os/persistentdata/persistentstorage/sqlite3api/SQLite/fts3.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2006 Oct 10
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 ******************************************************************************
    12 **
    13 ** This is an SQLite module implementing full-text search.
    14 */
    15 
    16 /*
    17 ** The code in this file is only compiled if:
    18 **
    19 **     * The FTS3 module is being built as an extension
    20 **       (in which case SQLITE_CORE is not defined), or
    21 **
    22 **     * The FTS3 module is being built into the core of
    23 **       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
    24 */
    25 
    26 /* TODO(shess) Consider exporting this comment to an HTML file or the
    27 ** wiki.
    28 */
    29 /* The full-text index is stored in a series of b+tree (-like)
    30 ** structures called segments which map terms to doclists.  The
    31 ** structures are like b+trees in layout, but are constructed from the
    32 ** bottom up in optimal fashion and are not updatable.  Since trees
    33 ** are built from the bottom up, things will be described from the
    34 ** bottom up.
    35 **
    36 **
    37 **** Varints ****
    38 ** The basic unit of encoding is a variable-length integer called a
    39 ** varint.  We encode variable-length integers in little-endian order
    40 ** using seven bits * per byte as follows:
    41 **
    42 ** KEY:
    43 **         A = 0xxxxxxx    7 bits of data and one flag bit
    44 **         B = 1xxxxxxx    7 bits of data and one flag bit
    45 **
    46 **  7 bits - A
    47 ** 14 bits - BA
    48 ** 21 bits - BBA
    49 ** and so on.
    50 **
    51 ** This is identical to how sqlite encodes varints (see util.c).
    52 **
    53 **
    54 **** Document lists ****
    55 ** A doclist (document list) holds a docid-sorted list of hits for a
    56 ** given term.  Doclists hold docids, and can optionally associate
    57 ** token positions and offsets with docids.
    58 **
    59 ** A DL_POSITIONS_OFFSETS doclist is stored like this:
    60 **
    61 ** array {
    62 **   varint docid;
    63 **   array {                (position list for column 0)
    64 **     varint position;     (delta from previous position plus POS_BASE)
    65 **     varint startOffset;  (delta from previous startOffset)
    66 **     varint endOffset;    (delta from startOffset)
    67 **   }
    68 **   array {
    69 **     varint POS_COLUMN;   (marks start of position list for new column)
    70 **     varint column;       (index of new column)
    71 **     array {
    72 **       varint position;   (delta from previous position plus POS_BASE)
    73 **       varint startOffset;(delta from previous startOffset)
    74 **       varint endOffset;  (delta from startOffset)
    75 **     }
    76 **   }
    77 **   varint POS_END;        (marks end of positions for this document.
    78 ** }
    79 **
    80 ** Here, array { X } means zero or more occurrences of X, adjacent in
    81 ** memory.  A "position" is an index of a token in the token stream
    82 ** generated by the tokenizer, while an "offset" is a byte offset,
    83 ** both based at 0.  Note that POS_END and POS_COLUMN occur in the
    84 ** same logical place as the position element, and act as sentinals
    85 ** ending a position list array.
    86 **
    87 ** A DL_POSITIONS doclist omits the startOffset and endOffset
    88 ** information.  A DL_DOCIDS doclist omits both the position and
    89 ** offset information, becoming an array of varint-encoded docids.
    90 **
    91 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize
    92 ** the type.  Due to how deletion is implemented in the segmentation
    93 ** system, on-disk doclists MUST store at least positions.
    94 **
    95 **
    96 **** Segment leaf nodes ****
    97 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
    98 ** nodes are written using LeafWriter, and read using LeafReader (to
    99 ** iterate through a single leaf node's data) and LeavesReader (to
   100 ** iterate through a segment's entire leaf layer).  Leaf nodes have
   101 ** the format:
   102 **
   103 ** varint iHeight;             (height from leaf level, always 0)
   104 ** varint nTerm;               (length of first term)
   105 ** char pTerm[nTerm];          (content of first term)
   106 ** varint nDoclist;            (length of term's associated doclist)
   107 ** char pDoclist[nDoclist];    (content of doclist)
   108 ** array {
   109 **                             (further terms are delta-encoded)
   110 **   varint nPrefix;           (length of prefix shared with previous term)
   111 **   varint nSuffix;           (length of unshared suffix)
   112 **   char pTermSuffix[nSuffix];(unshared suffix of next term)
   113 **   varint nDoclist;          (length of term's associated doclist)
   114 **   char pDoclist[nDoclist];  (content of doclist)
   115 ** }
   116 **
   117 ** Here, array { X } means zero or more occurrences of X, adjacent in
   118 ** memory.
   119 **
   120 ** Leaf nodes are broken into blocks which are stored contiguously in
   121 ** the %_segments table in sorted order.  This means that when the end
   122 ** of a node is reached, the next term is in the node with the next
   123 ** greater node id.
   124 **
   125 ** New data is spilled to a new leaf node when the current node
   126 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
   127 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
   128 ** node (a leaf node with a single term and doclist).  The goal of
   129 ** these settings is to pack together groups of small doclists while
   130 ** making it efficient to directly access large doclists.  The
   131 ** assumption is that large doclists represent terms which are more
   132 ** likely to be query targets.
   133 **
   134 ** TODO(shess) It may be useful for blocking decisions to be more
   135 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
   136 ** node rather than splitting into 2k and .5k nodes.  My intuition is
   137 ** that this might extend through 2x or 4x the pagesize.
   138 **
   139 **
   140 **** Segment interior nodes ****
   141 ** Segment interior nodes store blockids for subtree nodes and terms
   142 ** to describe what data is stored by the each subtree.  Interior
   143 ** nodes are written using InteriorWriter, and read using
   144 ** InteriorReader.  InteriorWriters are created as needed when
   145 ** SegmentWriter creates new leaf nodes, or when an interior node
   146 ** itself grows too big and must be split.  The format of interior
   147 ** nodes:
   148 **
   149 ** varint iHeight;           (height from leaf level, always >0)
   150 ** varint iBlockid;          (block id of node's leftmost subtree)
   151 ** optional {
   152 **   varint nTerm;           (length of first term)
   153 **   char pTerm[nTerm];      (content of first term)
   154 **   array {
   155 **                                (further terms are delta-encoded)
   156 **     varint nPrefix;            (length of shared prefix with previous term)
   157 **     varint nSuffix;            (length of unshared suffix)
   158 **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
   159 **   }
   160 ** }
   161 **
   162 ** Here, optional { X } means an optional element, while array { X }
   163 ** means zero or more occurrences of X, adjacent in memory.
   164 **
   165 ** An interior node encodes n terms separating n+1 subtrees.  The
   166 ** subtree blocks are contiguous, so only the first subtree's blockid
   167 ** is encoded.  The subtree at iBlockid will contain all terms less
   168 ** than the first term encoded (or all terms if no term is encoded).
   169 ** Otherwise, for terms greater than or equal to pTerm[i] but less
   170 ** than pTerm[i+1], the subtree for that term will be rooted at
   171 ** iBlockid+i.  Interior nodes only store enough term data to
   172 ** distinguish adjacent children (if the rightmost term of the left
   173 ** child is "something", and the leftmost term of the right child is
   174 ** "wicked", only "w" is stored).
   175 **
   176 ** New data is spilled to a new interior node at the same height when
   177 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
   178 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
   179 ** interior nodes and making the tree too skinny.  The interior nodes
   180 ** at a given height are naturally tracked by interior nodes at
   181 ** height+1, and so on.
   182 **
   183 **
   184 **** Segment directory ****
   185 ** The segment directory in table %_segdir stores meta-information for
   186 ** merging and deleting segments, and also the root node of the
   187 ** segment's tree.
   188 **
   189 ** The root node is the top node of the segment's tree after encoding
   190 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
   191 ** This could be either a leaf node or an interior node.  If the top
   192 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
   193 ** and a new root interior node is generated (which should always fit
   194 ** within ROOT_MAX because it only needs space for 2 varints, the
   195 ** height and the blockid of the previous root).
   196 **
   197 ** The meta-information in the segment directory is:
   198 **   level               - segment level (see below)
   199 **   idx                 - index within level
   200 **                       - (level,idx uniquely identify a segment)
   201 **   start_block         - first leaf node
   202 **   leaves_end_block    - last leaf node
   203 **   end_block           - last block (including interior nodes)
   204 **   root                - contents of root node
   205 **
   206 ** If the root node is a leaf node, then start_block,
   207 ** leaves_end_block, and end_block are all 0.
   208 **
   209 **
   210 **** Segment merging ****
   211 ** To amortize update costs, segments are groups into levels and
   212 ** merged in matches.  Each increase in level represents exponentially
   213 ** more documents.
   214 **
   215 ** New documents (actually, document updates) are tokenized and
   216 ** written individually (using LeafWriter) to a level 0 segment, with
   217 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
   218 ** level 0 segments are merged into a single level 1 segment.  Level 1
   219 ** is populated like level 0, and eventually MERGE_COUNT level 1
   220 ** segments are merged to a single level 2 segment (representing
   221 ** MERGE_COUNT^2 updates), and so on.
   222 **
   223 ** A segment merge traverses all segments at a given level in
   224 ** parallel, performing a straightforward sorted merge.  Since segment
   225 ** leaf nodes are written in to the %_segments table in order, this
   226 ** merge traverses the underlying sqlite disk structures efficiently.
   227 ** After the merge, all segment blocks from the merged level are
   228 ** deleted.
   229 **
   230 ** MERGE_COUNT controls how often we merge segments.  16 seems to be
   231 ** somewhat of a sweet spot for insertion performance.  32 and 64 show
   232 ** very similar performance numbers to 16 on insertion, though they're
   233 ** a tiny bit slower (perhaps due to more overhead in merge-time
   234 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
   235 ** 16, 2 about 66% slower than 16.
   236 **
   237 ** At query time, high MERGE_COUNT increases the number of segments
   238 ** which need to be scanned and merged.  For instance, with 100k docs
   239 ** inserted:
   240 **
   241 **    MERGE_COUNT   segments
   242 **       16           25
   243 **        8           12
   244 **        4           10
   245 **        2            6
   246 **
   247 ** This appears to have only a moderate impact on queries for very
   248 ** frequent terms (which are somewhat dominated by segment merge
   249 ** costs), and infrequent and non-existent terms still seem to be fast
   250 ** even with many segments.
   251 **
   252 ** TODO(shess) That said, it would be nice to have a better query-side
   253 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
   254 ** optimizations to things like doclist merging will swing the sweet
   255 ** spot around.
   256 **
   257 **
   258 **
   259 **** Handling of deletions and updates ****
   260 ** Since we're using a segmented structure, with no docid-oriented
   261 ** index into the term index, we clearly cannot simply update the term
   262 ** index when a document is deleted or updated.  For deletions, we
   263 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
   264 ** we simply write the new doclist.  Segment merges overwrite older
   265 ** data for a particular docid with newer data, so deletes or updates
   266 ** will eventually overtake the earlier data and knock it out.  The
   267 ** query logic likewise merges doclists so that newer data knocks out
   268 ** older data.
   269 **
   270 ** TODO(shess) Provide a VACUUM type operation to clear out all
   271 ** deletions and duplications.  This would basically be a forced merge
   272 ** into a single segment.
   273 */
   274 
   275 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
   276 
   277 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
   278 # define SQLITE_CORE 1
   279 #endif
   280 
   281 #include <assert.h>
   282 #include <stdlib.h>
   283 #include <stdio.h>
   284 #include <string.h>
   285 #include <ctype.h>
   286 
   287 #include "fts3.h"
   288 #include "fts3_hash.h"
   289 #include "fts3_tokenizer.h"
   290 #ifndef SQLITE_CORE 
   291 # include "sqlite3ext.h"
   292   SQLITE_EXTENSION_INIT1
   293 #endif
   294 
   295 
   296 /* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it
   297 ** would be nice to order the file better, perhaps something along the
   298 ** lines of:
   299 **
   300 **  - utility functions
   301 **  - table setup functions
   302 **  - table update functions
   303 **  - table query functions
   304 **
   305 ** Put the query functions last because they're likely to reference
   306 ** typedefs or functions from the table update section.
   307 */
   308 
   309 #if 0
   310 # define FTSTRACE(A)  printf A; fflush(stdout)
   311 #else
   312 # define FTSTRACE(A)
   313 #endif
   314 
   315 /*
   316 ** Default span for NEAR operators.
   317 */
   318 #define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
   319 
   320 /* It is not safe to call isspace(), tolower(), or isalnum() on
   321 ** hi-bit-set characters.  This is the same solution used in the
   322 ** tokenizer.
   323 */
   324 /* TODO(shess) The snippet-generation code should be using the
   325 ** tokenizer-generated tokens rather than doing its own local
   326 ** tokenization.
   327 */
   328 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
   329 static int safe_isspace(char c){
   330   return (c&0x80)==0 ? isspace(c) : 0;
   331 }
   332 static int safe_tolower(char c){
   333   return (c&0x80)==0 ? tolower(c) : c;
   334 }
   335 static int safe_isalnum(char c){
   336   return (c&0x80)==0 ? isalnum(c) : 0;
   337 }
   338 
   339 typedef enum DocListType {
   340   DL_DOCIDS,              /* docids only */
   341   DL_POSITIONS,           /* docids + positions */
   342   DL_POSITIONS_OFFSETS    /* docids + positions + offsets */
   343 } DocListType;
   344 
   345 /*
   346 ** By default, only positions and not offsets are stored in the doclists.
   347 ** To change this so that offsets are stored too, compile with
   348 **
   349 **          -DDL_DEFAULT=DL_POSITIONS_OFFSETS
   350 **
   351 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
   352 ** into (no deletes or updates).
   353 */
   354 #ifndef DL_DEFAULT
   355 # define DL_DEFAULT DL_POSITIONS
   356 #endif
   357 
   358 enum {
   359   POS_END = 0,        /* end of this position list */
   360   POS_COLUMN,         /* followed by new column number */
   361   POS_BASE
   362 };
   363 
   364 /* MERGE_COUNT controls how often we merge segments (see comment at
   365 ** top of file).
   366 */
   367 #define MERGE_COUNT 16
   368 
   369 /* utility functions */
   370 
   371 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
   372 ** record to prevent errors of the form:
   373 **
   374 ** my_function(SomeType *b){
   375 **   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b)
   376 ** }
   377 */
   378 /* TODO(shess) Obvious candidates for a header file. */
   379 #define CLEAR(b) memset(b, '\0', sizeof(*(b)))
   380 
   381 #ifndef NDEBUG
   382 #  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
   383 #else
   384 #  define SCRAMBLE(b)
   385 #endif
   386 
   387 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
   388 #define VARINT_MAX 10
   389 
   390 /* Write a 64-bit variable-length integer to memory starting at p[0].
   391  * The length of data written will be between 1 and VARINT_MAX bytes.
   392  * The number of bytes written is returned. */
   393 static int fts3PutVarint(char *p, sqlite_int64 v){
   394   unsigned char *q = (unsigned char *) p;
   395   sqlite_uint64 vu = v;
   396   do{
   397     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
   398     vu >>= 7;
   399   }while( vu!=0 );
   400   q[-1] &= 0x7f;  /* turn off high bit in final byte */
   401   assert( q - (unsigned char *)p <= VARINT_MAX );
   402   return (int) (q - (unsigned char *)p);
   403 }
   404 
   405 /* Read a 64-bit variable-length integer from memory starting at p[0].
   406  * Return the number of bytes read, or 0 on error.
   407  * The value is stored in *v. */
   408 static int fts3GetVarint(const char *p, sqlite_int64 *v){
   409   const unsigned char *q = (const unsigned char *) p;
   410   sqlite_uint64 x = 0, y = 1;
   411   while( (*q & 0x80) == 0x80 ){
   412     x += y * (*q++ & 0x7f);
   413     y <<= 7;
   414     if( q - (unsigned char *)p >= VARINT_MAX ){  /* bad data */
   415       assert( 0 );
   416       return 0;
   417     }
   418   }
   419   x += y * (*q++);
   420   *v = (sqlite_int64) x;
   421   return (int) (q - (unsigned char *)p);
   422 }
   423 
   424 static int fts3GetVarint32(const char *p, int *pi){
   425  sqlite_int64 i;
   426  int ret = fts3GetVarint(p, &i);
   427  *pi = (int) i;
   428  assert( *pi==i );
   429  return ret;
   430 }
   431 
   432 /*******************************************************************/
   433 /* DataBuffer is used to collect data into a buffer in piecemeal
   434 ** fashion.  It implements the usual distinction between amount of
   435 ** data currently stored (nData) and buffer capacity (nCapacity).
   436 **
   437 ** dataBufferInit - create a buffer with given initial capacity.
   438 ** dataBufferReset - forget buffer's data, retaining capacity.
   439 ** dataBufferDestroy - free buffer's data.
   440 ** dataBufferSwap - swap contents of two buffers.
   441 ** dataBufferExpand - expand capacity without adding data.
   442 ** dataBufferAppend - append data.
   443 ** dataBufferAppend2 - append two pieces of data at once.
   444 ** dataBufferReplace - replace buffer's data.
   445 */
   446 typedef struct DataBuffer {
   447   char *pData;          /* Pointer to malloc'ed buffer. */
   448   int nCapacity;        /* Size of pData buffer. */
   449   int nData;            /* End of data loaded into pData. */
   450 } DataBuffer;
   451 
   452 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
   453   assert( nCapacity>=0 );
   454   pBuffer->nData = 0;
   455   pBuffer->nCapacity = nCapacity;
   456   pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
   457 }
   458 static void dataBufferReset(DataBuffer *pBuffer){
   459   pBuffer->nData = 0;
   460 }
   461 static void dataBufferDestroy(DataBuffer *pBuffer){
   462   if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
   463   SCRAMBLE(pBuffer);
   464 }
   465 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
   466   DataBuffer tmp = *pBuffer1;
   467   *pBuffer1 = *pBuffer2;
   468   *pBuffer2 = tmp;
   469 }
   470 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
   471   assert( nAddCapacity>0 );
   472   /* TODO(shess) Consider expanding more aggressively.  Note that the
   473   ** underlying malloc implementation may take care of such things for
   474   ** us already.
   475   */
   476   if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
   477     pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
   478     pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
   479   }
   480 }
   481 static void dataBufferAppend(DataBuffer *pBuffer,
   482                              const char *pSource, int nSource){
   483   assert( nSource>0 && pSource!=NULL );
   484   dataBufferExpand(pBuffer, nSource);
   485   memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
   486   pBuffer->nData += nSource;
   487 }
   488 static void dataBufferAppend2(DataBuffer *pBuffer,
   489                               const char *pSource1, int nSource1,
   490                               const char *pSource2, int nSource2){
   491   assert( nSource1>0 && pSource1!=NULL );
   492   assert( nSource2>0 && pSource2!=NULL );
   493   dataBufferExpand(pBuffer, nSource1+nSource2);
   494   memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
   495   memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
   496   pBuffer->nData += nSource1+nSource2;
   497 }
   498 static void dataBufferReplace(DataBuffer *pBuffer,
   499                               const char *pSource, int nSource){
   500   dataBufferReset(pBuffer);
   501   dataBufferAppend(pBuffer, pSource, nSource);
   502 }
   503 
   504 /* StringBuffer is a null-terminated version of DataBuffer. */
   505 typedef struct StringBuffer {
   506   DataBuffer b;            /* Includes null terminator. */
   507 } StringBuffer;
   508 
   509 static void initStringBuffer(StringBuffer *sb){
   510   dataBufferInit(&sb->b, 100);
   511   dataBufferReplace(&sb->b, "", 1);
   512 }
   513 static int stringBufferLength(StringBuffer *sb){
   514   return sb->b.nData-1;
   515 }
   516 static char *stringBufferData(StringBuffer *sb){
   517   return sb->b.pData;
   518 }
   519 static void stringBufferDestroy(StringBuffer *sb){
   520   dataBufferDestroy(&sb->b);
   521 }
   522 
   523 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
   524   assert( sb->b.nData>0 );
   525   if( nFrom>0 ){
   526     sb->b.nData--;
   527     dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
   528   }
   529 }
   530 static void append(StringBuffer *sb, const char *zFrom){
   531   nappend(sb, zFrom, strlen(zFrom));
   532 }
   533 
   534 /* Append a list of strings separated by commas. */
   535 static void appendList(StringBuffer *sb, int nString, char **azString){
   536   int i;
   537   for(i=0; i<nString; ++i){
   538     if( i>0 ) append(sb, ", ");
   539     append(sb, azString[i]);
   540   }
   541 }
   542 
   543 static int endsInWhiteSpace(StringBuffer *p){
   544   return stringBufferLength(p)>0 &&
   545     safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
   546 }
   547 
   548 /* If the StringBuffer ends in something other than white space, add a
   549 ** single space character to the end.
   550 */
   551 static void appendWhiteSpace(StringBuffer *p){
   552   if( stringBufferLength(p)==0 ) return;
   553   if( !endsInWhiteSpace(p) ) append(p, " ");
   554 }
   555 
   556 /* Remove white space from the end of the StringBuffer */
   557 static void trimWhiteSpace(StringBuffer *p){
   558   while( endsInWhiteSpace(p) ){
   559     p->b.pData[--p->b.nData-1] = '\0';
   560   }
   561 }
   562 
   563 /*******************************************************************/
   564 /* DLReader is used to read document elements from a doclist.  The
   565 ** current docid is cached, so dlrDocid() is fast.  DLReader does not
   566 ** own the doclist buffer.
   567 **
   568 ** dlrAtEnd - true if there's no more data to read.
   569 ** dlrDocid - docid of current document.
   570 ** dlrDocData - doclist data for current document (including docid).
   571 ** dlrDocDataBytes - length of same.
   572 ** dlrAllDataBytes - length of all remaining data.
   573 ** dlrPosData - position data for current document.
   574 ** dlrPosDataLen - length of pos data for current document (incl POS_END).
   575 ** dlrStep - step to current document.
   576 ** dlrInit - initial for doclist of given type against given data.
   577 ** dlrDestroy - clean up.
   578 **
   579 ** Expected usage is something like:
   580 **
   581 **   DLReader reader;
   582 **   dlrInit(&reader, pData, nData);
   583 **   while( !dlrAtEnd(&reader) ){
   584 **     // calls to dlrDocid() and kin.
   585 **     dlrStep(&reader);
   586 **   }
   587 **   dlrDestroy(&reader);
   588 */
   589 typedef struct DLReader {
   590   DocListType iType;
   591   const char *pData;
   592   int nData;
   593 
   594   sqlite_int64 iDocid;
   595   int nElement;
   596 } DLReader;
   597 
   598 static int dlrAtEnd(DLReader *pReader){
   599   assert( pReader->nData>=0 );
   600   return pReader->nData==0;
   601 }
   602 static sqlite_int64 dlrDocid(DLReader *pReader){
   603   assert( !dlrAtEnd(pReader) );
   604   return pReader->iDocid;
   605 }
   606 static const char *dlrDocData(DLReader *pReader){
   607   assert( !dlrAtEnd(pReader) );
   608   return pReader->pData;
   609 }
   610 static int dlrDocDataBytes(DLReader *pReader){
   611   assert( !dlrAtEnd(pReader) );
   612   return pReader->nElement;
   613 }
   614 static int dlrAllDataBytes(DLReader *pReader){
   615   assert( !dlrAtEnd(pReader) );
   616   return pReader->nData;
   617 }
   618 /* TODO(shess) Consider adding a field to track iDocid varint length
   619 ** to make these two functions faster.  This might matter (a tiny bit)
   620 ** for queries.
   621 */
   622 static const char *dlrPosData(DLReader *pReader){
   623   sqlite_int64 iDummy;
   624   int n = fts3GetVarint(pReader->pData, &iDummy);
   625   assert( !dlrAtEnd(pReader) );
   626   return pReader->pData+n;
   627 }
   628 static int dlrPosDataLen(DLReader *pReader){
   629   sqlite_int64 iDummy;
   630   int n = fts3GetVarint(pReader->pData, &iDummy);
   631   assert( !dlrAtEnd(pReader) );
   632   return pReader->nElement-n;
   633 }
   634 static void dlrStep(DLReader *pReader){
   635   assert( !dlrAtEnd(pReader) );
   636 
   637   /* Skip past current doclist element. */
   638   assert( pReader->nElement<=pReader->nData );
   639   pReader->pData += pReader->nElement;
   640   pReader->nData -= pReader->nElement;
   641 
   642   /* If there is more data, read the next doclist element. */
   643   if( pReader->nData!=0 ){
   644     sqlite_int64 iDocidDelta;
   645     int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
   646     pReader->iDocid += iDocidDelta;
   647     if( pReader->iType>=DL_POSITIONS ){
   648       assert( n<pReader->nData );
   649       while( 1 ){
   650         n += fts3GetVarint32(pReader->pData+n, &iDummy);
   651         assert( n<=pReader->nData );
   652         if( iDummy==POS_END ) break;
   653         if( iDummy==POS_COLUMN ){
   654           n += fts3GetVarint32(pReader->pData+n, &iDummy);
   655           assert( n<pReader->nData );
   656         }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
   657           n += fts3GetVarint32(pReader->pData+n, &iDummy);
   658           n += fts3GetVarint32(pReader->pData+n, &iDummy);
   659           assert( n<pReader->nData );
   660         }
   661       }
   662     }
   663     pReader->nElement = n;
   664     assert( pReader->nElement<=pReader->nData );
   665   }
   666 }
   667 static void dlrInit(DLReader *pReader, DocListType iType,
   668                     const char *pData, int nData){
   669   assert( pData!=NULL && nData!=0 );
   670   pReader->iType = iType;
   671   pReader->pData = pData;
   672   pReader->nData = nData;
   673   pReader->nElement = 0;
   674   pReader->iDocid = 0;
   675 
   676   /* Load the first element's data.  There must be a first element. */
   677   dlrStep(pReader);
   678 }
   679 static void dlrDestroy(DLReader *pReader){
   680   SCRAMBLE(pReader);
   681 }
   682 
   683 #ifndef NDEBUG
   684 /* Verify that the doclist can be validly decoded.  Also returns the
   685 ** last docid found because it is convenient in other assertions for
   686 ** DLWriter.
   687 */
   688 static void docListValidate(DocListType iType, const char *pData, int nData,
   689                             sqlite_int64 *pLastDocid){
   690   sqlite_int64 iPrevDocid = 0;
   691   assert( nData>0 );
   692   assert( pData!=0 );
   693   assert( pData+nData>pData );
   694   while( nData!=0 ){
   695     sqlite_int64 iDocidDelta;
   696     int n = fts3GetVarint(pData, &iDocidDelta);
   697     iPrevDocid += iDocidDelta;
   698     if( iType>DL_DOCIDS ){
   699       int iDummy;
   700       while( 1 ){
   701         n += fts3GetVarint32(pData+n, &iDummy);
   702         if( iDummy==POS_END ) break;
   703         if( iDummy==POS_COLUMN ){
   704           n += fts3GetVarint32(pData+n, &iDummy);
   705         }else if( iType>DL_POSITIONS ){
   706           n += fts3GetVarint32(pData+n, &iDummy);
   707           n += fts3GetVarint32(pData+n, &iDummy);
   708         }
   709         assert( n<=nData );
   710       }
   711     }
   712     assert( n<=nData );
   713     pData += n;
   714     nData -= n;
   715   }
   716   if( pLastDocid ) *pLastDocid = iPrevDocid;
   717 }
   718 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
   719 #else
   720 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
   721 #endif
   722 
   723 /*******************************************************************/
   724 /* DLWriter is used to write doclist data to a DataBuffer.  DLWriter
   725 ** always appends to the buffer and does not own it.
   726 **
   727 ** dlwInit - initialize to write a given type doclistto a buffer.
   728 ** dlwDestroy - clear the writer's memory.  Does not free buffer.
   729 ** dlwAppend - append raw doclist data to buffer.
   730 ** dlwCopy - copy next doclist from reader to writer.
   731 ** dlwAdd - construct doclist element and append to buffer.
   732 **    Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
   733 */
   734 typedef struct DLWriter {
   735   DocListType iType;
   736   DataBuffer *b;
   737   sqlite_int64 iPrevDocid;
   738 #ifndef NDEBUG
   739   int has_iPrevDocid;
   740 #endif
   741 } DLWriter;
   742 
   743 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
   744   pWriter->b = b;
   745   pWriter->iType = iType;
   746   pWriter->iPrevDocid = 0;
   747 #ifndef NDEBUG
   748   pWriter->has_iPrevDocid = 0;
   749 #endif
   750 }
   751 static void dlwDestroy(DLWriter *pWriter){
   752   SCRAMBLE(pWriter);
   753 }
   754 /* iFirstDocid is the first docid in the doclist in pData.  It is
   755 ** needed because pData may point within a larger doclist, in which
   756 ** case the first item would be delta-encoded.
   757 **
   758 ** iLastDocid is the final docid in the doclist in pData.  It is
   759 ** needed to create the new iPrevDocid for future delta-encoding.  The
   760 ** code could decode the passed doclist to recreate iLastDocid, but
   761 ** the only current user (docListMerge) already has decoded this
   762 ** information.
   763 */
   764 /* TODO(shess) This has become just a helper for docListMerge.
   765 ** Consider a refactor to make this cleaner.
   766 */
   767 static void dlwAppend(DLWriter *pWriter,
   768                       const char *pData, int nData,
   769                       sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
   770   sqlite_int64 iDocid = 0;
   771   char c[VARINT_MAX];
   772   int nFirstOld, nFirstNew;     /* Old and new varint len of first docid. */
   773 #ifndef NDEBUG
   774   sqlite_int64 iLastDocidDelta;
   775 #endif
   776 
   777   /* Recode the initial docid as delta from iPrevDocid. */
   778   nFirstOld = fts3GetVarint(pData, &iDocid);
   779   assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
   780   nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
   781 
   782   /* Verify that the incoming doclist is valid AND that it ends with
   783   ** the expected docid.  This is essential because we'll trust this
   784   ** docid in future delta-encoding.
   785   */
   786   ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
   787   assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
   788 
   789   /* Append recoded initial docid and everything else.  Rest of docids
   790   ** should have been delta-encoded from previous initial docid.
   791   */
   792   if( nFirstOld<nData ){
   793     dataBufferAppend2(pWriter->b, c, nFirstNew,
   794                       pData+nFirstOld, nData-nFirstOld);
   795   }else{
   796     dataBufferAppend(pWriter->b, c, nFirstNew);
   797   }
   798   pWriter->iPrevDocid = iLastDocid;
   799 }
   800 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
   801   dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
   802             dlrDocid(pReader), dlrDocid(pReader));
   803 }
   804 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
   805   char c[VARINT_MAX];
   806   int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
   807 
   808   /* Docids must ascend. */
   809   assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
   810   assert( pWriter->iType==DL_DOCIDS );
   811 
   812   dataBufferAppend(pWriter->b, c, n);
   813   pWriter->iPrevDocid = iDocid;
   814 #ifndef NDEBUG
   815   pWriter->has_iPrevDocid = 1;
   816 #endif
   817 }
   818 
   819 /*******************************************************************/
   820 /* PLReader is used to read data from a document's position list.  As
   821 ** the caller steps through the list, data is cached so that varints
   822 ** only need to be decoded once.
   823 **
   824 ** plrInit, plrDestroy - create/destroy a reader.
   825 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
   826 ** plrAtEnd - at end of stream, only call plrDestroy once true.
   827 ** plrStep - step to the next element.
   828 */
   829 typedef struct PLReader {
   830   /* These refer to the next position's data.  nData will reach 0 when
   831   ** reading the last position, so plrStep() signals EOF by setting
   832   ** pData to NULL.
   833   */
   834   const char *pData;
   835   int nData;
   836 
   837   DocListType iType;
   838   int iColumn;         /* the last column read */
   839   int iPosition;       /* the last position read */
   840   int iStartOffset;    /* the last start offset read */
   841   int iEndOffset;      /* the last end offset read */
   842 } PLReader;
   843 
   844 static int plrAtEnd(PLReader *pReader){
   845   return pReader->pData==NULL;
   846 }
   847 static int plrColumn(PLReader *pReader){
   848   assert( !plrAtEnd(pReader) );
   849   return pReader->iColumn;
   850 }
   851 static int plrPosition(PLReader *pReader){
   852   assert( !plrAtEnd(pReader) );
   853   return pReader->iPosition;
   854 }
   855 static int plrStartOffset(PLReader *pReader){
   856   assert( !plrAtEnd(pReader) );
   857   return pReader->iStartOffset;
   858 }
   859 static int plrEndOffset(PLReader *pReader){
   860   assert( !plrAtEnd(pReader) );
   861   return pReader->iEndOffset;
   862 }
   863 static void plrStep(PLReader *pReader){
   864   int i, n;
   865 
   866   assert( !plrAtEnd(pReader) );
   867 
   868   if( pReader->nData==0 ){
   869     pReader->pData = NULL;
   870     return;
   871   }
   872 
   873   n = fts3GetVarint32(pReader->pData, &i);
   874   if( i==POS_COLUMN ){
   875     n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
   876     pReader->iPosition = 0;
   877     pReader->iStartOffset = 0;
   878     n += fts3GetVarint32(pReader->pData+n, &i);
   879   }
   880   /* Should never see adjacent column changes. */
   881   assert( i!=POS_COLUMN );
   882 
   883   if( i==POS_END ){
   884     pReader->nData = 0;
   885     pReader->pData = NULL;
   886     return;
   887   }
   888 
   889   pReader->iPosition += i-POS_BASE;
   890   if( pReader->iType==DL_POSITIONS_OFFSETS ){
   891     n += fts3GetVarint32(pReader->pData+n, &i);
   892     pReader->iStartOffset += i;
   893     n += fts3GetVarint32(pReader->pData+n, &i);
   894     pReader->iEndOffset = pReader->iStartOffset+i;
   895   }
   896   assert( n<=pReader->nData );
   897   pReader->pData += n;
   898   pReader->nData -= n;
   899 }
   900 
   901 static void plrInit(PLReader *pReader, DLReader *pDLReader){
   902   pReader->pData = dlrPosData(pDLReader);
   903   pReader->nData = dlrPosDataLen(pDLReader);
   904   pReader->iType = pDLReader->iType;
   905   pReader->iColumn = 0;
   906   pReader->iPosition = 0;
   907   pReader->iStartOffset = 0;
   908   pReader->iEndOffset = 0;
   909   plrStep(pReader);
   910 }
   911 static void plrDestroy(PLReader *pReader){
   912   SCRAMBLE(pReader);
   913 }
   914 
   915 /*******************************************************************/
   916 /* PLWriter is used in constructing a document's position list.  As a
   917 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
   918 ** PLWriter writes to the associated DLWriter's buffer.
   919 **
   920 ** plwInit - init for writing a document's poslist.
   921 ** plwDestroy - clear a writer.
   922 ** plwAdd - append position and offset information.
   923 ** plwCopy - copy next position's data from reader to writer.
   924 ** plwTerminate - add any necessary doclist terminator.
   925 **
   926 ** Calling plwAdd() after plwTerminate() may result in a corrupt
   927 ** doclist.
   928 */
   929 /* TODO(shess) Until we've written the second item, we can cache the
   930 ** first item's information.  Then we'd have three states:
   931 **
   932 ** - initialized with docid, no positions.
   933 ** - docid and one position.
   934 ** - docid and multiple positions.
   935 **
   936 ** Only the last state needs to actually write to dlw->b, which would
   937 ** be an improvement in the DLCollector case.
   938 */
   939 typedef struct PLWriter {
   940   DLWriter *dlw;
   941 
   942   int iColumn;    /* the last column written */
   943   int iPos;       /* the last position written */
   944   int iOffset;    /* the last start offset written */
   945 } PLWriter;
   946 
   947 /* TODO(shess) In the case where the parent is reading these values
   948 ** from a PLReader, we could optimize to a copy if that PLReader has
   949 ** the same type as pWriter.
   950 */
   951 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
   952                    int iStartOffset, int iEndOffset){
   953   /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
   954   ** iStartOffsetDelta, and iEndOffsetDelta.
   955   */
   956   char c[5*VARINT_MAX];
   957   int n = 0;
   958 
   959   /* Ban plwAdd() after plwTerminate(). */
   960   assert( pWriter->iPos!=-1 );
   961 
   962   if( pWriter->dlw->iType==DL_DOCIDS ) return;
   963 
   964   if( iColumn!=pWriter->iColumn ){
   965     n += fts3PutVarint(c+n, POS_COLUMN);
   966     n += fts3PutVarint(c+n, iColumn);
   967     pWriter->iColumn = iColumn;
   968     pWriter->iPos = 0;
   969     pWriter->iOffset = 0;
   970   }
   971   assert( iPos>=pWriter->iPos );
   972   n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
   973   pWriter->iPos = iPos;
   974   if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
   975     assert( iStartOffset>=pWriter->iOffset );
   976     n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
   977     pWriter->iOffset = iStartOffset;
   978     assert( iEndOffset>=iStartOffset );
   979     n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
   980   }
   981   dataBufferAppend(pWriter->dlw->b, c, n);
   982 }
   983 static void plwCopy(PLWriter *pWriter, PLReader *pReader){
   984   plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
   985          plrStartOffset(pReader), plrEndOffset(pReader));
   986 }
   987 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
   988   char c[VARINT_MAX];
   989   int n;
   990 
   991   pWriter->dlw = dlw;
   992 
   993   /* Docids must ascend. */
   994   assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
   995   n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
   996   dataBufferAppend(pWriter->dlw->b, c, n);
   997   pWriter->dlw->iPrevDocid = iDocid;
   998 #ifndef NDEBUG
   999   pWriter->dlw->has_iPrevDocid = 1;
  1000 #endif
  1001 
  1002   pWriter->iColumn = 0;
  1003   pWriter->iPos = 0;
  1004   pWriter->iOffset = 0;
  1005 }
  1006 /* TODO(shess) Should plwDestroy() also terminate the doclist?  But
  1007 ** then plwDestroy() would no longer be just a destructor, it would
  1008 ** also be doing work, which isn't consistent with the overall idiom.
  1009 ** Another option would be for plwAdd() to always append any necessary
  1010 ** terminator, so that the output is always correct.  But that would
  1011 ** add incremental work to the common case with the only benefit being
  1012 ** API elegance.  Punt for now.
  1013 */
  1014 static void plwTerminate(PLWriter *pWriter){
  1015   if( pWriter->dlw->iType>DL_DOCIDS ){
  1016     char c[VARINT_MAX];
  1017     int n = fts3PutVarint(c, POS_END);
  1018     dataBufferAppend(pWriter->dlw->b, c, n);
  1019   }
  1020 #ifndef NDEBUG
  1021   /* Mark as terminated for assert in plwAdd(). */
  1022   pWriter->iPos = -1;
  1023 #endif
  1024 }
  1025 static void plwDestroy(PLWriter *pWriter){
  1026   SCRAMBLE(pWriter);
  1027 }
  1028 
  1029 /*******************************************************************/
  1030 /* DLCollector wraps PLWriter and DLWriter to provide a
  1031 ** dynamically-allocated doclist area to use during tokenization.
  1032 **
  1033 ** dlcNew - malloc up and initialize a collector.
  1034 ** dlcDelete - destroy a collector and all contained items.
  1035 ** dlcAddPos - append position and offset information.
  1036 ** dlcAddDoclist - add the collected doclist to the given buffer.
  1037 ** dlcNext - terminate the current document and open another.
  1038 */
  1039 typedef struct DLCollector {
  1040   DataBuffer b;
  1041   DLWriter dlw;
  1042   PLWriter plw;
  1043 } DLCollector;
  1044 
  1045 /* TODO(shess) This could also be done by calling plwTerminate() and
  1046 ** dataBufferAppend().  I tried that, expecting nominal performance
  1047 ** differences, but it seemed to pretty reliably be worth 1% to code
  1048 ** it this way.  I suspect it is the incremental malloc overhead (some
  1049 ** percentage of the plwTerminate() calls will cause a realloc), so
  1050 ** this might be worth revisiting if the DataBuffer implementation
  1051 ** changes.
  1052 */
  1053 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
  1054   if( pCollector->dlw.iType>DL_DOCIDS ){
  1055     char c[VARINT_MAX];
  1056     int n = fts3PutVarint(c, POS_END);
  1057     dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
  1058   }else{
  1059     dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
  1060   }
  1061 }
  1062 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
  1063   plwTerminate(&pCollector->plw);
  1064   plwDestroy(&pCollector->plw);
  1065   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
  1066 }
  1067 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
  1068                       int iStartOffset, int iEndOffset){
  1069   plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
  1070 }
  1071 
  1072 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
  1073   DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
  1074   dataBufferInit(&pCollector->b, 0);
  1075   dlwInit(&pCollector->dlw, iType, &pCollector->b);
  1076   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
  1077   return pCollector;
  1078 }
  1079 static void dlcDelete(DLCollector *pCollector){
  1080   plwDestroy(&pCollector->plw);
  1081   dlwDestroy(&pCollector->dlw);
  1082   dataBufferDestroy(&pCollector->b);
  1083   SCRAMBLE(pCollector);
  1084   sqlite3_free(pCollector);
  1085 }
  1086 
  1087 
  1088 /* Copy the doclist data of iType in pData/nData into *out, trimming
  1089 ** unnecessary data as we go.  Only columns matching iColumn are
  1090 ** copied, all columns copied if iColumn is -1.  Elements with no
  1091 ** matching columns are dropped.  The output is an iOutType doclist.
  1092 */
  1093 /* NOTE(shess) This code is only valid after all doclists are merged.
  1094 ** If this is run before merges, then doclist items which represent
  1095 ** deletion will be trimmed, and will thus not effect a deletion
  1096 ** during the merge.
  1097 */
  1098 static void docListTrim(DocListType iType, const char *pData, int nData,
  1099                         int iColumn, DocListType iOutType, DataBuffer *out){
  1100   DLReader dlReader;
  1101   DLWriter dlWriter;
  1102 
  1103   assert( iOutType<=iType );
  1104 
  1105   dlrInit(&dlReader, iType, pData, nData);
  1106   dlwInit(&dlWriter, iOutType, out);
  1107 
  1108   while( !dlrAtEnd(&dlReader) ){
  1109     PLReader plReader;
  1110     PLWriter plWriter;
  1111     int match = 0;
  1112 
  1113     plrInit(&plReader, &dlReader);
  1114 
  1115     while( !plrAtEnd(&plReader) ){
  1116       if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
  1117         if( !match ){
  1118           plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
  1119           match = 1;
  1120         }
  1121         plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
  1122                plrStartOffset(&plReader), plrEndOffset(&plReader));
  1123       }
  1124       plrStep(&plReader);
  1125     }
  1126     if( match ){
  1127       plwTerminate(&plWriter);
  1128       plwDestroy(&plWriter);
  1129     }
  1130 
  1131     plrDestroy(&plReader);
  1132     dlrStep(&dlReader);
  1133   }
  1134   dlwDestroy(&dlWriter);
  1135   dlrDestroy(&dlReader);
  1136 }
  1137 
  1138 /* Used by docListMerge() to keep doclists in the ascending order by
  1139 ** docid, then ascending order by age (so the newest comes first).
  1140 */
  1141 typedef struct OrderedDLReader {
  1142   DLReader *pReader;
  1143 
  1144   /* TODO(shess) If we assume that docListMerge pReaders is ordered by
  1145   ** age (which we do), then we could use pReader comparisons to break
  1146   ** ties.
  1147   */
  1148   int idx;
  1149 } OrderedDLReader;
  1150 
  1151 /* Order eof to end, then by docid asc, idx desc. */
  1152 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
  1153   if( dlrAtEnd(r1->pReader) ){
  1154     if( dlrAtEnd(r2->pReader) ) return 0;  /* Both atEnd(). */
  1155     return 1;                              /* Only r1 atEnd(). */
  1156   }
  1157   if( dlrAtEnd(r2->pReader) ) return -1;   /* Only r2 atEnd(). */
  1158 
  1159   if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
  1160   if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
  1161 
  1162   /* Descending on idx. */
  1163   return r2->idx-r1->idx;
  1164 }
  1165 
  1166 /* Bubble p[0] to appropriate place in p[1..n-1].  Assumes that
  1167 ** p[1..n-1] is already sorted.
  1168 */
  1169 /* TODO(shess) Is this frequent enough to warrant a binary search?
  1170 ** Before implementing that, instrument the code to check.  In most
  1171 ** current usage, I expect that p[0] will be less than p[1] a very
  1172 ** high proportion of the time.
  1173 */
  1174 static void orderedDLReaderReorder(OrderedDLReader *p, int n){
  1175   while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
  1176     OrderedDLReader tmp = p[0];
  1177     p[0] = p[1];
  1178     p[1] = tmp;
  1179     n--;
  1180     p++;
  1181   }
  1182 }
  1183 
  1184 /* Given an array of doclist readers, merge their doclist elements
  1185 ** into out in sorted order (by docid), dropping elements from older
  1186 ** readers when there is a duplicate docid.  pReaders is assumed to be
  1187 ** ordered by age, oldest first.
  1188 */
  1189 /* TODO(shess) nReaders must be <= MERGE_COUNT.  This should probably
  1190 ** be fixed.
  1191 */
  1192 static void docListMerge(DataBuffer *out,
  1193                          DLReader *pReaders, int nReaders){
  1194   OrderedDLReader readers[MERGE_COUNT];
  1195   DLWriter writer;
  1196   int i, n;
  1197   const char *pStart = 0;
  1198   int nStart = 0;
  1199   sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
  1200 
  1201   assert( nReaders>0 );
  1202   if( nReaders==1 ){
  1203     dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
  1204     return;
  1205   }
  1206 
  1207   assert( nReaders<=MERGE_COUNT );
  1208   n = 0;
  1209   for(i=0; i<nReaders; i++){
  1210     assert( pReaders[i].iType==pReaders[0].iType );
  1211     readers[i].pReader = pReaders+i;
  1212     readers[i].idx = i;
  1213     n += dlrAllDataBytes(&pReaders[i]);
  1214   }
  1215   /* Conservatively size output to sum of inputs.  Output should end
  1216   ** up strictly smaller than input.
  1217   */
  1218   dataBufferExpand(out, n);
  1219 
  1220   /* Get the readers into sorted order. */
  1221   while( i-->0 ){
  1222     orderedDLReaderReorder(readers+i, nReaders-i);
  1223   }
  1224 
  1225   dlwInit(&writer, pReaders[0].iType, out);
  1226   while( !dlrAtEnd(readers[0].pReader) ){
  1227     sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
  1228 
  1229     /* If this is a continuation of the current buffer to copy, extend
  1230     ** that buffer.  memcpy() seems to be more efficient if it has a
  1231     ** lots of data to copy.
  1232     */
  1233     if( dlrDocData(readers[0].pReader)==pStart+nStart ){
  1234       nStart += dlrDocDataBytes(readers[0].pReader);
  1235     }else{
  1236       if( pStart!=0 ){
  1237         dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
  1238       }
  1239       pStart = dlrDocData(readers[0].pReader);
  1240       nStart = dlrDocDataBytes(readers[0].pReader);
  1241       iFirstDocid = iDocid;
  1242     }
  1243     iLastDocid = iDocid;
  1244     dlrStep(readers[0].pReader);
  1245 
  1246     /* Drop all of the older elements with the same docid. */
  1247     for(i=1; i<nReaders &&
  1248              !dlrAtEnd(readers[i].pReader) &&
  1249              dlrDocid(readers[i].pReader)==iDocid; i++){
  1250       dlrStep(readers[i].pReader);
  1251     }
  1252 
  1253     /* Get the readers back into order. */
  1254     while( i-->0 ){
  1255       orderedDLReaderReorder(readers+i, nReaders-i);
  1256     }
  1257   }
  1258 
  1259   /* Copy over any remaining elements. */
  1260   if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
  1261   dlwDestroy(&writer);
  1262 }
  1263 
  1264 /* Helper function for posListUnion().  Compares the current position
  1265 ** between left and right, returning as standard C idiom of <0 if
  1266 ** left<right, >0 if left>right, and 0 if left==right.  "End" always
  1267 ** compares greater.
  1268 */
  1269 static int posListCmp(PLReader *pLeft, PLReader *pRight){
  1270   assert( pLeft->iType==pRight->iType );
  1271   if( pLeft->iType==DL_DOCIDS ) return 0;
  1272 
  1273   if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
  1274   if( plrAtEnd(pRight) ) return -1;
  1275 
  1276   if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
  1277   if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
  1278 
  1279   if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
  1280   if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
  1281   if( pLeft->iType==DL_POSITIONS ) return 0;
  1282 
  1283   if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
  1284   if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
  1285 
  1286   if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
  1287   if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
  1288 
  1289   return 0;
  1290 }
  1291 
  1292 /* Write the union of position lists in pLeft and pRight to pOut.
  1293 ** "Union" in this case meaning "All unique position tuples".  Should
  1294 ** work with any doclist type, though both inputs and the output
  1295 ** should be the same type.
  1296 */
  1297 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
  1298   PLReader left, right;
  1299   PLWriter writer;
  1300 
  1301   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
  1302   assert( pLeft->iType==pRight->iType );
  1303   assert( pLeft->iType==pOut->iType );
  1304 
  1305   plrInit(&left, pLeft);
  1306   plrInit(&right, pRight);
  1307   plwInit(&writer, pOut, dlrDocid(pLeft));
  1308 
  1309   while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
  1310     int c = posListCmp(&left, &right);
  1311     if( c<0 ){
  1312       plwCopy(&writer, &left);
  1313       plrStep(&left);
  1314     }else if( c>0 ){
  1315       plwCopy(&writer, &right);
  1316       plrStep(&right);
  1317     }else{
  1318       plwCopy(&writer, &left);
  1319       plrStep(&left);
  1320       plrStep(&right);
  1321     }
  1322   }
  1323 
  1324   plwTerminate(&writer);
  1325   plwDestroy(&writer);
  1326   plrDestroy(&left);
  1327   plrDestroy(&right);
  1328 }
  1329 
  1330 /* Write the union of doclists in pLeft and pRight to pOut.  For
  1331 ** docids in common between the inputs, the union of the position
  1332 ** lists is written.  Inputs and outputs are always type DL_DEFAULT.
  1333 */
  1334 static void docListUnion(
  1335   const char *pLeft, int nLeft,
  1336   const char *pRight, int nRight,
  1337   DataBuffer *pOut      /* Write the combined doclist here */
  1338 ){
  1339   DLReader left, right;
  1340   DLWriter writer;
  1341 
  1342   if( nLeft==0 ){
  1343     if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
  1344     return;
  1345   }
  1346   if( nRight==0 ){
  1347     dataBufferAppend(pOut, pLeft, nLeft);
  1348     return;
  1349   }
  1350 
  1351   dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
  1352   dlrInit(&right, DL_DEFAULT, pRight, nRight);
  1353   dlwInit(&writer, DL_DEFAULT, pOut);
  1354 
  1355   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
  1356     if( dlrAtEnd(&right) ){
  1357       dlwCopy(&writer, &left);
  1358       dlrStep(&left);
  1359     }else if( dlrAtEnd(&left) ){
  1360       dlwCopy(&writer, &right);
  1361       dlrStep(&right);
  1362     }else if( dlrDocid(&left)<dlrDocid(&right) ){
  1363       dlwCopy(&writer, &left);
  1364       dlrStep(&left);
  1365     }else if( dlrDocid(&left)>dlrDocid(&right) ){
  1366       dlwCopy(&writer, &right);
  1367       dlrStep(&right);
  1368     }else{
  1369       posListUnion(&left, &right, &writer);
  1370       dlrStep(&left);
  1371       dlrStep(&right);
  1372     }
  1373   }
  1374 
  1375   dlrDestroy(&left);
  1376   dlrDestroy(&right);
  1377   dlwDestroy(&writer);
  1378 }
  1379 
  1380 /* 
  1381 ** This function is used as part of the implementation of phrase and
  1382 ** NEAR matching.
  1383 **
  1384 ** pLeft and pRight are DLReaders positioned to the same docid in
  1385 ** lists of type DL_POSITION. This function writes an entry to the
  1386 ** DLWriter pOut for each position in pRight that is less than
  1387 ** (nNear+1) greater (but not equal to or smaller) than a position 
  1388 ** in pLeft. For example, if nNear is 0, and the positions contained
  1389 ** by pLeft and pRight are:
  1390 **
  1391 **    pLeft:  5 10 15 20
  1392 **    pRight: 6  9 17 21
  1393 **
  1394 ** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
  1395 ** then a positionids "6" and "21" are also added to pOut.
  1396 **
  1397 ** If boolean argument isSaveLeft is true, then positionids are copied
  1398 ** from pLeft instead of pRight. In the example above, the positions "5"
  1399 ** and "20" would be added instead of "6" and "21".
  1400 */
  1401 static void posListPhraseMerge(
  1402   DLReader *pLeft, 
  1403   DLReader *pRight,
  1404   int nNear,
  1405   int isSaveLeft,
  1406   DLWriter *pOut
  1407 ){
  1408   PLReader left, right;
  1409   PLWriter writer;
  1410   int match = 0;
  1411 
  1412   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
  1413   assert( pOut->iType!=DL_POSITIONS_OFFSETS );
  1414 
  1415   plrInit(&left, pLeft);
  1416   plrInit(&right, pRight);
  1417 
  1418   while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
  1419     if( plrColumn(&left)<plrColumn(&right) ){
  1420       plrStep(&left);
  1421     }else if( plrColumn(&left)>plrColumn(&right) ){
  1422       plrStep(&right);
  1423     }else if( plrPosition(&left)>=plrPosition(&right) ){
  1424       plrStep(&right);
  1425     }else{
  1426       if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
  1427         if( !match ){
  1428           plwInit(&writer, pOut, dlrDocid(pLeft));
  1429           match = 1;
  1430         }
  1431         if( !isSaveLeft ){
  1432           plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
  1433         }else{
  1434           plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
  1435         }
  1436         plrStep(&right);
  1437       }else{
  1438         plrStep(&left);
  1439       }
  1440     }
  1441   }
  1442 
  1443   if( match ){
  1444     plwTerminate(&writer);
  1445     plwDestroy(&writer);
  1446   }
  1447 
  1448   plrDestroy(&left);
  1449   plrDestroy(&right);
  1450 }
  1451 
  1452 /*
  1453 ** Compare the values pointed to by the PLReaders passed as arguments. 
  1454 ** Return -1 if the value pointed to by pLeft is considered less than
  1455 ** the value pointed to by pRight, +1 if it is considered greater
  1456 ** than it, or 0 if it is equal. i.e.
  1457 **
  1458 **     (*pLeft - *pRight)
  1459 **
  1460 ** A PLReader that is in the EOF condition is considered greater than
  1461 ** any other. If neither argument is in EOF state, the return value of
  1462 ** plrColumn() is used. If the plrColumn() values are equal, the
  1463 ** comparison is on the basis of plrPosition().
  1464 */
  1465 static int plrCompare(PLReader *pLeft, PLReader *pRight){
  1466   assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
  1467 
  1468   if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
  1469     return (plrAtEnd(pRight) ? -1 : 1);
  1470   }
  1471   if( plrColumn(pLeft)!=plrColumn(pRight) ){
  1472     return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
  1473   }
  1474   if( plrPosition(pLeft)!=plrPosition(pRight) ){
  1475     return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
  1476   }
  1477   return 0;
  1478 }
  1479 
  1480 /* We have two doclists with positions:  pLeft and pRight. Depending
  1481 ** on the value of the nNear parameter, perform either a phrase
  1482 ** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
  1483 ** and write the results into pOut.
  1484 **
  1485 ** A phrase intersection means that two documents only match
  1486 ** if pLeft.iPos+1==pRight.iPos.
  1487 **
  1488 ** A NEAR intersection means that two documents only match if 
  1489 ** (abs(pLeft.iPos-pRight.iPos)<nNear).
  1490 **
  1491 ** If a NEAR intersection is requested, then the nPhrase argument should
  1492 ** be passed the number of tokens in the two operands to the NEAR operator
  1493 ** combined. For example:
  1494 **
  1495 **       Query syntax               nPhrase
  1496 **      ------------------------------------
  1497 **       "A B C" NEAR "D E"         5
  1498 **       A NEAR B                   2
  1499 **
  1500 ** iType controls the type of data written to pOut.  If iType is
  1501 ** DL_POSITIONS, the positions are those from pRight.
  1502 */
  1503 static void docListPhraseMerge(
  1504   const char *pLeft, int nLeft,
  1505   const char *pRight, int nRight,
  1506   int nNear,            /* 0 for a phrase merge, non-zero for a NEAR merge */
  1507   int nPhrase,          /* Number of tokens in left+right operands to NEAR */
  1508   DocListType iType,    /* Type of doclist to write to pOut */
  1509   DataBuffer *pOut      /* Write the combined doclist here */
  1510 ){
  1511   DLReader left, right;
  1512   DLWriter writer;
  1513 
  1514   if( nLeft==0 || nRight==0 ) return;
  1515 
  1516   assert( iType!=DL_POSITIONS_OFFSETS );
  1517 
  1518   dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
  1519   dlrInit(&right, DL_POSITIONS, pRight, nRight);
  1520   dlwInit(&writer, iType, pOut);
  1521 
  1522   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
  1523     if( dlrDocid(&left)<dlrDocid(&right) ){
  1524       dlrStep(&left);
  1525     }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1526       dlrStep(&right);
  1527     }else{
  1528       if( nNear==0 ){
  1529         posListPhraseMerge(&left, &right, 0, 0, &writer);
  1530       }else{
  1531         /* This case occurs when two terms (simple terms or phrases) are
  1532          * connected by a NEAR operator, span (nNear+1). i.e.
  1533          *
  1534          *     '"terrible company" NEAR widget'
  1535          */
  1536         DataBuffer one = {0, 0, 0};
  1537         DataBuffer two = {0, 0, 0};
  1538 
  1539         DLWriter dlwriter2;
  1540         DLReader dr1 = {0, 0, 0, 0, 0}; 
  1541         DLReader dr2 = {0, 0, 0, 0, 0};
  1542 
  1543         dlwInit(&dlwriter2, iType, &one);
  1544         posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
  1545         dlwInit(&dlwriter2, iType, &two);
  1546         posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
  1547 
  1548         if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
  1549         if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
  1550 
  1551         if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
  1552           PLReader pr1 = {0};
  1553           PLReader pr2 = {0};
  1554 
  1555           PLWriter plwriter;
  1556           plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
  1557 
  1558           if( one.nData ) plrInit(&pr1, &dr1);
  1559           if( two.nData ) plrInit(&pr2, &dr2);
  1560           while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
  1561             int iCompare = plrCompare(&pr1, &pr2);
  1562             switch( iCompare ){
  1563               case -1:
  1564                 plwCopy(&plwriter, &pr1);
  1565                 plrStep(&pr1);
  1566                 break;
  1567               case 1:
  1568                 plwCopy(&plwriter, &pr2);
  1569                 plrStep(&pr2);
  1570                 break;
  1571               case 0:
  1572                 plwCopy(&plwriter, &pr1);
  1573                 plrStep(&pr1);
  1574                 plrStep(&pr2);
  1575                 break;
  1576             }
  1577           }
  1578           plwTerminate(&plwriter);
  1579         }
  1580         dataBufferDestroy(&one);
  1581         dataBufferDestroy(&two);
  1582       }
  1583       dlrStep(&left);
  1584       dlrStep(&right);
  1585     }
  1586   }
  1587 
  1588   dlrDestroy(&left);
  1589   dlrDestroy(&right);
  1590   dlwDestroy(&writer);
  1591 }
  1592 
  1593 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1594 ** Write the intersection of these two doclists into pOut as a
  1595 ** DL_DOCIDS doclist.
  1596 */
  1597 static void docListAndMerge(
  1598   const char *pLeft, int nLeft,
  1599   const char *pRight, int nRight,
  1600   DataBuffer *pOut      /* Write the combined doclist here */
  1601 ){
  1602   DLReader left, right;
  1603   DLWriter writer;
  1604 
  1605   if( nLeft==0 || nRight==0 ) return;
  1606 
  1607   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1608   dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1609   dlwInit(&writer, DL_DOCIDS, pOut);
  1610 
  1611   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
  1612     if( dlrDocid(&left)<dlrDocid(&right) ){
  1613       dlrStep(&left);
  1614     }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1615       dlrStep(&right);
  1616     }else{
  1617       dlwAdd(&writer, dlrDocid(&left));
  1618       dlrStep(&left);
  1619       dlrStep(&right);
  1620     }
  1621   }
  1622 
  1623   dlrDestroy(&left);
  1624   dlrDestroy(&right);
  1625   dlwDestroy(&writer);
  1626 }
  1627 
  1628 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1629 ** Write the union of these two doclists into pOut as a
  1630 ** DL_DOCIDS doclist.
  1631 */
  1632 static void docListOrMerge(
  1633   const char *pLeft, int nLeft,
  1634   const char *pRight, int nRight,
  1635   DataBuffer *pOut      /* Write the combined doclist here */
  1636 ){
  1637   DLReader left, right;
  1638   DLWriter writer;
  1639 
  1640   if( nLeft==0 ){
  1641     if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
  1642     return;
  1643   }
  1644   if( nRight==0 ){
  1645     dataBufferAppend(pOut, pLeft, nLeft);
  1646     return;
  1647   }
  1648 
  1649   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1650   dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1651   dlwInit(&writer, DL_DOCIDS, pOut);
  1652 
  1653   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
  1654     if( dlrAtEnd(&right) ){
  1655       dlwAdd(&writer, dlrDocid(&left));
  1656       dlrStep(&left);
  1657     }else if( dlrAtEnd(&left) ){
  1658       dlwAdd(&writer, dlrDocid(&right));
  1659       dlrStep(&right);
  1660     }else if( dlrDocid(&left)<dlrDocid(&right) ){
  1661       dlwAdd(&writer, dlrDocid(&left));
  1662       dlrStep(&left);
  1663     }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1664       dlwAdd(&writer, dlrDocid(&right));
  1665       dlrStep(&right);
  1666     }else{
  1667       dlwAdd(&writer, dlrDocid(&left));
  1668       dlrStep(&left);
  1669       dlrStep(&right);
  1670     }
  1671   }
  1672 
  1673   dlrDestroy(&left);
  1674   dlrDestroy(&right);
  1675   dlwDestroy(&writer);
  1676 }
  1677 
  1678 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1679 ** Write into pOut as DL_DOCIDS doclist containing all documents that
  1680 ** occur in pLeft but not in pRight.
  1681 */
  1682 static void docListExceptMerge(
  1683   const char *pLeft, int nLeft,
  1684   const char *pRight, int nRight,
  1685   DataBuffer *pOut      /* Write the combined doclist here */
  1686 ){
  1687   DLReader left, right;
  1688   DLWriter writer;
  1689 
  1690   if( nLeft==0 ) return;
  1691   if( nRight==0 ){
  1692     dataBufferAppend(pOut, pLeft, nLeft);
  1693     return;
  1694   }
  1695 
  1696   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1697   dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1698   dlwInit(&writer, DL_DOCIDS, pOut);
  1699 
  1700   while( !dlrAtEnd(&left) ){
  1701     while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
  1702       dlrStep(&right);
  1703     }
  1704     if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
  1705       dlwAdd(&writer, dlrDocid(&left));
  1706     }
  1707     dlrStep(&left);
  1708   }
  1709 
  1710   dlrDestroy(&left);
  1711   dlrDestroy(&right);
  1712   dlwDestroy(&writer);
  1713 }
  1714 
  1715 static char *string_dup_n(const char *s, int n){
  1716   char *str = sqlite3_malloc(n + 1);
  1717   memcpy(str, s, n);
  1718   str[n] = '\0';
  1719   return str;
  1720 }
  1721 
  1722 /* Duplicate a string; the caller must free() the returned string.
  1723  * (We don't use strdup() since it is not part of the standard C library and
  1724  * may not be available everywhere.) */
  1725 static char *string_dup(const char *s){
  1726   return string_dup_n(s, strlen(s));
  1727 }
  1728 
  1729 /* Format a string, replacing each occurrence of the % character with
  1730  * zDb.zName.  This may be more convenient than sqlite_mprintf()
  1731  * when one string is used repeatedly in a format string.
  1732  * The caller must free() the returned string. */
  1733 static char *string_format(const char *zFormat,
  1734                            const char *zDb, const char *zName){
  1735   const char *p;
  1736   size_t len = 0;
  1737   size_t nDb = strlen(zDb);
  1738   size_t nName = strlen(zName);
  1739   size_t nFullTableName = nDb+1+nName;
  1740   char *result;
  1741   char *r;
  1742 
  1743   /* first compute length needed */
  1744   for(p = zFormat ; *p ; ++p){
  1745     len += (*p=='%' ? nFullTableName : 1);
  1746   }
  1747   len += 1;  /* for null terminator */
  1748 
  1749   r = result = sqlite3_malloc(len);
  1750   for(p = zFormat; *p; ++p){
  1751     if( *p=='%' ){
  1752       memcpy(r, zDb, nDb);
  1753       r += nDb;
  1754       *r++ = '.';
  1755       memcpy(r, zName, nName);
  1756       r += nName;
  1757     } else {
  1758       *r++ = *p;
  1759     }
  1760   }
  1761   *r++ = '\0';
  1762   assert( r == result + len );
  1763   return result;
  1764 }
  1765 
  1766 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
  1767                     const char *zFormat){
  1768   char *zCommand = string_format(zFormat, zDb, zName);
  1769   int rc;
  1770   FTSTRACE(("FTS3 sql: %s\n", zCommand));
  1771   rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
  1772   sqlite3_free(zCommand);
  1773   return rc;
  1774 }
  1775 
  1776 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
  1777                        sqlite3_stmt **ppStmt, const char *zFormat){
  1778   char *zCommand = string_format(zFormat, zDb, zName);
  1779   int rc;
  1780   FTSTRACE(("FTS3 prepare: %s\n", zCommand));
  1781   rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
  1782   sqlite3_free(zCommand);
  1783   return rc;
  1784 }
  1785 
  1786 /* end utility functions */
  1787 
  1788 /* Forward reference */
  1789 typedef struct fulltext_vtab fulltext_vtab;
  1790 
  1791 /* A single term in a query is represented by an instances of
  1792 ** the following structure. Each word which may match against
  1793 ** document content is a term. Operators, like NEAR or OR, are
  1794 ** not terms. Query terms are organized as a flat list stored
  1795 ** in the Query.pTerms array.
  1796 **
  1797 ** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
  1798 ** is the first in a contiguous string of terms that are either part
  1799 ** of the same phrase, or connected by the NEAR operator.
  1800 **
  1801 ** If the QueryTerm.nNear variable is non-zero, then the token is followed 
  1802 ** by a NEAR operator with span set to (nNear-1). For example, the 
  1803 ** following query:
  1804 **
  1805 ** The QueryTerm.iPhrase variable stores the index of the token within
  1806 ** its phrase, indexed starting at 1, or 1 if the token is not part 
  1807 ** of any phrase.
  1808 **
  1809 ** For example, the data structure used to represent the following query:
  1810 **
  1811 **     ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
  1812 **
  1813 ** is:
  1814 **
  1815 **     {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
  1816 **     {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
  1817 **     {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
  1818 **     {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
  1819 **
  1820 ** compiling the FTS3 syntax to Query structures is done by the parseQuery()
  1821 ** function.
  1822 */
  1823 typedef struct QueryTerm {
  1824   short int nPhrase; /* How many following terms are part of the same phrase */
  1825   short int iPhrase; /* This is the i-th term of a phrase. */
  1826   short int iColumn; /* Column of the index that must match this term */
  1827   short int nNear;   /* term followed by a NEAR operator with span=(nNear-1) */
  1828   signed char isOr;  /* this term is preceded by "OR" */
  1829   signed char isNot; /* this term is preceded by "-" */
  1830   signed char isPrefix; /* this term is followed by "*" */
  1831   char *pTerm;       /* text of the term.  '\000' terminated.  malloced */
  1832   int nTerm;         /* Number of bytes in pTerm[] */
  1833 } QueryTerm;
  1834 
  1835 
  1836 /* A query string is parsed into a Query structure.
  1837  *
  1838  * We could, in theory, allow query strings to be complicated
  1839  * nested expressions with precedence determined by parentheses.
  1840  * But none of the major search engines do this.  (Perhaps the
  1841  * feeling is that an parenthesized expression is two complex of
  1842  * an idea for the average user to grasp.)  Taking our lead from
  1843  * the major search engines, we will allow queries to be a list
  1844  * of terms (with an implied AND operator) or phrases in double-quotes,
  1845  * with a single optional "-" before each non-phrase term to designate
  1846  * negation and an optional OR connector.
  1847  *
  1848  * OR binds more tightly than the implied AND, which is what the
  1849  * major search engines seem to do.  So, for example:
  1850  * 
  1851  *    [one two OR three]     ==>    one AND (two OR three)
  1852  *    [one OR two three]     ==>    (one OR two) AND three
  1853  *
  1854  * A "-" before a term matches all entries that lack that term.
  1855  * The "-" must occur immediately before the term with in intervening
  1856  * space.  This is how the search engines do it.
  1857  *
  1858  * A NOT term cannot be the right-hand operand of an OR.  If this
  1859  * occurs in the query string, the NOT is ignored:
  1860  *
  1861  *    [one OR -two]          ==>    one OR two
  1862  *
  1863  */
  1864 typedef struct Query {
  1865   fulltext_vtab *pFts;  /* The full text index */
  1866   int nTerms;           /* Number of terms in the query */
  1867   QueryTerm *pTerms;    /* Array of terms.  Space obtained from malloc() */
  1868   int nextIsOr;         /* Set the isOr flag on the next inserted term */
  1869   int nextIsNear;       /* Set the isOr flag on the next inserted term */
  1870   int nextColumn;       /* Next word parsed must be in this column */
  1871   int dfltColumn;       /* The default column */
  1872 } Query;
  1873 
  1874 
  1875 /*
  1876 ** An instance of the following structure keeps track of generated
  1877 ** matching-word offset information and snippets.
  1878 */
  1879 typedef struct Snippet {
  1880   int nMatch;     /* Total number of matches */
  1881   int nAlloc;     /* Space allocated for aMatch[] */
  1882   struct snippetMatch { /* One entry for each matching term */
  1883     char snStatus;       /* Status flag for use while constructing snippets */
  1884     short int iCol;      /* The column that contains the match */
  1885     short int iTerm;     /* The index in Query.pTerms[] of the matching term */
  1886     int iToken;          /* The index of the matching document token */
  1887     short int nByte;     /* Number of bytes in the term */
  1888     int iStart;          /* The offset to the first character of the term */
  1889   } *aMatch;      /* Points to space obtained from malloc */
  1890   char *zOffset;  /* Text rendering of aMatch[] */
  1891   int nOffset;    /* strlen(zOffset) */
  1892   char *zSnippet; /* Snippet text */
  1893   int nSnippet;   /* strlen(zSnippet) */
  1894 } Snippet;
  1895 
  1896 
  1897 typedef enum QueryType {
  1898   QUERY_GENERIC,   /* table scan */
  1899   QUERY_DOCID,     /* lookup by docid */
  1900   QUERY_FULLTEXT   /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
  1901 } QueryType;
  1902 
  1903 typedef enum fulltext_statement {
  1904   CONTENT_INSERT_STMT,
  1905   CONTENT_SELECT_STMT,
  1906   CONTENT_UPDATE_STMT,
  1907   CONTENT_DELETE_STMT,
  1908   CONTENT_EXISTS_STMT,
  1909 
  1910   BLOCK_INSERT_STMT,
  1911   BLOCK_SELECT_STMT,
  1912   BLOCK_DELETE_STMT,
  1913   BLOCK_DELETE_ALL_STMT,
  1914 
  1915   SEGDIR_MAX_INDEX_STMT,
  1916   SEGDIR_SET_STMT,
  1917   SEGDIR_SELECT_LEVEL_STMT,
  1918   SEGDIR_SPAN_STMT,
  1919   SEGDIR_DELETE_STMT,
  1920   SEGDIR_SELECT_SEGMENT_STMT,
  1921   SEGDIR_SELECT_ALL_STMT,
  1922   SEGDIR_DELETE_ALL_STMT,
  1923   SEGDIR_COUNT_STMT,
  1924 
  1925   MAX_STMT                     /* Always at end! */
  1926 } fulltext_statement;
  1927 
  1928 /* These must exactly match the enum above. */
  1929 /* TODO(shess): Is there some risk that a statement will be used in two
  1930 ** cursors at once, e.g.  if a query joins a virtual table to itself?
  1931 ** If so perhaps we should move some of these to the cursor object.
  1932 */
  1933 static const char *const fulltext_zStatement[MAX_STMT] = {
  1934   /* CONTENT_INSERT */ NULL,  /* generated in contentInsertStatement() */
  1935   /* CONTENT_SELECT */ NULL,  /* generated in contentSelectStatement() */
  1936   /* CONTENT_UPDATE */ NULL,  /* generated in contentUpdateStatement() */
  1937   /* CONTENT_DELETE */ "delete from %_content where docid = ?",
  1938   /* CONTENT_EXISTS */ "select docid from %_content limit 1",
  1939 
  1940   /* BLOCK_INSERT */
  1941   "insert into %_segments (blockid, block) values (null, ?)",
  1942   /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
  1943   /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
  1944   /* BLOCK_DELETE_ALL */ "delete from %_segments",
  1945 
  1946   /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
  1947   /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
  1948   /* SEGDIR_SELECT_LEVEL */
  1949   "select start_block, leaves_end_block, root from %_segdir "
  1950   " where level = ? order by idx",
  1951   /* SEGDIR_SPAN */
  1952   "select min(start_block), max(end_block) from %_segdir "
  1953   " where level = ? and start_block <> 0",
  1954   /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
  1955 
  1956   /* NOTE(shess): The first three results of the following two
  1957   ** statements must match.
  1958   */
  1959   /* SEGDIR_SELECT_SEGMENT */
  1960   "select start_block, leaves_end_block, root from %_segdir "
  1961   " where level = ? and idx = ?",
  1962   /* SEGDIR_SELECT_ALL */
  1963   "select start_block, leaves_end_block, root from %_segdir "
  1964   " order by level desc, idx asc",
  1965   /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
  1966   /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
  1967 };
  1968 
  1969 /*
  1970 ** A connection to a fulltext index is an instance of the following
  1971 ** structure.  The xCreate and xConnect methods create an instance
  1972 ** of this structure and xDestroy and xDisconnect free that instance.
  1973 ** All other methods receive a pointer to the structure as one of their
  1974 ** arguments.
  1975 */
  1976 struct fulltext_vtab {
  1977   sqlite3_vtab base;               /* Base class used by SQLite core */
  1978   sqlite3 *db;                     /* The database connection */
  1979   const char *zDb;                 /* logical database name */
  1980   const char *zName;               /* virtual table name */
  1981   int nColumn;                     /* number of columns in virtual table */
  1982   char **azColumn;                 /* column names.  malloced */
  1983   char **azContentColumn;          /* column names in content table; malloced */
  1984   sqlite3_tokenizer *pTokenizer;   /* tokenizer for inserts and queries */
  1985 
  1986   /* Precompiled statements which we keep as long as the table is
  1987   ** open.
  1988   */
  1989   sqlite3_stmt *pFulltextStatements[MAX_STMT];
  1990 
  1991   /* Precompiled statements used for segment merges.  We run a
  1992   ** separate select across the leaf level of each tree being merged.
  1993   */
  1994   sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
  1995   /* The statement used to prepare pLeafSelectStmts. */
  1996 #define LEAF_SELECT \
  1997   "select block from %_segments where blockid between ? and ? order by blockid"
  1998 
  1999   /* These buffer pending index updates during transactions.
  2000   ** nPendingData estimates the memory size of the pending data.  It
  2001   ** doesn't include the hash-bucket overhead, nor any malloc
  2002   ** overhead.  When nPendingData exceeds kPendingThreshold, the
  2003   ** buffer is flushed even before the transaction closes.
  2004   ** pendingTerms stores the data, and is only valid when nPendingData
  2005   ** is >=0 (nPendingData<0 means pendingTerms has not been
  2006   ** initialized).  iPrevDocid is the last docid written, used to make
  2007   ** certain we're inserting in sorted order.
  2008   */
  2009   int nPendingData;
  2010 #define kPendingThreshold (1*1024*1024)
  2011   sqlite_int64 iPrevDocid;
  2012   fts3Hash pendingTerms;
  2013 };
  2014 
  2015 /*
  2016 ** When the core wants to do a query, it create a cursor using a
  2017 ** call to xOpen.  This structure is an instance of a cursor.  It
  2018 ** is destroyed by xClose.
  2019 */
  2020 typedef struct fulltext_cursor {
  2021   sqlite3_vtab_cursor base;        /* Base class used by SQLite core */
  2022   QueryType iCursorType;           /* Copy of sqlite3_index_info.idxNum */
  2023   sqlite3_stmt *pStmt;             /* Prepared statement in use by the cursor */
  2024   int eof;                         /* True if at End Of Results */
  2025   Query q;                         /* Parsed query string */
  2026   Snippet snippet;                 /* Cached snippet for the current row */
  2027   int iColumn;                     /* Column being searched */
  2028   DataBuffer result;               /* Doclist results from fulltextQuery */
  2029   DLReader reader;                 /* Result reader if result not empty */
  2030 } fulltext_cursor;
  2031 
  2032 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
  2033   return (fulltext_vtab *) c->base.pVtab;
  2034 }
  2035 
  2036 static const sqlite3_module fts3Module;   /* forward declaration */
  2037 
  2038 /* Return a dynamically generated statement of the form
  2039  *   insert into %_content (docid, ...) values (?, ...)
  2040  */
  2041 static const char *contentInsertStatement(fulltext_vtab *v){
  2042   StringBuffer sb;
  2043   int i;
  2044 
  2045   initStringBuffer(&sb);
  2046   append(&sb, "insert into %_content (docid, ");
  2047   appendList(&sb, v->nColumn, v->azContentColumn);
  2048   append(&sb, ") values (?");
  2049   for(i=0; i<v->nColumn; ++i)
  2050     append(&sb, ", ?");
  2051   append(&sb, ")");
  2052   return stringBufferData(&sb);
  2053 }
  2054 
  2055 /* Return a dynamically generated statement of the form
  2056  *   select <content columns> from %_content where docid = ?
  2057  */
  2058 static const char *contentSelectStatement(fulltext_vtab *v){
  2059   StringBuffer sb;
  2060   initStringBuffer(&sb);
  2061   append(&sb, "SELECT ");
  2062   appendList(&sb, v->nColumn, v->azContentColumn);
  2063   append(&sb, " FROM %_content WHERE docid = ?");
  2064   return stringBufferData(&sb);
  2065 }
  2066 
  2067 /* Return a dynamically generated statement of the form
  2068  *   update %_content set [col_0] = ?, [col_1] = ?, ...
  2069  *                    where docid = ?
  2070  */
  2071 static const char *contentUpdateStatement(fulltext_vtab *v){
  2072   StringBuffer sb;
  2073   int i;
  2074 
  2075   initStringBuffer(&sb);
  2076   append(&sb, "update %_content set ");
  2077   for(i=0; i<v->nColumn; ++i) {
  2078     if( i>0 ){
  2079       append(&sb, ", ");
  2080     }
  2081     append(&sb, v->azContentColumn[i]);
  2082     append(&sb, " = ?");
  2083   }
  2084   append(&sb, " where docid = ?");
  2085   return stringBufferData(&sb);
  2086 }
  2087 
  2088 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
  2089 ** If the indicated statement has never been prepared, it is prepared
  2090 ** and cached, otherwise the cached version is reset.
  2091 */
  2092 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
  2093                              sqlite3_stmt **ppStmt){
  2094   assert( iStmt<MAX_STMT );
  2095   if( v->pFulltextStatements[iStmt]==NULL ){
  2096     const char *zStmt;
  2097     int rc;
  2098     switch( iStmt ){
  2099       case CONTENT_INSERT_STMT:
  2100         zStmt = contentInsertStatement(v); break;
  2101       case CONTENT_SELECT_STMT:
  2102         zStmt = contentSelectStatement(v); break;
  2103       case CONTENT_UPDATE_STMT:
  2104         zStmt = contentUpdateStatement(v); break;
  2105       default:
  2106         zStmt = fulltext_zStatement[iStmt];
  2107     }
  2108     rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
  2109                          zStmt);
  2110     if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
  2111     if( rc!=SQLITE_OK ) return rc;
  2112   } else {
  2113     int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
  2114     if( rc!=SQLITE_OK ) return rc;
  2115   }
  2116 
  2117   *ppStmt = v->pFulltextStatements[iStmt];
  2118   return SQLITE_OK;
  2119 }
  2120 
  2121 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
  2122 ** SQLITE_ROW to SQLITE_ERROR.  Useful for statements like UPDATE,
  2123 ** where we expect no results.
  2124 */
  2125 static int sql_single_step(sqlite3_stmt *s){
  2126   int rc = sqlite3_step(s);
  2127   return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
  2128 }
  2129 
  2130 /* Like sql_get_statement(), but for special replicated LEAF_SELECT
  2131 ** statements.  idx -1 is a special case for an uncached version of
  2132 ** the statement (used in the optimize implementation).
  2133 */
  2134 /* TODO(shess) Write version for generic statements and then share
  2135 ** that between the cached-statement functions.
  2136 */
  2137 static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
  2138                                   sqlite3_stmt **ppStmt){
  2139   assert( idx>=-1 && idx<MERGE_COUNT );
  2140   if( idx==-1 ){
  2141     return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
  2142   }else if( v->pLeafSelectStmts[idx]==NULL ){
  2143     int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
  2144                          LEAF_SELECT);
  2145     if( rc!=SQLITE_OK ) return rc;
  2146   }else{
  2147     int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
  2148     if( rc!=SQLITE_OK ) return rc;
  2149   }
  2150 
  2151   *ppStmt = v->pLeafSelectStmts[idx];
  2152   return SQLITE_OK;
  2153 }
  2154 
  2155 /* insert into %_content (docid, ...) values ([docid], [pValues])
  2156 ** If the docid contains SQL NULL, then a unique docid will be
  2157 ** generated.
  2158 */
  2159 static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
  2160                           sqlite3_value **pValues){
  2161   sqlite3_stmt *s;
  2162   int i;
  2163   int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
  2164   if( rc!=SQLITE_OK ) return rc;
  2165 
  2166   rc = sqlite3_bind_value(s, 1, docid);
  2167   if( rc!=SQLITE_OK ) return rc;
  2168 
  2169   for(i=0; i<v->nColumn; ++i){
  2170     rc = sqlite3_bind_value(s, 2+i, pValues[i]);
  2171     if( rc!=SQLITE_OK ) return rc;
  2172   }
  2173 
  2174   return sql_single_step(s);
  2175 }
  2176 
  2177 /* update %_content set col0 = pValues[0], col1 = pValues[1], ...
  2178  *                  where docid = [iDocid] */
  2179 static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
  2180                           sqlite_int64 iDocid){
  2181   sqlite3_stmt *s;
  2182   int i;
  2183   int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
  2184   if( rc!=SQLITE_OK ) return rc;
  2185 
  2186   for(i=0; i<v->nColumn; ++i){
  2187     rc = sqlite3_bind_value(s, 1+i, pValues[i]);
  2188     if( rc!=SQLITE_OK ) return rc;
  2189   }
  2190 
  2191   rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
  2192   if( rc!=SQLITE_OK ) return rc;
  2193 
  2194   return sql_single_step(s);
  2195 }
  2196 
  2197 static void freeStringArray(int nString, const char **pString){
  2198   int i;
  2199 
  2200   for (i=0 ; i < nString ; ++i) {
  2201     if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
  2202   }
  2203   sqlite3_free((void *) pString);
  2204 }
  2205 
  2206 /* select * from %_content where docid = [iDocid]
  2207  * The caller must delete the returned array and all strings in it.
  2208  * null fields will be NULL in the returned array.
  2209  *
  2210  * TODO: Perhaps we should return pointer/length strings here for consistency
  2211  * with other code which uses pointer/length. */
  2212 static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
  2213                           const char ***pValues){
  2214   sqlite3_stmt *s;
  2215   const char **values;
  2216   int i;
  2217   int rc;
  2218 
  2219   *pValues = NULL;
  2220 
  2221   rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
  2222   if( rc!=SQLITE_OK ) return rc;
  2223 
  2224   rc = sqlite3_bind_int64(s, 1, iDocid);
  2225   if( rc!=SQLITE_OK ) return rc;
  2226 
  2227   rc = sqlite3_step(s);
  2228   if( rc!=SQLITE_ROW ) return rc;
  2229 
  2230   values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
  2231   for(i=0; i<v->nColumn; ++i){
  2232     if( sqlite3_column_type(s, i)==SQLITE_NULL ){
  2233       values[i] = NULL;
  2234     }else{
  2235       values[i] = string_dup((char*)sqlite3_column_text(s, i));
  2236     }
  2237   }
  2238 
  2239   /* We expect only one row.  We must execute another sqlite3_step()
  2240    * to complete the iteration; otherwise the table will remain locked. */
  2241   rc = sqlite3_step(s);
  2242   if( rc==SQLITE_DONE ){
  2243     *pValues = values;
  2244     return SQLITE_OK;
  2245   }
  2246 
  2247   freeStringArray(v->nColumn, values);
  2248   return rc;
  2249 }
  2250 
  2251 /* delete from %_content where docid = [iDocid ] */
  2252 static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
  2253   sqlite3_stmt *s;
  2254   int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
  2255   if( rc!=SQLITE_OK ) return rc;
  2256 
  2257   rc = sqlite3_bind_int64(s, 1, iDocid);
  2258   if( rc!=SQLITE_OK ) return rc;
  2259 
  2260   return sql_single_step(s);
  2261 }
  2262 
  2263 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
  2264 ** no rows exist, and any error in case of failure.
  2265 */
  2266 static int content_exists(fulltext_vtab *v){
  2267   sqlite3_stmt *s;
  2268   int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
  2269   if( rc!=SQLITE_OK ) return rc;
  2270 
  2271   rc = sqlite3_step(s);
  2272   if( rc!=SQLITE_ROW ) return rc;
  2273 
  2274   /* We expect only one row.  We must execute another sqlite3_step()
  2275    * to complete the iteration; otherwise the table will remain locked. */
  2276   rc = sqlite3_step(s);
  2277   if( rc==SQLITE_DONE ) return SQLITE_ROW;
  2278   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2279   return rc;
  2280 }
  2281 
  2282 /* insert into %_segments values ([pData])
  2283 **   returns assigned blockid in *piBlockid
  2284 */
  2285 static int block_insert(fulltext_vtab *v, const char *pData, int nData,
  2286                         sqlite_int64 *piBlockid){
  2287   sqlite3_stmt *s;
  2288   int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
  2289   if( rc!=SQLITE_OK ) return rc;
  2290 
  2291   rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
  2292   if( rc!=SQLITE_OK ) return rc;
  2293 
  2294   rc = sqlite3_step(s);
  2295   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2296   if( rc!=SQLITE_DONE ) return rc;
  2297 
  2298   /* blockid column is an alias for rowid. */
  2299   *piBlockid = sqlite3_last_insert_rowid(v->db);
  2300   return SQLITE_OK;
  2301 }
  2302 
  2303 /* delete from %_segments
  2304 **   where blockid between [iStartBlockid] and [iEndBlockid]
  2305 **
  2306 ** Deletes the range of blocks, inclusive, used to delete the blocks
  2307 ** which form a segment.
  2308 */
  2309 static int block_delete(fulltext_vtab *v,
  2310                         sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
  2311   sqlite3_stmt *s;
  2312   int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
  2313   if( rc!=SQLITE_OK ) return rc;
  2314 
  2315   rc = sqlite3_bind_int64(s, 1, iStartBlockid);
  2316   if( rc!=SQLITE_OK ) return rc;
  2317 
  2318   rc = sqlite3_bind_int64(s, 2, iEndBlockid);
  2319   if( rc!=SQLITE_OK ) return rc;
  2320 
  2321   return sql_single_step(s);
  2322 }
  2323 
  2324 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
  2325 ** at iLevel.  Returns SQLITE_DONE if there are no segments at
  2326 ** iLevel.  Otherwise returns an error.
  2327 */
  2328 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
  2329   sqlite3_stmt *s;
  2330   int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
  2331   if( rc!=SQLITE_OK ) return rc;
  2332 
  2333   rc = sqlite3_bind_int(s, 1, iLevel);
  2334   if( rc!=SQLITE_OK ) return rc;
  2335 
  2336   rc = sqlite3_step(s);
  2337   /* Should always get at least one row due to how max() works. */
  2338   if( rc==SQLITE_DONE ) return SQLITE_DONE;
  2339   if( rc!=SQLITE_ROW ) return rc;
  2340 
  2341   /* NULL means that there were no inputs to max(). */
  2342   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
  2343     rc = sqlite3_step(s);
  2344     if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2345     return rc;
  2346   }
  2347 
  2348   *pidx = sqlite3_column_int(s, 0);
  2349 
  2350   /* We expect only one row.  We must execute another sqlite3_step()
  2351    * to complete the iteration; otherwise the table will remain locked. */
  2352   rc = sqlite3_step(s);
  2353   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2354   if( rc!=SQLITE_DONE ) return rc;
  2355   return SQLITE_ROW;
  2356 }
  2357 
  2358 /* insert into %_segdir values (
  2359 **   [iLevel], [idx],
  2360 **   [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
  2361 **   [pRootData]
  2362 ** )
  2363 */
  2364 static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
  2365                       sqlite_int64 iStartBlockid,
  2366                       sqlite_int64 iLeavesEndBlockid,
  2367                       sqlite_int64 iEndBlockid,
  2368                       const char *pRootData, int nRootData){
  2369   sqlite3_stmt *s;
  2370   int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
  2371   if( rc!=SQLITE_OK ) return rc;
  2372 
  2373   rc = sqlite3_bind_int(s, 1, iLevel);
  2374   if( rc!=SQLITE_OK ) return rc;
  2375 
  2376   rc = sqlite3_bind_int(s, 2, idx);
  2377   if( rc!=SQLITE_OK ) return rc;
  2378 
  2379   rc = sqlite3_bind_int64(s, 3, iStartBlockid);
  2380   if( rc!=SQLITE_OK ) return rc;
  2381 
  2382   rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
  2383   if( rc!=SQLITE_OK ) return rc;
  2384 
  2385   rc = sqlite3_bind_int64(s, 5, iEndBlockid);
  2386   if( rc!=SQLITE_OK ) return rc;
  2387 
  2388   rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
  2389   if( rc!=SQLITE_OK ) return rc;
  2390 
  2391   return sql_single_step(s);
  2392 }
  2393 
  2394 /* Queries %_segdir for the block span of the segments in level
  2395 ** iLevel.  Returns SQLITE_DONE if there are no blocks for iLevel,
  2396 ** SQLITE_ROW if there are blocks, else an error.
  2397 */
  2398 static int segdir_span(fulltext_vtab *v, int iLevel,
  2399                        sqlite_int64 *piStartBlockid,
  2400                        sqlite_int64 *piEndBlockid){
  2401   sqlite3_stmt *s;
  2402   int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
  2403   if( rc!=SQLITE_OK ) return rc;
  2404 
  2405   rc = sqlite3_bind_int(s, 1, iLevel);
  2406   if( rc!=SQLITE_OK ) return rc;
  2407 
  2408   rc = sqlite3_step(s);
  2409   if( rc==SQLITE_DONE ) return SQLITE_DONE;  /* Should never happen */
  2410   if( rc!=SQLITE_ROW ) return rc;
  2411 
  2412   /* This happens if all segments at this level are entirely inline. */
  2413   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
  2414     /* We expect only one row.  We must execute another sqlite3_step()
  2415      * to complete the iteration; otherwise the table will remain locked. */
  2416     int rc2 = sqlite3_step(s);
  2417     if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
  2418     return rc2;
  2419   }
  2420 
  2421   *piStartBlockid = sqlite3_column_int64(s, 0);
  2422   *piEndBlockid = sqlite3_column_int64(s, 1);
  2423 
  2424   /* We expect only one row.  We must execute another sqlite3_step()
  2425    * to complete the iteration; otherwise the table will remain locked. */
  2426   rc = sqlite3_step(s);
  2427   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2428   if( rc!=SQLITE_DONE ) return rc;
  2429   return SQLITE_ROW;
  2430 }
  2431 
  2432 /* Delete the segment blocks and segment directory records for all
  2433 ** segments at iLevel.
  2434 */
  2435 static int segdir_delete(fulltext_vtab *v, int iLevel){
  2436   sqlite3_stmt *s;
  2437   sqlite_int64 iStartBlockid, iEndBlockid;
  2438   int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
  2439   if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
  2440 
  2441   if( rc==SQLITE_ROW ){
  2442     rc = block_delete(v, iStartBlockid, iEndBlockid);
  2443     if( rc!=SQLITE_OK ) return rc;
  2444   }
  2445 
  2446   /* Delete the segment directory itself. */
  2447   rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
  2448   if( rc!=SQLITE_OK ) return rc;
  2449 
  2450   rc = sqlite3_bind_int64(s, 1, iLevel);
  2451   if( rc!=SQLITE_OK ) return rc;
  2452 
  2453   return sql_single_step(s);
  2454 }
  2455 
  2456 /* Delete entire fts index, SQLITE_OK on success, relevant error on
  2457 ** failure.
  2458 */
  2459 static int segdir_delete_all(fulltext_vtab *v){
  2460   sqlite3_stmt *s;
  2461   int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
  2462   if( rc!=SQLITE_OK ) return rc;
  2463 
  2464   rc = sql_single_step(s);
  2465   if( rc!=SQLITE_OK ) return rc;
  2466 
  2467   rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
  2468   if( rc!=SQLITE_OK ) return rc;
  2469 
  2470   return sql_single_step(s);
  2471 }
  2472 
  2473 /* Returns SQLITE_OK with *pnSegments set to the number of entries in
  2474 ** %_segdir and *piMaxLevel set to the highest level which has a
  2475 ** segment.  Otherwise returns the SQLite error which caused failure.
  2476 */
  2477 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
  2478   sqlite3_stmt *s;
  2479   int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
  2480   if( rc!=SQLITE_OK ) return rc;
  2481 
  2482   rc = sqlite3_step(s);
  2483   /* TODO(shess): This case should not be possible?  Should stronger
  2484   ** measures be taken if it happens?
  2485   */
  2486   if( rc==SQLITE_DONE ){
  2487     *pnSegments = 0;
  2488     *piMaxLevel = 0;
  2489     return SQLITE_OK;
  2490   }
  2491   if( rc!=SQLITE_ROW ) return rc;
  2492 
  2493   *pnSegments = sqlite3_column_int(s, 0);
  2494   *piMaxLevel = sqlite3_column_int(s, 1);
  2495 
  2496   /* We expect only one row.  We must execute another sqlite3_step()
  2497    * to complete the iteration; otherwise the table will remain locked. */
  2498   rc = sqlite3_step(s);
  2499   if( rc==SQLITE_DONE ) return SQLITE_OK;
  2500   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2501   return rc;
  2502 }
  2503 
  2504 /* TODO(shess) clearPendingTerms() is far down the file because
  2505 ** writeZeroSegment() is far down the file because LeafWriter is far
  2506 ** down the file.  Consider refactoring the code to move the non-vtab
  2507 ** code above the vtab code so that we don't need this forward
  2508 ** reference.
  2509 */
  2510 static int clearPendingTerms(fulltext_vtab *v);
  2511 
  2512 /*
  2513 ** Free the memory used to contain a fulltext_vtab structure.
  2514 */
  2515 static void fulltext_vtab_destroy(fulltext_vtab *v){
  2516   int iStmt, i;
  2517 
  2518   FTSTRACE(("FTS3 Destroy %p\n", v));
  2519   for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
  2520     if( v->pFulltextStatements[iStmt]!=NULL ){
  2521       sqlite3_finalize(v->pFulltextStatements[iStmt]);
  2522       v->pFulltextStatements[iStmt] = NULL;
  2523     }
  2524   }
  2525 
  2526   for( i=0; i<MERGE_COUNT; i++ ){
  2527     if( v->pLeafSelectStmts[i]!=NULL ){
  2528       sqlite3_finalize(v->pLeafSelectStmts[i]);
  2529       v->pLeafSelectStmts[i] = NULL;
  2530     }
  2531   }
  2532 
  2533   if( v->pTokenizer!=NULL ){
  2534     v->pTokenizer->pModule->xDestroy(v->pTokenizer);
  2535     v->pTokenizer = NULL;
  2536   }
  2537 
  2538   clearPendingTerms(v);
  2539 
  2540   sqlite3_free(v->azColumn);
  2541   for(i = 0; i < v->nColumn; ++i) {
  2542     sqlite3_free(v->azContentColumn[i]);
  2543   }
  2544   sqlite3_free(v->azContentColumn);
  2545   sqlite3_free(v);
  2546 }
  2547 
  2548 /*
  2549 ** Token types for parsing the arguments to xConnect or xCreate.
  2550 */
  2551 #define TOKEN_EOF         0    /* End of file */
  2552 #define TOKEN_SPACE       1    /* Any kind of whitespace */
  2553 #define TOKEN_ID          2    /* An identifier */
  2554 #define TOKEN_STRING      3    /* A string literal */
  2555 #define TOKEN_PUNCT       4    /* A single punctuation character */
  2556 
  2557 /*
  2558 ** If X is a character that can be used in an identifier then
  2559 ** ftsIdChar(X) will be true.  Otherwise it is false.
  2560 **
  2561 ** For ASCII, any character with the high-order bit set is
  2562 ** allowed in an identifier.  For 7-bit characters, 
  2563 ** isFtsIdChar[X] must be 1.
  2564 **
  2565 ** Ticket #1066.  the SQL standard does not allow '$' in the
  2566 ** middle of identfiers.  But many SQL implementations do. 
  2567 ** SQLite will allow '$' in identifiers for compatibility.
  2568 ** But the feature is undocumented.
  2569 */
  2570 static const char isFtsIdChar[] = {
  2571 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
  2572     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
  2573     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
  2574     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
  2575     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
  2576     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
  2577     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
  2578 };
  2579 #define ftsIdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
  2580 
  2581 
  2582 /*
  2583 ** Return the length of the token that begins at z[0]. 
  2584 ** Store the token type in *tokenType before returning.
  2585 */
  2586 static int ftsGetToken(const char *z, int *tokenType){
  2587   int i, c;
  2588   switch( *z ){
  2589     case 0: {
  2590       *tokenType = TOKEN_EOF;
  2591       return 0;
  2592     }
  2593     case ' ': case '\t': case '\n': case '\f': case '\r': {
  2594       for(i=1; safe_isspace(z[i]); i++){}
  2595       *tokenType = TOKEN_SPACE;
  2596       return i;
  2597     }
  2598     case '`':
  2599     case '\'':
  2600     case '"': {
  2601       int delim = z[0];
  2602       for(i=1; (c=z[i])!=0; i++){
  2603         if( c==delim ){
  2604           if( z[i+1]==delim ){
  2605             i++;
  2606           }else{
  2607             break;
  2608           }
  2609         }
  2610       }
  2611       *tokenType = TOKEN_STRING;
  2612       return i + (c!=0);
  2613     }
  2614     case '[': {
  2615       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
  2616       *tokenType = TOKEN_ID;
  2617       return i;
  2618     }
  2619     default: {
  2620       if( !ftsIdChar(*z) ){
  2621         break;
  2622       }
  2623       for(i=1; ftsIdChar(z[i]); i++){}
  2624       *tokenType = TOKEN_ID;
  2625       return i;
  2626     }
  2627   }
  2628   *tokenType = TOKEN_PUNCT;
  2629   return 1;
  2630 }
  2631 
  2632 /*
  2633 ** A token extracted from a string is an instance of the following
  2634 ** structure.
  2635 */
  2636 typedef struct FtsToken {
  2637   const char *z;       /* Pointer to token text.  Not '\000' terminated */
  2638   short int n;         /* Length of the token text in bytes. */
  2639 } FtsToken;
  2640 
  2641 /*
  2642 ** Given a input string (which is really one of the argv[] parameters
  2643 ** passed into xConnect or xCreate) split the string up into tokens.
  2644 ** Return an array of pointers to '\000' terminated strings, one string
  2645 ** for each non-whitespace token.
  2646 **
  2647 ** The returned array is terminated by a single NULL pointer.
  2648 **
  2649 ** Space to hold the returned array is obtained from a single
  2650 ** malloc and should be freed by passing the return value to free().
  2651 ** The individual strings within the token list are all a part of
  2652 ** the single memory allocation and will all be freed at once.
  2653 */
  2654 static char **tokenizeString(const char *z, int *pnToken){
  2655   int nToken = 0;
  2656   FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
  2657   int n = 1;
  2658   int e, i;
  2659   int totalSize = 0;
  2660   char **azToken;
  2661   char *zCopy;
  2662   while( n>0 ){
  2663     n = ftsGetToken(z, &e);
  2664     if( e!=TOKEN_SPACE ){
  2665       aToken[nToken].z = z;
  2666       aToken[nToken].n = n;
  2667       nToken++;
  2668       totalSize += n+1;
  2669     }
  2670     z += n;
  2671   }
  2672   azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
  2673   zCopy = (char*)&azToken[nToken];
  2674   nToken--;
  2675   for(i=0; i<nToken; i++){
  2676     azToken[i] = zCopy;
  2677     n = aToken[i].n;
  2678     memcpy(zCopy, aToken[i].z, n);
  2679     zCopy[n] = 0;
  2680     zCopy += n+1;
  2681   }
  2682   azToken[nToken] = 0;
  2683   sqlite3_free(aToken);
  2684   *pnToken = nToken;
  2685   return azToken;
  2686 }
  2687 
  2688 /*
  2689 ** Convert an SQL-style quoted string into a normal string by removing
  2690 ** the quote characters.  The conversion is done in-place.  If the
  2691 ** input does not begin with a quote character, then this routine
  2692 ** is a no-op.
  2693 **
  2694 ** Examples:
  2695 **
  2696 **     "abc"   becomes   abc
  2697 **     'xyz'   becomes   xyz
  2698 **     [pqr]   becomes   pqr
  2699 **     `mno`   becomes   mno
  2700 */
  2701 static void dequoteString(char *z){
  2702   int quote;
  2703   int i, j;
  2704   if( z==0 ) return;
  2705   quote = z[0];
  2706   switch( quote ){
  2707     case '\'':  break;
  2708     case '"':   break;
  2709     case '`':   break;                /* For MySQL compatibility */
  2710     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
  2711     default:    return;
  2712   }
  2713   for(i=1, j=0; z[i]; i++){
  2714     if( z[i]==quote ){
  2715       if( z[i+1]==quote ){
  2716         z[j++] = quote;
  2717         i++;
  2718       }else{
  2719         z[j++] = 0;
  2720         break;
  2721       }
  2722     }else{
  2723       z[j++] = z[i];
  2724     }
  2725   }
  2726 }
  2727 
  2728 /*
  2729 ** The input azIn is a NULL-terminated list of tokens.  Remove the first
  2730 ** token and all punctuation tokens.  Remove the quotes from
  2731 ** around string literal tokens.
  2732 **
  2733 ** Example:
  2734 **
  2735 **     input:      tokenize chinese ( 'simplifed' , 'mixed' )
  2736 **     output:     chinese simplifed mixed
  2737 **
  2738 ** Another example:
  2739 **
  2740 **     input:      delimiters ( '[' , ']' , '...' )
  2741 **     output:     [ ] ...
  2742 */
  2743 static void tokenListToIdList(char **azIn){
  2744   int i, j;
  2745   if( azIn ){
  2746     for(i=0, j=-1; azIn[i]; i++){
  2747       if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
  2748         dequoteString(azIn[i]);
  2749         if( j>=0 ){
  2750           azIn[j] = azIn[i];
  2751         }
  2752         j++;
  2753       }
  2754     }
  2755     azIn[j] = 0;
  2756   }
  2757 }
  2758 
  2759 
  2760 /*
  2761 ** Find the first alphanumeric token in the string zIn.  Null-terminate
  2762 ** this token.  Remove any quotation marks.  And return a pointer to
  2763 ** the result.
  2764 */
  2765 static char *firstToken(char *zIn, char **pzTail){
  2766   int n, ttype;
  2767   while(1){
  2768     n = ftsGetToken(zIn, &ttype);
  2769     if( ttype==TOKEN_SPACE ){
  2770       zIn += n;
  2771     }else if( ttype==TOKEN_EOF ){
  2772       *pzTail = zIn;
  2773       return 0;
  2774     }else{
  2775       zIn[n] = 0;
  2776       *pzTail = &zIn[1];
  2777       dequoteString(zIn);
  2778       return zIn;
  2779     }
  2780   }
  2781   /*NOTREACHED*/
  2782 }
  2783 
  2784 /* Return true if...
  2785 **
  2786 **   *  s begins with the string t, ignoring case
  2787 **   *  s is longer than t
  2788 **   *  The first character of s beyond t is not a alphanumeric
  2789 ** 
  2790 ** Ignore leading space in *s.
  2791 **
  2792 ** To put it another way, return true if the first token of
  2793 ** s[] is t[].
  2794 */
  2795 static int startsWith(const char *s, const char *t){
  2796   while( safe_isspace(*s) ){ s++; }
  2797   while( *t ){
  2798     if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
  2799   }
  2800   return *s!='_' && !safe_isalnum(*s);
  2801 }
  2802 
  2803 /*
  2804 ** An instance of this structure defines the "spec" of a
  2805 ** full text index.  This structure is populated by parseSpec
  2806 ** and use by fulltextConnect and fulltextCreate.
  2807 */
  2808 typedef struct TableSpec {
  2809   const char *zDb;         /* Logical database name */
  2810   const char *zName;       /* Name of the full-text index */
  2811   int nColumn;             /* Number of columns to be indexed */
  2812   char **azColumn;         /* Original names of columns to be indexed */
  2813   char **azContentColumn;  /* Column names for %_content */
  2814   char **azTokenizer;      /* Name of tokenizer and its arguments */
  2815 } TableSpec;
  2816 
  2817 /*
  2818 ** Reclaim all of the memory used by a TableSpec
  2819 */
  2820 static void clearTableSpec(TableSpec *p) {
  2821   sqlite3_free(p->azColumn);
  2822   sqlite3_free(p->azContentColumn);
  2823   sqlite3_free(p->azTokenizer);
  2824 }
  2825 
  2826 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
  2827  *
  2828  * CREATE VIRTUAL TABLE email
  2829  *        USING fts3(subject, body, tokenize mytokenizer(myarg))
  2830  *
  2831  * We return parsed information in a TableSpec structure.
  2832  * 
  2833  */
  2834 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
  2835                      char**pzErr){
  2836   int i, n;
  2837   char *z, *zDummy;
  2838   char **azArg;
  2839   const char *zTokenizer = 0;    /* argv[] entry describing the tokenizer */
  2840 
  2841   assert( argc>=3 );
  2842   /* Current interface:
  2843   ** argv[0] - module name
  2844   ** argv[1] - database name
  2845   ** argv[2] - table name
  2846   ** argv[3..] - columns, optionally followed by tokenizer specification
  2847   **             and snippet delimiters specification.
  2848   */
  2849 
  2850   /* Make a copy of the complete argv[][] array in a single allocation.
  2851   ** The argv[][] array is read-only and transient.  We can write to the
  2852   ** copy in order to modify things and the copy is persistent.
  2853   */
  2854   CLEAR(pSpec);
  2855   for(i=n=0; i<argc; i++){
  2856     n += strlen(argv[i]) + 1;
  2857   }
  2858   azArg = sqlite3_malloc( sizeof(char*)*argc + n );
  2859   if( azArg==0 ){
  2860     return SQLITE_NOMEM;
  2861   }
  2862   z = (char*)&azArg[argc];
  2863   for(i=0; i<argc; i++){
  2864     azArg[i] = z;
  2865     strcpy(z, argv[i]);
  2866     z += strlen(z)+1;
  2867   }
  2868 
  2869   /* Identify the column names and the tokenizer and delimiter arguments
  2870   ** in the argv[][] array.
  2871   */
  2872   pSpec->zDb = azArg[1];
  2873   pSpec->zName = azArg[2];
  2874   pSpec->nColumn = 0;
  2875   pSpec->azColumn = azArg;
  2876   zTokenizer = "tokenize simple";
  2877   for(i=3; i<argc; ++i){
  2878     if( startsWith(azArg[i],"tokenize") ){
  2879       zTokenizer = azArg[i];
  2880     }else{
  2881       z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
  2882       pSpec->nColumn++;
  2883     }
  2884   }
  2885   if( pSpec->nColumn==0 ){
  2886     azArg[0] = "content";
  2887     pSpec->nColumn = 1;
  2888   }
  2889 
  2890   /*
  2891   ** Construct the list of content column names.
  2892   **
  2893   ** Each content column name will be of the form cNNAAAA
  2894   ** where NN is the column number and AAAA is the sanitized
  2895   ** column name.  "sanitized" means that special characters are
  2896   ** converted to "_".  The cNN prefix guarantees that all column
  2897   ** names are unique.
  2898   **
  2899   ** The AAAA suffix is not strictly necessary.  It is included
  2900   ** for the convenience of people who might examine the generated
  2901   ** %_content table and wonder what the columns are used for.
  2902   */
  2903   pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
  2904   if( pSpec->azContentColumn==0 ){
  2905     clearTableSpec(pSpec);
  2906     return SQLITE_NOMEM;
  2907   }
  2908   for(i=0; i<pSpec->nColumn; i++){
  2909     char *p;
  2910     pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
  2911     for (p = pSpec->azContentColumn[i]; *p ; ++p) {
  2912       if( !safe_isalnum(*p) ) *p = '_';
  2913     }
  2914   }
  2915 
  2916   /*
  2917   ** Parse the tokenizer specification string.
  2918   */
  2919   pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
  2920   tokenListToIdList(pSpec->azTokenizer);
  2921 
  2922   return SQLITE_OK;
  2923 }
  2924 
  2925 /*
  2926 ** Generate a CREATE TABLE statement that describes the schema of
  2927 ** the virtual table.  Return a pointer to this schema string.
  2928 **
  2929 ** Space is obtained from sqlite3_mprintf() and should be freed
  2930 ** using sqlite3_free().
  2931 */
  2932 static char *fulltextSchema(
  2933   int nColumn,                  /* Number of columns */
  2934   const char *const* azColumn,  /* List of columns */
  2935   const char *zTableName        /* Name of the table */
  2936 ){
  2937   int i;
  2938   char *zSchema, *zNext;
  2939   const char *zSep = "(";
  2940   zSchema = sqlite3_mprintf("CREATE TABLE x");
  2941   for(i=0; i<nColumn; i++){
  2942     zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
  2943     sqlite3_free(zSchema);
  2944     zSchema = zNext;
  2945     zSep = ",";
  2946   }
  2947   zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
  2948   sqlite3_free(zSchema);
  2949   zSchema = zNext;
  2950   zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
  2951   sqlite3_free(zSchema);
  2952   return zNext;
  2953 }
  2954 
  2955 /*
  2956 ** Build a new sqlite3_vtab structure that will describe the
  2957 ** fulltext index defined by spec.
  2958 */
  2959 static int constructVtab(
  2960   sqlite3 *db,              /* The SQLite database connection */
  2961   fts3Hash *pHash,          /* Hash table containing tokenizers */
  2962   TableSpec *spec,          /* Parsed spec information from parseSpec() */
  2963   sqlite3_vtab **ppVTab,    /* Write the resulting vtab structure here */
  2964   char **pzErr              /* Write any error message here */
  2965 ){
  2966   int rc;
  2967   int n;
  2968   fulltext_vtab *v = 0;
  2969   const sqlite3_tokenizer_module *m = NULL;
  2970   char *schema;
  2971 
  2972   char const *zTok;         /* Name of tokenizer to use for this fts table */
  2973   int nTok;                 /* Length of zTok, including nul terminator */
  2974 
  2975   v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
  2976   if( v==0 ) return SQLITE_NOMEM;
  2977   CLEAR(v);
  2978   /* sqlite will initialize v->base */
  2979   v->db = db;
  2980   v->zDb = spec->zDb;       /* Freed when azColumn is freed */
  2981   v->zName = spec->zName;   /* Freed when azColumn is freed */
  2982   v->nColumn = spec->nColumn;
  2983   v->azContentColumn = spec->azContentColumn;
  2984   spec->azContentColumn = 0;
  2985   v->azColumn = spec->azColumn;
  2986   spec->azColumn = 0;
  2987 
  2988   if( spec->azTokenizer==0 ){
  2989     return SQLITE_NOMEM;
  2990   }
  2991 
  2992   zTok = spec->azTokenizer[0]; 
  2993   if( !zTok ){
  2994     zTok = "simple";
  2995   }
  2996   nTok = strlen(zTok)+1;
  2997 
  2998   m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
  2999   if( !m ){
  3000     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
  3001     rc = SQLITE_ERROR;
  3002     goto err;
  3003   }
  3004 
  3005   for(n=0; spec->azTokenizer[n]; n++){}
  3006   if( n ){
  3007     rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
  3008                     &v->pTokenizer);
  3009   }else{
  3010     rc = m->xCreate(0, 0, &v->pTokenizer);
  3011   }
  3012   if( rc!=SQLITE_OK ) goto err;
  3013   v->pTokenizer->pModule = m;
  3014 
  3015   /* TODO: verify the existence of backing tables foo_content, foo_term */
  3016 
  3017   schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
  3018                           spec->zName);
  3019   rc = sqlite3_declare_vtab(db, schema);
  3020   sqlite3_free(schema);
  3021   if( rc!=SQLITE_OK ) goto err;
  3022 
  3023   memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
  3024 
  3025   /* Indicate that the buffer is not live. */
  3026   v->nPendingData = -1;
  3027 
  3028   *ppVTab = &v->base;
  3029   FTSTRACE(("FTS3 Connect %p\n", v));
  3030 
  3031   return rc;
  3032 
  3033 err:
  3034   fulltext_vtab_destroy(v);
  3035   return rc;
  3036 }
  3037 
  3038 static int fulltextConnect(
  3039   sqlite3 *db,
  3040   void *pAux,
  3041   int argc, const char *const*argv,
  3042   sqlite3_vtab **ppVTab,
  3043   char **pzErr
  3044 ){
  3045   TableSpec spec;
  3046   int rc = parseSpec(&spec, argc, argv, pzErr);
  3047   if( rc!=SQLITE_OK ) return rc;
  3048 
  3049   rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
  3050   clearTableSpec(&spec);
  3051   return rc;
  3052 }
  3053 
  3054 /* The %_content table holds the text of each document, with
  3055 ** the docid column exposed as the SQLite rowid for the table.
  3056 */
  3057 /* TODO(shess) This comment needs elaboration to match the updated
  3058 ** code.  Work it into the top-of-file comment at that time.
  3059 */
  3060 static int fulltextCreate(sqlite3 *db, void *pAux,
  3061                           int argc, const char * const *argv,
  3062                           sqlite3_vtab **ppVTab, char **pzErr){
  3063   int rc;
  3064   TableSpec spec;
  3065   StringBuffer schema;
  3066   FTSTRACE(("FTS3 Create\n"));
  3067 
  3068   rc = parseSpec(&spec, argc, argv, pzErr);
  3069   if( rc!=SQLITE_OK ) return rc;
  3070 
  3071   initStringBuffer(&schema);
  3072   append(&schema, "CREATE TABLE %_content(");
  3073   append(&schema, "  docid INTEGER PRIMARY KEY,");
  3074   appendList(&schema, spec.nColumn, spec.azContentColumn);
  3075   append(&schema, ")");
  3076   rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
  3077   stringBufferDestroy(&schema);
  3078   if( rc!=SQLITE_OK ) goto out;
  3079 
  3080   rc = sql_exec(db, spec.zDb, spec.zName,
  3081                 "create table %_segments("
  3082                 "  blockid INTEGER PRIMARY KEY,"
  3083                 "  block blob"
  3084                 ");"
  3085                 );
  3086   if( rc!=SQLITE_OK ) goto out;
  3087 
  3088   rc = sql_exec(db, spec.zDb, spec.zName,
  3089                 "create table %_segdir("
  3090                 "  level integer,"
  3091                 "  idx integer,"
  3092                 "  start_block integer,"
  3093                 "  leaves_end_block integer,"
  3094                 "  end_block integer,"
  3095                 "  root blob,"
  3096                 "  primary key(level, idx)"
  3097                 ");");
  3098   if( rc!=SQLITE_OK ) goto out;
  3099 
  3100   rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
  3101 
  3102 out:
  3103   clearTableSpec(&spec);
  3104   return rc;
  3105 }
  3106 
  3107 /* Decide how to handle an SQL query. */
  3108 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  3109   fulltext_vtab *v = (fulltext_vtab *)pVTab;
  3110   int i;
  3111   FTSTRACE(("FTS3 BestIndex\n"));
  3112 
  3113   for(i=0; i<pInfo->nConstraint; ++i){
  3114     const struct sqlite3_index_constraint *pConstraint;
  3115     pConstraint = &pInfo->aConstraint[i];
  3116     if( pConstraint->usable ) {
  3117       if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
  3118           pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
  3119         pInfo->idxNum = QUERY_DOCID;      /* lookup by docid */
  3120         FTSTRACE(("FTS3 QUERY_DOCID\n"));
  3121       } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
  3122                  pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
  3123         /* full-text search */
  3124         pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
  3125         FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
  3126       } else continue;
  3127 
  3128       pInfo->aConstraintUsage[i].argvIndex = 1;
  3129       pInfo->aConstraintUsage[i].omit = 1;
  3130 
  3131       /* An arbitrary value for now.
  3132        * TODO: Perhaps docid matches should be considered cheaper than
  3133        * full-text searches. */
  3134       pInfo->estimatedCost = 1.0;   
  3135 
  3136       return SQLITE_OK;
  3137     }
  3138   }
  3139   pInfo->idxNum = QUERY_GENERIC;
  3140   return SQLITE_OK;
  3141 }
  3142 
  3143 static int fulltextDisconnect(sqlite3_vtab *pVTab){
  3144   FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
  3145   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
  3146   return SQLITE_OK;
  3147 }
  3148 
  3149 static int fulltextDestroy(sqlite3_vtab *pVTab){
  3150   fulltext_vtab *v = (fulltext_vtab *)pVTab;
  3151   int rc;
  3152 
  3153   FTSTRACE(("FTS3 Destroy %p\n", pVTab));
  3154   rc = sql_exec(v->db, v->zDb, v->zName,
  3155                 "drop table if exists %_content;"
  3156                 "drop table if exists %_segments;"
  3157                 "drop table if exists %_segdir;"
  3158                 );
  3159   if( rc!=SQLITE_OK ) return rc;
  3160 
  3161   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
  3162   return SQLITE_OK;
  3163 }
  3164 
  3165 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  3166   fulltext_cursor *c;
  3167 
  3168   c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
  3169   if( c ){
  3170     memset(c, 0, sizeof(fulltext_cursor));
  3171     /* sqlite will initialize c->base */
  3172     *ppCursor = &c->base;
  3173     FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
  3174     return SQLITE_OK;
  3175   }else{
  3176     return SQLITE_NOMEM;
  3177   }
  3178 }
  3179 
  3180 
  3181 /* Free all of the dynamically allocated memory held by *q
  3182 */
  3183 static void queryClear(Query *q){
  3184   int i;
  3185   for(i = 0; i < q->nTerms; ++i){
  3186     sqlite3_free(q->pTerms[i].pTerm);
  3187   }
  3188   sqlite3_free(q->pTerms);
  3189   CLEAR(q);
  3190 }
  3191 
  3192 /* Free all of the dynamically allocated memory held by the
  3193 ** Snippet
  3194 */
  3195 static void snippetClear(Snippet *p){
  3196   sqlite3_free(p->aMatch);
  3197   sqlite3_free(p->zOffset);
  3198   sqlite3_free(p->zSnippet);
  3199   CLEAR(p);
  3200 }
  3201 /*
  3202 ** Append a single entry to the p->aMatch[] log.
  3203 */
  3204 static void snippetAppendMatch(
  3205   Snippet *p,               /* Append the entry to this snippet */
  3206   int iCol, int iTerm,      /* The column and query term */
  3207   int iToken,               /* Matching token in document */
  3208   int iStart, int nByte     /* Offset and size of the match */
  3209 ){
  3210   int i;
  3211   struct snippetMatch *pMatch;
  3212   if( p->nMatch+1>=p->nAlloc ){
  3213     p->nAlloc = p->nAlloc*2 + 10;
  3214     p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
  3215     if( p->aMatch==0 ){
  3216       p->nMatch = 0;
  3217       p->nAlloc = 0;
  3218       return;
  3219     }
  3220   }
  3221   i = p->nMatch++;
  3222   pMatch = &p->aMatch[i];
  3223   pMatch->iCol = iCol;
  3224   pMatch->iTerm = iTerm;
  3225   pMatch->iToken = iToken;
  3226   pMatch->iStart = iStart;
  3227   pMatch->nByte = nByte;
  3228 }
  3229 
  3230 /*
  3231 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
  3232 */
  3233 #define FTS3_ROTOR_SZ   (32)
  3234 #define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
  3235 
  3236 /*
  3237 ** Add entries to pSnippet->aMatch[] for every match that occurs against
  3238 ** document zDoc[0..nDoc-1] which is stored in column iColumn.
  3239 */
  3240 static void snippetOffsetsOfColumn(
  3241   Query *pQuery,
  3242   Snippet *pSnippet,
  3243   int iColumn,
  3244   const char *zDoc,
  3245   int nDoc
  3246 ){
  3247   const sqlite3_tokenizer_module *pTModule;  /* The tokenizer module */
  3248   sqlite3_tokenizer *pTokenizer;             /* The specific tokenizer */
  3249   sqlite3_tokenizer_cursor *pTCursor;        /* Tokenizer cursor */
  3250   fulltext_vtab *pVtab;                /* The full text index */
  3251   int nColumn;                         /* Number of columns in the index */
  3252   const QueryTerm *aTerm;              /* Query string terms */
  3253   int nTerm;                           /* Number of query string terms */  
  3254   int i, j;                            /* Loop counters */
  3255   int rc;                              /* Return code */
  3256   unsigned int match, prevMatch;       /* Phrase search bitmasks */
  3257   const char *zToken;                  /* Next token from the tokenizer */
  3258   int nToken;                          /* Size of zToken */
  3259   int iBegin, iEnd, iPos;              /* Offsets of beginning and end */
  3260 
  3261   /* The following variables keep a circular buffer of the last
  3262   ** few tokens */
  3263   unsigned int iRotor = 0;             /* Index of current token */
  3264   int iRotorBegin[FTS3_ROTOR_SZ];      /* Beginning offset of token */
  3265   int iRotorLen[FTS3_ROTOR_SZ];        /* Length of token */
  3266 
  3267   pVtab = pQuery->pFts;
  3268   nColumn = pVtab->nColumn;
  3269   pTokenizer = pVtab->pTokenizer;
  3270   pTModule = pTokenizer->pModule;
  3271   rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
  3272   if( rc ) return;
  3273   pTCursor->pTokenizer = pTokenizer;
  3274   aTerm = pQuery->pTerms;
  3275   nTerm = pQuery->nTerms;
  3276   if( nTerm>=FTS3_ROTOR_SZ ){
  3277     nTerm = FTS3_ROTOR_SZ - 1;
  3278   }
  3279   prevMatch = 0;
  3280   while(1){
  3281     rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
  3282     if( rc ) break;
  3283     iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
  3284     iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
  3285     match = 0;
  3286     for(i=0; i<nTerm; i++){
  3287       int iCol;
  3288       iCol = aTerm[i].iColumn;
  3289       if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
  3290       if( aTerm[i].nTerm>nToken ) continue;
  3291       if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
  3292       assert( aTerm[i].nTerm<=nToken );
  3293       if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
  3294       if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
  3295       match |= 1<<i;
  3296       if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
  3297         for(j=aTerm[i].iPhrase-1; j>=0; j--){
  3298           int k = (iRotor-j) & FTS3_ROTOR_MASK;
  3299           snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
  3300                 iRotorBegin[k], iRotorLen[k]);
  3301         }
  3302       }
  3303     }
  3304     prevMatch = match<<1;
  3305     iRotor++;
  3306   }
  3307   pTModule->xClose(pTCursor);  
  3308 }
  3309 
  3310 /*
  3311 ** Remove entries from the pSnippet structure to account for the NEAR
  3312 ** operator. When this is called, pSnippet contains the list of token 
  3313 ** offsets produced by treating all NEAR operators as AND operators.
  3314 ** This function removes any entries that should not be present after
  3315 ** accounting for the NEAR restriction. For example, if the queried
  3316 ** document is:
  3317 **
  3318 **     "A B C D E A"
  3319 **
  3320 ** and the query is:
  3321 ** 
  3322 **     A NEAR/0 E
  3323 **
  3324 ** then when this function is called the Snippet contains token offsets
  3325 ** 0, 4 and 5. This function removes the "0" entry (because the first A
  3326 ** is not near enough to an E).
  3327 */
  3328 static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
  3329   int ii;
  3330   int iDir = 1;
  3331 
  3332   while(iDir>-2) {
  3333     assert( iDir==1 || iDir==-1 );
  3334     for(ii=0; ii<pSnippet->nMatch; ii++){
  3335       int jj;
  3336       int nNear;
  3337       struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
  3338       QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
  3339 
  3340       if( (pMatch->iTerm+iDir)<0 
  3341        || (pMatch->iTerm+iDir)>=pQuery->nTerms
  3342       ){
  3343         continue;
  3344       }
  3345      
  3346       nNear = pQueryTerm->nNear;
  3347       if( iDir<0 ){
  3348         nNear = pQueryTerm[-1].nNear;
  3349       }
  3350   
  3351       if( pMatch->iTerm>=0 && nNear ){
  3352         int isOk = 0;
  3353         int iNextTerm = pMatch->iTerm+iDir;
  3354         int iPrevTerm = iNextTerm;
  3355 
  3356         int iEndToken;
  3357         int iStartToken;
  3358 
  3359         if( iDir<0 ){
  3360           int nPhrase = 1;
  3361           iStartToken = pMatch->iToken;
  3362           while( (pMatch->iTerm+nPhrase)<pQuery->nTerms 
  3363               && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1 
  3364           ){
  3365             nPhrase++;
  3366           }
  3367           iEndToken = iStartToken + nPhrase - 1;
  3368         }else{
  3369           iEndToken   = pMatch->iToken;
  3370           iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
  3371         }
  3372 
  3373         while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
  3374           iNextTerm--;
  3375         }
  3376         while( (iPrevTerm+1)<pQuery->nTerms && 
  3377                pQuery->pTerms[iPrevTerm+1].iPhrase>1 
  3378         ){
  3379           iPrevTerm++;
  3380         }
  3381   
  3382         for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
  3383           struct snippetMatch *p = &pSnippet->aMatch[jj];
  3384           if( p->iCol==pMatch->iCol && ((
  3385                p->iTerm==iNextTerm && 
  3386                p->iToken>iEndToken && 
  3387                p->iToken<=iEndToken+nNear
  3388           ) || (
  3389                p->iTerm==iPrevTerm && 
  3390                p->iToken<iStartToken && 
  3391                p->iToken>=iStartToken-nNear
  3392           ))){
  3393             isOk = 1;
  3394           }
  3395         }
  3396         if( !isOk ){
  3397           for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
  3398             pMatch[jj].iTerm = -1;
  3399           }
  3400           ii = -1;
  3401           iDir = 1;
  3402         }
  3403       }
  3404     }
  3405     iDir -= 2;
  3406   }
  3407 }
  3408 
  3409 /*
  3410 ** Compute all offsets for the current row of the query.  
  3411 ** If the offsets have already been computed, this routine is a no-op.
  3412 */
  3413 static void snippetAllOffsets(fulltext_cursor *p){
  3414   int nColumn;
  3415   int iColumn, i;
  3416   int iFirst, iLast;
  3417   fulltext_vtab *pFts;
  3418 
  3419   if( p->snippet.nMatch ) return;
  3420   if( p->q.nTerms==0 ) return;
  3421   pFts = p->q.pFts;
  3422   nColumn = pFts->nColumn;
  3423   iColumn = (p->iCursorType - QUERY_FULLTEXT);
  3424   if( iColumn<0 || iColumn>=nColumn ){
  3425     iFirst = 0;
  3426     iLast = nColumn-1;
  3427   }else{
  3428     iFirst = iColumn;
  3429     iLast = iColumn;
  3430   }
  3431   for(i=iFirst; i<=iLast; i++){
  3432     const char *zDoc;
  3433     int nDoc;
  3434     zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
  3435     nDoc = sqlite3_column_bytes(p->pStmt, i+1);
  3436     snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
  3437   }
  3438 
  3439   trimSnippetOffsetsForNear(&p->q, &p->snippet);
  3440 }
  3441 
  3442 /*
  3443 ** Convert the information in the aMatch[] array of the snippet
  3444 ** into the string zOffset[0..nOffset-1].
  3445 */
  3446 static void snippetOffsetText(Snippet *p){
  3447   int i;
  3448   int cnt = 0;
  3449   StringBuffer sb;
  3450   char zBuf[200];
  3451   if( p->zOffset ) return;
  3452   initStringBuffer(&sb);
  3453   for(i=0; i<p->nMatch; i++){
  3454     struct snippetMatch *pMatch = &p->aMatch[i];
  3455     if( pMatch->iTerm>=0 ){
  3456       /* If snippetMatch.iTerm is less than 0, then the match was 
  3457       ** discarded as part of processing the NEAR operator (see the 
  3458       ** trimSnippetOffsetsForNear() function for details). Ignore 
  3459       ** it in this case
  3460       */
  3461       zBuf[0] = ' ';
  3462       sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
  3463           pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
  3464       append(&sb, zBuf);
  3465       cnt++;
  3466     }
  3467   }
  3468   p->zOffset = stringBufferData(&sb);
  3469   p->nOffset = stringBufferLength(&sb);
  3470 }
  3471 
  3472 /*
  3473 ** zDoc[0..nDoc-1] is phrase of text.  aMatch[0..nMatch-1] are a set
  3474 ** of matching words some of which might be in zDoc.  zDoc is column
  3475 ** number iCol.
  3476 **
  3477 ** iBreak is suggested spot in zDoc where we could begin or end an
  3478 ** excerpt.  Return a value similar to iBreak but possibly adjusted
  3479 ** to be a little left or right so that the break point is better.
  3480 */
  3481 static int wordBoundary(
  3482   int iBreak,                   /* The suggested break point */
  3483   const char *zDoc,             /* Document text */
  3484   int nDoc,                     /* Number of bytes in zDoc[] */
  3485   struct snippetMatch *aMatch,  /* Matching words */
  3486   int nMatch,                   /* Number of entries in aMatch[] */
  3487   int iCol                      /* The column number for zDoc[] */
  3488 ){
  3489   int i;
  3490   if( iBreak<=10 ){
  3491     return 0;
  3492   }
  3493   if( iBreak>=nDoc-10 ){
  3494     return nDoc;
  3495   }
  3496   for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
  3497   while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
  3498   if( i<nMatch ){
  3499     if( aMatch[i].iStart<iBreak+10 ){
  3500       return aMatch[i].iStart;
  3501     }
  3502     if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
  3503       return aMatch[i-1].iStart;
  3504     }
  3505   }
  3506   for(i=1; i<=10; i++){
  3507     if( safe_isspace(zDoc[iBreak-i]) ){
  3508       return iBreak - i + 1;
  3509     }
  3510     if( safe_isspace(zDoc[iBreak+i]) ){
  3511       return iBreak + i + 1;
  3512     }
  3513   }
  3514   return iBreak;
  3515 }
  3516 
  3517 
  3518 
  3519 /*
  3520 ** Allowed values for Snippet.aMatch[].snStatus
  3521 */
  3522 #define SNIPPET_IGNORE  0   /* It is ok to omit this match from the snippet */
  3523 #define SNIPPET_DESIRED 1   /* We want to include this match in the snippet */
  3524 
  3525 /*
  3526 ** Generate the text of a snippet.
  3527 */
  3528 static void snippetText(
  3529   fulltext_cursor *pCursor,   /* The cursor we need the snippet for */
  3530   const char *zStartMark,     /* Markup to appear before each match */
  3531   const char *zEndMark,       /* Markup to appear after each match */
  3532   const char *zEllipsis       /* Ellipsis mark */
  3533 ){
  3534   int i, j;
  3535   struct snippetMatch *aMatch;
  3536   int nMatch;
  3537   int nDesired;
  3538   StringBuffer sb;
  3539   int tailCol;
  3540   int tailOffset;
  3541   int iCol;
  3542   int nDoc;
  3543   const char *zDoc;
  3544   int iStart, iEnd;
  3545   int tailEllipsis = 0;
  3546   int iMatch;
  3547   
  3548 
  3549   sqlite3_free(pCursor->snippet.zSnippet);
  3550   pCursor->snippet.zSnippet = 0;
  3551   aMatch = pCursor->snippet.aMatch;
  3552   nMatch = pCursor->snippet.nMatch;
  3553   initStringBuffer(&sb);
  3554 
  3555   for(i=0; i<nMatch; i++){
  3556     aMatch[i].snStatus = SNIPPET_IGNORE;
  3557   }
  3558   nDesired = 0;
  3559   for(i=0; i<pCursor->q.nTerms; i++){
  3560     for(j=0; j<nMatch; j++){
  3561       if( aMatch[j].iTerm==i ){
  3562         aMatch[j].snStatus = SNIPPET_DESIRED;
  3563         nDesired++;
  3564         break;
  3565       }
  3566     }
  3567   }
  3568 
  3569   iMatch = 0;
  3570   tailCol = -1;
  3571   tailOffset = 0;
  3572   for(i=0; i<nMatch && nDesired>0; i++){
  3573     if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
  3574     nDesired--;
  3575     iCol = aMatch[i].iCol;
  3576     zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
  3577     nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
  3578     iStart = aMatch[i].iStart - 40;
  3579     iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
  3580     if( iStart<=10 ){
  3581       iStart = 0;
  3582     }
  3583     if( iCol==tailCol && iStart<=tailOffset+20 ){
  3584       iStart = tailOffset;
  3585     }
  3586     if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
  3587       trimWhiteSpace(&sb);
  3588       appendWhiteSpace(&sb);
  3589       append(&sb, zEllipsis);
  3590       appendWhiteSpace(&sb);
  3591     }
  3592     iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
  3593     iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
  3594     if( iEnd>=nDoc-10 ){
  3595       iEnd = nDoc;
  3596       tailEllipsis = 0;
  3597     }else{
  3598       tailEllipsis = 1;
  3599     }
  3600     while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
  3601     while( iStart<iEnd ){
  3602       while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
  3603              && aMatch[iMatch].iCol<=iCol ){
  3604         iMatch++;
  3605       }
  3606       if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
  3607              && aMatch[iMatch].iCol==iCol ){
  3608         nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
  3609         iStart = aMatch[iMatch].iStart;
  3610         append(&sb, zStartMark);
  3611         nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
  3612         append(&sb, zEndMark);
  3613         iStart += aMatch[iMatch].nByte;
  3614         for(j=iMatch+1; j<nMatch; j++){
  3615           if( aMatch[j].iTerm==aMatch[iMatch].iTerm
  3616               && aMatch[j].snStatus==SNIPPET_DESIRED ){
  3617             nDesired--;
  3618             aMatch[j].snStatus = SNIPPET_IGNORE;
  3619           }
  3620         }
  3621       }else{
  3622         nappend(&sb, &zDoc[iStart], iEnd - iStart);
  3623         iStart = iEnd;
  3624       }
  3625     }
  3626     tailCol = iCol;
  3627     tailOffset = iEnd;
  3628   }
  3629   trimWhiteSpace(&sb);
  3630   if( tailEllipsis ){
  3631     appendWhiteSpace(&sb);
  3632     append(&sb, zEllipsis);
  3633   }
  3634   pCursor->snippet.zSnippet = stringBufferData(&sb);
  3635   pCursor->snippet.nSnippet = stringBufferLength(&sb);
  3636 }
  3637 
  3638 
  3639 /*
  3640 ** Close the cursor.  For additional information see the documentation
  3641 ** on the xClose method of the virtual table interface.
  3642 */
  3643 static int fulltextClose(sqlite3_vtab_cursor *pCursor){
  3644   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3645   FTSTRACE(("FTS3 Close %p\n", c));
  3646   sqlite3_finalize(c->pStmt);
  3647   queryClear(&c->q);
  3648   snippetClear(&c->snippet);
  3649   if( c->result.nData!=0 ) dlrDestroy(&c->reader);
  3650   dataBufferDestroy(&c->result);
  3651   sqlite3_free(c);
  3652   return SQLITE_OK;
  3653 }
  3654 
  3655 static int fulltextNext(sqlite3_vtab_cursor *pCursor){
  3656   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3657   int rc;
  3658 
  3659   FTSTRACE(("FTS3 Next %p\n", pCursor));
  3660   snippetClear(&c->snippet);
  3661   if( c->iCursorType < QUERY_FULLTEXT ){
  3662     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
  3663     rc = sqlite3_step(c->pStmt);
  3664     switch( rc ){
  3665       case SQLITE_ROW:
  3666         c->eof = 0;
  3667         return SQLITE_OK;
  3668       case SQLITE_DONE:
  3669         c->eof = 1;
  3670         return SQLITE_OK;
  3671       default:
  3672         c->eof = 1;
  3673         return rc;
  3674     }
  3675   } else {  /* full-text query */
  3676     rc = sqlite3_reset(c->pStmt);
  3677     if( rc!=SQLITE_OK ) return rc;
  3678 
  3679     if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
  3680       c->eof = 1;
  3681       return SQLITE_OK;
  3682     }
  3683     rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
  3684     dlrStep(&c->reader);
  3685     if( rc!=SQLITE_OK ) return rc;
  3686     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
  3687     rc = sqlite3_step(c->pStmt);
  3688     if( rc==SQLITE_ROW ){   /* the case we expect */
  3689       c->eof = 0;
  3690       return SQLITE_OK;
  3691     }
  3692     /* an error occurred; abort */
  3693     return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
  3694   }
  3695 }
  3696 
  3697 
  3698 /* TODO(shess) If we pushed LeafReader to the top of the file, or to
  3699 ** another file, term_select() could be pushed above
  3700 ** docListOfTerm().
  3701 */
  3702 static int termSelect(fulltext_vtab *v, int iColumn,
  3703                       const char *pTerm, int nTerm, int isPrefix,
  3704                       DocListType iType, DataBuffer *out);
  3705 
  3706 /* Return a DocList corresponding to the query term *pTerm.  If *pTerm
  3707 ** is the first term of a phrase query, go ahead and evaluate the phrase
  3708 ** query and return the doclist for the entire phrase query.
  3709 **
  3710 ** The resulting DL_DOCIDS doclist is stored in pResult, which is
  3711 ** overwritten.
  3712 */
  3713 static int docListOfTerm(
  3714   fulltext_vtab *v,    /* The full text index */
  3715   int iColumn,         /* column to restrict to.  No restriction if >=nColumn */
  3716   QueryTerm *pQTerm,   /* Term we are looking for, or 1st term of a phrase */
  3717   DataBuffer *pResult  /* Write the result here */
  3718 ){
  3719   DataBuffer left, right, new;
  3720   int i, rc;
  3721 
  3722   /* No phrase search if no position info. */
  3723   assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
  3724 
  3725   /* This code should never be called with buffered updates. */
  3726   assert( v->nPendingData<0 );
  3727 
  3728   dataBufferInit(&left, 0);
  3729   rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
  3730                   (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
  3731   if( rc ) return rc;
  3732   for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
  3733     /* If this token is connected to the next by a NEAR operator, and
  3734     ** the next token is the start of a phrase, then set nPhraseRight
  3735     ** to the number of tokens in the phrase. Otherwise leave it at 1.
  3736     */
  3737     int nPhraseRight = 1;
  3738     while( (i+nPhraseRight)<=pQTerm->nPhrase 
  3739         && pQTerm[i+nPhraseRight].nNear==0 
  3740     ){
  3741       nPhraseRight++;
  3742     }
  3743 
  3744     dataBufferInit(&right, 0);
  3745     rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
  3746                     pQTerm[i].isPrefix, DL_POSITIONS, &right);
  3747     if( rc ){
  3748       dataBufferDestroy(&left);
  3749       return rc;
  3750     }
  3751     dataBufferInit(&new, 0);
  3752     docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
  3753                        pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
  3754                        ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
  3755                        &new);
  3756     dataBufferDestroy(&left);
  3757     dataBufferDestroy(&right);
  3758     left = new;
  3759   }
  3760   *pResult = left;
  3761   return SQLITE_OK;
  3762 }
  3763 
  3764 /* Add a new term pTerm[0..nTerm-1] to the query *q.
  3765 */
  3766 static void queryAdd(Query *q, const char *pTerm, int nTerm){
  3767   QueryTerm *t;
  3768   ++q->nTerms;
  3769   q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
  3770   if( q->pTerms==0 ){
  3771     q->nTerms = 0;
  3772     return;
  3773   }
  3774   t = &q->pTerms[q->nTerms - 1];
  3775   CLEAR(t);
  3776   t->pTerm = sqlite3_malloc(nTerm+1);
  3777   memcpy(t->pTerm, pTerm, nTerm);
  3778   t->pTerm[nTerm] = 0;
  3779   t->nTerm = nTerm;
  3780   t->isOr = q->nextIsOr;
  3781   t->isPrefix = 0;
  3782   q->nextIsOr = 0;
  3783   t->iColumn = q->nextColumn;
  3784   q->nextColumn = q->dfltColumn;
  3785 }
  3786 
  3787 /*
  3788 ** Check to see if the string zToken[0...nToken-1] matches any
  3789 ** column name in the virtual table.   If it does,
  3790 ** return the zero-indexed column number.  If not, return -1.
  3791 */
  3792 static int checkColumnSpecifier(
  3793   fulltext_vtab *pVtab,    /* The virtual table */
  3794   const char *zToken,      /* Text of the token */
  3795   int nToken               /* Number of characters in the token */
  3796 ){
  3797   int i;
  3798   for(i=0; i<pVtab->nColumn; i++){
  3799     if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
  3800         && pVtab->azColumn[i][nToken]==0 ){
  3801       return i;
  3802     }
  3803   }
  3804   return -1;
  3805 }
  3806 
  3807 /*
  3808 ** Parse the text at zSegment[0..nSegment-1].  Add additional terms
  3809 ** to the query being assemblied in pQuery.
  3810 **
  3811 ** inPhrase is true if zSegment[0..nSegement-1] is contained within
  3812 ** double-quotes.  If inPhrase is true, then the first term
  3813 ** is marked with the number of terms in the phrase less one and
  3814 ** OR and "-" syntax is ignored.  If inPhrase is false, then every
  3815 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
  3816 */
  3817 static int tokenizeSegment(
  3818   sqlite3_tokenizer *pTokenizer,          /* The tokenizer to use */
  3819   const char *zSegment, int nSegment,     /* Query expression being parsed */
  3820   int inPhrase,                           /* True if within "..." */
  3821   Query *pQuery                           /* Append results here */
  3822 ){
  3823   const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
  3824   sqlite3_tokenizer_cursor *pCursor;
  3825   int firstIndex = pQuery->nTerms;
  3826   int iCol;
  3827   int nTerm = 1;
  3828   
  3829   int rc = pModule->xOpen(pTokenizer, zSegment, nSegment, &pCursor);
  3830   if( rc!=SQLITE_OK ) return rc;
  3831   pCursor->pTokenizer = pTokenizer;
  3832 
  3833   while( 1 ){
  3834     const char *zToken;
  3835     int nToken, iBegin, iEnd, iPos;
  3836 
  3837     rc = pModule->xNext(pCursor,
  3838                         &zToken, &nToken,
  3839                         &iBegin, &iEnd, &iPos);
  3840     if( rc!=SQLITE_OK ) break;
  3841     if( !inPhrase &&
  3842         zSegment[iEnd]==':' &&
  3843          (iCol = checkColumnSpecifier(pQuery->pFts, zToken, nToken))>=0 ){
  3844       pQuery->nextColumn = iCol;
  3845       continue;
  3846     }
  3847     if( !inPhrase && pQuery->nTerms>0 && nToken==2 
  3848      && zSegment[iBegin+0]=='O'
  3849      && zSegment[iBegin+1]=='R' 
  3850     ){
  3851       pQuery->nextIsOr = 1;
  3852       continue;
  3853     }
  3854     if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4 
  3855       && memcmp(&zSegment[iBegin], "NEAR", 4)==0
  3856     ){
  3857       QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
  3858       if( (iBegin+6)<nSegment 
  3859        && zSegment[iBegin+4] == '/'
  3860        && isdigit(zSegment[iBegin+5])
  3861       ){
  3862         int k;
  3863         pTerm->nNear = 0;
  3864         for(k=5; (iBegin+k)<=nSegment && isdigit(zSegment[iBegin+k]); k++){
  3865           pTerm->nNear = pTerm->nNear*10 + (zSegment[iBegin+k] - '0');
  3866         }
  3867         pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
  3868       } else {
  3869         pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
  3870       }
  3871       pTerm->nNear++;
  3872       continue;
  3873     }
  3874 
  3875     queryAdd(pQuery, zToken, nToken);
  3876     if( !inPhrase && iBegin>0 && zSegment[iBegin-1]=='-' ){
  3877       pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
  3878     }
  3879     if( iEnd<nSegment && zSegment[iEnd]=='*' ){
  3880       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
  3881     }
  3882     pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
  3883     if( inPhrase ){
  3884       nTerm++;
  3885     }
  3886   }
  3887 
  3888   if( inPhrase && pQuery->nTerms>firstIndex ){
  3889     pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
  3890   }
  3891 
  3892   return pModule->xClose(pCursor);
  3893 }
  3894 
  3895 /* Parse a query string, yielding a Query object pQuery.
  3896 **
  3897 ** The calling function will need to queryClear() to clean up
  3898 ** the dynamically allocated memory held by pQuery.
  3899 */
  3900 static int parseQuery(
  3901   fulltext_vtab *v,        /* The fulltext index */
  3902   const char *zInput,      /* Input text of the query string */
  3903   int nInput,              /* Size of the input text */
  3904   int dfltColumn,          /* Default column of the index to match against */
  3905   Query *pQuery            /* Write the parse results here. */
  3906 ){
  3907   int iInput, inPhrase = 0;
  3908   int ii;
  3909   QueryTerm *aTerm;
  3910 
  3911   if( zInput==0 ) nInput = 0;
  3912   if( nInput<0 ) nInput = strlen(zInput);
  3913   pQuery->nTerms = 0;
  3914   pQuery->pTerms = NULL;
  3915   pQuery->nextIsOr = 0;
  3916   pQuery->nextColumn = dfltColumn;
  3917   pQuery->dfltColumn = dfltColumn;
  3918   pQuery->pFts = v;
  3919 
  3920   for(iInput=0; iInput<nInput; ++iInput){
  3921     int i;
  3922     for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
  3923     if( i>iInput ){
  3924       tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
  3925                        pQuery);
  3926     }
  3927     iInput = i;
  3928     if( i<nInput ){
  3929       assert( zInput[i]=='"' );
  3930       inPhrase = !inPhrase;
  3931     }
  3932   }
  3933 
  3934   if( inPhrase ){
  3935     /* unmatched quote */
  3936     queryClear(pQuery);
  3937     return SQLITE_ERROR;
  3938   }
  3939 
  3940   /* Modify the values of the QueryTerm.nPhrase variables to account for
  3941   ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
  3942   ** and tokens connected by the NEAR operator are handled as a single
  3943   ** phrase. See comments above the QueryTerm structure for details.
  3944   */
  3945   aTerm = pQuery->pTerms;
  3946   for(ii=0; ii<pQuery->nTerms; ii++){
  3947     if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
  3948       while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
  3949         aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
  3950       }
  3951     }
  3952   }
  3953 
  3954   return SQLITE_OK;
  3955 }
  3956 
  3957 /* TODO(shess) Refactor the code to remove this forward decl. */
  3958 static int flushPendingTerms(fulltext_vtab *v);
  3959 
  3960 /* Perform a full-text query using the search expression in
  3961 ** zInput[0..nInput-1].  Return a list of matching documents
  3962 ** in pResult.
  3963 **
  3964 ** Queries must match column iColumn.  Or if iColumn>=nColumn
  3965 ** they are allowed to match against any column.
  3966 */
  3967 static int fulltextQuery(
  3968   fulltext_vtab *v,      /* The full text index */
  3969   int iColumn,           /* Match against this column by default */
  3970   const char *zInput,    /* The query string */
  3971   int nInput,            /* Number of bytes in zInput[] */
  3972   DataBuffer *pResult,   /* Write the result doclist here */
  3973   Query *pQuery          /* Put parsed query string here */
  3974 ){
  3975   int i, iNext, rc;
  3976   DataBuffer left, right, or, new;
  3977   int nNot = 0;
  3978   QueryTerm *aTerm;
  3979 
  3980   /* TODO(shess) Instead of flushing pendingTerms, we could query for
  3981   ** the relevant term and merge the doclist into what we receive from
  3982   ** the database.  Wait and see if this is a common issue, first.
  3983   **
  3984   ** A good reason not to flush is to not generate update-related
  3985   ** error codes from here.
  3986   */
  3987 
  3988   /* Flush any buffered updates before executing the query. */
  3989   rc = flushPendingTerms(v);
  3990   if( rc!=SQLITE_OK ) return rc;
  3991 
  3992   /* TODO(shess) I think that the queryClear() calls below are not
  3993   ** necessary, because fulltextClose() already clears the query.
  3994   */
  3995   rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
  3996   if( rc!=SQLITE_OK ) return rc;
  3997 
  3998   /* Empty or NULL queries return no results. */
  3999   if( pQuery->nTerms==0 ){
  4000     dataBufferInit(pResult, 0);
  4001     return SQLITE_OK;
  4002   }
  4003 
  4004   /* Merge AND terms. */
  4005   /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
  4006   aTerm = pQuery->pTerms;
  4007   for(i = 0; i<pQuery->nTerms; i=iNext){
  4008     if( aTerm[i].isNot ){
  4009       /* Handle all NOT terms in a separate pass */
  4010       nNot++;
  4011       iNext = i + aTerm[i].nPhrase+1;
  4012       continue;
  4013     }
  4014     iNext = i + aTerm[i].nPhrase + 1;
  4015     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
  4016     if( rc ){
  4017       if( i!=nNot ) dataBufferDestroy(&left);
  4018       queryClear(pQuery);
  4019       return rc;
  4020     }
  4021     while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
  4022       rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
  4023       iNext += aTerm[iNext].nPhrase + 1;
  4024       if( rc ){
  4025         if( i!=nNot ) dataBufferDestroy(&left);
  4026         dataBufferDestroy(&right);
  4027         queryClear(pQuery);
  4028         return rc;
  4029       }
  4030       dataBufferInit(&new, 0);
  4031       docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
  4032       dataBufferDestroy(&right);
  4033       dataBufferDestroy(&or);
  4034       right = new;
  4035     }
  4036     if( i==nNot ){           /* first term processed. */
  4037       left = right;
  4038     }else{
  4039       dataBufferInit(&new, 0);
  4040       docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
  4041       dataBufferDestroy(&right);
  4042       dataBufferDestroy(&left);
  4043       left = new;
  4044     }
  4045   }
  4046 
  4047   if( nNot==pQuery->nTerms ){
  4048     /* We do not yet know how to handle a query of only NOT terms */
  4049     return SQLITE_ERROR;
  4050   }
  4051 
  4052   /* Do the EXCEPT terms */
  4053   for(i=0; i<pQuery->nTerms;  i += aTerm[i].nPhrase + 1){
  4054     if( !aTerm[i].isNot ) continue;
  4055     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
  4056     if( rc ){
  4057       queryClear(pQuery);
  4058       dataBufferDestroy(&left);
  4059       return rc;
  4060     }
  4061     dataBufferInit(&new, 0);
  4062     docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
  4063     dataBufferDestroy(&right);
  4064     dataBufferDestroy(&left);
  4065     left = new;
  4066   }
  4067 
  4068   *pResult = left;
  4069   return rc;
  4070 }
  4071 
  4072 /*
  4073 ** This is the xFilter interface for the virtual table.  See
  4074 ** the virtual table xFilter method documentation for additional
  4075 ** information.
  4076 **
  4077 ** If idxNum==QUERY_GENERIC then do a full table scan against
  4078 ** the %_content table.
  4079 **
  4080 ** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
  4081 ** in the %_content table.
  4082 **
  4083 ** If idxNum>=QUERY_FULLTEXT then use the full text index.  The
  4084 ** column on the left-hand side of the MATCH operator is column
  4085 ** number idxNum-QUERY_FULLTEXT, 0 indexed.  argv[0] is the right-hand
  4086 ** side of the MATCH operator.
  4087 */
  4088 /* TODO(shess) Upgrade the cursor initialization and destruction to
  4089 ** account for fulltextFilter() being called multiple times on the
  4090 ** same cursor.  The current solution is very fragile.  Apply fix to
  4091 ** fts3 as appropriate.
  4092 */
  4093 static int fulltextFilter(
  4094   sqlite3_vtab_cursor *pCursor,     /* The cursor used for this query */
  4095   int idxNum, const char *idxStr,   /* Which indexing scheme to use */
  4096   int argc, sqlite3_value **argv    /* Arguments for the indexing scheme */
  4097 ){
  4098   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  4099   fulltext_vtab *v = cursor_vtab(c);
  4100   int rc;
  4101 
  4102   FTSTRACE(("FTS3 Filter %p\n",pCursor));
  4103 
  4104   /* If the cursor has a statement that was not prepared according to
  4105   ** idxNum, clear it.  I believe all calls to fulltextFilter with a
  4106   ** given cursor will have the same idxNum , but in this case it's
  4107   ** easy to be safe.
  4108   */
  4109   if( c->pStmt && c->iCursorType!=idxNum ){
  4110     sqlite3_finalize(c->pStmt);
  4111     c->pStmt = NULL;
  4112   }
  4113 
  4114   /* Get a fresh statement appropriate to idxNum. */
  4115   /* TODO(shess): Add a prepared-statement cache in the vt structure.
  4116   ** The cache must handle multiple open cursors.  Easier to cache the
  4117   ** statement variants at the vt to reduce malloc/realloc/free here.
  4118   ** Or we could have a StringBuffer variant which allowed stack
  4119   ** construction for small values.
  4120   */
  4121   if( !c->pStmt ){
  4122     StringBuffer sb;
  4123     initStringBuffer(&sb);
  4124     append(&sb, "SELECT docid, ");
  4125     appendList(&sb, v->nColumn, v->azContentColumn);
  4126     append(&sb, " FROM %_content");
  4127     if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
  4128     rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt,
  4129                      stringBufferData(&sb));
  4130     stringBufferDestroy(&sb);
  4131     if( rc!=SQLITE_OK ) return rc;
  4132     c->iCursorType = idxNum;
  4133   }else{
  4134     sqlite3_reset(c->pStmt);
  4135     assert( c->iCursorType==idxNum );
  4136   }
  4137 
  4138   switch( idxNum ){
  4139     case QUERY_GENERIC:
  4140       break;
  4141 
  4142     case QUERY_DOCID:
  4143       rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
  4144       if( rc!=SQLITE_OK ) return rc;
  4145       break;
  4146 
  4147     default:   /* full-text search */
  4148     {
  4149       const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
  4150       assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
  4151       assert( argc==1 );
  4152       queryClear(&c->q);
  4153       if( c->result.nData!=0 ){
  4154         /* This case happens if the same cursor is used repeatedly. */
  4155         dlrDestroy(&c->reader);
  4156         dataBufferReset(&c->result);
  4157       }else{
  4158         dataBufferInit(&c->result, 0);
  4159       }
  4160       rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
  4161       if( rc!=SQLITE_OK ) return rc;
  4162       if( c->result.nData!=0 ){
  4163         dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
  4164       }
  4165       break;
  4166     }
  4167   }
  4168 
  4169   return fulltextNext(pCursor);
  4170 }
  4171 
  4172 /* This is the xEof method of the virtual table.  The SQLite core
  4173 ** calls this routine to find out if it has reached the end of
  4174 ** a query's results set.
  4175 */
  4176 static int fulltextEof(sqlite3_vtab_cursor *pCursor){
  4177   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  4178   return c->eof;
  4179 }
  4180 
  4181 /* This is the xColumn method of the virtual table.  The SQLite
  4182 ** core calls this method during a query when it needs the value
  4183 ** of a column from the virtual table.  This method needs to use
  4184 ** one of the sqlite3_result_*() routines to store the requested
  4185 ** value back in the pContext.
  4186 */
  4187 static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
  4188                           sqlite3_context *pContext, int idxCol){
  4189   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  4190   fulltext_vtab *v = cursor_vtab(c);
  4191 
  4192   if( idxCol<v->nColumn ){
  4193     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
  4194     sqlite3_result_value(pContext, pVal);
  4195   }else if( idxCol==v->nColumn ){
  4196     /* The extra column whose name is the same as the table.
  4197     ** Return a blob which is a pointer to the cursor
  4198     */
  4199     sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
  4200   }else if( idxCol==v->nColumn+1 ){
  4201     /* The docid column, which is an alias for rowid. */
  4202     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
  4203     sqlite3_result_value(pContext, pVal);
  4204   }
  4205   return SQLITE_OK;
  4206 }
  4207 
  4208 /* This is the xRowid method.  The SQLite core calls this routine to
  4209 ** retrieve the rowid for the current row of the result set.  fts3
  4210 ** exposes %_content.docid as the rowid for the virtual table.  The
  4211 ** rowid should be written to *pRowid.
  4212 */
  4213 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  4214   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  4215 
  4216   *pRowid = sqlite3_column_int64(c->pStmt, 0);
  4217   return SQLITE_OK;
  4218 }
  4219 
  4220 /* Add all terms in [zText] to pendingTerms table.  If [iColumn] > 0,
  4221 ** we also store positions and offsets in the hash table using that
  4222 ** column number.
  4223 */
  4224 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
  4225                       const char *zText, int iColumn){
  4226   sqlite3_tokenizer *pTokenizer = v->pTokenizer;
  4227   sqlite3_tokenizer_cursor *pCursor;
  4228   const char *pToken;
  4229   int nTokenBytes;
  4230   int iStartOffset, iEndOffset, iPosition;
  4231   int rc;
  4232 
  4233   rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
  4234   if( rc!=SQLITE_OK ) return rc;
  4235 
  4236   pCursor->pTokenizer = pTokenizer;
  4237   while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
  4238                                                    &pToken, &nTokenBytes,
  4239                                                    &iStartOffset, &iEndOffset,
  4240                                                    &iPosition)) ){
  4241     DLCollector *p;
  4242     int nData;                   /* Size of doclist before our update. */
  4243 
  4244     /* Positions can't be negative; we use -1 as a terminator
  4245      * internally.  Token can't be NULL or empty. */
  4246     if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
  4247       rc = SQLITE_ERROR;
  4248       break;
  4249     }
  4250 
  4251     p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
  4252     if( p==NULL ){
  4253       nData = 0;
  4254       p = dlcNew(iDocid, DL_DEFAULT);
  4255       fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
  4256 
  4257       /* Overhead for our hash table entry, the key, and the value. */
  4258       v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
  4259     }else{
  4260       nData = p->b.nData;
  4261       if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
  4262     }
  4263     if( iColumn>=0 ){
  4264       dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
  4265     }
  4266 
  4267     /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
  4268     v->nPendingData += p->b.nData-nData;
  4269   }
  4270 
  4271   /* TODO(shess) Check return?  Should this be able to cause errors at
  4272   ** this point?  Actually, same question about sqlite3_finalize(),
  4273   ** though one could argue that failure there means that the data is
  4274   ** not durable.  *ponder*
  4275   */
  4276   pTokenizer->pModule->xClose(pCursor);
  4277   if( SQLITE_DONE == rc ) return SQLITE_OK;
  4278   return rc;
  4279 }
  4280 
  4281 /* Add doclists for all terms in [pValues] to pendingTerms table. */
  4282 static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
  4283                        sqlite3_value **pValues){
  4284   int i;
  4285   for(i = 0; i < v->nColumn ; ++i){
  4286     char *zText = (char*)sqlite3_value_text(pValues[i]);
  4287     int rc = buildTerms(v, iDocid, zText, i);
  4288     if( rc!=SQLITE_OK ) return rc;
  4289   }
  4290   return SQLITE_OK;
  4291 }
  4292 
  4293 /* Add empty doclists for all terms in the given row's content to
  4294 ** pendingTerms.
  4295 */
  4296 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
  4297   const char **pValues;
  4298   int i, rc;
  4299 
  4300   /* TODO(shess) Should we allow such tables at all? */
  4301   if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
  4302 
  4303   rc = content_select(v, iDocid, &pValues);
  4304   if( rc!=SQLITE_OK ) return rc;
  4305 
  4306   for(i = 0 ; i < v->nColumn; ++i) {
  4307     rc = buildTerms(v, iDocid, pValues[i], -1);
  4308     if( rc!=SQLITE_OK ) break;
  4309   }
  4310 
  4311   freeStringArray(v->nColumn, pValues);
  4312   return SQLITE_OK;
  4313 }
  4314 
  4315 /* TODO(shess) Refactor the code to remove this forward decl. */
  4316 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
  4317 
  4318 /* Insert a row into the %_content table; set *piDocid to be the ID of the
  4319 ** new row.  Add doclists for terms to pendingTerms.
  4320 */
  4321 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
  4322                         sqlite3_value **pValues, sqlite_int64 *piDocid){
  4323   int rc;
  4324 
  4325   rc = content_insert(v, pRequestDocid, pValues);  /* execute an SQL INSERT */
  4326   if( rc!=SQLITE_OK ) return rc;
  4327 
  4328   /* docid column is an alias for rowid. */
  4329   *piDocid = sqlite3_last_insert_rowid(v->db);
  4330   rc = initPendingTerms(v, *piDocid);
  4331   if( rc!=SQLITE_OK ) return rc;
  4332 
  4333   return insertTerms(v, *piDocid, pValues);
  4334 }
  4335 
  4336 /* Delete a row from the %_content table; add empty doclists for terms
  4337 ** to pendingTerms.
  4338 */
  4339 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
  4340   int rc = initPendingTerms(v, iRow);
  4341   if( rc!=SQLITE_OK ) return rc;
  4342 
  4343   rc = deleteTerms(v, iRow);
  4344   if( rc!=SQLITE_OK ) return rc;
  4345 
  4346   return content_delete(v, iRow);  /* execute an SQL DELETE */
  4347 }
  4348 
  4349 /* Update a row in the %_content table; add delete doclists to
  4350 ** pendingTerms for old terms not in the new data, add insert doclists
  4351 ** to pendingTerms for terms in the new data.
  4352 */
  4353 static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
  4354                         sqlite3_value **pValues){
  4355   int rc = initPendingTerms(v, iRow);
  4356   if( rc!=SQLITE_OK ) return rc;
  4357 
  4358   /* Generate an empty doclist for each term that previously appeared in this
  4359    * row. */
  4360   rc = deleteTerms(v, iRow);
  4361   if( rc!=SQLITE_OK ) return rc;
  4362 
  4363   rc = content_update(v, pValues, iRow);  /* execute an SQL UPDATE */
  4364   if( rc!=SQLITE_OK ) return rc;
  4365 
  4366   /* Now add positions for terms which appear in the updated row. */
  4367   return insertTerms(v, iRow, pValues);
  4368 }
  4369 
  4370 /*******************************************************************/
  4371 /* InteriorWriter is used to collect terms and block references into
  4372 ** interior nodes in %_segments.  See commentary at top of file for
  4373 ** format.
  4374 */
  4375 
  4376 /* How large interior nodes can grow. */
  4377 #define INTERIOR_MAX 2048
  4378 
  4379 /* Minimum number of terms per interior node (except the root). This
  4380 ** prevents large terms from making the tree too skinny - must be >0
  4381 ** so that the tree always makes progress.  Note that the min tree
  4382 ** fanout will be INTERIOR_MIN_TERMS+1.
  4383 */
  4384 #define INTERIOR_MIN_TERMS 7
  4385 #if INTERIOR_MIN_TERMS<1
  4386 # error INTERIOR_MIN_TERMS must be greater than 0.
  4387 #endif
  4388 
  4389 /* ROOT_MAX controls how much data is stored inline in the segment
  4390 ** directory.
  4391 */
  4392 /* TODO(shess) Push ROOT_MAX down to whoever is writing things.  It's
  4393 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
  4394 ** can both see it, but if the caller passed it in, we wouldn't even
  4395 ** need a define.
  4396 */
  4397 #define ROOT_MAX 1024
  4398 #if ROOT_MAX<VARINT_MAX*2
  4399 # error ROOT_MAX must have enough space for a header.
  4400 #endif
  4401 
  4402 /* InteriorBlock stores a linked-list of interior blocks while a lower
  4403 ** layer is being constructed.
  4404 */
  4405 typedef struct InteriorBlock {
  4406   DataBuffer term;           /* Leftmost term in block's subtree. */
  4407   DataBuffer data;           /* Accumulated data for the block. */
  4408   struct InteriorBlock *next;
  4409 } InteriorBlock;
  4410 
  4411 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
  4412                                        const char *pTerm, int nTerm){
  4413   InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
  4414   char c[VARINT_MAX+VARINT_MAX];
  4415   int n;
  4416 
  4417   if( block ){
  4418     memset(block, 0, sizeof(*block));
  4419     dataBufferInit(&block->term, 0);
  4420     dataBufferReplace(&block->term, pTerm, nTerm);
  4421 
  4422     n = fts3PutVarint(c, iHeight);
  4423     n += fts3PutVarint(c+n, iChildBlock);
  4424     dataBufferInit(&block->data, INTERIOR_MAX);
  4425     dataBufferReplace(&block->data, c, n);
  4426   }
  4427   return block;
  4428 }
  4429 
  4430 #ifndef NDEBUG
  4431 /* Verify that the data is readable as an interior node. */
  4432 static void interiorBlockValidate(InteriorBlock *pBlock){
  4433   const char *pData = pBlock->data.pData;
  4434   int nData = pBlock->data.nData;
  4435   int n, iDummy;
  4436   sqlite_int64 iBlockid;
  4437 
  4438   assert( nData>0 );
  4439   assert( pData!=0 );
  4440   assert( pData+nData>pData );
  4441 
  4442   /* Must lead with height of node as a varint(n), n>0 */
  4443   n = fts3GetVarint32(pData, &iDummy);
  4444   assert( n>0 );
  4445   assert( iDummy>0 );
  4446   assert( n<nData );
  4447   pData += n;
  4448   nData -= n;
  4449 
  4450   /* Must contain iBlockid. */
  4451   n = fts3GetVarint(pData, &iBlockid);
  4452   assert( n>0 );
  4453   assert( n<=nData );
  4454   pData += n;
  4455   nData -= n;
  4456 
  4457   /* Zero or more terms of positive length */
  4458   if( nData!=0 ){
  4459     /* First term is not delta-encoded. */
  4460     n = fts3GetVarint32(pData, &iDummy);
  4461     assert( n>0 );
  4462     assert( iDummy>0 );
  4463     assert( n+iDummy>0);
  4464     assert( n+iDummy<=nData );
  4465     pData += n+iDummy;
  4466     nData -= n+iDummy;
  4467 
  4468     /* Following terms delta-encoded. */
  4469     while( nData!=0 ){
  4470       /* Length of shared prefix. */
  4471       n = fts3GetVarint32(pData, &iDummy);
  4472       assert( n>0 );
  4473       assert( iDummy>=0 );
  4474       assert( n<nData );
  4475       pData += n;
  4476       nData -= n;
  4477 
  4478       /* Length and data of distinct suffix. */
  4479       n = fts3GetVarint32(pData, &iDummy);
  4480       assert( n>0 );
  4481       assert( iDummy>0 );
  4482       assert( n+iDummy>0);
  4483       assert( n+iDummy<=nData );
  4484       pData += n+iDummy;
  4485       nData -= n+iDummy;
  4486     }
  4487   }
  4488 }
  4489 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
  4490 #else
  4491 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
  4492 #endif
  4493 
  4494 typedef struct InteriorWriter {
  4495   int iHeight;                   /* from 0 at leaves. */
  4496   InteriorBlock *first, *last;
  4497   struct InteriorWriter *parentWriter;
  4498 
  4499   DataBuffer term;               /* Last term written to block "last". */
  4500   sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
  4501 #ifndef NDEBUG
  4502   sqlite_int64 iLastChildBlock;  /* for consistency checks. */
  4503 #endif
  4504 } InteriorWriter;
  4505 
  4506 /* Initialize an interior node where pTerm[nTerm] marks the leftmost
  4507 ** term in the tree.  iChildBlock is the leftmost child block at the
  4508 ** next level down the tree.
  4509 */
  4510 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
  4511                                sqlite_int64 iChildBlock,
  4512                                InteriorWriter *pWriter){
  4513   InteriorBlock *block;
  4514   assert( iHeight>0 );
  4515   CLEAR(pWriter);
  4516 
  4517   pWriter->iHeight = iHeight;
  4518   pWriter->iOpeningChildBlock = iChildBlock;
  4519 #ifndef NDEBUG
  4520   pWriter->iLastChildBlock = iChildBlock;
  4521 #endif
  4522   block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
  4523   pWriter->last = pWriter->first = block;
  4524   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  4525   dataBufferInit(&pWriter->term, 0);
  4526 }
  4527 
  4528 /* Append the child node rooted at iChildBlock to the interior node,
  4529 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
  4530 */
  4531 static void interiorWriterAppend(InteriorWriter *pWriter,
  4532                                  const char *pTerm, int nTerm,
  4533                                  sqlite_int64 iChildBlock){
  4534   char c[VARINT_MAX+VARINT_MAX];
  4535   int n, nPrefix = 0;
  4536 
  4537   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  4538 
  4539   /* The first term written into an interior node is actually
  4540   ** associated with the second child added (the first child was added
  4541   ** in interiorWriterInit, or in the if clause at the bottom of this
  4542   ** function).  That term gets encoded straight up, with nPrefix left
  4543   ** at 0.
  4544   */
  4545   if( pWriter->term.nData==0 ){
  4546     n = fts3PutVarint(c, nTerm);
  4547   }else{
  4548     while( nPrefix<pWriter->term.nData &&
  4549            pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
  4550       nPrefix++;
  4551     }
  4552 
  4553     n = fts3PutVarint(c, nPrefix);
  4554     n += fts3PutVarint(c+n, nTerm-nPrefix);
  4555   }
  4556 
  4557 #ifndef NDEBUG
  4558   pWriter->iLastChildBlock++;
  4559 #endif
  4560   assert( pWriter->iLastChildBlock==iChildBlock );
  4561 
  4562   /* Overflow to a new block if the new term makes the current block
  4563   ** too big, and the current block already has enough terms.
  4564   */
  4565   if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
  4566       iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
  4567     pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
  4568                                            pTerm, nTerm);
  4569     pWriter->last = pWriter->last->next;
  4570     pWriter->iOpeningChildBlock = iChildBlock;
  4571     dataBufferReset(&pWriter->term);
  4572   }else{
  4573     dataBufferAppend2(&pWriter->last->data, c, n,
  4574                       pTerm+nPrefix, nTerm-nPrefix);
  4575     dataBufferReplace(&pWriter->term, pTerm, nTerm);
  4576   }
  4577   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  4578 }
  4579 
  4580 /* Free the space used by pWriter, including the linked-list of
  4581 ** InteriorBlocks, and parentWriter, if present.
  4582 */
  4583 static int interiorWriterDestroy(InteriorWriter *pWriter){
  4584   InteriorBlock *block = pWriter->first;
  4585 
  4586   while( block!=NULL ){
  4587     InteriorBlock *b = block;
  4588     block = block->next;
  4589     dataBufferDestroy(&b->term);
  4590     dataBufferDestroy(&b->data);
  4591     sqlite3_free(b);
  4592   }
  4593   if( pWriter->parentWriter!=NULL ){
  4594     interiorWriterDestroy(pWriter->parentWriter);
  4595     sqlite3_free(pWriter->parentWriter);
  4596   }
  4597   dataBufferDestroy(&pWriter->term);
  4598   SCRAMBLE(pWriter);
  4599   return SQLITE_OK;
  4600 }
  4601 
  4602 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info
  4603 ** directly, leaving *piEndBlockid unchanged.  Otherwise, flush
  4604 ** pWriter to %_segments, building a new layer of interior nodes, and
  4605 ** recursively ask for their root into.
  4606 */
  4607 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
  4608                                   char **ppRootInfo, int *pnRootInfo,
  4609                                   sqlite_int64 *piEndBlockid){
  4610   InteriorBlock *block = pWriter->first;
  4611   sqlite_int64 iBlockid = 0;
  4612   int rc;
  4613 
  4614   /* If we can fit the segment inline */
  4615   if( block==pWriter->last && block->data.nData<ROOT_MAX ){
  4616     *ppRootInfo = block->data.pData;
  4617     *pnRootInfo = block->data.nData;
  4618     return SQLITE_OK;
  4619   }
  4620 
  4621   /* Flush the first block to %_segments, and create a new level of
  4622   ** interior node.
  4623   */
  4624   ASSERT_VALID_INTERIOR_BLOCK(block);
  4625   rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
  4626   if( rc!=SQLITE_OK ) return rc;
  4627   *piEndBlockid = iBlockid;
  4628 
  4629   pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
  4630   interiorWriterInit(pWriter->iHeight+1,
  4631                      block->term.pData, block->term.nData,
  4632                      iBlockid, pWriter->parentWriter);
  4633 
  4634   /* Flush additional blocks and append to the higher interior
  4635   ** node.
  4636   */
  4637   for(block=block->next; block!=NULL; block=block->next){
  4638     ASSERT_VALID_INTERIOR_BLOCK(block);
  4639     rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
  4640     if( rc!=SQLITE_OK ) return rc;
  4641     *piEndBlockid = iBlockid;
  4642 
  4643     interiorWriterAppend(pWriter->parentWriter,
  4644                          block->term.pData, block->term.nData, iBlockid);
  4645   }
  4646 
  4647   /* Parent node gets the chance to be the root. */
  4648   return interiorWriterRootInfo(v, pWriter->parentWriter,
  4649                                 ppRootInfo, pnRootInfo, piEndBlockid);
  4650 }
  4651 
  4652 /****************************************************************/
  4653 /* InteriorReader is used to read off the data from an interior node
  4654 ** (see comment at top of file for the format).
  4655 */
  4656 typedef struct InteriorReader {
  4657   const char *pData;
  4658   int nData;
  4659 
  4660   DataBuffer term;          /* previous term, for decoding term delta. */
  4661 
  4662   sqlite_int64 iBlockid;
  4663 } InteriorReader;
  4664 
  4665 static void interiorReaderDestroy(InteriorReader *pReader){
  4666   dataBufferDestroy(&pReader->term);
  4667   SCRAMBLE(pReader);
  4668 }
  4669 
  4670 /* TODO(shess) The assertions are great, but what if we're in NDEBUG
  4671 ** and the blob is empty or otherwise contains suspect data?
  4672 */
  4673 static void interiorReaderInit(const char *pData, int nData,
  4674                                InteriorReader *pReader){
  4675   int n, nTerm;
  4676 
  4677   /* Require at least the leading flag byte */
  4678   assert( nData>0 );
  4679   assert( pData[0]!='\0' );
  4680 
  4681   CLEAR(pReader);
  4682 
  4683   /* Decode the base blockid, and set the cursor to the first term. */
  4684   n = fts3GetVarint(pData+1, &pReader->iBlockid);
  4685   assert( 1+n<=nData );
  4686   pReader->pData = pData+1+n;
  4687   pReader->nData = nData-(1+n);
  4688 
  4689   /* A single-child interior node (such as when a leaf node was too
  4690   ** large for the segment directory) won't have any terms.
  4691   ** Otherwise, decode the first term.
  4692   */
  4693   if( pReader->nData==0 ){
  4694     dataBufferInit(&pReader->term, 0);
  4695   }else{
  4696     n = fts3GetVarint32(pReader->pData, &nTerm);
  4697     dataBufferInit(&pReader->term, nTerm);
  4698     dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
  4699     assert( n+nTerm<=pReader->nData );
  4700     pReader->pData += n+nTerm;
  4701     pReader->nData -= n+nTerm;
  4702   }
  4703 }
  4704 
  4705 static int interiorReaderAtEnd(InteriorReader *pReader){
  4706   return pReader->term.nData==0;
  4707 }
  4708 
  4709 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
  4710   return pReader->iBlockid;
  4711 }
  4712 
  4713 static int interiorReaderTermBytes(InteriorReader *pReader){
  4714   assert( !interiorReaderAtEnd(pReader) );
  4715   return pReader->term.nData;
  4716 }
  4717 static const char *interiorReaderTerm(InteriorReader *pReader){
  4718   assert( !interiorReaderAtEnd(pReader) );
  4719   return pReader->term.pData;
  4720 }
  4721 
  4722 /* Step forward to the next term in the node. */
  4723 static void interiorReaderStep(InteriorReader *pReader){
  4724   assert( !interiorReaderAtEnd(pReader) );
  4725 
  4726   /* If the last term has been read, signal eof, else construct the
  4727   ** next term.
  4728   */
  4729   if( pReader->nData==0 ){
  4730     dataBufferReset(&pReader->term);
  4731   }else{
  4732     int n, nPrefix, nSuffix;
  4733 
  4734     n = fts3GetVarint32(pReader->pData, &nPrefix);
  4735     n += fts3GetVarint32(pReader->pData+n, &nSuffix);
  4736 
  4737     /* Truncate the current term and append suffix data. */
  4738     pReader->term.nData = nPrefix;
  4739     dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
  4740 
  4741     assert( n+nSuffix<=pReader->nData );
  4742     pReader->pData += n+nSuffix;
  4743     pReader->nData -= n+nSuffix;
  4744   }
  4745   pReader->iBlockid++;
  4746 }
  4747 
  4748 /* Compare the current term to pTerm[nTerm], returning strcmp-style
  4749 ** results.  If isPrefix, equality means equal through nTerm bytes.
  4750 */
  4751 static int interiorReaderTermCmp(InteriorReader *pReader,
  4752                                  const char *pTerm, int nTerm, int isPrefix){
  4753   const char *pReaderTerm = interiorReaderTerm(pReader);
  4754   int nReaderTerm = interiorReaderTermBytes(pReader);
  4755   int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
  4756 
  4757   if( n==0 ){
  4758     if( nReaderTerm>0 ) return -1;
  4759     if( nTerm>0 ) return 1;
  4760     return 0;
  4761   }
  4762 
  4763   c = memcmp(pReaderTerm, pTerm, n);
  4764   if( c!=0 ) return c;
  4765   if( isPrefix && n==nTerm ) return 0;
  4766   return nReaderTerm - nTerm;
  4767 }
  4768 
  4769 /****************************************************************/
  4770 /* LeafWriter is used to collect terms and associated doclist data
  4771 ** into leaf blocks in %_segments (see top of file for format info).
  4772 ** Expected usage is:
  4773 **
  4774 ** LeafWriter writer;
  4775 ** leafWriterInit(0, 0, &writer);
  4776 ** while( sorted_terms_left_to_process ){
  4777 **   // data is doclist data for that term.
  4778 **   rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
  4779 **   if( rc!=SQLITE_OK ) goto err;
  4780 ** }
  4781 ** rc = leafWriterFinalize(v, &writer);
  4782 **err:
  4783 ** leafWriterDestroy(&writer);
  4784 ** return rc;
  4785 **
  4786 ** leafWriterStep() may write a collected leaf out to %_segments.
  4787 ** leafWriterFinalize() finishes writing any buffered data and stores
  4788 ** a root node in %_segdir.  leafWriterDestroy() frees all buffers and
  4789 ** InteriorWriters allocated as part of writing this segment.
  4790 **
  4791 ** TODO(shess) Document leafWriterStepMerge().
  4792 */
  4793 
  4794 /* Put terms with data this big in their own block. */
  4795 #define STANDALONE_MIN 1024
  4796 
  4797 /* Keep leaf blocks below this size. */
  4798 #define LEAF_MAX 2048
  4799 
  4800 typedef struct LeafWriter {
  4801   int iLevel;
  4802   int idx;
  4803   sqlite_int64 iStartBlockid;     /* needed to create the root info */
  4804   sqlite_int64 iEndBlockid;       /* when we're done writing. */
  4805 
  4806   DataBuffer term;                /* previous encoded term */
  4807   DataBuffer data;                /* encoding buffer */
  4808 
  4809   /* bytes of first term in the current node which distinguishes that
  4810   ** term from the last term of the previous node.
  4811   */
  4812   int nTermDistinct;
  4813 
  4814   InteriorWriter parentWriter;    /* if we overflow */
  4815   int has_parent;
  4816 } LeafWriter;
  4817 
  4818 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
  4819   CLEAR(pWriter);
  4820   pWriter->iLevel = iLevel;
  4821   pWriter->idx = idx;
  4822 
  4823   dataBufferInit(&pWriter->term, 32);
  4824 
  4825   /* Start out with a reasonably sized block, though it can grow. */
  4826   dataBufferInit(&pWriter->data, LEAF_MAX);
  4827 }
  4828 
  4829 #ifndef NDEBUG
  4830 /* Verify that the data is readable as a leaf node. */
  4831 static void leafNodeValidate(const char *pData, int nData){
  4832   int n, iDummy;
  4833 
  4834   if( nData==0 ) return;
  4835   assert( nData>0 );
  4836   assert( pData!=0 );
  4837   assert( pData+nData>pData );
  4838 
  4839   /* Must lead with a varint(0) */
  4840   n = fts3GetVarint32(pData, &iDummy);
  4841   assert( iDummy==0 );
  4842   assert( n>0 );
  4843   assert( n<nData );
  4844   pData += n;
  4845   nData -= n;
  4846 
  4847   /* Leading term length and data must fit in buffer. */
  4848   n = fts3GetVarint32(pData, &iDummy);
  4849   assert( n>0 );
  4850   assert( iDummy>0 );
  4851   assert( n+iDummy>0 );
  4852   assert( n+iDummy<nData );
  4853   pData += n+iDummy;
  4854   nData -= n+iDummy;
  4855 
  4856   /* Leading term's doclist length and data must fit. */
  4857   n = fts3GetVarint32(pData, &iDummy);
  4858   assert( n>0 );
  4859   assert( iDummy>0 );
  4860   assert( n+iDummy>0 );
  4861   assert( n+iDummy<=nData );
  4862   ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
  4863   pData += n+iDummy;
  4864   nData -= n+iDummy;
  4865 
  4866   /* Verify that trailing terms and doclists also are readable. */
  4867   while( nData!=0 ){
  4868     n = fts3GetVarint32(pData, &iDummy);
  4869     assert( n>0 );
  4870     assert( iDummy>=0 );
  4871     assert( n<nData );
  4872     pData += n;
  4873     nData -= n;
  4874     n = fts3GetVarint32(pData, &iDummy);
  4875     assert( n>0 );
  4876     assert( iDummy>0 );
  4877     assert( n+iDummy>0 );
  4878     assert( n+iDummy<nData );
  4879     pData += n+iDummy;
  4880     nData -= n+iDummy;
  4881 
  4882     n = fts3GetVarint32(pData, &iDummy);
  4883     assert( n>0 );
  4884     assert( iDummy>0 );
  4885     assert( n+iDummy>0 );
  4886     assert( n+iDummy<=nData );
  4887     ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
  4888     pData += n+iDummy;
  4889     nData -= n+iDummy;
  4890   }
  4891 }
  4892 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
  4893 #else
  4894 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
  4895 #endif
  4896 
  4897 /* Flush the current leaf node to %_segments, and adding the resulting
  4898 ** blockid and the starting term to the interior node which will
  4899 ** contain it.
  4900 */
  4901 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
  4902                                    int iData, int nData){
  4903   sqlite_int64 iBlockid = 0;
  4904   const char *pStartingTerm;
  4905   int nStartingTerm, rc, n;
  4906 
  4907   /* Must have the leading varint(0) flag, plus at least some
  4908   ** valid-looking data.
  4909   */
  4910   assert( nData>2 );
  4911   assert( iData>=0 );
  4912   assert( iData+nData<=pWriter->data.nData );
  4913   ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
  4914 
  4915   rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
  4916   if( rc!=SQLITE_OK ) return rc;
  4917   assert( iBlockid!=0 );
  4918 
  4919   /* Reconstruct the first term in the leaf for purposes of building
  4920   ** the interior node.
  4921   */
  4922   n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
  4923   pStartingTerm = pWriter->data.pData+iData+1+n;
  4924   assert( pWriter->data.nData>iData+1+n+nStartingTerm );
  4925   assert( pWriter->nTermDistinct>0 );
  4926   assert( pWriter->nTermDistinct<=nStartingTerm );
  4927   nStartingTerm = pWriter->nTermDistinct;
  4928 
  4929   if( pWriter->has_parent ){
  4930     interiorWriterAppend(&pWriter->parentWriter,
  4931                          pStartingTerm, nStartingTerm, iBlockid);
  4932   }else{
  4933     interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
  4934                        &pWriter->parentWriter);
  4935     pWriter->has_parent = 1;
  4936   }
  4937 
  4938   /* Track the span of this segment's leaf nodes. */
  4939   if( pWriter->iEndBlockid==0 ){
  4940     pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
  4941   }else{
  4942     pWriter->iEndBlockid++;
  4943     assert( iBlockid==pWriter->iEndBlockid );
  4944   }
  4945 
  4946   return SQLITE_OK;
  4947 }
  4948 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
  4949   int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
  4950   if( rc!=SQLITE_OK ) return rc;
  4951 
  4952   /* Re-initialize the output buffer. */
  4953   dataBufferReset(&pWriter->data);
  4954 
  4955   return SQLITE_OK;
  4956 }
  4957 
  4958 /* Fetch the root info for the segment.  If the entire leaf fits
  4959 ** within ROOT_MAX, then it will be returned directly, otherwise it
  4960 ** will be flushed and the root info will be returned from the
  4961 ** interior node.  *piEndBlockid is set to the blockid of the last
  4962 ** interior or leaf node written to disk (0 if none are written at
  4963 ** all).
  4964 */
  4965 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
  4966                               char **ppRootInfo, int *pnRootInfo,
  4967                               sqlite_int64 *piEndBlockid){
  4968   /* we can fit the segment entirely inline */
  4969   if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
  4970     *ppRootInfo = pWriter->data.pData;
  4971     *pnRootInfo = pWriter->data.nData;
  4972     *piEndBlockid = 0;
  4973     return SQLITE_OK;
  4974   }
  4975 
  4976   /* Flush remaining leaf data. */
  4977   if( pWriter->data.nData>0 ){
  4978     int rc = leafWriterFlush(v, pWriter);
  4979     if( rc!=SQLITE_OK ) return rc;
  4980   }
  4981 
  4982   /* We must have flushed a leaf at some point. */
  4983   assert( pWriter->has_parent );
  4984 
  4985   /* Tenatively set the end leaf blockid as the end blockid.  If the
  4986   ** interior node can be returned inline, this will be the final
  4987   ** blockid, otherwise it will be overwritten by
  4988   ** interiorWriterRootInfo().
  4989   */
  4990   *piEndBlockid = pWriter->iEndBlockid;
  4991 
  4992   return interiorWriterRootInfo(v, &pWriter->parentWriter,
  4993                                 ppRootInfo, pnRootInfo, piEndBlockid);
  4994 }
  4995 
  4996 /* Collect the rootInfo data and store it into the segment directory.
  4997 ** This has the effect of flushing the segment's leaf data to
  4998 ** %_segments, and also flushing any interior nodes to %_segments.
  4999 */
  5000 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
  5001   sqlite_int64 iEndBlockid;
  5002   char *pRootInfo;
  5003   int rc, nRootInfo;
  5004 
  5005   rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
  5006   if( rc!=SQLITE_OK ) return rc;
  5007 
  5008   /* Don't bother storing an entirely empty segment. */
  5009   if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
  5010 
  5011   return segdir_set(v, pWriter->iLevel, pWriter->idx,
  5012                     pWriter->iStartBlockid, pWriter->iEndBlockid,
  5013                     iEndBlockid, pRootInfo, nRootInfo);
  5014 }
  5015 
  5016 static void leafWriterDestroy(LeafWriter *pWriter){
  5017   if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
  5018   dataBufferDestroy(&pWriter->term);
  5019   dataBufferDestroy(&pWriter->data);
  5020 }
  5021 
  5022 /* Encode a term into the leafWriter, delta-encoding as appropriate.
  5023 ** Returns the length of the new term which distinguishes it from the
  5024 ** previous term, which can be used to set nTermDistinct when a node
  5025 ** boundary is crossed.
  5026 */
  5027 static int leafWriterEncodeTerm(LeafWriter *pWriter,
  5028                                 const char *pTerm, int nTerm){
  5029   char c[VARINT_MAX+VARINT_MAX];
  5030   int n, nPrefix = 0;
  5031 
  5032   assert( nTerm>0 );
  5033   while( nPrefix<pWriter->term.nData &&
  5034          pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
  5035     nPrefix++;
  5036     /* Failing this implies that the terms weren't in order. */
  5037     assert( nPrefix<nTerm );
  5038   }
  5039 
  5040   if( pWriter->data.nData==0 ){
  5041     /* Encode the node header and leading term as:
  5042     **  varint(0)
  5043     **  varint(nTerm)
  5044     **  char pTerm[nTerm]
  5045     */
  5046     n = fts3PutVarint(c, '\0');
  5047     n += fts3PutVarint(c+n, nTerm);
  5048     dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
  5049   }else{
  5050     /* Delta-encode the term as:
  5051     **  varint(nPrefix)
  5052     **  varint(nSuffix)
  5053     **  char pTermSuffix[nSuffix]
  5054     */
  5055     n = fts3PutVarint(c, nPrefix);
  5056     n += fts3PutVarint(c+n, nTerm-nPrefix);
  5057     dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
  5058   }
  5059   dataBufferReplace(&pWriter->term, pTerm, nTerm);
  5060 
  5061   return nPrefix+1;
  5062 }
  5063 
  5064 /* Used to avoid a memmove when a large amount of doclist data is in
  5065 ** the buffer.  This constructs a node and term header before
  5066 ** iDoclistData and flushes the resulting complete node using
  5067 ** leafWriterInternalFlush().
  5068 */
  5069 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
  5070                                  const char *pTerm, int nTerm,
  5071                                  int iDoclistData){
  5072   char c[VARINT_MAX+VARINT_MAX];
  5073   int iData, n = fts3PutVarint(c, 0);
  5074   n += fts3PutVarint(c+n, nTerm);
  5075 
  5076   /* There should always be room for the header.  Even if pTerm shared
  5077   ** a substantial prefix with the previous term, the entire prefix
  5078   ** could be constructed from earlier data in the doclist, so there
  5079   ** should be room.
  5080   */
  5081   assert( iDoclistData>=n+nTerm );
  5082 
  5083   iData = iDoclistData-(n+nTerm);
  5084   memcpy(pWriter->data.pData+iData, c, n);
  5085   memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
  5086 
  5087   return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
  5088 }
  5089 
  5090 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
  5091 ** %_segments.
  5092 */
  5093 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
  5094                                const char *pTerm, int nTerm,
  5095                                DLReader *pReaders, int nReaders){
  5096   char c[VARINT_MAX+VARINT_MAX];
  5097   int iTermData = pWriter->data.nData, iDoclistData;
  5098   int i, nData, n, nActualData, nActual, rc, nTermDistinct;
  5099 
  5100   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
  5101   nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
  5102 
  5103   /* Remember nTermDistinct if opening a new node. */
  5104   if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
  5105 
  5106   iDoclistData = pWriter->data.nData;
  5107 
  5108   /* Estimate the length of the merged doclist so we can leave space
  5109   ** to encode it.
  5110   */
  5111   for(i=0, nData=0; i<nReaders; i++){
  5112     nData += dlrAllDataBytes(&pReaders[i]);
  5113   }
  5114   n = fts3PutVarint(c, nData);
  5115   dataBufferAppend(&pWriter->data, c, n);
  5116 
  5117   docListMerge(&pWriter->data, pReaders, nReaders);
  5118   ASSERT_VALID_DOCLIST(DL_DEFAULT,
  5119                        pWriter->data.pData+iDoclistData+n,
  5120                        pWriter->data.nData-iDoclistData-n, NULL);
  5121 
  5122   /* The actual amount of doclist data at this point could be smaller
  5123   ** than the length we encoded.  Additionally, the space required to
  5124   ** encode this length could be smaller.  For small doclists, this is
  5125   ** not a big deal, we can just use memmove() to adjust things.
  5126   */
  5127   nActualData = pWriter->data.nData-(iDoclistData+n);
  5128   nActual = fts3PutVarint(c, nActualData);
  5129   assert( nActualData<=nData );
  5130   assert( nActual<=n );
  5131 
  5132   /* If the new doclist is big enough for force a standalone leaf
  5133   ** node, we can immediately flush it inline without doing the
  5134   ** memmove().
  5135   */
  5136   /* TODO(shess) This test matches leafWriterStep(), which does this
  5137   ** test before it knows the cost to varint-encode the term and
  5138   ** doclist lengths.  At some point, change to
  5139   ** pWriter->data.nData-iTermData>STANDALONE_MIN.
  5140   */
  5141   if( nTerm+nActualData>STANDALONE_MIN ){
  5142     /* Push leaf node from before this term. */
  5143     if( iTermData>0 ){
  5144       rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
  5145       if( rc!=SQLITE_OK ) return rc;
  5146 
  5147       pWriter->nTermDistinct = nTermDistinct;
  5148     }
  5149 
  5150     /* Fix the encoded doclist length. */
  5151     iDoclistData += n - nActual;
  5152     memcpy(pWriter->data.pData+iDoclistData, c, nActual);
  5153 
  5154     /* Push the standalone leaf node. */
  5155     rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
  5156     if( rc!=SQLITE_OK ) return rc;
  5157 
  5158     /* Leave the node empty. */
  5159     dataBufferReset(&pWriter->data);
  5160 
  5161     return rc;
  5162   }
  5163 
  5164   /* At this point, we know that the doclist was small, so do the
  5165   ** memmove if indicated.
  5166   */
  5167   if( nActual<n ){
  5168     memmove(pWriter->data.pData+iDoclistData+nActual,
  5169             pWriter->data.pData+iDoclistData+n,
  5170             pWriter->data.nData-(iDoclistData+n));
  5171     pWriter->data.nData -= n-nActual;
  5172   }
  5173 
  5174   /* Replace written length with actual length. */
  5175   memcpy(pWriter->data.pData+iDoclistData, c, nActual);
  5176 
  5177   /* If the node is too large, break things up. */
  5178   /* TODO(shess) This test matches leafWriterStep(), which does this
  5179   ** test before it knows the cost to varint-encode the term and
  5180   ** doclist lengths.  At some point, change to
  5181   ** pWriter->data.nData>LEAF_MAX.
  5182   */
  5183   if( iTermData+nTerm+nActualData>LEAF_MAX ){
  5184     /* Flush out the leading data as a node */
  5185     rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
  5186     if( rc!=SQLITE_OK ) return rc;
  5187 
  5188     pWriter->nTermDistinct = nTermDistinct;
  5189 
  5190     /* Rebuild header using the current term */
  5191     n = fts3PutVarint(pWriter->data.pData, 0);
  5192     n += fts3PutVarint(pWriter->data.pData+n, nTerm);
  5193     memcpy(pWriter->data.pData+n, pTerm, nTerm);
  5194     n += nTerm;
  5195 
  5196     /* There should always be room, because the previous encoding
  5197     ** included all data necessary to construct the term.
  5198     */
  5199     assert( n<iDoclistData );
  5200     /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
  5201     ** following memcpy() is safe (as opposed to needing a memmove).
  5202     */
  5203     assert( 2*STANDALONE_MIN<=LEAF_MAX );
  5204     assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
  5205     memcpy(pWriter->data.pData+n,
  5206            pWriter->data.pData+iDoclistData,
  5207            pWriter->data.nData-iDoclistData);
  5208     pWriter->data.nData -= iDoclistData-n;
  5209   }
  5210   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
  5211 
  5212   return SQLITE_OK;
  5213 }
  5214 
  5215 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
  5216 ** %_segments.
  5217 */
  5218 /* TODO(shess) Revise writeZeroSegment() so that doclists are
  5219 ** constructed directly in pWriter->data.
  5220 */
  5221 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
  5222                           const char *pTerm, int nTerm,
  5223                           const char *pData, int nData){
  5224   int rc;
  5225   DLReader reader;
  5226 
  5227   dlrInit(&reader, DL_DEFAULT, pData, nData);
  5228   rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
  5229   dlrDestroy(&reader);
  5230 
  5231   return rc;
  5232 }
  5233 
  5234 
  5235 /****************************************************************/
  5236 /* LeafReader is used to iterate over an individual leaf node. */
  5237 typedef struct LeafReader {
  5238   DataBuffer term;          /* copy of current term. */
  5239 
  5240   const char *pData;        /* data for current term. */
  5241   int nData;
  5242 } LeafReader;
  5243 
  5244 static void leafReaderDestroy(LeafReader *pReader){
  5245   dataBufferDestroy(&pReader->term);
  5246   SCRAMBLE(pReader);
  5247 }
  5248 
  5249 static int leafReaderAtEnd(LeafReader *pReader){
  5250   return pReader->nData<=0;
  5251 }
  5252 
  5253 /* Access the current term. */
  5254 static int leafReaderTermBytes(LeafReader *pReader){
  5255   return pReader->term.nData;
  5256 }
  5257 static const char *leafReaderTerm(LeafReader *pReader){
  5258   assert( pReader->term.nData>0 );
  5259   return pReader->term.pData;
  5260 }
  5261 
  5262 /* Access the doclist data for the current term. */
  5263 static int leafReaderDataBytes(LeafReader *pReader){
  5264   int nData;
  5265   assert( pReader->term.nData>0 );
  5266   fts3GetVarint32(pReader->pData, &nData);
  5267   return nData;
  5268 }
  5269 static const char *leafReaderData(LeafReader *pReader){
  5270   int n, nData;
  5271   assert( pReader->term.nData>0 );
  5272   n = fts3GetVarint32(pReader->pData, &nData);
  5273   return pReader->pData+n;
  5274 }
  5275 
  5276 static void leafReaderInit(const char *pData, int nData,
  5277                            LeafReader *pReader){
  5278   int nTerm, n;
  5279 
  5280   assert( nData>0 );
  5281   assert( pData[0]=='\0' );
  5282 
  5283   CLEAR(pReader);
  5284 
  5285   /* Read the first term, skipping the header byte. */
  5286   n = fts3GetVarint32(pData+1, &nTerm);
  5287   dataBufferInit(&pReader->term, nTerm);
  5288   dataBufferReplace(&pReader->term, pData+1+n, nTerm);
  5289 
  5290   /* Position after the first term. */
  5291   assert( 1+n+nTerm<nData );
  5292   pReader->pData = pData+1+n+nTerm;
  5293   pReader->nData = nData-1-n-nTerm;
  5294 }
  5295 
  5296 /* Step the reader forward to the next term. */
  5297 static void leafReaderStep(LeafReader *pReader){
  5298   int n, nData, nPrefix, nSuffix;
  5299   assert( !leafReaderAtEnd(pReader) );
  5300 
  5301   /* Skip previous entry's data block. */
  5302   n = fts3GetVarint32(pReader->pData, &nData);
  5303   assert( n+nData<=pReader->nData );
  5304   pReader->pData += n+nData;
  5305   pReader->nData -= n+nData;
  5306 
  5307   if( !leafReaderAtEnd(pReader) ){
  5308     /* Construct the new term using a prefix from the old term plus a
  5309     ** suffix from the leaf data.
  5310     */
  5311     n = fts3GetVarint32(pReader->pData, &nPrefix);
  5312     n += fts3GetVarint32(pReader->pData+n, &nSuffix);
  5313     assert( n+nSuffix<pReader->nData );
  5314     pReader->term.nData = nPrefix;
  5315     dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
  5316 
  5317     pReader->pData += n+nSuffix;
  5318     pReader->nData -= n+nSuffix;
  5319   }
  5320 }
  5321 
  5322 /* strcmp-style comparison of pReader's current term against pTerm.
  5323 ** If isPrefix, equality means equal through nTerm bytes.
  5324 */
  5325 static int leafReaderTermCmp(LeafReader *pReader,
  5326                              const char *pTerm, int nTerm, int isPrefix){
  5327   int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
  5328   if( n==0 ){
  5329     if( pReader->term.nData>0 ) return -1;
  5330     if(nTerm>0 ) return 1;
  5331     return 0;
  5332   }
  5333 
  5334   c = memcmp(pReader->term.pData, pTerm, n);
  5335   if( c!=0 ) return c;
  5336   if( isPrefix && n==nTerm ) return 0;
  5337   return pReader->term.nData - nTerm;
  5338 }
  5339 
  5340 
  5341 /****************************************************************/
  5342 /* LeavesReader wraps LeafReader to allow iterating over the entire
  5343 ** leaf layer of the tree.
  5344 */
  5345 typedef struct LeavesReader {
  5346   int idx;                  /* Index within the segment. */
  5347 
  5348   sqlite3_stmt *pStmt;      /* Statement we're streaming leaves from. */
  5349   int eof;                  /* we've seen SQLITE_DONE from pStmt. */
  5350 
  5351   LeafReader leafReader;    /* reader for the current leaf. */
  5352   DataBuffer rootData;      /* root data for inline. */
  5353 } LeavesReader;
  5354 
  5355 /* Access the current term. */
  5356 static int leavesReaderTermBytes(LeavesReader *pReader){
  5357   assert( !pReader->eof );
  5358   return leafReaderTermBytes(&pReader->leafReader);
  5359 }
  5360 static const char *leavesReaderTerm(LeavesReader *pReader){
  5361   assert( !pReader->eof );
  5362   return leafReaderTerm(&pReader->leafReader);
  5363 }
  5364 
  5365 /* Access the doclist data for the current term. */
  5366 static int leavesReaderDataBytes(LeavesReader *pReader){
  5367   assert( !pReader->eof );
  5368   return leafReaderDataBytes(&pReader->leafReader);
  5369 }
  5370 static const char *leavesReaderData(LeavesReader *pReader){
  5371   assert( !pReader->eof );
  5372   return leafReaderData(&pReader->leafReader);
  5373 }
  5374 
  5375 static int leavesReaderAtEnd(LeavesReader *pReader){
  5376   return pReader->eof;
  5377 }
  5378 
  5379 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
  5380 ** leaving the statement handle open, which locks the table.
  5381 */
  5382 /* TODO(shess) This "solution" is not satisfactory.  Really, there
  5383 ** should be check-in function for all statement handles which
  5384 ** arranges to call sqlite3_reset().  This most likely will require
  5385 ** modification to control flow all over the place, though, so for now
  5386 ** just punt.
  5387 **
  5388 ** Note the the current system assumes that segment merges will run to
  5389 ** completion, which is why this particular probably hasn't arisen in
  5390 ** this case.  Probably a brittle assumption.
  5391 */
  5392 static int leavesReaderReset(LeavesReader *pReader){
  5393   return sqlite3_reset(pReader->pStmt);
  5394 }
  5395 
  5396 static void leavesReaderDestroy(LeavesReader *pReader){
  5397   /* If idx is -1, that means we're using a non-cached statement
  5398   ** handle in the optimize() case, so we need to release it.
  5399   */
  5400   if( pReader->pStmt!=NULL && pReader->idx==-1 ){
  5401     sqlite3_finalize(pReader->pStmt);
  5402   }
  5403   leafReaderDestroy(&pReader->leafReader);
  5404   dataBufferDestroy(&pReader->rootData);
  5405   SCRAMBLE(pReader);
  5406 }
  5407 
  5408 /* Initialize pReader with the given root data (if iStartBlockid==0
  5409 ** the leaf data was entirely contained in the root), or from the
  5410 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
  5411 */
  5412 static int leavesReaderInit(fulltext_vtab *v,
  5413                             int idx,
  5414                             sqlite_int64 iStartBlockid,
  5415                             sqlite_int64 iEndBlockid,
  5416                             const char *pRootData, int nRootData,
  5417                             LeavesReader *pReader){
  5418   CLEAR(pReader);
  5419   pReader->idx = idx;
  5420 
  5421   dataBufferInit(&pReader->rootData, 0);
  5422   if( iStartBlockid==0 ){
  5423     /* Entire leaf level fit in root data. */
  5424     dataBufferReplace(&pReader->rootData, pRootData, nRootData);
  5425     leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
  5426                    &pReader->leafReader);
  5427   }else{
  5428     sqlite3_stmt *s;
  5429     int rc = sql_get_leaf_statement(v, idx, &s);
  5430     if( rc!=SQLITE_OK ) return rc;
  5431 
  5432     rc = sqlite3_bind_int64(s, 1, iStartBlockid);
  5433     if( rc!=SQLITE_OK ) return rc;
  5434 
  5435     rc = sqlite3_bind_int64(s, 2, iEndBlockid);
  5436     if( rc!=SQLITE_OK ) return rc;
  5437 
  5438     rc = sqlite3_step(s);
  5439     if( rc==SQLITE_DONE ){
  5440       pReader->eof = 1;
  5441       return SQLITE_OK;
  5442     }
  5443     if( rc!=SQLITE_ROW ) return rc;
  5444 
  5445     pReader->pStmt = s;
  5446     leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
  5447                    sqlite3_column_bytes(pReader->pStmt, 0),
  5448                    &pReader->leafReader);
  5449   }
  5450   return SQLITE_OK;
  5451 }
  5452 
  5453 /* Step the current leaf forward to the next term.  If we reach the
  5454 ** end of the current leaf, step forward to the next leaf block.
  5455 */
  5456 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
  5457   assert( !leavesReaderAtEnd(pReader) );
  5458   leafReaderStep(&pReader->leafReader);
  5459 
  5460   if( leafReaderAtEnd(&pReader->leafReader) ){
  5461     int rc;
  5462     if( pReader->rootData.pData ){
  5463       pReader->eof = 1;
  5464       return SQLITE_OK;
  5465     }
  5466     rc = sqlite3_step(pReader->pStmt);
  5467     if( rc!=SQLITE_ROW ){
  5468       pReader->eof = 1;
  5469       return rc==SQLITE_DONE ? SQLITE_OK : rc;
  5470     }
  5471     leafReaderDestroy(&pReader->leafReader);
  5472     leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
  5473                    sqlite3_column_bytes(pReader->pStmt, 0),
  5474                    &pReader->leafReader);
  5475   }
  5476   return SQLITE_OK;
  5477 }
  5478 
  5479 /* Order LeavesReaders by their term, ignoring idx.  Readers at eof
  5480 ** always sort to the end.
  5481 */
  5482 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
  5483   if( leavesReaderAtEnd(lr1) ){
  5484     if( leavesReaderAtEnd(lr2) ) return 0;
  5485     return 1;
  5486   }
  5487   if( leavesReaderAtEnd(lr2) ) return -1;
  5488 
  5489   return leafReaderTermCmp(&lr1->leafReader,
  5490                            leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
  5491                            0);
  5492 }
  5493 
  5494 /* Similar to leavesReaderTermCmp(), with additional ordering by idx
  5495 ** so that older segments sort before newer segments.
  5496 */
  5497 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
  5498   int c = leavesReaderTermCmp(lr1, lr2);
  5499   if( c!=0 ) return c;
  5500   return lr1->idx-lr2->idx;
  5501 }
  5502 
  5503 /* Assume that pLr[1]..pLr[nLr] are sorted.  Bubble pLr[0] into its
  5504 ** sorted position.
  5505 */
  5506 static void leavesReaderReorder(LeavesReader *pLr, int nLr){
  5507   while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
  5508     LeavesReader tmp = pLr[0];
  5509     pLr[0] = pLr[1];
  5510     pLr[1] = tmp;
  5511     nLr--;
  5512     pLr++;
  5513   }
  5514 }
  5515 
  5516 /* Initializes pReaders with the segments from level iLevel, returning
  5517 ** the number of segments in *piReaders.  Leaves pReaders in sorted
  5518 ** order.
  5519 */
  5520 static int leavesReadersInit(fulltext_vtab *v, int iLevel,
  5521                              LeavesReader *pReaders, int *piReaders){
  5522   sqlite3_stmt *s;
  5523   int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
  5524   if( rc!=SQLITE_OK ) return rc;
  5525 
  5526   rc = sqlite3_bind_int(s, 1, iLevel);
  5527   if( rc!=SQLITE_OK ) return rc;
  5528 
  5529   i = 0;
  5530   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  5531     sqlite_int64 iStart = sqlite3_column_int64(s, 0);
  5532     sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
  5533     const char *pRootData = sqlite3_column_blob(s, 2);
  5534     int nRootData = sqlite3_column_bytes(s, 2);
  5535 
  5536     assert( i<MERGE_COUNT );
  5537     rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
  5538                           &pReaders[i]);
  5539     if( rc!=SQLITE_OK ) break;
  5540 
  5541     i++;
  5542   }
  5543   if( rc!=SQLITE_DONE ){
  5544     while( i-->0 ){
  5545       leavesReaderDestroy(&pReaders[i]);
  5546     }
  5547     return rc;
  5548   }
  5549 
  5550   *piReaders = i;
  5551 
  5552   /* Leave our results sorted by term, then age. */
  5553   while( i-- ){
  5554     leavesReaderReorder(pReaders+i, *piReaders-i);
  5555   }
  5556   return SQLITE_OK;
  5557 }
  5558 
  5559 /* Merge doclists from pReaders[nReaders] into a single doclist, which
  5560 ** is written to pWriter.  Assumes pReaders is ordered oldest to
  5561 ** newest.
  5562 */
  5563 /* TODO(shess) Consider putting this inline in segmentMerge(). */
  5564 static int leavesReadersMerge(fulltext_vtab *v,
  5565                               LeavesReader *pReaders, int nReaders,
  5566                               LeafWriter *pWriter){
  5567   DLReader dlReaders[MERGE_COUNT];
  5568   const char *pTerm = leavesReaderTerm(pReaders);
  5569   int i, nTerm = leavesReaderTermBytes(pReaders);
  5570 
  5571   assert( nReaders<=MERGE_COUNT );
  5572 
  5573   for(i=0; i<nReaders; i++){
  5574     dlrInit(&dlReaders[i], DL_DEFAULT,
  5575             leavesReaderData(pReaders+i),
  5576             leavesReaderDataBytes(pReaders+i));
  5577   }
  5578 
  5579   return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
  5580 }
  5581 
  5582 /* Forward ref due to mutual recursion with segdirNextIndex(). */
  5583 static int segmentMerge(fulltext_vtab *v, int iLevel);
  5584 
  5585 /* Put the next available index at iLevel into *pidx.  If iLevel
  5586 ** already has MERGE_COUNT segments, they are merged to a higher
  5587 ** level to make room.
  5588 */
  5589 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
  5590   int rc = segdir_max_index(v, iLevel, pidx);
  5591   if( rc==SQLITE_DONE ){              /* No segments at iLevel. */
  5592     *pidx = 0;
  5593   }else if( rc==SQLITE_ROW ){
  5594     if( *pidx==(MERGE_COUNT-1) ){
  5595       rc = segmentMerge(v, iLevel);
  5596       if( rc!=SQLITE_OK ) return rc;
  5597       *pidx = 0;
  5598     }else{
  5599       (*pidx)++;
  5600     }
  5601   }else{
  5602     return rc;
  5603   }
  5604   return SQLITE_OK;
  5605 }
  5606 
  5607 /* Merge MERGE_COUNT segments at iLevel into a new segment at
  5608 ** iLevel+1.  If iLevel+1 is already full of segments, those will be
  5609 ** merged to make room.
  5610 */
  5611 static int segmentMerge(fulltext_vtab *v, int iLevel){
  5612   LeafWriter writer;
  5613   LeavesReader lrs[MERGE_COUNT];
  5614   int i, rc, idx = 0;
  5615 
  5616   /* Determine the next available segment index at the next level,
  5617   ** merging as necessary.
  5618   */
  5619   rc = segdirNextIndex(v, iLevel+1, &idx);
  5620   if( rc!=SQLITE_OK ) return rc;
  5621 
  5622   /* TODO(shess) This assumes that we'll always see exactly
  5623   ** MERGE_COUNT segments to merge at a given level.  That will be
  5624   ** broken if we allow the developer to request preemptive or
  5625   ** deferred merging.
  5626   */
  5627   memset(&lrs, '\0', sizeof(lrs));
  5628   rc = leavesReadersInit(v, iLevel, lrs, &i);
  5629   if( rc!=SQLITE_OK ) return rc;
  5630   assert( i==MERGE_COUNT );
  5631 
  5632   leafWriterInit(iLevel+1, idx, &writer);
  5633 
  5634   /* Since leavesReaderReorder() pushes readers at eof to the end,
  5635   ** when the first reader is empty, all will be empty.
  5636   */
  5637   while( !leavesReaderAtEnd(lrs) ){
  5638     /* Figure out how many readers share their next term. */
  5639     for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
  5640       if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
  5641     }
  5642 
  5643     rc = leavesReadersMerge(v, lrs, i, &writer);
  5644     if( rc!=SQLITE_OK ) goto err;
  5645 
  5646     /* Step forward those that were merged. */
  5647     while( i-->0 ){
  5648       rc = leavesReaderStep(v, lrs+i);
  5649       if( rc!=SQLITE_OK ) goto err;
  5650 
  5651       /* Reorder by term, then by age. */
  5652       leavesReaderReorder(lrs+i, MERGE_COUNT-i);
  5653     }
  5654   }
  5655 
  5656   for(i=0; i<MERGE_COUNT; i++){
  5657     leavesReaderDestroy(&lrs[i]);
  5658   }
  5659 
  5660   rc = leafWriterFinalize(v, &writer);
  5661   leafWriterDestroy(&writer);
  5662   if( rc!=SQLITE_OK ) return rc;
  5663 
  5664   /* Delete the merged segment data. */
  5665   return segdir_delete(v, iLevel);
  5666 
  5667  err:
  5668   for(i=0; i<MERGE_COUNT; i++){
  5669     leavesReaderDestroy(&lrs[i]);
  5670   }
  5671   leafWriterDestroy(&writer);
  5672   return rc;
  5673 }
  5674 
  5675 /* Accumulate the union of *acc and *pData into *acc. */
  5676 static void docListAccumulateUnion(DataBuffer *acc,
  5677                                    const char *pData, int nData) {
  5678   DataBuffer tmp = *acc;
  5679   dataBufferInit(acc, tmp.nData+nData);
  5680   docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
  5681   dataBufferDestroy(&tmp);
  5682 }
  5683 
  5684 /* TODO(shess) It might be interesting to explore different merge
  5685 ** strategies, here.  For instance, since this is a sorted merge, we
  5686 ** could easily merge many doclists in parallel.  With some
  5687 ** comprehension of the storage format, we could merge all of the
  5688 ** doclists within a leaf node directly from the leaf node's storage.
  5689 ** It may be worthwhile to merge smaller doclists before larger
  5690 ** doclists, since they can be traversed more quickly - but the
  5691 ** results may have less overlap, making them more expensive in a
  5692 ** different way.
  5693 */
  5694 
  5695 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over
  5696 ** *out (any doclists with duplicate docids overwrite those in *out).
  5697 ** Internal function for loadSegmentLeaf().
  5698 */
  5699 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
  5700                                 const char *pTerm, int nTerm, int isPrefix,
  5701                                 DataBuffer *out){
  5702   /* doclist data is accumulated into pBuffers similar to how one does
  5703   ** increment in binary arithmetic.  If index 0 is empty, the data is
  5704   ** stored there.  If there is data there, it is merged and the
  5705   ** results carried into position 1, with further merge-and-carry
  5706   ** until an empty position is found.
  5707   */
  5708   DataBuffer *pBuffers = NULL;
  5709   int nBuffers = 0, nMaxBuffers = 0, rc;
  5710 
  5711   assert( nTerm>0 );
  5712 
  5713   for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
  5714       rc=leavesReaderStep(v, pReader)){
  5715     /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
  5716     ** already taken to compare the terms of two LeavesReaders.  Think
  5717     ** on a better name.  [Meanwhile, break encapsulation rather than
  5718     ** use a confusing name.]
  5719     */
  5720     int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
  5721     if( c>0 ) break;      /* Past any possible matches. */
  5722     if( c==0 ){
  5723       const char *pData = leavesReaderData(pReader);
  5724       int iBuffer, nData = leavesReaderDataBytes(pReader);
  5725 
  5726       /* Find the first empty buffer. */
  5727       for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
  5728         if( 0==pBuffers[iBuffer].nData ) break;
  5729       }
  5730 
  5731       /* Out of buffers, add an empty one. */
  5732       if( iBuffer==nBuffers ){
  5733         if( nBuffers==nMaxBuffers ){
  5734           DataBuffer *p;
  5735           nMaxBuffers += 20;
  5736 
  5737           /* Manual realloc so we can handle NULL appropriately. */
  5738           p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
  5739           if( p==NULL ){
  5740             rc = SQLITE_NOMEM;
  5741             break;
  5742           }
  5743 
  5744           if( nBuffers>0 ){
  5745             assert(pBuffers!=NULL);
  5746             memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
  5747             sqlite3_free(pBuffers);
  5748           }
  5749           pBuffers = p;
  5750         }
  5751         dataBufferInit(&(pBuffers[nBuffers]), 0);
  5752         nBuffers++;
  5753       }
  5754 
  5755       /* At this point, must have an empty at iBuffer. */
  5756       assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
  5757 
  5758       /* If empty was first buffer, no need for merge logic. */
  5759       if( iBuffer==0 ){
  5760         dataBufferReplace(&(pBuffers[0]), pData, nData);
  5761       }else{
  5762         /* pAcc is the empty buffer the merged data will end up in. */
  5763         DataBuffer *pAcc = &(pBuffers[iBuffer]);
  5764         DataBuffer *p = &(pBuffers[0]);
  5765 
  5766         /* Handle position 0 specially to avoid need to prime pAcc
  5767         ** with pData/nData.
  5768         */
  5769         dataBufferSwap(p, pAcc);
  5770         docListAccumulateUnion(pAcc, pData, nData);
  5771 
  5772         /* Accumulate remaining doclists into pAcc. */
  5773         for(++p; p<pAcc; ++p){
  5774           docListAccumulateUnion(pAcc, p->pData, p->nData);
  5775 
  5776           /* dataBufferReset() could allow a large doclist to blow up
  5777           ** our memory requirements.
  5778           */
  5779           if( p->nCapacity<1024 ){
  5780             dataBufferReset(p);
  5781           }else{
  5782             dataBufferDestroy(p);
  5783             dataBufferInit(p, 0);
  5784           }
  5785         }
  5786       }
  5787     }
  5788   }
  5789 
  5790   /* Union all the doclists together into *out. */
  5791   /* TODO(shess) What if *out is big?  Sigh. */
  5792   if( rc==SQLITE_OK && nBuffers>0 ){
  5793     int iBuffer;
  5794     for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
  5795       if( pBuffers[iBuffer].nData>0 ){
  5796         if( out->nData==0 ){
  5797           dataBufferSwap(out, &(pBuffers[iBuffer]));
  5798         }else{
  5799           docListAccumulateUnion(out, pBuffers[iBuffer].pData,
  5800                                  pBuffers[iBuffer].nData);
  5801         }
  5802       }
  5803     }
  5804   }
  5805 
  5806   while( nBuffers-- ){
  5807     dataBufferDestroy(&(pBuffers[nBuffers]));
  5808   }
  5809   if( pBuffers!=NULL ) sqlite3_free(pBuffers);
  5810 
  5811   return rc;
  5812 }
  5813 
  5814 /* Call loadSegmentLeavesInt() with pData/nData as input. */
  5815 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
  5816                            const char *pTerm, int nTerm, int isPrefix,
  5817                            DataBuffer *out){
  5818   LeavesReader reader;
  5819   int rc;
  5820 
  5821   assert( nData>1 );
  5822   assert( *pData=='\0' );
  5823   rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
  5824   if( rc!=SQLITE_OK ) return rc;
  5825 
  5826   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
  5827   leavesReaderReset(&reader);
  5828   leavesReaderDestroy(&reader);
  5829   return rc;
  5830 }
  5831 
  5832 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
  5833 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into
  5834 ** out.
  5835 */
  5836 static int loadSegmentLeaves(fulltext_vtab *v,
  5837                              sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
  5838                              const char *pTerm, int nTerm, int isPrefix,
  5839                              DataBuffer *out){
  5840   int rc;
  5841   LeavesReader reader;
  5842 
  5843   assert( iStartLeaf<=iEndLeaf );
  5844   rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
  5845   if( rc!=SQLITE_OK ) return rc;
  5846 
  5847   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
  5848   leavesReaderReset(&reader);
  5849   leavesReaderDestroy(&reader);
  5850   return rc;
  5851 }
  5852 
  5853 /* Taking pData/nData as an interior node, find the sequence of child
  5854 ** nodes which could include pTerm/nTerm/isPrefix.  Note that the
  5855 ** interior node terms logically come between the blocks, so there is
  5856 ** one more blockid than there are terms (that block contains terms >=
  5857 ** the last interior-node term).
  5858 */
  5859 /* TODO(shess) The calling code may already know that the end child is
  5860 ** not worth calculating, because the end may be in a later sibling
  5861 ** node.  Consider whether breaking symmetry is worthwhile.  I suspect
  5862 ** it is not worthwhile.
  5863 */
  5864 static void getChildrenContaining(const char *pData, int nData,
  5865                                   const char *pTerm, int nTerm, int isPrefix,
  5866                                   sqlite_int64 *piStartChild,
  5867                                   sqlite_int64 *piEndChild){
  5868   InteriorReader reader;
  5869 
  5870   assert( nData>1 );
  5871   assert( *pData!='\0' );
  5872   interiorReaderInit(pData, nData, &reader);
  5873 
  5874   /* Scan for the first child which could contain pTerm/nTerm. */
  5875   while( !interiorReaderAtEnd(&reader) ){
  5876     if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
  5877     interiorReaderStep(&reader);
  5878   }
  5879   *piStartChild = interiorReaderCurrentBlockid(&reader);
  5880 
  5881   /* Keep scanning to find a term greater than our term, using prefix
  5882   ** comparison if indicated.  If isPrefix is false, this will be the
  5883   ** same blockid as the starting block.
  5884   */
  5885   while( !interiorReaderAtEnd(&reader) ){
  5886     if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
  5887     interiorReaderStep(&reader);
  5888   }
  5889   *piEndChild = interiorReaderCurrentBlockid(&reader);
  5890 
  5891   interiorReaderDestroy(&reader);
  5892 
  5893   /* Children must ascend, and if !prefix, both must be the same. */
  5894   assert( *piEndChild>=*piStartChild );
  5895   assert( isPrefix || *piStartChild==*piEndChild );
  5896 }
  5897 
  5898 /* Read block at iBlockid and pass it with other params to
  5899 ** getChildrenContaining().
  5900 */
  5901 static int loadAndGetChildrenContaining(
  5902   fulltext_vtab *v,
  5903   sqlite_int64 iBlockid,
  5904   const char *pTerm, int nTerm, int isPrefix,
  5905   sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
  5906 ){
  5907   sqlite3_stmt *s = NULL;
  5908   int rc;
  5909 
  5910   assert( iBlockid!=0 );
  5911   assert( pTerm!=NULL );
  5912   assert( nTerm!=0 );        /* TODO(shess) Why not allow this? */
  5913   assert( piStartChild!=NULL );
  5914   assert( piEndChild!=NULL );
  5915 
  5916   rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
  5917   if( rc!=SQLITE_OK ) return rc;
  5918 
  5919   rc = sqlite3_bind_int64(s, 1, iBlockid);
  5920   if( rc!=SQLITE_OK ) return rc;
  5921 
  5922   rc = sqlite3_step(s);
  5923   if( rc==SQLITE_DONE ) return SQLITE_ERROR;
  5924   if( rc!=SQLITE_ROW ) return rc;
  5925 
  5926   getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
  5927                         pTerm, nTerm, isPrefix, piStartChild, piEndChild);
  5928 
  5929   /* We expect only one row.  We must execute another sqlite3_step()
  5930    * to complete the iteration; otherwise the table will remain
  5931    * locked. */
  5932   rc = sqlite3_step(s);
  5933   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  5934   if( rc!=SQLITE_DONE ) return rc;
  5935 
  5936   return SQLITE_OK;
  5937 }
  5938 
  5939 /* Traverse the tree represented by pData[nData] looking for
  5940 ** pTerm[nTerm], placing its doclist into *out.  This is internal to
  5941 ** loadSegment() to make error-handling cleaner.
  5942 */
  5943 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
  5944                           sqlite_int64 iLeavesEnd,
  5945                           const char *pTerm, int nTerm, int isPrefix,
  5946                           DataBuffer *out){
  5947   /* Special case where root is a leaf. */
  5948   if( *pData=='\0' ){
  5949     return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
  5950   }else{
  5951     int rc;
  5952     sqlite_int64 iStartChild, iEndChild;
  5953 
  5954     /* Process pData as an interior node, then loop down the tree
  5955     ** until we find the set of leaf nodes to scan for the term.
  5956     */
  5957     getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
  5958                           &iStartChild, &iEndChild);
  5959     while( iStartChild>iLeavesEnd ){
  5960       sqlite_int64 iNextStart, iNextEnd;
  5961       rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
  5962                                         &iNextStart, &iNextEnd);
  5963       if( rc!=SQLITE_OK ) return rc;
  5964 
  5965       /* If we've branched, follow the end branch, too. */
  5966       if( iStartChild!=iEndChild ){
  5967         sqlite_int64 iDummy;
  5968         rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
  5969                                           &iDummy, &iNextEnd);
  5970         if( rc!=SQLITE_OK ) return rc;
  5971       }
  5972 
  5973       assert( iNextStart<=iNextEnd );
  5974       iStartChild = iNextStart;
  5975       iEndChild = iNextEnd;
  5976     }
  5977     assert( iStartChild<=iLeavesEnd );
  5978     assert( iEndChild<=iLeavesEnd );
  5979 
  5980     /* Scan through the leaf segments for doclists. */
  5981     return loadSegmentLeaves(v, iStartChild, iEndChild,
  5982                              pTerm, nTerm, isPrefix, out);
  5983   }
  5984 }
  5985 
  5986 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
  5987 ** merge its doclist over *out (any duplicate doclists read from the
  5988 ** segment rooted at pData will overwrite those in *out).
  5989 */
  5990 /* TODO(shess) Consider changing this to determine the depth of the
  5991 ** leaves using either the first characters of interior nodes (when
  5992 ** ==1, we're one level above the leaves), or the first character of
  5993 ** the root (which will describe the height of the tree directly).
  5994 ** Either feels somewhat tricky to me.
  5995 */
  5996 /* TODO(shess) The current merge is likely to be slow for large
  5997 ** doclists (though it should process from newest/smallest to
  5998 ** oldest/largest, so it may not be that bad).  It might be useful to
  5999 ** modify things to allow for N-way merging.  This could either be
  6000 ** within a segment, with pairwise merges across segments, or across
  6001 ** all segments at once.
  6002 */
  6003 static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
  6004                        sqlite_int64 iLeavesEnd,
  6005                        const char *pTerm, int nTerm, int isPrefix,
  6006                        DataBuffer *out){
  6007   DataBuffer result;
  6008   int rc;
  6009 
  6010   assert( nData>1 );
  6011 
  6012   /* This code should never be called with buffered updates. */
  6013   assert( v->nPendingData<0 );
  6014 
  6015   dataBufferInit(&result, 0);
  6016   rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
  6017                       pTerm, nTerm, isPrefix, &result);
  6018   if( rc==SQLITE_OK && result.nData>0 ){
  6019     if( out->nData==0 ){
  6020       DataBuffer tmp = *out;
  6021       *out = result;
  6022       result = tmp;
  6023     }else{
  6024       DataBuffer merged;
  6025       DLReader readers[2];
  6026 
  6027       dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
  6028       dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
  6029       dataBufferInit(&merged, out->nData+result.nData);
  6030       docListMerge(&merged, readers, 2);
  6031       dataBufferDestroy(out);
  6032       *out = merged;
  6033       dlrDestroy(&readers[0]);
  6034       dlrDestroy(&readers[1]);
  6035     }
  6036   }
  6037   dataBufferDestroy(&result);
  6038   return rc;
  6039 }
  6040 
  6041 /* Scan the database and merge together the posting lists for the term
  6042 ** into *out.
  6043 */
  6044 static int termSelect(fulltext_vtab *v, int iColumn,
  6045                       const char *pTerm, int nTerm, int isPrefix,
  6046                       DocListType iType, DataBuffer *out){
  6047   DataBuffer doclist;
  6048   sqlite3_stmt *s;
  6049   int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  6050   if( rc!=SQLITE_OK ) return rc;
  6051 
  6052   /* This code should never be called with buffered updates. */
  6053   assert( v->nPendingData<0 );
  6054 
  6055   dataBufferInit(&doclist, 0);
  6056 
  6057   /* Traverse the segments from oldest to newest so that newer doclist
  6058   ** elements for given docids overwrite older elements.
  6059   */
  6060   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  6061     const char *pData = sqlite3_column_blob(s, 2);
  6062     const int nData = sqlite3_column_bytes(s, 2);
  6063     const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
  6064     rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
  6065                      &doclist);
  6066     if( rc!=SQLITE_OK ) goto err;
  6067   }
  6068   if( rc==SQLITE_DONE ){
  6069     if( doclist.nData!=0 ){
  6070       /* TODO(shess) The old term_select_all() code applied the column
  6071       ** restrict as we merged segments, leading to smaller buffers.
  6072       ** This is probably worthwhile to bring back, once the new storage
  6073       ** system is checked in.
  6074       */
  6075       if( iColumn==v->nColumn) iColumn = -1;
  6076       docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
  6077                   iColumn, iType, out);
  6078     }
  6079     rc = SQLITE_OK;
  6080   }
  6081 
  6082  err:
  6083   dataBufferDestroy(&doclist);
  6084   return rc;
  6085 }
  6086 
  6087 /****************************************************************/
  6088 /* Used to hold hashtable data for sorting. */
  6089 typedef struct TermData {
  6090   const char *pTerm;
  6091   int nTerm;
  6092   DLCollector *pCollector;
  6093 } TermData;
  6094 
  6095 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
  6096 ** for equal, >0 for greater-than).
  6097 */
  6098 static int termDataCmp(const void *av, const void *bv){
  6099   const TermData *a = (const TermData *)av;
  6100   const TermData *b = (const TermData *)bv;
  6101   int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
  6102   int c = memcmp(a->pTerm, b->pTerm, n);
  6103   if( c!=0 ) return c;
  6104   return a->nTerm-b->nTerm;
  6105 }
  6106 
  6107 /* Order pTerms data by term, then write a new level 0 segment using
  6108 ** LeafWriter.
  6109 */
  6110 static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
  6111   fts3HashElem *e;
  6112   int idx, rc, i, n;
  6113   TermData *pData;
  6114   LeafWriter writer;
  6115   DataBuffer dl;
  6116 
  6117   /* Determine the next index at level 0, merging as necessary. */
  6118   rc = segdirNextIndex(v, 0, &idx);
  6119   if( rc!=SQLITE_OK ) return rc;
  6120 
  6121   n = fts3HashCount(pTerms);
  6122   pData = sqlite3_malloc(n*sizeof(TermData));
  6123 
  6124   for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
  6125     assert( i<n );
  6126     pData[i].pTerm = fts3HashKey(e);
  6127     pData[i].nTerm = fts3HashKeysize(e);
  6128     pData[i].pCollector = fts3HashData(e);
  6129   }
  6130   assert( i==n );
  6131 
  6132   /* TODO(shess) Should we allow user-defined collation sequences,
  6133   ** here?  I think we only need that once we support prefix searches.
  6134   */
  6135   if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
  6136 
  6137   /* TODO(shess) Refactor so that we can write directly to the segment
  6138   ** DataBuffer, as happens for segment merges.
  6139   */
  6140   leafWriterInit(0, idx, &writer);
  6141   dataBufferInit(&dl, 0);
  6142   for(i=0; i<n; i++){
  6143     dataBufferReset(&dl);
  6144     dlcAddDoclist(pData[i].pCollector, &dl);
  6145     rc = leafWriterStep(v, &writer,
  6146                         pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
  6147     if( rc!=SQLITE_OK ) goto err;
  6148   }
  6149   rc = leafWriterFinalize(v, &writer);
  6150 
  6151  err:
  6152   dataBufferDestroy(&dl);
  6153   sqlite3_free(pData);
  6154   leafWriterDestroy(&writer);
  6155   return rc;
  6156 }
  6157 
  6158 /* If pendingTerms has data, free it. */
  6159 static int clearPendingTerms(fulltext_vtab *v){
  6160   if( v->nPendingData>=0 ){
  6161     fts3HashElem *e;
  6162     for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
  6163       dlcDelete(fts3HashData(e));
  6164     }
  6165     fts3HashClear(&v->pendingTerms);
  6166     v->nPendingData = -1;
  6167   }
  6168   return SQLITE_OK;
  6169 }
  6170 
  6171 /* If pendingTerms has data, flush it to a level-zero segment, and
  6172 ** free it.
  6173 */
  6174 static int flushPendingTerms(fulltext_vtab *v){
  6175   if( v->nPendingData>=0 ){
  6176     int rc = writeZeroSegment(v, &v->pendingTerms);
  6177     if( rc==SQLITE_OK ) clearPendingTerms(v);
  6178     return rc;
  6179   }
  6180   return SQLITE_OK;
  6181 }
  6182 
  6183 /* If pendingTerms is "too big", or docid is out of order, flush it.
  6184 ** Regardless, be certain that pendingTerms is initialized for use.
  6185 */
  6186 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
  6187   /* TODO(shess) Explore whether partially flushing the buffer on
  6188   ** forced-flush would provide better performance.  I suspect that if
  6189   ** we ordered the doclists by size and flushed the largest until the
  6190   ** buffer was half empty, that would let the less frequent terms
  6191   ** generate longer doclists.
  6192   */
  6193   if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
  6194     int rc = flushPendingTerms(v);
  6195     if( rc!=SQLITE_OK ) return rc;
  6196   }
  6197   if( v->nPendingData<0 ){
  6198     fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
  6199     v->nPendingData = 0;
  6200   }
  6201   v->iPrevDocid = iDocid;
  6202   return SQLITE_OK;
  6203 }
  6204 
  6205 /* This function implements the xUpdate callback; it is the top-level entry
  6206  * point for inserting, deleting or updating a row in a full-text table. */
  6207 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
  6208                           sqlite_int64 *pRowid){
  6209   fulltext_vtab *v = (fulltext_vtab *) pVtab;
  6210   int rc;
  6211 
  6212   FTSTRACE(("FTS3 Update %p\n", pVtab));
  6213 
  6214   if( nArg<2 ){
  6215     rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
  6216     if( rc==SQLITE_OK ){
  6217       /* If we just deleted the last row in the table, clear out the
  6218       ** index data.
  6219       */
  6220       rc = content_exists(v);
  6221       if( rc==SQLITE_ROW ){
  6222         rc = SQLITE_OK;
  6223       }else if( rc==SQLITE_DONE ){
  6224         /* Clear the pending terms so we don't flush a useless level-0
  6225         ** segment when the transaction closes.
  6226         */
  6227         rc = clearPendingTerms(v);
  6228         if( rc==SQLITE_OK ){
  6229           rc = segdir_delete_all(v);
  6230         }
  6231       }
  6232     }
  6233   } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
  6234     /* An update:
  6235      * ppArg[0] = old rowid
  6236      * ppArg[1] = new rowid
  6237      * ppArg[2..2+v->nColumn-1] = values
  6238      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
  6239      * ppArg[2+v->nColumn+1] = value for docid
  6240      */
  6241     sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
  6242     if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
  6243         sqlite3_value_int64(ppArg[1]) != rowid ){
  6244       rc = SQLITE_ERROR;  /* we don't allow changing the rowid */
  6245     }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
  6246               sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
  6247       rc = SQLITE_ERROR;  /* we don't allow changing the docid */
  6248     }else{
  6249       assert( nArg==2+v->nColumn+2);
  6250       rc = index_update(v, rowid, &ppArg[2]);
  6251     }
  6252   } else {
  6253     /* An insert:
  6254      * ppArg[1] = requested rowid
  6255      * ppArg[2..2+v->nColumn-1] = values
  6256      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
  6257      * ppArg[2+v->nColumn+1] = value for docid
  6258      */
  6259     sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
  6260     assert( nArg==2+v->nColumn+2);
  6261     if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
  6262         SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
  6263       /* TODO(shess) Consider allowing this to work if the values are
  6264       ** identical.  I'm inclined to discourage that usage, though,
  6265       ** given that both rowid and docid are special columns.  Better
  6266       ** would be to define one or the other as the default winner,
  6267       ** but should it be fts3-centric (docid) or SQLite-centric
  6268       ** (rowid)?
  6269       */
  6270       rc = SQLITE_ERROR;
  6271     }else{
  6272       if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
  6273         pRequestDocid = ppArg[1];
  6274       }
  6275       rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
  6276     }
  6277   }
  6278 
  6279   return rc;
  6280 }
  6281 
  6282 static int fulltextSync(sqlite3_vtab *pVtab){
  6283   FTSTRACE(("FTS3 xSync()\n"));
  6284   return flushPendingTerms((fulltext_vtab *)pVtab);
  6285 }
  6286 
  6287 static int fulltextBegin(sqlite3_vtab *pVtab){
  6288   fulltext_vtab *v = (fulltext_vtab *) pVtab;
  6289   FTSTRACE(("FTS3 xBegin()\n"));
  6290 
  6291   /* Any buffered updates should have been cleared by the previous
  6292   ** transaction.
  6293   */
  6294   assert( v->nPendingData<0 );
  6295   return clearPendingTerms(v);
  6296 }
  6297 
  6298 static int fulltextCommit(sqlite3_vtab *pVtab){
  6299   fulltext_vtab *v = (fulltext_vtab *) pVtab;
  6300   FTSTRACE(("FTS3 xCommit()\n"));
  6301 
  6302   /* Buffered updates should have been cleared by fulltextSync(). */
  6303   assert( v->nPendingData<0 );
  6304   return clearPendingTerms(v);
  6305 }
  6306 
  6307 static int fulltextRollback(sqlite3_vtab *pVtab){
  6308   FTSTRACE(("FTS3 xRollback()\n"));
  6309   return clearPendingTerms((fulltext_vtab *)pVtab);
  6310 }
  6311 
  6312 /*
  6313 ** Implementation of the snippet() function for FTS3
  6314 */
  6315 static void snippetFunc(
  6316   sqlite3_context *pContext,
  6317   int argc,
  6318   sqlite3_value **argv
  6319 ){
  6320   fulltext_cursor *pCursor;
  6321   if( argc<1 ) return;
  6322   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6323       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6324     sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
  6325   }else{
  6326     const char *zStart = "<b>";
  6327     const char *zEnd = "</b>";
  6328     const char *zEllipsis = "<b>...</b>";
  6329     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6330     if( argc>=2 ){
  6331       zStart = (const char*)sqlite3_value_text(argv[1]);
  6332       if( argc>=3 ){
  6333         zEnd = (const char*)sqlite3_value_text(argv[2]);
  6334         if( argc>=4 ){
  6335           zEllipsis = (const char*)sqlite3_value_text(argv[3]);
  6336         }
  6337       }
  6338     }
  6339     snippetAllOffsets(pCursor);
  6340     snippetText(pCursor, zStart, zEnd, zEllipsis);
  6341     sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
  6342                         pCursor->snippet.nSnippet, SQLITE_STATIC);
  6343   }
  6344 }
  6345 
  6346 /*
  6347 ** Implementation of the offsets() function for FTS3
  6348 */
  6349 static void snippetOffsetsFunc(
  6350   sqlite3_context *pContext,
  6351   int argc,
  6352   sqlite3_value **argv
  6353 ){
  6354   fulltext_cursor *pCursor;
  6355   if( argc<1 ) return;
  6356   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6357       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6358     sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
  6359   }else{
  6360     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6361     snippetAllOffsets(pCursor);
  6362     snippetOffsetText(&pCursor->snippet);
  6363     sqlite3_result_text(pContext,
  6364                         pCursor->snippet.zOffset, pCursor->snippet.nOffset,
  6365                         SQLITE_STATIC);
  6366   }
  6367 }
  6368 
  6369 /* OptLeavesReader is nearly identical to LeavesReader, except that
  6370 ** where LeavesReader is geared towards the merging of complete
  6371 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
  6372 ** is geared towards implementation of the optimize() function, and
  6373 ** can merge all segments simultaneously.  This version may be
  6374 ** somewhat less efficient than LeavesReader because it merges into an
  6375 ** accumulator rather than doing an N-way merge, but since segment
  6376 ** size grows exponentially (so segment count logrithmically) this is
  6377 ** probably not an immediate problem.
  6378 */
  6379 /* TODO(shess): Prove that assertion, or extend the merge code to
  6380 ** merge tree fashion (like the prefix-searching code does).
  6381 */
  6382 /* TODO(shess): OptLeavesReader and LeavesReader could probably be
  6383 ** merged with little or no loss of performance for LeavesReader.  The
  6384 ** merged code would need to handle >MERGE_COUNT segments, and would
  6385 ** also need to be able to optionally optimize away deletes.
  6386 */
  6387 typedef struct OptLeavesReader {
  6388   /* Segment number, to order readers by age. */
  6389   int segment;
  6390   LeavesReader reader;
  6391 } OptLeavesReader;
  6392 
  6393 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
  6394   return leavesReaderAtEnd(&pReader->reader);
  6395 }
  6396 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
  6397   return leavesReaderTermBytes(&pReader->reader);
  6398 }
  6399 static const char *optLeavesReaderData(OptLeavesReader *pReader){
  6400   return leavesReaderData(&pReader->reader);
  6401 }
  6402 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
  6403   return leavesReaderDataBytes(&pReader->reader);
  6404 }
  6405 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
  6406   return leavesReaderTerm(&pReader->reader);
  6407 }
  6408 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
  6409   return leavesReaderStep(v, &pReader->reader);
  6410 }
  6411 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
  6412   return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
  6413 }
  6414 /* Order by term ascending, segment ascending (oldest to newest), with
  6415 ** exhausted readers to the end.
  6416 */
  6417 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
  6418   int c = optLeavesReaderTermCmp(lr1, lr2);
  6419   if( c!=0 ) return c;
  6420   return lr1->segment-lr2->segment;
  6421 }
  6422 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1].  Assumes that
  6423 ** pLr[1..nLr-1] is already sorted.
  6424 */
  6425 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
  6426   while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
  6427     OptLeavesReader tmp = pLr[0];
  6428     pLr[0] = pLr[1];
  6429     pLr[1] = tmp;
  6430     nLr--;
  6431     pLr++;
  6432   }
  6433 }
  6434 
  6435 /* optimize() helper function.  Put the readers in order and iterate
  6436 ** through them, merging doclists for matching terms into pWriter.
  6437 ** Returns SQLITE_OK on success, or the SQLite error code which
  6438 ** prevented success.
  6439 */
  6440 static int optimizeInternal(fulltext_vtab *v,
  6441                             OptLeavesReader *readers, int nReaders,
  6442                             LeafWriter *pWriter){
  6443   int i, rc = SQLITE_OK;
  6444   DataBuffer doclist, merged, tmp;
  6445 
  6446   /* Order the readers. */
  6447   i = nReaders;
  6448   while( i-- > 0 ){
  6449     optLeavesReaderReorder(&readers[i], nReaders-i);
  6450   }
  6451 
  6452   dataBufferInit(&doclist, LEAF_MAX);
  6453   dataBufferInit(&merged, LEAF_MAX);
  6454 
  6455   /* Exhausted readers bubble to the end, so when the first reader is
  6456   ** at eof, all are at eof.
  6457   */
  6458   while( !optLeavesReaderAtEnd(&readers[0]) ){
  6459 
  6460     /* Figure out how many readers share the next term. */
  6461     for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
  6462       if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
  6463     }
  6464 
  6465     /* Special-case for no merge. */
  6466     if( i==1 ){
  6467       /* Trim deletions from the doclist. */
  6468       dataBufferReset(&merged);
  6469       docListTrim(DL_DEFAULT,
  6470                   optLeavesReaderData(&readers[0]),
  6471                   optLeavesReaderDataBytes(&readers[0]),
  6472                   -1, DL_DEFAULT, &merged);
  6473     }else{
  6474       DLReader dlReaders[MERGE_COUNT];
  6475       int iReader, nReaders;
  6476 
  6477       /* Prime the pipeline with the first reader's doclist.  After
  6478       ** one pass index 0 will reference the accumulated doclist.
  6479       */
  6480       dlrInit(&dlReaders[0], DL_DEFAULT,
  6481               optLeavesReaderData(&readers[0]),
  6482               optLeavesReaderDataBytes(&readers[0]));
  6483       iReader = 1;
  6484 
  6485       assert( iReader<i );  /* Must execute the loop at least once. */
  6486       while( iReader<i ){
  6487         /* Merge 16 inputs per pass. */
  6488         for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
  6489              iReader++, nReaders++ ){
  6490           dlrInit(&dlReaders[nReaders], DL_DEFAULT,
  6491                   optLeavesReaderData(&readers[iReader]),
  6492                   optLeavesReaderDataBytes(&readers[iReader]));
  6493         }
  6494 
  6495         /* Merge doclists and swap result into accumulator. */
  6496         dataBufferReset(&merged);
  6497         docListMerge(&merged, dlReaders, nReaders);
  6498         tmp = merged;
  6499         merged = doclist;
  6500         doclist = tmp;
  6501 
  6502         while( nReaders-- > 0 ){
  6503           dlrDestroy(&dlReaders[nReaders]);
  6504         }
  6505 
  6506         /* Accumulated doclist to reader 0 for next pass. */
  6507         dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
  6508       }
  6509 
  6510       /* Destroy reader that was left in the pipeline. */
  6511       dlrDestroy(&dlReaders[0]);
  6512 
  6513       /* Trim deletions from the doclist. */
  6514       dataBufferReset(&merged);
  6515       docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
  6516                   -1, DL_DEFAULT, &merged);
  6517     }
  6518 
  6519     /* Only pass doclists with hits (skip if all hits deleted). */
  6520     if( merged.nData>0 ){
  6521       rc = leafWriterStep(v, pWriter,
  6522                           optLeavesReaderTerm(&readers[0]),
  6523                           optLeavesReaderTermBytes(&readers[0]),
  6524                           merged.pData, merged.nData);
  6525       if( rc!=SQLITE_OK ) goto err;
  6526     }
  6527 
  6528     /* Step merged readers to next term and reorder. */
  6529     while( i-- > 0 ){
  6530       rc = optLeavesReaderStep(v, &readers[i]);
  6531       if( rc!=SQLITE_OK ) goto err;
  6532 
  6533       optLeavesReaderReorder(&readers[i], nReaders-i);
  6534     }
  6535   }
  6536 
  6537  err:
  6538   dataBufferDestroy(&doclist);
  6539   dataBufferDestroy(&merged);
  6540   return rc;
  6541 }
  6542 
  6543 /* Implement optimize() function for FTS3.  optimize(t) merges all
  6544 ** segments in the fts index into a single segment.  't' is the magic
  6545 ** table-named column.
  6546 */
  6547 static void optimizeFunc(sqlite3_context *pContext,
  6548                          int argc, sqlite3_value **argv){
  6549   fulltext_cursor *pCursor;
  6550   if( argc>1 ){
  6551     sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
  6552   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6553             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6554     sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
  6555   }else{
  6556     fulltext_vtab *v;
  6557     int i, rc, iMaxLevel;
  6558     OptLeavesReader *readers;
  6559     int nReaders;
  6560     LeafWriter writer;
  6561     sqlite3_stmt *s;
  6562 
  6563     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6564     v = cursor_vtab(pCursor);
  6565 
  6566     /* Flush any buffered updates before optimizing. */
  6567     rc = flushPendingTerms(v);
  6568     if( rc!=SQLITE_OK ) goto err;
  6569 
  6570     rc = segdir_count(v, &nReaders, &iMaxLevel);
  6571     if( rc!=SQLITE_OK ) goto err;
  6572     if( nReaders==0 || nReaders==1 ){
  6573       sqlite3_result_text(pContext, "Index already optimal", -1,
  6574                           SQLITE_STATIC);
  6575       return;
  6576     }
  6577 
  6578     rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  6579     if( rc!=SQLITE_OK ) goto err;
  6580 
  6581     readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
  6582     if( readers==NULL ) goto err;
  6583 
  6584     /* Note that there will already be a segment at this position
  6585     ** until we call segdir_delete() on iMaxLevel.
  6586     */
  6587     leafWriterInit(iMaxLevel, 0, &writer);
  6588 
  6589     i = 0;
  6590     while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  6591       sqlite_int64 iStart = sqlite3_column_int64(s, 0);
  6592       sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
  6593       const char *pRootData = sqlite3_column_blob(s, 2);
  6594       int nRootData = sqlite3_column_bytes(s, 2);
  6595 
  6596       assert( i<nReaders );
  6597       rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
  6598                             &readers[i].reader);
  6599       if( rc!=SQLITE_OK ) break;
  6600 
  6601       readers[i].segment = i;
  6602       i++;
  6603     }
  6604 
  6605     /* If we managed to succesfully read them all, optimize them. */
  6606     if( rc==SQLITE_DONE ){
  6607       assert( i==nReaders );
  6608       rc = optimizeInternal(v, readers, nReaders, &writer);
  6609     }
  6610 
  6611     while( i-- > 0 ){
  6612       leavesReaderDestroy(&readers[i].reader);
  6613     }
  6614     sqlite3_free(readers);
  6615 
  6616     /* If we've successfully gotten to here, delete the old segments
  6617     ** and flush the interior structure of the new segment.
  6618     */
  6619     if( rc==SQLITE_OK ){
  6620       for( i=0; i<=iMaxLevel; i++ ){
  6621         rc = segdir_delete(v, i);
  6622         if( rc!=SQLITE_OK ) break;
  6623       }
  6624 
  6625       if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
  6626     }
  6627 
  6628     leafWriterDestroy(&writer);
  6629 
  6630     if( rc!=SQLITE_OK ) goto err;
  6631 
  6632     sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
  6633     return;
  6634 
  6635     /* TODO(shess): Error-handling needs to be improved along the
  6636     ** lines of the dump_ functions.
  6637     */
  6638  err:
  6639     {
  6640       char buf[512];
  6641       sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
  6642                        sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
  6643       sqlite3_result_error(pContext, buf, -1);
  6644     }
  6645   }
  6646 }
  6647 
  6648 #ifdef SQLITE_TEST
  6649 /* Generate an error of the form "<prefix>: <msg>".  If msg is NULL,
  6650 ** pull the error from the context's db handle.
  6651 */
  6652 static void generateError(sqlite3_context *pContext,
  6653                           const char *prefix, const char *msg){
  6654   char buf[512];
  6655   if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
  6656   sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
  6657   sqlite3_result_error(pContext, buf, -1);
  6658 }
  6659 
  6660 /* Helper function to collect the set of terms in the segment into
  6661 ** pTerms.  The segment is defined by the leaf nodes between
  6662 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of
  6663 ** pRootData if iStartBlockid is 0 (in which case the entire segment
  6664 ** fit in a leaf).
  6665 */
  6666 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
  6667                                fts3Hash *pTerms){
  6668   const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
  6669   const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
  6670   const char *pRootData = sqlite3_column_blob(s, 2);
  6671   const int nRootData = sqlite3_column_bytes(s, 2);
  6672   LeavesReader reader;
  6673   int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
  6674                             pRootData, nRootData, &reader);
  6675   if( rc!=SQLITE_OK ) return rc;
  6676 
  6677   while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
  6678     const char *pTerm = leavesReaderTerm(&reader);
  6679     const int nTerm = leavesReaderTermBytes(&reader);
  6680     void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm);
  6681     void *newValue = (void *)((char *)oldValue+1);
  6682 
  6683     /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c,
  6684     ** the data value passed is returned in case of malloc failure.
  6685     */
  6686     if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){
  6687       rc = SQLITE_NOMEM;
  6688     }else{
  6689       rc = leavesReaderStep(v, &reader);
  6690     }
  6691   }
  6692 
  6693   leavesReaderDestroy(&reader);
  6694   return rc;
  6695 }
  6696 
  6697 /* Helper function to build the result string for dump_terms(). */
  6698 static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){
  6699   int iTerm, nTerms, nResultBytes, iByte;
  6700   char *result;
  6701   TermData *pData;
  6702   fts3HashElem *e;
  6703 
  6704   /* Iterate pTerms to generate an array of terms in pData for
  6705   ** sorting.
  6706   */
  6707   nTerms = fts3HashCount(pTerms);
  6708   assert( nTerms>0 );
  6709   pData = sqlite3_malloc(nTerms*sizeof(TermData));
  6710   if( pData==NULL ) return SQLITE_NOMEM;
  6711 
  6712   nResultBytes = 0;
  6713   for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){
  6714     nResultBytes += fts3HashKeysize(e)+1;   /* Term plus trailing space */
  6715     assert( iTerm<nTerms );
  6716     pData[iTerm].pTerm = fts3HashKey(e);
  6717     pData[iTerm].nTerm = fts3HashKeysize(e);
  6718     pData[iTerm].pCollector = fts3HashData(e);  /* unused */
  6719   }
  6720   assert( iTerm==nTerms );
  6721 
  6722   assert( nResultBytes>0 );   /* nTerms>0, nResultsBytes must be, too. */
  6723   result = sqlite3_malloc(nResultBytes);
  6724   if( result==NULL ){
  6725     sqlite3_free(pData);
  6726     return SQLITE_NOMEM;
  6727   }
  6728 
  6729   if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
  6730 
  6731   /* Read the terms in order to build the result. */
  6732   iByte = 0;
  6733   for(iTerm=0; iTerm<nTerms; ++iTerm){
  6734     memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
  6735     iByte += pData[iTerm].nTerm;
  6736     result[iByte++] = ' ';
  6737   }
  6738   assert( iByte==nResultBytes );
  6739   assert( result[nResultBytes-1]==' ' );
  6740   result[nResultBytes-1] = '\0';
  6741 
  6742   /* Passes away ownership of result. */
  6743   sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
  6744   sqlite3_free(pData);
  6745   return SQLITE_OK;
  6746 }
  6747 
  6748 /* Implements dump_terms() for use in inspecting the fts3 index from
  6749 ** tests.  TEXT result containing the ordered list of terms joined by
  6750 ** spaces.  dump_terms(t, level, idx) dumps the terms for the segment
  6751 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps
  6752 ** all terms in the index.  In both cases t is the fts table's magic
  6753 ** table-named column.
  6754 */
  6755 static void dumpTermsFunc(
  6756   sqlite3_context *pContext,
  6757   int argc, sqlite3_value **argv
  6758 ){
  6759   fulltext_cursor *pCursor;
  6760   if( argc!=3 && argc!=1 ){
  6761     generateError(pContext, "dump_terms", "incorrect arguments");
  6762   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6763             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6764     generateError(pContext, "dump_terms", "illegal first argument");
  6765   }else{
  6766     fulltext_vtab *v;
  6767     fts3Hash terms;
  6768     sqlite3_stmt *s = NULL;
  6769     int rc;
  6770 
  6771     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6772     v = cursor_vtab(pCursor);
  6773 
  6774     /* If passed only the cursor column, get all segments.  Otherwise
  6775     ** get the segment described by the following two arguments.
  6776     */
  6777     if( argc==1 ){
  6778       rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  6779     }else{
  6780       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
  6781       if( rc==SQLITE_OK ){
  6782         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
  6783         if( rc==SQLITE_OK ){
  6784           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
  6785         }
  6786       }
  6787     }
  6788 
  6789     if( rc!=SQLITE_OK ){
  6790       generateError(pContext, "dump_terms", NULL);
  6791       return;
  6792     }
  6793 
  6794     /* Collect the terms for each segment. */
  6795     sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1);
  6796     while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  6797       rc = collectSegmentTerms(v, s, &terms);
  6798       if( rc!=SQLITE_OK ) break;
  6799     }
  6800 
  6801     if( rc!=SQLITE_DONE ){
  6802       sqlite3_reset(s);
  6803       generateError(pContext, "dump_terms", NULL);
  6804     }else{
  6805       const int nTerms = fts3HashCount(&terms);
  6806       if( nTerms>0 ){
  6807         rc = generateTermsResult(pContext, &terms);
  6808         if( rc==SQLITE_NOMEM ){
  6809           generateError(pContext, "dump_terms", "out of memory");
  6810         }else{
  6811           assert( rc==SQLITE_OK );
  6812         }
  6813       }else if( argc==3 ){
  6814         /* The specific segment asked for could not be found. */
  6815         generateError(pContext, "dump_terms", "segment not found");
  6816       }else{
  6817         /* No segments found. */
  6818         /* TODO(shess): It should be impossible to reach this.  This
  6819         ** case can only happen for an empty table, in which case
  6820         ** SQLite has no rows to call this function on.
  6821         */
  6822         sqlite3_result_null(pContext);
  6823       }
  6824     }
  6825     sqlite3Fts3HashClear(&terms);
  6826   }
  6827 }
  6828 
  6829 /* Expand the DL_DEFAULT doclist in pData into a text result in
  6830 ** pContext.
  6831 */
  6832 static void createDoclistResult(sqlite3_context *pContext,
  6833                                 const char *pData, int nData){
  6834   DataBuffer dump;
  6835   DLReader dlReader;
  6836 
  6837   assert( pData!=NULL && nData>0 );
  6838 
  6839   dataBufferInit(&dump, 0);
  6840   dlrInit(&dlReader, DL_DEFAULT, pData, nData);
  6841   for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
  6842     char buf[256];
  6843     PLReader plReader;
  6844 
  6845     plrInit(&plReader, &dlReader);
  6846     if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
  6847       sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
  6848       dataBufferAppend(&dump, buf, strlen(buf));
  6849     }else{
  6850       int iColumn = plrColumn(&plReader);
  6851 
  6852       sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
  6853                        dlrDocid(&dlReader), iColumn);
  6854       dataBufferAppend(&dump, buf, strlen(buf));
  6855 
  6856       for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
  6857         if( plrColumn(&plReader)!=iColumn ){
  6858           iColumn = plrColumn(&plReader);
  6859           sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
  6860           assert( dump.nData>0 );
  6861           dump.nData--;                     /* Overwrite trailing space. */
  6862           assert( dump.pData[dump.nData]==' ');
  6863           dataBufferAppend(&dump, buf, strlen(buf));
  6864         }
  6865         if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
  6866           sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
  6867                            plrPosition(&plReader),
  6868                            plrStartOffset(&plReader), plrEndOffset(&plReader));
  6869         }else if( DL_DEFAULT==DL_POSITIONS ){
  6870           sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
  6871         }else{
  6872           assert( NULL=="Unhandled DL_DEFAULT value");
  6873         }
  6874         dataBufferAppend(&dump, buf, strlen(buf));
  6875       }
  6876       plrDestroy(&plReader);
  6877 
  6878       assert( dump.nData>0 );
  6879       dump.nData--;                     /* Overwrite trailing space. */
  6880       assert( dump.pData[dump.nData]==' ');
  6881       dataBufferAppend(&dump, "]] ", 3);
  6882     }
  6883   }
  6884   dlrDestroy(&dlReader);
  6885 
  6886   assert( dump.nData>0 );
  6887   dump.nData--;                     /* Overwrite trailing space. */
  6888   assert( dump.pData[dump.nData]==' ');
  6889   dump.pData[dump.nData] = '\0';
  6890   assert( dump.nData>0 );
  6891 
  6892   /* Passes ownership of dump's buffer to pContext. */
  6893   sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
  6894   dump.pData = NULL;
  6895   dump.nData = dump.nCapacity = 0;
  6896 }
  6897 
  6898 /* Implements dump_doclist() for use in inspecting the fts3 index from
  6899 ** tests.  TEXT result containing a string representation of the
  6900 ** doclist for the indicated term.  dump_doclist(t, term, level, idx)
  6901 ** dumps the doclist for term from the segment specified by level, idx
  6902 ** (in %_segdir), while dump_doclist(t, term) dumps the logical
  6903 ** doclist for the term across all segments.  The per-segment doclist
  6904 ** can contain deletions, while the full-index doclist will not
  6905 ** (deletions are omitted).
  6906 **
  6907 ** Result formats differ with the setting of DL_DEFAULTS.  Examples:
  6908 **
  6909 ** DL_DOCIDS: [1] [3] [7]
  6910 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
  6911 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
  6912 **
  6913 ** In each case the number after the outer '[' is the docid.  In the
  6914 ** latter two cases, the number before the inner '[' is the column
  6915 ** associated with the values within.  For DL_POSITIONS the numbers
  6916 ** within are the positions, for DL_POSITIONS_OFFSETS they are the
  6917 ** position, the start offset, and the end offset.
  6918 */
  6919 static void dumpDoclistFunc(
  6920   sqlite3_context *pContext,
  6921   int argc, sqlite3_value **argv
  6922 ){
  6923   fulltext_cursor *pCursor;
  6924   if( argc!=2 && argc!=4 ){
  6925     generateError(pContext, "dump_doclist", "incorrect arguments");
  6926   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6927             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6928     generateError(pContext, "dump_doclist", "illegal first argument");
  6929   }else if( sqlite3_value_text(argv[1])==NULL ||
  6930             sqlite3_value_text(argv[1])[0]=='\0' ){
  6931     generateError(pContext, "dump_doclist", "empty second argument");
  6932   }else{
  6933     const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
  6934     const int nTerm = strlen(pTerm);
  6935     fulltext_vtab *v;
  6936     int rc;
  6937     DataBuffer doclist;
  6938 
  6939     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6940     v = cursor_vtab(pCursor);
  6941 
  6942     dataBufferInit(&doclist, 0);
  6943 
  6944     /* termSelect() yields the same logical doclist that queries are
  6945     ** run against.
  6946     */
  6947     if( argc==2 ){
  6948       rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
  6949     }else{
  6950       sqlite3_stmt *s = NULL;
  6951 
  6952       /* Get our specific segment's information. */
  6953       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
  6954       if( rc==SQLITE_OK ){
  6955         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
  6956         if( rc==SQLITE_OK ){
  6957           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
  6958         }
  6959       }
  6960 
  6961       if( rc==SQLITE_OK ){
  6962         rc = sqlite3_step(s);
  6963 
  6964         if( rc==SQLITE_DONE ){
  6965           dataBufferDestroy(&doclist);
  6966           generateError(pContext, "dump_doclist", "segment not found");
  6967           return;
  6968         }
  6969 
  6970         /* Found a segment, load it into doclist. */
  6971         if( rc==SQLITE_ROW ){
  6972           const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
  6973           const char *pData = sqlite3_column_blob(s, 2);
  6974           const int nData = sqlite3_column_bytes(s, 2);
  6975 
  6976           /* loadSegment() is used by termSelect() to load each
  6977           ** segment's data.
  6978           */
  6979           rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
  6980                            &doclist);
  6981           if( rc==SQLITE_OK ){
  6982             rc = sqlite3_step(s);
  6983 
  6984             /* Should not have more than one matching segment. */
  6985             if( rc!=SQLITE_DONE ){
  6986               sqlite3_reset(s);
  6987               dataBufferDestroy(&doclist);
  6988               generateError(pContext, "dump_doclist", "invalid segdir");
  6989               return;
  6990             }
  6991             rc = SQLITE_OK;
  6992           }
  6993         }
  6994       }
  6995 
  6996       sqlite3_reset(s);
  6997     }
  6998 
  6999     if( rc==SQLITE_OK ){
  7000       if( doclist.nData>0 ){
  7001         createDoclistResult(pContext, doclist.pData, doclist.nData);
  7002       }else{
  7003         /* TODO(shess): This can happen if the term is not present, or
  7004         ** if all instances of the term have been deleted and this is
  7005         ** an all-index dump.  It may be interesting to distinguish
  7006         ** these cases.
  7007         */
  7008         sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
  7009       }
  7010     }else if( rc==SQLITE_NOMEM ){
  7011       /* Handle out-of-memory cases specially because if they are
  7012       ** generated in fts3 code they may not be reflected in the db
  7013       ** handle.
  7014       */
  7015       /* TODO(shess): Handle this more comprehensively.
  7016       ** sqlite3ErrStr() has what I need, but is internal.
  7017       */
  7018       generateError(pContext, "dump_doclist", "out of memory");
  7019     }else{
  7020       generateError(pContext, "dump_doclist", NULL);
  7021     }
  7022 
  7023     dataBufferDestroy(&doclist);
  7024   }
  7025 }
  7026 #endif
  7027 
  7028 /*
  7029 ** This routine implements the xFindFunction method for the FTS3
  7030 ** virtual table.
  7031 */
  7032 static int fulltextFindFunction(
  7033   sqlite3_vtab *pVtab,
  7034   int nArg,
  7035   const char *zName,
  7036   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
  7037   void **ppArg
  7038 ){
  7039   if( strcmp(zName,"snippet")==0 ){
  7040     *pxFunc = snippetFunc;
  7041     return 1;
  7042   }else if( strcmp(zName,"offsets")==0 ){
  7043     *pxFunc = snippetOffsetsFunc;
  7044     return 1;
  7045   }else if( strcmp(zName,"optimize")==0 ){
  7046     *pxFunc = optimizeFunc;
  7047     return 1;
  7048 #ifdef SQLITE_TEST
  7049     /* NOTE(shess): These functions are present only for testing
  7050     ** purposes.  No particular effort is made to optimize their
  7051     ** execution or how they build their results.
  7052     */
  7053   }else if( strcmp(zName,"dump_terms")==0 ){
  7054     /* fprintf(stderr, "Found dump_terms\n"); */
  7055     *pxFunc = dumpTermsFunc;
  7056     return 1;
  7057   }else if( strcmp(zName,"dump_doclist")==0 ){
  7058     /* fprintf(stderr, "Found dump_doclist\n"); */
  7059     *pxFunc = dumpDoclistFunc;
  7060     return 1;
  7061 #endif
  7062   }
  7063   return 0;
  7064 }
  7065 
  7066 /*
  7067 ** Rename an fts3 table.
  7068 */
  7069 static int fulltextRename(
  7070   sqlite3_vtab *pVtab,
  7071   const char *zName
  7072 ){
  7073   fulltext_vtab *p = (fulltext_vtab *)pVtab;
  7074   int rc = SQLITE_NOMEM;
  7075   char *zSql = sqlite3_mprintf(
  7076     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';"
  7077     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
  7078     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';"
  7079     , p->zDb, p->zName, zName 
  7080     , p->zDb, p->zName, zName 
  7081     , p->zDb, p->zName, zName
  7082   );
  7083   if( zSql ){
  7084     rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
  7085     sqlite3_free(zSql);
  7086   }
  7087   return rc;
  7088 }
  7089 
  7090 static const sqlite3_module fts3Module = {
  7091   /* iVersion      */ 0,
  7092   /* xCreate       */ fulltextCreate,
  7093   /* xConnect      */ fulltextConnect,
  7094   /* xBestIndex    */ fulltextBestIndex,
  7095   /* xDisconnect   */ fulltextDisconnect,
  7096   /* xDestroy      */ fulltextDestroy,
  7097   /* xOpen         */ fulltextOpen,
  7098   /* xClose        */ fulltextClose,
  7099   /* xFilter       */ fulltextFilter,
  7100   /* xNext         */ fulltextNext,
  7101   /* xEof          */ fulltextEof,
  7102   /* xColumn       */ fulltextColumn,
  7103   /* xRowid        */ fulltextRowid,
  7104   /* xUpdate       */ fulltextUpdate,
  7105   /* xBegin        */ fulltextBegin,
  7106   /* xSync         */ fulltextSync,
  7107   /* xCommit       */ fulltextCommit,
  7108   /* xRollback     */ fulltextRollback,
  7109   /* xFindFunction */ fulltextFindFunction,
  7110   /* xRename */       fulltextRename,
  7111 };
  7112 
  7113 static void hashDestroy(void *p){
  7114   fts3Hash *pHash = (fts3Hash *)p;
  7115   sqlite3Fts3HashClear(pHash);
  7116   sqlite3_free(pHash);
  7117 }
  7118 
  7119 /*
  7120 ** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
  7121 ** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
  7122 ** two forward declarations are for functions declared in these files
  7123 ** used to retrieve the respective implementations.
  7124 **
  7125 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
  7126 ** to by the argument to point a the "simple" tokenizer implementation.
  7127 ** Function ...PorterTokenizerModule() sets *pModule to point to the
  7128 ** porter tokenizer/stemmer implementation.
  7129 */
  7130 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  7131 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  7132 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  7133 
  7134 int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
  7135 
  7136 /*
  7137 ** Initialise the fts3 extension. If this extension is built as part
  7138 ** of the sqlite library, then this function is called directly by
  7139 ** SQLite. If fts3 is built as a dynamically loadable extension, this
  7140 ** function is called by the sqlite3_extension_init() entry point.
  7141 */
  7142 int sqlite3Fts3Init(sqlite3 *db){
  7143   int rc = SQLITE_OK;
  7144   fts3Hash *pHash = 0;
  7145   const sqlite3_tokenizer_module *pSimple = 0;
  7146   const sqlite3_tokenizer_module *pPorter = 0;
  7147   const sqlite3_tokenizer_module *pIcu = 0;
  7148 
  7149   sqlite3Fts3SimpleTokenizerModule(&pSimple);
  7150   sqlite3Fts3PorterTokenizerModule(&pPorter);
  7151 #ifdef SQLITE_ENABLE_ICU
  7152   sqlite3Fts3IcuTokenizerModule(&pIcu);
  7153 #endif
  7154 
  7155   /* Allocate and initialise the hash-table used to store tokenizers. */
  7156   pHash = sqlite3_malloc(sizeof(fts3Hash));
  7157   if( !pHash ){
  7158     rc = SQLITE_NOMEM;
  7159   }else{
  7160     sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
  7161   }
  7162 
  7163   /* Load the built-in tokenizers into the hash table */
  7164   if( rc==SQLITE_OK ){
  7165     if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
  7166      || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 
  7167      || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
  7168     ){
  7169       rc = SQLITE_NOMEM;
  7170     }
  7171   }
  7172 
  7173   /* Create the virtual table wrapper around the hash-table and overload 
  7174   ** the two scalar functions. If this is successful, register the
  7175   ** module with sqlite.
  7176   */
  7177   if( SQLITE_OK==rc 
  7178    && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
  7179    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
  7180    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
  7181    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
  7182 #ifdef SQLITE_TEST
  7183    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
  7184    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
  7185 #endif
  7186   ){
  7187     return sqlite3_create_module_v2(
  7188         db, "fts3", &fts3Module, (void *)pHash, hashDestroy
  7189     );
  7190   }
  7191 
  7192   /* An error has occured. Delete the hash table and return the error code. */
  7193   assert( rc!=SQLITE_OK );
  7194   if( pHash ){
  7195     sqlite3Fts3HashClear(pHash);
  7196     sqlite3_free(pHash);
  7197   }
  7198   return rc;
  7199 }
  7200 
  7201 #if !SQLITE_CORE
  7202 int sqlite3_extension_init(
  7203   sqlite3 *db, 
  7204   char **pzErrMsg,
  7205   const sqlite3_api_routines *pApi
  7206 ){
  7207   SQLITE_EXTENSION_INIT2(pApi)
  7208   return sqlite3Fts3Init(db);
  7209 }
  7210 #endif
  7211 
  7212 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */