os/persistentdata/persistentstorage/sqlite3api/SQLite/utf.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2004 April 13
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains routines used to translate between UTF-8, 
    13 ** UTF-16, UTF-16BE, and UTF-16LE.
    14 **
    15 ** $Id: utf.c,v 1.65 2008/08/12 15:04:59 danielk1977 Exp $
    16 **
    17 ** Notes on UTF-8:
    18 **
    19 **   Byte-0    Byte-1    Byte-2    Byte-3    Value
    20 **  0xxxxxxx                                 00000000 00000000 0xxxxxxx
    21 **  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
    22 **  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
    23 **  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
    24 **
    25 **
    26 ** Notes on UTF-16:  (with wwww+1==uuuuu)
    27 **
    28 **      Word-0               Word-1          Value
    29 **  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
    30 **  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
    31 **
    32 **
    33 ** BOM or Byte Order Mark:
    34 **     0xff 0xfe   little-endian utf-16 follows
    35 **     0xfe 0xff   big-endian utf-16 follows
    36 **
    37 */
    38 #include "sqliteInt.h"
    39 #include <assert.h>
    40 #include "vdbeInt.h"
    41 
    42 /*
    43 ** The following constant value is used by the SQLITE_BIGENDIAN and
    44 ** SQLITE_LITTLEENDIAN macros.
    45 */
    46 const int sqlite3one = 1;
    47 
    48 /*
    49 ** This lookup table is used to help decode the first byte of
    50 ** a multi-byte UTF8 character.
    51 */
    52 static const unsigned char sqlite3UtfTrans1[] = {
    53   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    54   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    55   0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    56   0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    57   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    58   0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    59   0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    60   0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
    61 };
    62 
    63 
    64 #define WRITE_UTF8(zOut, c) {                          \
    65   if( c<0x00080 ){                                     \
    66     *zOut++ = (c&0xFF);                                \
    67   }                                                    \
    68   else if( c<0x00800 ){                                \
    69     *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
    70     *zOut++ = 0x80 + (c & 0x3F);                       \
    71   }                                                    \
    72   else if( c<0x10000 ){                                \
    73     *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
    74     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
    75     *zOut++ = 0x80 + (c & 0x3F);                       \
    76   }else{                                               \
    77     *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
    78     *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
    79     *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
    80     *zOut++ = 0x80 + (c & 0x3F);                       \
    81   }                                                    \
    82 }
    83 
    84 #define WRITE_UTF16LE(zOut, c) {                                \
    85   if( c<=0xFFFF ){                                              \
    86     *zOut++ = (c&0x00FF);                                       \
    87     *zOut++ = ((c>>8)&0x00FF);                                  \
    88   }else{                                                        \
    89     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
    90     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
    91     *zOut++ = (c&0x00FF);                                       \
    92     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
    93   }                                                             \
    94 }
    95 
    96 #define WRITE_UTF16BE(zOut, c) {                                \
    97   if( c<=0xFFFF ){                                              \
    98     *zOut++ = ((c>>8)&0x00FF);                                  \
    99     *zOut++ = (c&0x00FF);                                       \
   100   }else{                                                        \
   101     *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
   102     *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
   103     *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
   104     *zOut++ = (c&0x00FF);                                       \
   105   }                                                             \
   106 }
   107 
   108 #define READ_UTF16LE(zIn, c){                                         \
   109   c = (*zIn++);                                                       \
   110   c += ((*zIn++)<<8);                                                 \
   111   if( c>=0xD800 && c<0xE000 ){                                       \
   112     int c2 = (*zIn++);                                                \
   113     c2 += ((*zIn++)<<8);                                              \
   114     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
   115     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
   116   }                                                                   \
   117 }
   118 
   119 #define READ_UTF16BE(zIn, c){                                         \
   120   c = ((*zIn++)<<8);                                                  \
   121   c += (*zIn++);                                                      \
   122   if( c>=0xD800 && c<0xE000 ){                                       \
   123     int c2 = ((*zIn++)<<8);                                           \
   124     c2 += (*zIn++);                                                   \
   125     c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
   126     if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
   127   }                                                                   \
   128 }
   129 
   130 /*
   131 ** Translate a single UTF-8 character.  Return the unicode value.
   132 **
   133 ** During translation, assume that the byte that zTerm points
   134 ** is a 0x00.
   135 **
   136 ** Write a pointer to the next unread byte back into *pzNext.
   137 **
   138 ** Notes On Invalid UTF-8:
   139 **
   140 **  *  This routine never allows a 7-bit character (0x00 through 0x7f) to
   141 **     be encoded as a multi-byte character.  Any multi-byte character that
   142 **     attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
   143 **
   144 **  *  This routine never allows a UTF16 surrogate value to be encoded.
   145 **     If a multi-byte character attempts to encode a value between
   146 **     0xd800 and 0xe000 then it is rendered as 0xfffd.
   147 **
   148 **  *  Bytes in the range of 0x80 through 0xbf which occur as the first
   149 **     byte of a character are interpreted as single-byte characters
   150 **     and rendered as themselves even though they are technically
   151 **     invalid characters.
   152 **
   153 **  *  This routine accepts an infinite number of different UTF8 encodings
   154 **     for unicode values 0x80 and greater.  It do not change over-length
   155 **     encodings to 0xfffd as some systems recommend.
   156 */
   157 #define READ_UTF8(zIn, zTerm, c)                           \
   158   c = *(zIn++);                                            \
   159   if( c>=0xc0 ){                                           \
   160     c = sqlite3UtfTrans1[c-0xc0];                          \
   161     while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
   162       c = (c<<6) + (0x3f & *(zIn++));                      \
   163     }                                                      \
   164     if( c<0x80                                             \
   165         || (c&0xFFFFF800)==0xD800                          \
   166         || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
   167   }
   168 int sqlite3Utf8Read(
   169   const unsigned char *z,         /* First byte of UTF-8 character */
   170   const unsigned char *zTerm,     /* Pretend this byte is 0x00 */
   171   const unsigned char **pzNext    /* Write first byte past UTF-8 char here */
   172 ){
   173   int c;
   174   READ_UTF8(z, zTerm, c);
   175   *pzNext = z;
   176   return c;
   177 }
   178 
   179 
   180 
   181 
   182 /*
   183 ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
   184 ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
   185 */ 
   186 /* #define TRANSLATE_TRACE 1 */
   187 
   188 #ifndef SQLITE_OMIT_UTF16
   189 /*
   190 ** This routine transforms the internal text encoding used by pMem to
   191 ** desiredEnc. It is an error if the string is already of the desired
   192 ** encoding, or if *pMem does not contain a string value.
   193 */
   194 int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
   195   int len;                    /* Maximum length of output string in bytes */
   196   unsigned char *zOut;                  /* Output buffer */
   197   unsigned char *zIn;                   /* Input iterator */
   198   unsigned char *zTerm;                 /* End of input */
   199   unsigned char *z;                     /* Output iterator */
   200   unsigned int c;
   201 
   202   assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   203   assert( pMem->flags&MEM_Str );
   204   assert( pMem->enc!=desiredEnc );
   205   assert( pMem->enc!=0 );
   206   assert( pMem->n>=0 );
   207 
   208 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
   209   {
   210     char zBuf[100];
   211     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
   212     fprintf(stderr, "INPUT:  %s\n", zBuf);
   213   }
   214 #endif
   215 
   216   /* If the translation is between UTF-16 little and big endian, then 
   217   ** all that is required is to swap the byte order. This case is handled
   218   ** differently from the others.
   219   */
   220   if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
   221     u8 temp;
   222     int rc;
   223     rc = sqlite3VdbeMemMakeWriteable(pMem);
   224     if( rc!=SQLITE_OK ){
   225       assert( rc==SQLITE_NOMEM );
   226       return SQLITE_NOMEM;
   227     }
   228     zIn = (u8*)pMem->z;
   229     zTerm = &zIn[pMem->n];
   230     while( zIn<zTerm ){
   231       temp = *zIn;
   232       *zIn = *(zIn+1);
   233       zIn++;
   234       *zIn++ = temp;
   235     }
   236     pMem->enc = desiredEnc;
   237     goto translate_out;
   238   }
   239 
   240   /* Set len to the maximum number of bytes required in the output buffer. */
   241   if( desiredEnc==SQLITE_UTF8 ){
   242     /* When converting from UTF-16, the maximum growth results from
   243     ** translating a 2-byte character to a 4-byte UTF-8 character.
   244     ** A single byte is required for the output string
   245     ** nul-terminator.
   246     */
   247     len = pMem->n * 2 + 1;
   248   }else{
   249     /* When converting from UTF-8 to UTF-16 the maximum growth is caused
   250     ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
   251     ** character. Two bytes are required in the output buffer for the
   252     ** nul-terminator.
   253     */
   254     len = pMem->n * 2 + 2;
   255   }
   256 
   257   /* Set zIn to point at the start of the input buffer and zTerm to point 1
   258   ** byte past the end.
   259   **
   260   ** Variable zOut is set to point at the output buffer, space obtained
   261   ** from sqlite3_malloc().
   262   */
   263   zIn = (u8*)pMem->z;
   264   zTerm = &zIn[pMem->n];
   265   zOut = sqlite3DbMallocRaw(pMem->db, len);
   266   if( !zOut ){
   267     return SQLITE_NOMEM;
   268   }
   269   z = zOut;
   270 
   271   if( pMem->enc==SQLITE_UTF8 ){
   272     if( desiredEnc==SQLITE_UTF16LE ){
   273       /* UTF-8 -> UTF-16 Little-endian */
   274       while( zIn<zTerm ){
   275         /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
   276         READ_UTF8(zIn, zTerm, c);
   277         WRITE_UTF16LE(z, c);
   278       }
   279     }else{
   280       assert( desiredEnc==SQLITE_UTF16BE );
   281       /* UTF-8 -> UTF-16 Big-endian */
   282       while( zIn<zTerm ){
   283         /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
   284         READ_UTF8(zIn, zTerm, c);
   285         WRITE_UTF16BE(z, c);
   286       }
   287     }
   288     pMem->n = z - zOut;
   289     *z++ = 0;
   290   }else{
   291     assert( desiredEnc==SQLITE_UTF8 );
   292     if( pMem->enc==SQLITE_UTF16LE ){
   293       /* UTF-16 Little-endian -> UTF-8 */
   294       while( zIn<zTerm ){
   295         READ_UTF16LE(zIn, c); 
   296         WRITE_UTF8(z, c);
   297       }
   298     }else{
   299       /* UTF-16 Big-endian -> UTF-8 */
   300       while( zIn<zTerm ){
   301         READ_UTF16BE(zIn, c); 
   302         WRITE_UTF8(z, c);
   303       }
   304     }
   305     pMem->n = z - zOut;
   306   }
   307   *z = 0;
   308   assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
   309 
   310   sqlite3VdbeMemRelease(pMem);
   311   pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
   312   pMem->enc = desiredEnc;
   313   pMem->flags |= (MEM_Term|MEM_Dyn);
   314   pMem->z = (char*)zOut;
   315   pMem->zMalloc = pMem->z;
   316 
   317 translate_out:
   318 #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
   319   {
   320     char zBuf[100];
   321     sqlite3VdbeMemPrettyPrint(pMem, zBuf);
   322     fprintf(stderr, "OUTPUT: %s\n", zBuf);
   323   }
   324 #endif
   325   return SQLITE_OK;
   326 }
   327 
   328 /*
   329 ** This routine checks for a byte-order mark at the beginning of the 
   330 ** UTF-16 string stored in *pMem. If one is present, it is removed and
   331 ** the encoding of the Mem adjusted. This routine does not do any
   332 ** byte-swapping, it just sets Mem.enc appropriately.
   333 **
   334 ** The allocation (static, dynamic etc.) and encoding of the Mem may be
   335 ** changed by this function.
   336 */
   337 int sqlite3VdbeMemHandleBom(Mem *pMem){
   338   int rc = SQLITE_OK;
   339   u8 bom = 0;
   340 
   341   if( pMem->n<0 || pMem->n>1 ){
   342     u8 b1 = *(u8 *)pMem->z;
   343     u8 b2 = *(((u8 *)pMem->z) + 1);
   344     if( b1==0xFE && b2==0xFF ){
   345       bom = SQLITE_UTF16BE;
   346     }
   347     if( b1==0xFF && b2==0xFE ){
   348       bom = SQLITE_UTF16LE;
   349     }
   350   }
   351   
   352   if( bom ){
   353     rc = sqlite3VdbeMemMakeWriteable(pMem);
   354     if( rc==SQLITE_OK ){
   355       pMem->n -= 2;
   356       memmove(pMem->z, &pMem->z[2], pMem->n);
   357       pMem->z[pMem->n] = '\0';
   358       pMem->z[pMem->n+1] = '\0';
   359       pMem->flags |= MEM_Term;
   360       pMem->enc = bom;
   361     }
   362   }
   363   return rc;
   364 }
   365 #endif /* SQLITE_OMIT_UTF16 */
   366 
   367 /*
   368 ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
   369 ** return the number of unicode characters in pZ up to (but not including)
   370 ** the first 0x00 byte. If nByte is not less than zero, return the
   371 ** number of unicode characters in the first nByte of pZ (or up to 
   372 ** the first 0x00, whichever comes first).
   373 */
   374 int sqlite3Utf8CharLen(const char *zIn, int nByte){
   375   int r = 0;
   376   const u8 *z = (const u8*)zIn;
   377   const u8 *zTerm;
   378   if( nByte>=0 ){
   379     zTerm = &z[nByte];
   380   }else{
   381     zTerm = (const u8*)(-1);
   382   }
   383   assert( z<=zTerm );
   384   while( *z!=0 && z<zTerm ){
   385     SQLITE_SKIP_UTF8(z);
   386     r++;
   387   }
   388   return r;
   389 }
   390 
   391 /* This test function is not currently used by the automated test-suite. 
   392 ** Hence it is only available in debug builds.
   393 */
   394 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
   395 /*
   396 ** Translate UTF-8 to UTF-8.
   397 **
   398 ** This has the effect of making sure that the string is well-formed
   399 ** UTF-8.  Miscoded characters are removed.
   400 **
   401 ** The translation is done in-place (since it is impossible for the
   402 ** correct UTF-8 encoding to be longer than a malformed encoding).
   403 */
   404 int sqlite3Utf8To8(unsigned char *zIn){
   405   unsigned char *zOut = zIn;
   406   unsigned char *zStart = zIn;
   407   unsigned char *zTerm = &zIn[strlen((char *)zIn)];
   408   u32 c;
   409 
   410   while( zIn[0] ){
   411     c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
   412     if( c!=0xfffd ){
   413       WRITE_UTF8(zOut, c);
   414     }
   415   }
   416   *zOut = 0;
   417   return zOut - zStart;
   418 }
   419 #endif
   420 
   421 #ifndef SQLITE_OMIT_UTF16
   422 /*
   423 ** Convert a UTF-16 string in the native encoding into a UTF-8 string.
   424 ** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
   425 ** be freed by the calling function.
   426 **
   427 ** NULL is returned if there is an allocation error.
   428 */
   429 char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
   430   Mem m;
   431   memset(&m, 0, sizeof(m));
   432   m.db = db;
   433   sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
   434   sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
   435   if( db->mallocFailed ){
   436     sqlite3VdbeMemRelease(&m);
   437     m.z = 0;
   438   }
   439   assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
   440   assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
   441   return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
   442 }
   443 
   444 /*
   445 ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
   446 ** return the number of bytes up to (but not including), the first pair
   447 ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
   448 ** then return the number of bytes in the first nChar unicode characters
   449 ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
   450 */
   451 int sqlite3Utf16ByteLen(const void *zIn, int nChar){
   452   unsigned int c = 1;
   453   char const *z = zIn;
   454   int n = 0;
   455   if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
   456     /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
   457     ** and in other parts of this file means that at one branch will
   458     ** not be covered by coverage testing on any single host. But coverage
   459     ** will be complete if the tests are run on both a little-endian and 
   460     ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
   461     ** macros are constant at compile time the compiler can determine
   462     ** which branch will be followed. It is therefore assumed that no runtime
   463     ** penalty is paid for this "if" statement.
   464     */
   465     while( c && ((nChar<0) || n<nChar) ){
   466       READ_UTF16BE(z, c);
   467       n++;
   468     }
   469   }else{
   470     while( c && ((nChar<0) || n<nChar) ){
   471       READ_UTF16LE(z, c);
   472       n++;
   473     }
   474   }
   475   return (z-(char const *)zIn)-((c==0)?2:0);
   476 }
   477 
   478 #if defined(SQLITE_TEST)
   479 /*
   480 ** This routine is called from the TCL test function "translate_selftest".
   481 ** It checks that the primitives for serializing and deserializing
   482 ** characters in each encoding are inverses of each other.
   483 */
   484 void sqlite3UtfSelfTest(void){
   485   unsigned int i, t;
   486   unsigned char zBuf[20];
   487   unsigned char *z;
   488   unsigned char *zTerm;
   489   int n;
   490   unsigned int c;
   491 
   492   for(i=0; i<0x00110000; i++){
   493     z = zBuf;
   494     WRITE_UTF8(z, i);
   495     n = z-zBuf;
   496     z[0] = 0;
   497     zTerm = z;
   498     z = zBuf;
   499     c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
   500     t = i;
   501     if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
   502     if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
   503     assert( c==t );
   504     assert( (z-zBuf)==n );
   505   }
   506   for(i=0; i<0x00110000; i++){
   507     if( i>=0xD800 && i<0xE000 ) continue;
   508     z = zBuf;
   509     WRITE_UTF16LE(z, i);
   510     n = z-zBuf;
   511     z[0] = 0;
   512     z = zBuf;
   513     READ_UTF16LE(z, c);
   514     assert( c==i );
   515     assert( (z-zBuf)==n );
   516   }
   517   for(i=0; i<0x00110000; i++){
   518     if( i>=0xD800 && i<0xE000 ) continue;
   519     z = zBuf;
   520     WRITE_UTF16BE(z, i);
   521     n = z-zBuf;
   522     z[0] = 0;
   523     z = zBuf;
   524     READ_UTF16BE(z, c);
   525     assert( c==i );
   526     assert( (z-zBuf)==n );
   527   }
   528 }
   529 #endif /* SQLITE_TEST */
   530 #endif /* SQLITE_OMIT_UTF16 */