);
  2615     }
  2616 
  2617     sqlite3ExpirePreparedStatements(db);
  2618     rc = SQLITE_SCHEMA;
  2619   }
  2620   break;
  2621 }
  2622 
  2623 /* Opcode: OpenRead P1 P2 P3 P4 P5
  2624 **
  2625 ** Open a read-only cursor for the database table whose root page is
  2626 ** P2 in a database file.  The database file is determined by P3. 
  2627 ** P3==0 means the main database, P3==1 means the database used for 
  2628 ** temporary tables, and P3>1 means used the corresponding attached
  2629 ** database.  Give the new cursor an identifier of P1.  The P1
  2630 ** values need not be contiguous but all P1 values should be small integers.
  2631 ** It is an error for P1 to be negative.
  2632 **
  2633 ** If P5!=0 then use the content of register P2 as the root page, not
  2634 ** the value of P2 itself.
  2635 **
  2636 ** There will be a read lock on the database whenever there is an
  2637 ** open cursor.  If the database was unlocked prior to this instruction
  2638 ** then a read lock is acquired as part of this instruction.  A read
  2639 ** lock allows other processes to read the database but prohibits
  2640 ** any other process from modifying the database.  The read lock is
  2641 ** released when all cursors are closed.  If this instruction attempts
  2642 ** to get a read lock but fails, the script terminates with an
  2643 ** SQLITE_BUSY error code.
  2644 **
  2645 ** The P4 value is a pointer to a KeyInfo structure that defines the
  2646 ** content and collating sequence of indices.  P4 is NULL for cursors
  2647 ** that are not pointing to indices.
  2648 **
  2649 ** See also OpenWrite.
  2650 */
  2651 /* Opcode: OpenWrite P1 P2 P3 P4 P5
  2652 **
  2653 ** Open a read/write cursor named P1 on the table or index whose root
  2654 ** page is P2.  Or if P5!=0 use the content of register P2 to find the
  2655 ** root page.
  2656 **
  2657 ** The P4 value is a pointer to a KeyInfo structure that defines the
  2658 ** content and collating sequence of indices.  P4 is NULL for cursors
  2659 ** that are not pointing to indices.
  2660 **
  2661 ** This instruction works just like OpenRead except that it opens the cursor
  2662 ** in read/write mode.  For a given table, there can be one or more read-only
  2663 ** cursors or a single read/write cursor but not both.
  2664 **
  2665 ** See also OpenRead.
  2666 */
  2667 case OP_OpenRead:
  2668 case OP_OpenWrite: {
  2669   int i = pOp->p1;
  2670   int p2 = pOp->p2;
  2671   int iDb = pOp->p3;
  2672   int wrFlag;
  2673   Btree *pX;
  2674   Cursor *pCur;
  2675   Db *pDb;
  2676   
  2677   assert( iDb>=0 && iDb<db->nDb );
  2678   assert( (p->btreeMask & (1<<iDb))!=0 );
  2679   pDb = &db->aDb[iDb];
  2680   pX = pDb->pBt;
  2681   assert( pX!=0 );
  2682   if( pOp->opcode==OP_OpenWrite ){
  2683     wrFlag = 1;
  2684     if( pDb->pSchema->file_format < p->minWriteFileFormat ){
  2685       p->minWriteFileFormat = pDb->pSchema->file_format;
  2686     }
  2687   }else{
  2688     wrFlag = 0;
  2689   }
  2690   if( pOp->p5 ){
  2691     assert( p2>0 );
  2692     assert( p2<=p->nMem );
  2693     pIn2 = &p->aMem[p2];
  2694     sqlite3VdbeMemIntegerify(pIn2);
  2695     p2 = pIn2->u.i;
  2696     assert( p2>=2 );
  2697   }
  2698   assert( i>=0 );
  2699   pCur = allocateCursor(p, i, &pOp[-1], iDb, 1);
  2700   if( pCur==0 ) goto no_mem;
  2701   pCur->nullRow = 1;
  2702   rc = sqlite3BtreeCursor(pX, p2, wrFlag, pOp->p4.p, pCur->pCursor);
  2703   if( pOp->p4type==P4_KEYINFO ){
  2704     pCur->pKeyInfo = pOp->p4.pKeyInfo;
  2705     pCur->pKeyInfo->enc = ENC(p->db);
  2706   }else{
  2707     pCur->pKeyInfo = 0;
  2708   }
  2709   switch( rc ){
  2710     case SQLITE_BUSY: {
  2711       p->pc = pc;
  2712       p->rc = rc = SQLITE_BUSY;
  2713       goto vdbe_return;
  2714     }
  2715     case SQLITE_OK: {
  2716       int flags = sqlite3BtreeFlags(pCur->pCursor);
  2717       /* Sanity checking.  Only the lower four bits of the flags byte should
  2718       ** be used.  Bit 3 (mask 0x08) is unpredictable.  The lower 3 bits
  2719       ** (mask 0x07) should be either 5 (intkey+leafdata for tables) or
  2720       ** 2 (zerodata for indices).  If these conditions are not met it can
  2721       ** only mean that we are dealing with a corrupt database file
  2722       */
  2723       if( (flags & 0xf0)!=0 || ((flags & 0x07)!=5 && (flags & 0x07)!=2) ){
  2724         rc = SQLITE_CORRUPT_BKPT;
  2725         goto abort_due_to_error;
  2726       }
  2727       pCur->isTable = (flags & BTREE_INTKEY)!=0;
  2728       pCur->isIndex = (flags & BTREE_ZERODATA)!=0;
  2729       /* If P4==0 it means we are expected to open a table.  If P4!=0 then
  2730       ** we expect to be opening an index.  If this is not what happened,
  2731       ** then the database is corrupt
  2732       */
  2733       if( (pCur->isTable && pOp->p4type==P4_KEYINFO)
  2734        || (pCur->isIndex && pOp->p4type!=P4_KEYINFO) ){
  2735         rc = SQLITE_CORRUPT_BKPT;
  2736         goto abort_due_to_error;
  2737       }
  2738       break;
  2739     }
  2740     case SQLITE_EMPTY: {
  2741       pCur->isTable = pOp->p4type!=P4_KEYINFO;
  2742       pCur->isIndex = !pCur->isTable;
  2743       pCur->pCursor = 0;
  2744       rc = SQLITE_OK;
  2745       break;
  2746     }
  2747     default: {
  2748       goto abort_due_to_error;
  2749     }
  2750   }
  2751   break;
  2752 }
  2753 
  2754 /* Opcode: OpenEphemeral P1 P2 * P4 *
  2755 **
  2756 ** Open a new cursor P1 to a transient table.
  2757 ** The cursor is always opened read/write even if 
  2758 ** the main database is read-only.  The transient or virtual
  2759 ** table is deleted automatically when the cursor is closed.
  2760 **
  2761 ** P2 is the number of columns in the virtual table.
  2762 ** The cursor points to a BTree table if P4==0 and to a BTree index
  2763 ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
  2764 ** that defines the format of keys in the index.
  2765 **
  2766 ** This opcode was once called OpenTemp.  But that created
  2767 ** confusion because the term "temp table", might refer either
  2768 ** to a TEMP table at the SQL level, or to a table opened by
  2769 ** this opcode.  Then this opcode was call OpenVirtual.  But
  2770 ** that created confusion with the whole virtual-table idea.
  2771 */
  2772 case OP_OpenEphemeral: {
  2773   int i = pOp->p1;
  2774   Cursor *pCx;
  2775   static const int openFlags = 
  2776       SQLITE_OPEN_READWRITE |
  2777       SQLITE_OPEN_CREATE |
  2778       SQLITE_OPEN_EXCLUSIVE |
  2779       SQLITE_OPEN_DELETEONCLOSE |
  2780       SQLITE_OPEN_TRANSIENT_DB;
  2781 
  2782   assert( i>=0 );
  2783   pCx = allocateCursor(p, i, pOp, -1, 1);
  2784   if( pCx==0 ) goto no_mem;
  2785   pCx->nullRow = 1;
  2786   rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
  2787                            &pCx->pBt);
  2788   if( rc==SQLITE_OK ){
  2789     rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
  2790   }
  2791   if( rc==SQLITE_OK ){
  2792     /* If a transient index is required, create it by calling
  2793     ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
  2794     ** opening it. If a transient table is required, just use the
  2795     ** automatically created table with root-page 1 (an INTKEY table).
  2796     */
  2797     if( pOp->p4.pKeyInfo ){
  2798       int pgno;
  2799       assert( pOp->p4type==P4_KEYINFO );
  2800       rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA); 
  2801       if( rc==SQLITE_OK ){
  2802         assert( pgno==MASTER_ROOT+1 );
  2803         rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 
  2804                                 (KeyInfo*)pOp->p4.z, pCx->pCursor);
  2805         pCx->pKeyInfo = pOp->p4.pKeyInfo;
  2806         pCx->pKeyInfo->enc = ENC(p->db);
  2807       }
  2808       pCx->isTable = 0;
  2809     }else{
  2810       rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
  2811       pCx->isTable = 1;
  2812     }
  2813   }
  2814   pCx->isIndex = !pCx->isTable;
  2815   break;
  2816 }
  2817 
  2818 /* Opcode: OpenPseudo P1 P2 * * *
  2819 **
  2820 ** Open a new cursor that points to a fake table that contains a single
  2821 ** row of data.  Any attempt to write a second row of data causes the
  2822 ** first row to be deleted.  All data is deleted when the cursor is
  2823 ** closed.
  2824 **
  2825 ** A pseudo-table created by this opcode is useful for holding the
  2826 ** NEW or OLD tables in a trigger.  Also used to hold the a single
  2827 ** row output from the sorter so that the row can be decomposed into
  2828 ** individual columns using the OP_Column opcode.
  2829 **
  2830 ** When OP_Insert is executed to insert a row in to the pseudo table,
  2831 ** the pseudo-table cursor may or may not make it's own copy of the
  2832 ** original row data. If P2 is 0, then the pseudo-table will copy the
  2833 ** original row data. Otherwise, a pointer to the original memory cell
  2834 ** is stored. In this case, the vdbe program must ensure that the 
  2835 ** memory cell containing the row data is not overwritten until the
  2836 ** pseudo table is closed (or a new row is inserted into it).
  2837 */
  2838 case OP_OpenPseudo: {
  2839   int i = pOp->p1;
  2840   Cursor *pCx;
  2841   assert( i>=0 );
  2842   pCx = allocateCursor(p, i, &pOp[-1], -1, 0);
  2843   if( pCx==0 ) goto no_mem;
  2844   pCx->nullRow = 1;
  2845   pCx->pseudoTable = 1;
  2846   pCx->ephemPseudoTable = pOp->p2;
  2847   pCx->isTable = 1;
  2848   pCx->isIndex = 0;
  2849   break;
  2850 }
  2851 
  2852 /* Opcode: Close P1 * * * *
  2853 **
  2854 ** Close a cursor previously opened as P1.  If P1 is not
  2855 ** currently open, this instruction is a no-op.
  2856 */
  2857 case OP_Close: {
  2858   int i = pOp->p1;
  2859   assert( i>=0 && i<p->nCursor );
  2860   sqlite3VdbeFreeCursor(p, p->apCsr[i]);
  2861   p->apCsr[i] = 0;
  2862   break;
  2863 }
  2864 
  2865 /* Opcode: MoveGe P1 P2 P3 P4 *
  2866 **
  2867 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
  2868 ** use the integer value in register P3 as a key. If cursor P1 refers 
  2869 ** to an SQL index, then P3 is the first in an array of P4 registers 
  2870 ** that are used as an unpacked index key. 
  2871 **
  2872 ** Reposition cursor P1 so that  it points to the smallest entry that 
  2873 ** is greater than or equal to the key value. If there are no records 
  2874 ** greater than or equal to the key and P2 is not zero, then jump to P2.
  2875 **
  2876 ** A special feature of this opcode (and different from the
  2877 ** related OP_MoveGt, OP_MoveLt, and OP_MoveLe) is that if P2 is
  2878 ** zero and P1 is an SQL table (a b-tree with integer keys) then
  2879 ** the seek is deferred until it is actually needed.  It might be
  2880 ** the case that the cursor is never accessed.  By deferring the
  2881 ** seek, we avoid unnecessary seeks.
  2882 **
  2883 ** See also: Found, NotFound, Distinct, MoveLt, MoveGt, MoveLe
  2884 */
  2885 /* Opcode: MoveGt P1 P2 P3 P4 *
  2886 **
  2887 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
  2888 ** use the integer value in register P3 as a key. If cursor P1 refers 
  2889 ** to an SQL index, then P3 is the first in an array of P4 registers 
  2890 ** that are used as an unpacked index key. 
  2891 **
  2892 ** Reposition cursor P1 so that  it points to the smallest entry that 
  2893 ** is greater than the key value. If there are no records greater than 
  2894 ** the key and P2 is not zero, then jump to P2.
  2895 **
  2896 ** See also: Found, NotFound, Distinct, MoveLt, MoveGe, MoveLe
  2897 */
  2898 /* Opcode: MoveLt P1 P2 P3 P4 * 
  2899 **
  2900 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
  2901 ** use the integer value in register P3 as a key. If cursor P1 refers 
  2902 ** to an SQL index, then P3 is the first in an array of P4 registers 
  2903 ** that are used as an unpacked index key. 
  2904 **
  2905 ** Reposition cursor P1 so that  it points to the largest entry that 
  2906 ** is less than the key value. If there are no records less than 
  2907 ** the key and P2 is not zero, then jump to P2.
  2908 **
  2909 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLe
  2910 */
  2911 /* Opcode: MoveLe P1 P2 P3 P4 *
  2912 **
  2913 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
  2914 ** use the integer value in register P3 as a key. If cursor P1 refers 
  2915 ** to an SQL index, then P3 is the first in an array of P4 registers 
  2916 ** that are used as an unpacked index key. 
  2917 **
  2918 ** Reposition cursor P1 so that it points to the largest entry that 
  2919 ** is less than or equal to the key value. If there are no records 
  2920 ** less than or equal to the key and P2 is not zero, then jump to P2.
  2921 **
  2922 ** See also: Found, NotFound, Distinct, MoveGt, MoveGe, MoveLt
  2923 */
  2924 case OP_MoveLt:         /* jump, in3 */
  2925 case OP_MoveLe:         /* jump, in3 */
  2926 case OP_MoveGe:         /* jump, in3 */
  2927 case OP_MoveGt: {       /* jump, in3 */
  2928   int i = pOp->p1;
  2929   Cursor *pC;
  2930 
  2931   assert( i>=0 && i<p->nCursor );
  2932   pC = p->apCsr[i];
  2933   assert( pC!=0 );
  2934   if( pC->pCursor!=0 ){
  2935     int res, oc;
  2936     oc = pOp->opcode;
  2937     pC->nullRow = 0;
  2938     if( pC->isTable ){
  2939       i64 iKey = sqlite3VdbeIntValue(pIn3);
  2940       if( pOp->p2==0 ){
  2941         assert( pOp->opcode==OP_MoveGe );
  2942         pC->movetoTarget = iKey;
  2943         pC->rowidIsValid = 0;
  2944         pC->deferredMoveto = 1;
  2945         break;
  2946       }
  2947       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
  2948       if( rc!=SQLITE_OK ){
  2949         goto abort_due_to_error;
  2950       }
  2951       pC->lastRowid = iKey;
  2952       pC->rowidIsValid = res==0;
  2953     }else{
  2954       UnpackedRecord r;
  2955       int nField = pOp->p4.i;
  2956       assert( pOp->p4type==P4_INT32 );
  2957       assert( nField>0 );
  2958       r.pKeyInfo = pC->pKeyInfo;
  2959       r.nField = nField;
  2960       if( oc==OP_MoveGt || oc==OP_MoveLe ){
  2961         r.flags = UNPACKED_INCRKEY;
  2962       }else{
  2963         r.flags = 0;
  2964       }
  2965       r.aMem = &p->aMem[pOp->p3];
  2966       rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
  2967       if( rc!=SQLITE_OK ){
  2968         goto abort_due_to_error;
  2969       }
  2970       pC->rowidIsValid = 0;
  2971     }
  2972     pC->deferredMoveto = 0;
  2973     pC->cacheStatus = CACHE_STALE;
  2974 #ifdef SQLITE_TEST
  2975     sqlite3_search_count++;
  2976 #endif
  2977     if( oc==OP_MoveGe || oc==OP_MoveGt ){
  2978       if( res<0 ){
  2979         rc = sqlite3BtreeNext(pC->pCursor, &res);
  2980         if( rc!=SQLITE_OK ) goto abort_due_to_error;
  2981         pC->rowidIsValid = 0;
  2982       }else{
  2983         res = 0;
  2984       }
  2985     }else{
  2986       assert( oc==OP_MoveLt || oc==OP_MoveLe );
  2987       if( res>=0 ){
  2988         rc = sqlite3BtreePrevious(pC->pCursor, &res);
  2989         if( rc!=SQLITE_OK ) goto abort_due_to_error;
  2990         pC->rowidIsValid = 0;
  2991       }else{
  2992         /* res might be negative because the table is empty.  Check to
  2993         ** see if this is the case.
  2994         */
  2995         res = sqlite3BtreeEof(pC->pCursor);
  2996       }
  2997     }
  2998     assert( pOp->p2>0 );
  2999     if( res ){
  3000       pc = pOp->p2 - 1;
  3001     }
  3002   }else if( !pC->pseudoTable ){
  3003     /* This happens when attempting to open the sqlite3_master table
  3004     ** for read access returns SQLITE_EMPTY. In this case always
  3005     ** take the jump (since there are no records in the table).
  3006     */
  3007     pc = pOp->p2 - 1;
  3008   }
  3009   break;
  3010 }
  3011 
  3012 /* Opcode: Found P1 P2 P3 * *
  3013 **
  3014 ** Register P3 holds a blob constructed by MakeRecord.  P1 is an index.
  3015 ** If an entry that matches the value in register p3 exists in P1 then
  3016 ** jump to P2.  If the P3 value does not match any entry in P1
  3017 ** then fall thru.  The P1 cursor is left pointing at the matching entry
  3018 ** if it exists.
  3019 **
  3020 ** This instruction is used to implement the IN operator where the
  3021 ** left-hand side is a SELECT statement.  P1 may be a true index, or it
  3022 ** may be a temporary index that holds the results of the SELECT
  3023 ** statement.   This instruction is also used to implement the
  3024 ** DISTINCT keyword in SELECT statements.
  3025 **
  3026 ** This instruction checks if index P1 contains a record for which 
  3027 ** the first N serialized values exactly match the N serialized values
  3028 ** in the record in register P3, where N is the total number of values in
  3029 ** the P3 record (the P3 record is a prefix of the P1 record). 
  3030 **
  3031 ** See also: NotFound, IsUnique, NotExists
  3032 */
  3033 /* Opcode: NotFound P1 P2 P3 * *
  3034 **
  3035 ** Register P3 holds a blob constructed by MakeRecord.  P1 is
  3036 ** an index.  If no entry exists in P1 that matches the blob then jump
  3037 ** to P2.  If an entry does existing, fall through.  The cursor is left
  3038 ** pointing to the entry that matches.
  3039 **
  3040 ** See also: Found, NotExists, IsUnique
  3041 */
  3042 case OP_NotFound:       /* jump, in3 */
  3043 case OP_Found: {        /* jump, in3 */
  3044   int i = pOp->p1;
  3045   int alreadyExists = 0;
  3046   Cursor *pC;
  3047   assert( i>=0 && i<p->nCursor );
  3048   assert( p->apCsr[i]!=0 );
  3049   if( (pC = p->apCsr[i])->pCursor!=0 ){
  3050     int res;
  3051     UnpackedRecord *pIdxKey;
  3052 
  3053     assert( pC->isTable==0 );
  3054     assert( pIn3->flags & MEM_Blob );
  3055     pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
  3056                                       aTempRec, sizeof(aTempRec));
  3057     if( pIdxKey==0 ){
  3058       goto no_mem;
  3059     }
  3060     if( pOp->opcode==OP_Found ){
  3061       pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
  3062     }
  3063     rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
  3064     sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
  3065     if( rc!=SQLITE_OK ){
  3066       break;
  3067     }
  3068     alreadyExists = (res==0);
  3069     pC->deferredMoveto = 0;
  3070     pC->cacheStatus = CACHE_STALE;
  3071   }
  3072   if( pOp->opcode==OP_Found ){
  3073     if( alreadyExists ) pc = pOp->p2 - 1;
  3074   }else{
  3075     if( !alreadyExists ) pc = pOp->p2 - 1;
  3076   }
  3077   break;
  3078 }
  3079 
  3080 /* Opcode: IsUnique P1 P2 P3 P4 *
  3081 **
  3082 ** The P3 register contains an integer record number.  Call this
  3083 ** record number R.  The P4 register contains an index key created
  3084 ** using MakeRecord.  Call it K.
  3085 **
  3086 ** P1 is an index.  So it has no data and its key consists of a
  3087 ** record generated by OP_MakeRecord where the last field is the 
  3088 ** rowid of the entry that the index refers to.
  3089 ** 
  3090 ** This instruction asks if there is an entry in P1 where the
  3091 ** fields matches K but the rowid is different from R.
  3092 ** If there is no such entry, then there is an immediate
  3093 ** jump to P2.  If any entry does exist where the index string
  3094 ** matches K but the record number is not R, then the record
  3095 ** number for that entry is written into P3 and control
  3096 ** falls through to the next instruction.
  3097 **
  3098 ** See also: NotFound, NotExists, Found
  3099 */
  3100 case OP_IsUnique: {        /* jump, in3 */
  3101   int i = pOp->p1;
  3102   Cursor *pCx;
  3103   BtCursor *pCrsr;
  3104   Mem *pK;
  3105   i64 R;
  3106 
  3107   /* Pop the value R off the top of the stack
  3108   */
  3109   assert( pOp->p4type==P4_INT32 );
  3110   assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
  3111   pK = &p->aMem[pOp->p4.i];
  3112   sqlite3VdbeMemIntegerify(pIn3);
  3113   R = pIn3->u.i;
  3114   assert( i>=0 && i<p->nCursor );
  3115   pCx = p->apCsr[i];
  3116   assert( pCx!=0 );
  3117   pCrsr = pCx->pCursor;
  3118   if( pCrsr!=0 ){
  3119     int res;
  3120     i64 v;                     /* The record number that matches K */
  3121     UnpackedRecord *pIdxKey;   /* Unpacked version of P4 */
  3122 
  3123     /* Make sure K is a string and make zKey point to K
  3124     */
  3125     assert( pK->flags & MEM_Blob );
  3126     pIdxKey = sqlite3VdbeRecordUnpack(pCx->pKeyInfo, pK->n, pK->z,
  3127                                       aTempRec, sizeof(aTempRec));
  3128     if( pIdxKey==0 ){
  3129       goto no_mem;
  3130     }
  3131     pIdxKey->flags |= UNPACKED_IGNORE_ROWID;
  3132 
  3133     /* Search for an entry in P1 where all but the last rowid match K
  3134     ** If there is no such entry, jump immediately to P2.
  3135     */
  3136     assert( pCx->deferredMoveto==0 );
  3137     pCx->cacheStatus = CACHE_STALE;
  3138     rc = sqlite3BtreeMovetoUnpacked(pCrsr, pIdxKey, 0, 0, &res);
  3139     if( rc!=SQLITE_OK ){
  3140       sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
  3141       goto abort_due_to_error;
  3142     }
  3143     if( res<0 ){
  3144       rc = sqlite3BtreeNext(pCrsr, &res);
  3145       if( res ){
  3146         pc = pOp->p2 - 1;
  3147         sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
  3148         break;
  3149       }
  3150     }
  3151     rc = sqlite3VdbeIdxKeyCompare(pCx, pIdxKey, &res); 
  3152     sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
  3153     if( rc!=SQLITE_OK ) goto abort_due_to_error;
  3154     if( res>0 ){
  3155       pc = pOp->p2 - 1;
  3156       break;
  3157     }
  3158 
  3159     /* At this point, pCrsr is pointing to an entry in P1 where all but
  3160     ** the final entry (the rowid) matches K.  Check to see if the
  3161     ** final rowid column is different from R.  If it equals R then jump
  3162     ** immediately to P2.
  3163     */
  3164     rc = sqlite3VdbeIdxRowid(pCrsr, &v);
  3165     if( rc!=SQLITE_OK ){
  3166       goto abort_due_to_error;
  3167     }
  3168     if( v==R ){
  3169       pc = pOp->p2 - 1;
  3170       break;
  3171     }
  3172 
  3173     /* The final varint of the key is different from R.  Store it back
  3174     ** into register R3.  (The record number of an entry that violates
  3175     ** a UNIQUE constraint.)
  3176     */
  3177     pIn3->u.i = v;
  3178     assert( pIn3->flags&MEM_Int );
  3179   }
  3180   break;
  3181 }
  3182 
  3183 /* Opcode: NotExists P1 P2 P3 * *
  3184 **
  3185 ** Use the content of register P3 as a integer key.  If a record 
  3186 ** with that key does not exist in table of P1, then jump to P2. 
  3187 ** If the record does exist, then fall thru.  The cursor is left 
  3188 ** pointing to the record if it exists.
  3189 **
  3190 ** The difference between this operation and NotFound is that this
  3191 ** operation assumes the key is an integer and that P1 is a table whereas
  3192 ** NotFound assumes key is a blob constructed from MakeRecord and
  3193 ** P1 is an index.
  3194 **
  3195 ** See also: Found, NotFound, IsUnique
  3196 */
  3197 case OP_NotExists: {        /* jump, in3 */
  3198   int i = pOp->p1;
  3199   Cursor *pC;
  3200   BtCursor *pCrsr;
  3201   assert( i>=0 && i<p->nCursor );
  3202   assert( p->apCsr[i]!=0 );
  3203   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
  3204     int res;
  3205     u64 iKey;
  3206     assert( pIn3->flags & MEM_Int );
  3207     assert( p->apCsr[i]->isTable );
  3208     iKey = intToKey(pIn3->u.i);
  3209     rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0,&res);
  3210     pC->lastRowid = pIn3->u.i;
  3211     pC->rowidIsValid = res==0;
  3212     pC->nullRow = 0;
  3213     pC->cacheStatus = CACHE_STALE;
  3214     /* res might be uninitialized if rc!=SQLITE_OK.  But if rc!=SQLITE_OK
  3215     ** processing is about to abort so we really do not care whether or not
  3216     ** the following jump is taken.  (In other words, do not stress over
  3217     ** the error that valgrind sometimes shows on the next statement when
  3218     ** running ioerr.test and similar failure-recovery test scripts.) */
  3219     if( res!=0 ){
  3220       pc = pOp->p2 - 1;
  3221       assert( pC->rowidIsValid==0 );
  3222     }
  3223   }else if( !pC->pseudoTable ){
  3224     /* This happens when an attempt to open a read cursor on the 
  3225     ** sqlite_master table returns SQLITE_EMPTY.
  3226     */
  3227     assert( pC->isTable );
  3228     pc = pOp->p2 - 1;
  3229     assert( pC->rowidIsValid==0 );
  3230   }
  3231   break;
  3232 }
  3233 
  3234 /* Opcode: Sequence P1 P2 * * *
  3235 **
  3236 ** Find the next available sequence number for cursor P1.
  3237 ** Write the sequence number into register P2.
  3238 ** The sequence number on the cursor is incremented after this
  3239 ** instruction.  
  3240 */
  3241 case OP_Sequence: {           /* out2-prerelease */
  3242   int i = pOp->p1;
  3243   assert( i>=0 && i<p->nCursor );
  3244   assert( p->apCsr[i]!=0 );
  3245   pOut->u.i = p->apCsr[i]->seqCount++;
  3246   MemSetTypeFlag(pOut, MEM_Int);
  3247   break;
  3248 }
  3249 
  3250 
  3251 /* Opcode: NewRowid P1 P2 P3 * *
  3252 **
  3253 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
  3254 ** The record number is not previously used as a key in the database
  3255 ** table that cursor P1 points to.  The new record number is written
  3256 ** written to register P2.
  3257 **
  3258 ** If P3>0 then P3 is a register that holds the largest previously
  3259 ** generated record number.  No new record numbers are allowed to be less
  3260 ** than this value.  When this value reaches its maximum, a SQLITE_FULL
  3261 ** error is generated.  The P3 register is updated with the generated
  3262 ** record number.  This P3 mechanism is used to help implement the
  3263 ** AUTOINCREMENT feature.
  3264 */
  3265 case OP_NewRowid: {           /* out2-prerelease */
  3266   int i = pOp->p1;
  3267   i64 v = 0;
  3268   Cursor *pC;
  3269   assert( i>=0 && i<p->nCursor );
  3270   assert( p->apCsr[i]!=0 );
  3271   if( (pC = p->apCsr[i])->pCursor==0 ){
  3272     /* The zero initialization above is all that is needed */
  3273   }else{
  3274     /* The next rowid or record number (different terms for the same
  3275     ** thing) is obtained in a two-step algorithm.
  3276     **
  3277     ** First we attempt to find the largest existing rowid and add one
  3278     ** to that.  But if the largest existing rowid is already the maximum
  3279     ** positive integer, we have to fall through to the second
  3280     ** probabilistic algorithm
  3281     **
  3282     ** The second algorithm is to select a rowid at random and see if
  3283     ** it already exists in the table.  If it does not exist, we have
  3284     ** succeeded.  If the random rowid does exist, we select a new one
  3285     ** and try again, up to 1000 times.
  3286     **
  3287     ** For a table with less than 2 billion entries, the probability
  3288     ** of not finding a unused rowid is about 1.0e-300.  This is a 
  3289     ** non-zero probability, but it is still vanishingly small and should
  3290     ** never cause a problem.  You are much, much more likely to have a
  3291     ** hardware failure than for this algorithm to fail.
  3292     **
  3293     ** The analysis in the previous paragraph assumes that you have a good
  3294     ** source of random numbers.  Is a library function like lrand48()
  3295     ** good enough?  Maybe. Maybe not. It's hard to know whether there
  3296     ** might be subtle bugs is some implementations of lrand48() that
  3297     ** could cause problems. To avoid uncertainty, SQLite uses its own 
  3298     ** random number generator based on the RC4 algorithm.
  3299     **
  3300     ** To promote locality of reference for repetitive inserts, the
  3301     ** first few attempts at choosing a random rowid pick values just a little
  3302     ** larger than the previous rowid.  This has been shown experimentally
  3303     ** to double the speed of the COPY operation.
  3304     */
  3305     int res, rx=SQLITE_OK, cnt;
  3306     i64 x;
  3307     cnt = 0;
  3308     if( (sqlite3BtreeFlags(pC->pCursor)&(BTREE_INTKEY|BTREE_ZERODATA)) !=
  3309           BTREE_INTKEY ){
  3310       rc = SQLITE_CORRUPT_BKPT;
  3311       goto abort_due_to_error;
  3312     }
  3313     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_INTKEY)!=0 );
  3314     assert( (sqlite3BtreeFlags(pC->pCursor) & BTREE_ZERODATA)==0 );
  3315 
  3316 #ifdef SQLITE_32BIT_ROWID
  3317 #   define MAX_ROWID 0x7fffffff
  3318 #else
  3319     /* Some compilers complain about constants of the form 0x7fffffffffffffff.
  3320     ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
  3321     ** to provide the constant while making all compilers happy.
  3322     */
  3323 #   define MAX_ROWID  ( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
  3324 #endif
  3325 
  3326     if( !pC->useRandomRowid ){
  3327       if( pC->nextRowidValid ){
  3328         v = pC->nextRowid;
  3329       }else{
  3330         rc = sqlite3BtreeLast(pC->pCursor, &res);
  3331         if( rc!=SQLITE_OK ){
  3332           goto abort_due_to_error;
  3333         }
  3334         if( res ){
  3335           v = 1;
  3336         }else{
  3337           sqlite3BtreeKeySize(pC->pCursor, &v);
  3338           v = keyToInt(v);
  3339           if( v==MAX_ROWID ){
  3340             pC->useRandomRowid = 1;
  3341           }else{
  3342             v++;
  3343           }
  3344         }
  3345       }
  3346 
  3347 #ifndef SQLITE_OMIT_AUTOINCREMENT
  3348       if( pOp->p3 ){
  3349         Mem *pMem;
  3350         assert( pOp->p3>0 && pOp->p3<=p->nMem ); /* P3 is a valid memory cell */
  3351         pMem = &p->aMem[pOp->p3];
  3352 	REGISTER_TRACE(pOp->p3, pMem);
  3353         sqlite3VdbeMemIntegerify(pMem);
  3354         assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
  3355         if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
  3356           rc = SQLITE_FULL;
  3357           goto abort_due_to_error;
  3358         }
  3359         if( v<pMem->u.i+1 ){
  3360           v = pMem->u.i + 1;
  3361         }
  3362         pMem->u.i = v;
  3363       }
  3364 #endif
  3365 
  3366       if( v<MAX_ROWID ){
  3367         pC->nextRowidValid = 1;
  3368         pC->nextRowid = v+1;
  3369       }else{
  3370         pC->nextRowidValid = 0;
  3371       }
  3372     }
  3373     if( pC->useRandomRowid ){
  3374       assert( pOp->p3==0 );  /* SQLITE_FULL must have occurred prior to this */
  3375       v = db->priorNewRowid;
  3376       cnt = 0;
  3377       do{
  3378         if( cnt==0 && (v&0xffffff)==v ){
  3379           v++;
  3380         }else{
  3381           sqlite3_randomness(sizeof(v), &v);
  3382           if( cnt<5 ) v &= 0xffffff;
  3383         }
  3384         if( v==0 ) continue;
  3385         x = intToKey(v);
  3386         rx = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)x, 0, &res);
  3387         cnt++;
  3388       }while( cnt<100 && rx==SQLITE_OK && res==0 );
  3389       db->priorNewRowid = v;
  3390       if( rx==SQLITE_OK && res==0 ){
  3391         rc = SQLITE_FULL;
  3392         goto abort_due_to_error;
  3393       }
  3394     }
  3395     pC->rowidIsValid = 0;
  3396     pC->deferredMoveto = 0;
  3397     pC->cacheStatus = CACHE_STALE;
  3398   }
  3399   MemSetTypeFlag(pOut, MEM_Int);
  3400   pOut->u.i = v;
  3401   break;
  3402 }
  3403 
  3404 /* Opcode: Insert P1 P2 P3 P4 P5
  3405 **
  3406 ** Write an entry into the table of cursor P1.  A new entry is
  3407 ** created if it doesn't already exist or the data for an existing
  3408 ** entry is overwritten.  The data is the value stored register
  3409 ** number P2. The key is stored in register P3. The key must
  3410 ** be an integer.
  3411 **
  3412 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
  3413 ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
  3414 ** then rowid is stored for subsequent return by the
  3415 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
  3416 **
  3417 ** Parameter P4 may point to a string containing the table-name, or
  3418 ** may be NULL. If it is not NULL, then the update-hook 
  3419 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
  3420 **
  3421 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
  3422 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
  3423 ** and register P2 becomes ephemeral.  If the cursor is changed, the
  3424 ** value of register P2 will then change.  Make sure this does not
  3425 ** cause any problems.)
  3426 **
  3427 ** This instruction only works on tables.  The equivalent instruction
  3428 ** for indices is OP_IdxInsert.
  3429 */
  3430 case OP_Insert: {
  3431   Mem *pData = &p->aMem[pOp->p2];
  3432   Mem *pKey = &p->aMem[pOp->p3];
  3433 
  3434   i64 iKey;   /* The integer ROWID or key for the record to be inserted */
  3435   int i = pOp->p1;
  3436   Cursor *pC;
  3437   assert( i>=0 && i<p->nCursor );
  3438   pC = p->apCsr[i];
  3439   assert( pC!=0 );
  3440   assert( pC->pCursor!=0 || pC->pseudoTable );
  3441   assert( pKey->flags & MEM_Int );
  3442   assert( pC->isTable );
  3443   REGISTER_TRACE(pOp->p2, pData);
  3444   REGISTER_TRACE(pOp->p3, pKey);
  3445 
  3446   iKey = intToKey(pKey->u.i);
  3447   if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  3448   if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = pKey->u.i;
  3449   if( pC->nextRowidValid && pKey->u.i>=pC->nextRowid ){
  3450     pC->nextRowidValid = 0;
  3451   }
  3452   if( pData->flags & MEM_Null ){
  3453     pData->z = 0;
  3454     pData->n = 0;
  3455   }else{
  3456     assert( pData->flags & (MEM_Blob|MEM_Str) );
  3457   }
  3458   if( pC->pseudoTable ){
  3459     if( !pC->ephemPseudoTable ){
  3460       sqlite3DbFree(db, pC->pData);
  3461     }
  3462     pC->iKey = iKey;
  3463     pC->nData = pData->n;
  3464     if( pData->z==pData->zMalloc || pC->ephemPseudoTable ){
  3465       pC->pData = pData->z;
  3466       if( !pC->ephemPseudoTable ){
  3467         pData->flags &= ~MEM_Dyn;
  3468         pData->flags |= MEM_Ephem;
  3469         pData->zMalloc = 0;
  3470       }
  3471     }else{
  3472       pC->pData = sqlite3Malloc( pC->nData+2 );
  3473       if( !pC->pData ) goto no_mem;
  3474       memcpy(pC->pData, pData->z, pC->nData);
  3475       pC->pData[pC->nData] = 0;
  3476       pC->pData[pC->nData+1] = 0;
  3477     }
  3478     pC->nullRow = 0;
  3479   }else{
  3480     int nZero;
  3481     if( pData->flags & MEM_Zero ){
  3482       nZero = pData->u.i;
  3483     }else{
  3484       nZero = 0;
  3485     }
  3486     rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
  3487                             pData->z, pData->n, nZero,
  3488                             pOp->p5 & OPFLAG_APPEND);
  3489   }
  3490   
  3491   pC->rowidIsValid = 0;
  3492   pC->deferredMoveto = 0;
  3493   pC->cacheStatus = CACHE_STALE;
  3494 
  3495   /* Invoke the update-hook if required. */
  3496   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
  3497     const char *zDb = db->aDb[pC->iDb].zName;
  3498     const char *zTbl = pOp->p4.z;
  3499     int op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
  3500     assert( pC->isTable );
  3501     db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
  3502     assert( pC->iDb>=0 );
  3503   }
  3504   break;
  3505 }
  3506 
  3507 /* Opcode: Delete P1 P2 * P4 *
  3508 **
  3509 ** Delete the record at which the P1 cursor is currently pointing.
  3510 **
  3511 ** The cursor will be left pointing at either the next or the previous
  3512 ** record in the table. If it is left pointing at the next record, then
  3513 ** the next Next instruction will be a no-op.  Hence it is OK to delete
  3514 ** a record from within an Next loop.
  3515 **
  3516 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
  3517 ** incremented (otherwise not).
  3518 **
  3519 ** P1 must not be pseudo-table.  It has to be a real table with
  3520 ** multiple rows.
  3521 **
  3522 ** If P4 is not NULL, then it is the name of the table that P1 is
  3523 ** pointing to.  The update hook will be invoked, if it exists.
  3524 ** If P4 is not NULL then the P1 cursor must have been positioned
  3525 ** using OP_NotFound prior to invoking this opcode.
  3526 */
  3527 case OP_Delete: {
  3528   int i = pOp->p1;
  3529   i64 iKey;
  3530   Cursor *pC;
  3531 
  3532   assert( i>=0 && i<p->nCursor );
  3533   pC = p->apCsr[i];
  3534   assert( pC!=0 );
  3535   assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
  3536 
  3537   /* If the update-hook will be invoked, set iKey to the rowid of the
  3538   ** row being deleted.
  3539   */
  3540   if( db->xUpdateCallback && pOp->p4.z ){
  3541     assert( pC->isTable );
  3542     assert( pC->rowidIsValid );  /* lastRowid set by previous OP_NotFound */
  3543     iKey = pC->lastRowid;
  3544   }
  3545 
  3546   rc = sqlite3VdbeCursorMoveto(pC);
  3547   if( rc ) goto abort_due_to_error;
  3548   rc = sqlite3BtreeDelete(pC->pCursor);
  3549   pC->nextRowidValid = 0;
  3550   pC->cacheStatus = CACHE_STALE;
  3551 
  3552   /* Invoke the update-hook if required. */
  3553   if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
  3554     const char *zDb = db->aDb[pC->iDb].zName;
  3555     const char *zTbl = pOp->p4.z;
  3556     db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
  3557     assert( pC->iDb>=0 );
  3558   }
  3559   if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
  3560   break;
  3561 }
  3562 
  3563 /* Opcode: ResetCount P1 * *
  3564 **
  3565 ** This opcode resets the VMs internal change counter to 0. If P1 is true,
  3566 ** then the value of the change counter is copied to the database handle
  3567 ** change counter (returned by subsequent calls to sqlite3_changes())
  3568 ** before it is reset. This is used by trigger programs.
  3569 */
  3570 case OP_ResetCount: {
  3571   if( pOp->p1 ){
  3572     sqlite3VdbeSetChanges(db, p->nChange);
  3573   }
  3574   p->nChange = 0;
  3575   break;
  3576 }
  3577 
  3578 /* Opcode: RowData P1 P2 * * *
  3579 **
  3580 ** Write into register P2 the complete row data for cursor P1.
  3581 ** There is no interpretation of the data.  
  3582 ** It is just copied onto the P2 register exactly as 
  3583 ** it is found in the database file.
  3584 **
  3585 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
  3586 ** of a real table, not a pseudo-table.
  3587 */
  3588 /* Opcode: RowKey P1 P2 * * *
  3589 **
  3590 ** Write into register P2 the complete row key for cursor P1.
  3591 ** There is no interpretation of the data.  
  3592 ** The key is copied onto the P3 register exactly as 
  3593 ** it is found in the database file.
  3594 **
  3595 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
  3596 ** of a real table, not a pseudo-table.
  3597 */
  3598 case OP_RowKey:
  3599 case OP_RowData: {
  3600   int i = pOp->p1;
  3601   Cursor *pC;
  3602   BtCursor *pCrsr;
  3603   u32 n;
  3604 
  3605   pOut = &p->aMem[pOp->p2];
  3606 
  3607   /* Note that RowKey and RowData are really exactly the same instruction */
  3608   assert( i>=0 && i<p->nCursor );
  3609   pC = p->apCsr[i];
  3610   assert( pC->isTable || pOp->opcode==OP_RowKey );
  3611   assert( pC->isIndex || pOp->opcode==OP_RowData );
  3612   assert( pC!=0 );
  3613   assert( pC->nullRow==0 );
  3614   assert( pC->pseudoTable==0 );
  3615   assert( pC->pCursor!=0 );
  3616   pCrsr = pC->pCursor;
  3617   rc = sqlite3VdbeCursorMoveto(pC);
  3618   if( rc ) goto abort_due_to_error;
  3619   if( pC->isIndex ){
  3620     i64 n64;
  3621     assert( !pC->isTable );
  3622     sqlite3BtreeKeySize(pCrsr, &n64);
  3623     if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  3624       goto too_big;
  3625     }
  3626     n = n64;
  3627   }else{
  3628     sqlite3BtreeDataSize(pCrsr, &n);
  3629     if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
  3630       goto too_big;
  3631     }
  3632   }
  3633   if( sqlite3VdbeMemGrow(pOut, n, 0) ){
  3634     goto no_mem;
  3635   }
  3636   pOut->n = n;
  3637   MemSetTypeFlag(pOut, MEM_Blob);
  3638   if( pC->isIndex ){
  3639     rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
  3640   }else{
  3641     rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
  3642   }
  3643   pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
  3644   UPDATE_MAX_BLOBSIZE(pOut);
  3645   break;
  3646 }
  3647 
  3648 /* Opcode: Rowid P1 P2 * * *
  3649 **
  3650 ** Store in register P2 an integer which is the key of the table entry that
  3651 ** P1 is currently point to.
  3652 */
  3653 case OP_Rowid: {                 /* out2-prerelease */
  3654   int i = pOp->p1;
  3655   Cursor *pC;
  3656   i64 v;
  3657 
  3658   assert( i>=0 && i<p->nCursor );
  3659   pC = p->apCsr[i];
  3660   assert( pC!=0 );
  3661   rc = sqlite3VdbeCursorMoveto(pC);
  3662   if( rc ) goto abort_due_to_error;
  3663   if( pC->rowidIsValid ){
  3664     v = pC->lastRowid;
  3665   }else if( pC->pseudoTable ){
  3666     v = keyToInt(pC->iKey);
  3667   }else if( pC->nullRow ){
  3668     /* Leave the rowid set to a NULL */
  3669     break;
  3670   }else{
  3671     assert( pC->pCursor!=0 );
  3672     sqlite3BtreeKeySize(pC->pCursor, &v);
  3673     v = keyToInt(v);
  3674   }
  3675   pOut->u.i = v;
  3676   MemSetTypeFlag(pOut, MEM_Int);
  3677   break;
  3678 }
  3679 
  3680 /* Opcode: NullRow P1 * * * *
  3681 **
  3682 ** Move the cursor P1 to a null row.  Any OP_Column operations
  3683 ** that occur while the cursor is on the null row will always
  3684 ** write a NULL.
  3685 */
  3686 case OP_NullRow: {
  3687   int i = pOp->p1;
  3688   Cursor *pC;
  3689 
  3690   assert( i>=0 && i<p->nCursor );
  3691   pC = p->apCsr[i];
  3692   assert( pC!=0 );
  3693   pC->nullRow = 1;
  3694   pC->rowidIsValid = 0;
  3695   break;
  3696 }
  3697 
  3698 /* Opcode: Last P1 P2 * * *
  3699 **
  3700 ** The next use of the Rowid or Column or Next instruction for P1 
  3701 ** will refer to the last entry in the database table or index.
  3702 ** If the table or index is empty and P2>0, then jump immediately to P2.
  3703 ** If P2 is 0 or if the table or index is not empty, fall through
  3704 ** to the following instruction.
  3705 */
  3706 case OP_Last: {        /* jump */
  3707   int i = pOp->p1;
  3708   Cursor *pC;
  3709   BtCursor *pCrsr;
  3710   int res;
  3711 
  3712   assert( i>=0 && i<p->nCursor );
  3713   pC = p->apCsr[i];
  3714   assert( pC!=0 );
  3715   pCrsr = pC->pCursor;
  3716   assert( pCrsr!=0 );
  3717   rc = sqlite3BtreeLast(pCrsr, &res);
  3718   pC->nullRow = res;
  3719   pC->deferredMoveto = 0;
  3720   pC->cacheStatus = CACHE_STALE;
  3721   if( res && pOp->p2>0 ){
  3722     pc = pOp->p2 - 1;
  3723   }
  3724   break;
  3725 }
  3726 
  3727 
  3728 /* Opcode: Sort P1 P2 * * *
  3729 **
  3730 ** This opcode does exactly the same thing as OP_Rewind except that
  3731 ** it increments an undocumented global variable used for testing.
  3732 **
  3733 ** Sorting is accomplished by writing records into a sorting index,
  3734 ** then rewinding that index and playing it back from beginning to
  3735 ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
  3736 ** rewinding so that the global variable will be incremented and
  3737 ** regression tests can determine whether or not the optimizer is
  3738 ** correctly optimizing out sorts.
  3739 */
  3740 case OP_Sort: {        /* jump */
  3741 #ifdef SQLITE_TEST
  3742   sqlite3_sort_count++;
  3743   sqlite3_search_count--;
  3744 #endif
  3745   /* Fall through into OP_Rewind */
  3746 }
  3747 /* Opcode: Rewind P1 P2 * * *
  3748 **
  3749 ** The next use of the Rowid or Column or Next instruction for P1 
  3750 ** will refer to the first entry in the database table or index.
  3751 ** If the table or index is empty and P2>0, then jump immediately to P2.
  3752 ** If P2 is 0 or if the table or index is not empty, fall through
  3753 ** to the following instruction.
  3754 */
  3755 case OP_Rewind: {        /* jump */
  3756   int i = pOp->p1;
  3757   Cursor *pC;
  3758   BtCursor *pCrsr;
  3759   int res;
  3760 
  3761   assert( i>=0 && i<p->nCursor );
  3762   pC = p->apCsr[i];
  3763   assert( pC!=0 );
  3764   if( (pCrsr = pC->pCursor)!=0 ){
  3765     rc = sqlite3BtreeFirst(pCrsr, &res);
  3766     pC->atFirst = res==0;
  3767     pC->deferredMoveto = 0;
  3768     pC->cacheStatus = CACHE_STALE;
  3769   }else{
  3770     res = 1;
  3771   }
  3772   pC->nullRow = res;
  3773   assert( pOp->p2>0 && pOp->p2<p->nOp );
  3774   if( res ){
  3775     pc = pOp->p2 - 1;
  3776   }
  3777   break;
  3778 }
  3779 
  3780 /* Opcode: Next P1 P2 * * *
  3781 **
  3782 ** Advance cursor P1 so that it points to the next key/data pair in its
  3783 ** table or index.  If there are no more key/value pairs then fall through
  3784 ** to the following instruction.  But if the cursor advance was successful,
  3785 ** jump immediately to P2.
  3786 **
  3787 ** The P1 cursor must be for a real table, not a pseudo-table.
  3788 **
  3789 ** See also: Prev
  3790 */
  3791 /* Opcode: Prev P1 P2 * * *
  3792 **
  3793 ** Back up cursor P1 so that it points to the previous key/data pair in its
  3794 ** table or index.  If there is no previous key/value pairs then fall through
  3795 ** to the following instruction.  But if the cursor backup was successful,
  3796 ** jump immediately to P2.
  3797 **
  3798 ** The P1 cursor must be for a real table, not a pseudo-table.
  3799 */
  3800 case OP_Prev:          /* jump */
  3801 case OP_Next: {        /* jump */
  3802   Cursor *pC;
  3803   BtCursor *pCrsr;
  3804   int res;
  3805 
  3806   CHECK_FOR_INTERRUPT;
  3807   assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  3808   pC = p->apCsr[pOp->p1];
  3809   if( pC==0 ){
  3810     break;  /* See ticket #2273 */
  3811   }
  3812   pCrsr = pC->pCursor;
  3813   assert( pCrsr );
  3814   res = 1;
  3815   assert( pC->deferredMoveto==0 );
  3816   rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
  3817                               sqlite3BtreePrevious(pCrsr, &res);
  3818   pC->nullRow = res;
  3819   pC->cacheStatus = CACHE_STALE;
  3820   if( res==0 ){
  3821     pc = pOp->p2 - 1;
  3822 #ifdef SQLITE_TEST
  3823     sqlite3_search_count++;
  3824 #endif
  3825   }
  3826   pC->rowidIsValid = 0;
  3827   break;
  3828 }
  3829 
  3830 /* Opcode: IdxInsert P1 P2 P3 * *
  3831 **
  3832 ** Register P2 holds a SQL index key made using the
  3833 ** MakeIdxRec instructions.  This opcode writes that key
  3834 ** into the index P1.  Data for the entry is nil.
  3835 **
  3836 ** P3 is a flag that provides a hint to the b-tree layer that this
  3837 ** insert is likely to be an append.
  3838 **
  3839 ** This instruction only works for indices.  The equivalent instruction
  3840 ** for tables is OP_Insert.
  3841 */
  3842 case OP_IdxInsert: {        /* in2 */
  3843   int i = pOp->p1;
  3844   Cursor *pC;
  3845   BtCursor *pCrsr;
  3846   assert( i>=0 && i<p->nCursor );
  3847   assert( p->apCsr[i]!=0 );
  3848   assert( pIn2->flags & MEM_Blob );
  3849   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
  3850     assert( pC->isTable==0 );
  3851     rc = ExpandBlob(pIn2);
  3852     if( rc==SQLITE_OK ){
  3853       int nKey = pIn2->n;
  3854       const char *zKey = pIn2->z;
  3855       rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3);
  3856       assert( pC->deferredMoveto==0 );
  3857       pC->cacheStatus = CACHE_STALE;
  3858     }
  3859   }
  3860   break;
  3861 }
  3862 
  3863 /* Opcode: IdxDeleteM P1 P2 P3 * *
  3864 **
  3865 ** The content of P3 registers starting at register P2 form
  3866 ** an unpacked index key. This opcode removes that entry from the 
  3867 ** index opened by cursor P1.
  3868 */
  3869 case OP_IdxDelete: {
  3870   int i = pOp->p1;
  3871   Cursor *pC;
  3872   BtCursor *pCrsr;
  3873   assert( pOp->p3>0 );
  3874   assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem );
  3875   assert( i>=0 && i<p->nCursor );
  3876   assert( p->apCsr[i]!=0 );
  3877   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
  3878     int res;
  3879     UnpackedRecord r;
  3880     r.pKeyInfo = pC->pKeyInfo;
  3881     r.nField = pOp->p3;
  3882     r.flags = 0;
  3883     r.aMem = &p->aMem[pOp->p2];
  3884     rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
  3885     if( rc==SQLITE_OK && res==0 ){
  3886       rc = sqlite3BtreeDelete(pCrsr);
  3887     }
  3888     assert( pC->deferredMoveto==0 );
  3889     pC->cacheStatus = CACHE_STALE;
  3890   }
  3891   break;
  3892 }
  3893 
  3894 /* Opcode: IdxRowid P1 P2 * * *
  3895 **
  3896 ** Write into register P2 an integer which is the last entry in the record at
  3897 ** the end of the index key pointed to by cursor P1.  This integer should be
  3898 ** the rowid of the table entry to which this index entry points.
  3899 **
  3900 ** See also: Rowid, MakeIdxRec.
  3901 */
  3902 case OP_IdxRowid: {              /* out2-prerelease */
  3903   int i = pOp->p1;
  3904   BtCursor *pCrsr;
  3905   Cursor *pC;
  3906 
  3907   assert( i>=0 && i<p->nCursor );
  3908   assert( p->apCsr[i]!=0 );
  3909   if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
  3910     i64 rowid;
  3911 
  3912     assert( pC->deferredMoveto==0 );
  3913     assert( pC->isTable==0 );
  3914     if( !pC->nullRow ){
  3915       rc = sqlite3VdbeIdxRowid(pCrsr, &rowid);
  3916       if( rc!=SQLITE_OK ){
  3917         goto abort_due_to_error;
  3918       }
  3919       MemSetTypeFlag(pOut, MEM_Int);
  3920       pOut->u.i = rowid;
  3921     }
  3922   }
  3923   break;
  3924 }
  3925 
  3926 /* Opcode: IdxGE P1 P2 P3 P4 P5
  3927 **
  3928 ** The P4 register values beginning with P3 form an unpacked index 
  3929 ** key that omits the ROWID.  Compare this key value against the index 
  3930 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
  3931 **
  3932 ** If the P1 index entry is greater than or equal to the key value
  3933 ** then jump to P2.  Otherwise fall through to the next instruction.
  3934 **
  3935 ** If P5 is non-zero then the key value is increased by an epsilon 
  3936 ** prior to the comparison.  This make the opcode work like IdxGT except
  3937 ** that if the key from register P3 is a prefix of the key in the cursor,
  3938 ** the result is false whereas it would be true with IdxGT.
  3939 */
  3940 /* Opcode: IdxLT P1 P2 P3 * P5
  3941 **
  3942 ** The P4 register values beginning with P3 form an unpacked index 
  3943 ** key that omits the ROWID.  Compare this key value against the index 
  3944 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
  3945 **
  3946 ** If the P1 index entry is less than the key value then jump to P2.
  3947 ** Otherwise fall through to the next instruction.
  3948 **
  3949 ** If P5 is non-zero then the key value is increased by an epsilon prior 
  3950 ** to the comparison.  This makes the opcode work like IdxLE.
  3951 */
  3952 case OP_IdxLT:          /* jump, in3 */
  3953 case OP_IdxGE: {        /* jump, in3 */
  3954   int i= pOp->p1;
  3955   Cursor *pC;
  3956 
  3957   assert( i>=0 && i<p->nCursor );
  3958   assert( p->apCsr[i]!=0 );
  3959   if( (pC = p->apCsr[i])->pCursor!=0 ){
  3960     int res;
  3961     UnpackedRecord r;
  3962     assert( pC->deferredMoveto==0 );
  3963     assert( pOp->p5==0 || pOp->p5==1 );
  3964     assert( pOp->p4type==P4_INT32 );
  3965     r.pKeyInfo = pC->pKeyInfo;
  3966     r.nField = pOp->p4.i;
  3967     if( pOp->p5 ){
  3968       r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
  3969     }else{
  3970       r.flags = UNPACKED_IGNORE_ROWID;
  3971     }
  3972     r.aMem = &p->aMem[pOp->p3];
  3973     rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
  3974     if( pOp->opcode==OP_IdxLT ){
  3975       res = -res;
  3976     }else{
  3977       assert( pOp->opcode==OP_IdxGE );
  3978       res++;
  3979     }
  3980     if( res>0 ){
  3981       pc = pOp->p2 - 1 ;
  3982     }
  3983   }
  3984   break;
  3985 }
  3986 
  3987 /* Opcode: Destroy P1 P2 P3 * *
  3988 **
  3989 ** Delete an entire database table or index whose root page in the database
  3990 ** file is given by P1.
  3991 **
  3992 ** The table being destroyed is in the main database file if P3==0.  If
  3993 ** P3==1 then the table to be clear is in the auxiliary database file
  3994 ** that is used to store tables create using CREATE TEMPORARY TABLE.
  3995 **
  3996 ** If AUTOVACUUM is enabled then it is possible that another root page
  3997 ** might be moved into the newly deleted root page in order to keep all
  3998 ** root pages contiguous at the beginning of the database.  The former
  3999 ** value of the root page that moved - its value before the move occurred -
  4000 ** is stored in register P2.  If no page 
  4001 ** movement was required (because the table being dropped was already 
  4002 ** the last one in the database) then a zero is stored in register P2.
  4003 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
  4004 **
  4005 ** See also: Clear
  4006 */
  4007 case OP_Destroy: {     /* out2-prerelease */
  4008   int iMoved;
  4009   int iCnt;
  4010 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4011   Vdbe *pVdbe;
  4012   iCnt = 0;
  4013   for(pVdbe=db->pVdbe; pVdbe; pVdbe=pVdbe->pNext){
  4014     if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
  4015       iCnt++;
  4016     }
  4017   }
  4018 #else
  4019   iCnt = db->activeVdbeCnt;
  4020 #endif
  4021   if( iCnt>1 ){
  4022     rc = SQLITE_LOCKED;
  4023     p->errorAction = OE_Abort;
  4024   }else{
  4025     int iDb = pOp->p3;
  4026     assert( iCnt==1 );
  4027     assert( (p->btreeMask & (1<<iDb))!=0 );
  4028     rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
  4029     MemSetTypeFlag(pOut, MEM_Int);
  4030     pOut->u.i = iMoved;
  4031 #ifndef SQLITE_OMIT_AUTOVACUUM
  4032     if( rc==SQLITE_OK && iMoved!=0 ){
  4033       sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
  4034     }
  4035 #endif
  4036   }
  4037   break;
  4038 }
  4039 
  4040 /* Opcode: Clear P1 P2 *
  4041 **
  4042 ** Delete all contents of the database table or index whose root page
  4043 ** in the database file is given by P1.  But, unlike Destroy, do not
  4044 ** remove the table or index from the database file.
  4045 **
  4046 ** The table being clear is in the main database file if P2==0.  If
  4047 ** P2==1 then the table to be clear is in the auxiliary database file
  4048 ** that is used to store tables create using CREATE TEMPORARY TABLE.
  4049 **
  4050 ** See also: Destroy
  4051 */
  4052 case OP_Clear: {
  4053   assert( (p->btreeMask & (1<<pOp->p2))!=0 );
  4054   rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, pOp->p1);
  4055   break;
  4056 }
  4057 
  4058 /* Opcode: CreateTable P1 P2 * * *
  4059 **
  4060 ** Allocate a new table in the main database file if P1==0 or in the
  4061 ** auxiliary database file if P1==1 or in an attached database if
  4062 ** P1>1.  Write the root page number of the new table into
  4063 ** register P2
  4064 **
  4065 ** The difference between a table and an index is this:  A table must
  4066 ** have a 4-byte integer key and can have arbitrary data.  An index
  4067 ** has an arbitrary key but no data.
  4068 **
  4069 ** See also: CreateIndex
  4070 */
  4071 /* Opcode: CreateIndex P1 P2 * * *
  4072 **
  4073 ** Allocate a new index in the main database file if P1==0 or in the
  4074 ** auxiliary database file if P1==1 or in an attached database if
  4075 ** P1>1.  Write the root page number of the new table into
  4076 ** register P2.
  4077 **
  4078 ** See documentation on OP_CreateTable for additional information.
  4079 */
  4080 case OP_CreateIndex:            /* out2-prerelease */
  4081 case OP_CreateTable: {          /* out2-prerelease */
  4082   int pgno;
  4083   int flags;
  4084   Db *pDb;
  4085   assert( pOp->p1>=0 && pOp->p1<db->nDb );
  4086   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  4087   pDb = &db->aDb[pOp->p1];
  4088   assert( pDb->pBt!=0 );
  4089   if( pOp->opcode==OP_CreateTable ){
  4090     /* flags = BTREE_INTKEY; */
  4091     flags = BTREE_LEAFDATA|BTREE_INTKEY;
  4092   }else{
  4093     flags = BTREE_ZERODATA;
  4094   }
  4095   rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
  4096   if( rc==SQLITE_OK ){
  4097     pOut->u.i = pgno;
  4098     MemSetTypeFlag(pOut, MEM_Int);
  4099   }
  4100   break;
  4101 }
  4102 
  4103 /* Opcode: ParseSchema P1 P2 * P4 *
  4104 **
  4105 ** Read and parse all entries from the SQLITE_MASTER table of database P1
  4106 ** that match the WHERE clause P4.  P2 is the "force" flag.   Always do
  4107 ** the parsing if P2 is true.  If P2 is false, then this routine is a
  4108 ** no-op if the schema is not currently loaded.  In other words, if P2
  4109 ** is false, the SQLITE_MASTER table is only parsed if the rest of the
  4110 ** schema is already loaded into the symbol table.
  4111 **
  4112 ** This opcode invokes the parser to create a new virtual machine,
  4113 ** then runs the new virtual machine.  It is thus a re-entrant opcode.
  4114 */
  4115 case OP_ParseSchema: {
  4116   char *zSql;
  4117   int iDb = pOp->p1;
  4118   const char *zMaster;
  4119   InitData initData;
  4120 
  4121   assert( iDb>=0 && iDb<db->nDb );
  4122   if( !pOp->p2 && !DbHasProperty(db, iDb, DB_SchemaLoaded) ){
  4123     break;
  4124   }
  4125   zMaster = SCHEMA_TABLE(iDb);
  4126   initData.db = db;
  4127   initData.iDb = pOp->p1;
  4128   initData.pzErrMsg = &p->zErrMsg;
  4129   zSql = sqlite3MPrintf(db,
  4130      "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s",
  4131      db->aDb[iDb].zName, zMaster, pOp->p4.z);
  4132   if( zSql==0 ) goto no_mem;
  4133   (void)sqlite3SafetyOff(db);
  4134   assert( db->init.busy==0 );
  4135   db->init.busy = 1;
  4136   initData.rc = SQLITE_OK;
  4137   assert( !db->mallocFailed );
  4138   rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
  4139   if( rc==SQLITE_OK ) rc = initData.rc;
  4140   sqlite3DbFree(db, zSql);
  4141   db->init.busy = 0;
  4142   (void)sqlite3SafetyOn(db);
  4143   if( rc==SQLITE_NOMEM ){
  4144     goto no_mem;
  4145   }
  4146   break;  
  4147 }
  4148 
  4149 #if !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)
  4150 /* Opcode: LoadAnalysis P1 * * * *
  4151 **
  4152 ** Read the sqlite_stat1 table for database P1 and load the content
  4153 ** of that table into the internal index hash table.  This will cause
  4154 ** the analysis to be used when preparing all subsequent queries.
  4155 */
  4156 case OP_LoadAnalysis: {
  4157   int iDb = pOp->p1;
  4158   assert( iDb>=0 && iDb<db->nDb );
  4159   rc = sqlite3AnalysisLoad(db, iDb);
  4160   break;  
  4161 }
  4162 #endif /* !defined(SQLITE_OMIT_ANALYZE) && !defined(SQLITE_OMIT_PARSER)  */
  4163 
  4164 /* Opcode: DropTable P1 * * P4 *
  4165 **
  4166 ** Remove the internal (in-memory) data structures that describe
  4167 ** the table named P4 in database P1.  This is called after a table
  4168 ** is dropped in order to keep the internal representation of the
  4169 ** schema consistent with what is on disk.
  4170 */
  4171 case OP_DropTable: {
  4172   sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
  4173   break;
  4174 }
  4175 
  4176 /* Opcode: DropIndex P1 * * P4 *
  4177 **
  4178 ** Remove the internal (in-memory) data structures that describe
  4179 ** the index named P4 in database P1.  This is called after an index
  4180 ** is dropped in order to keep the internal representation of the
  4181 ** schema consistent with what is on disk.
  4182 */
  4183 case OP_DropIndex: {
  4184   sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
  4185   break;
  4186 }
  4187 
  4188 /* Opcode: DropTrigger P1 * * P4 *
  4189 **
  4190 ** Remove the internal (in-memory) data structures that describe
  4191 ** the trigger named P4 in database P1.  This is called after a trigger
  4192 ** is dropped in order to keep the internal representation of the
  4193 ** schema consistent with what is on disk.
  4194 */
  4195 case OP_DropTrigger: {
  4196   sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
  4197   break;
  4198 }
  4199 
  4200 
  4201 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
  4202 /* Opcode: IntegrityCk P1 P2 P3 * P5
  4203 **
  4204 ** Do an analysis of the currently open database.  Store in
  4205 ** register P1 the text of an error message describing any problems.
  4206 ** If no problems are found, store a NULL in register P1.
  4207 **
  4208 ** The register P3 contains the maximum number of allowed errors.
  4209 ** At most reg(P3) errors will be reported.
  4210 ** In other words, the analysis stops as soon as reg(P1) errors are 
  4211 ** seen.  Reg(P1) is updated with the number of errors remaining.
  4212 **
  4213 ** The root page numbers of all tables in the database are integer
  4214 ** stored in reg(P1), reg(P1+1), reg(P1+2), ....  There are P2 tables
  4215 ** total.
  4216 **
  4217 ** If P5 is not zero, the check is done on the auxiliary database
  4218 ** file, not the main database file.
  4219 **
  4220 ** This opcode is used to implement the integrity_check pragma.
  4221 */
  4222 case OP_IntegrityCk: {
  4223   int nRoot;      /* Number of tables to check.  (Number of root pages.) */
  4224   int *aRoot;     /* Array of rootpage numbers for tables to be checked */
  4225   int j;          /* Loop counter */
  4226   int nErr;       /* Number of errors reported */
  4227   char *z;        /* Text of the error report */
  4228   Mem *pnErr;     /* Register keeping track of errors remaining */
  4229   
  4230   nRoot = pOp->p2;
  4231   assert( nRoot>0 );
  4232   aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
  4233   if( aRoot==0 ) goto no_mem;
  4234   assert( pOp->p3>0 && pOp->p3<=p->nMem );
  4235   pnErr = &p->aMem[pOp->p3];
  4236   assert( (pnErr->flags & MEM_Int)!=0 );
  4237   assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
  4238   pIn1 = &p->aMem[pOp->p1];
  4239   for(j=0; j<nRoot; j++){
  4240     aRoot[j] = sqlite3VdbeIntValue(&pIn1[j]);
  4241   }
  4242   aRoot[j] = 0;
  4243   assert( pOp->p5<db->nDb );
  4244   assert( (p->btreeMask & (1<<pOp->p5))!=0 );
  4245   z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
  4246                                  pnErr->u.i, &nErr);
  4247   sqlite3DbFree(db, aRoot);
  4248   pnErr->u.i -= nErr;
  4249   sqlite3VdbeMemSetNull(pIn1);
  4250   if( nErr==0 ){
  4251     assert( z==0 );
  4252   }else if( z==0 ){
  4253     goto no_mem;
  4254   }else{
  4255     sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
  4256   }
  4257   UPDATE_MAX_BLOBSIZE(pIn1);
  4258   sqlite3VdbeChangeEncoding(pIn1, encoding);
  4259   break;
  4260 }
  4261 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  4262 
  4263 /* Opcode: FifoWrite P1 * * * *
  4264 **
  4265 ** Write the integer from register P1 into the Fifo.
  4266 */
  4267 case OP_FifoWrite: {        /* in1 */
  4268   p->sFifo.db = db;
  4269   if( sqlite3VdbeFifoPush(&p->sFifo, sqlite3VdbeIntValue(pIn1))==SQLITE_NOMEM ){
  4270     goto no_mem;
  4271   }
  4272   break;
  4273 }
  4274 
  4275 /* Opcode: FifoRead P1 P2 * * *
  4276 **
  4277 ** Attempt to read a single integer from the Fifo.  Store that
  4278 ** integer in register P1.
  4279 ** 
  4280 ** If the Fifo is empty jump to P2.
  4281 */
  4282 case OP_FifoRead: {         /* jump */
  4283   CHECK_FOR_INTERRUPT;
  4284   assert( pOp->p1>0 && pOp->p1<=p->nMem );
  4285   pOut = &p->aMem[pOp->p1];
  4286   MemSetTypeFlag(pOut, MEM_Int);
  4287   if( sqlite3VdbeFifoPop(&p->sFifo, &pOut->u.i)==SQLITE_DONE ){
  4288     pc = pOp->p2 - 1;
  4289   }
  4290   break;
  4291 }
  4292 
  4293 #ifndef SQLITE_OMIT_TRIGGER
  4294 /* Opcode: ContextPush * * * 
  4295 **
  4296 ** Save the current Vdbe context such that it can be restored by a ContextPop
  4297 ** opcode. The context stores the last insert row id, the last statement change
  4298 ** count, and the current statement change count.
  4299 */
  4300 case OP_ContextPush: {
  4301   int i = p->contextStackTop++;
  4302   Context *pContext;
  4303 
  4304   assert( i>=0 );
  4305   /* FIX ME: This should be allocated as part of the vdbe at compile-time */
  4306   if( i>=p->contextStackDepth ){
  4307     p->contextStackDepth = i+1;
  4308     p->contextStack = sqlite3DbReallocOrFree(db, p->contextStack,
  4309                                           sizeof(Context)*(i+1));
  4310     if( p->contextStack==0 ) goto no_mem;
  4311   }
  4312   pContext = &p->contextStack[i];
  4313   pContext->lastRowid = db->lastRowid;
  4314   pContext->nChange = p->nChange;
  4315   pContext->sFifo = p->sFifo;
  4316   sqlite3VdbeFifoInit(&p->sFifo, db);
  4317   break;
  4318 }
  4319 
  4320 /* Opcode: ContextPop * * * 
  4321 **
  4322 ** Restore the Vdbe context to the state it was in when contextPush was last
  4323 ** executed. The context stores the last insert row id, the last statement
  4324 ** change count, and the current statement change count.
  4325 */
  4326 case OP_ContextPop: {
  4327   Context *pContext = &p->contextStack[--p->contextStackTop];
  4328   assert( p->contextStackTop>=0 );
  4329   db->lastRowid = pContext->lastRowid;
  4330   p->nChange = pContext->nChange;
  4331   sqlite3VdbeFifoClear(&p->sFifo);
  4332   p->sFifo = pContext->sFifo;
  4333   break;
  4334 }
  4335 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
  4336 
  4337 #ifndef SQLITE_OMIT_AUTOINCREMENT
  4338 /* Opcode: MemMax P1 P2 * * *
  4339 **
  4340 ** Set the value of register P1 to the maximum of its current value
  4341 ** and the value in register P2.
  4342 **
  4343 ** This instruction throws an error if the memory cell is not initially
  4344 ** an integer.
  4345 */
  4346 case OP_MemMax: {        /* in1, in2 */
  4347   sqlite3VdbeMemIntegerify(pIn1);
  4348   sqlite3VdbeMemIntegerify(pIn2);
  4349   if( pIn1->u.i<pIn2->u.i){
  4350     pIn1->u.i = pIn2->u.i;
  4351   }
  4352   break;
  4353 }
  4354 #endif /* SQLITE_OMIT_AUTOINCREMENT */
  4355 
  4356 /* Opcode: IfPos P1 P2 * * *
  4357 **
  4358 ** If the value of register P1 is 1 or greater, jump to P2.
  4359 **
  4360 ** It is illegal to use this instruction on a register that does
  4361 ** not contain an integer.  An assertion fault will result if you try.
  4362 */
  4363 case OP_IfPos: {        /* jump, in1 */
  4364   assert( pIn1->flags&MEM_Int );
  4365   if( pIn1->u.i>0 ){
  4366      pc = pOp->p2 - 1;
  4367   }
  4368   break;
  4369 }
  4370 
  4371 /* Opcode: IfNeg P1 P2 * * *
  4372 **
  4373 ** If the value of register P1 is less than zero, jump to P2. 
  4374 **
  4375 ** It is illegal to use this instruction on a register that does
  4376 ** not contain an integer.  An assertion fault will result if you try.
  4377 */
  4378 case OP_IfNeg: {        /* jump, in1 */
  4379   assert( pIn1->flags&MEM_Int );
  4380   if( pIn1->u.i<0 ){
  4381      pc = pOp->p2 - 1;
  4382   }
  4383   break;
  4384 }
  4385 
  4386 /* Opcode: IfZero P1 P2 * * *
  4387 **
  4388 ** If the value of register P1 is exactly 0, jump to P2. 
  4389 **
  4390 ** It is illegal to use this instruction on a register that does
  4391 ** not contain an integer.  An assertion fault will result if you try.
  4392 */
  4393 case OP_IfZero: {        /* jump, in1 */
  4394   assert( pIn1->flags&MEM_Int );
  4395   if( pIn1->u.i==0 ){
  4396      pc = pOp->p2 - 1;
  4397   }
  4398   break;
  4399 }
  4400 
  4401 /* Opcode: AggStep * P2 P3 P4 P5
  4402 **
  4403 ** Execute the step function for an aggregate.  The
  4404 ** function has P5 arguments.   P4 is a pointer to the FuncDef
  4405 ** structure that specifies the function.  Use register
  4406 ** P3 as the accumulator.
  4407 **
  4408 ** The P5 arguments are taken from register P2 and its
  4409 ** successors.
  4410 */
  4411 case OP_AggStep: {
  4412   int n = pOp->p5;
  4413   int i;
  4414   Mem *pMem, *pRec;
  4415   sqlite3_context ctx;
  4416   sqlite3_value **apVal;
  4417 
  4418   assert( n>=0 );
  4419   pRec = &p->aMem[pOp->p2];
  4420   apVal = p->apArg;
  4421   assert( apVal || n==0 );
  4422   for(i=0; i<n; i++, pRec++){
  4423     apVal[i] = pRec;
  4424     storeTypeInfo(pRec, encoding);
  4425   }
  4426   ctx.pFunc = pOp->p4.pFunc;
  4427   assert( pOp->p3>0 && pOp->p3<=p->nMem );
  4428   ctx.pMem = pMem = &p->aMem[pOp->p3];
  4429   pMem->n++;
  4430   ctx.s.flags = MEM_Null;
  4431   ctx.s.z = 0;
  4432   ctx.s.zMalloc = 0;
  4433   ctx.s.xDel = 0;
  4434   ctx.s.db = db;
  4435   ctx.isError = 0;
  4436   ctx.pColl = 0;
  4437   if( ctx.pFunc->needCollSeq ){
  4438     assert( pOp>p->aOp );
  4439     assert( pOp[-1].p4type==P4_COLLSEQ );
  4440     assert( pOp[-1].opcode==OP_CollSeq );
  4441     ctx.pColl = pOp[-1].p4.pColl;
  4442   }
  4443   (ctx.pFunc->xStep)(&ctx, n, apVal);
  4444   if( ctx.isError ){
  4445     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
  4446     rc = ctx.isError;
  4447   }
  4448   sqlite3VdbeMemRelease(&ctx.s);
  4449   break;
  4450 }
  4451 
  4452 /* Opcode: AggFinal P1 P2 * P4 *
  4453 **
  4454 ** Execute the finalizer function for an aggregate.  P1 is
  4455 ** the memory location that is the accumulator for the aggregate.
  4456 **
  4457 ** P2 is the number of arguments that the step function takes and
  4458 ** P4 is a pointer to the FuncDef for this function.  The P2
  4459 ** argument is not used by this opcode.  It is only there to disambiguate
  4460 ** functions that can take varying numbers of arguments.  The
  4461 ** P4 argument is only needed for the degenerate case where
  4462 ** the step function was not previously called.
  4463 */
  4464 case OP_AggFinal: {
  4465   Mem *pMem;
  4466   assert( pOp->p1>0 && pOp->p1<=p->nMem );
  4467   pMem = &p->aMem[pOp->p1];
  4468   assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
  4469   rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
  4470   if( rc==SQLITE_ERROR ){
  4471     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
  4472   }
  4473   sqlite3VdbeChangeEncoding(pMem, encoding);
  4474   UPDATE_MAX_BLOBSIZE(pMem);
  4475   if( sqlite3VdbeMemTooBig(pMem) ){
  4476     goto too_big;
  4477   }
  4478   break;
  4479 }
  4480 
  4481 
  4482 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
  4483 /* Opcode: Vacuum * * * * *
  4484 **
  4485 ** Vacuum the entire database.  This opcode will cause other virtual
  4486 ** machines to be created and run.  It may not be called from within
  4487 ** a transaction.
  4488 */
  4489 case OP_Vacuum: {
  4490   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse; 
  4491   rc = sqlite3RunVacuum(&p->zErrMsg, db);
  4492   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4493   break;
  4494 }
  4495 #endif
  4496 
  4497 #if !defined(SQLITE_OMIT_AUTOVACUUM)
  4498 /* Opcode: IncrVacuum P1 P2 * * *
  4499 **
  4500 ** Perform a single step of the incremental vacuum procedure on
  4501 ** the P1 database. If the vacuum has finished, jump to instruction
  4502 ** P2. Otherwise, fall through to the next instruction.
  4503 */
  4504 case OP_IncrVacuum: {        /* jump */
  4505   Btree *pBt;
  4506 
  4507   assert( pOp->p1>=0 && pOp->p1<db->nDb );
  4508   assert( (p->btreeMask & (1<<pOp->p1))!=0 );
  4509   pBt = db->aDb[pOp->p1].pBt;
  4510   rc = sqlite3BtreeIncrVacuum(pBt);
  4511   if( rc==SQLITE_DONE ){
  4512     pc = pOp->p2 - 1;
  4513     rc = SQLITE_OK;
  4514   }
  4515   break;
  4516 }
  4517 #endif
  4518 
  4519 /* Opcode: Expire P1 * * * *
  4520 **
  4521 ** Cause precompiled statements to become expired. An expired statement
  4522 ** fails with an error code of SQLITE_SCHEMA if it is ever executed 
  4523 ** (via sqlite3_step()).
  4524 ** 
  4525 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
  4526 ** then only the currently executing statement is affected. 
  4527 */
  4528 case OP_Expire: {
  4529   if( !pOp->p1 ){
  4530     sqlite3ExpirePreparedStatements(db);
  4531   }else{
  4532     p->expired = 1;
  4533   }
  4534   break;
  4535 }
  4536 
  4537 #ifndef SQLITE_OMIT_SHARED_CACHE
  4538 /* Opcode: TableLock P1 P2 P3 P4 *
  4539 **
  4540 ** Obtain a lock on a particular table. This instruction is only used when
  4541 ** the shared-cache feature is enabled. 
  4542 **
  4543 ** If P1 is  the index of the database in sqlite3.aDb[] of the database
  4544 ** on which the lock is acquired.  A readlock is obtained if P3==0 or
  4545 ** a write lock if P3==1.
  4546 **
  4547 ** P2 contains the root-page of the table to lock.
  4548 **
  4549 ** P4 contains a pointer to the name of the table being locked. This is only
  4550 ** used to generate an error message if the lock cannot be obtained.
  4551 */
  4552 case OP_TableLock: {
  4553   int p1 = pOp->p1; 
  4554   u8 isWriteLock = pOp->p3;
  4555   assert( p1>=0 && p1<db->nDb );
  4556   assert( (p->btreeMask & (1<<p1))!=0 );
  4557   assert( isWriteLock==0 || isWriteLock==1 );
  4558   rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
  4559   if( rc==SQLITE_LOCKED ){
  4560     const char *z = pOp->p4.z;
  4561     sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
  4562   }
  4563   break;
  4564 }
  4565 #endif /* SQLITE_OMIT_SHARED_CACHE */
  4566 
  4567 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4568 /* Opcode: VBegin * * * P4 *
  4569 **
  4570 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 
  4571 ** xBegin method for that table.
  4572 **
  4573 ** Also, whether or not P4 is set, check that this is not being called from
  4574 ** within a callback to a virtual table xSync() method. If it is, set the
  4575 ** error code to SQLITE_LOCKED.
  4576 */
  4577 case OP_VBegin: {
  4578   sqlite3_vtab *pVtab = pOp->p4.pVtab;
  4579   rc = sqlite3VtabBegin(db, pVtab);
  4580   if( pVtab ){
  4581     sqlite3DbFree(db, p->zErrMsg);
  4582     p->zErrMsg = pVtab->zErrMsg;
  4583     pVtab->zErrMsg = 0;
  4584   }
  4585   break;
  4586 }
  4587 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4588 
  4589 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4590 /* Opcode: VCreate P1 * * P4 *
  4591 **
  4592 ** P4 is the name of a virtual table in database P1. Call the xCreate method
  4593 ** for that table.
  4594 */
  4595 case OP_VCreate: {
  4596   rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
  4597   break;
  4598 }
  4599 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4600 
  4601 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4602 /* Opcode: VDestroy P1 * * P4 *
  4603 **
  4604 ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
  4605 ** of that table.
  4606 */
  4607 case OP_VDestroy: {
  4608   p->inVtabMethod = 2;
  4609   rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
  4610   p->inVtabMethod = 0;
  4611   break;
  4612 }
  4613 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4614 
  4615 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4616 /* Opcode: VOpen P1 * * P4 *
  4617 **
  4618 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
  4619 ** P1 is a cursor number.  This opcode opens a cursor to the virtual
  4620 ** table and stores that cursor in P1.
  4621 */
  4622 case OP_VOpen: {
  4623   Cursor *pCur = 0;
  4624   sqlite3_vtab_cursor *pVtabCursor = 0;
  4625 
  4626   sqlite3_vtab *pVtab = pOp->p4.pVtab;
  4627   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  4628 
  4629   assert(pVtab && pModule);
  4630   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4631   rc = pModule->xOpen(pVtab, &pVtabCursor);
  4632   sqlite3DbFree(db, p->zErrMsg);
  4633   p->zErrMsg = pVtab->zErrMsg;
  4634   pVtab->zErrMsg = 0;
  4635   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4636   if( SQLITE_OK==rc ){
  4637     /* Initialize sqlite3_vtab_cursor base class */
  4638     pVtabCursor->pVtab = pVtab;
  4639 
  4640     /* Initialise vdbe cursor object */
  4641     pCur = allocateCursor(p, pOp->p1, &pOp[-1], -1, 0);
  4642     if( pCur ){
  4643       pCur->pVtabCursor = pVtabCursor;
  4644       pCur->pModule = pVtabCursor->pVtab->pModule;
  4645     }else{
  4646       db->mallocFailed = 1;
  4647       pModule->xClose(pVtabCursor);
  4648     }
  4649   }
  4650   break;
  4651 }
  4652 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4653 
  4654 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4655 /* Opcode: VFilter P1 P2 P3 P4 *
  4656 **
  4657 ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
  4658 ** the filtered result set is empty.
  4659 **
  4660 ** P4 is either NULL or a string that was generated by the xBestIndex
  4661 ** method of the module.  The interpretation of the P4 string is left
  4662 ** to the module implementation.
  4663 **
  4664 ** This opcode invokes the xFilter method on the virtual table specified
  4665 ** by P1.  The integer query plan parameter to xFilter is stored in register
  4666 ** P3. Register P3+1 stores the argc parameter to be passed to the
  4667 ** xFilter method. Registers P3+2..P3+1+argc are the argc
  4668 ** additional parameters which are passed to
  4669 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
  4670 **
  4671 ** A jump is made to P2 if the result set after filtering would be empty.
  4672 */
  4673 case OP_VFilter: {   /* jump */
  4674   int nArg;
  4675   int iQuery;
  4676   const sqlite3_module *pModule;
  4677   Mem *pQuery = &p->aMem[pOp->p3];
  4678   Mem *pArgc = &pQuery[1];
  4679   sqlite3_vtab_cursor *pVtabCursor;
  4680   sqlite3_vtab *pVtab;
  4681 
  4682   Cursor *pCur = p->apCsr[pOp->p1];
  4683 
  4684   REGISTER_TRACE(pOp->p3, pQuery);
  4685   assert( pCur->pVtabCursor );
  4686   pVtabCursor = pCur->pVtabCursor;
  4687   pVtab = pVtabCursor->pVtab;
  4688   pModule = pVtab->pModule;
  4689 
  4690   /* Grab the index number and argc parameters */
  4691   assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
  4692   nArg = pArgc->u.i;
  4693   iQuery = pQuery->u.i;
  4694 
  4695   /* Invoke the xFilter method */
  4696   {
  4697     int res = 0;
  4698     int i;
  4699     Mem **apArg = p->apArg;
  4700     for(i = 0; i<nArg; i++){
  4701       apArg[i] = &pArgc[i+1];
  4702       storeTypeInfo(apArg[i], 0);
  4703     }
  4704 
  4705     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4706     sqlite3VtabLock(pVtab);
  4707     p->inVtabMethod = 1;
  4708     rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
  4709     p->inVtabMethod = 0;
  4710     sqlite3DbFree(db, p->zErrMsg);
  4711     p->zErrMsg = pVtab->zErrMsg;
  4712     pVtab->zErrMsg = 0;
  4713     sqlite3VtabUnlock(db, pVtab);
  4714     if( rc==SQLITE_OK ){
  4715       res = pModule->xEof(pVtabCursor);
  4716     }
  4717     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4718 
  4719     if( res ){
  4720       pc = pOp->p2 - 1;
  4721     }
  4722   }
  4723   pCur->nullRow = 0;
  4724 
  4725   break;
  4726 }
  4727 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4728 
  4729 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4730 /* Opcode: VRowid P1 P2 * * *
  4731 **
  4732 ** Store into register P2  the rowid of
  4733 ** the virtual-table that the P1 cursor is pointing to.
  4734 */
  4735 case OP_VRowid: {             /* out2-prerelease */
  4736   sqlite3_vtab *pVtab;
  4737   const sqlite3_module *pModule;
  4738   sqlite_int64 iRow;
  4739   Cursor *pCur = p->apCsr[pOp->p1];
  4740 
  4741   assert( pCur->pVtabCursor );
  4742   if( pCur->nullRow ){
  4743     break;
  4744   }
  4745   pVtab = pCur->pVtabCursor->pVtab;
  4746   pModule = pVtab->pModule;
  4747   assert( pModule->xRowid );
  4748   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4749   rc = pModule->xRowid(pCur->pVtabCursor, &iRow);
  4750   sqlite3DbFree(db, p->zErrMsg);
  4751   p->zErrMsg = pVtab->zErrMsg;
  4752   pVtab->zErrMsg = 0;
  4753   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4754   MemSetTypeFlag(pOut, MEM_Int);
  4755   pOut->u.i = iRow;
  4756   break;
  4757 }
  4758 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4759 
  4760 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4761 /* Opcode: VColumn P1 P2 P3 * *
  4762 **
  4763 ** Store the value of the P2-th column of
  4764 ** the row of the virtual-table that the 
  4765 ** P1 cursor is pointing to into register P3.
  4766 */
  4767 case OP_VColumn: {
  4768   sqlite3_vtab *pVtab;
  4769   const sqlite3_module *pModule;
  4770   Mem *pDest;
  4771   sqlite3_context sContext;
  4772 
  4773   Cursor *pCur = p->apCsr[pOp->p1];
  4774   assert( pCur->pVtabCursor );
  4775   assert( pOp->p3>0 && pOp->p3<=p->nMem );
  4776   pDest = &p->aMem[pOp->p3];
  4777   if( pCur->nullRow ){
  4778     sqlite3VdbeMemSetNull(pDest);
  4779     break;
  4780   }
  4781   pVtab = pCur->pVtabCursor->pVtab;
  4782   pModule = pVtab->pModule;
  4783   assert( pModule->xColumn );
  4784   memset(&sContext, 0, sizeof(sContext));
  4785 
  4786   /* The output cell may already have a buffer allocated. Move
  4787   ** the current contents to sContext.s so in case the user-function 
  4788   ** can use the already allocated buffer instead of allocating a 
  4789   ** new one.
  4790   */
  4791   sqlite3VdbeMemMove(&sContext.s, pDest);
  4792   MemSetTypeFlag(&sContext.s, MEM_Null);
  4793 
  4794   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4795   rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  4796   sqlite3DbFree(db, p->zErrMsg);
  4797   p->zErrMsg = pVtab->zErrMsg;
  4798   pVtab->zErrMsg = 0;
  4799 
  4800   /* Copy the result of the function to the P3 register. We
  4801   ** do this regardless of whether or not an error occured to ensure any
  4802   ** dynamic allocation in sContext.s (a Mem struct) is  released.
  4803   */
  4804   sqlite3VdbeChangeEncoding(&sContext.s, encoding);
  4805   REGISTER_TRACE(pOp->p3, pDest);
  4806   sqlite3VdbeMemMove(pDest, &sContext.s);
  4807   UPDATE_MAX_BLOBSIZE(pDest);
  4808 
  4809   if( sqlite3SafetyOn(db) ){
  4810     goto abort_due_to_misuse;
  4811   }
  4812   if( sqlite3VdbeMemTooBig(pDest) ){
  4813     goto too_big;
  4814   }
  4815   break;
  4816 }
  4817 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4818 
  4819 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4820 /* Opcode: VNext P1 P2 * * *
  4821 **
  4822 ** Advance virtual table P1 to the next row in its result set and
  4823 ** jump to instruction P2.  Or, if the virtual table has reached
  4824 ** the end of its result set, then fall through to the next instruction.
  4825 */
  4826 case OP_VNext: {   /* jump */
  4827   sqlite3_vtab *pVtab;
  4828   const sqlite3_module *pModule;
  4829   int res = 0;
  4830 
  4831   Cursor *pCur = p->apCsr[pOp->p1];
  4832   assert( pCur->pVtabCursor );
  4833   if( pCur->nullRow ){
  4834     break;
  4835   }
  4836   pVtab = pCur->pVtabCursor->pVtab;
  4837   pModule = pVtab->pModule;
  4838   assert( pModule->xNext );
  4839 
  4840   /* Invoke the xNext() method of the module. There is no way for the
  4841   ** underlying implementation to return an error if one occurs during
  4842   ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  4843   ** data is available) and the error code returned when xColumn or
  4844   ** some other method is next invoked on the save virtual table cursor.
  4845   */
  4846   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4847   sqlite3VtabLock(pVtab);
  4848   p->inVtabMethod = 1;
  4849   rc = pModule->xNext(pCur->pVtabCursor);
  4850   p->inVtabMethod = 0;
  4851   sqlite3DbFree(db, p->zErrMsg);
  4852   p->zErrMsg = pVtab->zErrMsg;
  4853   pVtab->zErrMsg = 0;
  4854   sqlite3VtabUnlock(db, pVtab);
  4855   if( rc==SQLITE_OK ){
  4856     res = pModule->xEof(pCur->pVtabCursor);
  4857   }
  4858   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4859 
  4860   if( !res ){
  4861     /* If there is data, jump to P2 */
  4862     pc = pOp->p2 - 1;
  4863   }
  4864   break;
  4865 }
  4866 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4867 
  4868 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4869 /* Opcode: VRename P1 * * P4 *
  4870 **
  4871 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
  4872 ** This opcode invokes the corresponding xRename method. The value
  4873 ** in register P1 is passed as the zName argument to the xRename method.
  4874 */
  4875 case OP_VRename: {
  4876   sqlite3_vtab *pVtab = pOp->p4.pVtab;
  4877   Mem *pName = &p->aMem[pOp->p1];
  4878   assert( pVtab->pModule->xRename );
  4879   REGISTER_TRACE(pOp->p1, pName);
  4880 
  4881   Stringify(pName, encoding);
  4882 
  4883   if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4884   sqlite3VtabLock(pVtab);
  4885   rc = pVtab->pModule->xRename(pVtab, pName->z);
  4886   sqlite3DbFree(db, p->zErrMsg);
  4887   p->zErrMsg = pVtab->zErrMsg;
  4888   pVtab->zErrMsg = 0;
  4889   sqlite3VtabUnlock(db, pVtab);
  4890   if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4891 
  4892   break;
  4893 }
  4894 #endif
  4895 
  4896 #ifndef SQLITE_OMIT_VIRTUALTABLE
  4897 /* Opcode: VUpdate P1 P2 P3 P4 *
  4898 **
  4899 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
  4900 ** This opcode invokes the corresponding xUpdate method. P2 values
  4901 ** are contiguous memory cells starting at P3 to pass to the xUpdate 
  4902 ** invocation. The value in register (P3+P2-1) corresponds to the 
  4903 ** p2th element of the argv array passed to xUpdate.
  4904 **
  4905 ** The xUpdate method will do a DELETE or an INSERT or both.
  4906 ** The argv[0] element (which corresponds to memory cell P3)
  4907 ** is the rowid of a row to delete.  If argv[0] is NULL then no 
  4908 ** deletion occurs.  The argv[1] element is the rowid of the new 
  4909 ** row.  This can be NULL to have the virtual table select the new 
  4910 ** rowid for itself.  The subsequent elements in the array are 
  4911 ** the values of columns in the new row.
  4912 **
  4913 ** If P2==1 then no insert is performed.  argv[0] is the rowid of
  4914 ** a row to delete.
  4915 **
  4916 ** P1 is a boolean flag. If it is set to true and the xUpdate call
  4917 ** is successful, then the value returned by sqlite3_last_insert_rowid() 
  4918 ** is set to the value of the rowid for the row just inserted.
  4919 */
  4920 case OP_VUpdate: {
  4921   sqlite3_vtab *pVtab = pOp->p4.pVtab;
  4922   sqlite3_module *pModule = (sqlite3_module *)pVtab->pModule;
  4923   int nArg = pOp->p2;
  4924   assert( pOp->p4type==P4_VTAB );
  4925   if( pModule->xUpdate==0 ){
  4926     sqlite3SetString(&p->zErrMsg, db, "read-only table");
  4927     rc = SQLITE_ERROR;
  4928   }else{
  4929     int i;
  4930     sqlite_int64 rowid;
  4931     Mem **apArg = p->apArg;
  4932     Mem *pX = &p->aMem[pOp->p3];
  4933     for(i=0; i<nArg; i++){
  4934       storeTypeInfo(pX, 0);
  4935       apArg[i] = pX;
  4936       pX++;
  4937     }
  4938     if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
  4939     sqlite3VtabLock(pVtab);
  4940     rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
  4941     sqlite3DbFree(db, p->zErrMsg);
  4942     p->zErrMsg = pVtab->zErrMsg;
  4943     pVtab->zErrMsg = 0;
  4944     sqlite3VtabUnlock(db, pVtab);
  4945     if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
  4946     if( pOp->p1 && rc==SQLITE_OK ){
  4947       assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
  4948       db->lastRowid = rowid;
  4949     }
  4950     p->nChange++;
  4951   }
  4952   break;
  4953 }
  4954 #endif /* SQLITE_OMIT_VIRTUALTABLE */
  4955 
  4956 #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
  4957 /* Opcode: Pagecount P1 P2 * * *
  4958 **
  4959 ** Write the current number of pages in database P1 to memory cell P2.
  4960 */
  4961 case OP_Pagecount: {            /* out2-prerelease */
  4962   int p1 = pOp->p1; 
  4963   int nPage;
  4964   Pager *pPager = sqlite3BtreePager(db->aDb[p1].pBt);
  4965 
  4966   rc = sqlite3PagerPagecount(pPager, &nPage);
  4967   if( rc==SQLITE_OK ){
  4968     pOut->flags = MEM_Int;
  4969     pOut->u.i = nPage;
  4970   }
  4971   break;
  4972 }
  4973 #endif
  4974 
  4975 #ifndef SQLITE_OMIT_TRACE
  4976 /* Opcode: Trace * * * P4 *
  4977 **
  4978 ** If tracing is enabled (by the sqlite3_trace()) interface, then
  4979 ** the UTF-8 string contained in P4 is emitted on the trace callback.
  4980 */
  4981 case OP_Trace: {
  4982   if( pOp->p4.z ){
  4983     if( db->xTrace ){
  4984       db->xTrace(db->pTraceArg, pOp->p4.z);
  4985     }
  4986 #ifdef SQLITE_DEBUG
  4987     if( (db->flags & SQLITE_SqlTrace)!=0 ){
  4988       sqlite3DebugPrintf("SQL-trace: %s\n", pOp->p4.z);
  4989     }
  4990 #endif /* SQLITE_DEBUG */
  4991   }
  4992   break;
  4993 }
  4994 #endif
  4995 
  4996 
  4997 /* Opcode: Noop * * * * *
  4998 **
  4999 ** Do nothing.  This instruction is often useful as a jump
  5000 ** destination.
  5001 */
  5002 /*
  5003 ** The magic Explain opcode are only inserted when explain==2 (which
  5004 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
  5005 ** This opcode records information from the optimizer.  It is the
  5006 ** the same as a no-op.  This opcodesnever appears in a real VM program.
  5007 */
  5008 default: {          /* This is really OP_Noop and OP_Explain */
  5009   break;
  5010 }
  5011 
  5012 /*****************************************************************************
  5013 ** The cases of the switch statement above this line should all be indented
  5014 ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
  5015 ** readability.  From this point on down, the normal indentation rules are
  5016 ** restored.
  5017 *****************************************************************************/
  5018     }
  5019 
  5020 #ifdef VDBE_PROFILE
  5021     {
  5022       u64 elapsed = sqlite3Hwtime() - start;
  5023       pOp->cycles += elapsed;
  5024       pOp->cnt++;
  5025 #if 0
  5026         fprintf(stdout, "%10llu ", elapsed);
  5027         sqlite3VdbePrintOp(stdout, origPc, &p->aOp[origPc]);
  5028 #endif
  5029     }
  5030 #endif
  5031 
  5032     /* The following code adds nothing to the actual functionality
  5033     ** of the program.  It is only here for testing and debugging.
  5034     ** On the other hand, it does burn CPU cycles every time through
  5035     ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
  5036     */
  5037 #ifndef NDEBUG
  5038     assert( pc>=-1 && pc<p->nOp );
  5039 
  5040 #ifdef SQLITE_DEBUG
  5041     if( p->trace ){
  5042       if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
  5043       if( opProperty & OPFLG_OUT2_PRERELEASE ){
  5044         registerTrace(p->trace, pOp->p2, pOut);
  5045       }
  5046       if( opProperty & OPFLG_OUT3 ){
  5047         registerTrace(p->trace, pOp->p3, pOut);
  5048       }
  5049     }
  5050 #endif  /* SQLITE_DEBUG */
  5051 #endif  /* NDEBUG */
  5052   }  /* The end of the for(;;) loop the loops through opcodes */
  5053 
  5054   /* If we reach this point, it means that execution is finished with
  5055   ** an error of some kind.
  5056   */
  5057 vdbe_error_halt:
  5058   assert( rc );
  5059   p->rc = rc;
  5060   sqlite3VdbeHalt(p);
  5061   if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
  5062   rc = SQLITE_ERROR;
  5063 
  5064   /* This is the only way out of this procedure.  We have to
  5065   ** release the mutexes on btrees that were acquired at the
  5066   ** top. */
  5067 vdbe_return:
  5068   sqlite3BtreeMutexArrayLeave(&p->aMutex);
  5069   return rc;
  5070 
  5071   /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
  5072   ** is encountered.
  5073   */
  5074 too_big:
  5075   sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
  5076   rc = SQLITE_TOOBIG;
  5077   goto vdbe_error_halt;
  5078 
  5079   /* Jump to here if a malloc() fails.
  5080   */
  5081 no_mem:
  5082   db->mallocFailed = 1;
  5083   sqlite3SetString(&p->zErrMsg, db, "out of memory");
  5084   rc = SQLITE_NOMEM;
  5085   goto vdbe_error_halt;
  5086 
  5087   /* Jump to here for an SQLITE_MISUSE error.
  5088   */
  5089 abort_due_to_misuse:
  5090   rc = SQLITE_MISUSE;
  5091   /* Fall thru into abort_due_to_error */
  5092 
  5093   /* Jump to here for any other kind of fatal error.  The "rc" variable
  5094   ** should hold the error number.
  5095   */
  5096 abort_due_to_error:
  5097   assert( p->zErrMsg==0 );
  5098   if( db->mallocFailed ) rc = SQLITE_NOMEM;
  5099   if( rc!=SQLITE_IOERR_NOMEM ){
  5100     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
  5101   }
  5102   goto vdbe_error_halt;
  5103 
  5104   /* Jump to here if the sqlite3_interrupt() API sets the interrupt
  5105   ** flag.
  5106   */
  5107 abort_due_to_interrupt:
  5108   assert( db->u1.isInterrupted );
  5109   rc = SQLITE_INTERRUPT;
  5110   p->rc = rc;
  5111   sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
  5112   goto vdbe_error_halt;
  5113 }