Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 ** $Id: select.c,v 1.476 2008/09/23 09:36:10 drh Exp $
17 #include "sqliteInt.h"
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
24 static void clearSelect(sqlite3 *db, Select *p){
25 sqlite3ExprListDelete(db, p->pEList);
26 sqlite3SrcListDelete(db, p->pSrc);
27 sqlite3ExprDelete(db, p->pWhere);
28 sqlite3ExprListDelete(db, p->pGroupBy);
29 sqlite3ExprDelete(db, p->pHaving);
30 sqlite3ExprListDelete(db, p->pOrderBy);
31 sqlite3SelectDelete(db, p->pPrior);
32 sqlite3ExprDelete(db, p->pLimit);
33 sqlite3ExprDelete(db, p->pOffset);
37 ** Initialize a SelectDest structure.
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
49 ** Allocate a new Select structure and return a pointer to that
52 Select *sqlite3SelectNew(
53 Parse *pParse, /* Parsing context */
54 ExprList *pEList, /* which columns to include in the result */
55 SrcList *pSrc, /* the FROM clause -- which tables to scan */
56 Expr *pWhere, /* the WHERE clause */
57 ExprList *pGroupBy, /* the GROUP BY clause */
58 Expr *pHaving, /* the HAVING clause */
59 ExprList *pOrderBy, /* the ORDER BY clause */
60 int isDistinct, /* true if the DISTINCT keyword is present */
61 Expr *pLimit, /* LIMIT value. NULL means not used */
62 Expr *pOffset /* OFFSET value. NULL means no offset */
66 sqlite3 *db = pParse->db;
67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */
71 memset(pNew, 0, sizeof(*pNew));
74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
76 pNew->pEList = pEList;
78 pNew->pWhere = pWhere;
79 pNew->pGroupBy = pGroupBy;
80 pNew->pHaving = pHaving;
81 pNew->pOrderBy = pOrderBy;
82 pNew->selFlags = isDistinct ? SF_Distinct : 0;
84 assert( pOffset==0 || pLimit!=0 );
85 pNew->pLimit = pLimit;
86 pNew->pOffset = pOffset;
87 pNew->addrOpenEphm[0] = -1;
88 pNew->addrOpenEphm[1] = -1;
89 pNew->addrOpenEphm[2] = -1;
90 if( db->mallocFailed ) {
91 clearSelect(db, pNew);
92 if( pNew!=&standin ) sqlite3DbFree(db, pNew);
99 ** Delete the given Select structure and all of its substructures.
101 void sqlite3SelectDelete(sqlite3 *db, Select *p){
104 sqlite3DbFree(db, p);
109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
110 ** type of join. Return an integer constant that expresses that type
111 ** in terms of the following bit values:
120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
122 ** If an illegal or unsupported join type is seen, then still return
123 ** a join type, but put an error in the pParse structure.
125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
129 static const struct {
130 const char zKeyword[8];
134 { "natural", 7, JT_NATURAL },
135 { "left", 4, JT_LEFT|JT_OUTER },
136 { "right", 5, JT_RIGHT|JT_OUTER },
137 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER },
138 { "outer", 5, JT_OUTER },
139 { "inner", 5, JT_INNER },
140 { "cross", 5, JT_INNER|JT_CROSS },
146 for(i=0; i<3 && apAll[i]; i++){
148 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
149 if( p->n==keywords[j].nChar
150 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
151 jointype |= keywords[j].code;
155 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
156 jointype |= JT_ERROR;
161 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
162 (jointype & JT_ERROR)!=0
164 const char *zSp = " ";
166 if( pC==0 ){ zSp++; }
167 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
168 "%T %T%s%T", pA, pB, zSp, pC);
170 }else if( jointype & JT_RIGHT ){
171 sqlite3ErrorMsg(pParse,
172 "RIGHT and FULL OUTER JOINs are not currently supported");
179 ** Return the index of a column in a table. Return -1 if the column
180 ** is not contained in the table.
182 static int columnIndex(Table *pTab, const char *zCol){
184 for(i=0; i<pTab->nCol; i++){
185 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
191 ** Set the value of a token to a '\000'-terminated string.
193 static void setToken(Token *p, const char *z){
195 p->n = z ? strlen(z) : 0;
200 ** Set the token to the double-quoted and escaped version of the string pointed
201 ** to by z. For example;
203 ** {a"bc} -> {"a""bc"}
205 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
207 /* Check if the string appears to be quoted using "..." or `...`
208 ** or [...] or '...' or if the string contains any " characters.
209 ** If it does, then record a version of the string with the special
210 ** characters escaped.
213 if( *z2!='[' && *z2!='`' && *z2!='\'' ){
215 if( *z2=='"' ) break;
221 /* String contains " characters - copy and quote the string. */
222 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
224 p->n = strlen((char *)p->z);
228 /* String contains no " characters - copy the pointer. */
236 ** Create an expression node for an identifier with the name of zName
238 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
240 setToken(&dummy, zName);
241 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
245 ** Add a term to the WHERE expression in *ppExpr that requires the
246 ** zCol column to be equal in the two tables pTab1 and pTab2.
248 static void addWhereTerm(
249 Parse *pParse, /* Parsing context */
250 const char *zCol, /* Name of the column */
251 const Table *pTab1, /* First table */
252 const char *zAlias1, /* Alias for first table. May be NULL */
253 const Table *pTab2, /* Second table */
254 const char *zAlias2, /* Alias for second table. May be NULL */
255 int iRightJoinTable, /* VDBE cursor for the right table */
256 Expr **ppExpr, /* Add the equality term to this expression */
257 int isOuterJoin /* True if dealing with an OUTER join */
259 Expr *pE1a, *pE1b, *pE1c;
260 Expr *pE2a, *pE2b, *pE2c;
263 pE1a = sqlite3CreateIdExpr(pParse, zCol);
264 pE2a = sqlite3CreateIdExpr(pParse, zCol);
266 zAlias1 = pTab1->zName;
268 pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
270 zAlias2 = pTab2->zName;
272 pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
273 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
274 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
275 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
276 if( pE && isOuterJoin ){
277 ExprSetProperty(pE, EP_FromJoin);
278 pE->iRightJoinTable = iRightJoinTable;
280 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
284 ** Set the EP_FromJoin property on all terms of the given expression.
285 ** And set the Expr.iRightJoinTable to iTable for every term in the
288 ** The EP_FromJoin property is used on terms of an expression to tell
289 ** the LEFT OUTER JOIN processing logic that this term is part of the
290 ** join restriction specified in the ON or USING clause and not a part
291 ** of the more general WHERE clause. These terms are moved over to the
292 ** WHERE clause during join processing but we need to remember that they
293 ** originated in the ON or USING clause.
295 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
296 ** expression depends on table iRightJoinTable even if that table is not
297 ** explicitly mentioned in the expression. That information is needed
298 ** for cases like this:
300 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
302 ** The where clause needs to defer the handling of the t1.x=5
303 ** term until after the t2 loop of the join. In that way, a
304 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
305 ** defer the handling of t1.x=5, it will be processed immediately
306 ** after the t1 loop and rows with t1.x!=5 will never appear in
307 ** the output, which is incorrect.
309 static void setJoinExpr(Expr *p, int iTable){
311 ExprSetProperty(p, EP_FromJoin);
312 p->iRightJoinTable = iTable;
313 setJoinExpr(p->pLeft, iTable);
319 ** This routine processes the join information for a SELECT statement.
320 ** ON and USING clauses are converted into extra terms of the WHERE clause.
321 ** NATURAL joins also create extra WHERE clause terms.
323 ** The terms of a FROM clause are contained in the Select.pSrc structure.
324 ** The left most table is the first entry in Select.pSrc. The right-most
325 ** table is the last entry. The join operator is held in the entry to
326 ** the left. Thus entry 0 contains the join operator for the join between
327 ** entries 0 and 1. Any ON or USING clauses associated with the join are
328 ** also attached to the left entry.
330 ** This routine returns the number of errors encountered.
332 static int sqliteProcessJoin(Parse *pParse, Select *p){
333 SrcList *pSrc; /* All tables in the FROM clause */
334 int i, j; /* Loop counters */
335 struct SrcList_item *pLeft; /* Left table being joined */
336 struct SrcList_item *pRight; /* Right table being joined */
341 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
342 Table *pLeftTab = pLeft->pTab;
343 Table *pRightTab = pRight->pTab;
346 if( pLeftTab==0 || pRightTab==0 ) continue;
347 isOuter = (pRight->jointype & JT_OUTER)!=0;
349 /* When the NATURAL keyword is present, add WHERE clause terms for
350 ** every column that the two tables have in common.
352 if( pRight->jointype & JT_NATURAL ){
353 if( pRight->pOn || pRight->pUsing ){
354 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
355 "an ON or USING clause", 0);
358 for(j=0; j<pLeftTab->nCol; j++){
359 char *zName = pLeftTab->aCol[j].zName;
360 if( columnIndex(pRightTab, zName)>=0 ){
361 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
362 pRightTab, pRight->zAlias,
363 pRight->iCursor, &p->pWhere, isOuter);
369 /* Disallow both ON and USING clauses in the same join
371 if( pRight->pOn && pRight->pUsing ){
372 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
373 "clauses in the same join");
377 /* Add the ON clause to the end of the WHERE clause, connected by
381 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
382 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
386 /* Create extra terms on the WHERE clause for each column named
387 ** in the USING clause. Example: If the two tables to be joined are
388 ** A and B and the USING clause names X, Y, and Z, then add this
389 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
390 ** Report an error if any column mentioned in the USING clause is
391 ** not contained in both tables to be joined.
393 if( pRight->pUsing ){
394 IdList *pList = pRight->pUsing;
395 for(j=0; j<pList->nId; j++){
396 char *zName = pList->a[j].zName;
397 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
398 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
399 "not present in both tables", zName);
402 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
403 pRightTab, pRight->zAlias,
404 pRight->iCursor, &p->pWhere, isOuter);
412 ** Insert code into "v" that will push the record on the top of the
413 ** stack into the sorter.
415 static void pushOntoSorter(
416 Parse *pParse, /* Parser context */
417 ExprList *pOrderBy, /* The ORDER BY clause */
418 Select *pSelect, /* The whole SELECT statement */
419 int regData /* Register holding data to be sorted */
421 Vdbe *v = pParse->pVdbe;
422 int nExpr = pOrderBy->nExpr;
423 int regBase = sqlite3GetTempRange(pParse, nExpr+2);
424 int regRecord = sqlite3GetTempReg(pParse);
425 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
426 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
427 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
428 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
429 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
430 sqlite3ReleaseTempReg(pParse, regRecord);
431 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
432 if( pSelect->iLimit ){
435 if( pSelect->iOffset ){
436 iLimit = pSelect->iOffset+1;
438 iLimit = pSelect->iLimit;
440 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
441 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
442 addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
443 sqlite3VdbeJumpHere(v, addr1);
444 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
445 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
446 sqlite3VdbeJumpHere(v, addr2);
452 ** Add code to implement the OFFSET
454 static void codeOffset(
455 Vdbe *v, /* Generate code into this VM */
456 Select *p, /* The SELECT statement being coded */
457 int iContinue /* Jump here to skip the current record */
459 if( p->iOffset && iContinue!=0 ){
461 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
462 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
463 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
464 VdbeComment((v, "skip OFFSET records"));
465 sqlite3VdbeJumpHere(v, addr);
470 ** Add code that will check to make sure the N registers starting at iMem
471 ** form a distinct entry. iTab is a sorting index that holds previously
472 ** seen combinations of the N values. A new entry is made in iTab
473 ** if the current N values are new.
475 ** A jump to addrRepeat is made and the N+1 values are popped from the
476 ** stack if the top N elements are not distinct.
478 static void codeDistinct(
479 Parse *pParse, /* Parsing and code generating context */
480 int iTab, /* A sorting index used to test for distinctness */
481 int addrRepeat, /* Jump to here if not distinct */
482 int N, /* Number of elements */
483 int iMem /* First element */
489 r1 = sqlite3GetTempReg(pParse);
490 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
491 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
492 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
493 sqlite3ReleaseTempReg(pParse, r1);
497 ** Generate an error message when a SELECT is used within a subexpression
498 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
499 ** column. We do this in a subroutine because the error occurs in multiple
502 static int checkForMultiColumnSelectError(
503 Parse *pParse, /* Parse context. */
504 SelectDest *pDest, /* Destination of SELECT results */
505 int nExpr /* Number of result columns returned by SELECT */
507 int eDest = pDest->eDest;
508 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
509 sqlite3ErrorMsg(pParse, "only a single result allowed for "
510 "a SELECT that is part of an expression");
518 ** This routine generates the code for the inside of the inner loop
521 ** If srcTab and nColumn are both zero, then the pEList expressions
522 ** are evaluated in order to get the data for this row. If nColumn>0
523 ** then data is pulled from srcTab and pEList is used only to get the
524 ** datatypes for each column.
526 static void selectInnerLoop(
527 Parse *pParse, /* The parser context */
528 Select *p, /* The complete select statement being coded */
529 ExprList *pEList, /* List of values being extracted */
530 int srcTab, /* Pull data from this table */
531 int nColumn, /* Number of columns in the source table */
532 ExprList *pOrderBy, /* If not NULL, sort results using this key */
533 int distinct, /* If >=0, make sure results are distinct */
534 SelectDest *pDest, /* How to dispose of the results */
535 int iContinue, /* Jump here to continue with next row */
536 int iBreak /* Jump here to break out of the inner loop */
538 Vdbe *v = pParse->pVdbe;
540 int hasDistinct; /* True if the DISTINCT keyword is present */
541 int regResult; /* Start of memory holding result set */
542 int eDest = pDest->eDest; /* How to dispose of results */
543 int iParm = pDest->iParm; /* First argument to disposal method */
544 int nResultCol; /* Number of result columns */
548 hasDistinct = distinct>=0;
549 if( pOrderBy==0 && !hasDistinct ){
550 codeOffset(v, p, iContinue);
553 /* Pull the requested columns.
556 nResultCol = nColumn;
558 nResultCol = pEList->nExpr;
560 if( pDest->iMem==0 ){
561 pDest->iMem = pParse->nMem+1;
562 pDest->nMem = nResultCol;
563 pParse->nMem += nResultCol;
564 }else if( pDest->nMem!=nResultCol ){
565 /* This happens when two SELECTs of a compound SELECT have differing
566 ** numbers of result columns. The error message will be generated by
567 ** a higher-level routine. */
570 regResult = pDest->iMem;
572 for(i=0; i<nColumn; i++){
573 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
575 }else if( eDest!=SRT_Exists ){
576 /* If the destination is an EXISTS(...) expression, the actual
577 ** values returned by the SELECT are not required.
579 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
581 nColumn = nResultCol;
583 /* If the DISTINCT keyword was present on the SELECT statement
584 ** and this row has been seen before, then do not make this row
585 ** part of the result.
589 assert( pEList->nExpr==nColumn );
590 codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
592 codeOffset(v, p, iContinue);
596 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
601 /* In this mode, write each query result to the key of the temporary
604 #ifndef SQLITE_OMIT_COMPOUND_SELECT
607 r1 = sqlite3GetTempReg(pParse);
608 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
609 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
610 sqlite3ReleaseTempReg(pParse, r1);
614 /* Construct a record from the query result, but instead of
615 ** saving that record, use it as a key to delete elements from
616 ** the temporary table iParm.
619 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
624 /* Store the result as data using a unique key.
628 int r1 = sqlite3GetTempReg(pParse);
629 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
631 pushOntoSorter(pParse, pOrderBy, p, r1);
633 int r2 = sqlite3GetTempReg(pParse);
634 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
635 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
636 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
637 sqlite3ReleaseTempReg(pParse, r2);
639 sqlite3ReleaseTempReg(pParse, r1);
643 #ifndef SQLITE_OMIT_SUBQUERY
644 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
645 ** then there should be a single item on the stack. Write this
646 ** item into the set table with bogus data.
649 assert( nColumn==1 );
650 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
652 /* At first glance you would think we could optimize out the
653 ** ORDER BY in this case since the order of entries in the set
654 ** does not matter. But there might be a LIMIT clause, in which
655 ** case the order does matter */
656 pushOntoSorter(pParse, pOrderBy, p, regResult);
658 int r1 = sqlite3GetTempReg(pParse);
659 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
660 sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
661 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
662 sqlite3ReleaseTempReg(pParse, r1);
667 /* If any row exist in the result set, record that fact and abort.
670 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
671 /* The LIMIT clause will terminate the loop for us */
675 /* If this is a scalar select that is part of an expression, then
676 ** store the results in the appropriate memory cell and break out
680 assert( nColumn==1 );
682 pushOntoSorter(pParse, pOrderBy, p, regResult);
684 sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
685 /* The LIMIT clause will jump out of the loop for us */
689 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
691 /* Send the data to the callback function or to a subroutine. In the
692 ** case of a subroutine, the subroutine itself is responsible for
693 ** popping the data from the stack.
698 int r1 = sqlite3GetTempReg(pParse);
699 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
700 pushOntoSorter(pParse, pOrderBy, p, r1);
701 sqlite3ReleaseTempReg(pParse, r1);
702 }else if( eDest==SRT_Coroutine ){
703 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
705 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
706 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
711 #if !defined(SQLITE_OMIT_TRIGGER)
712 /* Discard the results. This is used for SELECT statements inside
713 ** the body of a TRIGGER. The purpose of such selects is to call
714 ** user-defined functions that have side effects. We do not care
715 ** about the actual results of the select.
718 assert( eDest==SRT_Discard );
724 /* Jump to the end of the loop if the LIMIT is reached.
727 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to
728 ** pushOntoSorter() would have cleared p->iLimit */
729 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
730 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
735 ** Given an expression list, generate a KeyInfo structure that records
736 ** the collating sequence for each expression in that expression list.
738 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
739 ** KeyInfo structure is appropriate for initializing a virtual index to
740 ** implement that clause. If the ExprList is the result set of a SELECT
741 ** then the KeyInfo structure is appropriate for initializing a virtual
742 ** index to implement a DISTINCT test.
744 ** Space to hold the KeyInfo structure is obtain from malloc. The calling
745 ** function is responsible for seeing that this structure is eventually
746 ** freed. Add the KeyInfo structure to the P4 field of an opcode using
747 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
749 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
750 sqlite3 *db = pParse->db;
753 struct ExprList_item *pItem;
756 nExpr = pList->nExpr;
757 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
759 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
760 pInfo->nField = nExpr;
761 pInfo->enc = ENC(db);
762 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
764 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
766 pColl = db->pDfltColl;
768 pInfo->aColl[i] = pColl;
769 pInfo->aSortOrder[i] = pItem->sortOrder;
777 ** If the inner loop was generated using a non-null pOrderBy argument,
778 ** then the results were placed in a sorter. After the loop is terminated
779 ** we need to run the sorter and output the results. The following
780 ** routine generates the code needed to do that.
782 static void generateSortTail(
783 Parse *pParse, /* Parsing context */
784 Select *p, /* The SELECT statement */
785 Vdbe *v, /* Generate code into this VDBE */
786 int nColumn, /* Number of columns of data */
787 SelectDest *pDest /* Write the sorted results here */
789 int brk = sqlite3VdbeMakeLabel(v);
790 int cont = sqlite3VdbeMakeLabel(v);
794 ExprList *pOrderBy = p->pOrderBy;
796 int eDest = pDest->eDest;
797 int iParm = pDest->iParm;
802 iTab = pOrderBy->iECursor;
803 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
804 pseudoTab = pParse->nTab++;
805 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
806 sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
808 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
809 codeOffset(v, p, cont);
810 regRow = sqlite3GetTempReg(pParse);
811 regRowid = sqlite3GetTempReg(pParse);
812 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
816 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
817 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
818 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
821 #ifndef SQLITE_OMIT_SUBQUERY
823 assert( nColumn==1 );
824 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
825 sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
826 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
830 assert( nColumn==1 );
831 sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
832 /* The LIMIT clause will terminate the loop for us */
837 case SRT_Coroutine: {
839 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
840 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
841 for(i=0; i<nColumn; i++){
842 assert( regRow!=pDest->iMem+i );
843 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
845 if( eDest==SRT_Output ){
846 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
847 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
849 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
858 sqlite3ReleaseTempReg(pParse, regRow);
859 sqlite3ReleaseTempReg(pParse, regRowid);
861 /* LIMIT has been implemented by the pushOntoSorter() routine.
863 assert( p->iLimit==0 );
865 /* The bottom of the loop
867 sqlite3VdbeResolveLabel(v, cont);
868 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
869 sqlite3VdbeResolveLabel(v, brk);
870 if( eDest==SRT_Output || eDest==SRT_Coroutine ){
871 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
877 ** Return a pointer to a string containing the 'declaration type' of the
878 ** expression pExpr. The string may be treated as static by the caller.
880 ** The declaration type is the exact datatype definition extracted from the
881 ** original CREATE TABLE statement if the expression is a column. The
882 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
883 ** is considered a column can be complex in the presence of subqueries. The
884 ** result-set expression in all of the following SELECT statements is
885 ** considered a column by this function.
887 ** SELECT col FROM tbl;
888 ** SELECT (SELECT col FROM tbl;
889 ** SELECT (SELECT col FROM tbl);
890 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
892 ** The declaration type for any expression other than a column is NULL.
894 static const char *columnType(
897 const char **pzOriginDb,
898 const char **pzOriginTab,
899 const char **pzOriginCol
901 char const *zType = 0;
902 char const *zOriginDb = 0;
903 char const *zOriginTab = 0;
904 char const *zOriginCol = 0;
906 if( pExpr==0 || pNC->pSrcList==0 ) return 0;
911 /* The expression is a column. Locate the table the column is being
912 ** extracted from in NameContext.pSrcList. This table may be real
913 ** database table or a subquery.
915 Table *pTab = 0; /* Table structure column is extracted from */
916 Select *pS = 0; /* Select the column is extracted from */
917 int iCol = pExpr->iColumn; /* Index of column in pTab */
918 while( pNC && !pTab ){
919 SrcList *pTabList = pNC->pSrcList;
920 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
921 if( j<pTabList->nSrc ){
922 pTab = pTabList->a[j].pTab;
923 pS = pTabList->a[j].pSelect;
931 ** This can occurs if you have something like "SELECT new.x;" inside
932 ** a trigger. In other words, if you reference the special "new"
933 ** table in the result set of a select. We do not have a good way
934 ** to find the actual table type, so call it "TEXT". This is really
935 ** something of a bug, but I do not know how to fix it.
937 ** This code does not produce the correct answer - it just prevents
938 ** a segfault. See ticket #1229.
946 /* The "table" is actually a sub-select or a view in the FROM clause
947 ** of the SELECT statement. Return the declaration type and origin
948 ** data for the result-set column of the sub-select.
950 if( iCol>=0 && iCol<pS->pEList->nExpr ){
951 /* If iCol is less than zero, then the expression requests the
952 ** rowid of the sub-select or view. This expression is legal (see
953 ** test case misc2.2.2) - it always evaluates to NULL.
956 Expr *p = pS->pEList->a[iCol].pExpr;
957 sNC.pSrcList = pS->pSrc;
959 sNC.pParse = pNC->pParse;
960 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
962 }else if( pTab->pSchema ){
965 if( iCol<0 ) iCol = pTab->iPKey;
966 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
969 zOriginCol = "rowid";
971 zType = pTab->aCol[iCol].zType;
972 zOriginCol = pTab->aCol[iCol].zName;
974 zOriginTab = pTab->zName;
976 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
977 zOriginDb = pNC->pParse->db->aDb[iDb].zName;
982 #ifndef SQLITE_OMIT_SUBQUERY
984 /* The expression is a sub-select. Return the declaration type and
985 ** origin info for the single column in the result set of the SELECT
989 Select *pS = pExpr->pSelect;
990 Expr *p = pS->pEList->a[0].pExpr;
991 sNC.pSrcList = pS->pSrc;
993 sNC.pParse = pNC->pParse;
994 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1001 assert( pzOriginTab && pzOriginCol );
1002 *pzOriginDb = zOriginDb;
1003 *pzOriginTab = zOriginTab;
1004 *pzOriginCol = zOriginCol;
1010 ** Generate code that will tell the VDBE the declaration types of columns
1011 ** in the result set.
1013 static void generateColumnTypes(
1014 Parse *pParse, /* Parser context */
1015 SrcList *pTabList, /* List of tables */
1016 ExprList *pEList /* Expressions defining the result set */
1018 #ifndef SQLITE_OMIT_DECLTYPE
1019 Vdbe *v = pParse->pVdbe;
1022 sNC.pSrcList = pTabList;
1023 sNC.pParse = pParse;
1024 for(i=0; i<pEList->nExpr; i++){
1025 Expr *p = pEList->a[i].pExpr;
1027 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1028 const char *zOrigDb = 0;
1029 const char *zOrigTab = 0;
1030 const char *zOrigCol = 0;
1031 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1033 /* The vdbe must make its own copy of the column-type and other
1034 ** column specific strings, in case the schema is reset before this
1035 ** virtual machine is deleted.
1037 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
1038 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
1039 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
1041 zType = columnType(&sNC, p, 0, 0, 0);
1043 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
1045 #endif /* SQLITE_OMIT_DECLTYPE */
1049 ** Generate code that will tell the VDBE the names of columns
1050 ** in the result set. This information is used to provide the
1051 ** azCol[] values in the callback.
1053 static void generateColumnNames(
1054 Parse *pParse, /* Parser context */
1055 SrcList *pTabList, /* List of tables */
1056 ExprList *pEList /* Expressions defining the result set */
1058 Vdbe *v = pParse->pVdbe;
1060 sqlite3 *db = pParse->db;
1061 int fullNames, shortNames;
1063 #ifndef SQLITE_OMIT_EXPLAIN
1064 /* If this is an EXPLAIN, skip this step */
1065 if( pParse->explain ){
1071 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
1072 pParse->colNamesSet = 1;
1073 fullNames = (db->flags & SQLITE_FullColNames)!=0;
1074 shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1075 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1076 for(i=0; i<pEList->nExpr; i++){
1078 p = pEList->a[i].pExpr;
1079 if( p==0 ) continue;
1080 if( pEList->a[i].zName ){
1081 char *zName = pEList->a[i].zName;
1082 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1083 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1086 int iCol = p->iColumn;
1087 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1088 assert( j<pTabList->nSrc );
1089 pTab = pTabList->a[j].pTab;
1090 if( iCol<0 ) iCol = pTab->iPKey;
1091 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1095 zCol = pTab->aCol[iCol].zName;
1097 if( !shortNames && !fullNames ){
1098 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1099 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1103 zTab = pTabList->a[j].zAlias;
1104 if( fullNames || zTab==0 ) zTab = pTab->zName;
1105 zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
1106 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1111 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1114 generateColumnTypes(pParse, pTabList, pEList);
1117 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1119 ** Name of the connection operator, used for error messages.
1121 static const char *selectOpName(int id){
1124 case TK_ALL: z = "UNION ALL"; break;
1125 case TK_INTERSECT: z = "INTERSECT"; break;
1126 case TK_EXCEPT: z = "EXCEPT"; break;
1127 default: z = "UNION"; break;
1131 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1134 ** Given a an expression list (which is really the list of expressions
1135 ** that form the result set of a SELECT statement) compute appropriate
1136 ** column names for a table that would hold the expression list.
1138 ** All column names will be unique.
1140 ** Only the column names are computed. Column.zType, Column.zColl,
1141 ** and other fields of Column are zeroed.
1143 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1144 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1146 static int selectColumnsFromExprList(
1147 Parse *pParse, /* Parsing context */
1148 ExprList *pEList, /* Expr list from which to derive column names */
1149 int *pnCol, /* Write the number of columns here */
1150 Column **paCol /* Write the new column list here */
1152 sqlite3 *db = pParse->db;
1154 Column *aCol, *pCol;
1160 *pnCol = nCol = pEList->nExpr;
1161 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1162 if( aCol==0 ) return SQLITE_NOMEM;
1163 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1164 /* Get an appropriate name for the column
1166 p = pEList->a[i].pExpr;
1167 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1168 if( (zName = pEList->a[i].zName)!=0 ){
1169 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1170 zName = sqlite3DbStrDup(db, zName);
1174 while( pCol->op==TK_DOT ) pCol = pCol->pRight;
1175 if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){
1176 /* For columns use the column name name */
1177 int iCol = pCol->iColumn;
1178 if( iCol<0 ) iCol = pTab->iPKey;
1179 zName = sqlite3MPrintf(db, "%s",
1180 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1182 /* Use the original text of the column expression as its name */
1183 zName = sqlite3MPrintf(db, "%T", &pCol->span);
1186 if( db->mallocFailed ){
1187 sqlite3DbFree(db, zName);
1190 sqlite3Dequote(zName);
1192 /* Make sure the column name is unique. If the name is not unique,
1193 ** append a integer to the name so that it becomes unique.
1195 nName = strlen(zName);
1196 for(j=cnt=0; j<i; j++){
1197 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1200 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1201 sqlite3DbFree(db, zName);
1204 if( zName==0 ) break;
1207 pCol->zName = zName;
1209 if( db->mallocFailed ){
1212 sqlite3DbFree(db, aCol[j].zName);
1214 sqlite3DbFree(db, aCol);
1217 return SQLITE_NOMEM;
1223 ** Add type and collation information to a column list based on
1224 ** a SELECT statement.
1226 ** The column list presumably came from selectColumnNamesFromExprList().
1227 ** The column list has only names, not types or collations. This
1228 ** routine goes through and adds the types and collations.
1230 ** This routine requires that all indentifiers in the SELECT
1231 ** statement be resolved.
1233 static void selectAddColumnTypeAndCollation(
1234 Parse *pParse, /* Parsing contexts */
1235 int nCol, /* Number of columns */
1236 Column *aCol, /* List of columns */
1237 Select *pSelect /* SELECT used to determine types and collations */
1239 sqlite3 *db = pParse->db;
1245 struct ExprList_item *a;
1247 assert( pSelect!=0 );
1248 assert( (pSelect->selFlags & SF_Resolved)!=0 );
1249 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1250 if( db->mallocFailed ) return;
1251 memset(&sNC, 0, sizeof(sNC));
1252 sNC.pSrcList = pSelect->pSrc;
1253 a = pSelect->pEList->a;
1254 for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1256 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1257 pCol->affinity = sqlite3ExprAffinity(p);
1258 pColl = sqlite3ExprCollSeq(pParse, p);
1260 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1266 ** Given a SELECT statement, generate a Table structure that describes
1267 ** the result set of that SELECT.
1269 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1271 sqlite3 *db = pParse->db;
1274 savedFlags = db->flags;
1275 db->flags &= ~SQLITE_FullColNames;
1276 db->flags |= SQLITE_ShortColNames;
1277 sqlite3SelectPrep(pParse, pSelect, 0);
1278 if( pParse->nErr ) return 0;
1279 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1280 db->flags = savedFlags;
1281 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1288 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1289 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1291 if( db->mallocFailed ){
1292 sqlite3DeleteTable(pTab);
1299 ** Get a VDBE for the given parser context. Create a new one if necessary.
1300 ** If an error occurs, return NULL and leave a message in pParse.
1302 Vdbe *sqlite3GetVdbe(Parse *pParse){
1303 Vdbe *v = pParse->pVdbe;
1305 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1306 #ifndef SQLITE_OMIT_TRACE
1308 sqlite3VdbeAddOp0(v, OP_Trace);
1317 ** Compute the iLimit and iOffset fields of the SELECT based on the
1318 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1319 ** that appear in the original SQL statement after the LIMIT and OFFSET
1320 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1321 ** are the integer memory register numbers for counters used to compute
1322 ** the limit and offset. If there is no limit and/or offset, then
1323 ** iLimit and iOffset are negative.
1325 ** This routine changes the values of iLimit and iOffset only if
1326 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1327 ** iOffset should have been preset to appropriate default values
1328 ** (usually but not always -1) prior to calling this routine.
1329 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1330 ** redefined. The UNION ALL operator uses this property to force
1331 ** the reuse of the same limit and offset registers across multiple
1332 ** SELECT statements.
1334 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1339 if( p->iLimit ) return;
1342 ** "LIMIT -1" always shows all rows. There is some
1343 ** contraversy about what the correct behavior should be.
1344 ** The current implementation interprets "LIMIT 0" to mean
1348 p->iLimit = iLimit = ++pParse->nMem;
1349 v = sqlite3GetVdbe(pParse);
1351 sqlite3ExprCode(pParse, p->pLimit, iLimit);
1352 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1353 VdbeComment((v, "LIMIT counter"));
1354 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1357 p->iOffset = iOffset = ++pParse->nMem;
1359 pParse->nMem++; /* Allocate an extra register for limit+offset */
1361 v = sqlite3GetVdbe(pParse);
1363 sqlite3ExprCode(pParse, p->pOffset, iOffset);
1364 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1365 VdbeComment((v, "OFFSET counter"));
1366 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1367 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1368 sqlite3VdbeJumpHere(v, addr1);
1370 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1371 VdbeComment((v, "LIMIT+OFFSET"));
1372 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1373 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1374 sqlite3VdbeJumpHere(v, addr1);
1379 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1381 ** Return the appropriate collating sequence for the iCol-th column of
1382 ** the result set for the compound-select statement "p". Return NULL if
1383 ** the column has no default collating sequence.
1385 ** The collating sequence for the compound select is taken from the
1386 ** left-most term of the select that has a collating sequence.
1388 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1391 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1396 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1400 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1402 /* Forward reference */
1403 static int multiSelectOrderBy(
1404 Parse *pParse, /* Parsing context */
1405 Select *p, /* The right-most of SELECTs to be coded */
1406 SelectDest *pDest /* What to do with query results */
1410 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1412 ** This routine is called to process a compound query form from
1413 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1416 ** "p" points to the right-most of the two queries. the query on the
1417 ** left is p->pPrior. The left query could also be a compound query
1418 ** in which case this routine will be called recursively.
1420 ** The results of the total query are to be written into a destination
1421 ** of type eDest with parameter iParm.
1423 ** Example 1: Consider a three-way compound SQL statement.
1425 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1427 ** This statement is parsed up as follows:
1431 ** `-----> SELECT b FROM t2
1433 ** `------> SELECT a FROM t1
1435 ** The arrows in the diagram above represent the Select.pPrior pointer.
1436 ** So if this routine is called with p equal to the t3 query, then
1437 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
1439 ** Notice that because of the way SQLite parses compound SELECTs, the
1440 ** individual selects always group from left to right.
1442 static int multiSelect(
1443 Parse *pParse, /* Parsing context */
1444 Select *p, /* The right-most of SELECTs to be coded */
1445 SelectDest *pDest /* What to do with query results */
1447 int rc = SQLITE_OK; /* Success code from a subroutine */
1448 Select *pPrior; /* Another SELECT immediately to our left */
1449 Vdbe *v; /* Generate code to this VDBE */
1450 SelectDest dest; /* Alternative data destination */
1451 Select *pDelete = 0; /* Chain of simple selects to delete */
1452 sqlite3 *db; /* Database connection */
1454 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
1455 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1457 assert( p && p->pPrior ); /* Calling function guarantees this much */
1460 assert( pPrior->pRightmost!=pPrior );
1461 assert( pPrior->pRightmost==p->pRightmost );
1463 if( pPrior->pOrderBy ){
1464 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1465 selectOpName(p->op));
1467 goto multi_select_end;
1469 if( pPrior->pLimit ){
1470 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1471 selectOpName(p->op));
1473 goto multi_select_end;
1476 v = sqlite3GetVdbe(pParse);
1477 assert( v!=0 ); /* The VDBE already created by calling function */
1479 /* Create the destination temporary table if necessary
1481 if( dest.eDest==SRT_EphemTab ){
1482 assert( p->pEList );
1483 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1484 dest.eDest = SRT_Table;
1487 /* Make sure all SELECTs in the statement have the same number of elements
1488 ** in their result sets.
1490 assert( p->pEList && pPrior->pEList );
1491 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1492 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1493 " do not have the same number of result columns", selectOpName(p->op));
1495 goto multi_select_end;
1498 /* Compound SELECTs that have an ORDER BY clause are handled separately.
1501 return multiSelectOrderBy(pParse, p, pDest);
1504 /* Generate code for the left and right SELECT statements.
1509 assert( !pPrior->pLimit );
1510 pPrior->pLimit = p->pLimit;
1511 pPrior->pOffset = p->pOffset;
1512 rc = sqlite3Select(pParse, pPrior, &dest);
1516 goto multi_select_end;
1519 p->iLimit = pPrior->iLimit;
1520 p->iOffset = pPrior->iOffset;
1522 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1523 VdbeComment((v, "Jump ahead if LIMIT reached"));
1525 rc = sqlite3Select(pParse, p, &dest);
1526 pDelete = p->pPrior;
1529 goto multi_select_end;
1532 sqlite3VdbeJumpHere(v, addr);
1538 int unionTab; /* Cursor number of the temporary table holding result */
1539 int op = 0; /* One of the SRT_ operations to apply to self */
1540 int priorOp; /* The SRT_ operation to apply to prior selects */
1541 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1543 SelectDest uniondest;
1545 priorOp = SRT_Union;
1546 if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
1547 /* We can reuse a temporary table generated by a SELECT to our
1550 unionTab = dest.iParm;
1552 /* We will need to create our own temporary table to hold the
1553 ** intermediate results.
1555 unionTab = pParse->nTab++;
1556 assert( p->pOrderBy==0 );
1557 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1558 assert( p->addrOpenEphm[0] == -1 );
1559 p->addrOpenEphm[0] = addr;
1560 p->pRightmost->selFlags |= SF_UsesEphemeral;
1561 assert( p->pEList );
1564 /* Code the SELECT statements to our left
1566 assert( !pPrior->pOrderBy );
1567 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1568 rc = sqlite3Select(pParse, pPrior, &uniondest);
1570 goto multi_select_end;
1573 /* Code the current SELECT statement
1575 if( p->op==TK_EXCEPT ){
1578 assert( p->op==TK_UNION );
1584 pOffset = p->pOffset;
1586 uniondest.eDest = op;
1587 rc = sqlite3Select(pParse, p, &uniondest);
1588 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1589 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1590 sqlite3ExprListDelete(db, p->pOrderBy);
1591 pDelete = p->pPrior;
1594 sqlite3ExprDelete(db, p->pLimit);
1596 p->pOffset = pOffset;
1600 goto multi_select_end;
1604 /* Convert the data in the temporary table into whatever form
1605 ** it is that we currently need.
1607 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
1608 int iCont, iBreak, iStart;
1609 assert( p->pEList );
1610 if( dest.eDest==SRT_Output ){
1612 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1613 generateColumnNames(pParse, 0, pFirst->pEList);
1615 iBreak = sqlite3VdbeMakeLabel(v);
1616 iCont = sqlite3VdbeMakeLabel(v);
1617 computeLimitRegisters(pParse, p, iBreak);
1618 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1619 iStart = sqlite3VdbeCurrentAddr(v);
1620 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1621 0, -1, &dest, iCont, iBreak);
1622 sqlite3VdbeResolveLabel(v, iCont);
1623 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1624 sqlite3VdbeResolveLabel(v, iBreak);
1625 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1629 case TK_INTERSECT: {
1631 int iCont, iBreak, iStart;
1632 Expr *pLimit, *pOffset;
1634 SelectDest intersectdest;
1637 /* INTERSECT is different from the others since it requires
1638 ** two temporary tables. Hence it has its own case. Begin
1639 ** by allocating the tables we will need.
1641 tab1 = pParse->nTab++;
1642 tab2 = pParse->nTab++;
1643 assert( p->pOrderBy==0 );
1645 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1646 assert( p->addrOpenEphm[0] == -1 );
1647 p->addrOpenEphm[0] = addr;
1648 p->pRightmost->selFlags |= SF_UsesEphemeral;
1649 assert( p->pEList );
1651 /* Code the SELECTs to our left into temporary table "tab1".
1653 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1654 rc = sqlite3Select(pParse, pPrior, &intersectdest);
1656 goto multi_select_end;
1659 /* Code the current SELECT into temporary table "tab2"
1661 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1662 assert( p->addrOpenEphm[1] == -1 );
1663 p->addrOpenEphm[1] = addr;
1667 pOffset = p->pOffset;
1669 intersectdest.iParm = tab2;
1670 rc = sqlite3Select(pParse, p, &intersectdest);
1671 pDelete = p->pPrior;
1673 sqlite3ExprDelete(db, p->pLimit);
1675 p->pOffset = pOffset;
1677 goto multi_select_end;
1680 /* Generate code to take the intersection of the two temporary
1683 assert( p->pEList );
1684 if( dest.eDest==SRT_Output ){
1686 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1687 generateColumnNames(pParse, 0, pFirst->pEList);
1689 iBreak = sqlite3VdbeMakeLabel(v);
1690 iCont = sqlite3VdbeMakeLabel(v);
1691 computeLimitRegisters(pParse, p, iBreak);
1692 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1693 r1 = sqlite3GetTempReg(pParse);
1694 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1695 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
1696 sqlite3ReleaseTempReg(pParse, r1);
1697 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1698 0, -1, &dest, iCont, iBreak);
1699 sqlite3VdbeResolveLabel(v, iCont);
1700 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1701 sqlite3VdbeResolveLabel(v, iBreak);
1702 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1703 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1708 /* Compute collating sequences used by
1709 ** temporary tables needed to implement the compound select.
1710 ** Attach the KeyInfo structure to all temporary tables.
1712 ** This section is run by the right-most SELECT statement only.
1713 ** SELECT statements to the left always skip this part. The right-most
1714 ** SELECT might also skip this part if it has no ORDER BY clause and
1715 ** no temp tables are required.
1717 if( p->selFlags & SF_UsesEphemeral ){
1718 int i; /* Loop counter */
1719 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
1720 Select *pLoop; /* For looping through SELECT statements */
1721 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
1722 int nCol; /* Number of columns in result set */
1724 assert( p->pRightmost==p );
1725 nCol = p->pEList->nExpr;
1726 pKeyInfo = sqlite3DbMallocZero(db,
1727 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1730 goto multi_select_end;
1733 pKeyInfo->enc = ENC(db);
1734 pKeyInfo->nField = nCol;
1736 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1737 *apColl = multiSelectCollSeq(pParse, p, i);
1739 *apColl = db->pDfltColl;
1743 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1745 int addr = pLoop->addrOpenEphm[i];
1747 /* If [0] is unused then [1] is also unused. So we can
1748 ** always safely abort as soon as the first unused slot is found */
1749 assert( pLoop->addrOpenEphm[1]<0 );
1752 sqlite3VdbeChangeP2(v, addr, nCol);
1753 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1754 pLoop->addrOpenEphm[i] = -1;
1757 sqlite3DbFree(db, pKeyInfo);
1761 pDest->iMem = dest.iMem;
1762 pDest->nMem = dest.nMem;
1763 sqlite3SelectDelete(db, pDelete);
1766 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1769 ** Code an output subroutine for a coroutine implementation of a
1772 ** The data to be output is contained in pIn->iMem. There are
1773 ** pIn->nMem columns to be output. pDest is where the output should
1776 ** regReturn is the number of the register holding the subroutine
1779 ** If regPrev>0 then it is a the first register in a vector that
1780 ** records the previous output. mem[regPrev] is a flag that is false
1781 ** if there has been no previous output. If regPrev>0 then code is
1782 ** generated to suppress duplicates. pKeyInfo is used for comparing
1785 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1788 static int generateOutputSubroutine(
1789 Parse *pParse, /* Parsing context */
1790 Select *p, /* The SELECT statement */
1791 SelectDest *pIn, /* Coroutine supplying data */
1792 SelectDest *pDest, /* Where to send the data */
1793 int regReturn, /* The return address register */
1794 int regPrev, /* Previous result register. No uniqueness if 0 */
1795 KeyInfo *pKeyInfo, /* For comparing with previous entry */
1796 int p4type, /* The p4 type for pKeyInfo */
1797 int iBreak /* Jump here if we hit the LIMIT */
1799 Vdbe *v = pParse->pVdbe;
1803 addr = sqlite3VdbeCurrentAddr(v);
1804 iContinue = sqlite3VdbeMakeLabel(v);
1806 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1810 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1811 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1812 (char*)pKeyInfo, p4type);
1813 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1814 sqlite3VdbeJumpHere(v, j1);
1815 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1816 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1818 if( pParse->db->mallocFailed ) return 0;
1820 /* Suppress the the first OFFSET entries if there is an OFFSET clause
1822 codeOffset(v, p, iContinue);
1824 switch( pDest->eDest ){
1825 /* Store the result as data using a unique key.
1828 case SRT_EphemTab: {
1829 int r1 = sqlite3GetTempReg(pParse);
1830 int r2 = sqlite3GetTempReg(pParse);
1831 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1832 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1833 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1834 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1835 sqlite3ReleaseTempReg(pParse, r2);
1836 sqlite3ReleaseTempReg(pParse, r1);
1840 #ifndef SQLITE_OMIT_SUBQUERY
1841 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1842 ** then there should be a single item on the stack. Write this
1843 ** item into the set table with bogus data.
1847 assert( pIn->nMem==1 );
1849 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1850 r1 = sqlite3GetTempReg(pParse);
1851 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1852 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1853 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1854 sqlite3ReleaseTempReg(pParse, r1);
1858 #if 0 /* Never occurs on an ORDER BY query */
1859 /* If any row exist in the result set, record that fact and abort.
1862 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1863 /* The LIMIT clause will terminate the loop for us */
1868 /* If this is a scalar select that is part of an expression, then
1869 ** store the results in the appropriate memory cell and break out
1870 ** of the scan loop.
1873 assert( pIn->nMem==1 );
1874 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1875 /* The LIMIT clause will jump out of the loop for us */
1878 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1880 /* The results are stored in a sequence of registers
1881 ** starting at pDest->iMem. Then the co-routine yields.
1883 case SRT_Coroutine: {
1884 if( pDest->iMem==0 ){
1885 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1886 pDest->nMem = pIn->nMem;
1888 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1889 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1893 /* Results are stored in a sequence of registers. Then the
1894 ** OP_ResultRow opcode is used to cause sqlite3_step() to return
1895 ** the next row of result.
1898 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1899 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1903 #if !defined(SQLITE_OMIT_TRIGGER)
1904 /* Discard the results. This is used for SELECT statements inside
1905 ** the body of a TRIGGER. The purpose of such selects is to call
1906 ** user-defined functions that have side effects. We do not care
1907 ** about the actual results of the select.
1915 /* Jump to the end of the loop if the LIMIT is reached.
1918 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1919 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
1922 /* Generate the subroutine return
1924 sqlite3VdbeResolveLabel(v, iContinue);
1925 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1931 ** Alternative compound select code generator for cases when there
1932 ** is an ORDER BY clause.
1934 ** We assume a query of the following form:
1936 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
1938 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
1939 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1940 ** co-routines. Then run the co-routines in parallel and merge the results
1941 ** into the output. In addition to the two coroutines (called selectA and
1942 ** selectB) there are 7 subroutines:
1944 ** outA: Move the output of the selectA coroutine into the output
1945 ** of the compound query.
1947 ** outB: Move the output of the selectB coroutine into the output
1948 ** of the compound query. (Only generated for UNION and
1949 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
1950 ** appears only in B.)
1952 ** AltB: Called when there is data from both coroutines and A<B.
1954 ** AeqB: Called when there is data from both coroutines and A==B.
1956 ** AgtB: Called when there is data from both coroutines and A>B.
1958 ** EofA: Called when data is exhausted from selectA.
1960 ** EofB: Called when data is exhausted from selectB.
1962 ** The implementation of the latter five subroutines depend on which
1963 ** <operator> is used:
1966 ** UNION ALL UNION EXCEPT INTERSECT
1967 ** ------------- ----------------- -------------- -----------------
1968 ** AltB: outA, nextA outA, nextA outA, nextA nextA
1970 ** AeqB: outA, nextA nextA nextA outA, nextA
1972 ** AgtB: outB, nextB outB, nextB nextB nextB
1974 ** EofA: outB, nextB outB, nextB halt halt
1976 ** EofB: outA, nextA outA, nextA outA, nextA halt
1978 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1979 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1980 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
1981 ** following nextX causes a jump to the end of the select processing.
1983 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1984 ** within the output subroutine. The regPrev register set holds the previously
1985 ** output value. A comparison is made against this value and the output
1986 ** is skipped if the next results would be the same as the previous.
1988 ** The implementation plan is to implement the two coroutines and seven
1989 ** subroutines first, then put the control logic at the bottom. Like this:
1992 ** coA: coroutine for left query (A)
1993 ** coB: coroutine for right query (B)
1994 ** outA: output one row of A
1995 ** outB: output one row of B (UNION and UNION ALL only)
2001 ** Init: initialize coroutine registers
2003 ** if eof(A) goto EofA
2005 ** if eof(B) goto EofB
2006 ** Cmpr: Compare A, B
2007 ** Jump AltB, AeqB, AgtB
2010 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2011 ** actually called using Gosub and they do not Return. EofA and EofB loop
2012 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2013 ** and AgtB jump to either L2 or to one of EofA or EofB.
2015 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2016 static int multiSelectOrderBy(
2017 Parse *pParse, /* Parsing context */
2018 Select *p, /* The right-most of SELECTs to be coded */
2019 SelectDest *pDest /* What to do with query results */
2021 int i, j; /* Loop counters */
2022 Select *pPrior; /* Another SELECT immediately to our left */
2023 Vdbe *v; /* Generate code to this VDBE */
2024 SelectDest destA; /* Destination for coroutine A */
2025 SelectDest destB; /* Destination for coroutine B */
2026 int regAddrA; /* Address register for select-A coroutine */
2027 int regEofA; /* Flag to indicate when select-A is complete */
2028 int regAddrB; /* Address register for select-B coroutine */
2029 int regEofB; /* Flag to indicate when select-B is complete */
2030 int addrSelectA; /* Address of the select-A coroutine */
2031 int addrSelectB; /* Address of the select-B coroutine */
2032 int regOutA; /* Address register for the output-A subroutine */
2033 int regOutB; /* Address register for the output-B subroutine */
2034 int addrOutA; /* Address of the output-A subroutine */
2035 int addrOutB; /* Address of the output-B subroutine */
2036 int addrEofA; /* Address of the select-A-exhausted subroutine */
2037 int addrEofB; /* Address of the select-B-exhausted subroutine */
2038 int addrAltB; /* Address of the A<B subroutine */
2039 int addrAeqB; /* Address of the A==B subroutine */
2040 int addrAgtB; /* Address of the A>B subroutine */
2041 int regLimitA; /* Limit register for select-A */
2042 int regLimitB; /* Limit register for select-A */
2043 int regPrev; /* A range of registers to hold previous output */
2044 int savedLimit; /* Saved value of p->iLimit */
2045 int savedOffset; /* Saved value of p->iOffset */
2046 int labelCmpr; /* Label for the start of the merge algorithm */
2047 int labelEnd; /* Label for the end of the overall SELECT stmt */
2048 int j1; /* Jump instructions that get retargetted */
2049 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2050 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2051 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
2052 sqlite3 *db; /* Database connection */
2053 ExprList *pOrderBy; /* The ORDER BY clause */
2054 int nOrderBy; /* Number of terms in the ORDER BY clause */
2055 int *aPermute; /* Mapping from ORDER BY terms to result set columns */
2057 assert( p->pOrderBy!=0 );
2058 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
2061 if( v==0 ) return SQLITE_NOMEM;
2062 labelEnd = sqlite3VdbeMakeLabel(v);
2063 labelCmpr = sqlite3VdbeMakeLabel(v);
2066 /* Patch up the ORDER BY clause
2070 assert( pPrior->pOrderBy==0 );
2071 pOrderBy = p->pOrderBy;
2073 nOrderBy = pOrderBy->nExpr;
2075 /* For operators other than UNION ALL we have to make sure that
2076 ** the ORDER BY clause covers every term of the result set. Add
2077 ** terms to the ORDER BY clause as necessary.
2080 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2081 struct ExprList_item *pItem;
2082 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2083 assert( pItem->iCol>0 );
2084 if( pItem->iCol==i ) break;
2087 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2088 if( pNew==0 ) return SQLITE_NOMEM;
2089 pNew->flags |= EP_IntValue;
2091 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2092 pOrderBy->a[nOrderBy++].iCol = i;
2097 /* Compute the comparison permutation and keyinfo that is used with
2098 ** the permutation in order to comparisons to determine if the next
2099 ** row of results comes from selectA or selectB. Also add explicit
2100 ** collations to the ORDER BY clause terms so that when the subqueries
2101 ** to the right and the left are evaluated, they use the correct
2104 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2106 struct ExprList_item *pItem;
2107 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2108 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr );
2109 aPermute[i] = pItem->iCol - 1;
2112 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2114 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2115 pKeyMerge->nField = nOrderBy;
2116 pKeyMerge->enc = ENC(db);
2117 for(i=0; i<nOrderBy; i++){
2119 Expr *pTerm = pOrderBy->a[i].pExpr;
2120 if( pTerm->flags & EP_ExpCollate ){
2121 pColl = pTerm->pColl;
2123 pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2124 pTerm->flags |= EP_ExpCollate;
2125 pTerm->pColl = pColl;
2127 pKeyMerge->aColl[i] = pColl;
2128 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2135 /* Reattach the ORDER BY clause to the query.
2137 p->pOrderBy = pOrderBy;
2138 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
2140 /* Allocate a range of temporary registers and the KeyInfo needed
2141 ** for the logic that removes duplicate result rows when the
2142 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2147 int nExpr = p->pEList->nExpr;
2148 assert( nOrderBy>=nExpr );
2149 regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2150 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2151 pKeyDup = sqlite3DbMallocZero(db,
2152 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2154 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2155 pKeyDup->nField = nExpr;
2156 pKeyDup->enc = ENC(db);
2157 for(i=0; i<nExpr; i++){
2158 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2159 pKeyDup->aSortOrder[i] = 0;
2164 /* Separate the left and the right query from one another
2167 pPrior->pRightmost = 0;
2168 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2169 if( pPrior->pPrior==0 ){
2170 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2173 /* Compute the limit registers */
2174 computeLimitRegisters(pParse, p, labelEnd);
2175 if( p->iLimit && op==TK_ALL ){
2176 regLimitA = ++pParse->nMem;
2177 regLimitB = ++pParse->nMem;
2178 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2180 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2182 regLimitA = regLimitB = 0;
2184 sqlite3ExprDelete(db, p->pLimit);
2186 sqlite3ExprDelete(db, p->pOffset);
2189 regAddrA = ++pParse->nMem;
2190 regEofA = ++pParse->nMem;
2191 regAddrB = ++pParse->nMem;
2192 regEofB = ++pParse->nMem;
2193 regOutA = ++pParse->nMem;
2194 regOutB = ++pParse->nMem;
2195 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2196 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2198 /* Jump past the various subroutines and coroutines to the main
2201 j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2202 addrSelectA = sqlite3VdbeCurrentAddr(v);
2205 /* Generate a coroutine to evaluate the SELECT statement to the
2206 ** left of the compound operator - the "A" select.
2208 VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2209 pPrior->iLimit = regLimitA;
2210 sqlite3Select(pParse, pPrior, &destA);
2211 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2212 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2213 VdbeNoopComment((v, "End coroutine for left SELECT"));
2215 /* Generate a coroutine to evaluate the SELECT statement on
2216 ** the right - the "B" select
2218 addrSelectB = sqlite3VdbeCurrentAddr(v);
2219 VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2220 savedLimit = p->iLimit;
2221 savedOffset = p->iOffset;
2222 p->iLimit = regLimitB;
2224 sqlite3Select(pParse, p, &destB);
2225 p->iLimit = savedLimit;
2226 p->iOffset = savedOffset;
2227 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2228 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2229 VdbeNoopComment((v, "End coroutine for right SELECT"));
2231 /* Generate a subroutine that outputs the current row of the A
2232 ** select as the next output row of the compound select.
2234 VdbeNoopComment((v, "Output routine for A"));
2235 addrOutA = generateOutputSubroutine(pParse,
2236 p, &destA, pDest, regOutA,
2237 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2239 /* Generate a subroutine that outputs the current row of the B
2240 ** select as the next output row of the compound select.
2242 if( op==TK_ALL || op==TK_UNION ){
2243 VdbeNoopComment((v, "Output routine for B"));
2244 addrOutB = generateOutputSubroutine(pParse,
2245 p, &destB, pDest, regOutB,
2246 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2249 /* Generate a subroutine to run when the results from select A
2250 ** are exhausted and only data in select B remains.
2252 VdbeNoopComment((v, "eof-A subroutine"));
2253 if( op==TK_EXCEPT || op==TK_INTERSECT ){
2254 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2256 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2257 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2258 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2259 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2262 /* Generate a subroutine to run when the results from select B
2263 ** are exhausted and only data in select A remains.
2265 if( op==TK_INTERSECT ){
2266 addrEofB = addrEofA;
2268 VdbeNoopComment((v, "eof-B subroutine"));
2269 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2270 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2271 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2272 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2275 /* Generate code to handle the case of A<B
2277 VdbeNoopComment((v, "A-lt-B subroutine"));
2278 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2279 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2280 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2281 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2283 /* Generate code to handle the case of A==B
2286 addrAeqB = addrAltB;
2287 }else if( op==TK_INTERSECT ){
2288 addrAeqB = addrAltB;
2291 VdbeNoopComment((v, "A-eq-B subroutine"));
2293 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2294 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2295 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2298 /* Generate code to handle the case of A>B
2300 VdbeNoopComment((v, "A-gt-B subroutine"));
2301 addrAgtB = sqlite3VdbeCurrentAddr(v);
2302 if( op==TK_ALL || op==TK_UNION ){
2303 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2305 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2306 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2307 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2309 /* This code runs once to initialize everything.
2311 sqlite3VdbeJumpHere(v, j1);
2312 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2313 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2314 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2315 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2316 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2317 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2319 /* Implement the main merge loop
2321 sqlite3VdbeResolveLabel(v, labelCmpr);
2322 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2323 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2324 (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2325 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2327 /* Release temporary registers
2330 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2333 /* Jump to the this point in order to terminate the query.
2335 sqlite3VdbeResolveLabel(v, labelEnd);
2337 /* Set the number of output columns
2339 if( pDest->eDest==SRT_Output ){
2340 Select *pFirst = pPrior;
2341 while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2342 generateColumnNames(pParse, 0, pFirst->pEList);
2345 /* Reassembly the compound query so that it will be freed correctly
2346 ** by the calling function */
2348 sqlite3SelectDelete(db, p->pPrior);
2352 /*** TBD: Insert subroutine calls to close cursors on incomplete
2353 **** subqueries ****/
2358 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2359 /* Forward Declarations */
2360 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2361 static void substSelect(sqlite3*, Select *, int, ExprList *);
2364 ** Scan through the expression pExpr. Replace every reference to
2365 ** a column in table number iTable with a copy of the iColumn-th
2366 ** entry in pEList. (But leave references to the ROWID column
2369 ** This routine is part of the flattening procedure. A subquery
2370 ** whose result set is defined by pEList appears as entry in the
2371 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2372 ** FORM clause entry is iTable. This routine make the necessary
2373 ** changes to pExpr so that it refers directly to the source table
2374 ** of the subquery rather the result set of the subquery.
2376 static void substExpr(
2377 sqlite3 *db, /* Report malloc errors to this connection */
2378 Expr *pExpr, /* Expr in which substitution occurs */
2379 int iTable, /* Table to be substituted */
2380 ExprList *pEList /* Substitute expressions */
2382 if( pExpr==0 ) return;
2383 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2384 if( pExpr->iColumn<0 ){
2385 pExpr->op = TK_NULL;
2388 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2389 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2390 pNew = pEList->a[pExpr->iColumn].pExpr;
2392 pExpr->op = pNew->op;
2393 assert( pExpr->pLeft==0 );
2394 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
2395 assert( pExpr->pRight==0 );
2396 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
2397 assert( pExpr->pList==0 );
2398 pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
2399 pExpr->iTable = pNew->iTable;
2400 pExpr->pTab = pNew->pTab;
2401 pExpr->iColumn = pNew->iColumn;
2402 pExpr->iAgg = pNew->iAgg;
2403 sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2404 sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2405 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
2406 pExpr->flags = pNew->flags;
2409 substExpr(db, pExpr->pLeft, iTable, pEList);
2410 substExpr(db, pExpr->pRight, iTable, pEList);
2411 substSelect(db, pExpr->pSelect, iTable, pEList);
2412 substExprList(db, pExpr->pList, iTable, pEList);
2415 static void substExprList(
2416 sqlite3 *db, /* Report malloc errors here */
2417 ExprList *pList, /* List to scan and in which to make substitutes */
2418 int iTable, /* Table to be substituted */
2419 ExprList *pEList /* Substitute values */
2422 if( pList==0 ) return;
2423 for(i=0; i<pList->nExpr; i++){
2424 substExpr(db, pList->a[i].pExpr, iTable, pEList);
2427 static void substSelect(
2428 sqlite3 *db, /* Report malloc errors here */
2429 Select *p, /* SELECT statement in which to make substitutions */
2430 int iTable, /* Table to be replaced */
2431 ExprList *pEList /* Substitute values */
2434 struct SrcList_item *pItem;
2437 substExprList(db, p->pEList, iTable, pEList);
2438 substExprList(db, p->pGroupBy, iTable, pEList);
2439 substExprList(db, p->pOrderBy, iTable, pEList);
2440 substExpr(db, p->pHaving, iTable, pEList);
2441 substExpr(db, p->pWhere, iTable, pEList);
2442 substSelect(db, p->pPrior, iTable, pEList);
2445 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2446 substSelect(db, pItem->pSelect, iTable, pEList);
2450 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2452 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2454 ** This routine attempts to flatten subqueries in order to speed
2455 ** execution. It returns 1 if it makes changes and 0 if no flattening
2458 ** To understand the concept of flattening, consider the following
2461 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2463 ** The default way of implementing this query is to execute the
2464 ** subquery first and store the results in a temporary table, then
2465 ** run the outer query on that temporary table. This requires two
2466 ** passes over the data. Furthermore, because the temporary table
2467 ** has no indices, the WHERE clause on the outer query cannot be
2470 ** This routine attempts to rewrite queries such as the above into
2471 ** a single flat select, like this:
2473 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2475 ** The code generated for this simpification gives the same result
2476 ** but only has to scan the data once. And because indices might
2477 ** exist on the table t1, a complete scan of the data might be
2480 ** Flattening is only attempted if all of the following are true:
2482 ** (1) The subquery and the outer query do not both use aggregates.
2484 ** (2) The subquery is not an aggregate or the outer query is not a join.
2486 ** (3) The subquery is not the right operand of a left outer join
2487 ** (Originally ticket #306. Strenghtened by ticket #3300)
2489 ** (4) The subquery is not DISTINCT or the outer query is not a join.
2491 ** (5) The subquery is not DISTINCT or the outer query does not use
2494 ** (6) The subquery does not use aggregates or the outer query is not
2497 ** (7) The subquery has a FROM clause.
2499 ** (8) The subquery does not use LIMIT or the outer query is not a join.
2501 ** (9) The subquery does not use LIMIT or the outer query does not use
2504 ** (10) The subquery does not use aggregates or the outer query does not
2507 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
2509 ** (12) Not implemented. Subsumed into restriction (3). Was previously
2510 ** a separate restriction deriving from ticket #350.
2512 ** (13) The subquery and outer query do not both use LIMIT
2514 ** (14) The subquery does not use OFFSET
2516 ** (15) The outer query is not part of a compound select or the
2517 ** subquery does not have both an ORDER BY and a LIMIT clause.
2518 ** (See ticket #2339)
2520 ** (16) The outer query is not an aggregate or the subquery does
2521 ** not contain ORDER BY. (Ticket #2942) This used to not matter
2522 ** until we introduced the group_concat() function.
2524 ** (17) The sub-query is not a compound select, or it is a UNION ALL
2525 ** compound clause made up entirely of non-aggregate queries, and
2526 ** the parent query:
2528 ** * is not itself part of a compound select,
2529 ** * is not an aggregate or DISTINCT query, and
2530 ** * has no other tables or sub-selects in the FROM clause.
2532 ** The parent and sub-query may contain WHERE clauses. Subject to
2533 ** rules (11), (13) and (14), they may also contain ORDER BY,
2534 ** LIMIT and OFFSET clauses.
2536 ** (18) If the sub-query is a compound select, then all terms of the
2537 ** ORDER by clause of the parent must be simple references to
2538 ** columns of the sub-query.
2540 ** (19) The subquery does not use LIMIT or the outer query does not
2541 ** have a WHERE clause.
2543 ** In this routine, the "p" parameter is a pointer to the outer query.
2544 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
2545 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2547 ** If flattening is not attempted, this routine is a no-op and returns 0.
2548 ** If flattening is attempted this routine returns 1.
2550 ** All of the expression analysis must occur on both the outer query and
2551 ** the subquery before this routine runs.
2553 static int flattenSubquery(
2554 Parse *pParse, /* Parsing context */
2555 Select *p, /* The parent or outer SELECT statement */
2556 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
2557 int isAgg, /* True if outer SELECT uses aggregate functions */
2558 int subqueryIsAgg /* True if the subquery uses aggregate functions */
2560 const char *zSavedAuthContext = pParse->zAuthContext;
2562 Select *pSub; /* The inner query or "subquery" */
2563 Select *pSub1; /* Pointer to the rightmost select in sub-query */
2564 SrcList *pSrc; /* The FROM clause of the outer query */
2565 SrcList *pSubSrc; /* The FROM clause of the subquery */
2566 ExprList *pList; /* The result set of the outer query */
2567 int iParent; /* VDBE cursor number of the pSub result set temp table */
2568 int i; /* Loop counter */
2569 Expr *pWhere; /* The WHERE clause */
2570 struct SrcList_item *pSubitem; /* The subquery */
2571 sqlite3 *db = pParse->db;
2573 /* Check to see if flattening is permitted. Return 0 if not.
2575 if( p==0 ) return 0;
2577 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2578 pSubitem = &pSrc->a[iFrom];
2579 iParent = pSubitem->iCursor;
2580 pSub = pSubitem->pSelect;
2582 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */
2583 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */
2584 pSubSrc = pSub->pSrc;
2586 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2587 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2588 ** because they could be computed at compile-time. But when LIMIT and OFFSET
2589 ** became arbitrary expressions, we were forced to add restrictions (13)
2591 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
2592 if( pSub->pOffset ) return 0; /* Restriction (14) */
2593 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2594 return 0; /* Restriction (15) */
2596 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
2597 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2598 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */
2601 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2602 return 0; /* Restriction (6) */
2604 if( p->pOrderBy && pSub->pOrderBy ){
2605 return 0; /* Restriction (11) */
2607 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
2608 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
2610 /* OBSOLETE COMMENT 1:
2611 ** Restriction 3: If the subquery is a join, make sure the subquery is
2612 ** not used as the right operand of an outer join. Examples of why this
2615 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
2617 ** If we flatten the above, we would get
2619 ** (t1 LEFT OUTER JOIN t2) JOIN t3
2621 ** which is not at all the same thing.
2623 ** OBSOLETE COMMENT 2:
2624 ** Restriction 12: If the subquery is the right operand of a left outer
2625 ** join, make sure the subquery has no WHERE clause.
2626 ** An examples of why this is not allowed:
2628 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2630 ** If we flatten the above, we would get
2632 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2634 ** But the t2.x>0 test will always fail on a NULL row of t2, which
2635 ** effectively converts the OUTER JOIN into an INNER JOIN.
2637 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2638 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2639 ** is fraught with danger. Best to avoid the whole thing. If the
2640 ** subquery is the right term of a LEFT JOIN, then do not flatten.
2642 if( (pSubitem->jointype & JT_OUTER)!=0 ){
2646 /* Restriction 17: If the sub-query is a compound SELECT, then it must
2647 ** use only the UNION ALL operator. And none of the simple select queries
2648 ** that make up the compound SELECT are allowed to be aggregate or distinct
2652 if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2655 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2656 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2657 || (pSub1->pPrior && pSub1->op!=TK_ALL)
2658 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
2664 /* Restriction 18. */
2667 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2668 if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2673 /***** If we reach this point, flattening is permitted. *****/
2675 /* Authorize the subquery */
2676 pParse->zAuthContext = pSubitem->zName;
2677 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2678 pParse->zAuthContext = zSavedAuthContext;
2680 /* If the sub-query is a compound SELECT statement, then (by restrictions
2681 ** 17 and 18 above) it must be a UNION ALL and the parent query must
2684 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
2686 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2687 ** creates N copies of the parent query without any ORDER BY, LIMIT or
2688 ** OFFSET clauses and joins them to the left-hand-side of the original
2689 ** using UNION ALL operators. In this case N is the number of simple
2690 ** select statements in the compound sub-query.
2692 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2694 ExprList *pOrderBy = p->pOrderBy;
2695 Expr *pLimit = p->pLimit;
2696 Expr *pOffset = p->pOffset;
2697 Select *pPrior = p->pPrior;
2702 pNew = sqlite3SelectDup(db, p);
2703 pNew->pPrior = pPrior;
2705 p->pOrderBy = pOrderBy;
2709 p->pOffset = pOffset;
2711 pNew->pRightmost = 0;
2714 /* Begin flattening the iFrom-th entry of the FROM clause
2715 ** in the outer query.
2717 pSub = pSub1 = pSubitem->pSelect;
2718 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2719 int nSubSrc = pSubSrc->nSrc;
2721 pSubSrc = pSub->pSrc;
2722 pSrc = pParent->pSrc;
2724 /* Move all of the FROM elements of the subquery into the
2725 ** the FROM clause of the outer query. Before doing this, remember
2726 ** the cursor number for the original outer query FROM element in
2727 ** iParent. The iParent cursor will never be used. Subsequent code
2728 ** will scan expressions looking for iParent references and replace
2729 ** those references with expressions that resolve to the subquery FROM
2730 ** elements we are now copying in.
2734 pSubitem = &pSrc->a[iFrom];
2735 nSubSrc = pSubSrc->nSrc;
2736 jointype = pSubitem->jointype;
2737 sqlite3DbFree(db, pSubitem->zDatabase);
2738 sqlite3DbFree(db, pSubitem->zName);
2739 sqlite3DbFree(db, pSubitem->zAlias);
2740 pSubitem->zDatabase = 0;
2741 pSubitem->zName = 0;
2742 pSubitem->zAlias = 0;
2744 /* If the FROM element is a subquery, defer deleting the Table
2745 ** object associated with that subquery until code generation is
2746 ** complete, since there may still exist Expr.pTab entires that
2747 ** refer to the subquery even after flattening. Ticket #3346.
2749 if( (pTabToDel = pSubitem->pTab)!=0 ){
2750 if( pTabToDel->nRef==1 ){
2751 pTabToDel->pNextZombie = pParse->pZombieTab;
2752 pParse->pZombieTab = pTabToDel;
2759 if( nSubSrc!=1 || !pSrc ){
2760 int extra = nSubSrc - 1;
2761 for(i=(pSrc?1:0); i<nSubSrc; i++){
2762 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
2768 pParent->pSrc = pSrc;
2769 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2770 pSrc->a[i] = pSrc->a[i-extra];
2773 for(i=0; i<nSubSrc; i++){
2774 pSrc->a[i+iFrom] = pSubSrc->a[i];
2775 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2777 pSrc->a[iFrom].jointype = jointype;
2779 /* Now begin substituting subquery result set expressions for
2780 ** references to the iParent in the outer query.
2784 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2785 ** \ \_____________ subquery __________/ /
2786 ** \_____________________ outer query ______________________________/
2788 ** We look at every expression in the outer query and every place we see
2789 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2791 pList = pParent->pEList;
2792 for(i=0; i<pList->nExpr; i++){
2794 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2796 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2799 substExprList(db, pParent->pEList, iParent, pSub->pEList);
2801 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2802 substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2804 if( pSub->pOrderBy ){
2805 assert( pParent->pOrderBy==0 );
2806 pParent->pOrderBy = pSub->pOrderBy;
2808 }else if( pParent->pOrderBy ){
2809 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2812 pWhere = sqlite3ExprDup(db, pSub->pWhere);
2816 if( subqueryIsAgg ){
2817 assert( pParent->pHaving==0 );
2818 pParent->pHaving = pParent->pWhere;
2819 pParent->pWhere = pWhere;
2820 substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2821 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2822 sqlite3ExprDup(db, pSub->pHaving));
2823 assert( pParent->pGroupBy==0 );
2824 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
2826 substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2827 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2830 /* The flattened query is distinct if either the inner or the
2831 ** outer query is distinct.
2833 pParent->selFlags |= pSub->selFlags & SF_Distinct;
2836 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2838 ** One is tempted to try to add a and b to combine the limits. But this
2839 ** does not work if either limit is negative.
2842 pParent->pLimit = pSub->pLimit;
2847 /* Finially, delete what is left of the subquery and return
2850 sqlite3SelectDelete(db, pSub1);
2854 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2857 ** Analyze the SELECT statement passed as an argument to see if it
2858 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2859 ** it is, or 0 otherwise. At present, a query is considered to be
2860 ** a min()/max() query if:
2862 ** 1. There is a single object in the FROM clause.
2864 ** 2. There is a single expression in the result set, and it is
2865 ** either min(x) or max(x), where x is a column reference.
2867 static int minMaxQuery(Parse *pParse, Select *p){
2869 ExprList *pEList = p->pEList;
2871 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2872 pExpr = pEList->a[0].pExpr;
2873 pEList = pExpr->pList;
2874 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
2875 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2876 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
2877 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2878 return WHERE_ORDERBY_MIN;
2879 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2880 return WHERE_ORDERBY_MAX;
2882 return WHERE_ORDERBY_NORMAL;
2886 ** This routine is a Walker callback for "expanding" a SELECT statement.
2887 ** "Expanding" means to do the following:
2889 ** (1) Make sure VDBE cursor numbers have been assigned to every
2890 ** element of the FROM clause.
2892 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
2893 ** defines FROM clause. When views appear in the FROM clause,
2894 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
2895 ** that implements the view. A copy is made of the view's SELECT
2896 ** statement so that we can freely modify or delete that statement
2897 ** without worrying about messing up the presistent representation
2900 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword
2901 ** on joins and the ON and USING clause of joins.
2903 ** (4) Scan the list of columns in the result set (pEList) looking
2904 ** for instances of the "*" operator or the TABLE.* operator.
2905 ** If found, expand each "*" to be every column in every table
2906 ** and TABLE.* to be every column in TABLE.
2909 static int selectExpander(Walker *pWalker, Select *p){
2910 Parse *pParse = pWalker->pParse;
2914 struct SrcList_item *pFrom;
2915 sqlite3 *db = pParse->db;
2917 if( db->mallocFailed ){
2920 if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
2923 p->selFlags |= SF_Expanded;
2927 /* Make sure cursor numbers have been assigned to all entries in
2928 ** the FROM clause of the SELECT statement.
2930 sqlite3SrcListAssignCursors(pParse, pTabList);
2932 /* Look up every table named in the FROM clause of the select. If
2933 ** an entry of the FROM clause is a subquery instead of a table or view,
2934 ** then create a transient table structure to describe the subquery.
2936 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
2938 if( pFrom->pTab!=0 ){
2939 /* This statement has already been prepared. There is no need
2940 ** to go further. */
2944 if( pFrom->zName==0 ){
2945 #ifndef SQLITE_OMIT_SUBQUERY
2946 Select *pSel = pFrom->pSelect;
2947 /* A sub-query in the FROM clause of a SELECT */
2949 assert( pFrom->pTab==0 );
2950 sqlite3WalkSelect(pWalker, pSel);
2951 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
2952 if( pTab==0 ) return WRC_Abort;
2955 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
2956 while( pSel->pPrior ){ pSel = pSel->pPrior; }
2957 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
2959 pTab->tabFlags |= TF_Ephemeral;
2962 /* An ordinary table or view name in the FROM clause */
2963 assert( pFrom->pTab==0 );
2964 pFrom->pTab = pTab =
2965 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
2966 if( pTab==0 ) return WRC_Abort;
2968 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
2969 if( pTab->pSelect || IsVirtual(pTab) ){
2970 /* We reach here if the named table is a really a view */
2971 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
2973 /* If pFrom->pSelect!=0 it means we are dealing with a
2974 ** view within a view. The SELECT structure has already been
2975 ** copied by the outer view so we can skip the copy step here
2976 ** in the inner view.
2978 if( pFrom->pSelect==0 ){
2979 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
2980 sqlite3WalkSelect(pWalker, pFrom->pSelect);
2987 /* Process NATURAL keywords, and ON and USING clauses of joins.
2989 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
2993 /* For every "*" that occurs in the column list, insert the names of
2994 ** all columns in all tables. And for every TABLE.* insert the names
2995 ** of all columns in TABLE. The parser inserted a special expression
2996 ** with the TK_ALL operator for each "*" that it found in the column list.
2997 ** The following code just has to locate the TK_ALL expressions and expand
2998 ** each one to the list of all columns in all tables.
3000 ** The first loop just checks to see if there are any "*" operators
3001 ** that need expanding.
3003 for(k=0; k<pEList->nExpr; k++){
3004 Expr *pE = pEList->a[k].pExpr;
3005 if( pE->op==TK_ALL ) break;
3006 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
3007 && pE->pLeft && pE->pLeft->op==TK_ID ) break;
3009 if( k<pEList->nExpr ){
3011 ** If we get here it means the result set contains one or more "*"
3012 ** operators that need to be expanded. Loop through each expression
3013 ** in the result set and expand them one by one.
3015 struct ExprList_item *a = pEList->a;
3017 int flags = pParse->db->flags;
3018 int longNames = (flags & SQLITE_FullColNames)!=0
3019 && (flags & SQLITE_ShortColNames)==0;
3021 for(k=0; k<pEList->nExpr; k++){
3022 Expr *pE = a[k].pExpr;
3023 if( pE->op!=TK_ALL &&
3024 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
3025 /* This particular expression does not need to be expanded.
3027 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
3029 pNew->a[pNew->nExpr-1].zName = a[k].zName;
3034 /* This expression is a "*" or a "TABLE.*" and needs to be
3036 int tableSeen = 0; /* Set to 1 when TABLE matches */
3037 char *zTName; /* text of name of TABLE */
3038 if( pE->op==TK_DOT && pE->pLeft ){
3039 zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
3043 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3044 Table *pTab = pFrom->pTab;
3045 char *zTabName = pFrom->zAlias;
3046 if( zTabName==0 || zTabName[0]==0 ){
3047 zTabName = pTab->zName;
3049 if( db->mallocFailed ) break;
3050 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3054 for(j=0; j<pTab->nCol; j++){
3055 Expr *pExpr, *pRight;
3056 char *zName = pTab->aCol[j].zName;
3058 /* If a column is marked as 'hidden' (currently only possible
3059 ** for virtual tables), do not include it in the expanded
3062 if( IsHiddenColumn(&pTab->aCol[j]) ){
3063 assert(IsVirtual(pTab));
3068 struct SrcList_item *pLeft = &pTabList->a[i-1];
3069 if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3070 columnIndex(pLeft->pTab, zName)>=0 ){
3071 /* In a NATURAL join, omit the join columns from the
3072 ** table on the right */
3075 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3076 /* In a join with a USING clause, omit columns in the
3077 ** using clause from the table on the right. */
3081 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3082 if( pRight==0 ) break;
3083 setQuotedToken(pParse, &pRight->token, zName);
3084 if( longNames || pTabList->nSrc>1 ){
3085 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3086 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3087 if( pExpr==0 ) break;
3088 setQuotedToken(pParse, &pLeft->token, zTabName);
3089 setToken(&pExpr->span,
3090 sqlite3MPrintf(db, "%s.%s", zTabName, zName));
3091 pExpr->span.dyn = 1;
3094 pExpr->token.dyn = 0;
3097 pExpr->span = pExpr->token;
3098 pExpr->span.dyn = 0;
3101 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
3103 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
3109 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3111 sqlite3ErrorMsg(pParse, "no tables specified");
3114 sqlite3DbFree(db, zTName);
3117 sqlite3ExprListDelete(db, pEList);
3120 #if SQLITE_MAX_COLUMN
3121 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3122 sqlite3ErrorMsg(pParse, "too many columns in result set");
3125 return WRC_Continue;
3129 ** No-op routine for the parse-tree walker.
3131 ** When this routine is the Walker.xExprCallback then expression trees
3132 ** are walked without any actions being taken at each node. Presumably,
3133 ** when this routine is used for Walker.xExprCallback then
3134 ** Walker.xSelectCallback is set to do something useful for every
3135 ** subquery in the parser tree.
3137 static int exprWalkNoop(Walker *pWalker, Expr *pExpr){
3138 return WRC_Continue;
3142 ** This routine "expands" a SELECT statement and all of its subqueries.
3143 ** For additional information on what it means to "expand" a SELECT
3144 ** statement, see the comment on the selectExpand worker callback above.
3146 ** Expanding a SELECT statement is the first step in processing a
3147 ** SELECT statement. The SELECT statement must be expanded before
3148 ** name resolution is performed.
3150 ** If anything goes wrong, an error message is written into pParse.
3151 ** The calling function can detect the problem by looking at pParse->nErr
3152 ** and/or pParse->db->mallocFailed.
3154 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3156 w.xSelectCallback = selectExpander;
3157 w.xExprCallback = exprWalkNoop;
3159 sqlite3WalkSelect(&w, pSelect);
3163 #ifndef SQLITE_OMIT_SUBQUERY
3165 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3168 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3169 ** information to the Table structure that represents the result set
3170 ** of that subquery.
3172 ** The Table structure that represents the result set was constructed
3173 ** by selectExpander() but the type and collation information was omitted
3174 ** at that point because identifiers had not yet been resolved. This
3175 ** routine is called after identifier resolution.
3177 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3181 struct SrcList_item *pFrom;
3183 assert( p->selFlags & SF_Resolved );
3184 if( (p->selFlags & SF_HasTypeInfo)==0 ){
3185 p->selFlags |= SF_HasTypeInfo;
3186 pParse = pWalker->pParse;
3188 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3189 Table *pTab = pFrom->pTab;
3190 if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3191 /* A sub-query in the FROM clause of a SELECT */
3192 Select *pSel = pFrom->pSelect;
3194 while( pSel->pPrior ) pSel = pSel->pPrior;
3195 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3199 return WRC_Continue;
3205 ** This routine adds datatype and collating sequence information to
3206 ** the Table structures of all FROM-clause subqueries in a
3207 ** SELECT statement.
3209 ** Use this routine after name resolution.
3211 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3212 #ifndef SQLITE_OMIT_SUBQUERY
3214 w.xSelectCallback = selectAddSubqueryTypeInfo;
3215 w.xExprCallback = exprWalkNoop;
3217 sqlite3WalkSelect(&w, pSelect);
3223 ** This routine sets of a SELECT statement for processing. The
3224 ** following is accomplished:
3226 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
3227 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
3228 ** * ON and USING clauses are shifted into WHERE statements
3229 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
3230 ** * Identifiers in expression are matched to tables.
3232 ** This routine acts recursively on all subqueries within the SELECT.
3234 void sqlite3SelectPrep(
3235 Parse *pParse, /* The parser context */
3236 Select *p, /* The SELECT statement being coded. */
3237 NameContext *pOuterNC /* Name context for container */
3242 if( p->selFlags & SF_HasTypeInfo ) return;
3243 if( pParse->nErr || db->mallocFailed ) return;
3244 sqlite3SelectExpand(pParse, p);
3245 if( pParse->nErr || db->mallocFailed ) return;
3246 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3247 if( pParse->nErr || db->mallocFailed ) return;
3248 sqlite3SelectAddTypeInfo(pParse, p);
3252 ** Reset the aggregate accumulator.
3254 ** The aggregate accumulator is a set of memory cells that hold
3255 ** intermediate results while calculating an aggregate. This
3256 ** routine simply stores NULLs in all of those memory cells.
3258 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3259 Vdbe *v = pParse->pVdbe;
3261 struct AggInfo_func *pFunc;
3262 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3265 for(i=0; i<pAggInfo->nColumn; i++){
3266 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3268 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3269 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3270 if( pFunc->iDistinct>=0 ){
3271 Expr *pE = pFunc->pExpr;
3272 if( pE->pList==0 || pE->pList->nExpr!=1 ){
3273 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
3274 "by an expression");
3275 pFunc->iDistinct = -1;
3277 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
3278 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3279 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3286 ** Invoke the OP_AggFinalize opcode for every aggregate function
3287 ** in the AggInfo structure.
3289 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3290 Vdbe *v = pParse->pVdbe;
3292 struct AggInfo_func *pF;
3293 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3294 ExprList *pList = pF->pExpr->pList;
3295 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3296 (void*)pF->pFunc, P4_FUNCDEF);
3301 ** Update the accumulator memory cells for an aggregate based on
3302 ** the current cursor position.
3304 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3305 Vdbe *v = pParse->pVdbe;
3307 struct AggInfo_func *pF;
3308 struct AggInfo_col *pC;
3310 pAggInfo->directMode = 1;
3311 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3315 ExprList *pList = pF->pExpr->pList;
3317 nArg = pList->nExpr;
3318 regAgg = sqlite3GetTempRange(pParse, nArg);
3319 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3324 if( pF->iDistinct>=0 ){
3325 addrNext = sqlite3VdbeMakeLabel(v);
3327 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3329 if( pF->pFunc->needCollSeq ){
3331 struct ExprList_item *pItem;
3333 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */
3334 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3335 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3338 pColl = pParse->db->pDfltColl;
3340 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3342 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3343 (void*)pF->pFunc, P4_FUNCDEF);
3344 sqlite3VdbeChangeP5(v, nArg);
3345 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3346 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3348 sqlite3VdbeResolveLabel(v, addrNext);
3351 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3352 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3354 pAggInfo->directMode = 0;
3358 ** Generate code for the SELECT statement given in the p argument.
3360 ** The results are distributed in various ways depending on the
3361 ** contents of the SelectDest structure pointed to by argument pDest
3364 ** pDest->eDest Result
3365 ** ------------ -------------------------------------------
3366 ** SRT_Output Generate a row of output (using the OP_ResultRow
3367 ** opcode) for each row in the result set.
3369 ** SRT_Mem Only valid if the result is a single column.
3370 ** Store the first column of the first result row
3371 ** in register pDest->iParm then abandon the rest
3372 ** of the query. This destination implies "LIMIT 1".
3374 ** SRT_Set The result must be a single column. Store each
3375 ** row of result as the key in table pDest->iParm.
3376 ** Apply the affinity pDest->affinity before storing
3377 ** results. Used to implement "IN (SELECT ...)".
3379 ** SRT_Union Store results as a key in a temporary table pDest->iParm.
3381 ** SRT_Except Remove results from the temporary table pDest->iParm.
3383 ** SRT_Table Store results in temporary table pDest->iParm.
3384 ** This is like SRT_EphemTab except that the table
3385 ** is assumed to already be open.
3387 ** SRT_EphemTab Create an temporary table pDest->iParm and store
3388 ** the result there. The cursor is left open after
3389 ** returning. This is like SRT_Table except that
3390 ** this destination uses OP_OpenEphemeral to create
3393 ** SRT_Coroutine Generate a co-routine that returns a new row of
3394 ** results each time it is invoked. The entry point
3395 ** of the co-routine is stored in register pDest->iParm.
3397 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result
3398 ** set is not empty.
3400 ** SRT_Discard Throw the results away. This is used by SELECT
3401 ** statements within triggers whose only purpose is
3402 ** the side-effects of functions.
3404 ** This routine returns the number of errors. If any errors are
3405 ** encountered, then an appropriate error message is left in
3408 ** This routine does NOT free the Select structure passed in. The
3409 ** calling function needs to do that.
3412 Parse *pParse, /* The parser context */
3413 Select *p, /* The SELECT statement being coded. */
3414 SelectDest *pDest /* What to do with the query results */
3416 int i, j; /* Loop counters */
3417 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
3418 Vdbe *v; /* The virtual machine under construction */
3419 int isAgg; /* True for select lists like "count(*)" */
3420 ExprList *pEList; /* List of columns to extract. */
3421 SrcList *pTabList; /* List of tables to select from */
3422 Expr *pWhere; /* The WHERE clause. May be NULL */
3423 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */
3424 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
3425 Expr *pHaving; /* The HAVING clause. May be NULL */
3426 int isDistinct; /* True if the DISTINCT keyword is present */
3427 int distinct; /* Table to use for the distinct set */
3428 int rc = 1; /* Value to return from this function */
3429 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */
3430 AggInfo sAggInfo; /* Information used by aggregate queries */
3431 int iEnd; /* Address of the end of the query */
3432 sqlite3 *db; /* The database connection */
3435 if( p==0 || db->mallocFailed || pParse->nErr ){
3438 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3439 memset(&sAggInfo, 0, sizeof(sAggInfo));
3441 pOrderBy = p->pOrderBy;
3442 if( IgnorableOrderby(pDest) ){
3445 /* In these cases the DISTINCT operator makes no difference to the
3446 ** results, so remove it if it were specified.
3448 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3449 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3450 p->selFlags &= ~SF_Distinct;
3452 sqlite3SelectPrep(pParse, p, 0);
3456 p->pOrderBy = pOrderBy;
3459 /* Make local copies of the parameters for this query.
3462 isAgg = (p->selFlags & SF_Aggregate)!=0;
3464 if( pEList==0 ) goto select_end;
3467 ** Do not even attempt to generate any code if we have already seen
3468 ** errors before this routine starts.
3470 if( pParse->nErr>0 ) goto select_end;
3472 /* ORDER BY is ignored for some destinations.
3474 if( IgnorableOrderby(pDest) ){
3478 /* Begin generating code.
3480 v = sqlite3GetVdbe(pParse);
3481 if( v==0 ) goto select_end;
3483 /* Generate code for all sub-queries in the FROM clause
3485 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3486 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3487 struct SrcList_item *pItem = &pTabList->a[i];
3489 Select *pSub = pItem->pSelect;
3492 if( pSub==0 || pItem->isPopulated ) continue;
3494 /* Increment Parse.nHeight by the height of the largest expression
3495 ** tree refered to by this, the parent select. The child select
3496 ** may contain expression trees of at most
3497 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3498 ** more conservative than necessary, but much easier than enforcing
3501 pParse->nHeight += sqlite3SelectExprHeight(p);
3503 /* Check to see if the subquery can be absorbed into the parent. */
3504 isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3505 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3508 p->selFlags |= SF_Aggregate;
3512 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3513 assert( pItem->isPopulated==0 );
3514 sqlite3Select(pParse, pSub, &dest);
3515 pItem->isPopulated = 1;
3517 if( pParse->nErr || db->mallocFailed ){
3520 pParse->nHeight -= sqlite3SelectExprHeight(p);
3522 if( !IgnorableOrderby(pDest) ){
3523 pOrderBy = p->pOrderBy;
3529 pGroupBy = p->pGroupBy;
3530 pHaving = p->pHaving;
3531 isDistinct = (p->selFlags & SF_Distinct)!=0;
3533 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3534 /* If there is are a sequence of queries, do the earlier ones first.
3537 if( p->pRightmost==0 ){
3538 Select *pLoop, *pRight = 0;
3541 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3542 pLoop->pRightmost = p;
3543 pLoop->pNext = pRight;
3546 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3547 if( mxSelect && cnt>mxSelect ){
3548 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3552 return multiSelect(pParse, p, pDest);
3556 /* If writing to memory or generating a set
3557 ** only a single column may be output.
3559 #ifndef SQLITE_OMIT_SUBQUERY
3560 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3565 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3566 ** GROUP BY might use an index, DISTINCT never does.
3568 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
3569 p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
3570 pGroupBy = p->pGroupBy;
3571 p->selFlags &= ~SF_Distinct;
3575 /* If there is an ORDER BY clause, then this sorting
3576 ** index might end up being unused if the data can be
3577 ** extracted in pre-sorted order. If that is the case, then the
3578 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3579 ** we figure out that the sorting index is not needed. The addrSortIndex
3580 ** variable is used to facilitate that change.
3584 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3585 pOrderBy->iECursor = pParse->nTab++;
3586 p->addrOpenEphm[2] = addrSortIndex =
3587 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3588 pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3589 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3594 /* If the output is destined for a temporary table, open that table.
3596 if( pDest->eDest==SRT_EphemTab ){
3597 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3602 iEnd = sqlite3VdbeMakeLabel(v);
3603 computeLimitRegisters(pParse, p, iEnd);
3605 /* Open a virtual index to use for the distinct set.
3609 assert( isAgg || pGroupBy );
3610 distinct = pParse->nTab++;
3611 pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3612 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3613 (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3618 /* Aggregate and non-aggregate queries are handled differently */
3619 if( !isAgg && pGroupBy==0 ){
3620 /* This case is for non-aggregate queries
3621 ** Begin the database scan
3623 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3624 if( pWInfo==0 ) goto select_end;
3626 /* If sorting index that was created by a prior OP_OpenEphemeral
3627 ** instruction ended up not being needed, then change the OP_OpenEphemeral
3630 if( addrSortIndex>=0 && pOrderBy==0 ){
3631 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3632 p->addrOpenEphm[2] = -1;
3635 /* Use the standard inner loop
3637 assert(!isDistinct);
3638 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3639 pWInfo->iContinue, pWInfo->iBreak);
3641 /* End the database scan loop.
3643 sqlite3WhereEnd(pWInfo);
3645 /* This is the processing for aggregate queries */
3646 NameContext sNC; /* Name context for processing aggregate information */
3647 int iAMem; /* First Mem address for storing current GROUP BY */
3648 int iBMem; /* First Mem address for previous GROUP BY */
3649 int iUseFlag; /* Mem address holding flag indicating that at least
3650 ** one row of the input to the aggregator has been
3652 int iAbortFlag; /* Mem address which causes query abort if positive */
3653 int groupBySort; /* Rows come from source in GROUP BY order */
3654 int addrEnd; /* End of processing for this SELECT */
3656 /* Remove any and all aliases between the result set and the
3660 int i; /* Loop counter */
3661 struct ExprList_item *pItem; /* For looping over expression in a list */
3663 for(i=p->pEList->nExpr, pItem=p->pEList->a; i>0; i--, pItem++){
3666 for(i=pGroupBy->nExpr, pItem=pGroupBy->a; i>0; i--, pItem++){
3672 /* Create a label to jump to when we want to abort the query */
3673 addrEnd = sqlite3VdbeMakeLabel(v);
3675 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3676 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3677 ** SELECT statement.
3679 memset(&sNC, 0, sizeof(sNC));
3680 sNC.pParse = pParse;
3681 sNC.pSrcList = pTabList;
3682 sNC.pAggInfo = &sAggInfo;
3683 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3684 sAggInfo.pGroupBy = pGroupBy;
3685 sqlite3ExprAnalyzeAggList(&sNC, pEList);
3686 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3688 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3690 sAggInfo.nAccumulator = sAggInfo.nColumn;
3691 for(i=0; i<sAggInfo.nFunc; i++){
3692 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
3694 if( db->mallocFailed ) goto select_end;
3696 /* Processing for aggregates with GROUP BY is very different and
3697 ** much more complex than aggregates without a GROUP BY.
3700 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
3701 int j1; /* A-vs-B comparision jump */
3702 int addrOutputRow; /* Start of subroutine that outputs a result row */
3703 int regOutputRow; /* Return address register for output subroutine */
3704 int addrSetAbort; /* Set the abort flag and return */
3705 int addrTopOfLoop; /* Top of the input loop */
3706 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3707 int addrReset; /* Subroutine for resetting the accumulator */
3708 int regReset; /* Return address register for reset subroutine */
3710 /* If there is a GROUP BY clause we might need a sorting index to
3711 ** implement it. Allocate that sorting index now. If it turns out
3712 ** that we do not need it after all, the OpenEphemeral instruction
3713 ** will be converted into a Noop.
3715 sAggInfo.sortingIdx = pParse->nTab++;
3716 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3717 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3718 sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3719 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3721 /* Initialize memory locations used by GROUP BY aggregate processing
3723 iUseFlag = ++pParse->nMem;
3724 iAbortFlag = ++pParse->nMem;
3725 regOutputRow = ++pParse->nMem;
3726 addrOutputRow = sqlite3VdbeMakeLabel(v);
3727 regReset = ++pParse->nMem;
3728 addrReset = sqlite3VdbeMakeLabel(v);
3729 iAMem = pParse->nMem + 1;
3730 pParse->nMem += pGroupBy->nExpr;
3731 iBMem = pParse->nMem + 1;
3732 pParse->nMem += pGroupBy->nExpr;
3733 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3734 VdbeComment((v, "clear abort flag"));
3735 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3736 VdbeComment((v, "indicate accumulator empty"));
3738 /* Begin a loop that will extract all source rows in GROUP BY order.
3739 ** This might involve two separate loops with an OP_Sort in between, or
3740 ** it might be a single loop that uses an index to extract information
3741 ** in the right order to begin with.
3743 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3744 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3745 if( pWInfo==0 ) goto select_end;
3747 /* The optimizer is able to deliver rows in group by order so
3748 ** we do not have to sort. The OP_OpenEphemeral table will be
3749 ** cancelled later because we still need to use the pKeyInfo
3751 pGroupBy = p->pGroupBy;
3754 /* Rows are coming out in undetermined order. We have to push
3755 ** each row into a sorting index, terminate the first loop,
3756 ** then loop over the sorting index in order to get the output
3765 nGroupBy = pGroupBy->nExpr;
3766 nCol = nGroupBy + 1;
3768 for(i=0; i<sAggInfo.nColumn; i++){
3769 if( sAggInfo.aCol[i].iSorterColumn>=j ){
3774 regBase = sqlite3GetTempRange(pParse, nCol);
3775 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3776 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3778 for(i=0; i<sAggInfo.nColumn; i++){
3779 struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3780 if( pCol->iSorterColumn>=j ){
3781 int r1 = j + regBase;
3784 r2 = sqlite3ExprCodeGetColumn(pParse,
3785 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3787 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3792 regRecord = sqlite3GetTempReg(pParse);
3793 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3794 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3795 sqlite3ReleaseTempReg(pParse, regRecord);
3796 sqlite3ReleaseTempRange(pParse, regBase, nCol);
3797 sqlite3WhereEnd(pWInfo);
3798 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3799 VdbeComment((v, "GROUP BY sort"));
3800 sAggInfo.useSortingIdx = 1;
3803 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3804 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3805 ** Then compare the current GROUP BY terms against the GROUP BY terms
3806 ** from the previous row currently stored in a0, a1, a2...
3808 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3809 for(j=0; j<pGroupBy->nExpr; j++){
3811 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3813 sAggInfo.directMode = 1;
3814 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3817 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3818 (char*)pKeyInfo, P4_KEYINFO);
3819 j1 = sqlite3VdbeCurrentAddr(v);
3820 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3822 /* Generate code that runs whenever the GROUP BY changes.
3823 ** Changes in the GROUP BY are detected by the previous code
3824 ** block. If there were no changes, this block is skipped.
3826 ** This code copies current group by terms in b0,b1,b2,...
3827 ** over to a0,a1,a2. It then calls the output subroutine
3828 ** and resets the aggregate accumulator registers in preparation
3829 ** for the next GROUP BY batch.
3831 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3832 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3833 VdbeComment((v, "output one row"));
3834 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3835 VdbeComment((v, "check abort flag"));
3836 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3837 VdbeComment((v, "reset accumulator"));
3839 /* Update the aggregate accumulators based on the content of
3842 sqlite3VdbeJumpHere(v, j1);
3843 updateAccumulator(pParse, &sAggInfo);
3844 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
3845 VdbeComment((v, "indicate data in accumulator"));
3850 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3852 sqlite3WhereEnd(pWInfo);
3853 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3856 /* Output the final row of result
3858 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3859 VdbeComment((v, "output final row"));
3861 /* Jump over the subroutines
3863 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
3865 /* Generate a subroutine that outputs a single row of the result
3866 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
3867 ** is less than or equal to zero, the subroutine is a no-op. If
3868 ** the processing calls for the query to abort, this subroutine
3869 ** increments the iAbortFlag memory location before returning in
3870 ** order to signal the caller to abort.
3872 addrSetAbort = sqlite3VdbeCurrentAddr(v);
3873 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3874 VdbeComment((v, "set abort flag"));
3875 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3876 sqlite3VdbeResolveLabel(v, addrOutputRow);
3877 addrOutputRow = sqlite3VdbeCurrentAddr(v);
3878 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3879 VdbeComment((v, "Groupby result generator entry point"));
3880 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3881 finalizeAggFunctions(pParse, &sAggInfo);
3883 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3885 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3887 addrOutputRow+1, addrSetAbort);
3888 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3889 VdbeComment((v, "end groupby result generator"));
3891 /* Generate a subroutine that will reset the group-by accumulator
3893 sqlite3VdbeResolveLabel(v, addrReset);
3894 resetAccumulator(pParse, &sAggInfo);
3895 sqlite3VdbeAddOp1(v, OP_Return, regReset);
3897 } /* endif pGroupBy */
3899 ExprList *pMinMax = 0;
3903 /* Check if the query is of one of the following forms:
3905 ** SELECT min(x) FROM ...
3906 ** SELECT max(x) FROM ...
3908 ** If it is, then ask the code in where.c to attempt to sort results
3909 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
3910 ** If where.c is able to produce results sorted in this order, then
3911 ** add vdbe code to break out of the processing loop after the
3912 ** first iteration (since the first iteration of the loop is
3913 ** guaranteed to operate on the row with the minimum or maximum
3914 ** value of x, the only row required).
3916 ** A special flag must be passed to sqlite3WhereBegin() to slightly
3917 ** modify behaviour as follows:
3919 ** + If the query is a "SELECT min(x)", then the loop coded by
3920 ** where.c should not iterate over any values with a NULL value
3923 ** + The optimizer code in where.c (the thing that decides which
3924 ** index or indices to use) should place a different priority on
3925 ** satisfying the 'ORDER BY' clause than it does in other cases.
3926 ** Refer to code and comments in where.c for details.
3928 flag = minMaxQuery(pParse, p);
3930 pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
3931 if( pMinMax && !db->mallocFailed ){
3932 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
3933 pMinMax->a[0].pExpr->op = TK_COLUMN;
3937 /* This case runs if the aggregate has no GROUP BY clause. The
3938 ** processing is much simpler since there is only a single row
3941 resetAccumulator(pParse, &sAggInfo);
3942 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
3944 sqlite3ExprListDelete(db, pDel);
3947 updateAccumulator(pParse, &sAggInfo);
3948 if( !pMinMax && flag ){
3949 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
3950 VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
3952 sqlite3WhereEnd(pWInfo);
3953 finalizeAggFunctions(pParse, &sAggInfo);
3956 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
3958 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3959 pDest, addrEnd, addrEnd);
3961 sqlite3ExprListDelete(db, pDel);
3963 sqlite3VdbeResolveLabel(v, addrEnd);
3965 } /* endif aggregate query */
3967 /* If there is an ORDER BY clause, then we need to sort the results
3968 ** and send them to the callback one by one.
3971 generateSortTail(pParse, p, v, pEList->nExpr, pDest);
3974 /* Jump here to skip this query
3976 sqlite3VdbeResolveLabel(v, iEnd);
3978 /* The SELECT was successfully coded. Set the return code to 0
3979 ** to indicate no errors.
3983 /* Control jumps to here if an error is encountered above, or upon
3984 ** successful coding of the SELECT.
3988 /* Identify column names if results of the SELECT are to be output.
3990 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
3991 generateColumnNames(pParse, pTabList, pEList);
3994 sqlite3DbFree(db, sAggInfo.aCol);
3995 sqlite3DbFree(db, sAggInfo.aFunc);
3999 #if defined(SQLITE_DEBUG)
4001 *******************************************************************************
4002 ** The following code is used for testing and debugging only. The code
4003 ** that follows does not appear in normal builds.
4005 ** These routines are used to print out the content of all or part of a
4006 ** parse structures such as Select or Expr. Such printouts are useful
4007 ** for helping to understand what is happening inside the code generator
4008 ** during the execution of complex SELECT statements.
4010 ** These routine are not called anywhere from within the normal
4011 ** code base. Then are intended to be called from within the debugger
4012 ** or from temporary "printf" statements inserted for debugging.
4014 void sqlite3PrintExpr(Expr *p){
4015 if( p->token.z && p->token.n>0 ){
4016 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4018 sqlite3DebugPrintf("(%d", p->op);
4021 sqlite3DebugPrintf(" ");
4022 sqlite3PrintExpr(p->pLeft);
4025 sqlite3DebugPrintf(" ");
4026 sqlite3PrintExpr(p->pRight);
4028 sqlite3DebugPrintf(")");
4030 void sqlite3PrintExprList(ExprList *pList){
4032 for(i=0; i<pList->nExpr; i++){
4033 sqlite3PrintExpr(pList->a[i].pExpr);
4034 if( i<pList->nExpr-1 ){
4035 sqlite3DebugPrintf(", ");
4039 void sqlite3PrintSelect(Select *p, int indent){
4040 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4041 sqlite3PrintExprList(p->pEList);
4042 sqlite3DebugPrintf("\n");
4047 for(i=0; i<p->pSrc->nSrc; i++){
4048 struct SrcList_item *pItem = &p->pSrc->a[i];
4049 sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4051 if( pItem->pSelect ){
4052 sqlite3DebugPrintf("(\n");
4053 sqlite3PrintSelect(pItem->pSelect, indent+10);
4054 sqlite3DebugPrintf("%*s)", indent+8, "");
4055 }else if( pItem->zName ){
4056 sqlite3DebugPrintf("%s", pItem->zName);
4059 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4061 if( pItem->zAlias ){
4062 sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4064 if( i<p->pSrc->nSrc-1 ){
4065 sqlite3DebugPrintf(",");
4067 sqlite3DebugPrintf("\n");
4071 sqlite3DebugPrintf("%*s WHERE ", indent, "");
4072 sqlite3PrintExpr(p->pWhere);
4073 sqlite3DebugPrintf("\n");
4076 sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4077 sqlite3PrintExprList(p->pGroupBy);
4078 sqlite3DebugPrintf("\n");
4081 sqlite3DebugPrintf("%*s HAVING ", indent, "");
4082 sqlite3PrintExpr(p->pHaving);
4083 sqlite3DebugPrintf("\n");
4086 sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4087 sqlite3PrintExprList(p->pOrderBy);
4088 sqlite3DebugPrintf("\n");
4091 /* End of the structure debug printing code
4092 *****************************************************************************/
4093 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */