os/persistentdata/persistentstorage/sqlite3api/SQLite/mem5.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2007 October 14
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains the C functions that implement a memory
    13 ** allocation subsystem for use by SQLite. 
    14 **
    15 ** This version of the memory allocation subsystem omits all
    16 ** use of malloc(). The SQLite user supplies a block of memory
    17 ** before calling sqlite3_initialize() from which allocations
    18 ** are made and returned by the xMalloc() and xRealloc() 
    19 ** implementations. Once sqlite3_initialize() has been called,
    20 ** the amount of memory available to SQLite is fixed and cannot
    21 ** be changed.
    22 **
    23 ** This version of the memory allocation subsystem is included
    24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
    25 **
    26 ** $Id: mem5.c,v 1.14 2008/09/02 17:52:52 danielk1977 Exp $
    27 */
    28 #include "sqliteInt.h"
    29 
    30 /*
    31 ** This version of the memory allocator is used only when 
    32 ** SQLITE_POW2_MEMORY_SIZE is defined.
    33 */
    34 #ifdef SQLITE_ENABLE_MEMSYS5
    35 
    36 /*
    37 ** Log2 of the minimum size of an allocation.  For example, if
    38 ** 4 then all allocations will be rounded up to at least 16 bytes.
    39 ** If 5 then all allocations will be rounded up to at least 32 bytes.
    40 */
    41 #ifndef SQLITE_POW2_LOGMIN
    42 # define SQLITE_POW2_LOGMIN 6
    43 #endif
    44 
    45 /*
    46 ** Log2 of the maximum size of an allocation.
    47 */
    48 #ifndef SQLITE_POW2_LOGMAX
    49 # define SQLITE_POW2_LOGMAX 20
    50 #endif
    51 #define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
    52 
    53 /*
    54 ** Number of distinct allocation sizes.
    55 */
    56 #define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
    57 
    58 /*
    59 ** A minimum allocation is an instance of the following structure.
    60 ** Larger allocations are an array of these structures where the
    61 ** size of the array is a power of 2.
    62 */
    63 typedef struct Mem5Link Mem5Link;
    64 struct Mem5Link {
    65   int next;       /* Index of next free chunk */
    66   int prev;       /* Index of previous free chunk */
    67 };
    68 
    69 /*
    70 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
    71 ** mem5.nAtom is always at least 8, this is not really a practical
    72 ** limitation.
    73 */
    74 #define LOGMAX 30
    75 
    76 /*
    77 ** Masks used for mem5.aCtrl[] elements.
    78 */
    79 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
    80 #define CTRL_FREE     0x20    /* True if not checked out */
    81 
    82 /*
    83 ** All of the static variables used by this module are collected
    84 ** into a single structure named "mem5".  This is to keep the
    85 ** static variables organized and to reduce namespace pollution
    86 ** when this module is combined with other in the amalgamation.
    87 */
    88 static SQLITE_WSD struct Mem5Global {
    89   /*
    90   ** Memory available for allocation
    91   */
    92   int nAtom;       /* Smallest possible allocation in bytes */
    93   int nBlock;      /* Number of nAtom sized blocks in zPool */
    94   u8 *zPool;
    95   
    96   /*
    97   ** Mutex to control access to the memory allocation subsystem.
    98   */
    99   sqlite3_mutex *mutex;
   100 
   101   /*
   102   ** Performance statistics
   103   */
   104   u64 nAlloc;         /* Total number of calls to malloc */
   105   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
   106   u64 totalExcess;    /* Total internal fragmentation */
   107   u32 currentOut;     /* Current checkout, including internal fragmentation */
   108   u32 currentCount;   /* Current number of distinct checkouts */
   109   u32 maxOut;         /* Maximum instantaneous currentOut */
   110   u32 maxCount;       /* Maximum instantaneous currentCount */
   111   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
   112   
   113   /*
   114   ** Lists of free blocks of various sizes.
   115   */
   116   int aiFreelist[LOGMAX+1];
   117 
   118   /*
   119   ** Space for tracking which blocks are checked out and the size
   120   ** of each block.  One byte per block.
   121   */
   122   u8 *aCtrl;
   123 
   124 } mem5 = { 19804167 };
   125 
   126 #define mem5 GLOBAL(struct Mem5Global, mem5)
   127 
   128 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
   129 
   130 /*
   131 ** Unlink the chunk at mem5.aPool[i] from list it is currently
   132 ** on.  It should be found on mem5.aiFreelist[iLogsize].
   133 */
   134 static void memsys5Unlink(int i, int iLogsize){
   135   int next, prev;
   136   assert( i>=0 && i<mem5.nBlock );
   137   assert( iLogsize>=0 && iLogsize<=LOGMAX );
   138   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
   139 
   140   next = MEM5LINK(i)->next;
   141   prev = MEM5LINK(i)->prev;
   142   if( prev<0 ){
   143     mem5.aiFreelist[iLogsize] = next;
   144   }else{
   145     MEM5LINK(prev)->next = next;
   146   }
   147   if( next>=0 ){
   148     MEM5LINK(next)->prev = prev;
   149   }
   150 }
   151 
   152 /*
   153 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
   154 ** free list.
   155 */
   156 static void memsys5Link(int i, int iLogsize){
   157   int x;
   158   assert( sqlite3_mutex_held(mem5.mutex) );
   159   assert( i>=0 && i<mem5.nBlock );
   160   assert( iLogsize>=0 && iLogsize<=LOGMAX );
   161   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
   162 
   163   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
   164   MEM5LINK(i)->prev = -1;
   165   if( x>=0 ){
   166     assert( x<mem5.nBlock );
   167     MEM5LINK(x)->prev = i;
   168   }
   169   mem5.aiFreelist[iLogsize] = i;
   170 }
   171 
   172 /*
   173 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
   174 ** will already be held (obtained by code in malloc.c) if
   175 ** sqlite3GlobalConfig.bMemStat is true.
   176 */
   177 static void memsys5Enter(void){
   178   if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){
   179     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   180   }
   181   sqlite3_mutex_enter(mem5.mutex);
   182 }
   183 static void memsys5Leave(void){
   184   sqlite3_mutex_leave(mem5.mutex);
   185 }
   186 
   187 /*
   188 ** Return the size of an outstanding allocation, in bytes.  The
   189 ** size returned omits the 8-byte header overhead.  This only
   190 ** works for chunks that are currently checked out.
   191 */
   192 static int memsys5Size(void *p){
   193   int iSize = 0;
   194   if( p ){
   195     int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
   196     assert( i>=0 && i<mem5.nBlock );
   197     iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
   198   }
   199   return iSize;
   200 }
   201 
   202 /*
   203 ** Find the first entry on the freelist iLogsize.  Unlink that
   204 ** entry and return its index. 
   205 */
   206 static int memsys5UnlinkFirst(int iLogsize){
   207   int i;
   208   int iFirst;
   209 
   210   assert( iLogsize>=0 && iLogsize<=LOGMAX );
   211   i = iFirst = mem5.aiFreelist[iLogsize];
   212   assert( iFirst>=0 );
   213   while( i>0 ){
   214     if( i<iFirst ) iFirst = i;
   215     i = MEM5LINK(i)->next;
   216   }
   217   memsys5Unlink(iFirst, iLogsize);
   218   return iFirst;
   219 }
   220 
   221 /*
   222 ** Return a block of memory of at least nBytes in size.
   223 ** Return NULL if unable.
   224 */
   225 static void *memsys5MallocUnsafe(int nByte){
   226   int i;           /* Index of a mem5.aPool[] slot */
   227   int iBin;        /* Index into mem5.aiFreelist[] */
   228   int iFullSz;     /* Size of allocation rounded up to power of 2 */
   229   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
   230 
   231   /* Keep track of the maximum allocation request.  Even unfulfilled
   232   ** requests are counted */
   233   if( nByte>mem5.maxRequest ){
   234     mem5.maxRequest = nByte;
   235   }
   236 
   237   /* Round nByte up to the next valid power of two */
   238   if( nByte>POW2_MAX ) return 0;
   239   for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
   240 
   241   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
   242   ** block.  If not, then split a block of the next larger power of
   243   ** two in order to create a new free block of size iLogsize.
   244   */
   245   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
   246   if( iBin>LOGMAX ) return 0;
   247   i = memsys5UnlinkFirst(iBin);
   248   while( iBin>iLogsize ){
   249     int newSize;
   250 
   251     iBin--;
   252     newSize = 1 << iBin;
   253     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
   254     memsys5Link(i+newSize, iBin);
   255   }
   256   mem5.aCtrl[i] = iLogsize;
   257 
   258   /* Update allocator performance statistics. */
   259   mem5.nAlloc++;
   260   mem5.totalAlloc += iFullSz;
   261   mem5.totalExcess += iFullSz - nByte;
   262   mem5.currentCount++;
   263   mem5.currentOut += iFullSz;
   264   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
   265   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
   266 
   267   /* Return a pointer to the allocated memory. */
   268   return (void*)&mem5.zPool[i*mem5.nAtom];
   269 }
   270 
   271 /*
   272 ** Free an outstanding memory allocation.
   273 */
   274 static void memsys5FreeUnsafe(void *pOld){
   275   u32 size, iLogsize;
   276   int iBlock;             
   277 
   278   /* Set iBlock to the index of the block pointed to by pOld in 
   279   ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
   280   */
   281   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
   282 
   283   /* Check that the pointer pOld points to a valid, non-free block. */
   284   assert( iBlock>=0 && iBlock<mem5.nBlock );
   285   assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
   286   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
   287 
   288   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
   289   size = 1<<iLogsize;
   290   assert( iBlock+size-1<mem5.nBlock );
   291 
   292   mem5.aCtrl[iBlock] |= CTRL_FREE;
   293   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
   294   assert( mem5.currentCount>0 );
   295   assert( mem5.currentOut>=0 );
   296   mem5.currentCount--;
   297   mem5.currentOut -= size*mem5.nAtom;
   298   assert( mem5.currentOut>0 || mem5.currentCount==0 );
   299   assert( mem5.currentCount>0 || mem5.currentOut==0 );
   300 
   301   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
   302   while( iLogsize<LOGMAX ){
   303     int iBuddy;
   304     if( (iBlock>>iLogsize) & 1 ){
   305       iBuddy = iBlock - size;
   306     }else{
   307       iBuddy = iBlock + size;
   308     }
   309     assert( iBuddy>=0 );
   310     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
   311     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
   312     memsys5Unlink(iBuddy, iLogsize);
   313     iLogsize++;
   314     if( iBuddy<iBlock ){
   315       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
   316       mem5.aCtrl[iBlock] = 0;
   317       iBlock = iBuddy;
   318     }else{
   319       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
   320       mem5.aCtrl[iBuddy] = 0;
   321     }
   322     size *= 2;
   323   }
   324   memsys5Link(iBlock, iLogsize);
   325 }
   326 
   327 /*
   328 ** Allocate nBytes of memory
   329 */
   330 static void *memsys5Malloc(int nBytes){
   331   sqlite3_int64 *p = 0;
   332   if( nBytes>0 ){
   333     memsys5Enter();
   334     p = memsys5MallocUnsafe(nBytes);
   335     memsys5Leave();
   336   }
   337   return (void*)p; 
   338 }
   339 
   340 /*
   341 ** Free memory.
   342 */
   343 static void memsys5Free(void *pPrior){
   344   if( pPrior==0 ){
   345 assert(0);
   346     return;
   347   }
   348   memsys5Enter();
   349   memsys5FreeUnsafe(pPrior);
   350   memsys5Leave();  
   351 }
   352 
   353 /*
   354 ** Change the size of an existing memory allocation
   355 */
   356 static void *memsys5Realloc(void *pPrior, int nBytes){
   357   int nOld;
   358   void *p;
   359   if( pPrior==0 ){
   360     return memsys5Malloc(nBytes);
   361   }
   362   if( nBytes<=0 ){
   363     memsys5Free(pPrior);
   364     return 0;
   365   }
   366   nOld = memsys5Size(pPrior);
   367   if( nBytes<=nOld ){
   368     return pPrior;
   369   }
   370   memsys5Enter();
   371   p = memsys5MallocUnsafe(nBytes);
   372   if( p ){
   373     memcpy(p, pPrior, nOld);
   374     memsys5FreeUnsafe(pPrior);
   375   }
   376   memsys5Leave();
   377   return p;
   378 }
   379 
   380 /*
   381 ** Round up a request size to the next valid allocation size.
   382 */
   383 static int memsys5Roundup(int n){
   384   int iFullSz;
   385   for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
   386   return iFullSz;
   387 }
   388 
   389 static int memsys5Log(int iValue){
   390   int iLog;
   391   for(iLog=0; (1<<iLog)<iValue; iLog++);
   392   return iLog;
   393 }
   394 
   395 /*
   396 ** Initialize this module.
   397 */
   398 static int memsys5Init(void *NotUsed){
   399   int ii;
   400   int nByte = sqlite3GlobalConfig.nHeap;
   401   u8 *zByte = (u8 *)sqlite3GlobalConfig.pHeap;
   402   int nMinLog;                 /* Log of minimum allocation size in bytes*/
   403   int iOffset;
   404 
   405   if( !zByte ){
   406     return SQLITE_ERROR;
   407   }
   408 
   409   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
   410   mem5.nAtom = (1<<nMinLog);
   411   while( sizeof(Mem5Link)>mem5.nAtom ){
   412     mem5.nAtom = mem5.nAtom << 1;
   413   }
   414 
   415   mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
   416   mem5.zPool = zByte;
   417   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
   418 
   419   for(ii=0; ii<=LOGMAX; ii++){
   420     mem5.aiFreelist[ii] = -1;
   421   }
   422 
   423   iOffset = 0;
   424   for(ii=LOGMAX; ii>=0; ii--){
   425     int nAlloc = (1<<ii);
   426     if( (iOffset+nAlloc)<=mem5.nBlock ){
   427       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
   428       memsys5Link(iOffset, ii);
   429       iOffset += nAlloc;
   430     }
   431     assert((iOffset+nAlloc)>mem5.nBlock);
   432   }
   433 
   434   return SQLITE_OK;
   435 }
   436 
   437 /*
   438 ** Deinitialize this module.
   439 */
   440 static void memsys5Shutdown(void *NotUsed){
   441   return;
   442 }
   443 
   444 /*
   445 ** Open the file indicated and write a log of all unfreed memory 
   446 ** allocations into that log.
   447 */
   448 void sqlite3Memsys5Dump(const char *zFilename){
   449 #ifdef SQLITE_DEBUG
   450   FILE *out;
   451   int i, j, n;
   452   int nMinLog;
   453 
   454   if( zFilename==0 || zFilename[0]==0 ){
   455     out = stdout;
   456   }else{
   457     out = fopen(zFilename, "w");
   458     if( out==0 ){
   459       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
   460                       zFilename);
   461       return;
   462     }
   463   }
   464   memsys5Enter();
   465   nMinLog = memsys5Log(mem5.nAtom);
   466   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
   467     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
   468     fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
   469   }
   470   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
   471   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
   472   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
   473   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
   474   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
   475   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
   476   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
   477   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
   478   memsys5Leave();
   479   if( out==stdout ){
   480     fflush(stdout);
   481   }else{
   482     fclose(out);
   483   }
   484 #endif
   485 }
   486 
   487 /*
   488 ** This routine is the only routine in this file with external 
   489 ** linkage. It returns a pointer to a static sqlite3_mem_methods
   490 ** struct populated with the memsys5 methods.
   491 */
   492 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
   493   static const sqlite3_mem_methods memsys5Methods = {
   494      memsys5Malloc,
   495      memsys5Free,
   496      memsys5Realloc,
   497      memsys5Size,
   498      memsys5Roundup,
   499      memsys5Init,
   500      memsys5Shutdown,
   501      0
   502   };
   503   return &memsys5Methods;
   504 }
   505 
   506 #endif /* SQLITE_ENABLE_MEMSYS5 */