Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 ** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $
17 #include "sqliteInt.h"
20 ** Set P4 of the most recently inserted opcode to a column affinity
21 ** string for index pIdx. A column affinity string has one character
22 ** for each column in the table, according to the affinity of the column:
24 ** Character Column affinity
25 ** ------------------------------
32 ** An extra 'b' is appended to the end of the string to cover the
33 ** rowid that appears as the last column in every index.
35 void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
37 /* The first time a column affinity string for a particular index is
38 ** required, it is allocated and populated here. It is then stored as
39 ** a member of the Index structure for subsequent use.
41 ** The column affinity string will eventually be deleted by
42 ** sqliteDeleteIndex() when the Index structure itself is cleaned
46 Table *pTab = pIdx->pTable;
47 sqlite3 *db = sqlite3VdbeDb(v);
48 pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
53 for(n=0; n<pIdx->nColumn; n++){
54 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
56 pIdx->zColAff[n++] = SQLITE_AFF_NONE;
60 sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
64 ** Set P4 of the most recently inserted opcode to a column affinity
65 ** string for table pTab. A column affinity string has one character
66 ** for each column indexed by the index, according to the affinity of the
69 ** Character Column affinity
70 ** ------------------------------
77 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
78 /* The first time a column affinity string for a particular table
79 ** is required, it is allocated and populated here. It is then
80 ** stored as a member of the Table structure for subsequent use.
82 ** The column affinity string will eventually be deleted by
83 ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
88 sqlite3 *db = sqlite3VdbeDb(v);
90 zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
96 for(i=0; i<pTab->nCol; i++){
97 zColAff[i] = pTab->aCol[i].affinity;
99 zColAff[pTab->nCol] = '\0';
101 pTab->zColAff = zColAff;
104 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
108 ** Return non-zero if the table pTab in database iDb or any of its indices
109 ** have been opened at any point in the VDBE program beginning at location
110 ** iStartAddr throught the end of the program. This is used to see if
111 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
112 ** run without using temporary table for the results of the SELECT.
114 static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
116 int iEnd = sqlite3VdbeCurrentAddr(v);
117 for(i=iStartAddr; i<iEnd; i++){
118 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
120 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
123 if( tnum==pTab->tnum ){
126 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
127 if( tnum==pIndex->tnum ){
132 #ifndef SQLITE_OMIT_VIRTUALTABLE
133 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
134 assert( pOp->p4.pVtab!=0 );
135 assert( pOp->p4type==P4_VTAB );
143 #ifndef SQLITE_OMIT_AUTOINCREMENT
145 ** Write out code to initialize the autoincrement logic. This code
146 ** looks up the current autoincrement value in the sqlite_sequence
147 ** table and stores that value in a register. Code generated by
148 ** autoIncStep() will keep that register holding the largest
149 ** rowid value. Code generated by autoIncEnd() will write the new
150 ** largest value of the counter back into the sqlite_sequence table.
152 ** This routine returns the index of the mem[] cell that contains
153 ** the maximum rowid counter.
155 ** Three consecutive registers are allocated by this routine. The
156 ** first two hold the name of the target table and the maximum rowid
157 ** inserted into the target table, respectively.
158 ** The third holds the rowid in sqlite_sequence where we will
159 ** write back the revised maximum rowid. This routine returns the
160 ** index of the second of these three registers.
162 static int autoIncBegin(
163 Parse *pParse, /* Parsing context */
164 int iDb, /* Index of the database holding pTab */
165 Table *pTab /* The table we are writing to */
167 int memId = 0; /* Register holding maximum rowid */
168 if( pTab->tabFlags & TF_Autoincrement ){
169 Vdbe *v = pParse->pVdbe;
170 Db *pDb = &pParse->db->aDb[iDb];
171 int iCur = pParse->nTab;
172 int addr; /* Address of the top of the loop */
174 pParse->nMem++; /* Holds name of table */
175 memId = ++pParse->nMem;
177 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
178 addr = sqlite3VdbeCurrentAddr(v);
179 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
180 sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
181 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
182 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
183 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
184 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
185 sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
186 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
187 sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
188 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
189 sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
195 ** Update the maximum rowid for an autoincrement calculation.
197 ** This routine should be called when the top of the stack holds a
198 ** new rowid that is about to be inserted. If that new rowid is
199 ** larger than the maximum rowid in the memId memory cell, then the
200 ** memory cell is updated. The stack is unchanged.
202 static void autoIncStep(Parse *pParse, int memId, int regRowid){
204 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
209 ** After doing one or more inserts, the maximum rowid is stored
210 ** in reg[memId]. Generate code to write this value back into the
211 ** the sqlite_sequence table.
213 static void autoIncEnd(
214 Parse *pParse, /* The parsing context */
215 int iDb, /* Index of the database holding pTab */
216 Table *pTab, /* Table we are inserting into */
217 int memId /* Memory cell holding the maximum rowid */
219 if( pTab->tabFlags & TF_Autoincrement ){
220 int iCur = pParse->nTab;
221 Vdbe *v = pParse->pVdbe;
222 Db *pDb = &pParse->db->aDb[iDb];
224 int iRec = ++pParse->nMem; /* Memory cell used for record */
227 sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
228 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
229 sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
230 sqlite3VdbeJumpHere(v, j1);
231 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
232 sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
233 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
234 sqlite3VdbeAddOp1(v, OP_Close, iCur);
239 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
240 ** above are all no-ops
242 # define autoIncBegin(A,B,C) (0)
243 # define autoIncStep(A,B,C)
244 # define autoIncEnd(A,B,C,D)
245 #endif /* SQLITE_OMIT_AUTOINCREMENT */
248 /* Forward declaration */
249 static int xferOptimization(
250 Parse *pParse, /* Parser context */
251 Table *pDest, /* The table we are inserting into */
252 Select *pSelect, /* A SELECT statement to use as the data source */
253 int onError, /* How to handle constraint errors */
254 int iDbDest /* The database of pDest */
258 ** This routine is call to handle SQL of the following forms:
260 ** insert into TABLE (IDLIST) values(EXPRLIST)
261 ** insert into TABLE (IDLIST) select
263 ** The IDLIST following the table name is always optional. If omitted,
264 ** then a list of all columns for the table is substituted. The IDLIST
265 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
267 ** The pList parameter holds EXPRLIST in the first form of the INSERT
268 ** statement above, and pSelect is NULL. For the second form, pList is
269 ** NULL and pSelect is a pointer to the select statement used to generate
270 ** data for the insert.
272 ** The code generated follows one of four templates. For a simple
273 ** select with data coming from a VALUES clause, the code executes
274 ** once straight down through. Pseudo-code follows (we call this
275 ** the "1st template"):
277 ** open write cursor to <table> and its indices
278 ** puts VALUES clause expressions onto the stack
279 ** write the resulting record into <table>
282 ** The three remaining templates assume the statement is of the form
284 ** INSERT INTO <table> SELECT ...
286 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
287 ** in other words if the SELECT pulls all columns from a single table
288 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
289 ** if <table2> and <table1> are distinct tables but have identical
290 ** schemas, including all the same indices, then a special optimization
291 ** is invoked that copies raw records from <table2> over to <table1>.
292 ** See the xferOptimization() function for the implementation of this
293 ** template. This is the 2nd template.
295 ** open a write cursor to <table>
296 ** open read cursor on <table2>
297 ** transfer all records in <table2> over to <table>
299 ** foreach index on <table>
300 ** open a write cursor on the <table> index
301 ** open a read cursor on the corresponding <table2> index
302 ** transfer all records from the read to the write cursors
306 ** The 3rd template is for when the second template does not apply
307 ** and the SELECT clause does not read from <table> at any time.
308 ** The generated code follows this template:
313 ** A: setup for the SELECT
314 ** loop over the rows in the SELECT
315 ** load values into registers R..R+n
318 ** cleanup after the SELECT
322 ** B: open write cursor to <table> and its indices
325 ** insert the select result into <table> from R..R+n
329 ** The 4th template is used if the insert statement takes its
330 ** values from a SELECT but the data is being inserted into a table
331 ** that is also read as part of the SELECT. In the third form,
332 ** we have to use a intermediate table to store the results of
333 ** the select. The template is like this:
338 ** A: setup for the SELECT
339 ** loop over the tables in the SELECT
340 ** load value into register R..R+n
343 ** cleanup after the SELECT
347 ** B: open temp table
350 ** insert row from R..R+n into temp table
352 ** M: open write cursor to <table> and its indices
354 ** C: loop over rows of intermediate table
355 ** transfer values form intermediate table into <table>
360 Parse *pParse, /* Parser context */
361 SrcList *pTabList, /* Name of table into which we are inserting */
362 ExprList *pList, /* List of values to be inserted */
363 Select *pSelect, /* A SELECT statement to use as the data source */
364 IdList *pColumn, /* Column names corresponding to IDLIST. */
365 int onError /* How to handle constraint errors */
367 sqlite3 *db; /* The main database structure */
368 Table *pTab; /* The table to insert into. aka TABLE */
369 char *zTab; /* Name of the table into which we are inserting */
370 const char *zDb; /* Name of the database holding this table */
371 int i, j, idx; /* Loop counters */
372 Vdbe *v; /* Generate code into this virtual machine */
373 Index *pIdx; /* For looping over indices of the table */
374 int nColumn; /* Number of columns in the data */
375 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
376 int baseCur = 0; /* VDBE Cursor number for pTab */
377 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
378 int endOfLoop; /* Label for the end of the insertion loop */
379 int useTempTable = 0; /* Store SELECT results in intermediate table */
380 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
381 int addrInsTop = 0; /* Jump to label "D" */
382 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
383 int addrSelect = 0; /* Address of coroutine that implements the SELECT */
384 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
385 int newIdx = -1; /* Cursor for the NEW pseudo-table */
386 int iDb; /* Index of database holding TABLE */
387 Db *pDb; /* The database containing table being inserted into */
388 int appendFlag = 0; /* True if the insert is likely to be an append */
390 /* Register allocations */
391 int regFromSelect; /* Base register for data coming from SELECT */
392 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
393 int regRowCount = 0; /* Memory cell used for the row counter */
394 int regIns; /* Block of regs holding rowid+data being inserted */
395 int regRowid; /* registers holding insert rowid */
396 int regData; /* register holding first column to insert */
397 int regRecord; /* Holds the assemblied row record */
398 int regEof; /* Register recording end of SELECT data */
399 int *aRegIdx = 0; /* One register allocated to each index */
402 #ifndef SQLITE_OMIT_TRIGGER
403 int isView; /* True if attempting to insert into a view */
404 int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
408 if( pParse->nErr || db->mallocFailed ){
412 /* Locate the table into which we will be inserting new information.
414 assert( pTabList->nSrc==1 );
415 zTab = pTabList->a[0].zName;
416 if( zTab==0 ) goto insert_cleanup;
417 pTab = sqlite3SrcListLookup(pParse, pTabList);
421 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
422 assert( iDb<db->nDb );
425 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
429 /* Figure out if we have any triggers and if the table being
430 ** inserted into is a view
432 #ifndef SQLITE_OMIT_TRIGGER
433 triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
434 isView = pTab->pSelect!=0;
436 # define triggers_exist 0
439 #ifdef SQLITE_OMIT_VIEW
445 * (a) the table is not read-only,
446 * (b) that if it is a view then ON INSERT triggers exist
448 if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
453 /* If pTab is really a view, make sure it has been initialized.
454 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
457 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
463 v = sqlite3GetVdbe(pParse);
464 if( v==0 ) goto insert_cleanup;
465 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
466 sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
468 /* if there are row triggers, allocate a temp table for new.* references. */
469 if( triggers_exist ){
470 newIdx = pParse->nTab++;
473 #ifndef SQLITE_OMIT_XFER_OPT
474 /* If the statement is of the form
476 ** INSERT INTO <table1> SELECT * FROM <table2>;
478 ** Then special optimizations can be applied that make the transfer
479 ** very fast and which reduce fragmentation of indices.
481 ** This is the 2nd template.
483 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
484 assert( !triggers_exist );
488 #endif /* SQLITE_OMIT_XFER_OPT */
490 /* If this is an AUTOINCREMENT table, look up the sequence number in the
491 ** sqlite_sequence table and store it in memory cell regAutoinc.
493 regAutoinc = autoIncBegin(pParse, iDb, pTab);
495 /* Figure out how many columns of data are supplied. If the data
496 ** is coming from a SELECT statement, then generate a co-routine that
497 ** produces a single row of the SELECT on each invocation. The
498 ** co-routine is the common header to the 3rd and 4th templates.
501 /* Data is coming from a SELECT. Generate code to implement that SELECT
502 ** as a co-routine. The code is common to both the 3rd and 4th
508 ** A: setup for the SELECT
509 ** loop over the tables in the SELECT
510 ** load value into register R..R+n
513 ** cleanup after the SELECT
518 ** On each invocation of the co-routine, it puts a single row of the
519 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
520 ** (These output registers are allocated by sqlite3Select().) When
521 ** the SELECT completes, it sets the EOF flag stored in regEof.
525 regEof = ++pParse->nMem;
526 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
527 VdbeComment((v, "SELECT eof flag"));
528 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
529 addrSelect = sqlite3VdbeCurrentAddr(v)+2;
530 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
531 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
532 VdbeComment((v, "Jump over SELECT coroutine"));
534 /* Resolve the expressions in the SELECT statement and execute it. */
535 rc = sqlite3Select(pParse, pSelect, &dest);
536 if( rc || pParse->nErr || db->mallocFailed ){
539 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
540 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
541 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
542 VdbeComment((v, "End of SELECT coroutine"));
543 sqlite3VdbeJumpHere(v, j1); /* label B: */
545 regFromSelect = dest.iMem;
546 assert( pSelect->pEList );
547 nColumn = pSelect->pEList->nExpr;
548 assert( dest.nMem==nColumn );
550 /* Set useTempTable to TRUE if the result of the SELECT statement
551 ** should be written into a temporary table (template 4). Set to
552 ** FALSE if each* row of the SELECT can be written directly into
553 ** the destination table (template 3).
555 ** A temp table must be used if the table being updated is also one
556 ** of the tables being read by the SELECT statement. Also use a
557 ** temp table in the case of row triggers.
559 if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
564 /* Invoke the coroutine to extract information from the SELECT
565 ** and add it to a transient table srcTab. The code generated
566 ** here is from the 4th template:
568 ** B: open temp table
571 ** insert row from R..R+n into temp table
575 int regRec; /* Register to hold packed record */
576 int regRowid; /* Register to hold temp table ROWID */
577 int addrTop; /* Label "L" */
578 int addrIf; /* Address of jump to M */
580 srcTab = pParse->nTab++;
581 regRec = sqlite3GetTempReg(pParse);
582 regRowid = sqlite3GetTempReg(pParse);
583 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
584 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
585 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
586 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
587 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
588 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
589 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
590 sqlite3VdbeJumpHere(v, addrIf);
591 sqlite3ReleaseTempReg(pParse, regRec);
592 sqlite3ReleaseTempReg(pParse, regRowid);
595 /* This is the case if the data for the INSERT is coming from a VALUES
599 memset(&sNC, 0, sizeof(sNC));
602 assert( useTempTable==0 );
603 nColumn = pList ? pList->nExpr : 0;
604 for(i=0; i<nColumn; i++){
605 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
611 /* Make sure the number of columns in the source data matches the number
612 ** of columns to be inserted into the table.
614 if( IsVirtual(pTab) ){
615 for(i=0; i<pTab->nCol; i++){
616 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
619 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
620 sqlite3ErrorMsg(pParse,
621 "table %S has %d columns but %d values were supplied",
622 pTabList, 0, pTab->nCol, nColumn);
625 if( pColumn!=0 && nColumn!=pColumn->nId ){
626 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
630 /* If the INSERT statement included an IDLIST term, then make sure
631 ** all elements of the IDLIST really are columns of the table and
632 ** remember the column indices.
634 ** If the table has an INTEGER PRIMARY KEY column and that column
635 ** is named in the IDLIST, then record in the keyColumn variable
636 ** the index into IDLIST of the primary key column. keyColumn is
637 ** the index of the primary key as it appears in IDLIST, not as
638 ** is appears in the original table. (The index of the primary
639 ** key in the original table is pTab->iPKey.)
642 for(i=0; i<pColumn->nId; i++){
643 pColumn->a[i].idx = -1;
645 for(i=0; i<pColumn->nId; i++){
646 for(j=0; j<pTab->nCol; j++){
647 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
648 pColumn->a[i].idx = j;
649 if( j==pTab->iPKey ){
656 if( sqlite3IsRowid(pColumn->a[i].zName) ){
659 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
660 pTabList, 0, pColumn->a[i].zName);
668 /* If there is no IDLIST term but the table has an integer primary
669 ** key, the set the keyColumn variable to the primary key column index
670 ** in the original table definition.
672 if( pColumn==0 && nColumn>0 ){
673 keyColumn = pTab->iPKey;
676 /* Open the temp table for FOR EACH ROW triggers
678 if( triggers_exist ){
679 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
680 sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
683 /* Initialize the count of rows to be inserted
685 if( db->flags & SQLITE_CountRows ){
686 regRowCount = ++pParse->nMem;
687 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
690 /* If this is not a view, open the table and and all indices */
695 baseCur = pParse->nTab;
696 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
697 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
701 for(i=0; i<nIdx; i++){
702 aRegIdx[i] = ++pParse->nMem;
706 /* This is the top of the main insertion loop */
708 /* This block codes the top of loop only. The complete loop is the
709 ** following pseudocode (template 4):
712 ** C: loop over rows of intermediate table
713 ** transfer values form intermediate table into <table>
717 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
718 addrCont = sqlite3VdbeCurrentAddr(v);
720 /* This block codes the top of loop only. The complete loop is the
721 ** following pseudocode (template 3):
725 ** insert the select result into <table> from R..R+n
729 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
730 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
733 /* Allocate registers for holding the rowid of the new row,
734 ** the content of the new row, and the assemblied row record.
736 regRecord = ++pParse->nMem;
737 regRowid = regIns = pParse->nMem+1;
738 pParse->nMem += pTab->nCol + 1;
739 if( IsVirtual(pTab) ){
743 regData = regRowid+1;
745 /* Run the BEFORE and INSTEAD OF triggers, if there are any
747 endOfLoop = sqlite3VdbeMakeLabel(v);
748 if( triggers_exist & TRIGGER_BEFORE ){
753 /* build the NEW.* reference row. Note that if there is an INTEGER
754 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
755 ** translated into a unique ID for the row. But on a BEFORE trigger,
756 ** we do not know what the unique ID will be (because the insert has
757 ** not happened yet) so we substitute a rowid of -1
759 regRowid = sqlite3GetTempReg(pParse);
761 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
762 }else if( useTempTable ){
763 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
766 assert( pSelect==0 ); /* Otherwise useTempTable is true */
767 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
768 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
769 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
770 sqlite3VdbeJumpHere(v, j1);
771 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
774 /* Cannot have triggers on a virtual table. If it were possible,
775 ** this block would have to account for hidden column.
777 assert(!IsVirtual(pTab));
779 /* Create the new column data
781 regCols = sqlite3GetTempRange(pParse, pTab->nCol);
782 for(i=0; i<pTab->nCol; i++){
786 for(j=0; j<pColumn->nId; j++){
787 if( pColumn->a[j].idx==i ) break;
790 if( pColumn && j>=pColumn->nId ){
791 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
792 }else if( useTempTable ){
793 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
795 assert( pSelect==0 ); /* Otherwise useTempTable is true */
796 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
799 regRec = sqlite3GetTempReg(pParse);
800 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
802 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
803 ** do not attempt any conversions before assembling the record.
804 ** If this is a real table, attempt conversions as required by the
805 ** table column affinities.
808 sqlite3TableAffinityStr(v, pTab);
810 sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
811 sqlite3ReleaseTempReg(pParse, regRec);
812 sqlite3ReleaseTempReg(pParse, regRowid);
813 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
815 /* Fire BEFORE or INSTEAD OF triggers */
816 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
817 newIdx, -1, onError, endOfLoop, 0, 0) ){
822 /* Push the record number for the new entry onto the stack. The
823 ** record number is a randomly generate integer created by NewRowid
824 ** except when the table has an INTEGER PRIMARY KEY column, in which
825 ** case the record number is the same as that column.
828 if( IsVirtual(pTab) ){
829 /* The row that the VUpdate opcode will delete: none */
830 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
834 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
836 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
839 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
840 pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
841 if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
843 pOp->opcode = OP_NewRowid;
846 pOp->p3 = regAutoinc;
849 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
850 ** to generate a unique primary key value.
854 if( !IsVirtual(pTab) ){
855 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
856 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
857 sqlite3VdbeJumpHere(v, j1);
859 j1 = sqlite3VdbeCurrentAddr(v);
860 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
862 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
864 }else if( IsVirtual(pTab) ){
865 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
867 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
870 autoIncStep(pParse, regAutoinc, regRowid);
872 /* Push onto the stack, data for all columns of the new entry, beginning
873 ** with the first column.
876 for(i=0; i<pTab->nCol; i++){
877 int iRegStore = regRowid+1+i;
878 if( i==pTab->iPKey ){
879 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
880 ** Whenever this column is read, the record number will be substituted
881 ** in its place. So will fill this column with a NULL to avoid
882 ** taking up data space with information that will never be used. */
883 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
887 if( IsHiddenColumn(&pTab->aCol[i]) ){
888 assert( IsVirtual(pTab) );
895 for(j=0; j<pColumn->nId; j++){
896 if( pColumn->a[j].idx==i ) break;
899 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
900 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
901 }else if( useTempTable ){
902 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
904 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
906 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
910 /* Generate code to check constraints and generate index keys and
913 #ifndef SQLITE_OMIT_VIRTUALTABLE
914 if( IsVirtual(pTab) ){
915 sqlite3VtabMakeWritable(pParse, pTab);
916 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
917 (const char*)pTab->pVtab, P4_VTAB);
921 sqlite3GenerateConstraintChecks(
932 sqlite3CompleteInsertion(
940 (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
946 /* Update the count of rows that are inserted
948 if( (db->flags & SQLITE_CountRows)!=0 ){
949 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
952 if( triggers_exist ){
953 /* Code AFTER triggers */
954 if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
955 newIdx, -1, onError, endOfLoop, 0, 0) ){
960 /* The bottom of the main insertion loop, if the data source
961 ** is a SELECT statement.
963 sqlite3VdbeResolveLabel(v, endOfLoop);
965 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
966 sqlite3VdbeJumpHere(v, addrInsTop);
967 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
969 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
970 sqlite3VdbeJumpHere(v, addrInsTop);
973 if( !IsVirtual(pTab) && !isView ){
974 /* Close all tables opened */
975 sqlite3VdbeAddOp1(v, OP_Close, baseCur);
976 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
977 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
981 /* Update the sqlite_sequence table by storing the content of the
982 ** counter value in memory regAutoinc back into the sqlite_sequence
985 autoIncEnd(pParse, iDb, pTab, regAutoinc);
988 ** Return the number of rows inserted. If this routine is
989 ** generating code because of a call to sqlite3NestedParse(), do not
990 ** invoke the callback function.
992 if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
993 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
994 sqlite3VdbeSetNumCols(v, 1);
995 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
999 sqlite3SrcListDelete(db, pTabList);
1000 sqlite3ExprListDelete(db, pList);
1001 sqlite3SelectDelete(db, pSelect);
1002 sqlite3IdListDelete(db, pColumn);
1003 sqlite3DbFree(db, aRegIdx);
1007 ** Generate code to do constraint checks prior to an INSERT or an UPDATE.
1009 ** The input is a range of consecutive registers as follows:
1011 ** 1. The rowid of the row to be updated before the update. This
1012 ** value is omitted unless we are doing an UPDATE that involves a
1013 ** change to the record number or writing to a virtual table.
1015 ** 2. The rowid of the row after the update.
1017 ** 3. The data in the first column of the entry after the update.
1019 ** i. Data from middle columns...
1021 ** N. The data in the last column of the entry after the update.
1023 ** The regRowid parameter is the index of the register containing (2).
1025 ** The old rowid shown as entry (1) above is omitted unless both isUpdate
1026 ** and rowidChng are 1. isUpdate is true for UPDATEs and false for
1027 ** INSERTs. RowidChng means that the new rowid is explicitly specified by
1028 ** the update or insert statement. If rowidChng is false, it means that
1029 ** the rowid is computed automatically in an insert or that the rowid value
1030 ** is not modified by the update.
1032 ** The code generated by this routine store new index entries into
1033 ** registers identified by aRegIdx[]. No index entry is created for
1034 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1035 ** the same as the order of indices on the linked list of indices
1036 ** attached to the table.
1038 ** This routine also generates code to check constraints. NOT NULL,
1039 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1040 ** then the appropriate action is performed. There are five possible
1041 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1043 ** Constraint type Action What Happens
1044 ** --------------- ---------- ----------------------------------------
1045 ** any ROLLBACK The current transaction is rolled back and
1046 ** sqlite3_exec() returns immediately with a
1047 ** return code of SQLITE_CONSTRAINT.
1049 ** any ABORT Back out changes from the current command
1050 ** only (do not do a complete rollback) then
1051 ** cause sqlite3_exec() to return immediately
1052 ** with SQLITE_CONSTRAINT.
1054 ** any FAIL Sqlite_exec() returns immediately with a
1055 ** return code of SQLITE_CONSTRAINT. The
1056 ** transaction is not rolled back and any
1057 ** prior changes are retained.
1059 ** any IGNORE The record number and data is popped from
1060 ** the stack and there is an immediate jump
1061 ** to label ignoreDest.
1063 ** NOT NULL REPLACE The NULL value is replace by the default
1064 ** value for that column. If the default value
1065 ** is NULL, the action is the same as ABORT.
1067 ** UNIQUE REPLACE The other row that conflicts with the row
1068 ** being inserted is removed.
1070 ** CHECK REPLACE Illegal. The results in an exception.
1072 ** Which action to take is determined by the overrideError parameter.
1073 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1074 ** is used. Or if pParse->onError==OE_Default then the onError value
1075 ** for the constraint is used.
1077 ** The calling routine must open a read/write cursor for pTab with
1078 ** cursor number "baseCur". All indices of pTab must also have open
1079 ** read/write cursors with cursor number baseCur+i for the i-th cursor.
1080 ** Except, if there is no possibility of a REPLACE action then
1081 ** cursors do not need to be open for indices where aRegIdx[i]==0.
1083 void sqlite3GenerateConstraintChecks(
1084 Parse *pParse, /* The parser context */
1085 Table *pTab, /* the table into which we are inserting */
1086 int baseCur, /* Index of a read/write cursor pointing at pTab */
1087 int regRowid, /* Index of the range of input registers */
1088 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1089 int rowidChng, /* True if the rowid might collide with existing entry */
1090 int isUpdate, /* True for UPDATE, False for INSERT */
1091 int overrideError, /* Override onError to this if not OE_Default */
1092 int ignoreDest /* Jump to this label on an OE_Ignore resolution */
1098 int j1, j2, j3; /* Addresses of jump instructions */
1099 int regData; /* Register containing first data column */
1102 int seenReplace = 0;
1103 int hasTwoRowids = (isUpdate && rowidChng);
1105 v = sqlite3GetVdbe(pParse);
1107 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1109 regData = regRowid + 1;
1112 /* Test all NOT NULL constraints.
1114 for(i=0; i<nCol; i++){
1115 if( i==pTab->iPKey ){
1118 onError = pTab->aCol[i].notNull;
1119 if( onError==OE_None ) continue;
1120 if( overrideError!=OE_Default ){
1121 onError = overrideError;
1122 }else if( onError==OE_Default ){
1125 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1128 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
1129 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1130 || onError==OE_Ignore || onError==OE_Replace );
1136 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1137 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
1138 pTab->zName, pTab->aCol[i].zName);
1139 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
1143 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1147 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
1151 sqlite3VdbeJumpHere(v, j1);
1154 /* Test all CHECK constraints
1156 #ifndef SQLITE_OMIT_CHECK
1157 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
1158 int allOk = sqlite3VdbeMakeLabel(v);
1159 pParse->ckBase = regData;
1160 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
1161 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1162 if( onError==OE_Ignore ){
1163 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1165 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
1167 sqlite3VdbeResolveLabel(v, allOk);
1169 #endif /* !defined(SQLITE_OMIT_CHECK) */
1171 /* If we have an INTEGER PRIMARY KEY, make sure the primary key
1172 ** of the new record does not previously exist. Except, if this
1173 ** is an UPDATE and the primary key is not changing, that is OK.
1176 onError = pTab->keyConf;
1177 if( overrideError!=OE_Default ){
1178 onError = overrideError;
1179 }else if( onError==OE_Default ){
1183 if( onError!=OE_Replace || pTab->pIndex ){
1185 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
1187 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
1191 /* Fall thru into the next case */
1196 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1197 "PRIMARY KEY must be unique", P4_STATIC);
1201 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
1206 assert( seenReplace==0 );
1207 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1211 sqlite3VdbeJumpHere(v, j3);
1213 sqlite3VdbeJumpHere(v, j2);
1218 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1219 ** index and making sure that duplicate entries do not already exist.
1220 ** Add the new records to the indices as we go.
1222 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
1226 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
1228 /* Create a key for accessing the index entry */
1229 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
1230 for(i=0; i<pIdx->nColumn; i++){
1231 int idx = pIdx->aiColumn[i];
1232 if( idx==pTab->iPKey ){
1233 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1235 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
1238 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
1239 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
1240 sqlite3IndexAffinityStr(v, pIdx);
1241 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
1242 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
1244 /* Find out what action to take in case there is an indexing conflict */
1245 onError = pIdx->onError;
1246 if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
1247 if( overrideError!=OE_Default ){
1248 onError = overrideError;
1249 }else if( onError==OE_Default ){
1253 if( onError==OE_Ignore ) onError = OE_Replace;
1254 else if( onError==OE_Fail ) onError = OE_Abort;
1258 /* Check to see if the new index entry will be unique */
1259 j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
1260 regR = sqlite3GetTempReg(pParse);
1261 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
1262 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
1263 regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
1266 /* Generate code that executes if the new index entry is not unique */
1267 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1268 || onError==OE_Ignore || onError==OE_Replace );
1275 sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
1276 pIdx->nColumn>1 ? "columns " : "column ");
1277 n1 = strlen(zErrMsg);
1278 for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
1279 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
1282 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
1285 if( n1+n2>sizeof(zErrMsg)-30 ){
1286 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
1290 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
1294 sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
1295 pIdx->nColumn>1 ? " are not unique" : " is not unique");
1296 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
1300 assert( seenReplace==0 );
1301 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
1305 sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
1310 sqlite3VdbeJumpHere(v, j2);
1311 sqlite3VdbeJumpHere(v, j3);
1312 sqlite3ReleaseTempReg(pParse, regR);
1317 ** This routine generates code to finish the INSERT or UPDATE operation
1318 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1319 ** A consecutive range of registers starting at regRowid contains the
1320 ** rowid and the content to be inserted.
1322 ** The arguments to this routine should be the same as the first six
1323 ** arguments to sqlite3GenerateConstraintChecks.
1325 void sqlite3CompleteInsertion(
1326 Parse *pParse, /* The parser context */
1327 Table *pTab, /* the table into which we are inserting */
1328 int baseCur, /* Index of a read/write cursor pointing at pTab */
1329 int regRowid, /* Range of content */
1330 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1331 int rowidChng, /* True if the record number will change */
1332 int isUpdate, /* True for UPDATE, False for INSERT */
1333 int newIdx, /* Index of NEW table for triggers. -1 if none */
1334 int appendBias /* True if this is likely to be an append */
1344 v = sqlite3GetVdbe(pParse);
1346 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1347 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
1348 for(i=nIdx-1; i>=0; i--){
1349 if( aRegIdx[i]==0 ) continue;
1350 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
1352 regData = regRowid + 1;
1353 regRec = sqlite3GetTempReg(pParse);
1354 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1355 sqlite3TableAffinityStr(v, pTab);
1356 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1357 #ifndef SQLITE_OMIT_TRIGGER
1359 sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
1362 if( pParse->nested ){
1365 pik_flags = OPFLAG_NCHANGE;
1366 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1369 pik_flags |= OPFLAG_APPEND;
1371 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
1372 if( !pParse->nested ){
1373 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
1375 sqlite3VdbeChangeP5(v, pik_flags);
1379 ** Generate code that will open cursors for a table and for all
1380 ** indices of that table. The "baseCur" parameter is the cursor number used
1381 ** for the table. Indices are opened on subsequent cursors.
1383 ** Return the number of indices on the table.
1385 int sqlite3OpenTableAndIndices(
1386 Parse *pParse, /* Parsing context */
1387 Table *pTab, /* Table to be opened */
1388 int baseCur, /* Cursor number assigned to the table */
1389 int op /* OP_OpenRead or OP_OpenWrite */
1396 if( IsVirtual(pTab) ) return 0;
1397 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1398 v = sqlite3GetVdbe(pParse);
1400 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
1401 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1402 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
1403 assert( pIdx->pSchema==pTab->pSchema );
1404 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
1405 (char*)pKey, P4_KEYINFO_HANDOFF);
1406 VdbeComment((v, "%s", pIdx->zName));
1408 if( pParse->nTab<=baseCur+i ){
1409 pParse->nTab = baseCur+i;
1417 ** The following global variable is incremented whenever the
1418 ** transfer optimization is used. This is used for testing
1419 ** purposes only - to make sure the transfer optimization really
1420 ** is happening when it is suppose to.
1422 int sqlite3_xferopt_count;
1423 #endif /* SQLITE_TEST */
1426 #ifndef SQLITE_OMIT_XFER_OPT
1428 ** Check to collation names to see if they are compatible.
1430 static int xferCompatibleCollation(const char *z1, const char *z2){
1437 return sqlite3StrICmp(z1, z2)==0;
1442 ** Check to see if index pSrc is compatible as a source of data
1443 ** for index pDest in an insert transfer optimization. The rules
1444 ** for a compatible index:
1446 ** * The index is over the same set of columns
1447 ** * The same DESC and ASC markings occurs on all columns
1448 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1449 ** * The same collating sequence on each column
1451 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1453 assert( pDest && pSrc );
1454 assert( pDest->pTable!=pSrc->pTable );
1455 if( pDest->nColumn!=pSrc->nColumn ){
1456 return 0; /* Different number of columns */
1458 if( pDest->onError!=pSrc->onError ){
1459 return 0; /* Different conflict resolution strategies */
1461 for(i=0; i<pSrc->nColumn; i++){
1462 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1463 return 0; /* Different columns indexed */
1465 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1466 return 0; /* Different sort orders */
1468 if( pSrc->azColl[i]!=pDest->azColl[i] ){
1469 return 0; /* Different collating sequences */
1473 /* If no test above fails then the indices must be compatible */
1478 ** Attempt the transfer optimization on INSERTs of the form
1480 ** INSERT INTO tab1 SELECT * FROM tab2;
1482 ** This optimization is only attempted if
1484 ** (1) tab1 and tab2 have identical schemas including all the
1485 ** same indices and constraints
1487 ** (2) tab1 and tab2 are different tables
1489 ** (3) There must be no triggers on tab1
1491 ** (4) The result set of the SELECT statement is "*"
1493 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
1496 ** (6) The SELECT statement is a simple (not a compound) select that
1497 ** contains only tab2 in its FROM clause
1499 ** This method for implementing the INSERT transfers raw records from
1500 ** tab2 over to tab1. The columns are not decoded. Raw records from
1501 ** the indices of tab2 are transfered to tab1 as well. In so doing,
1502 ** the resulting tab1 has much less fragmentation.
1504 ** This routine returns TRUE if the optimization is attempted. If any
1505 ** of the conditions above fail so that the optimization should not
1506 ** be attempted, then this routine returns FALSE.
1508 static int xferOptimization(
1509 Parse *pParse, /* Parser context */
1510 Table *pDest, /* The table we are inserting into */
1511 Select *pSelect, /* A SELECT statement to use as the data source */
1512 int onError, /* How to handle constraint errors */
1513 int iDbDest /* The database of pDest */
1515 ExprList *pEList; /* The result set of the SELECT */
1516 Table *pSrc; /* The table in the FROM clause of SELECT */
1517 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1518 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1519 int i; /* Loop counter */
1520 int iDbSrc; /* The database of pSrc */
1521 int iSrc, iDest; /* Cursors from source and destination */
1522 int addr1, addr2; /* Loop addresses */
1523 int emptyDestTest; /* Address of test for empty pDest */
1524 int emptySrcTest; /* Address of test for empty pSrc */
1525 Vdbe *v; /* The VDBE we are building */
1526 KeyInfo *pKey; /* Key information for an index */
1527 int regAutoinc; /* Memory register used by AUTOINC */
1528 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1529 int regData, regRowid; /* Registers holding data and rowid */
1532 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1534 if( pDest->pTrigger ){
1535 return 0; /* tab1 must not have triggers */
1537 #ifndef SQLITE_OMIT_VIRTUALTABLE
1538 if( pDest->tabFlags & TF_Virtual ){
1539 return 0; /* tab1 must not be a virtual table */
1542 if( onError==OE_Default ){
1545 if( onError!=OE_Abort && onError!=OE_Rollback ){
1546 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
1548 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
1549 if( pSelect->pSrc->nSrc!=1 ){
1550 return 0; /* FROM clause must have exactly one term */
1552 if( pSelect->pSrc->a[0].pSelect ){
1553 return 0; /* FROM clause cannot contain a subquery */
1555 if( pSelect->pWhere ){
1556 return 0; /* SELECT may not have a WHERE clause */
1558 if( pSelect->pOrderBy ){
1559 return 0; /* SELECT may not have an ORDER BY clause */
1561 /* Do not need to test for a HAVING clause. If HAVING is present but
1562 ** there is no ORDER BY, we will get an error. */
1563 if( pSelect->pGroupBy ){
1564 return 0; /* SELECT may not have a GROUP BY clause */
1566 if( pSelect->pLimit ){
1567 return 0; /* SELECT may not have a LIMIT clause */
1569 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
1570 if( pSelect->pPrior ){
1571 return 0; /* SELECT may not be a compound query */
1573 if( pSelect->selFlags & SF_Distinct ){
1574 return 0; /* SELECT may not be DISTINCT */
1576 pEList = pSelect->pEList;
1577 assert( pEList!=0 );
1578 if( pEList->nExpr!=1 ){
1579 return 0; /* The result set must have exactly one column */
1581 assert( pEList->a[0].pExpr );
1582 if( pEList->a[0].pExpr->op!=TK_ALL ){
1583 return 0; /* The result set must be the special operator "*" */
1586 /* At this point we have established that the statement is of the
1587 ** correct syntactic form to participate in this optimization. Now
1588 ** we have to check the semantics.
1590 pItem = pSelect->pSrc->a;
1591 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
1593 return 0; /* FROM clause does not contain a real table */
1596 return 0; /* tab1 and tab2 may not be the same table */
1598 #ifndef SQLITE_OMIT_VIRTUALTABLE
1599 if( pSrc->tabFlags & TF_Virtual ){
1600 return 0; /* tab2 must not be a virtual table */
1603 if( pSrc->pSelect ){
1604 return 0; /* tab2 may not be a view */
1606 if( pDest->nCol!=pSrc->nCol ){
1607 return 0; /* Number of columns must be the same in tab1 and tab2 */
1609 if( pDest->iPKey!=pSrc->iPKey ){
1610 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
1612 for(i=0; i<pDest->nCol; i++){
1613 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
1614 return 0; /* Affinity must be the same on all columns */
1616 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
1617 return 0; /* Collating sequence must be the same on all columns */
1619 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
1620 return 0; /* tab2 must be NOT NULL if tab1 is */
1623 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1624 if( pDestIdx->onError!=OE_None ){
1625 destHasUniqueIdx = 1;
1627 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1628 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1631 return 0; /* pDestIdx has no corresponding index in pSrc */
1634 #ifndef SQLITE_OMIT_CHECK
1635 if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
1636 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
1640 /* If we get this far, it means either:
1642 ** * We can always do the transfer if the table contains an
1643 ** an integer primary key
1645 ** * We can conditionally do the transfer if the destination
1649 sqlite3_xferopt_count++;
1651 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
1652 v = sqlite3GetVdbe(pParse);
1653 sqlite3CodeVerifySchema(pParse, iDbSrc);
1654 iSrc = pParse->nTab++;
1655 iDest = pParse->nTab++;
1656 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
1657 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
1658 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
1659 /* If tables do not have an INTEGER PRIMARY KEY and there
1660 ** are indices to be copied and the destination is not empty,
1661 ** we have to disallow the transfer optimization because the
1662 ** the rowids might change which will mess up indexing.
1664 ** Or if the destination has a UNIQUE index and is not empty,
1665 ** we also disallow the transfer optimization because we cannot
1666 ** insure that all entries in the union of DEST and SRC will be
1669 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
1670 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
1671 sqlite3VdbeJumpHere(v, addr1);
1675 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
1676 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1677 regData = sqlite3GetTempReg(pParse);
1678 regRowid = sqlite3GetTempReg(pParse);
1679 if( pDest->iPKey>=0 ){
1680 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1681 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
1682 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
1683 "PRIMARY KEY must be unique", P4_STATIC);
1684 sqlite3VdbeJumpHere(v, addr2);
1685 autoIncStep(pParse, regAutoinc, regRowid);
1686 }else if( pDest->pIndex==0 ){
1687 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
1689 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
1690 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
1692 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
1693 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
1694 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
1695 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
1696 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
1697 autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
1698 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
1699 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
1700 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
1703 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1704 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1705 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
1706 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
1707 (char*)pKey, P4_KEYINFO_HANDOFF);
1708 VdbeComment((v, "%s", pSrcIdx->zName));
1709 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
1710 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
1711 (char*)pKey, P4_KEYINFO_HANDOFF);
1712 VdbeComment((v, "%s", pDestIdx->zName));
1713 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
1714 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
1715 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
1716 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
1717 sqlite3VdbeJumpHere(v, addr1);
1719 sqlite3VdbeJumpHere(v, emptySrcTest);
1720 sqlite3ReleaseTempReg(pParse, regRowid);
1721 sqlite3ReleaseTempReg(pParse, regData);
1722 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
1723 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1724 if( emptyDestTest ){
1725 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
1726 sqlite3VdbeJumpHere(v, emptyDestTest);
1727 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
1733 #endif /* SQLITE_OMIT_XFER_OPT */
1735 /* Make sure "isView" gets undefined in case this file becomes part of
1736 ** the amalgamation - so that subsequent files do not see isView as a