Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 ** $Id: malloc.c,v 1.42 2008/09/23 16:41:30 danielk1977 Exp $
17 #include "sqliteInt.h"
22 ** This routine runs when the memory allocator sees that the
23 ** total memory allocation is about to exceed the soft heap
26 static void softHeapLimitEnforcer(
31 sqlite3_release_memory(allocSize);
35 ** Set the soft heap-size limit for the library. Passing a zero or
36 ** negative value indicates no limit.
38 SQLITE_EXPORT void sqlite3_soft_heap_limit(int n){
39 sqlite3_uint64 iLimit;
48 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
50 sqlite3MemoryAlarm(0, 0, 0);
52 overage = sqlite3_memory_used() - n;
54 sqlite3_release_memory(overage);
59 ** Attempt to release up to n bytes of non-essential memory currently
60 ** held by SQLite. An example of non-essential memory is memory used to
61 ** cache database pages that are not currently in use.
63 SQLITE_EXPORT int sqlite3_release_memory(int n){
64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
67 nRet += sqlite3VdbeReleaseMemory(n);
69 nRet += sqlite3PcacheReleaseMemory(n-nRet);
77 ** State information local to the memory allocation subsystem.
79 static SQLITE_WSD struct Mem0Global {
80 /* Number of free pages for scratch and page-cache memory */
84 sqlite3_mutex *mutex; /* Mutex to serialize access */
87 ** The alarm callback and its arguments. The mem0.mutex lock will
88 ** be held while the callback is running. Recursive calls into
89 ** the memory subsystem are allowed, but no new callbacks will be
90 ** issued. The alarmBusy variable is set to prevent recursive
93 sqlite3_int64 alarmThreshold;
94 void (*alarmCallback)(void*, sqlite3_int64,int);
99 ** Pointers to the end of sqlite3GlobalConfig.pScratch and
100 ** sqlite3GlobalConfig.pPage to a block of memory that records
101 ** which pages are available.
105 } mem0 = { 62560955 };
107 #define mem0 GLOBAL(struct Mem0Global, mem0)
110 ** Initialize the memory allocation subsystem.
112 int sqlite3MallocInit(void){
113 if( sqlite3GlobalConfig.m.xMalloc==0 ){
114 sqlite3MemSetDefault();
116 memset(&mem0, 0, sizeof(mem0));
117 if( sqlite3GlobalConfig.bCoreMutex ){
118 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
120 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
121 && sqlite3GlobalConfig.nScratch>=0 ){
123 sqlite3GlobalConfig.szScratch -= 4;
124 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
125 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
126 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
127 mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
129 sqlite3GlobalConfig.pScratch = 0;
130 sqlite3GlobalConfig.szScratch = 0;
132 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
133 && sqlite3GlobalConfig.nPage>=1 ){
136 int sz = sqlite3GlobalConfig.szPage;
137 int n = sqlite3GlobalConfig.nPage;
138 overhead = (4*n + sz - 1)/sz;
139 sqlite3GlobalConfig.nPage -= overhead;
140 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
141 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
142 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
143 mem0.nPageFree = sqlite3GlobalConfig.nPage;
145 sqlite3GlobalConfig.pPage = 0;
146 sqlite3GlobalConfig.szPage = 0;
148 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
152 ** Deinitialize the memory allocation subsystem.
154 void sqlite3MallocEnd(void){
155 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
156 memset(&mem0, 0, sizeof(mem0));
160 ** Return the amount of memory currently checked out.
162 SQLITE_EXPORT sqlite3_int64 sqlite3_memory_used(void){
165 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
166 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
171 ** Return the maximum amount of memory that has ever been
172 ** checked out since either the beginning of this process
173 ** or since the most recent reset.
175 SQLITE_EXPORT sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
178 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
179 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
184 ** Change the alarm callback
186 int sqlite3MemoryAlarm(
187 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
189 sqlite3_int64 iThreshold
191 sqlite3_mutex_enter(mem0.mutex);
192 mem0.alarmCallback = xCallback;
193 mem0.alarmArg = pArg;
194 mem0.alarmThreshold = iThreshold;
195 sqlite3_mutex_leave(mem0.mutex);
200 ** Deprecated external interface. Internal/core SQLite code
201 ** should call sqlite3MemoryAlarm.
203 SQLITE_EXPORT int sqlite3_memory_alarm(
204 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
206 sqlite3_int64 iThreshold
208 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
214 static void sqlite3MallocAlarm(int nByte){
215 void (*xCallback)(void*,sqlite3_int64,int);
216 sqlite3_int64 nowUsed;
218 if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
220 xCallback = mem0.alarmCallback;
221 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
222 pArg = mem0.alarmArg;
223 sqlite3_mutex_leave(mem0.mutex);
224 xCallback(pArg, nowUsed, nByte);
225 sqlite3_mutex_enter(mem0.mutex);
230 ** Do a memory allocation with statistics and alarms. Assume the
231 ** lock is already held.
233 static int mallocWithAlarm(int n, void **pp){
236 assert( sqlite3_mutex_held(mem0.mutex) );
237 nFull = sqlite3GlobalConfig.m.xRoundup(n);
238 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
239 if( mem0.alarmCallback!=0 ){
240 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
241 if( nUsed+nFull >= mem0.alarmThreshold ){
242 sqlite3MallocAlarm(nFull);
245 p = sqlite3GlobalConfig.m.xMalloc(nFull);
246 if( p==0 && mem0.alarmCallback ){
247 sqlite3MallocAlarm(nFull);
248 p = sqlite3GlobalConfig.m.xMalloc(nFull);
251 nFull = sqlite3MallocSize(p);
252 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
259 ** Allocate memory. This routine is like sqlite3_malloc() except that it
260 ** assumes the memory subsystem has already been initialized.
262 void *sqlite3Malloc(int n){
266 }else if( sqlite3GlobalConfig.bMemstat ){
267 sqlite3_mutex_enter(mem0.mutex);
268 mallocWithAlarm(n, &p);
269 sqlite3_mutex_leave(mem0.mutex);
271 p = sqlite3GlobalConfig.m.xMalloc(n);
277 ** This version of the memory allocation is for use by the application.
278 ** First make sure the memory subsystem is initialized, then do the
281 SQLITE_EXPORT void *sqlite3_malloc(int n){
282 #ifndef SQLITE_OMIT_AUTOINIT
283 if( sqlite3_initialize() ) return 0;
285 return sqlite3Malloc(n);
289 ** Each thread may only have a single outstanding allocation from
290 ** xScratchMalloc(). We verify this constraint in the single-threaded
291 ** case by setting scratchAllocOut to 1 when an allocation
292 ** is outstanding clearing it when the allocation is freed.
294 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
295 static int scratchAllocOut = 0;
300 ** Allocate memory that is to be used and released right away.
301 ** This routine is similar to alloca() in that it is not intended
302 ** for situations where the memory might be held long-term. This
303 ** routine is intended to get memory to old large transient data
304 ** structures that would not normally fit on the stack of an
305 ** embedded processor.
307 void *sqlite3ScratchMalloc(int n){
311 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
312 /* Verify that no more than one scratch allocation per thread
313 ** is outstanding at one time. (This is only checked in the
314 ** single-threaded case since checking in the multi-threaded case
315 ** would be much more complicated.) */
316 assert( scratchAllocOut==0 );
319 if( sqlite3GlobalConfig.szScratch<n ){
320 goto scratch_overflow;
322 sqlite3_mutex_enter(mem0.mutex);
323 if( mem0.nScratchFree==0 ){
324 sqlite3_mutex_leave(mem0.mutex);
325 goto scratch_overflow;
328 i = mem0.aScratchFree[--mem0.nScratchFree];
329 i *= sqlite3GlobalConfig.szScratch;
330 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
331 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
332 sqlite3_mutex_leave(mem0.mutex);
333 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
336 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
337 scratchAllocOut = p!=0;
343 if( sqlite3GlobalConfig.bMemstat ){
344 sqlite3_mutex_enter(mem0.mutex);
345 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
346 n = mallocWithAlarm(n, &p);
347 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
348 sqlite3_mutex_leave(mem0.mutex);
350 p = sqlite3GlobalConfig.m.xMalloc(n);
352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
353 scratchAllocOut = p!=0;
357 void sqlite3ScratchFree(void *p){
360 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
361 /* Verify that no more than one scratch allocation per thread
362 ** is outstanding at one time. (This is only checked in the
363 ** single-threaded case since checking in the multi-threaded case
364 ** would be much more complicated.) */
365 assert( scratchAllocOut==1 );
369 if( sqlite3GlobalConfig.pScratch==0
370 || p<sqlite3GlobalConfig.pScratch
371 || p>=(void*)mem0.aScratchFree ){
372 if( sqlite3GlobalConfig.bMemstat ){
373 int iSize = sqlite3MallocSize(p);
374 sqlite3_mutex_enter(mem0.mutex);
375 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
376 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
377 sqlite3GlobalConfig.m.xFree(p);
378 sqlite3_mutex_leave(mem0.mutex);
380 sqlite3GlobalConfig.m.xFree(p);
384 i = (u8 *)p - (u8 *)sqlite3GlobalConfig.pScratch;
385 i /= sqlite3GlobalConfig.szScratch;
386 assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
387 sqlite3_mutex_enter(mem0.mutex);
388 assert( mem0.nScratchFree<sqlite3GlobalConfig.nScratch );
389 mem0.aScratchFree[mem0.nScratchFree++] = i;
390 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
391 sqlite3_mutex_leave(mem0.mutex);
397 ** Allocate memory to be used by the page cache. Make use of the
398 ** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
399 ** and that memory is of the right size and is not completely
400 ** consumed. Otherwise, failover to sqlite3Malloc().
403 void *sqlite3PageMalloc(int n){
406 assert( (n & (n-1))==0 );
407 assert( n>=512 && n<=32768 );
409 if( sqlite3GlobalConfig.szPage<n ){
412 sqlite3_mutex_enter(mem0.mutex);
413 if( mem0.nPageFree==0 ){
414 sqlite3_mutex_leave(mem0.mutex);
418 i = mem0.aPageFree[--mem0.nPageFree];
419 sqlite3_mutex_leave(mem0.mutex);
420 i *= sqlite3GlobalConfig.szPage;
421 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
422 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
423 p = (void*)&((char*)sqlite3GlobalConfig.pPage)[i];
429 if( sqlite3GlobalConfig.bMemstat ){
430 sqlite3_mutex_enter(mem0.mutex);
431 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
432 n = mallocWithAlarm(n, &p);
433 if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
434 sqlite3_mutex_leave(mem0.mutex);
436 p = sqlite3GlobalConfig.m.xMalloc(n);
440 void sqlite3PageFree(void *p){
442 if( sqlite3GlobalConfig.pPage==0
443 || p<sqlite3GlobalConfig.pPage
444 || p>=(void*)mem0.aPageFree ){
445 /* In this case, the page allocation was obtained from a regular
446 ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
447 ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
449 if( sqlite3GlobalConfig.bMemstat ){
450 int iSize = sqlite3MallocSize(p);
451 sqlite3_mutex_enter(mem0.mutex);
452 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
453 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
454 sqlite3GlobalConfig.m.xFree(p);
455 sqlite3_mutex_leave(mem0.mutex);
457 sqlite3GlobalConfig.m.xFree(p);
460 /* The page allocation was allocated from the sqlite3GlobalConfig.pPage
461 ** buffer. In this case all that is add the index of the page in
462 ** the sqlite3GlobalConfig.pPage array to the set of free indexes stored
463 ** in the mem0.aPageFree[] array.
466 i = (u8 *)p - (u8 *)sqlite3GlobalConfig.pPage;
467 i /= sqlite3GlobalConfig.szPage;
468 assert( i>=0 && i<sqlite3GlobalConfig.nPage );
469 sqlite3_mutex_enter(mem0.mutex);
470 assert( mem0.nPageFree<sqlite3GlobalConfig.nPage );
471 mem0.aPageFree[mem0.nPageFree++] = i;
472 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
473 sqlite3_mutex_leave(mem0.mutex);
474 #if !defined(NDEBUG) && 0
475 /* Assert that a duplicate was not just inserted into aPageFree[]. */
476 for(i=0; i<mem0.nPageFree-1; i++){
477 assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
486 ** TRUE if p is a lookaside memory allocation from db
488 static int isLookaside(sqlite3 *db, void *p){
489 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
493 ** Return the size of a memory allocation previously obtained from
494 ** sqlite3Malloc() or sqlite3_malloc().
496 int sqlite3MallocSize(void *p){
497 return sqlite3GlobalConfig.m.xSize(p);
499 int sqlite3DbMallocSize(sqlite3 *db, void *p){
500 if( isLookaside(db, p) ){
501 return db->lookaside.sz;
503 return sqlite3GlobalConfig.m.xSize(p);
508 ** Free memory previously obtained from sqlite3Malloc().
510 SQLITE_EXPORT void sqlite3_free(void *p){
512 if( sqlite3GlobalConfig.bMemstat ){
513 sqlite3_mutex_enter(mem0.mutex);
514 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
515 sqlite3GlobalConfig.m.xFree(p);
516 sqlite3_mutex_leave(mem0.mutex);
518 sqlite3GlobalConfig.m.xFree(p);
523 ** Free memory that might be associated with a particular database
526 void sqlite3DbFree(sqlite3 *db, void *p){
527 if( isLookaside(db, p) ){
528 LookasideSlot *pBuf = (LookasideSlot*)p;
529 pBuf->pNext = db->lookaside.pFree;
530 db->lookaside.pFree = pBuf;
531 db->lookaside.nOut--;
538 ** Change the size of an existing memory allocation
540 void *sqlite3Realloc(void *pOld, int nBytes){
544 return sqlite3Malloc(nBytes);
550 nOld = sqlite3MallocSize(pOld);
551 if( sqlite3GlobalConfig.bMemstat ){
552 sqlite3_mutex_enter(mem0.mutex);
553 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
554 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
558 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
559 mem0.alarmThreshold ){
560 sqlite3MallocAlarm(nNew-nOld);
562 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
563 if( pNew==0 && mem0.alarmCallback ){
564 sqlite3MallocAlarm(nBytes);
565 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
568 nNew = sqlite3MallocSize(pNew);
569 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
572 sqlite3_mutex_leave(mem0.mutex);
574 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes);
580 ** The public interface to sqlite3Realloc. Make sure that the memory
581 ** subsystem is initialized prior to invoking sqliteRealloc.
583 SQLITE_EXPORT void *sqlite3_realloc(void *pOld, int n){
584 #ifndef SQLITE_OMIT_AUTOINIT
585 if( sqlite3_initialize() ) return 0;
587 return sqlite3Realloc(pOld, n);
592 ** Allocate and zero memory.
594 void *sqlite3MallocZero(int n){
595 void *p = sqlite3Malloc(n);
603 ** Allocate and zero memory. If the allocation fails, make
604 ** the mallocFailed flag in the connection pointer.
606 void *sqlite3DbMallocZero(sqlite3 *db, int n){
607 void *p = sqlite3DbMallocRaw(db, n);
615 ** Allocate and zero memory. If the allocation fails, make
616 ** the mallocFailed flag in the connection pointer.
618 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
622 if( db->mallocFailed ){
625 if( db->lookaside.bEnabled && n<=db->lookaside.sz
626 && (pBuf = db->lookaside.pFree)!=0 ){
627 db->lookaside.pFree = pBuf->pNext;
628 db->lookaside.nOut++;
629 if( db->lookaside.nOut>db->lookaside.mxOut ){
630 db->lookaside.mxOut = db->lookaside.nOut;
635 p = sqlite3Malloc(n);
637 db->mallocFailed = 1;
643 ** Resize the block of memory pointed to by p to n bytes. If the
644 ** resize fails, set the mallocFailed flag in the connection object.
646 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
648 if( db->mallocFailed==0 ){
650 return sqlite3DbMallocRaw(db, n);
652 if( isLookaside(db, p) ){
653 if( n<=db->lookaside.sz ){
656 pNew = sqlite3DbMallocRaw(db, n);
658 memcpy(pNew, p, db->lookaside.sz);
659 sqlite3DbFree(db, p);
662 pNew = sqlite3_realloc(p, n);
664 db->mallocFailed = 1;
672 ** Attempt to reallocate p. If the reallocation fails, then free p
673 ** and set the mallocFailed flag in the database connection.
675 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
677 pNew = sqlite3DbRealloc(db, p, n);
679 sqlite3DbFree(db, p);
685 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
686 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
687 ** is because when memory debugging is turned on, these two functions are
688 ** called via macros that record the current file and line number in the
689 ** ThreadData structure.
691 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
698 assert( (n&0x7fffffff)==n );
699 zNew = sqlite3DbMallocRaw(db, (int)n);
705 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
710 assert( (n&0x7fffffff)==n );
711 zNew = sqlite3DbMallocRaw(db, n+1);
720 ** Create a string from the zFromat argument and the va_list that follows.
721 ** Store the string in memory obtained from sqliteMalloc() and make *pz
722 ** point to that string.
724 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
728 va_start(ap, zFormat);
729 z = sqlite3VMPrintf(db, zFormat, ap);
731 sqlite3DbFree(db, *pz);
737 ** This function must be called before exiting any API function (i.e.
738 ** returning control to the user) that has called sqlite3_malloc or
741 ** The returned value is normally a copy of the second argument to this
742 ** function. However, if a malloc() failure has occured since the previous
743 ** invocation SQLITE_NOMEM is returned instead.
745 ** If the first argument, db, is not NULL and a malloc() error has occured,
746 ** then the connection error-code (the value returned by sqlite3_errcode())
747 ** is set to SQLITE_NOMEM.
749 int sqlite3ApiExit(sqlite3* db, int rc){
750 /* If the db handle is not NULL, then we must hold the connection handle
751 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
752 ** is unsafe, as is the call to sqlite3Error().
754 assert( !db || sqlite3_mutex_held(db->mutex) );
755 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
756 sqlite3Error(db, SQLITE_NOMEM, 0);
757 db->mallocFailed = 0;
760 return rc & (db ? db->errMask : 0xff);