os/persistentdata/persistentstorage/sqlite3api/SQLite/select.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains C code routines that are called by the parser
    13 ** to handle SELECT statements in SQLite.
    14 **
    15 ** $Id: select.c,v 1.476 2008/09/23 09:36:10 drh Exp $
    16 */
    17 #include "sqliteInt.h"
    18 
    19 
    20 /*
    21 ** Delete all the content of a Select structure but do not deallocate
    22 ** the select structure itself.
    23 */
    24 static void clearSelect(sqlite3 *db, Select *p){
    25   sqlite3ExprListDelete(db, p->pEList);
    26   sqlite3SrcListDelete(db, p->pSrc);
    27   sqlite3ExprDelete(db, p->pWhere);
    28   sqlite3ExprListDelete(db, p->pGroupBy);
    29   sqlite3ExprDelete(db, p->pHaving);
    30   sqlite3ExprListDelete(db, p->pOrderBy);
    31   sqlite3SelectDelete(db, p->pPrior);
    32   sqlite3ExprDelete(db, p->pLimit);
    33   sqlite3ExprDelete(db, p->pOffset);
    34 }
    35 
    36 /*
    37 ** Initialize a SelectDest structure.
    38 */
    39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
    40   pDest->eDest = eDest;
    41   pDest->iParm = iParm;
    42   pDest->affinity = 0;
    43   pDest->iMem = 0;
    44   pDest->nMem = 0;
    45 }
    46 
    47 
    48 /*
    49 ** Allocate a new Select structure and return a pointer to that
    50 ** structure.
    51 */
    52 Select *sqlite3SelectNew(
    53   Parse *pParse,        /* Parsing context */
    54   ExprList *pEList,     /* which columns to include in the result */
    55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
    56   Expr *pWhere,         /* the WHERE clause */
    57   ExprList *pGroupBy,   /* the GROUP BY clause */
    58   Expr *pHaving,        /* the HAVING clause */
    59   ExprList *pOrderBy,   /* the ORDER BY clause */
    60   int isDistinct,       /* true if the DISTINCT keyword is present */
    61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
    62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
    63 ){
    64   Select *pNew;
    65   Select standin;
    66   sqlite3 *db = pParse->db;
    67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
    68   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
    69   if( pNew==0 ){
    70     pNew = &standin;
    71     memset(pNew, 0, sizeof(*pNew));
    72   }
    73   if( pEList==0 ){
    74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
    75   }
    76   pNew->pEList = pEList;
    77   pNew->pSrc = pSrc;
    78   pNew->pWhere = pWhere;
    79   pNew->pGroupBy = pGroupBy;
    80   pNew->pHaving = pHaving;
    81   pNew->pOrderBy = pOrderBy;
    82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
    83   pNew->op = TK_SELECT;
    84   assert( pOffset==0 || pLimit!=0 );
    85   pNew->pLimit = pLimit;
    86   pNew->pOffset = pOffset;
    87   pNew->addrOpenEphm[0] = -1;
    88   pNew->addrOpenEphm[1] = -1;
    89   pNew->addrOpenEphm[2] = -1;
    90   if( db->mallocFailed ) {
    91     clearSelect(db, pNew);
    92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
    93     pNew = 0;
    94   }
    95   return pNew;
    96 }
    97 
    98 /*
    99 ** Delete the given Select structure and all of its substructures.
   100 */
   101 void sqlite3SelectDelete(sqlite3 *db, Select *p){
   102   if( p ){
   103     clearSelect(db, p);
   104     sqlite3DbFree(db, p);
   105   }
   106 }
   107 
   108 /*
   109 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
   110 ** type of join.  Return an integer constant that expresses that type
   111 ** in terms of the following bit values:
   112 **
   113 **     JT_INNER
   114 **     JT_CROSS
   115 **     JT_OUTER
   116 **     JT_NATURAL
   117 **     JT_LEFT
   118 **     JT_RIGHT
   119 **
   120 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
   121 **
   122 ** If an illegal or unsupported join type is seen, then still return
   123 ** a join type, but put an error in the pParse structure.
   124 */
   125 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
   126   int jointype = 0;
   127   Token *apAll[3];
   128   Token *p;
   129   static const struct {
   130     const char zKeyword[8];
   131     u8 nChar;
   132     u8 code;
   133   } keywords[] = {
   134     { "natural", 7, JT_NATURAL },
   135     { "left",    4, JT_LEFT|JT_OUTER },
   136     { "right",   5, JT_RIGHT|JT_OUTER },
   137     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
   138     { "outer",   5, JT_OUTER },
   139     { "inner",   5, JT_INNER },
   140     { "cross",   5, JT_INNER|JT_CROSS },
   141   };
   142   int i, j;
   143   apAll[0] = pA;
   144   apAll[1] = pB;
   145   apAll[2] = pC;
   146   for(i=0; i<3 && apAll[i]; i++){
   147     p = apAll[i];
   148     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
   149       if( p->n==keywords[j].nChar 
   150           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
   151         jointype |= keywords[j].code;
   152         break;
   153       }
   154     }
   155     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
   156       jointype |= JT_ERROR;
   157       break;
   158     }
   159   }
   160   if(
   161      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
   162      (jointype & JT_ERROR)!=0
   163   ){
   164     const char *zSp = " ";
   165     assert( pB!=0 );
   166     if( pC==0 ){ zSp++; }
   167     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
   168        "%T %T%s%T", pA, pB, zSp, pC);
   169     jointype = JT_INNER;
   170   }else if( jointype & JT_RIGHT ){
   171     sqlite3ErrorMsg(pParse, 
   172       "RIGHT and FULL OUTER JOINs are not currently supported");
   173     jointype = JT_INNER;
   174   }
   175   return jointype;
   176 }
   177 
   178 /*
   179 ** Return the index of a column in a table.  Return -1 if the column
   180 ** is not contained in the table.
   181 */
   182 static int columnIndex(Table *pTab, const char *zCol){
   183   int i;
   184   for(i=0; i<pTab->nCol; i++){
   185     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
   186   }
   187   return -1;
   188 }
   189 
   190 /*
   191 ** Set the value of a token to a '\000'-terminated string.
   192 */
   193 static void setToken(Token *p, const char *z){
   194   p->z = (u8*)z;
   195   p->n = z ? strlen(z) : 0;
   196   p->dyn = 0;
   197 }
   198 
   199 /*
   200 ** Set the token to the double-quoted and escaped version of the string pointed
   201 ** to by z. For example;
   202 **
   203 **    {a"bc}  ->  {"a""bc"}
   204 */
   205 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
   206 
   207   /* Check if the string appears to be quoted using "..." or `...`
   208   ** or [...] or '...' or if the string contains any " characters.  
   209   ** If it does, then record a version of the string with the special
   210   ** characters escaped.
   211   */
   212   const char *z2 = z;
   213   if( *z2!='[' && *z2!='`' && *z2!='\'' ){
   214     while( *z2 ){
   215       if( *z2=='"' ) break;
   216       z2++;
   217     }
   218   }
   219 
   220   if( *z2 ){
   221     /* String contains " characters - copy and quote the string. */
   222     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
   223     if( p->z ){
   224       p->n = strlen((char *)p->z);
   225       p->dyn = 1;
   226     }
   227   }else{
   228     /* String contains no " characters - copy the pointer. */
   229     p->z = (u8*)z;
   230     p->n = (z2 - z);
   231     p->dyn = 0;
   232   }
   233 }
   234 
   235 /*
   236 ** Create an expression node for an identifier with the name of zName
   237 */
   238 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
   239   Token dummy;
   240   setToken(&dummy, zName);
   241   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
   242 }
   243 
   244 /*
   245 ** Add a term to the WHERE expression in *ppExpr that requires the
   246 ** zCol column to be equal in the two tables pTab1 and pTab2.
   247 */
   248 static void addWhereTerm(
   249   Parse *pParse,           /* Parsing context */
   250   const char *zCol,        /* Name of the column */
   251   const Table *pTab1,      /* First table */
   252   const char *zAlias1,     /* Alias for first table.  May be NULL */
   253   const Table *pTab2,      /* Second table */
   254   const char *zAlias2,     /* Alias for second table.  May be NULL */
   255   int iRightJoinTable,     /* VDBE cursor for the right table */
   256   Expr **ppExpr,           /* Add the equality term to this expression */
   257   int isOuterJoin          /* True if dealing with an OUTER join */
   258 ){
   259   Expr *pE1a, *pE1b, *pE1c;
   260   Expr *pE2a, *pE2b, *pE2c;
   261   Expr *pE;
   262 
   263   pE1a = sqlite3CreateIdExpr(pParse, zCol);
   264   pE2a = sqlite3CreateIdExpr(pParse, zCol);
   265   if( zAlias1==0 ){
   266     zAlias1 = pTab1->zName;
   267   }
   268   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
   269   if( zAlias2==0 ){
   270     zAlias2 = pTab2->zName;
   271   }
   272   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
   273   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
   274   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
   275   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
   276   if( pE && isOuterJoin ){
   277     ExprSetProperty(pE, EP_FromJoin);
   278     pE->iRightJoinTable = iRightJoinTable;
   279   }
   280   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
   281 }
   282 
   283 /*
   284 ** Set the EP_FromJoin property on all terms of the given expression.
   285 ** And set the Expr.iRightJoinTable to iTable for every term in the
   286 ** expression.
   287 **
   288 ** The EP_FromJoin property is used on terms of an expression to tell
   289 ** the LEFT OUTER JOIN processing logic that this term is part of the
   290 ** join restriction specified in the ON or USING clause and not a part
   291 ** of the more general WHERE clause.  These terms are moved over to the
   292 ** WHERE clause during join processing but we need to remember that they
   293 ** originated in the ON or USING clause.
   294 **
   295 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
   296 ** expression depends on table iRightJoinTable even if that table is not
   297 ** explicitly mentioned in the expression.  That information is needed
   298 ** for cases like this:
   299 **
   300 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
   301 **
   302 ** The where clause needs to defer the handling of the t1.x=5
   303 ** term until after the t2 loop of the join.  In that way, a
   304 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
   305 ** defer the handling of t1.x=5, it will be processed immediately
   306 ** after the t1 loop and rows with t1.x!=5 will never appear in
   307 ** the output, which is incorrect.
   308 */
   309 static void setJoinExpr(Expr *p, int iTable){
   310   while( p ){
   311     ExprSetProperty(p, EP_FromJoin);
   312     p->iRightJoinTable = iTable;
   313     setJoinExpr(p->pLeft, iTable);
   314     p = p->pRight;
   315   } 
   316 }
   317 
   318 /*
   319 ** This routine processes the join information for a SELECT statement.
   320 ** ON and USING clauses are converted into extra terms of the WHERE clause.
   321 ** NATURAL joins also create extra WHERE clause terms.
   322 **
   323 ** The terms of a FROM clause are contained in the Select.pSrc structure.
   324 ** The left most table is the first entry in Select.pSrc.  The right-most
   325 ** table is the last entry.  The join operator is held in the entry to
   326 ** the left.  Thus entry 0 contains the join operator for the join between
   327 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
   328 ** also attached to the left entry.
   329 **
   330 ** This routine returns the number of errors encountered.
   331 */
   332 static int sqliteProcessJoin(Parse *pParse, Select *p){
   333   SrcList *pSrc;                  /* All tables in the FROM clause */
   334   int i, j;                       /* Loop counters */
   335   struct SrcList_item *pLeft;     /* Left table being joined */
   336   struct SrcList_item *pRight;    /* Right table being joined */
   337 
   338   pSrc = p->pSrc;
   339   pLeft = &pSrc->a[0];
   340   pRight = &pLeft[1];
   341   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
   342     Table *pLeftTab = pLeft->pTab;
   343     Table *pRightTab = pRight->pTab;
   344     int isOuter;
   345 
   346     if( pLeftTab==0 || pRightTab==0 ) continue;
   347     isOuter = (pRight->jointype & JT_OUTER)!=0;
   348 
   349     /* When the NATURAL keyword is present, add WHERE clause terms for
   350     ** every column that the two tables have in common.
   351     */
   352     if( pRight->jointype & JT_NATURAL ){
   353       if( pRight->pOn || pRight->pUsing ){
   354         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
   355            "an ON or USING clause", 0);
   356         return 1;
   357       }
   358       for(j=0; j<pLeftTab->nCol; j++){
   359         char *zName = pLeftTab->aCol[j].zName;
   360         if( columnIndex(pRightTab, zName)>=0 ){
   361           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
   362                               pRightTab, pRight->zAlias,
   363                               pRight->iCursor, &p->pWhere, isOuter);
   364           
   365         }
   366       }
   367     }
   368 
   369     /* Disallow both ON and USING clauses in the same join
   370     */
   371     if( pRight->pOn && pRight->pUsing ){
   372       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
   373         "clauses in the same join");
   374       return 1;
   375     }
   376 
   377     /* Add the ON clause to the end of the WHERE clause, connected by
   378     ** an AND operator.
   379     */
   380     if( pRight->pOn ){
   381       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
   382       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
   383       pRight->pOn = 0;
   384     }
   385 
   386     /* Create extra terms on the WHERE clause for each column named
   387     ** in the USING clause.  Example: If the two tables to be joined are 
   388     ** A and B and the USING clause names X, Y, and Z, then add this
   389     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
   390     ** Report an error if any column mentioned in the USING clause is
   391     ** not contained in both tables to be joined.
   392     */
   393     if( pRight->pUsing ){
   394       IdList *pList = pRight->pUsing;
   395       for(j=0; j<pList->nId; j++){
   396         char *zName = pList->a[j].zName;
   397         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
   398           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
   399             "not present in both tables", zName);
   400           return 1;
   401         }
   402         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
   403                             pRightTab, pRight->zAlias,
   404                             pRight->iCursor, &p->pWhere, isOuter);
   405       }
   406     }
   407   }
   408   return 0;
   409 }
   410 
   411 /*
   412 ** Insert code into "v" that will push the record on the top of the
   413 ** stack into the sorter.
   414 */
   415 static void pushOntoSorter(
   416   Parse *pParse,         /* Parser context */
   417   ExprList *pOrderBy,    /* The ORDER BY clause */
   418   Select *pSelect,       /* The whole SELECT statement */
   419   int regData            /* Register holding data to be sorted */
   420 ){
   421   Vdbe *v = pParse->pVdbe;
   422   int nExpr = pOrderBy->nExpr;
   423   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
   424   int regRecord = sqlite3GetTempReg(pParse);
   425   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
   426   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
   427   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
   428   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
   429   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
   430   sqlite3ReleaseTempReg(pParse, regRecord);
   431   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
   432   if( pSelect->iLimit ){
   433     int addr1, addr2;
   434     int iLimit;
   435     if( pSelect->iOffset ){
   436       iLimit = pSelect->iOffset+1;
   437     }else{
   438       iLimit = pSelect->iLimit;
   439     }
   440     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
   441     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
   442     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
   443     sqlite3VdbeJumpHere(v, addr1);
   444     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
   445     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
   446     sqlite3VdbeJumpHere(v, addr2);
   447     pSelect->iLimit = 0;
   448   }
   449 }
   450 
   451 /*
   452 ** Add code to implement the OFFSET
   453 */
   454 static void codeOffset(
   455   Vdbe *v,          /* Generate code into this VM */
   456   Select *p,        /* The SELECT statement being coded */
   457   int iContinue     /* Jump here to skip the current record */
   458 ){
   459   if( p->iOffset && iContinue!=0 ){
   460     int addr;
   461     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
   462     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
   463     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
   464     VdbeComment((v, "skip OFFSET records"));
   465     sqlite3VdbeJumpHere(v, addr);
   466   }
   467 }
   468 
   469 /*
   470 ** Add code that will check to make sure the N registers starting at iMem
   471 ** form a distinct entry.  iTab is a sorting index that holds previously
   472 ** seen combinations of the N values.  A new entry is made in iTab
   473 ** if the current N values are new.
   474 **
   475 ** A jump to addrRepeat is made and the N+1 values are popped from the
   476 ** stack if the top N elements are not distinct.
   477 */
   478 static void codeDistinct(
   479   Parse *pParse,     /* Parsing and code generating context */
   480   int iTab,          /* A sorting index used to test for distinctness */
   481   int addrRepeat,    /* Jump to here if not distinct */
   482   int N,             /* Number of elements */
   483   int iMem           /* First element */
   484 ){
   485   Vdbe *v;
   486   int r1;
   487 
   488   v = pParse->pVdbe;
   489   r1 = sqlite3GetTempReg(pParse);
   490   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
   491   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
   492   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
   493   sqlite3ReleaseTempReg(pParse, r1);
   494 }
   495 
   496 /*
   497 ** Generate an error message when a SELECT is used within a subexpression
   498 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
   499 ** column.  We do this in a subroutine because the error occurs in multiple
   500 ** places.
   501 */
   502 static int checkForMultiColumnSelectError(
   503   Parse *pParse,       /* Parse context. */
   504   SelectDest *pDest,   /* Destination of SELECT results */
   505   int nExpr            /* Number of result columns returned by SELECT */
   506 ){
   507   int eDest = pDest->eDest;
   508   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
   509     sqlite3ErrorMsg(pParse, "only a single result allowed for "
   510        "a SELECT that is part of an expression");
   511     return 1;
   512   }else{
   513     return 0;
   514   }
   515 }
   516 
   517 /*
   518 ** This routine generates the code for the inside of the inner loop
   519 ** of a SELECT.
   520 **
   521 ** If srcTab and nColumn are both zero, then the pEList expressions
   522 ** are evaluated in order to get the data for this row.  If nColumn>0
   523 ** then data is pulled from srcTab and pEList is used only to get the
   524 ** datatypes for each column.
   525 */
   526 static void selectInnerLoop(
   527   Parse *pParse,          /* The parser context */
   528   Select *p,              /* The complete select statement being coded */
   529   ExprList *pEList,       /* List of values being extracted */
   530   int srcTab,             /* Pull data from this table */
   531   int nColumn,            /* Number of columns in the source table */
   532   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
   533   int distinct,           /* If >=0, make sure results are distinct */
   534   SelectDest *pDest,      /* How to dispose of the results */
   535   int iContinue,          /* Jump here to continue with next row */
   536   int iBreak              /* Jump here to break out of the inner loop */
   537 ){
   538   Vdbe *v = pParse->pVdbe;
   539   int i;
   540   int hasDistinct;        /* True if the DISTINCT keyword is present */
   541   int regResult;              /* Start of memory holding result set */
   542   int eDest = pDest->eDest;   /* How to dispose of results */
   543   int iParm = pDest->iParm;   /* First argument to disposal method */
   544   int nResultCol;             /* Number of result columns */
   545 
   546   if( v==0 ) return;
   547   assert( pEList!=0 );
   548   hasDistinct = distinct>=0;
   549   if( pOrderBy==0 && !hasDistinct ){
   550     codeOffset(v, p, iContinue);
   551   }
   552 
   553   /* Pull the requested columns.
   554   */
   555   if( nColumn>0 ){
   556     nResultCol = nColumn;
   557   }else{
   558     nResultCol = pEList->nExpr;
   559   }
   560   if( pDest->iMem==0 ){
   561     pDest->iMem = pParse->nMem+1;
   562     pDest->nMem = nResultCol;
   563     pParse->nMem += nResultCol;
   564   }else if( pDest->nMem!=nResultCol ){
   565     /* This happens when two SELECTs of a compound SELECT have differing
   566     ** numbers of result columns.  The error message will be generated by
   567     ** a higher-level routine. */
   568     return;
   569   }
   570   regResult = pDest->iMem;
   571   if( nColumn>0 ){
   572     for(i=0; i<nColumn; i++){
   573       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
   574     }
   575   }else if( eDest!=SRT_Exists ){
   576     /* If the destination is an EXISTS(...) expression, the actual
   577     ** values returned by the SELECT are not required.
   578     */
   579     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
   580   }
   581   nColumn = nResultCol;
   582 
   583   /* If the DISTINCT keyword was present on the SELECT statement
   584   ** and this row has been seen before, then do not make this row
   585   ** part of the result.
   586   */
   587   if( hasDistinct ){
   588     assert( pEList!=0 );
   589     assert( pEList->nExpr==nColumn );
   590     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
   591     if( pOrderBy==0 ){
   592       codeOffset(v, p, iContinue);
   593     }
   594   }
   595 
   596   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
   597     return;
   598   }
   599 
   600   switch( eDest ){
   601     /* In this mode, write each query result to the key of the temporary
   602     ** table iParm.
   603     */
   604 #ifndef SQLITE_OMIT_COMPOUND_SELECT
   605     case SRT_Union: {
   606       int r1;
   607       r1 = sqlite3GetTempReg(pParse);
   608       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
   609       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
   610       sqlite3ReleaseTempReg(pParse, r1);
   611       break;
   612     }
   613 
   614     /* Construct a record from the query result, but instead of
   615     ** saving that record, use it as a key to delete elements from
   616     ** the temporary table iParm.
   617     */
   618     case SRT_Except: {
   619       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
   620       break;
   621     }
   622 #endif
   623 
   624     /* Store the result as data using a unique key.
   625     */
   626     case SRT_Table:
   627     case SRT_EphemTab: {
   628       int r1 = sqlite3GetTempReg(pParse);
   629       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
   630       if( pOrderBy ){
   631         pushOntoSorter(pParse, pOrderBy, p, r1);
   632       }else{
   633         int r2 = sqlite3GetTempReg(pParse);
   634         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
   635         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
   636         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
   637         sqlite3ReleaseTempReg(pParse, r2);
   638       }
   639       sqlite3ReleaseTempReg(pParse, r1);
   640       break;
   641     }
   642 
   643 #ifndef SQLITE_OMIT_SUBQUERY
   644     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
   645     ** then there should be a single item on the stack.  Write this
   646     ** item into the set table with bogus data.
   647     */
   648     case SRT_Set: {
   649       assert( nColumn==1 );
   650       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
   651       if( pOrderBy ){
   652         /* At first glance you would think we could optimize out the
   653         ** ORDER BY in this case since the order of entries in the set
   654         ** does not matter.  But there might be a LIMIT clause, in which
   655         ** case the order does matter */
   656         pushOntoSorter(pParse, pOrderBy, p, regResult);
   657       }else{
   658         int r1 = sqlite3GetTempReg(pParse);
   659         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
   660         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
   661         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
   662         sqlite3ReleaseTempReg(pParse, r1);
   663       }
   664       break;
   665     }
   666 
   667     /* If any row exist in the result set, record that fact and abort.
   668     */
   669     case SRT_Exists: {
   670       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
   671       /* The LIMIT clause will terminate the loop for us */
   672       break;
   673     }
   674 
   675     /* If this is a scalar select that is part of an expression, then
   676     ** store the results in the appropriate memory cell and break out
   677     ** of the scan loop.
   678     */
   679     case SRT_Mem: {
   680       assert( nColumn==1 );
   681       if( pOrderBy ){
   682         pushOntoSorter(pParse, pOrderBy, p, regResult);
   683       }else{
   684         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
   685         /* The LIMIT clause will jump out of the loop for us */
   686       }
   687       break;
   688     }
   689 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
   690 
   691     /* Send the data to the callback function or to a subroutine.  In the
   692     ** case of a subroutine, the subroutine itself is responsible for
   693     ** popping the data from the stack.
   694     */
   695     case SRT_Coroutine:
   696     case SRT_Output: {
   697       if( pOrderBy ){
   698         int r1 = sqlite3GetTempReg(pParse);
   699         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
   700         pushOntoSorter(pParse, pOrderBy, p, r1);
   701         sqlite3ReleaseTempReg(pParse, r1);
   702       }else if( eDest==SRT_Coroutine ){
   703         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
   704       }else{
   705         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
   706         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
   707       }
   708       break;
   709     }
   710 
   711 #if !defined(SQLITE_OMIT_TRIGGER)
   712     /* Discard the results.  This is used for SELECT statements inside
   713     ** the body of a TRIGGER.  The purpose of such selects is to call
   714     ** user-defined functions that have side effects.  We do not care
   715     ** about the actual results of the select.
   716     */
   717     default: {
   718       assert( eDest==SRT_Discard );
   719       break;
   720     }
   721 #endif
   722   }
   723 
   724   /* Jump to the end of the loop if the LIMIT is reached.
   725   */
   726   if( p->iLimit ){
   727     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
   728                             ** pushOntoSorter() would have cleared p->iLimit */
   729     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
   730     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
   731   }
   732 }
   733 
   734 /*
   735 ** Given an expression list, generate a KeyInfo structure that records
   736 ** the collating sequence for each expression in that expression list.
   737 **
   738 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
   739 ** KeyInfo structure is appropriate for initializing a virtual index to
   740 ** implement that clause.  If the ExprList is the result set of a SELECT
   741 ** then the KeyInfo structure is appropriate for initializing a virtual
   742 ** index to implement a DISTINCT test.
   743 **
   744 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
   745 ** function is responsible for seeing that this structure is eventually
   746 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
   747 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
   748 */
   749 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
   750   sqlite3 *db = pParse->db;
   751   int nExpr;
   752   KeyInfo *pInfo;
   753   struct ExprList_item *pItem;
   754   int i;
   755 
   756   nExpr = pList->nExpr;
   757   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
   758   if( pInfo ){
   759     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
   760     pInfo->nField = nExpr;
   761     pInfo->enc = ENC(db);
   762     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
   763       CollSeq *pColl;
   764       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
   765       if( !pColl ){
   766         pColl = db->pDfltColl;
   767       }
   768       pInfo->aColl[i] = pColl;
   769       pInfo->aSortOrder[i] = pItem->sortOrder;
   770     }
   771   }
   772   return pInfo;
   773 }
   774 
   775 
   776 /*
   777 ** If the inner loop was generated using a non-null pOrderBy argument,
   778 ** then the results were placed in a sorter.  After the loop is terminated
   779 ** we need to run the sorter and output the results.  The following
   780 ** routine generates the code needed to do that.
   781 */
   782 static void generateSortTail(
   783   Parse *pParse,    /* Parsing context */
   784   Select *p,        /* The SELECT statement */
   785   Vdbe *v,          /* Generate code into this VDBE */
   786   int nColumn,      /* Number of columns of data */
   787   SelectDest *pDest /* Write the sorted results here */
   788 ){
   789   int brk = sqlite3VdbeMakeLabel(v);
   790   int cont = sqlite3VdbeMakeLabel(v);
   791   int addr;
   792   int iTab;
   793   int pseudoTab = 0;
   794   ExprList *pOrderBy = p->pOrderBy;
   795 
   796   int eDest = pDest->eDest;
   797   int iParm = pDest->iParm;
   798 
   799   int regRow;
   800   int regRowid;
   801 
   802   iTab = pOrderBy->iECursor;
   803   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
   804     pseudoTab = pParse->nTab++;
   805     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
   806     sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
   807   }
   808   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
   809   codeOffset(v, p, cont);
   810   regRow = sqlite3GetTempReg(pParse);
   811   regRowid = sqlite3GetTempReg(pParse);
   812   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
   813   switch( eDest ){
   814     case SRT_Table:
   815     case SRT_EphemTab: {
   816       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
   817       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
   818       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
   819       break;
   820     }
   821 #ifndef SQLITE_OMIT_SUBQUERY
   822     case SRT_Set: {
   823       assert( nColumn==1 );
   824       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
   825       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
   826       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
   827       break;
   828     }
   829     case SRT_Mem: {
   830       assert( nColumn==1 );
   831       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
   832       /* The LIMIT clause will terminate the loop for us */
   833       break;
   834     }
   835 #endif
   836     case SRT_Output:
   837     case SRT_Coroutine: {
   838       int i;
   839       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
   840       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
   841       for(i=0; i<nColumn; i++){
   842         assert( regRow!=pDest->iMem+i );
   843         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
   844       }
   845       if( eDest==SRT_Output ){
   846         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
   847         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
   848       }else{
   849         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
   850       }
   851       break;
   852     }
   853     default: {
   854       /* Do nothing */
   855       break;
   856     }
   857   }
   858   sqlite3ReleaseTempReg(pParse, regRow);
   859   sqlite3ReleaseTempReg(pParse, regRowid);
   860 
   861   /* LIMIT has been implemented by the pushOntoSorter() routine.
   862   */
   863   assert( p->iLimit==0 );
   864 
   865   /* The bottom of the loop
   866   */
   867   sqlite3VdbeResolveLabel(v, cont);
   868   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
   869   sqlite3VdbeResolveLabel(v, brk);
   870   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
   871     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
   872   }
   873 
   874 }
   875 
   876 /*
   877 ** Return a pointer to a string containing the 'declaration type' of the
   878 ** expression pExpr. The string may be treated as static by the caller.
   879 **
   880 ** The declaration type is the exact datatype definition extracted from the
   881 ** original CREATE TABLE statement if the expression is a column. The
   882 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
   883 ** is considered a column can be complex in the presence of subqueries. The
   884 ** result-set expression in all of the following SELECT statements is 
   885 ** considered a column by this function.
   886 **
   887 **   SELECT col FROM tbl;
   888 **   SELECT (SELECT col FROM tbl;
   889 **   SELECT (SELECT col FROM tbl);
   890 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
   891 ** 
   892 ** The declaration type for any expression other than a column is NULL.
   893 */
   894 static const char *columnType(
   895   NameContext *pNC, 
   896   Expr *pExpr,
   897   const char **pzOriginDb,
   898   const char **pzOriginTab,
   899   const char **pzOriginCol
   900 ){
   901   char const *zType = 0;
   902   char const *zOriginDb = 0;
   903   char const *zOriginTab = 0;
   904   char const *zOriginCol = 0;
   905   int j;
   906   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
   907 
   908   switch( pExpr->op ){
   909     case TK_AGG_COLUMN:
   910     case TK_COLUMN: {
   911       /* The expression is a column. Locate the table the column is being
   912       ** extracted from in NameContext.pSrcList. This table may be real
   913       ** database table or a subquery.
   914       */
   915       Table *pTab = 0;            /* Table structure column is extracted from */
   916       Select *pS = 0;             /* Select the column is extracted from */
   917       int iCol = pExpr->iColumn;  /* Index of column in pTab */
   918       while( pNC && !pTab ){
   919         SrcList *pTabList = pNC->pSrcList;
   920         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
   921         if( j<pTabList->nSrc ){
   922           pTab = pTabList->a[j].pTab;
   923           pS = pTabList->a[j].pSelect;
   924         }else{
   925           pNC = pNC->pNext;
   926         }
   927       }
   928 
   929       if( pTab==0 ){
   930         /* FIX ME:
   931         ** This can occurs if you have something like "SELECT new.x;" inside
   932         ** a trigger.  In other words, if you reference the special "new"
   933         ** table in the result set of a select.  We do not have a good way
   934         ** to find the actual table type, so call it "TEXT".  This is really
   935         ** something of a bug, but I do not know how to fix it.
   936         **
   937         ** This code does not produce the correct answer - it just prevents
   938         ** a segfault.  See ticket #1229.
   939         */
   940         zType = "TEXT";
   941         break;
   942       }
   943 
   944       assert( pTab );
   945       if( pS ){
   946         /* The "table" is actually a sub-select or a view in the FROM clause
   947         ** of the SELECT statement. Return the declaration type and origin
   948         ** data for the result-set column of the sub-select.
   949         */
   950         if( iCol>=0 && iCol<pS->pEList->nExpr ){
   951           /* If iCol is less than zero, then the expression requests the
   952           ** rowid of the sub-select or view. This expression is legal (see 
   953           ** test case misc2.2.2) - it always evaluates to NULL.
   954           */
   955           NameContext sNC;
   956           Expr *p = pS->pEList->a[iCol].pExpr;
   957           sNC.pSrcList = pS->pSrc;
   958           sNC.pNext = 0;
   959           sNC.pParse = pNC->pParse;
   960           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
   961         }
   962       }else if( pTab->pSchema ){
   963         /* A real table */
   964         assert( !pS );
   965         if( iCol<0 ) iCol = pTab->iPKey;
   966         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
   967         if( iCol<0 ){
   968           zType = "INTEGER";
   969           zOriginCol = "rowid";
   970         }else{
   971           zType = pTab->aCol[iCol].zType;
   972           zOriginCol = pTab->aCol[iCol].zName;
   973         }
   974         zOriginTab = pTab->zName;
   975         if( pNC->pParse ){
   976           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
   977           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
   978         }
   979       }
   980       break;
   981     }
   982 #ifndef SQLITE_OMIT_SUBQUERY
   983     case TK_SELECT: {
   984       /* The expression is a sub-select. Return the declaration type and
   985       ** origin info for the single column in the result set of the SELECT
   986       ** statement.
   987       */
   988       NameContext sNC;
   989       Select *pS = pExpr->pSelect;
   990       Expr *p = pS->pEList->a[0].pExpr;
   991       sNC.pSrcList = pS->pSrc;
   992       sNC.pNext = pNC;
   993       sNC.pParse = pNC->pParse;
   994       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
   995       break;
   996     }
   997 #endif
   998   }
   999   
  1000   if( pzOriginDb ){
  1001     assert( pzOriginTab && pzOriginCol );
  1002     *pzOriginDb = zOriginDb;
  1003     *pzOriginTab = zOriginTab;
  1004     *pzOriginCol = zOriginCol;
  1005   }
  1006   return zType;
  1007 }
  1008 
  1009 /*
  1010 ** Generate code that will tell the VDBE the declaration types of columns
  1011 ** in the result set.
  1012 */
  1013 static void generateColumnTypes(
  1014   Parse *pParse,      /* Parser context */
  1015   SrcList *pTabList,  /* List of tables */
  1016   ExprList *pEList    /* Expressions defining the result set */
  1017 ){
  1018 #ifndef SQLITE_OMIT_DECLTYPE
  1019   Vdbe *v = pParse->pVdbe;
  1020   int i;
  1021   NameContext sNC;
  1022   sNC.pSrcList = pTabList;
  1023   sNC.pParse = pParse;
  1024   for(i=0; i<pEList->nExpr; i++){
  1025     Expr *p = pEList->a[i].pExpr;
  1026     const char *zType;
  1027 #ifdef SQLITE_ENABLE_COLUMN_METADATA
  1028     const char *zOrigDb = 0;
  1029     const char *zOrigTab = 0;
  1030     const char *zOrigCol = 0;
  1031     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
  1032 
  1033     /* The vdbe must make its own copy of the column-type and other 
  1034     ** column specific strings, in case the schema is reset before this
  1035     ** virtual machine is deleted.
  1036     */
  1037     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
  1038     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
  1039     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
  1040 #else
  1041     zType = columnType(&sNC, p, 0, 0, 0);
  1042 #endif
  1043     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
  1044   }
  1045 #endif /* SQLITE_OMIT_DECLTYPE */
  1046 }
  1047 
  1048 /*
  1049 ** Generate code that will tell the VDBE the names of columns
  1050 ** in the result set.  This information is used to provide the
  1051 ** azCol[] values in the callback.
  1052 */
  1053 static void generateColumnNames(
  1054   Parse *pParse,      /* Parser context */
  1055   SrcList *pTabList,  /* List of tables */
  1056   ExprList *pEList    /* Expressions defining the result set */
  1057 ){
  1058   Vdbe *v = pParse->pVdbe;
  1059   int i, j;
  1060   sqlite3 *db = pParse->db;
  1061   int fullNames, shortNames;
  1062 
  1063 #ifndef SQLITE_OMIT_EXPLAIN
  1064   /* If this is an EXPLAIN, skip this step */
  1065   if( pParse->explain ){
  1066     return;
  1067   }
  1068 #endif
  1069 
  1070   assert( v!=0 );
  1071   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
  1072   pParse->colNamesSet = 1;
  1073   fullNames = (db->flags & SQLITE_FullColNames)!=0;
  1074   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  1075   sqlite3VdbeSetNumCols(v, pEList->nExpr);
  1076   for(i=0; i<pEList->nExpr; i++){
  1077     Expr *p;
  1078     p = pEList->a[i].pExpr;
  1079     if( p==0 ) continue;
  1080     if( pEList->a[i].zName ){
  1081       char *zName = pEList->a[i].zName;
  1082       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
  1083     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
  1084       Table *pTab;
  1085       char *zCol;
  1086       int iCol = p->iColumn;
  1087       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
  1088       assert( j<pTabList->nSrc );
  1089       pTab = pTabList->a[j].pTab;
  1090       if( iCol<0 ) iCol = pTab->iPKey;
  1091       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
  1092       if( iCol<0 ){
  1093         zCol = "rowid";
  1094       }else{
  1095         zCol = pTab->aCol[iCol].zName;
  1096       }
  1097       if( !shortNames && !fullNames ){
  1098         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
  1099       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
  1100         char *zName = 0;
  1101         char *zTab;
  1102  
  1103         zTab = pTabList->a[j].zAlias;
  1104         if( fullNames || zTab==0 ) zTab = pTab->zName;
  1105         zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
  1106         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
  1107       }else{
  1108         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
  1109       }
  1110     }else{
  1111       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
  1112     }
  1113   }
  1114   generateColumnTypes(pParse, pTabList, pEList);
  1115 }
  1116 
  1117 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  1118 /*
  1119 ** Name of the connection operator, used for error messages.
  1120 */
  1121 static const char *selectOpName(int id){
  1122   char *z;
  1123   switch( id ){
  1124     case TK_ALL:       z = "UNION ALL";   break;
  1125     case TK_INTERSECT: z = "INTERSECT";   break;
  1126     case TK_EXCEPT:    z = "EXCEPT";      break;
  1127     default:           z = "UNION";       break;
  1128   }
  1129   return z;
  1130 }
  1131 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  1132 
  1133 /*
  1134 ** Given a an expression list (which is really the list of expressions
  1135 ** that form the result set of a SELECT statement) compute appropriate
  1136 ** column names for a table that would hold the expression list.
  1137 **
  1138 ** All column names will be unique.
  1139 **
  1140 ** Only the column names are computed.  Column.zType, Column.zColl,
  1141 ** and other fields of Column are zeroed.
  1142 **
  1143 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
  1144 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
  1145 */
  1146 static int selectColumnsFromExprList(
  1147   Parse *pParse,          /* Parsing context */
  1148   ExprList *pEList,       /* Expr list from which to derive column names */
  1149   int *pnCol,             /* Write the number of columns here */
  1150   Column **paCol          /* Write the new column list here */
  1151 ){
  1152   sqlite3 *db = pParse->db;
  1153   int i, j, cnt;
  1154   Column *aCol, *pCol;
  1155   int nCol;
  1156   Expr *p;
  1157   char *zName;
  1158   int nName;
  1159 
  1160   *pnCol = nCol = pEList->nExpr;
  1161   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
  1162   if( aCol==0 ) return SQLITE_NOMEM;
  1163   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
  1164     /* Get an appropriate name for the column
  1165     */
  1166     p = pEList->a[i].pExpr;
  1167     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
  1168     if( (zName = pEList->a[i].zName)!=0 ){
  1169       /* If the column contains an "AS <name>" phrase, use <name> as the name */
  1170       zName = sqlite3DbStrDup(db, zName);
  1171     }else{
  1172       Expr *pCol = p;
  1173       Table *pTab;
  1174       while( pCol->op==TK_DOT ) pCol = pCol->pRight;
  1175       if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){
  1176         /* For columns use the column name name */
  1177         int iCol = pCol->iColumn;
  1178         if( iCol<0 ) iCol = pTab->iPKey;
  1179         zName = sqlite3MPrintf(db, "%s",
  1180                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
  1181       }else{
  1182         /* Use the original text of the column expression as its name */
  1183         zName = sqlite3MPrintf(db, "%T", &pCol->span);
  1184       }
  1185     }
  1186     if( db->mallocFailed ){
  1187       sqlite3DbFree(db, zName);
  1188       break;
  1189     }
  1190     sqlite3Dequote(zName);
  1191 
  1192     /* Make sure the column name is unique.  If the name is not unique,
  1193     ** append a integer to the name so that it becomes unique.
  1194     */
  1195     nName = strlen(zName);
  1196     for(j=cnt=0; j<i; j++){
  1197       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
  1198         char *zNewName;
  1199         zName[nName] = 0;
  1200         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
  1201         sqlite3DbFree(db, zName);
  1202         zName = zNewName;
  1203         j = -1;
  1204         if( zName==0 ) break;
  1205       }
  1206     }
  1207     pCol->zName = zName;
  1208   }
  1209   if( db->mallocFailed ){
  1210     int j;
  1211     for(j=0; j<i; j++){
  1212       sqlite3DbFree(db, aCol[j].zName);
  1213     }
  1214     sqlite3DbFree(db, aCol);
  1215     *paCol = 0;
  1216     *pnCol = 0;
  1217     return SQLITE_NOMEM;
  1218   }
  1219   return SQLITE_OK;
  1220 }
  1221 
  1222 /*
  1223 ** Add type and collation information to a column list based on
  1224 ** a SELECT statement.
  1225 ** 
  1226 ** The column list presumably came from selectColumnNamesFromExprList().
  1227 ** The column list has only names, not types or collations.  This
  1228 ** routine goes through and adds the types and collations.
  1229 **
  1230 ** This routine requires that all indentifiers in the SELECT
  1231 ** statement be resolved.
  1232 */
  1233 static void selectAddColumnTypeAndCollation(
  1234   Parse *pParse,        /* Parsing contexts */
  1235   int nCol,             /* Number of columns */
  1236   Column *aCol,         /* List of columns */
  1237   Select *pSelect       /* SELECT used to determine types and collations */
  1238 ){
  1239   sqlite3 *db = pParse->db;
  1240   NameContext sNC;
  1241   Column *pCol;
  1242   CollSeq *pColl;
  1243   int i;
  1244   Expr *p;
  1245   struct ExprList_item *a;
  1246 
  1247   assert( pSelect!=0 );
  1248   assert( (pSelect->selFlags & SF_Resolved)!=0 );
  1249   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
  1250   if( db->mallocFailed ) return;
  1251   memset(&sNC, 0, sizeof(sNC));
  1252   sNC.pSrcList = pSelect->pSrc;
  1253   a = pSelect->pEList->a;
  1254   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
  1255     p = a[i].pExpr;
  1256     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
  1257     pCol->affinity = sqlite3ExprAffinity(p);
  1258     pColl = sqlite3ExprCollSeq(pParse, p);
  1259     if( pColl ){
  1260       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
  1261     }
  1262   }
  1263 }
  1264 
  1265 /*
  1266 ** Given a SELECT statement, generate a Table structure that describes
  1267 ** the result set of that SELECT.
  1268 */
  1269 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
  1270   Table *pTab;
  1271   sqlite3 *db = pParse->db;
  1272   int savedFlags;
  1273 
  1274   savedFlags = db->flags;
  1275   db->flags &= ~SQLITE_FullColNames;
  1276   db->flags |= SQLITE_ShortColNames;
  1277   sqlite3SelectPrep(pParse, pSelect, 0);
  1278   if( pParse->nErr ) return 0;
  1279   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
  1280   db->flags = savedFlags;
  1281   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  1282   if( pTab==0 ){
  1283     return 0;
  1284   }
  1285   pTab->db = db;
  1286   pTab->nRef = 1;
  1287   pTab->zName = 0;
  1288   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
  1289   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
  1290   pTab->iPKey = -1;
  1291   if( db->mallocFailed ){
  1292     sqlite3DeleteTable(pTab);
  1293     return 0;
  1294   }
  1295   return pTab;
  1296 }
  1297 
  1298 /*
  1299 ** Get a VDBE for the given parser context.  Create a new one if necessary.
  1300 ** If an error occurs, return NULL and leave a message in pParse.
  1301 */
  1302 Vdbe *sqlite3GetVdbe(Parse *pParse){
  1303   Vdbe *v = pParse->pVdbe;
  1304   if( v==0 ){
  1305     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
  1306 #ifndef SQLITE_OMIT_TRACE
  1307     if( v ){
  1308       sqlite3VdbeAddOp0(v, OP_Trace);
  1309     }
  1310 #endif
  1311   }
  1312   return v;
  1313 }
  1314 
  1315 
  1316 /*
  1317 ** Compute the iLimit and iOffset fields of the SELECT based on the
  1318 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
  1319 ** that appear in the original SQL statement after the LIMIT and OFFSET
  1320 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
  1321 ** are the integer memory register numbers for counters used to compute 
  1322 ** the limit and offset.  If there is no limit and/or offset, then 
  1323 ** iLimit and iOffset are negative.
  1324 **
  1325 ** This routine changes the values of iLimit and iOffset only if
  1326 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
  1327 ** iOffset should have been preset to appropriate default values
  1328 ** (usually but not always -1) prior to calling this routine.
  1329 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
  1330 ** redefined.  The UNION ALL operator uses this property to force
  1331 ** the reuse of the same limit and offset registers across multiple
  1332 ** SELECT statements.
  1333 */
  1334 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
  1335   Vdbe *v = 0;
  1336   int iLimit = 0;
  1337   int iOffset;
  1338   int addr1;
  1339   if( p->iLimit ) return;
  1340 
  1341   /* 
  1342   ** "LIMIT -1" always shows all rows.  There is some
  1343   ** contraversy about what the correct behavior should be.
  1344   ** The current implementation interprets "LIMIT 0" to mean
  1345   ** no rows.
  1346   */
  1347   if( p->pLimit ){
  1348     p->iLimit = iLimit = ++pParse->nMem;
  1349     v = sqlite3GetVdbe(pParse);
  1350     if( v==0 ) return;
  1351     sqlite3ExprCode(pParse, p->pLimit, iLimit);
  1352     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
  1353     VdbeComment((v, "LIMIT counter"));
  1354     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
  1355   }
  1356   if( p->pOffset ){
  1357     p->iOffset = iOffset = ++pParse->nMem;
  1358     if( p->pLimit ){
  1359       pParse->nMem++;   /* Allocate an extra register for limit+offset */
  1360     }
  1361     v = sqlite3GetVdbe(pParse);
  1362     if( v==0 ) return;
  1363     sqlite3ExprCode(pParse, p->pOffset, iOffset);
  1364     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
  1365     VdbeComment((v, "OFFSET counter"));
  1366     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
  1367     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
  1368     sqlite3VdbeJumpHere(v, addr1);
  1369     if( p->pLimit ){
  1370       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
  1371       VdbeComment((v, "LIMIT+OFFSET"));
  1372       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
  1373       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
  1374       sqlite3VdbeJumpHere(v, addr1);
  1375     }
  1376   }
  1377 }
  1378 
  1379 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  1380 /*
  1381 ** Return the appropriate collating sequence for the iCol-th column of
  1382 ** the result set for the compound-select statement "p".  Return NULL if
  1383 ** the column has no default collating sequence.
  1384 **
  1385 ** The collating sequence for the compound select is taken from the
  1386 ** left-most term of the select that has a collating sequence.
  1387 */
  1388 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
  1389   CollSeq *pRet;
  1390   if( p->pPrior ){
  1391     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
  1392   }else{
  1393     pRet = 0;
  1394   }
  1395   if( pRet==0 ){
  1396     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
  1397   }
  1398   return pRet;
  1399 }
  1400 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  1401 
  1402 /* Forward reference */
  1403 static int multiSelectOrderBy(
  1404   Parse *pParse,        /* Parsing context */
  1405   Select *p,            /* The right-most of SELECTs to be coded */
  1406   SelectDest *pDest     /* What to do with query results */
  1407 );
  1408 
  1409 
  1410 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  1411 /*
  1412 ** This routine is called to process a compound query form from
  1413 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
  1414 ** INTERSECT
  1415 **
  1416 ** "p" points to the right-most of the two queries.  the query on the
  1417 ** left is p->pPrior.  The left query could also be a compound query
  1418 ** in which case this routine will be called recursively. 
  1419 **
  1420 ** The results of the total query are to be written into a destination
  1421 ** of type eDest with parameter iParm.
  1422 **
  1423 ** Example 1:  Consider a three-way compound SQL statement.
  1424 **
  1425 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
  1426 **
  1427 ** This statement is parsed up as follows:
  1428 **
  1429 **     SELECT c FROM t3
  1430 **      |
  1431 **      `----->  SELECT b FROM t2
  1432 **                |
  1433 **                `------>  SELECT a FROM t1
  1434 **
  1435 ** The arrows in the diagram above represent the Select.pPrior pointer.
  1436 ** So if this routine is called with p equal to the t3 query, then
  1437 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
  1438 **
  1439 ** Notice that because of the way SQLite parses compound SELECTs, the
  1440 ** individual selects always group from left to right.
  1441 */
  1442 static int multiSelect(
  1443   Parse *pParse,        /* Parsing context */
  1444   Select *p,            /* The right-most of SELECTs to be coded */
  1445   SelectDest *pDest     /* What to do with query results */
  1446 ){
  1447   int rc = SQLITE_OK;   /* Success code from a subroutine */
  1448   Select *pPrior;       /* Another SELECT immediately to our left */
  1449   Vdbe *v;              /* Generate code to this VDBE */
  1450   SelectDest dest;      /* Alternative data destination */
  1451   Select *pDelete = 0;  /* Chain of simple selects to delete */
  1452   sqlite3 *db;          /* Database connection */
  1453 
  1454   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  1455   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  1456   */
  1457   assert( p && p->pPrior );  /* Calling function guarantees this much */
  1458   db = pParse->db;
  1459   pPrior = p->pPrior;
  1460   assert( pPrior->pRightmost!=pPrior );
  1461   assert( pPrior->pRightmost==p->pRightmost );
  1462   dest = *pDest;
  1463   if( pPrior->pOrderBy ){
  1464     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
  1465       selectOpName(p->op));
  1466     rc = 1;
  1467     goto multi_select_end;
  1468   }
  1469   if( pPrior->pLimit ){
  1470     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
  1471       selectOpName(p->op));
  1472     rc = 1;
  1473     goto multi_select_end;
  1474   }
  1475 
  1476   v = sqlite3GetVdbe(pParse);
  1477   assert( v!=0 );  /* The VDBE already created by calling function */
  1478 
  1479   /* Create the destination temporary table if necessary
  1480   */
  1481   if( dest.eDest==SRT_EphemTab ){
  1482     assert( p->pEList );
  1483     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
  1484     dest.eDest = SRT_Table;
  1485   }
  1486 
  1487   /* Make sure all SELECTs in the statement have the same number of elements
  1488   ** in their result sets.
  1489   */
  1490   assert( p->pEList && pPrior->pEList );
  1491   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
  1492     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
  1493       " do not have the same number of result columns", selectOpName(p->op));
  1494     rc = 1;
  1495     goto multi_select_end;
  1496   }
  1497 
  1498   /* Compound SELECTs that have an ORDER BY clause are handled separately.
  1499   */
  1500   if( p->pOrderBy ){
  1501     return multiSelectOrderBy(pParse, p, pDest);
  1502   }
  1503 
  1504   /* Generate code for the left and right SELECT statements.
  1505   */
  1506   switch( p->op ){
  1507     case TK_ALL: {
  1508       int addr = 0;
  1509       assert( !pPrior->pLimit );
  1510       pPrior->pLimit = p->pLimit;
  1511       pPrior->pOffset = p->pOffset;
  1512       rc = sqlite3Select(pParse, pPrior, &dest);
  1513       p->pLimit = 0;
  1514       p->pOffset = 0;
  1515       if( rc ){
  1516         goto multi_select_end;
  1517       }
  1518       p->pPrior = 0;
  1519       p->iLimit = pPrior->iLimit;
  1520       p->iOffset = pPrior->iOffset;
  1521       if( p->iLimit ){
  1522         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
  1523         VdbeComment((v, "Jump ahead if LIMIT reached"));
  1524       }
  1525       rc = sqlite3Select(pParse, p, &dest);
  1526       pDelete = p->pPrior;
  1527       p->pPrior = pPrior;
  1528       if( rc ){
  1529         goto multi_select_end;
  1530       }
  1531       if( addr ){
  1532         sqlite3VdbeJumpHere(v, addr);
  1533       }
  1534       break;
  1535     }
  1536     case TK_EXCEPT:
  1537     case TK_UNION: {
  1538       int unionTab;    /* Cursor number of the temporary table holding result */
  1539       int op = 0;      /* One of the SRT_ operations to apply to self */
  1540       int priorOp;     /* The SRT_ operation to apply to prior selects */
  1541       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
  1542       int addr;
  1543       SelectDest uniondest;
  1544 
  1545       priorOp = SRT_Union;
  1546       if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
  1547         /* We can reuse a temporary table generated by a SELECT to our
  1548         ** right.
  1549         */
  1550         unionTab = dest.iParm;
  1551       }else{
  1552         /* We will need to create our own temporary table to hold the
  1553         ** intermediate results.
  1554         */
  1555         unionTab = pParse->nTab++;
  1556         assert( p->pOrderBy==0 );
  1557         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
  1558         assert( p->addrOpenEphm[0] == -1 );
  1559         p->addrOpenEphm[0] = addr;
  1560         p->pRightmost->selFlags |= SF_UsesEphemeral;
  1561         assert( p->pEList );
  1562       }
  1563 
  1564       /* Code the SELECT statements to our left
  1565       */
  1566       assert( !pPrior->pOrderBy );
  1567       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
  1568       rc = sqlite3Select(pParse, pPrior, &uniondest);
  1569       if( rc ){
  1570         goto multi_select_end;
  1571       }
  1572 
  1573       /* Code the current SELECT statement
  1574       */
  1575       if( p->op==TK_EXCEPT ){
  1576         op = SRT_Except;
  1577       }else{
  1578         assert( p->op==TK_UNION );
  1579         op = SRT_Union;
  1580       }
  1581       p->pPrior = 0;
  1582       pLimit = p->pLimit;
  1583       p->pLimit = 0;
  1584       pOffset = p->pOffset;
  1585       p->pOffset = 0;
  1586       uniondest.eDest = op;
  1587       rc = sqlite3Select(pParse, p, &uniondest);
  1588       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
  1589       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
  1590       sqlite3ExprListDelete(db, p->pOrderBy);
  1591       pDelete = p->pPrior;
  1592       p->pPrior = pPrior;
  1593       p->pOrderBy = 0;
  1594       sqlite3ExprDelete(db, p->pLimit);
  1595       p->pLimit = pLimit;
  1596       p->pOffset = pOffset;
  1597       p->iLimit = 0;
  1598       p->iOffset = 0;
  1599       if( rc ){
  1600         goto multi_select_end;
  1601       }
  1602 
  1603 
  1604       /* Convert the data in the temporary table into whatever form
  1605       ** it is that we currently need.
  1606       */      
  1607       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
  1608         int iCont, iBreak, iStart;
  1609         assert( p->pEList );
  1610         if( dest.eDest==SRT_Output ){
  1611           Select *pFirst = p;
  1612           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
  1613           generateColumnNames(pParse, 0, pFirst->pEList);
  1614         }
  1615         iBreak = sqlite3VdbeMakeLabel(v);
  1616         iCont = sqlite3VdbeMakeLabel(v);
  1617         computeLimitRegisters(pParse, p, iBreak);
  1618         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
  1619         iStart = sqlite3VdbeCurrentAddr(v);
  1620         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
  1621                         0, -1, &dest, iCont, iBreak);
  1622         sqlite3VdbeResolveLabel(v, iCont);
  1623         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
  1624         sqlite3VdbeResolveLabel(v, iBreak);
  1625         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
  1626       }
  1627       break;
  1628     }
  1629     case TK_INTERSECT: {
  1630       int tab1, tab2;
  1631       int iCont, iBreak, iStart;
  1632       Expr *pLimit, *pOffset;
  1633       int addr;
  1634       SelectDest intersectdest;
  1635       int r1;
  1636 
  1637       /* INTERSECT is different from the others since it requires
  1638       ** two temporary tables.  Hence it has its own case.  Begin
  1639       ** by allocating the tables we will need.
  1640       */
  1641       tab1 = pParse->nTab++;
  1642       tab2 = pParse->nTab++;
  1643       assert( p->pOrderBy==0 );
  1644 
  1645       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
  1646       assert( p->addrOpenEphm[0] == -1 );
  1647       p->addrOpenEphm[0] = addr;
  1648       p->pRightmost->selFlags |= SF_UsesEphemeral;
  1649       assert( p->pEList );
  1650 
  1651       /* Code the SELECTs to our left into temporary table "tab1".
  1652       */
  1653       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
  1654       rc = sqlite3Select(pParse, pPrior, &intersectdest);
  1655       if( rc ){
  1656         goto multi_select_end;
  1657       }
  1658 
  1659       /* Code the current SELECT into temporary table "tab2"
  1660       */
  1661       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
  1662       assert( p->addrOpenEphm[1] == -1 );
  1663       p->addrOpenEphm[1] = addr;
  1664       p->pPrior = 0;
  1665       pLimit = p->pLimit;
  1666       p->pLimit = 0;
  1667       pOffset = p->pOffset;
  1668       p->pOffset = 0;
  1669       intersectdest.iParm = tab2;
  1670       rc = sqlite3Select(pParse, p, &intersectdest);
  1671       pDelete = p->pPrior;
  1672       p->pPrior = pPrior;
  1673       sqlite3ExprDelete(db, p->pLimit);
  1674       p->pLimit = pLimit;
  1675       p->pOffset = pOffset;
  1676       if( rc ){
  1677         goto multi_select_end;
  1678       }
  1679 
  1680       /* Generate code to take the intersection of the two temporary
  1681       ** tables.
  1682       */
  1683       assert( p->pEList );
  1684       if( dest.eDest==SRT_Output ){
  1685         Select *pFirst = p;
  1686         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
  1687         generateColumnNames(pParse, 0, pFirst->pEList);
  1688       }
  1689       iBreak = sqlite3VdbeMakeLabel(v);
  1690       iCont = sqlite3VdbeMakeLabel(v);
  1691       computeLimitRegisters(pParse, p, iBreak);
  1692       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
  1693       r1 = sqlite3GetTempReg(pParse);
  1694       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
  1695       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
  1696       sqlite3ReleaseTempReg(pParse, r1);
  1697       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
  1698                       0, -1, &dest, iCont, iBreak);
  1699       sqlite3VdbeResolveLabel(v, iCont);
  1700       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
  1701       sqlite3VdbeResolveLabel(v, iBreak);
  1702       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
  1703       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
  1704       break;
  1705     }
  1706   }
  1707 
  1708   /* Compute collating sequences used by 
  1709   ** temporary tables needed to implement the compound select.
  1710   ** Attach the KeyInfo structure to all temporary tables.
  1711   **
  1712   ** This section is run by the right-most SELECT statement only.
  1713   ** SELECT statements to the left always skip this part.  The right-most
  1714   ** SELECT might also skip this part if it has no ORDER BY clause and
  1715   ** no temp tables are required.
  1716   */
  1717   if( p->selFlags & SF_UsesEphemeral ){
  1718     int i;                        /* Loop counter */
  1719     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
  1720     Select *pLoop;                /* For looping through SELECT statements */
  1721     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
  1722     int nCol;                     /* Number of columns in result set */
  1723 
  1724     assert( p->pRightmost==p );
  1725     nCol = p->pEList->nExpr;
  1726     pKeyInfo = sqlite3DbMallocZero(db,
  1727                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
  1728     if( !pKeyInfo ){
  1729       rc = SQLITE_NOMEM;
  1730       goto multi_select_end;
  1731     }
  1732 
  1733     pKeyInfo->enc = ENC(db);
  1734     pKeyInfo->nField = nCol;
  1735 
  1736     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
  1737       *apColl = multiSelectCollSeq(pParse, p, i);
  1738       if( 0==*apColl ){
  1739         *apColl = db->pDfltColl;
  1740       }
  1741     }
  1742 
  1743     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
  1744       for(i=0; i<2; i++){
  1745         int addr = pLoop->addrOpenEphm[i];
  1746         if( addr<0 ){
  1747           /* If [0] is unused then [1] is also unused.  So we can
  1748           ** always safely abort as soon as the first unused slot is found */
  1749           assert( pLoop->addrOpenEphm[1]<0 );
  1750           break;
  1751         }
  1752         sqlite3VdbeChangeP2(v, addr, nCol);
  1753         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
  1754         pLoop->addrOpenEphm[i] = -1;
  1755       }
  1756     }
  1757     sqlite3DbFree(db, pKeyInfo);
  1758   }
  1759 
  1760 multi_select_end:
  1761   pDest->iMem = dest.iMem;
  1762   pDest->nMem = dest.nMem;
  1763   sqlite3SelectDelete(db, pDelete);
  1764   return rc;
  1765 }
  1766 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
  1767 
  1768 /*
  1769 ** Code an output subroutine for a coroutine implementation of a
  1770 ** SELECT statment.
  1771 **
  1772 ** The data to be output is contained in pIn->iMem.  There are
  1773 ** pIn->nMem columns to be output.  pDest is where the output should
  1774 ** be sent.
  1775 **
  1776 ** regReturn is the number of the register holding the subroutine
  1777 ** return address.
  1778 **
  1779 ** If regPrev>0 then it is a the first register in a vector that
  1780 ** records the previous output.  mem[regPrev] is a flag that is false
  1781 ** if there has been no previous output.  If regPrev>0 then code is
  1782 ** generated to suppress duplicates.  pKeyInfo is used for comparing
  1783 ** keys.
  1784 **
  1785 ** If the LIMIT found in p->iLimit is reached, jump immediately to
  1786 ** iBreak.
  1787 */
  1788 static int generateOutputSubroutine(
  1789   Parse *pParse,          /* Parsing context */
  1790   Select *p,              /* The SELECT statement */
  1791   SelectDest *pIn,        /* Coroutine supplying data */
  1792   SelectDest *pDest,      /* Where to send the data */
  1793   int regReturn,          /* The return address register */
  1794   int regPrev,            /* Previous result register.  No uniqueness if 0 */
  1795   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
  1796   int p4type,             /* The p4 type for pKeyInfo */
  1797   int iBreak              /* Jump here if we hit the LIMIT */
  1798 ){
  1799   Vdbe *v = pParse->pVdbe;
  1800   int iContinue;
  1801   int addr;
  1802 
  1803   addr = sqlite3VdbeCurrentAddr(v);
  1804   iContinue = sqlite3VdbeMakeLabel(v);
  1805 
  1806   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
  1807   */
  1808   if( regPrev ){
  1809     int j1, j2;
  1810     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
  1811     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
  1812                               (char*)pKeyInfo, p4type);
  1813     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
  1814     sqlite3VdbeJumpHere(v, j1);
  1815     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
  1816     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
  1817   }
  1818   if( pParse->db->mallocFailed ) return 0;
  1819 
  1820   /* Suppress the the first OFFSET entries if there is an OFFSET clause
  1821   */
  1822   codeOffset(v, p, iContinue);
  1823 
  1824   switch( pDest->eDest ){
  1825     /* Store the result as data using a unique key.
  1826     */
  1827     case SRT_Table:
  1828     case SRT_EphemTab: {
  1829       int r1 = sqlite3GetTempReg(pParse);
  1830       int r2 = sqlite3GetTempReg(pParse);
  1831       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
  1832       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
  1833       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
  1834       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
  1835       sqlite3ReleaseTempReg(pParse, r2);
  1836       sqlite3ReleaseTempReg(pParse, r1);
  1837       break;
  1838     }
  1839 
  1840 #ifndef SQLITE_OMIT_SUBQUERY
  1841     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
  1842     ** then there should be a single item on the stack.  Write this
  1843     ** item into the set table with bogus data.
  1844     */
  1845     case SRT_Set: {
  1846       int r1;
  1847       assert( pIn->nMem==1 );
  1848       p->affinity = 
  1849          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
  1850       r1 = sqlite3GetTempReg(pParse);
  1851       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
  1852       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
  1853       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
  1854       sqlite3ReleaseTempReg(pParse, r1);
  1855       break;
  1856     }
  1857 
  1858 #if 0  /* Never occurs on an ORDER BY query */
  1859     /* If any row exist in the result set, record that fact and abort.
  1860     */
  1861     case SRT_Exists: {
  1862       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
  1863       /* The LIMIT clause will terminate the loop for us */
  1864       break;
  1865     }
  1866 #endif
  1867 
  1868     /* If this is a scalar select that is part of an expression, then
  1869     ** store the results in the appropriate memory cell and break out
  1870     ** of the scan loop.
  1871     */
  1872     case SRT_Mem: {
  1873       assert( pIn->nMem==1 );
  1874       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
  1875       /* The LIMIT clause will jump out of the loop for us */
  1876       break;
  1877     }
  1878 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
  1879 
  1880     /* The results are stored in a sequence of registers
  1881     ** starting at pDest->iMem.  Then the co-routine yields.
  1882     */
  1883     case SRT_Coroutine: {
  1884       if( pDest->iMem==0 ){
  1885         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
  1886         pDest->nMem = pIn->nMem;
  1887       }
  1888       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
  1889       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
  1890       break;
  1891     }
  1892 
  1893     /* Results are stored in a sequence of registers.  Then the
  1894     ** OP_ResultRow opcode is used to cause sqlite3_step() to return
  1895     ** the next row of result.
  1896     */
  1897     case SRT_Output: {
  1898       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
  1899       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
  1900       break;
  1901     }
  1902 
  1903 #if !defined(SQLITE_OMIT_TRIGGER)
  1904     /* Discard the results.  This is used for SELECT statements inside
  1905     ** the body of a TRIGGER.  The purpose of such selects is to call
  1906     ** user-defined functions that have side effects.  We do not care
  1907     ** about the actual results of the select.
  1908     */
  1909     default: {
  1910       break;
  1911     }
  1912 #endif
  1913   }
  1914 
  1915   /* Jump to the end of the loop if the LIMIT is reached.
  1916   */
  1917   if( p->iLimit ){
  1918     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
  1919     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
  1920   }
  1921 
  1922   /* Generate the subroutine return
  1923   */
  1924   sqlite3VdbeResolveLabel(v, iContinue);
  1925   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
  1926 
  1927   return addr;
  1928 }
  1929 
  1930 /*
  1931 ** Alternative compound select code generator for cases when there
  1932 ** is an ORDER BY clause.
  1933 **
  1934 ** We assume a query of the following form:
  1935 **
  1936 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
  1937 **
  1938 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
  1939 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
  1940 ** co-routines.  Then run the co-routines in parallel and merge the results
  1941 ** into the output.  In addition to the two coroutines (called selectA and
  1942 ** selectB) there are 7 subroutines:
  1943 **
  1944 **    outA:    Move the output of the selectA coroutine into the output
  1945 **             of the compound query.
  1946 **
  1947 **    outB:    Move the output of the selectB coroutine into the output
  1948 **             of the compound query.  (Only generated for UNION and
  1949 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
  1950 **             appears only in B.)
  1951 **
  1952 **    AltB:    Called when there is data from both coroutines and A<B.
  1953 **
  1954 **    AeqB:    Called when there is data from both coroutines and A==B.
  1955 **
  1956 **    AgtB:    Called when there is data from both coroutines and A>B.
  1957 **
  1958 **    EofA:    Called when data is exhausted from selectA.
  1959 **
  1960 **    EofB:    Called when data is exhausted from selectB.
  1961 **
  1962 ** The implementation of the latter five subroutines depend on which 
  1963 ** <operator> is used:
  1964 **
  1965 **
  1966 **             UNION ALL         UNION            EXCEPT          INTERSECT
  1967 **          -------------  -----------------  --------------  -----------------
  1968 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
  1969 **
  1970 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
  1971 **
  1972 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
  1973 **
  1974 **   EofA:   outB, nextB      outB, nextB          halt             halt
  1975 **
  1976 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
  1977 **
  1978 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
  1979 ** causes an immediate jump to EofA and an EOF on B following nextB causes
  1980 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
  1981 ** following nextX causes a jump to the end of the select processing.
  1982 **
  1983 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
  1984 ** within the output subroutine.  The regPrev register set holds the previously
  1985 ** output value.  A comparison is made against this value and the output
  1986 ** is skipped if the next results would be the same as the previous.
  1987 **
  1988 ** The implementation plan is to implement the two coroutines and seven
  1989 ** subroutines first, then put the control logic at the bottom.  Like this:
  1990 **
  1991 **          goto Init
  1992 **     coA: coroutine for left query (A)
  1993 **     coB: coroutine for right query (B)
  1994 **    outA: output one row of A
  1995 **    outB: output one row of B (UNION and UNION ALL only)
  1996 **    EofA: ...
  1997 **    EofB: ...
  1998 **    AltB: ...
  1999 **    AeqB: ...
  2000 **    AgtB: ...
  2001 **    Init: initialize coroutine registers
  2002 **          yield coA
  2003 **          if eof(A) goto EofA
  2004 **          yield coB
  2005 **          if eof(B) goto EofB
  2006 **    Cmpr: Compare A, B
  2007 **          Jump AltB, AeqB, AgtB
  2008 **     End: ...
  2009 **
  2010 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
  2011 ** actually called using Gosub and they do not Return.  EofA and EofB loop
  2012 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
  2013 ** and AgtB jump to either L2 or to one of EofA or EofB.
  2014 */
  2015 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  2016 static int multiSelectOrderBy(
  2017   Parse *pParse,        /* Parsing context */
  2018   Select *p,            /* The right-most of SELECTs to be coded */
  2019   SelectDest *pDest     /* What to do with query results */
  2020 ){
  2021   int i, j;             /* Loop counters */
  2022   Select *pPrior;       /* Another SELECT immediately to our left */
  2023   Vdbe *v;              /* Generate code to this VDBE */
  2024   SelectDest destA;     /* Destination for coroutine A */
  2025   SelectDest destB;     /* Destination for coroutine B */
  2026   int regAddrA;         /* Address register for select-A coroutine */
  2027   int regEofA;          /* Flag to indicate when select-A is complete */
  2028   int regAddrB;         /* Address register for select-B coroutine */
  2029   int regEofB;          /* Flag to indicate when select-B is complete */
  2030   int addrSelectA;      /* Address of the select-A coroutine */
  2031   int addrSelectB;      /* Address of the select-B coroutine */
  2032   int regOutA;          /* Address register for the output-A subroutine */
  2033   int regOutB;          /* Address register for the output-B subroutine */
  2034   int addrOutA;         /* Address of the output-A subroutine */
  2035   int addrOutB;         /* Address of the output-B subroutine */
  2036   int addrEofA;         /* Address of the select-A-exhausted subroutine */
  2037   int addrEofB;         /* Address of the select-B-exhausted subroutine */
  2038   int addrAltB;         /* Address of the A<B subroutine */
  2039   int addrAeqB;         /* Address of the A==B subroutine */
  2040   int addrAgtB;         /* Address of the A>B subroutine */
  2041   int regLimitA;        /* Limit register for select-A */
  2042   int regLimitB;        /* Limit register for select-A */
  2043   int regPrev;          /* A range of registers to hold previous output */
  2044   int savedLimit;       /* Saved value of p->iLimit */
  2045   int savedOffset;      /* Saved value of p->iOffset */
  2046   int labelCmpr;        /* Label for the start of the merge algorithm */
  2047   int labelEnd;         /* Label for the end of the overall SELECT stmt */
  2048   int j1;               /* Jump instructions that get retargetted */
  2049   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  2050   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  2051   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  2052   sqlite3 *db;          /* Database connection */
  2053   ExprList *pOrderBy;   /* The ORDER BY clause */
  2054   int nOrderBy;         /* Number of terms in the ORDER BY clause */
  2055   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
  2056 
  2057   assert( p->pOrderBy!=0 );
  2058   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
  2059   db = pParse->db;
  2060   v = pParse->pVdbe;
  2061   if( v==0 ) return SQLITE_NOMEM;
  2062   labelEnd = sqlite3VdbeMakeLabel(v);
  2063   labelCmpr = sqlite3VdbeMakeLabel(v);
  2064 
  2065 
  2066   /* Patch up the ORDER BY clause
  2067   */
  2068   op = p->op;  
  2069   pPrior = p->pPrior;
  2070   assert( pPrior->pOrderBy==0 );
  2071   pOrderBy = p->pOrderBy;
  2072   assert( pOrderBy );
  2073   nOrderBy = pOrderBy->nExpr;
  2074 
  2075   /* For operators other than UNION ALL we have to make sure that
  2076   ** the ORDER BY clause covers every term of the result set.  Add
  2077   ** terms to the ORDER BY clause as necessary.
  2078   */
  2079   if( op!=TK_ALL ){
  2080     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
  2081       struct ExprList_item *pItem;
  2082       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
  2083         assert( pItem->iCol>0 );
  2084         if( pItem->iCol==i ) break;
  2085       }
  2086       if( j==nOrderBy ){
  2087         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
  2088         if( pNew==0 ) return SQLITE_NOMEM;
  2089         pNew->flags |= EP_IntValue;
  2090         pNew->iTable = i;
  2091         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
  2092         pOrderBy->a[nOrderBy++].iCol = i;
  2093       }
  2094     }
  2095   }
  2096 
  2097   /* Compute the comparison permutation and keyinfo that is used with
  2098   ** the permutation in order to comparisons to determine if the next
  2099   ** row of results comes from selectA or selectB.  Also add explicit
  2100   ** collations to the ORDER BY clause terms so that when the subqueries
  2101   ** to the right and the left are evaluated, they use the correct
  2102   ** collation.
  2103   */
  2104   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  2105   if( aPermute ){
  2106     struct ExprList_item *pItem;
  2107     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
  2108       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
  2109       aPermute[i] = pItem->iCol - 1;
  2110     }
  2111     pKeyMerge =
  2112       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
  2113     if( pKeyMerge ){
  2114       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
  2115       pKeyMerge->nField = nOrderBy;
  2116       pKeyMerge->enc = ENC(db);
  2117       for(i=0; i<nOrderBy; i++){
  2118         CollSeq *pColl;
  2119         Expr *pTerm = pOrderBy->a[i].pExpr;
  2120         if( pTerm->flags & EP_ExpCollate ){
  2121           pColl = pTerm->pColl;
  2122         }else{
  2123           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
  2124           pTerm->flags |= EP_ExpCollate;
  2125           pTerm->pColl = pColl;
  2126         }
  2127         pKeyMerge->aColl[i] = pColl;
  2128         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
  2129       }
  2130     }
  2131   }else{
  2132     pKeyMerge = 0;
  2133   }
  2134 
  2135   /* Reattach the ORDER BY clause to the query.
  2136   */
  2137   p->pOrderBy = pOrderBy;
  2138   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
  2139 
  2140   /* Allocate a range of temporary registers and the KeyInfo needed
  2141   ** for the logic that removes duplicate result rows when the
  2142   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
  2143   */
  2144   if( op==TK_ALL ){
  2145     regPrev = 0;
  2146   }else{
  2147     int nExpr = p->pEList->nExpr;
  2148     assert( nOrderBy>=nExpr );
  2149     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
  2150     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
  2151     pKeyDup = sqlite3DbMallocZero(db,
  2152                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
  2153     if( pKeyDup ){
  2154       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
  2155       pKeyDup->nField = nExpr;
  2156       pKeyDup->enc = ENC(db);
  2157       for(i=0; i<nExpr; i++){
  2158         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
  2159         pKeyDup->aSortOrder[i] = 0;
  2160       }
  2161     }
  2162   }
  2163  
  2164   /* Separate the left and the right query from one another
  2165   */
  2166   p->pPrior = 0;
  2167   pPrior->pRightmost = 0;
  2168   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
  2169   if( pPrior->pPrior==0 ){
  2170     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
  2171   }
  2172 
  2173   /* Compute the limit registers */
  2174   computeLimitRegisters(pParse, p, labelEnd);
  2175   if( p->iLimit && op==TK_ALL ){
  2176     regLimitA = ++pParse->nMem;
  2177     regLimitB = ++pParse->nMem;
  2178     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
  2179                                   regLimitA);
  2180     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
  2181   }else{
  2182     regLimitA = regLimitB = 0;
  2183   }
  2184   sqlite3ExprDelete(db, p->pLimit);
  2185   p->pLimit = 0;
  2186   sqlite3ExprDelete(db, p->pOffset);
  2187   p->pOffset = 0;
  2188 
  2189   regAddrA = ++pParse->nMem;
  2190   regEofA = ++pParse->nMem;
  2191   regAddrB = ++pParse->nMem;
  2192   regEofB = ++pParse->nMem;
  2193   regOutA = ++pParse->nMem;
  2194   regOutB = ++pParse->nMem;
  2195   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  2196   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
  2197 
  2198   /* Jump past the various subroutines and coroutines to the main
  2199   ** merge loop
  2200   */
  2201   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
  2202   addrSelectA = sqlite3VdbeCurrentAddr(v);
  2203 
  2204 
  2205   /* Generate a coroutine to evaluate the SELECT statement to the
  2206   ** left of the compound operator - the "A" select.
  2207   */
  2208   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
  2209   pPrior->iLimit = regLimitA;
  2210   sqlite3Select(pParse, pPrior, &destA);
  2211   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
  2212   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2213   VdbeNoopComment((v, "End coroutine for left SELECT"));
  2214 
  2215   /* Generate a coroutine to evaluate the SELECT statement on 
  2216   ** the right - the "B" select
  2217   */
  2218   addrSelectB = sqlite3VdbeCurrentAddr(v);
  2219   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
  2220   savedLimit = p->iLimit;
  2221   savedOffset = p->iOffset;
  2222   p->iLimit = regLimitB;
  2223   p->iOffset = 0;  
  2224   sqlite3Select(pParse, p, &destB);
  2225   p->iLimit = savedLimit;
  2226   p->iOffset = savedOffset;
  2227   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
  2228   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  2229   VdbeNoopComment((v, "End coroutine for right SELECT"));
  2230 
  2231   /* Generate a subroutine that outputs the current row of the A
  2232   ** select as the next output row of the compound select.
  2233   */
  2234   VdbeNoopComment((v, "Output routine for A"));
  2235   addrOutA = generateOutputSubroutine(pParse,
  2236                  p, &destA, pDest, regOutA,
  2237                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
  2238   
  2239   /* Generate a subroutine that outputs the current row of the B
  2240   ** select as the next output row of the compound select.
  2241   */
  2242   if( op==TK_ALL || op==TK_UNION ){
  2243     VdbeNoopComment((v, "Output routine for B"));
  2244     addrOutB = generateOutputSubroutine(pParse,
  2245                  p, &destB, pDest, regOutB,
  2246                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
  2247   }
  2248 
  2249   /* Generate a subroutine to run when the results from select A
  2250   ** are exhausted and only data in select B remains.
  2251   */
  2252   VdbeNoopComment((v, "eof-A subroutine"));
  2253   if( op==TK_EXCEPT || op==TK_INTERSECT ){
  2254     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
  2255   }else{  
  2256     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
  2257     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  2258     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  2259     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
  2260   }
  2261 
  2262   /* Generate a subroutine to run when the results from select B
  2263   ** are exhausted and only data in select A remains.
  2264   */
  2265   if( op==TK_INTERSECT ){
  2266     addrEofB = addrEofA;
  2267   }else{  
  2268     VdbeNoopComment((v, "eof-B subroutine"));
  2269     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
  2270     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  2271     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2272     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
  2273   }
  2274 
  2275   /* Generate code to handle the case of A<B
  2276   */
  2277   VdbeNoopComment((v, "A-lt-B subroutine"));
  2278   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  2279   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2280   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  2281   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  2282 
  2283   /* Generate code to handle the case of A==B
  2284   */
  2285   if( op==TK_ALL ){
  2286     addrAeqB = addrAltB;
  2287   }else if( op==TK_INTERSECT ){
  2288     addrAeqB = addrAltB;
  2289     addrAltB++;
  2290   }else{
  2291     VdbeNoopComment((v, "A-eq-B subroutine"));
  2292     addrAeqB =
  2293     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  2294     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  2295     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  2296   }
  2297 
  2298   /* Generate code to handle the case of A>B
  2299   */
  2300   VdbeNoopComment((v, "A-gt-B subroutine"));
  2301   addrAgtB = sqlite3VdbeCurrentAddr(v);
  2302   if( op==TK_ALL || op==TK_UNION ){
  2303     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  2304   }
  2305   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  2306   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
  2307   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  2308 
  2309   /* This code runs once to initialize everything.
  2310   */
  2311   sqlite3VdbeJumpHere(v, j1);
  2312   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
  2313   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
  2314   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
  2315   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
  2316   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  2317   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
  2318 
  2319   /* Implement the main merge loop
  2320   */
  2321   sqlite3VdbeResolveLabel(v, labelCmpr);
  2322   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  2323   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
  2324                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  2325   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
  2326 
  2327   /* Release temporary registers
  2328   */
  2329   if( regPrev ){
  2330     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
  2331   }
  2332 
  2333   /* Jump to the this point in order to terminate the query.
  2334   */
  2335   sqlite3VdbeResolveLabel(v, labelEnd);
  2336 
  2337   /* Set the number of output columns
  2338   */
  2339   if( pDest->eDest==SRT_Output ){
  2340     Select *pFirst = pPrior;
  2341     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
  2342     generateColumnNames(pParse, 0, pFirst->pEList);
  2343   }
  2344 
  2345   /* Reassembly the compound query so that it will be freed correctly
  2346   ** by the calling function */
  2347   if( p->pPrior ){
  2348     sqlite3SelectDelete(db, p->pPrior);
  2349   }
  2350   p->pPrior = pPrior;
  2351 
  2352   /*** TBD:  Insert subroutine calls to close cursors on incomplete
  2353   **** subqueries ****/
  2354   return SQLITE_OK;
  2355 }
  2356 #endif
  2357 
  2358 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  2359 /* Forward Declarations */
  2360 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
  2361 static void substSelect(sqlite3*, Select *, int, ExprList *);
  2362 
  2363 /*
  2364 ** Scan through the expression pExpr.  Replace every reference to
  2365 ** a column in table number iTable with a copy of the iColumn-th
  2366 ** entry in pEList.  (But leave references to the ROWID column 
  2367 ** unchanged.)
  2368 **
  2369 ** This routine is part of the flattening procedure.  A subquery
  2370 ** whose result set is defined by pEList appears as entry in the
  2371 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
  2372 ** FORM clause entry is iTable.  This routine make the necessary 
  2373 ** changes to pExpr so that it refers directly to the source table
  2374 ** of the subquery rather the result set of the subquery.
  2375 */
  2376 static void substExpr(
  2377   sqlite3 *db,        /* Report malloc errors to this connection */
  2378   Expr *pExpr,        /* Expr in which substitution occurs */
  2379   int iTable,         /* Table to be substituted */
  2380   ExprList *pEList    /* Substitute expressions */
  2381 ){
  2382   if( pExpr==0 ) return;
  2383   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
  2384     if( pExpr->iColumn<0 ){
  2385       pExpr->op = TK_NULL;
  2386     }else{
  2387       Expr *pNew;
  2388       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
  2389       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
  2390       pNew = pEList->a[pExpr->iColumn].pExpr;
  2391       assert( pNew!=0 );
  2392       pExpr->op = pNew->op;
  2393       assert( pExpr->pLeft==0 );
  2394       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
  2395       assert( pExpr->pRight==0 );
  2396       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
  2397       assert( pExpr->pList==0 );
  2398       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
  2399       pExpr->iTable = pNew->iTable;
  2400       pExpr->pTab = pNew->pTab;
  2401       pExpr->iColumn = pNew->iColumn;
  2402       pExpr->iAgg = pNew->iAgg;
  2403       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
  2404       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
  2405       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
  2406       pExpr->flags = pNew->flags;
  2407     }
  2408   }else{
  2409     substExpr(db, pExpr->pLeft, iTable, pEList);
  2410     substExpr(db, pExpr->pRight, iTable, pEList);
  2411     substSelect(db, pExpr->pSelect, iTable, pEList);
  2412     substExprList(db, pExpr->pList, iTable, pEList);
  2413   }
  2414 }
  2415 static void substExprList(
  2416   sqlite3 *db,         /* Report malloc errors here */
  2417   ExprList *pList,     /* List to scan and in which to make substitutes */
  2418   int iTable,          /* Table to be substituted */
  2419   ExprList *pEList     /* Substitute values */
  2420 ){
  2421   int i;
  2422   if( pList==0 ) return;
  2423   for(i=0; i<pList->nExpr; i++){
  2424     substExpr(db, pList->a[i].pExpr, iTable, pEList);
  2425   }
  2426 }
  2427 static void substSelect(
  2428   sqlite3 *db,         /* Report malloc errors here */
  2429   Select *p,           /* SELECT statement in which to make substitutions */
  2430   int iTable,          /* Table to be replaced */
  2431   ExprList *pEList     /* Substitute values */
  2432 ){
  2433   SrcList *pSrc;
  2434   struct SrcList_item *pItem;
  2435   int i;
  2436   if( !p ) return;
  2437   substExprList(db, p->pEList, iTable, pEList);
  2438   substExprList(db, p->pGroupBy, iTable, pEList);
  2439   substExprList(db, p->pOrderBy, iTable, pEList);
  2440   substExpr(db, p->pHaving, iTable, pEList);
  2441   substExpr(db, p->pWhere, iTable, pEList);
  2442   substSelect(db, p->pPrior, iTable, pEList);
  2443   pSrc = p->pSrc;
  2444   if( pSrc ){
  2445     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
  2446       substSelect(db, pItem->pSelect, iTable, pEList);
  2447     }
  2448   }
  2449 }
  2450 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
  2451 
  2452 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  2453 /*
  2454 ** This routine attempts to flatten subqueries in order to speed
  2455 ** execution.  It returns 1 if it makes changes and 0 if no flattening
  2456 ** occurs.
  2457 **
  2458 ** To understand the concept of flattening, consider the following
  2459 ** query:
  2460 **
  2461 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
  2462 **
  2463 ** The default way of implementing this query is to execute the
  2464 ** subquery first and store the results in a temporary table, then
  2465 ** run the outer query on that temporary table.  This requires two
  2466 ** passes over the data.  Furthermore, because the temporary table
  2467 ** has no indices, the WHERE clause on the outer query cannot be
  2468 ** optimized.
  2469 **
  2470 ** This routine attempts to rewrite queries such as the above into
  2471 ** a single flat select, like this:
  2472 **
  2473 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
  2474 **
  2475 ** The code generated for this simpification gives the same result
  2476 ** but only has to scan the data once.  And because indices might 
  2477 ** exist on the table t1, a complete scan of the data might be
  2478 ** avoided.
  2479 **
  2480 ** Flattening is only attempted if all of the following are true:
  2481 **
  2482 **   (1)  The subquery and the outer query do not both use aggregates.
  2483 **
  2484 **   (2)  The subquery is not an aggregate or the outer query is not a join.
  2485 **
  2486 **   (3)  The subquery is not the right operand of a left outer join
  2487 **        (Originally ticket #306.  Strenghtened by ticket #3300)
  2488 **
  2489 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
  2490 **
  2491 **   (5)  The subquery is not DISTINCT or the outer query does not use
  2492 **        aggregates.
  2493 **
  2494 **   (6)  The subquery does not use aggregates or the outer query is not
  2495 **        DISTINCT.
  2496 **
  2497 **   (7)  The subquery has a FROM clause.
  2498 **
  2499 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
  2500 **
  2501 **   (9)  The subquery does not use LIMIT or the outer query does not use
  2502 **        aggregates.
  2503 **
  2504 **  (10)  The subquery does not use aggregates or the outer query does not
  2505 **        use LIMIT.
  2506 **
  2507 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
  2508 **
  2509 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
  2510 **        a separate restriction deriving from ticket #350.
  2511 **
  2512 **  (13)  The subquery and outer query do not both use LIMIT
  2513 **
  2514 **  (14)  The subquery does not use OFFSET
  2515 **
  2516 **  (15)  The outer query is not part of a compound select or the
  2517 **        subquery does not have both an ORDER BY and a LIMIT clause.
  2518 **        (See ticket #2339)
  2519 **
  2520 **  (16)  The outer query is not an aggregate or the subquery does
  2521 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
  2522 **        until we introduced the group_concat() function.  
  2523 **
  2524 **  (17)  The sub-query is not a compound select, or it is a UNION ALL 
  2525 **        compound clause made up entirely of non-aggregate queries, and 
  2526 **        the parent query:
  2527 **
  2528 **          * is not itself part of a compound select,
  2529 **          * is not an aggregate or DISTINCT query, and
  2530 **          * has no other tables or sub-selects in the FROM clause.
  2531 **
  2532 **        The parent and sub-query may contain WHERE clauses. Subject to
  2533 **        rules (11), (13) and (14), they may also contain ORDER BY,
  2534 **        LIMIT and OFFSET clauses.
  2535 **
  2536 **  (18)  If the sub-query is a compound select, then all terms of the
  2537 **        ORDER by clause of the parent must be simple references to 
  2538 **        columns of the sub-query.
  2539 **
  2540 **  (19)  The subquery does not use LIMIT or the outer query does not
  2541 **        have a WHERE clause.
  2542 **
  2543 ** In this routine, the "p" parameter is a pointer to the outer query.
  2544 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
  2545 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
  2546 **
  2547 ** If flattening is not attempted, this routine is a no-op and returns 0.
  2548 ** If flattening is attempted this routine returns 1.
  2549 **
  2550 ** All of the expression analysis must occur on both the outer query and
  2551 ** the subquery before this routine runs.
  2552 */
  2553 static int flattenSubquery(
  2554   Parse *pParse,       /* Parsing context */
  2555   Select *p,           /* The parent or outer SELECT statement */
  2556   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  2557   int isAgg,           /* True if outer SELECT uses aggregate functions */
  2558   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
  2559 ){
  2560   const char *zSavedAuthContext = pParse->zAuthContext;
  2561   Select *pParent;
  2562   Select *pSub;       /* The inner query or "subquery" */
  2563   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  2564   SrcList *pSrc;      /* The FROM clause of the outer query */
  2565   SrcList *pSubSrc;   /* The FROM clause of the subquery */
  2566   ExprList *pList;    /* The result set of the outer query */
  2567   int iParent;        /* VDBE cursor number of the pSub result set temp table */
  2568   int i;              /* Loop counter */
  2569   Expr *pWhere;                    /* The WHERE clause */
  2570   struct SrcList_item *pSubitem;   /* The subquery */
  2571   sqlite3 *db = pParse->db;
  2572 
  2573   /* Check to see if flattening is permitted.  Return 0 if not.
  2574   */
  2575   if( p==0 ) return 0;
  2576   pSrc = p->pSrc;
  2577   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  2578   pSubitem = &pSrc->a[iFrom];
  2579   iParent = pSubitem->iCursor;
  2580   pSub = pSubitem->pSelect;
  2581   assert( pSub!=0 );
  2582   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
  2583   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
  2584   pSubSrc = pSub->pSrc;
  2585   assert( pSubSrc );
  2586   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  2587   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
  2588   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  2589   ** became arbitrary expressions, we were forced to add restrictions (13)
  2590   ** and (14). */
  2591   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  2592   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  2593   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
  2594     return 0;                                            /* Restriction (15) */
  2595   }
  2596   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
  2597   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 
  2598          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
  2599      return 0;       
  2600   }
  2601   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
  2602      return 0;         /* Restriction (6)  */
  2603   }
  2604   if( p->pOrderBy && pSub->pOrderBy ){
  2605      return 0;                                           /* Restriction (11) */
  2606   }
  2607   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
  2608   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
  2609 
  2610   /* OBSOLETE COMMENT 1:
  2611   ** Restriction 3:  If the subquery is a join, make sure the subquery is 
  2612   ** not used as the right operand of an outer join.  Examples of why this
  2613   ** is not allowed:
  2614   **
  2615   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  2616   **
  2617   ** If we flatten the above, we would get
  2618   **
  2619   **         (t1 LEFT OUTER JOIN t2) JOIN t3
  2620   **
  2621   ** which is not at all the same thing.
  2622   **
  2623   ** OBSOLETE COMMENT 2:
  2624   ** Restriction 12:  If the subquery is the right operand of a left outer
  2625   ** join, make sure the subquery has no WHERE clause.
  2626   ** An examples of why this is not allowed:
  2627   **
  2628   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
  2629   **
  2630   ** If we flatten the above, we would get
  2631   **
  2632   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
  2633   **
  2634   ** But the t2.x>0 test will always fail on a NULL row of t2, which
  2635   ** effectively converts the OUTER JOIN into an INNER JOIN.
  2636   **
  2637   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
  2638   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
  2639   ** is fraught with danger.  Best to avoid the whole thing.  If the
  2640   ** subquery is the right term of a LEFT JOIN, then do not flatten.
  2641   */
  2642   if( (pSubitem->jointype & JT_OUTER)!=0 ){
  2643     return 0;
  2644   }
  2645 
  2646   /* Restriction 17: If the sub-query is a compound SELECT, then it must
  2647   ** use only the UNION ALL operator. And none of the simple select queries
  2648   ** that make up the compound SELECT are allowed to be aggregate or distinct
  2649   ** queries.
  2650   */
  2651   if( pSub->pPrior ){
  2652     if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
  2653       return 0;
  2654     }
  2655     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
  2656       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
  2657        || (pSub1->pPrior && pSub1->op!=TK_ALL) 
  2658        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
  2659       ){
  2660         return 0;
  2661       }
  2662     }
  2663 
  2664     /* Restriction 18. */
  2665     if( p->pOrderBy ){
  2666       int ii;
  2667       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
  2668         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
  2669       }
  2670     }
  2671   }
  2672 
  2673   /***** If we reach this point, flattening is permitted. *****/
  2674 
  2675   /* Authorize the subquery */
  2676   pParse->zAuthContext = pSubitem->zName;
  2677   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  2678   pParse->zAuthContext = zSavedAuthContext;
  2679 
  2680   /* If the sub-query is a compound SELECT statement, then (by restrictions
  2681   ** 17 and 18 above) it must be a UNION ALL and the parent query must 
  2682   ** be of the form:
  2683   **
  2684   **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
  2685   **
  2686   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
  2687   ** creates N copies of the parent query without any ORDER BY, LIMIT or 
  2688   ** OFFSET clauses and joins them to the left-hand-side of the original
  2689   ** using UNION ALL operators. In this case N is the number of simple
  2690   ** select statements in the compound sub-query.
  2691   */
  2692   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
  2693     Select *pNew;
  2694     ExprList *pOrderBy = p->pOrderBy;
  2695     Expr *pLimit = p->pLimit;
  2696     Expr *pOffset = p->pOffset;
  2697     Select *pPrior = p->pPrior;
  2698     p->pOrderBy = 0;
  2699     p->pSrc = 0;
  2700     p->pPrior = 0;
  2701     p->pLimit = 0;
  2702     pNew = sqlite3SelectDup(db, p);
  2703     pNew->pPrior = pPrior;
  2704     p->pPrior = pNew;
  2705     p->pOrderBy = pOrderBy;
  2706     p->op = TK_ALL;
  2707     p->pSrc = pSrc;
  2708     p->pLimit = pLimit;
  2709     p->pOffset = pOffset;
  2710     p->pRightmost = 0;
  2711     pNew->pRightmost = 0;
  2712   }
  2713 
  2714   /* Begin flattening the iFrom-th entry of the FROM clause 
  2715   ** in the outer query.
  2716   */
  2717   pSub = pSub1 = pSubitem->pSelect;
  2718   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
  2719     int nSubSrc = pSubSrc->nSrc;
  2720     int jointype = 0;
  2721     pSubSrc = pSub->pSrc;
  2722     pSrc = pParent->pSrc;
  2723 
  2724     /* Move all of the FROM elements of the subquery into the
  2725     ** the FROM clause of the outer query.  Before doing this, remember
  2726     ** the cursor number for the original outer query FROM element in
  2727     ** iParent.  The iParent cursor will never be used.  Subsequent code
  2728     ** will scan expressions looking for iParent references and replace
  2729     ** those references with expressions that resolve to the subquery FROM
  2730     ** elements we are now copying in.
  2731     */
  2732     if( pSrc ){
  2733       Table *pTabToDel;
  2734       pSubitem = &pSrc->a[iFrom];
  2735       nSubSrc = pSubSrc->nSrc;
  2736       jointype = pSubitem->jointype;
  2737       sqlite3DbFree(db, pSubitem->zDatabase);
  2738       sqlite3DbFree(db, pSubitem->zName);
  2739       sqlite3DbFree(db, pSubitem->zAlias);
  2740       pSubitem->zDatabase = 0;
  2741       pSubitem->zName = 0;
  2742       pSubitem->zAlias = 0;
  2743 
  2744       /* If the FROM element is a subquery, defer deleting the Table
  2745       ** object associated with that subquery until code generation is
  2746       ** complete, since there may still exist Expr.pTab entires that
  2747       ** refer to the subquery even after flattening.  Ticket #3346.
  2748       */
  2749       if( (pTabToDel = pSubitem->pTab)!=0 ){
  2750         if( pTabToDel->nRef==1 ){
  2751           pTabToDel->pNextZombie = pParse->pZombieTab;
  2752           pParse->pZombieTab = pTabToDel;
  2753         }else{
  2754           pTabToDel->nRef--;
  2755         }
  2756       }
  2757       pSubitem->pTab = 0;
  2758     }
  2759     if( nSubSrc!=1 || !pSrc ){
  2760       int extra = nSubSrc - 1;
  2761       for(i=(pSrc?1:0); i<nSubSrc; i++){
  2762         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
  2763         if( pSrc==0 ){
  2764           pParent->pSrc = 0;
  2765           return 1;
  2766         }
  2767       }
  2768       pParent->pSrc = pSrc;
  2769       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
  2770         pSrc->a[i] = pSrc->a[i-extra];
  2771       }
  2772     }
  2773     for(i=0; i<nSubSrc; i++){
  2774       pSrc->a[i+iFrom] = pSubSrc->a[i];
  2775       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
  2776     }
  2777     pSrc->a[iFrom].jointype = jointype;
  2778   
  2779     /* Now begin substituting subquery result set expressions for 
  2780     ** references to the iParent in the outer query.
  2781     ** 
  2782     ** Example:
  2783     **
  2784     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
  2785     **   \                     \_____________ subquery __________/          /
  2786     **    \_____________________ outer query ______________________________/
  2787     **
  2788     ** We look at every expression in the outer query and every place we see
  2789     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
  2790     */
  2791     pList = pParent->pEList;
  2792     for(i=0; i<pList->nExpr; i++){
  2793       Expr *pExpr;
  2794       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
  2795         pList->a[i].zName = 
  2796                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
  2797       }
  2798     }
  2799     substExprList(db, pParent->pEList, iParent, pSub->pEList);
  2800     if( isAgg ){
  2801       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
  2802       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
  2803     }
  2804     if( pSub->pOrderBy ){
  2805       assert( pParent->pOrderBy==0 );
  2806       pParent->pOrderBy = pSub->pOrderBy;
  2807       pSub->pOrderBy = 0;
  2808     }else if( pParent->pOrderBy ){
  2809       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
  2810     }
  2811     if( pSub->pWhere ){
  2812       pWhere = sqlite3ExprDup(db, pSub->pWhere);
  2813     }else{
  2814       pWhere = 0;
  2815     }
  2816     if( subqueryIsAgg ){
  2817       assert( pParent->pHaving==0 );
  2818       pParent->pHaving = pParent->pWhere;
  2819       pParent->pWhere = pWhere;
  2820       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
  2821       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
  2822                                   sqlite3ExprDup(db, pSub->pHaving));
  2823       assert( pParent->pGroupBy==0 );
  2824       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
  2825     }else{
  2826       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
  2827       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
  2828     }
  2829   
  2830     /* The flattened query is distinct if either the inner or the
  2831     ** outer query is distinct. 
  2832     */
  2833     pParent->selFlags |= pSub->selFlags & SF_Distinct;
  2834   
  2835     /*
  2836     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
  2837     **
  2838     ** One is tempted to try to add a and b to combine the limits.  But this
  2839     ** does not work if either limit is negative.
  2840     */
  2841     if( pSub->pLimit ){
  2842       pParent->pLimit = pSub->pLimit;
  2843       pSub->pLimit = 0;
  2844     }
  2845   }
  2846 
  2847   /* Finially, delete what is left of the subquery and return
  2848   ** success.
  2849   */
  2850   sqlite3SelectDelete(db, pSub1);
  2851 
  2852   return 1;
  2853 }
  2854 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
  2855 
  2856 /*
  2857 ** Analyze the SELECT statement passed as an argument to see if it
  2858 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
  2859 ** it is, or 0 otherwise. At present, a query is considered to be
  2860 ** a min()/max() query if:
  2861 **
  2862 **   1. There is a single object in the FROM clause.
  2863 **
  2864 **   2. There is a single expression in the result set, and it is
  2865 **      either min(x) or max(x), where x is a column reference.
  2866 */
  2867 static int minMaxQuery(Parse *pParse, Select *p){
  2868   Expr *pExpr;
  2869   ExprList *pEList = p->pEList;
  2870 
  2871   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
  2872   pExpr = pEList->a[0].pExpr;
  2873   pEList = pExpr->pList;
  2874   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
  2875   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
  2876   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
  2877   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
  2878     return WHERE_ORDERBY_MIN;
  2879   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
  2880     return WHERE_ORDERBY_MAX;
  2881   }
  2882   return WHERE_ORDERBY_NORMAL;
  2883 }
  2884 
  2885 /*
  2886 ** This routine is a Walker callback for "expanding" a SELECT statement.
  2887 ** "Expanding" means to do the following:
  2888 **
  2889 **    (1)  Make sure VDBE cursor numbers have been assigned to every
  2890 **         element of the FROM clause.
  2891 **
  2892 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
  2893 **         defines FROM clause.  When views appear in the FROM clause,
  2894 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
  2895 **         that implements the view.  A copy is made of the view's SELECT
  2896 **         statement so that we can freely modify or delete that statement
  2897 **         without worrying about messing up the presistent representation
  2898 **         of the view.
  2899 **
  2900 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
  2901 **         on joins and the ON and USING clause of joins.
  2902 **
  2903 **    (4)  Scan the list of columns in the result set (pEList) looking
  2904 **         for instances of the "*" operator or the TABLE.* operator.
  2905 **         If found, expand each "*" to be every column in every table
  2906 **         and TABLE.* to be every column in TABLE.
  2907 **
  2908 */
  2909 static int selectExpander(Walker *pWalker, Select *p){
  2910   Parse *pParse = pWalker->pParse;
  2911   int i, j, k;
  2912   SrcList *pTabList;
  2913   ExprList *pEList;
  2914   struct SrcList_item *pFrom;
  2915   sqlite3 *db = pParse->db;
  2916 
  2917   if( db->mallocFailed  ){
  2918     return WRC_Abort;
  2919   }
  2920   if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
  2921     return WRC_Prune;
  2922   }
  2923   p->selFlags |= SF_Expanded;
  2924   pTabList = p->pSrc;
  2925   pEList = p->pEList;
  2926 
  2927   /* Make sure cursor numbers have been assigned to all entries in
  2928   ** the FROM clause of the SELECT statement.
  2929   */
  2930   sqlite3SrcListAssignCursors(pParse, pTabList);
  2931 
  2932   /* Look up every table named in the FROM clause of the select.  If
  2933   ** an entry of the FROM clause is a subquery instead of a table or view,
  2934   ** then create a transient table structure to describe the subquery.
  2935   */
  2936   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
  2937     Table *pTab;
  2938     if( pFrom->pTab!=0 ){
  2939       /* This statement has already been prepared.  There is no need
  2940       ** to go further. */
  2941       assert( i==0 );
  2942       return WRC_Prune;
  2943     }
  2944     if( pFrom->zName==0 ){
  2945 #ifndef SQLITE_OMIT_SUBQUERY
  2946       Select *pSel = pFrom->pSelect;
  2947       /* A sub-query in the FROM clause of a SELECT */
  2948       assert( pSel!=0 );
  2949       assert( pFrom->pTab==0 );
  2950       sqlite3WalkSelect(pWalker, pSel);
  2951       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
  2952       if( pTab==0 ) return WRC_Abort;
  2953       pTab->db = db;
  2954       pTab->nRef = 1;
  2955       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
  2956       while( pSel->pPrior ){ pSel = pSel->pPrior; }
  2957       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
  2958       pTab->iPKey = -1;
  2959       pTab->tabFlags |= TF_Ephemeral;
  2960 #endif
  2961     }else{
  2962       /* An ordinary table or view name in the FROM clause */
  2963       assert( pFrom->pTab==0 );
  2964       pFrom->pTab = pTab = 
  2965         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
  2966       if( pTab==0 ) return WRC_Abort;
  2967       pTab->nRef++;
  2968 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
  2969       if( pTab->pSelect || IsVirtual(pTab) ){
  2970         /* We reach here if the named table is a really a view */
  2971         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
  2972 
  2973         /* If pFrom->pSelect!=0 it means we are dealing with a
  2974         ** view within a view.  The SELECT structure has already been
  2975         ** copied by the outer view so we can skip the copy step here
  2976         ** in the inner view.
  2977         */
  2978         if( pFrom->pSelect==0 ){
  2979           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
  2980           sqlite3WalkSelect(pWalker, pFrom->pSelect);
  2981         }
  2982       }
  2983 #endif
  2984     }
  2985   }
  2986 
  2987   /* Process NATURAL keywords, and ON and USING clauses of joins.
  2988   */
  2989   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
  2990     return WRC_Abort;
  2991   }
  2992 
  2993   /* For every "*" that occurs in the column list, insert the names of
  2994   ** all columns in all tables.  And for every TABLE.* insert the names
  2995   ** of all columns in TABLE.  The parser inserted a special expression
  2996   ** with the TK_ALL operator for each "*" that it found in the column list.
  2997   ** The following code just has to locate the TK_ALL expressions and expand
  2998   ** each one to the list of all columns in all tables.
  2999   **
  3000   ** The first loop just checks to see if there are any "*" operators
  3001   ** that need expanding.
  3002   */
  3003   for(k=0; k<pEList->nExpr; k++){
  3004     Expr *pE = pEList->a[k].pExpr;
  3005     if( pE->op==TK_ALL ) break;
  3006     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
  3007          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
  3008   }
  3009   if( k<pEList->nExpr ){
  3010     /*
  3011     ** If we get here it means the result set contains one or more "*"
  3012     ** operators that need to be expanded.  Loop through each expression
  3013     ** in the result set and expand them one by one.
  3014     */
  3015     struct ExprList_item *a = pEList->a;
  3016     ExprList *pNew = 0;
  3017     int flags = pParse->db->flags;
  3018     int longNames = (flags & SQLITE_FullColNames)!=0
  3019                       && (flags & SQLITE_ShortColNames)==0;
  3020 
  3021     for(k=0; k<pEList->nExpr; k++){
  3022       Expr *pE = a[k].pExpr;
  3023       if( pE->op!=TK_ALL &&
  3024            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
  3025         /* This particular expression does not need to be expanded.
  3026         */
  3027         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
  3028         if( pNew ){
  3029           pNew->a[pNew->nExpr-1].zName = a[k].zName;
  3030         }
  3031         a[k].pExpr = 0;
  3032         a[k].zName = 0;
  3033       }else{
  3034         /* This expression is a "*" or a "TABLE.*" and needs to be
  3035         ** expanded. */
  3036         int tableSeen = 0;      /* Set to 1 when TABLE matches */
  3037         char *zTName;            /* text of name of TABLE */
  3038         if( pE->op==TK_DOT && pE->pLeft ){
  3039           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
  3040         }else{
  3041           zTName = 0;
  3042         }
  3043         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
  3044           Table *pTab = pFrom->pTab;
  3045           char *zTabName = pFrom->zAlias;
  3046           if( zTabName==0 || zTabName[0]==0 ){ 
  3047             zTabName = pTab->zName;
  3048           }
  3049           if( db->mallocFailed ) break;
  3050           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
  3051             continue;
  3052           }
  3053           tableSeen = 1;
  3054           for(j=0; j<pTab->nCol; j++){
  3055             Expr *pExpr, *pRight;
  3056             char *zName = pTab->aCol[j].zName;
  3057 
  3058             /* If a column is marked as 'hidden' (currently only possible
  3059             ** for virtual tables), do not include it in the expanded
  3060             ** result-set list.
  3061             */
  3062             if( IsHiddenColumn(&pTab->aCol[j]) ){
  3063               assert(IsVirtual(pTab));
  3064               continue;
  3065             }
  3066 
  3067             if( i>0 ){
  3068               struct SrcList_item *pLeft = &pTabList->a[i-1];
  3069               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
  3070                         columnIndex(pLeft->pTab, zName)>=0 ){
  3071                 /* In a NATURAL join, omit the join columns from the 
  3072                 ** table on the right */
  3073                 continue;
  3074               }
  3075               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
  3076                 /* In a join with a USING clause, omit columns in the
  3077                 ** using clause from the table on the right. */
  3078                 continue;
  3079               }
  3080             }
  3081             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
  3082             if( pRight==0 ) break;
  3083             setQuotedToken(pParse, &pRight->token, zName);
  3084             if( longNames || pTabList->nSrc>1 ){
  3085               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
  3086               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
  3087               if( pExpr==0 ) break;
  3088               setQuotedToken(pParse, &pLeft->token, zTabName);
  3089               setToken(&pExpr->span, 
  3090                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
  3091               pExpr->span.dyn = 1;
  3092               pExpr->token.z = 0;
  3093               pExpr->token.n = 0;
  3094               pExpr->token.dyn = 0;
  3095             }else{
  3096               pExpr = pRight;
  3097               pExpr->span = pExpr->token;
  3098               pExpr->span.dyn = 0;
  3099             }
  3100             if( longNames ){
  3101               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
  3102             }else{
  3103               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
  3104             }
  3105           }
  3106         }
  3107         if( !tableSeen ){
  3108           if( zTName ){
  3109             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
  3110           }else{
  3111             sqlite3ErrorMsg(pParse, "no tables specified");
  3112           }
  3113         }
  3114         sqlite3DbFree(db, zTName);
  3115       }
  3116     }
  3117     sqlite3ExprListDelete(db, pEList);
  3118     p->pEList = pNew;
  3119   }
  3120 #if SQLITE_MAX_COLUMN
  3121   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
  3122     sqlite3ErrorMsg(pParse, "too many columns in result set");
  3123   }
  3124 #endif
  3125   return WRC_Continue;
  3126 }
  3127 
  3128 /*
  3129 ** No-op routine for the parse-tree walker.
  3130 **
  3131 ** When this routine is the Walker.xExprCallback then expression trees
  3132 ** are walked without any actions being taken at each node.  Presumably,
  3133 ** when this routine is used for Walker.xExprCallback then 
  3134 ** Walker.xSelectCallback is set to do something useful for every 
  3135 ** subquery in the parser tree.
  3136 */
  3137 static int exprWalkNoop(Walker *pWalker, Expr *pExpr){
  3138   return WRC_Continue;
  3139 }
  3140 
  3141 /*
  3142 ** This routine "expands" a SELECT statement and all of its subqueries.
  3143 ** For additional information on what it means to "expand" a SELECT
  3144 ** statement, see the comment on the selectExpand worker callback above.
  3145 **
  3146 ** Expanding a SELECT statement is the first step in processing a
  3147 ** SELECT statement.  The SELECT statement must be expanded before
  3148 ** name resolution is performed.
  3149 **
  3150 ** If anything goes wrong, an error message is written into pParse.
  3151 ** The calling function can detect the problem by looking at pParse->nErr
  3152 ** and/or pParse->db->mallocFailed.
  3153 */
  3154 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  3155   Walker w;
  3156   w.xSelectCallback = selectExpander;
  3157   w.xExprCallback = exprWalkNoop;
  3158   w.pParse = pParse;
  3159   sqlite3WalkSelect(&w, pSelect);
  3160 }
  3161 
  3162 
  3163 #ifndef SQLITE_OMIT_SUBQUERY
  3164 /*
  3165 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
  3166 ** interface.
  3167 **
  3168 ** For each FROM-clause subquery, add Column.zType and Column.zColl
  3169 ** information to the Table structure that represents the result set
  3170 ** of that subquery.
  3171 **
  3172 ** The Table structure that represents the result set was constructed
  3173 ** by selectExpander() but the type and collation information was omitted
  3174 ** at that point because identifiers had not yet been resolved.  This
  3175 ** routine is called after identifier resolution.
  3176 */
  3177 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
  3178   Parse *pParse;
  3179   int i;
  3180   SrcList *pTabList;
  3181   struct SrcList_item *pFrom;
  3182 
  3183   assert( p->selFlags & SF_Resolved );
  3184   if( (p->selFlags & SF_HasTypeInfo)==0 ){
  3185     p->selFlags |= SF_HasTypeInfo;
  3186     pParse = pWalker->pParse;
  3187     pTabList = p->pSrc;
  3188     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
  3189       Table *pTab = pFrom->pTab;
  3190       if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
  3191         /* A sub-query in the FROM clause of a SELECT */
  3192         Select *pSel = pFrom->pSelect;
  3193         assert( pSel );
  3194         while( pSel->pPrior ) pSel = pSel->pPrior;
  3195         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
  3196       }
  3197     }
  3198   }
  3199   return WRC_Continue;
  3200 }
  3201 #endif
  3202 
  3203 
  3204 /*
  3205 ** This routine adds datatype and collating sequence information to
  3206 ** the Table structures of all FROM-clause subqueries in a
  3207 ** SELECT statement.
  3208 **
  3209 ** Use this routine after name resolution.
  3210 */
  3211 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
  3212 #ifndef SQLITE_OMIT_SUBQUERY
  3213   Walker w;
  3214   w.xSelectCallback = selectAddSubqueryTypeInfo;
  3215   w.xExprCallback = exprWalkNoop;
  3216   w.pParse = pParse;
  3217   sqlite3WalkSelect(&w, pSelect);
  3218 #endif
  3219 }
  3220 
  3221 
  3222 /*
  3223 ** This routine sets of a SELECT statement for processing.  The
  3224 ** following is accomplished:
  3225 **
  3226 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
  3227 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
  3228 **     *  ON and USING clauses are shifted into WHERE statements
  3229 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
  3230 **     *  Identifiers in expression are matched to tables.
  3231 **
  3232 ** This routine acts recursively on all subqueries within the SELECT.
  3233 */
  3234 void sqlite3SelectPrep(
  3235   Parse *pParse,         /* The parser context */
  3236   Select *p,             /* The SELECT statement being coded. */
  3237   NameContext *pOuterNC  /* Name context for container */
  3238 ){
  3239   sqlite3 *db;
  3240   if( p==0 ) return;
  3241   db = pParse->db;
  3242   if( p->selFlags & SF_HasTypeInfo ) return;
  3243   if( pParse->nErr || db->mallocFailed ) return;
  3244   sqlite3SelectExpand(pParse, p);
  3245   if( pParse->nErr || db->mallocFailed ) return;
  3246   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
  3247   if( pParse->nErr || db->mallocFailed ) return;
  3248   sqlite3SelectAddTypeInfo(pParse, p);
  3249 }
  3250 
  3251 /*
  3252 ** Reset the aggregate accumulator.
  3253 **
  3254 ** The aggregate accumulator is a set of memory cells that hold
  3255 ** intermediate results while calculating an aggregate.  This
  3256 ** routine simply stores NULLs in all of those memory cells.
  3257 */
  3258 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  3259   Vdbe *v = pParse->pVdbe;
  3260   int i;
  3261   struct AggInfo_func *pFunc;
  3262   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
  3263     return;
  3264   }
  3265   for(i=0; i<pAggInfo->nColumn; i++){
  3266     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
  3267   }
  3268   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
  3269     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
  3270     if( pFunc->iDistinct>=0 ){
  3271       Expr *pE = pFunc->pExpr;
  3272       if( pE->pList==0 || pE->pList->nExpr!=1 ){
  3273         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
  3274            "by an expression");
  3275         pFunc->iDistinct = -1;
  3276       }else{
  3277         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
  3278         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
  3279                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3280       }
  3281     }
  3282   }
  3283 }
  3284 
  3285 /*
  3286 ** Invoke the OP_AggFinalize opcode for every aggregate function
  3287 ** in the AggInfo structure.
  3288 */
  3289 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  3290   Vdbe *v = pParse->pVdbe;
  3291   int i;
  3292   struct AggInfo_func *pF;
  3293   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
  3294     ExprList *pList = pF->pExpr->pList;
  3295     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
  3296                       (void*)pF->pFunc, P4_FUNCDEF);
  3297   }
  3298 }
  3299 
  3300 /*
  3301 ** Update the accumulator memory cells for an aggregate based on
  3302 ** the current cursor position.
  3303 */
  3304 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
  3305   Vdbe *v = pParse->pVdbe;
  3306   int i;
  3307   struct AggInfo_func *pF;
  3308   struct AggInfo_col *pC;
  3309 
  3310   pAggInfo->directMode = 1;
  3311   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
  3312     int nArg;
  3313     int addrNext = 0;
  3314     int regAgg;
  3315     ExprList *pList = pF->pExpr->pList;
  3316     if( pList ){
  3317       nArg = pList->nExpr;
  3318       regAgg = sqlite3GetTempRange(pParse, nArg);
  3319       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
  3320     }else{
  3321       nArg = 0;
  3322       regAgg = 0;
  3323     }
  3324     if( pF->iDistinct>=0 ){
  3325       addrNext = sqlite3VdbeMakeLabel(v);
  3326       assert( nArg==1 );
  3327       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
  3328     }
  3329     if( pF->pFunc->needCollSeq ){
  3330       CollSeq *pColl = 0;
  3331       struct ExprList_item *pItem;
  3332       int j;
  3333       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
  3334       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
  3335         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
  3336       }
  3337       if( !pColl ){
  3338         pColl = pParse->db->pDfltColl;
  3339       }
  3340       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
  3341     }
  3342     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
  3343                       (void*)pF->pFunc, P4_FUNCDEF);
  3344     sqlite3VdbeChangeP5(v, nArg);
  3345     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
  3346     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
  3347     if( addrNext ){
  3348       sqlite3VdbeResolveLabel(v, addrNext);
  3349     }
  3350   }
  3351   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
  3352     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  3353   }
  3354   pAggInfo->directMode = 0;
  3355 }
  3356 
  3357 /*
  3358 ** Generate code for the SELECT statement given in the p argument.  
  3359 **
  3360 ** The results are distributed in various ways depending on the
  3361 ** contents of the SelectDest structure pointed to by argument pDest
  3362 ** as follows:
  3363 **
  3364 **     pDest->eDest    Result
  3365 **     ------------    -------------------------------------------
  3366 **     SRT_Output      Generate a row of output (using the OP_ResultRow
  3367 **                     opcode) for each row in the result set.
  3368 **
  3369 **     SRT_Mem         Only valid if the result is a single column.
  3370 **                     Store the first column of the first result row
  3371 **                     in register pDest->iParm then abandon the rest
  3372 **                     of the query.  This destination implies "LIMIT 1".
  3373 **
  3374 **     SRT_Set         The result must be a single column.  Store each
  3375 **                     row of result as the key in table pDest->iParm. 
  3376 **                     Apply the affinity pDest->affinity before storing
  3377 **                     results.  Used to implement "IN (SELECT ...)".
  3378 **
  3379 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
  3380 **
  3381 **     SRT_Except      Remove results from the temporary table pDest->iParm.
  3382 **
  3383 **     SRT_Table       Store results in temporary table pDest->iParm.
  3384 **                     This is like SRT_EphemTab except that the table
  3385 **                     is assumed to already be open.
  3386 **
  3387 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
  3388 **                     the result there. The cursor is left open after
  3389 **                     returning.  This is like SRT_Table except that
  3390 **                     this destination uses OP_OpenEphemeral to create
  3391 **                     the table first.
  3392 **
  3393 **     SRT_Coroutine   Generate a co-routine that returns a new row of
  3394 **                     results each time it is invoked.  The entry point
  3395 **                     of the co-routine is stored in register pDest->iParm.
  3396 **
  3397 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
  3398 **                     set is not empty.
  3399 **
  3400 **     SRT_Discard     Throw the results away.  This is used by SELECT
  3401 **                     statements within triggers whose only purpose is
  3402 **                     the side-effects of functions.
  3403 **
  3404 ** This routine returns the number of errors.  If any errors are
  3405 ** encountered, then an appropriate error message is left in
  3406 ** pParse->zErrMsg.
  3407 **
  3408 ** This routine does NOT free the Select structure passed in.  The
  3409 ** calling function needs to do that.
  3410 */
  3411 int sqlite3Select(
  3412   Parse *pParse,         /* The parser context */
  3413   Select *p,             /* The SELECT statement being coded. */
  3414   SelectDest *pDest      /* What to do with the query results */
  3415 ){
  3416   int i, j;              /* Loop counters */
  3417   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  3418   Vdbe *v;               /* The virtual machine under construction */
  3419   int isAgg;             /* True for select lists like "count(*)" */
  3420   ExprList *pEList;      /* List of columns to extract. */
  3421   SrcList *pTabList;     /* List of tables to select from */
  3422   Expr *pWhere;          /* The WHERE clause.  May be NULL */
  3423   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  3424   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  3425   Expr *pHaving;         /* The HAVING clause.  May be NULL */
  3426   int isDistinct;        /* True if the DISTINCT keyword is present */
  3427   int distinct;          /* Table to use for the distinct set */
  3428   int rc = 1;            /* Value to return from this function */
  3429   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
  3430   AggInfo sAggInfo;      /* Information used by aggregate queries */
  3431   int iEnd;              /* Address of the end of the query */
  3432   sqlite3 *db;           /* The database connection */
  3433 
  3434   db = pParse->db;
  3435   if( p==0 || db->mallocFailed || pParse->nErr ){
  3436     return 1;
  3437   }
  3438   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  3439   memset(&sAggInfo, 0, sizeof(sAggInfo));
  3440 
  3441   pOrderBy = p->pOrderBy;
  3442   if( IgnorableOrderby(pDest) ){
  3443     p->pOrderBy = 0;
  3444 
  3445     /* In these cases the DISTINCT operator makes no difference to the
  3446     ** results, so remove it if it were specified.
  3447     */
  3448     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
  3449            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
  3450     p->selFlags &= ~SF_Distinct;
  3451   }
  3452   sqlite3SelectPrep(pParse, p, 0);
  3453   if( pParse->nErr ){
  3454     goto select_end;
  3455   }
  3456   p->pOrderBy = pOrderBy;
  3457 
  3458 
  3459   /* Make local copies of the parameters for this query.
  3460   */
  3461   pTabList = p->pSrc;
  3462   isAgg = (p->selFlags & SF_Aggregate)!=0;
  3463   pEList = p->pEList;
  3464   if( pEList==0 ) goto select_end;
  3465 
  3466   /* 
  3467   ** Do not even attempt to generate any code if we have already seen
  3468   ** errors before this routine starts.
  3469   */
  3470   if( pParse->nErr>0 ) goto select_end;
  3471 
  3472   /* ORDER BY is ignored for some destinations.
  3473   */
  3474   if( IgnorableOrderby(pDest) ){
  3475     pOrderBy = 0;
  3476   }
  3477 
  3478   /* Begin generating code.
  3479   */
  3480   v = sqlite3GetVdbe(pParse);
  3481   if( v==0 ) goto select_end;
  3482 
  3483   /* Generate code for all sub-queries in the FROM clause
  3484   */
  3485 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  3486   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
  3487     struct SrcList_item *pItem = &pTabList->a[i];
  3488     SelectDest dest;
  3489     Select *pSub = pItem->pSelect;
  3490     int isAggSub;
  3491 
  3492     if( pSub==0 || pItem->isPopulated ) continue;
  3493 
  3494     /* Increment Parse.nHeight by the height of the largest expression
  3495     ** tree refered to by this, the parent select. The child select
  3496     ** may contain expression trees of at most
  3497     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
  3498     ** more conservative than necessary, but much easier than enforcing
  3499     ** an exact limit.
  3500     */
  3501     pParse->nHeight += sqlite3SelectExprHeight(p);
  3502 
  3503     /* Check to see if the subquery can be absorbed into the parent. */
  3504     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
  3505     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
  3506       if( isAggSub ){
  3507         isAgg = 1;
  3508         p->selFlags |= SF_Aggregate;
  3509       }
  3510       i = -1;
  3511     }else{
  3512       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
  3513       assert( pItem->isPopulated==0 );
  3514       sqlite3Select(pParse, pSub, &dest);
  3515       pItem->isPopulated = 1;
  3516     }
  3517     if( pParse->nErr || db->mallocFailed ){
  3518       goto select_end;
  3519     }
  3520     pParse->nHeight -= sqlite3SelectExprHeight(p);
  3521     pTabList = p->pSrc;
  3522     if( !IgnorableOrderby(pDest) ){
  3523       pOrderBy = p->pOrderBy;
  3524     }
  3525   }
  3526   pEList = p->pEList;
  3527 #endif
  3528   pWhere = p->pWhere;
  3529   pGroupBy = p->pGroupBy;
  3530   pHaving = p->pHaving;
  3531   isDistinct = (p->selFlags & SF_Distinct)!=0;
  3532 
  3533 #ifndef SQLITE_OMIT_COMPOUND_SELECT
  3534   /* If there is are a sequence of queries, do the earlier ones first.
  3535   */
  3536   if( p->pPrior ){
  3537     if( p->pRightmost==0 ){
  3538       Select *pLoop, *pRight = 0;
  3539       int cnt = 0;
  3540       int mxSelect;
  3541       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
  3542         pLoop->pRightmost = p;
  3543         pLoop->pNext = pRight;
  3544         pRight = pLoop;
  3545       }
  3546       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
  3547       if( mxSelect && cnt>mxSelect ){
  3548         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
  3549         return 1;
  3550       }
  3551     }
  3552     return multiSelect(pParse, p, pDest);
  3553   }
  3554 #endif
  3555 
  3556   /* If writing to memory or generating a set
  3557   ** only a single column may be output.
  3558   */
  3559 #ifndef SQLITE_OMIT_SUBQUERY
  3560   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
  3561     goto select_end;
  3562   }
  3563 #endif
  3564 
  3565   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
  3566   ** GROUP BY might use an index, DISTINCT never does.
  3567   */
  3568   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
  3569     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
  3570     pGroupBy = p->pGroupBy;
  3571     p->selFlags &= ~SF_Distinct;
  3572     isDistinct = 0;
  3573   }
  3574 
  3575   /* If there is an ORDER BY clause, then this sorting
  3576   ** index might end up being unused if the data can be 
  3577   ** extracted in pre-sorted order.  If that is the case, then the
  3578   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  3579   ** we figure out that the sorting index is not needed.  The addrSortIndex
  3580   ** variable is used to facilitate that change.
  3581   */
  3582   if( pOrderBy ){
  3583     KeyInfo *pKeyInfo;
  3584     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
  3585     pOrderBy->iECursor = pParse->nTab++;
  3586     p->addrOpenEphm[2] = addrSortIndex =
  3587       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
  3588                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
  3589                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3590   }else{
  3591     addrSortIndex = -1;
  3592   }
  3593 
  3594   /* If the output is destined for a temporary table, open that table.
  3595   */
  3596   if( pDest->eDest==SRT_EphemTab ){
  3597     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
  3598   }
  3599 
  3600   /* Set the limiter.
  3601   */
  3602   iEnd = sqlite3VdbeMakeLabel(v);
  3603   computeLimitRegisters(pParse, p, iEnd);
  3604 
  3605   /* Open a virtual index to use for the distinct set.
  3606   */
  3607   if( isDistinct ){
  3608     KeyInfo *pKeyInfo;
  3609     assert( isAgg || pGroupBy );
  3610     distinct = pParse->nTab++;
  3611     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
  3612     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
  3613                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3614   }else{
  3615     distinct = -1;
  3616   }
  3617 
  3618   /* Aggregate and non-aggregate queries are handled differently */
  3619   if( !isAgg && pGroupBy==0 ){
  3620     /* This case is for non-aggregate queries
  3621     ** Begin the database scan
  3622     */
  3623     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
  3624     if( pWInfo==0 ) goto select_end;
  3625 
  3626     /* If sorting index that was created by a prior OP_OpenEphemeral 
  3627     ** instruction ended up not being needed, then change the OP_OpenEphemeral
  3628     ** into an OP_Noop.
  3629     */
  3630     if( addrSortIndex>=0 && pOrderBy==0 ){
  3631       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
  3632       p->addrOpenEphm[2] = -1;
  3633     }
  3634 
  3635     /* Use the standard inner loop
  3636     */
  3637     assert(!isDistinct);
  3638     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
  3639                     pWInfo->iContinue, pWInfo->iBreak);
  3640 
  3641     /* End the database scan loop.
  3642     */
  3643     sqlite3WhereEnd(pWInfo);
  3644   }else{
  3645     /* This is the processing for aggregate queries */
  3646     NameContext sNC;    /* Name context for processing aggregate information */
  3647     int iAMem;          /* First Mem address for storing current GROUP BY */
  3648     int iBMem;          /* First Mem address for previous GROUP BY */
  3649     int iUseFlag;       /* Mem address holding flag indicating that at least
  3650                         ** one row of the input to the aggregator has been
  3651                         ** processed */
  3652     int iAbortFlag;     /* Mem address which causes query abort if positive */
  3653     int groupBySort;    /* Rows come from source in GROUP BY order */
  3654     int addrEnd;        /* End of processing for this SELECT */
  3655 
  3656     /* Remove any and all aliases between the result set and the
  3657     ** GROUP BY clause.
  3658     */
  3659     if( pGroupBy ){
  3660       int i;                        /* Loop counter */
  3661       struct ExprList_item *pItem;  /* For looping over expression in a list */
  3662 
  3663       for(i=p->pEList->nExpr, pItem=p->pEList->a; i>0; i--, pItem++){
  3664         pItem->iAlias = 0;
  3665       }
  3666       for(i=pGroupBy->nExpr, pItem=pGroupBy->a; i>0; i--, pItem++){
  3667         pItem->iAlias = 0;
  3668       }
  3669     }
  3670 
  3671  
  3672     /* Create a label to jump to when we want to abort the query */
  3673     addrEnd = sqlite3VdbeMakeLabel(v);
  3674 
  3675     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
  3676     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
  3677     ** SELECT statement.
  3678     */
  3679     memset(&sNC, 0, sizeof(sNC));
  3680     sNC.pParse = pParse;
  3681     sNC.pSrcList = pTabList;
  3682     sNC.pAggInfo = &sAggInfo;
  3683     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
  3684     sAggInfo.pGroupBy = pGroupBy;
  3685     sqlite3ExprAnalyzeAggList(&sNC, pEList);
  3686     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
  3687     if( pHaving ){
  3688       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
  3689     }
  3690     sAggInfo.nAccumulator = sAggInfo.nColumn;
  3691     for(i=0; i<sAggInfo.nFunc; i++){
  3692       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
  3693     }
  3694     if( db->mallocFailed ) goto select_end;
  3695 
  3696     /* Processing for aggregates with GROUP BY is very different and
  3697     ** much more complex than aggregates without a GROUP BY.
  3698     */
  3699     if( pGroupBy ){
  3700       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
  3701       int j1;             /* A-vs-B comparision jump */
  3702       int addrOutputRow;  /* Start of subroutine that outputs a result row */
  3703       int regOutputRow;   /* Return address register for output subroutine */
  3704       int addrSetAbort;   /* Set the abort flag and return */
  3705       int addrTopOfLoop;  /* Top of the input loop */
  3706       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
  3707       int addrReset;      /* Subroutine for resetting the accumulator */
  3708       int regReset;       /* Return address register for reset subroutine */
  3709 
  3710       /* If there is a GROUP BY clause we might need a sorting index to
  3711       ** implement it.  Allocate that sorting index now.  If it turns out
  3712       ** that we do not need it after all, the OpenEphemeral instruction
  3713       ** will be converted into a Noop.  
  3714       */
  3715       sAggInfo.sortingIdx = pParse->nTab++;
  3716       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
  3717       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 
  3718           sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
  3719           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  3720 
  3721       /* Initialize memory locations used by GROUP BY aggregate processing
  3722       */
  3723       iUseFlag = ++pParse->nMem;
  3724       iAbortFlag = ++pParse->nMem;
  3725       regOutputRow = ++pParse->nMem;
  3726       addrOutputRow = sqlite3VdbeMakeLabel(v);
  3727       regReset = ++pParse->nMem;
  3728       addrReset = sqlite3VdbeMakeLabel(v);
  3729       iAMem = pParse->nMem + 1;
  3730       pParse->nMem += pGroupBy->nExpr;
  3731       iBMem = pParse->nMem + 1;
  3732       pParse->nMem += pGroupBy->nExpr;
  3733       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
  3734       VdbeComment((v, "clear abort flag"));
  3735       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
  3736       VdbeComment((v, "indicate accumulator empty"));
  3737 
  3738       /* Begin a loop that will extract all source rows in GROUP BY order.
  3739       ** This might involve two separate loops with an OP_Sort in between, or
  3740       ** it might be a single loop that uses an index to extract information
  3741       ** in the right order to begin with.
  3742       */
  3743       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
  3744       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
  3745       if( pWInfo==0 ) goto select_end;
  3746       if( pGroupBy==0 ){
  3747         /* The optimizer is able to deliver rows in group by order so
  3748         ** we do not have to sort.  The OP_OpenEphemeral table will be
  3749         ** cancelled later because we still need to use the pKeyInfo
  3750         */
  3751         pGroupBy = p->pGroupBy;
  3752         groupBySort = 0;
  3753       }else{
  3754         /* Rows are coming out in undetermined order.  We have to push
  3755         ** each row into a sorting index, terminate the first loop,
  3756         ** then loop over the sorting index in order to get the output
  3757         ** in sorted order
  3758         */
  3759         int regBase;
  3760         int regRecord;
  3761         int nCol;
  3762         int nGroupBy;
  3763 
  3764         groupBySort = 1;
  3765         nGroupBy = pGroupBy->nExpr;
  3766         nCol = nGroupBy + 1;
  3767         j = nGroupBy+1;
  3768         for(i=0; i<sAggInfo.nColumn; i++){
  3769           if( sAggInfo.aCol[i].iSorterColumn>=j ){
  3770             nCol++;
  3771             j++;
  3772           }
  3773         }
  3774         regBase = sqlite3GetTempRange(pParse, nCol);
  3775         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
  3776         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
  3777         j = nGroupBy+1;
  3778         for(i=0; i<sAggInfo.nColumn; i++){
  3779           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
  3780           if( pCol->iSorterColumn>=j ){
  3781             int r1 = j + regBase;
  3782             int r2;
  3783 
  3784             r2 = sqlite3ExprCodeGetColumn(pParse, 
  3785                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
  3786             if( r1!=r2 ){
  3787               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
  3788             }
  3789             j++;
  3790           }
  3791         }
  3792         regRecord = sqlite3GetTempReg(pParse);
  3793         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
  3794         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
  3795         sqlite3ReleaseTempReg(pParse, regRecord);
  3796         sqlite3ReleaseTempRange(pParse, regBase, nCol);
  3797         sqlite3WhereEnd(pWInfo);
  3798         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
  3799         VdbeComment((v, "GROUP BY sort"));
  3800         sAggInfo.useSortingIdx = 1;
  3801       }
  3802 
  3803       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
  3804       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
  3805       ** Then compare the current GROUP BY terms against the GROUP BY terms
  3806       ** from the previous row currently stored in a0, a1, a2...
  3807       */
  3808       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
  3809       for(j=0; j<pGroupBy->nExpr; j++){
  3810         if( groupBySort ){
  3811           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
  3812         }else{
  3813           sAggInfo.directMode = 1;
  3814           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
  3815         }
  3816       }
  3817       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
  3818                           (char*)pKeyInfo, P4_KEYINFO);
  3819       j1 = sqlite3VdbeCurrentAddr(v);
  3820       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
  3821 
  3822       /* Generate code that runs whenever the GROUP BY changes.
  3823       ** Changes in the GROUP BY are detected by the previous code
  3824       ** block.  If there were no changes, this block is skipped.
  3825       **
  3826       ** This code copies current group by terms in b0,b1,b2,...
  3827       ** over to a0,a1,a2.  It then calls the output subroutine
  3828       ** and resets the aggregate accumulator registers in preparation
  3829       ** for the next GROUP BY batch.
  3830       */
  3831       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
  3832       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
  3833       VdbeComment((v, "output one row"));
  3834       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
  3835       VdbeComment((v, "check abort flag"));
  3836       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
  3837       VdbeComment((v, "reset accumulator"));
  3838 
  3839       /* Update the aggregate accumulators based on the content of
  3840       ** the current row
  3841       */
  3842       sqlite3VdbeJumpHere(v, j1);
  3843       updateAccumulator(pParse, &sAggInfo);
  3844       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
  3845       VdbeComment((v, "indicate data in accumulator"));
  3846 
  3847       /* End of the loop
  3848       */
  3849       if( groupBySort ){
  3850         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
  3851       }else{
  3852         sqlite3WhereEnd(pWInfo);
  3853         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
  3854       }
  3855 
  3856       /* Output the final row of result
  3857       */
  3858       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
  3859       VdbeComment((v, "output final row"));
  3860 
  3861       /* Jump over the subroutines
  3862       */
  3863       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
  3864 
  3865       /* Generate a subroutine that outputs a single row of the result
  3866       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
  3867       ** is less than or equal to zero, the subroutine is a no-op.  If
  3868       ** the processing calls for the query to abort, this subroutine
  3869       ** increments the iAbortFlag memory location before returning in
  3870       ** order to signal the caller to abort.
  3871       */
  3872       addrSetAbort = sqlite3VdbeCurrentAddr(v);
  3873       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
  3874       VdbeComment((v, "set abort flag"));
  3875       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
  3876       sqlite3VdbeResolveLabel(v, addrOutputRow);
  3877       addrOutputRow = sqlite3VdbeCurrentAddr(v);
  3878       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
  3879       VdbeComment((v, "Groupby result generator entry point"));
  3880       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
  3881       finalizeAggFunctions(pParse, &sAggInfo);
  3882       if( pHaving ){
  3883         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
  3884       }
  3885       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
  3886                       distinct, pDest,
  3887                       addrOutputRow+1, addrSetAbort);
  3888       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
  3889       VdbeComment((v, "end groupby result generator"));
  3890 
  3891       /* Generate a subroutine that will reset the group-by accumulator
  3892       */
  3893       sqlite3VdbeResolveLabel(v, addrReset);
  3894       resetAccumulator(pParse, &sAggInfo);
  3895       sqlite3VdbeAddOp1(v, OP_Return, regReset);
  3896      
  3897     } /* endif pGroupBy */
  3898     else {
  3899       ExprList *pMinMax = 0;
  3900       ExprList *pDel = 0;
  3901       u8 flag;
  3902 
  3903       /* Check if the query is of one of the following forms:
  3904       **
  3905       **   SELECT min(x) FROM ...
  3906       **   SELECT max(x) FROM ...
  3907       **
  3908       ** If it is, then ask the code in where.c to attempt to sort results
  3909       ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 
  3910       ** If where.c is able to produce results sorted in this order, then
  3911       ** add vdbe code to break out of the processing loop after the 
  3912       ** first iteration (since the first iteration of the loop is 
  3913       ** guaranteed to operate on the row with the minimum or maximum 
  3914       ** value of x, the only row required).
  3915       **
  3916       ** A special flag must be passed to sqlite3WhereBegin() to slightly
  3917       ** modify behaviour as follows:
  3918       **
  3919       **   + If the query is a "SELECT min(x)", then the loop coded by
  3920       **     where.c should not iterate over any values with a NULL value
  3921       **     for x.
  3922       **
  3923       **   + The optimizer code in where.c (the thing that decides which
  3924       **     index or indices to use) should place a different priority on 
  3925       **     satisfying the 'ORDER BY' clause than it does in other cases.
  3926       **     Refer to code and comments in where.c for details.
  3927       */
  3928       flag = minMaxQuery(pParse, p);
  3929       if( flag ){
  3930         pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
  3931         if( pMinMax && !db->mallocFailed ){
  3932           pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
  3933           pMinMax->a[0].pExpr->op = TK_COLUMN;
  3934         }
  3935       }
  3936 
  3937       /* This case runs if the aggregate has no GROUP BY clause.  The
  3938       ** processing is much simpler since there is only a single row
  3939       ** of output.
  3940       */
  3941       resetAccumulator(pParse, &sAggInfo);
  3942       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
  3943       if( pWInfo==0 ){
  3944         sqlite3ExprListDelete(db, pDel);
  3945         goto select_end;
  3946       }
  3947       updateAccumulator(pParse, &sAggInfo);
  3948       if( !pMinMax && flag ){
  3949         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
  3950         VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
  3951       }
  3952       sqlite3WhereEnd(pWInfo);
  3953       finalizeAggFunctions(pParse, &sAggInfo);
  3954       pOrderBy = 0;
  3955       if( pHaving ){
  3956         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
  3957       }
  3958       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
  3959                       pDest, addrEnd, addrEnd);
  3960 
  3961       sqlite3ExprListDelete(db, pDel);
  3962     }
  3963     sqlite3VdbeResolveLabel(v, addrEnd);
  3964     
  3965   } /* endif aggregate query */
  3966 
  3967   /* If there is an ORDER BY clause, then we need to sort the results
  3968   ** and send them to the callback one by one.
  3969   */
  3970   if( pOrderBy ){
  3971     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
  3972   }
  3973 
  3974   /* Jump here to skip this query
  3975   */
  3976   sqlite3VdbeResolveLabel(v, iEnd);
  3977 
  3978   /* The SELECT was successfully coded.   Set the return code to 0
  3979   ** to indicate no errors.
  3980   */
  3981   rc = 0;
  3982 
  3983   /* Control jumps to here if an error is encountered above, or upon
  3984   ** successful coding of the SELECT.
  3985   */
  3986 select_end:
  3987 
  3988   /* Identify column names if results of the SELECT are to be output.
  3989   */
  3990   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
  3991     generateColumnNames(pParse, pTabList, pEList);
  3992   }
  3993 
  3994   sqlite3DbFree(db, sAggInfo.aCol);
  3995   sqlite3DbFree(db, sAggInfo.aFunc);
  3996   return rc;
  3997 }
  3998 
  3999 #if defined(SQLITE_DEBUG)
  4000 /*
  4001 *******************************************************************************
  4002 ** The following code is used for testing and debugging only.  The code
  4003 ** that follows does not appear in normal builds.
  4004 **
  4005 ** These routines are used to print out the content of all or part of a 
  4006 ** parse structures such as Select or Expr.  Such printouts are useful
  4007 ** for helping to understand what is happening inside the code generator
  4008 ** during the execution of complex SELECT statements.
  4009 **
  4010 ** These routine are not called anywhere from within the normal
  4011 ** code base.  Then are intended to be called from within the debugger
  4012 ** or from temporary "printf" statements inserted for debugging.
  4013 */
  4014 void sqlite3PrintExpr(Expr *p){
  4015   if( p->token.z && p->token.n>0 ){
  4016     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
  4017   }else{
  4018     sqlite3DebugPrintf("(%d", p->op);
  4019   }
  4020   if( p->pLeft ){
  4021     sqlite3DebugPrintf(" ");
  4022     sqlite3PrintExpr(p->pLeft);
  4023   }
  4024   if( p->pRight ){
  4025     sqlite3DebugPrintf(" ");
  4026     sqlite3PrintExpr(p->pRight);
  4027   }
  4028   sqlite3DebugPrintf(")");
  4029 }
  4030 void sqlite3PrintExprList(ExprList *pList){
  4031   int i;
  4032   for(i=0; i<pList->nExpr; i++){
  4033     sqlite3PrintExpr(pList->a[i].pExpr);
  4034     if( i<pList->nExpr-1 ){
  4035       sqlite3DebugPrintf(", ");
  4036     }
  4037   }
  4038 }
  4039 void sqlite3PrintSelect(Select *p, int indent){
  4040   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
  4041   sqlite3PrintExprList(p->pEList);
  4042   sqlite3DebugPrintf("\n");
  4043   if( p->pSrc ){
  4044     char *zPrefix;
  4045     int i;
  4046     zPrefix = "FROM";
  4047     for(i=0; i<p->pSrc->nSrc; i++){
  4048       struct SrcList_item *pItem = &p->pSrc->a[i];
  4049       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
  4050       zPrefix = "";
  4051       if( pItem->pSelect ){
  4052         sqlite3DebugPrintf("(\n");
  4053         sqlite3PrintSelect(pItem->pSelect, indent+10);
  4054         sqlite3DebugPrintf("%*s)", indent+8, "");
  4055       }else if( pItem->zName ){
  4056         sqlite3DebugPrintf("%s", pItem->zName);
  4057       }
  4058       if( pItem->pTab ){
  4059         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
  4060       }
  4061       if( pItem->zAlias ){
  4062         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
  4063       }
  4064       if( i<p->pSrc->nSrc-1 ){
  4065         sqlite3DebugPrintf(",");
  4066       }
  4067       sqlite3DebugPrintf("\n");
  4068     }
  4069   }
  4070   if( p->pWhere ){
  4071     sqlite3DebugPrintf("%*s WHERE ", indent, "");
  4072     sqlite3PrintExpr(p->pWhere);
  4073     sqlite3DebugPrintf("\n");
  4074   }
  4075   if( p->pGroupBy ){
  4076     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
  4077     sqlite3PrintExprList(p->pGroupBy);
  4078     sqlite3DebugPrintf("\n");
  4079   }
  4080   if( p->pHaving ){
  4081     sqlite3DebugPrintf("%*s HAVING ", indent, "");
  4082     sqlite3PrintExpr(p->pHaving);
  4083     sqlite3DebugPrintf("\n");
  4084   }
  4085   if( p->pOrderBy ){
  4086     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
  4087     sqlite3PrintExprList(p->pOrderBy);
  4088     sqlite3DebugPrintf("\n");
  4089   }
  4090 }
  4091 /* End of the structure debug printing code
  4092 *****************************************************************************/
  4093 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */