os/persistentdata/persistentstorage/sqlite3api/SQLite/fts2.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* fts2 has a design flaw which can lead to database corruption (see
     2 ** below).  It is recommended not to use it any longer, instead use
     3 ** fts3 (or higher).  If you believe that your use of fts2 is safe,
     4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS.
     5 */
     6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \
     7         && !defined(SQLITE_ENABLE_BROKEN_FTS2)
     8 #error fts2 has a design flaw and has been deprecated.
     9 #endif
    10 /* The flaw is that fts2 uses the content table's unaliased rowid as
    11 ** the unique docid.  fts2 embeds the rowid in the index it builds,
    12 ** and expects the rowid to not change.  The SQLite VACUUM operation
    13 ** will renumber such rowids, thereby breaking fts2.  If you are using
    14 ** fts2 in a system which has disabled VACUUM, then you can continue
    15 ** to use it safely.  Note that PRAGMA auto_vacuum does NOT disable
    16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke
    17 ** VACUUM.
    18 **
    19 ** Unlike fts1, which is safe across VACUUM if you never delete
    20 ** documents, fts2 has a second exposure to this flaw, in the segments
    21 ** table.  So fts2 should be considered unsafe across VACUUM in all
    22 ** cases.
    23 */
    24 
    25 /*
    26 ** 2006 Oct 10
    27 **
    28 ** The author disclaims copyright to this source code.  In place of
    29 ** a legal notice, here is a blessing:
    30 **
    31 **    May you do good and not evil.
    32 **    May you find forgiveness for yourself and forgive others.
    33 **    May you share freely, never taking more than you give.
    34 **
    35 ******************************************************************************
    36 **
    37 ** This is an SQLite module implementing full-text search.
    38 */
    39 
    40 /*
    41 ** The code in this file is only compiled if:
    42 **
    43 **     * The FTS2 module is being built as an extension
    44 **       (in which case SQLITE_CORE is not defined), or
    45 **
    46 **     * The FTS2 module is being built into the core of
    47 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
    48 */
    49 
    50 /* TODO(shess) Consider exporting this comment to an HTML file or the
    51 ** wiki.
    52 */
    53 /* The full-text index is stored in a series of b+tree (-like)
    54 ** structures called segments which map terms to doclists.  The
    55 ** structures are like b+trees in layout, but are constructed from the
    56 ** bottom up in optimal fashion and are not updatable.  Since trees
    57 ** are built from the bottom up, things will be described from the
    58 ** bottom up.
    59 **
    60 **
    61 **** Varints ****
    62 ** The basic unit of encoding is a variable-length integer called a
    63 ** varint.  We encode variable-length integers in little-endian order
    64 ** using seven bits * per byte as follows:
    65 **
    66 ** KEY:
    67 **         A = 0xxxxxxx    7 bits of data and one flag bit
    68 **         B = 1xxxxxxx    7 bits of data and one flag bit
    69 **
    70 **  7 bits - A
    71 ** 14 bits - BA
    72 ** 21 bits - BBA
    73 ** and so on.
    74 **
    75 ** This is identical to how sqlite encodes varints (see util.c).
    76 **
    77 **
    78 **** Document lists ****
    79 ** A doclist (document list) holds a docid-sorted list of hits for a
    80 ** given term.  Doclists hold docids, and can optionally associate
    81 ** token positions and offsets with docids.
    82 **
    83 ** A DL_POSITIONS_OFFSETS doclist is stored like this:
    84 **
    85 ** array {
    86 **   varint docid;
    87 **   array {                (position list for column 0)
    88 **     varint position;     (delta from previous position plus POS_BASE)
    89 **     varint startOffset;  (delta from previous startOffset)
    90 **     varint endOffset;    (delta from startOffset)
    91 **   }
    92 **   array {
    93 **     varint POS_COLUMN;   (marks start of position list for new column)
    94 **     varint column;       (index of new column)
    95 **     array {
    96 **       varint position;   (delta from previous position plus POS_BASE)
    97 **       varint startOffset;(delta from previous startOffset)
    98 **       varint endOffset;  (delta from startOffset)
    99 **     }
   100 **   }
   101 **   varint POS_END;        (marks end of positions for this document.
   102 ** }
   103 **
   104 ** Here, array { X } means zero or more occurrences of X, adjacent in
   105 ** memory.  A "position" is an index of a token in the token stream
   106 ** generated by the tokenizer, while an "offset" is a byte offset,
   107 ** both based at 0.  Note that POS_END and POS_COLUMN occur in the
   108 ** same logical place as the position element, and act as sentinals
   109 ** ending a position list array.
   110 **
   111 ** A DL_POSITIONS doclist omits the startOffset and endOffset
   112 ** information.  A DL_DOCIDS doclist omits both the position and
   113 ** offset information, becoming an array of varint-encoded docids.
   114 **
   115 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize
   116 ** the type.  Due to how deletion is implemented in the segmentation
   117 ** system, on-disk doclists MUST store at least positions.
   118 **
   119 **
   120 **** Segment leaf nodes ****
   121 ** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
   122 ** nodes are written using LeafWriter, and read using LeafReader (to
   123 ** iterate through a single leaf node's data) and LeavesReader (to
   124 ** iterate through a segment's entire leaf layer).  Leaf nodes have
   125 ** the format:
   126 **
   127 ** varint iHeight;             (height from leaf level, always 0)
   128 ** varint nTerm;               (length of first term)
   129 ** char pTerm[nTerm];          (content of first term)
   130 ** varint nDoclist;            (length of term's associated doclist)
   131 ** char pDoclist[nDoclist];    (content of doclist)
   132 ** array {
   133 **                             (further terms are delta-encoded)
   134 **   varint nPrefix;           (length of prefix shared with previous term)
   135 **   varint nSuffix;           (length of unshared suffix)
   136 **   char pTermSuffix[nSuffix];(unshared suffix of next term)
   137 **   varint nDoclist;          (length of term's associated doclist)
   138 **   char pDoclist[nDoclist];  (content of doclist)
   139 ** }
   140 **
   141 ** Here, array { X } means zero or more occurrences of X, adjacent in
   142 ** memory.
   143 **
   144 ** Leaf nodes are broken into blocks which are stored contiguously in
   145 ** the %_segments table in sorted order.  This means that when the end
   146 ** of a node is reached, the next term is in the node with the next
   147 ** greater node id.
   148 **
   149 ** New data is spilled to a new leaf node when the current node
   150 ** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
   151 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
   152 ** node (a leaf node with a single term and doclist).  The goal of
   153 ** these settings is to pack together groups of small doclists while
   154 ** making it efficient to directly access large doclists.  The
   155 ** assumption is that large doclists represent terms which are more
   156 ** likely to be query targets.
   157 **
   158 ** TODO(shess) It may be useful for blocking decisions to be more
   159 ** dynamic.  For instance, it may make more sense to have a 2.5k leaf
   160 ** node rather than splitting into 2k and .5k nodes.  My intuition is
   161 ** that this might extend through 2x or 4x the pagesize.
   162 **
   163 **
   164 **** Segment interior nodes ****
   165 ** Segment interior nodes store blockids for subtree nodes and terms
   166 ** to describe what data is stored by the each subtree.  Interior
   167 ** nodes are written using InteriorWriter, and read using
   168 ** InteriorReader.  InteriorWriters are created as needed when
   169 ** SegmentWriter creates new leaf nodes, or when an interior node
   170 ** itself grows too big and must be split.  The format of interior
   171 ** nodes:
   172 **
   173 ** varint iHeight;           (height from leaf level, always >0)
   174 ** varint iBlockid;          (block id of node's leftmost subtree)
   175 ** optional {
   176 **   varint nTerm;           (length of first term)
   177 **   char pTerm[nTerm];      (content of first term)
   178 **   array {
   179 **                                (further terms are delta-encoded)
   180 **     varint nPrefix;            (length of shared prefix with previous term)
   181 **     varint nSuffix;            (length of unshared suffix)
   182 **     char pTermSuffix[nSuffix]; (unshared suffix of next term)
   183 **   }
   184 ** }
   185 **
   186 ** Here, optional { X } means an optional element, while array { X }
   187 ** means zero or more occurrences of X, adjacent in memory.
   188 **
   189 ** An interior node encodes n terms separating n+1 subtrees.  The
   190 ** subtree blocks are contiguous, so only the first subtree's blockid
   191 ** is encoded.  The subtree at iBlockid will contain all terms less
   192 ** than the first term encoded (or all terms if no term is encoded).
   193 ** Otherwise, for terms greater than or equal to pTerm[i] but less
   194 ** than pTerm[i+1], the subtree for that term will be rooted at
   195 ** iBlockid+i.  Interior nodes only store enough term data to
   196 ** distinguish adjacent children (if the rightmost term of the left
   197 ** child is "something", and the leftmost term of the right child is
   198 ** "wicked", only "w" is stored).
   199 **
   200 ** New data is spilled to a new interior node at the same height when
   201 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
   202 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
   203 ** interior nodes and making the tree too skinny.  The interior nodes
   204 ** at a given height are naturally tracked by interior nodes at
   205 ** height+1, and so on.
   206 **
   207 **
   208 **** Segment directory ****
   209 ** The segment directory in table %_segdir stores meta-information for
   210 ** merging and deleting segments, and also the root node of the
   211 ** segment's tree.
   212 **
   213 ** The root node is the top node of the segment's tree after encoding
   214 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
   215 ** This could be either a leaf node or an interior node.  If the top
   216 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
   217 ** and a new root interior node is generated (which should always fit
   218 ** within ROOT_MAX because it only needs space for 2 varints, the
   219 ** height and the blockid of the previous root).
   220 **
   221 ** The meta-information in the segment directory is:
   222 **   level               - segment level (see below)
   223 **   idx                 - index within level
   224 **                       - (level,idx uniquely identify a segment)
   225 **   start_block         - first leaf node
   226 **   leaves_end_block    - last leaf node
   227 **   end_block           - last block (including interior nodes)
   228 **   root                - contents of root node
   229 **
   230 ** If the root node is a leaf node, then start_block,
   231 ** leaves_end_block, and end_block are all 0.
   232 **
   233 **
   234 **** Segment merging ****
   235 ** To amortize update costs, segments are groups into levels and
   236 ** merged in matches.  Each increase in level represents exponentially
   237 ** more documents.
   238 **
   239 ** New documents (actually, document updates) are tokenized and
   240 ** written individually (using LeafWriter) to a level 0 segment, with
   241 ** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
   242 ** level 0 segments are merged into a single level 1 segment.  Level 1
   243 ** is populated like level 0, and eventually MERGE_COUNT level 1
   244 ** segments are merged to a single level 2 segment (representing
   245 ** MERGE_COUNT^2 updates), and so on.
   246 **
   247 ** A segment merge traverses all segments at a given level in
   248 ** parallel, performing a straightforward sorted merge.  Since segment
   249 ** leaf nodes are written in to the %_segments table in order, this
   250 ** merge traverses the underlying sqlite disk structures efficiently.
   251 ** After the merge, all segment blocks from the merged level are
   252 ** deleted.
   253 **
   254 ** MERGE_COUNT controls how often we merge segments.  16 seems to be
   255 ** somewhat of a sweet spot for insertion performance.  32 and 64 show
   256 ** very similar performance numbers to 16 on insertion, though they're
   257 ** a tiny bit slower (perhaps due to more overhead in merge-time
   258 ** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
   259 ** 16, 2 about 66% slower than 16.
   260 **
   261 ** At query time, high MERGE_COUNT increases the number of segments
   262 ** which need to be scanned and merged.  For instance, with 100k docs
   263 ** inserted:
   264 **
   265 **    MERGE_COUNT   segments
   266 **       16           25
   267 **        8           12
   268 **        4           10
   269 **        2            6
   270 **
   271 ** This appears to have only a moderate impact on queries for very
   272 ** frequent terms (which are somewhat dominated by segment merge
   273 ** costs), and infrequent and non-existent terms still seem to be fast
   274 ** even with many segments.
   275 **
   276 ** TODO(shess) That said, it would be nice to have a better query-side
   277 ** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
   278 ** optimizations to things like doclist merging will swing the sweet
   279 ** spot around.
   280 **
   281 **
   282 **
   283 **** Handling of deletions and updates ****
   284 ** Since we're using a segmented structure, with no docid-oriented
   285 ** index into the term index, we clearly cannot simply update the term
   286 ** index when a document is deleted or updated.  For deletions, we
   287 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
   288 ** we simply write the new doclist.  Segment merges overwrite older
   289 ** data for a particular docid with newer data, so deletes or updates
   290 ** will eventually overtake the earlier data and knock it out.  The
   291 ** query logic likewise merges doclists so that newer data knocks out
   292 ** older data.
   293 **
   294 ** TODO(shess) Provide a VACUUM type operation to clear out all
   295 ** deletions and duplications.  This would basically be a forced merge
   296 ** into a single segment.
   297 */
   298 
   299 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
   300 
   301 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE)
   302 # define SQLITE_CORE 1
   303 #endif
   304 
   305 #include <assert.h>
   306 #include <stdlib.h>
   307 #include <stdio.h>
   308 #include <string.h>
   309 #include <ctype.h>
   310 
   311 #include "fts2.h"
   312 #include "fts2_hash.h"
   313 #include "fts2_tokenizer.h"
   314 #include "sqlite3.h"
   315 #include "sqlite3ext.h"
   316 SQLITE_EXTENSION_INIT1
   317 
   318 
   319 /* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it
   320 ** would be nice to order the file better, perhaps something along the
   321 ** lines of:
   322 **
   323 **  - utility functions
   324 **  - table setup functions
   325 **  - table update functions
   326 **  - table query functions
   327 **
   328 ** Put the query functions last because they're likely to reference
   329 ** typedefs or functions from the table update section.
   330 */
   331 
   332 #if 0
   333 # define TRACE(A)  printf A; fflush(stdout)
   334 #else
   335 # define TRACE(A)
   336 #endif
   337 
   338 /* It is not safe to call isspace(), tolower(), or isalnum() on
   339 ** hi-bit-set characters.  This is the same solution used in the
   340 ** tokenizer.
   341 */
   342 /* TODO(shess) The snippet-generation code should be using the
   343 ** tokenizer-generated tokens rather than doing its own local
   344 ** tokenization.
   345 */
   346 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
   347 static int safe_isspace(char c){
   348   return (c&0x80)==0 ? isspace(c) : 0;
   349 }
   350 static int safe_tolower(char c){
   351   return (c&0x80)==0 ? tolower(c) : c;
   352 }
   353 static int safe_isalnum(char c){
   354   return (c&0x80)==0 ? isalnum(c) : 0;
   355 }
   356 
   357 typedef enum DocListType {
   358   DL_DOCIDS,              /* docids only */
   359   DL_POSITIONS,           /* docids + positions */
   360   DL_POSITIONS_OFFSETS    /* docids + positions + offsets */
   361 } DocListType;
   362 
   363 /*
   364 ** By default, only positions and not offsets are stored in the doclists.
   365 ** To change this so that offsets are stored too, compile with
   366 **
   367 **          -DDL_DEFAULT=DL_POSITIONS_OFFSETS
   368 **
   369 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
   370 ** into (no deletes or updates).
   371 */
   372 #ifndef DL_DEFAULT
   373 # define DL_DEFAULT DL_POSITIONS
   374 #endif
   375 
   376 enum {
   377   POS_END = 0,        /* end of this position list */
   378   POS_COLUMN,         /* followed by new column number */
   379   POS_BASE
   380 };
   381 
   382 /* MERGE_COUNT controls how often we merge segments (see comment at
   383 ** top of file).
   384 */
   385 #define MERGE_COUNT 16
   386 
   387 /* utility functions */
   388 
   389 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
   390 ** record to prevent errors of the form:
   391 **
   392 ** my_function(SomeType *b){
   393 **   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b)
   394 ** }
   395 */
   396 /* TODO(shess) Obvious candidates for a header file. */
   397 #define CLEAR(b) memset(b, '\0', sizeof(*(b)))
   398 
   399 #ifndef NDEBUG
   400 #  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
   401 #else
   402 #  define SCRAMBLE(b)
   403 #endif
   404 
   405 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
   406 #define VARINT_MAX 10
   407 
   408 /* Write a 64-bit variable-length integer to memory starting at p[0].
   409  * The length of data written will be between 1 and VARINT_MAX bytes.
   410  * The number of bytes written is returned. */
   411 static int putVarint(char *p, sqlite_int64 v){
   412   unsigned char *q = (unsigned char *) p;
   413   sqlite_uint64 vu = v;
   414   do{
   415     *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
   416     vu >>= 7;
   417   }while( vu!=0 );
   418   q[-1] &= 0x7f;  /* turn off high bit in final byte */
   419   assert( q - (unsigned char *)p <= VARINT_MAX );
   420   return (int) (q - (unsigned char *)p);
   421 }
   422 
   423 /* Read a 64-bit variable-length integer from memory starting at p[0].
   424  * Return the number of bytes read, or 0 on error.
   425  * The value is stored in *v. */
   426 static int getVarint(const char *p, sqlite_int64 *v){
   427   const unsigned char *q = (const unsigned char *) p;
   428   sqlite_uint64 x = 0, y = 1;
   429   while( (*q & 0x80) == 0x80 ){
   430     x += y * (*q++ & 0x7f);
   431     y <<= 7;
   432     if( q - (unsigned char *)p >= VARINT_MAX ){  /* bad data */
   433       assert( 0 );
   434       return 0;
   435     }
   436   }
   437   x += y * (*q++);
   438   *v = (sqlite_int64) x;
   439   return (int) (q - (unsigned char *)p);
   440 }
   441 
   442 static int getVarint32(const char *p, int *pi){
   443  sqlite_int64 i;
   444  int ret = getVarint(p, &i);
   445  *pi = (int) i;
   446  assert( *pi==i );
   447  return ret;
   448 }
   449 
   450 /*******************************************************************/
   451 /* DataBuffer is used to collect data into a buffer in piecemeal
   452 ** fashion.  It implements the usual distinction between amount of
   453 ** data currently stored (nData) and buffer capacity (nCapacity).
   454 **
   455 ** dataBufferInit - create a buffer with given initial capacity.
   456 ** dataBufferReset - forget buffer's data, retaining capacity.
   457 ** dataBufferDestroy - free buffer's data.
   458 ** dataBufferSwap - swap contents of two buffers.
   459 ** dataBufferExpand - expand capacity without adding data.
   460 ** dataBufferAppend - append data.
   461 ** dataBufferAppend2 - append two pieces of data at once.
   462 ** dataBufferReplace - replace buffer's data.
   463 */
   464 typedef struct DataBuffer {
   465   char *pData;          /* Pointer to malloc'ed buffer. */
   466   int nCapacity;        /* Size of pData buffer. */
   467   int nData;            /* End of data loaded into pData. */
   468 } DataBuffer;
   469 
   470 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
   471   assert( nCapacity>=0 );
   472   pBuffer->nData = 0;
   473   pBuffer->nCapacity = nCapacity;
   474   pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
   475 }
   476 static void dataBufferReset(DataBuffer *pBuffer){
   477   pBuffer->nData = 0;
   478 }
   479 static void dataBufferDestroy(DataBuffer *pBuffer){
   480   if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
   481   SCRAMBLE(pBuffer);
   482 }
   483 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
   484   DataBuffer tmp = *pBuffer1;
   485   *pBuffer1 = *pBuffer2;
   486   *pBuffer2 = tmp;
   487 }
   488 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
   489   assert( nAddCapacity>0 );
   490   /* TODO(shess) Consider expanding more aggressively.  Note that the
   491   ** underlying malloc implementation may take care of such things for
   492   ** us already.
   493   */
   494   if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
   495     pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
   496     pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
   497   }
   498 }
   499 static void dataBufferAppend(DataBuffer *pBuffer,
   500                              const char *pSource, int nSource){
   501   assert( nSource>0 && pSource!=NULL );
   502   dataBufferExpand(pBuffer, nSource);
   503   memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
   504   pBuffer->nData += nSource;
   505 }
   506 static void dataBufferAppend2(DataBuffer *pBuffer,
   507                               const char *pSource1, int nSource1,
   508                               const char *pSource2, int nSource2){
   509   assert( nSource1>0 && pSource1!=NULL );
   510   assert( nSource2>0 && pSource2!=NULL );
   511   dataBufferExpand(pBuffer, nSource1+nSource2);
   512   memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
   513   memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
   514   pBuffer->nData += nSource1+nSource2;
   515 }
   516 static void dataBufferReplace(DataBuffer *pBuffer,
   517                               const char *pSource, int nSource){
   518   dataBufferReset(pBuffer);
   519   dataBufferAppend(pBuffer, pSource, nSource);
   520 }
   521 
   522 /* StringBuffer is a null-terminated version of DataBuffer. */
   523 typedef struct StringBuffer {
   524   DataBuffer b;            /* Includes null terminator. */
   525 } StringBuffer;
   526 
   527 static void initStringBuffer(StringBuffer *sb){
   528   dataBufferInit(&sb->b, 100);
   529   dataBufferReplace(&sb->b, "", 1);
   530 }
   531 static int stringBufferLength(StringBuffer *sb){
   532   return sb->b.nData-1;
   533 }
   534 static char *stringBufferData(StringBuffer *sb){
   535   return sb->b.pData;
   536 }
   537 static void stringBufferDestroy(StringBuffer *sb){
   538   dataBufferDestroy(&sb->b);
   539 }
   540 
   541 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
   542   assert( sb->b.nData>0 );
   543   if( nFrom>0 ){
   544     sb->b.nData--;
   545     dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
   546   }
   547 }
   548 static void append(StringBuffer *sb, const char *zFrom){
   549   nappend(sb, zFrom, strlen(zFrom));
   550 }
   551 
   552 /* Append a list of strings separated by commas. */
   553 static void appendList(StringBuffer *sb, int nString, char **azString){
   554   int i;
   555   for(i=0; i<nString; ++i){
   556     if( i>0 ) append(sb, ", ");
   557     append(sb, azString[i]);
   558   }
   559 }
   560 
   561 static int endsInWhiteSpace(StringBuffer *p){
   562   return stringBufferLength(p)>0 &&
   563     safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
   564 }
   565 
   566 /* If the StringBuffer ends in something other than white space, add a
   567 ** single space character to the end.
   568 */
   569 static void appendWhiteSpace(StringBuffer *p){
   570   if( stringBufferLength(p)==0 ) return;
   571   if( !endsInWhiteSpace(p) ) append(p, " ");
   572 }
   573 
   574 /* Remove white space from the end of the StringBuffer */
   575 static void trimWhiteSpace(StringBuffer *p){
   576   while( endsInWhiteSpace(p) ){
   577     p->b.pData[--p->b.nData-1] = '\0';
   578   }
   579 }
   580 
   581 /*******************************************************************/
   582 /* DLReader is used to read document elements from a doclist.  The
   583 ** current docid is cached, so dlrDocid() is fast.  DLReader does not
   584 ** own the doclist buffer.
   585 **
   586 ** dlrAtEnd - true if there's no more data to read.
   587 ** dlrDocid - docid of current document.
   588 ** dlrDocData - doclist data for current document (including docid).
   589 ** dlrDocDataBytes - length of same.
   590 ** dlrAllDataBytes - length of all remaining data.
   591 ** dlrPosData - position data for current document.
   592 ** dlrPosDataLen - length of pos data for current document (incl POS_END).
   593 ** dlrStep - step to current document.
   594 ** dlrInit - initial for doclist of given type against given data.
   595 ** dlrDestroy - clean up.
   596 **
   597 ** Expected usage is something like:
   598 **
   599 **   DLReader reader;
   600 **   dlrInit(&reader, pData, nData);
   601 **   while( !dlrAtEnd(&reader) ){
   602 **     // calls to dlrDocid() and kin.
   603 **     dlrStep(&reader);
   604 **   }
   605 **   dlrDestroy(&reader);
   606 */
   607 typedef struct DLReader {
   608   DocListType iType;
   609   const char *pData;
   610   int nData;
   611 
   612   sqlite_int64 iDocid;
   613   int nElement;
   614 } DLReader;
   615 
   616 static int dlrAtEnd(DLReader *pReader){
   617   assert( pReader->nData>=0 );
   618   return pReader->nData==0;
   619 }
   620 static sqlite_int64 dlrDocid(DLReader *pReader){
   621   assert( !dlrAtEnd(pReader) );
   622   return pReader->iDocid;
   623 }
   624 static const char *dlrDocData(DLReader *pReader){
   625   assert( !dlrAtEnd(pReader) );
   626   return pReader->pData;
   627 }
   628 static int dlrDocDataBytes(DLReader *pReader){
   629   assert( !dlrAtEnd(pReader) );
   630   return pReader->nElement;
   631 }
   632 static int dlrAllDataBytes(DLReader *pReader){
   633   assert( !dlrAtEnd(pReader) );
   634   return pReader->nData;
   635 }
   636 /* TODO(shess) Consider adding a field to track iDocid varint length
   637 ** to make these two functions faster.  This might matter (a tiny bit)
   638 ** for queries.
   639 */
   640 static const char *dlrPosData(DLReader *pReader){
   641   sqlite_int64 iDummy;
   642   int n = getVarint(pReader->pData, &iDummy);
   643   assert( !dlrAtEnd(pReader) );
   644   return pReader->pData+n;
   645 }
   646 static int dlrPosDataLen(DLReader *pReader){
   647   sqlite_int64 iDummy;
   648   int n = getVarint(pReader->pData, &iDummy);
   649   assert( !dlrAtEnd(pReader) );
   650   return pReader->nElement-n;
   651 }
   652 static void dlrStep(DLReader *pReader){
   653   assert( !dlrAtEnd(pReader) );
   654 
   655   /* Skip past current doclist element. */
   656   assert( pReader->nElement<=pReader->nData );
   657   pReader->pData += pReader->nElement;
   658   pReader->nData -= pReader->nElement;
   659 
   660   /* If there is more data, read the next doclist element. */
   661   if( pReader->nData!=0 ){
   662     sqlite_int64 iDocidDelta;
   663     int iDummy, n = getVarint(pReader->pData, &iDocidDelta);
   664     pReader->iDocid += iDocidDelta;
   665     if( pReader->iType>=DL_POSITIONS ){
   666       assert( n<pReader->nData );
   667       while( 1 ){
   668         n += getVarint32(pReader->pData+n, &iDummy);
   669         assert( n<=pReader->nData );
   670         if( iDummy==POS_END ) break;
   671         if( iDummy==POS_COLUMN ){
   672           n += getVarint32(pReader->pData+n, &iDummy);
   673           assert( n<pReader->nData );
   674         }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
   675           n += getVarint32(pReader->pData+n, &iDummy);
   676           n += getVarint32(pReader->pData+n, &iDummy);
   677           assert( n<pReader->nData );
   678         }
   679       }
   680     }
   681     pReader->nElement = n;
   682     assert( pReader->nElement<=pReader->nData );
   683   }
   684 }
   685 static void dlrInit(DLReader *pReader, DocListType iType,
   686                     const char *pData, int nData){
   687   assert( pData!=NULL && nData!=0 );
   688   pReader->iType = iType;
   689   pReader->pData = pData;
   690   pReader->nData = nData;
   691   pReader->nElement = 0;
   692   pReader->iDocid = 0;
   693 
   694   /* Load the first element's data.  There must be a first element. */
   695   dlrStep(pReader);
   696 }
   697 static void dlrDestroy(DLReader *pReader){
   698   SCRAMBLE(pReader);
   699 }
   700 
   701 #ifndef NDEBUG
   702 /* Verify that the doclist can be validly decoded.  Also returns the
   703 ** last docid found because it is convenient in other assertions for
   704 ** DLWriter.
   705 */
   706 static void docListValidate(DocListType iType, const char *pData, int nData,
   707                             sqlite_int64 *pLastDocid){
   708   sqlite_int64 iPrevDocid = 0;
   709   assert( nData>0 );
   710   assert( pData!=0 );
   711   assert( pData+nData>pData );
   712   while( nData!=0 ){
   713     sqlite_int64 iDocidDelta;
   714     int n = getVarint(pData, &iDocidDelta);
   715     iPrevDocid += iDocidDelta;
   716     if( iType>DL_DOCIDS ){
   717       int iDummy;
   718       while( 1 ){
   719         n += getVarint32(pData+n, &iDummy);
   720         if( iDummy==POS_END ) break;
   721         if( iDummy==POS_COLUMN ){
   722           n += getVarint32(pData+n, &iDummy);
   723         }else if( iType>DL_POSITIONS ){
   724           n += getVarint32(pData+n, &iDummy);
   725           n += getVarint32(pData+n, &iDummy);
   726         }
   727         assert( n<=nData );
   728       }
   729     }
   730     assert( n<=nData );
   731     pData += n;
   732     nData -= n;
   733   }
   734   if( pLastDocid ) *pLastDocid = iPrevDocid;
   735 }
   736 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
   737 #else
   738 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
   739 #endif
   740 
   741 /*******************************************************************/
   742 /* DLWriter is used to write doclist data to a DataBuffer.  DLWriter
   743 ** always appends to the buffer and does not own it.
   744 **
   745 ** dlwInit - initialize to write a given type doclistto a buffer.
   746 ** dlwDestroy - clear the writer's memory.  Does not free buffer.
   747 ** dlwAppend - append raw doclist data to buffer.
   748 ** dlwCopy - copy next doclist from reader to writer.
   749 ** dlwAdd - construct doclist element and append to buffer.
   750 **    Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
   751 */
   752 typedef struct DLWriter {
   753   DocListType iType;
   754   DataBuffer *b;
   755   sqlite_int64 iPrevDocid;
   756 #ifndef NDEBUG
   757   int has_iPrevDocid;
   758 #endif
   759 } DLWriter;
   760 
   761 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
   762   pWriter->b = b;
   763   pWriter->iType = iType;
   764   pWriter->iPrevDocid = 0;
   765 #ifndef NDEBUG
   766   pWriter->has_iPrevDocid = 0;
   767 #endif
   768 }
   769 static void dlwDestroy(DLWriter *pWriter){
   770   SCRAMBLE(pWriter);
   771 }
   772 /* iFirstDocid is the first docid in the doclist in pData.  It is
   773 ** needed because pData may point within a larger doclist, in which
   774 ** case the first item would be delta-encoded.
   775 **
   776 ** iLastDocid is the final docid in the doclist in pData.  It is
   777 ** needed to create the new iPrevDocid for future delta-encoding.  The
   778 ** code could decode the passed doclist to recreate iLastDocid, but
   779 ** the only current user (docListMerge) already has decoded this
   780 ** information.
   781 */
   782 /* TODO(shess) This has become just a helper for docListMerge.
   783 ** Consider a refactor to make this cleaner.
   784 */
   785 static void dlwAppend(DLWriter *pWriter,
   786                       const char *pData, int nData,
   787                       sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
   788   sqlite_int64 iDocid = 0;
   789   char c[VARINT_MAX];
   790   int nFirstOld, nFirstNew;     /* Old and new varint len of first docid. */
   791 #ifndef NDEBUG
   792   sqlite_int64 iLastDocidDelta;
   793 #endif
   794 
   795   /* Recode the initial docid as delta from iPrevDocid. */
   796   nFirstOld = getVarint(pData, &iDocid);
   797   assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
   798   nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid);
   799 
   800   /* Verify that the incoming doclist is valid AND that it ends with
   801   ** the expected docid.  This is essential because we'll trust this
   802   ** docid in future delta-encoding.
   803   */
   804   ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
   805   assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
   806 
   807   /* Append recoded initial docid and everything else.  Rest of docids
   808   ** should have been delta-encoded from previous initial docid.
   809   */
   810   if( nFirstOld<nData ){
   811     dataBufferAppend2(pWriter->b, c, nFirstNew,
   812                       pData+nFirstOld, nData-nFirstOld);
   813   }else{
   814     dataBufferAppend(pWriter->b, c, nFirstNew);
   815   }
   816   pWriter->iPrevDocid = iLastDocid;
   817 }
   818 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
   819   dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
   820             dlrDocid(pReader), dlrDocid(pReader));
   821 }
   822 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
   823   char c[VARINT_MAX];
   824   int n = putVarint(c, iDocid-pWriter->iPrevDocid);
   825 
   826   /* Docids must ascend. */
   827   assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
   828   assert( pWriter->iType==DL_DOCIDS );
   829 
   830   dataBufferAppend(pWriter->b, c, n);
   831   pWriter->iPrevDocid = iDocid;
   832 #ifndef NDEBUG
   833   pWriter->has_iPrevDocid = 1;
   834 #endif
   835 }
   836 
   837 /*******************************************************************/
   838 /* PLReader is used to read data from a document's position list.  As
   839 ** the caller steps through the list, data is cached so that varints
   840 ** only need to be decoded once.
   841 **
   842 ** plrInit, plrDestroy - create/destroy a reader.
   843 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
   844 ** plrAtEnd - at end of stream, only call plrDestroy once true.
   845 ** plrStep - step to the next element.
   846 */
   847 typedef struct PLReader {
   848   /* These refer to the next position's data.  nData will reach 0 when
   849   ** reading the last position, so plrStep() signals EOF by setting
   850   ** pData to NULL.
   851   */
   852   const char *pData;
   853   int nData;
   854 
   855   DocListType iType;
   856   int iColumn;         /* the last column read */
   857   int iPosition;       /* the last position read */
   858   int iStartOffset;    /* the last start offset read */
   859   int iEndOffset;      /* the last end offset read */
   860 } PLReader;
   861 
   862 static int plrAtEnd(PLReader *pReader){
   863   return pReader->pData==NULL;
   864 }
   865 static int plrColumn(PLReader *pReader){
   866   assert( !plrAtEnd(pReader) );
   867   return pReader->iColumn;
   868 }
   869 static int plrPosition(PLReader *pReader){
   870   assert( !plrAtEnd(pReader) );
   871   return pReader->iPosition;
   872 }
   873 static int plrStartOffset(PLReader *pReader){
   874   assert( !plrAtEnd(pReader) );
   875   return pReader->iStartOffset;
   876 }
   877 static int plrEndOffset(PLReader *pReader){
   878   assert( !plrAtEnd(pReader) );
   879   return pReader->iEndOffset;
   880 }
   881 static void plrStep(PLReader *pReader){
   882   int i, n;
   883 
   884   assert( !plrAtEnd(pReader) );
   885 
   886   if( pReader->nData==0 ){
   887     pReader->pData = NULL;
   888     return;
   889   }
   890 
   891   n = getVarint32(pReader->pData, &i);
   892   if( i==POS_COLUMN ){
   893     n += getVarint32(pReader->pData+n, &pReader->iColumn);
   894     pReader->iPosition = 0;
   895     pReader->iStartOffset = 0;
   896     n += getVarint32(pReader->pData+n, &i);
   897   }
   898   /* Should never see adjacent column changes. */
   899   assert( i!=POS_COLUMN );
   900 
   901   if( i==POS_END ){
   902     pReader->nData = 0;
   903     pReader->pData = NULL;
   904     return;
   905   }
   906 
   907   pReader->iPosition += i-POS_BASE;
   908   if( pReader->iType==DL_POSITIONS_OFFSETS ){
   909     n += getVarint32(pReader->pData+n, &i);
   910     pReader->iStartOffset += i;
   911     n += getVarint32(pReader->pData+n, &i);
   912     pReader->iEndOffset = pReader->iStartOffset+i;
   913   }
   914   assert( n<=pReader->nData );
   915   pReader->pData += n;
   916   pReader->nData -= n;
   917 }
   918 
   919 static void plrInit(PLReader *pReader, DLReader *pDLReader){
   920   pReader->pData = dlrPosData(pDLReader);
   921   pReader->nData = dlrPosDataLen(pDLReader);
   922   pReader->iType = pDLReader->iType;
   923   pReader->iColumn = 0;
   924   pReader->iPosition = 0;
   925   pReader->iStartOffset = 0;
   926   pReader->iEndOffset = 0;
   927   plrStep(pReader);
   928 }
   929 static void plrDestroy(PLReader *pReader){
   930   SCRAMBLE(pReader);
   931 }
   932 
   933 /*******************************************************************/
   934 /* PLWriter is used in constructing a document's position list.  As a
   935 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
   936 ** PLWriter writes to the associated DLWriter's buffer.
   937 **
   938 ** plwInit - init for writing a document's poslist.
   939 ** plwDestroy - clear a writer.
   940 ** plwAdd - append position and offset information.
   941 ** plwCopy - copy next position's data from reader to writer.
   942 ** plwTerminate - add any necessary doclist terminator.
   943 **
   944 ** Calling plwAdd() after plwTerminate() may result in a corrupt
   945 ** doclist.
   946 */
   947 /* TODO(shess) Until we've written the second item, we can cache the
   948 ** first item's information.  Then we'd have three states:
   949 **
   950 ** - initialized with docid, no positions.
   951 ** - docid and one position.
   952 ** - docid and multiple positions.
   953 **
   954 ** Only the last state needs to actually write to dlw->b, which would
   955 ** be an improvement in the DLCollector case.
   956 */
   957 typedef struct PLWriter {
   958   DLWriter *dlw;
   959 
   960   int iColumn;    /* the last column written */
   961   int iPos;       /* the last position written */
   962   int iOffset;    /* the last start offset written */
   963 } PLWriter;
   964 
   965 /* TODO(shess) In the case where the parent is reading these values
   966 ** from a PLReader, we could optimize to a copy if that PLReader has
   967 ** the same type as pWriter.
   968 */
   969 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
   970                    int iStartOffset, int iEndOffset){
   971   /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
   972   ** iStartOffsetDelta, and iEndOffsetDelta.
   973   */
   974   char c[5*VARINT_MAX];
   975   int n = 0;
   976 
   977   /* Ban plwAdd() after plwTerminate(). */
   978   assert( pWriter->iPos!=-1 );
   979 
   980   if( pWriter->dlw->iType==DL_DOCIDS ) return;
   981 
   982   if( iColumn!=pWriter->iColumn ){
   983     n += putVarint(c+n, POS_COLUMN);
   984     n += putVarint(c+n, iColumn);
   985     pWriter->iColumn = iColumn;
   986     pWriter->iPos = 0;
   987     pWriter->iOffset = 0;
   988   }
   989   assert( iPos>=pWriter->iPos );
   990   n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
   991   pWriter->iPos = iPos;
   992   if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
   993     assert( iStartOffset>=pWriter->iOffset );
   994     n += putVarint(c+n, iStartOffset-pWriter->iOffset);
   995     pWriter->iOffset = iStartOffset;
   996     assert( iEndOffset>=iStartOffset );
   997     n += putVarint(c+n, iEndOffset-iStartOffset);
   998   }
   999   dataBufferAppend(pWriter->dlw->b, c, n);
  1000 }
  1001 static void plwCopy(PLWriter *pWriter, PLReader *pReader){
  1002   plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
  1003          plrStartOffset(pReader), plrEndOffset(pReader));
  1004 }
  1005 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
  1006   char c[VARINT_MAX];
  1007   int n;
  1008 
  1009   pWriter->dlw = dlw;
  1010 
  1011   /* Docids must ascend. */
  1012   assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
  1013   n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid);
  1014   dataBufferAppend(pWriter->dlw->b, c, n);
  1015   pWriter->dlw->iPrevDocid = iDocid;
  1016 #ifndef NDEBUG
  1017   pWriter->dlw->has_iPrevDocid = 1;
  1018 #endif
  1019 
  1020   pWriter->iColumn = 0;
  1021   pWriter->iPos = 0;
  1022   pWriter->iOffset = 0;
  1023 }
  1024 /* TODO(shess) Should plwDestroy() also terminate the doclist?  But
  1025 ** then plwDestroy() would no longer be just a destructor, it would
  1026 ** also be doing work, which isn't consistent with the overall idiom.
  1027 ** Another option would be for plwAdd() to always append any necessary
  1028 ** terminator, so that the output is always correct.  But that would
  1029 ** add incremental work to the common case with the only benefit being
  1030 ** API elegance.  Punt for now.
  1031 */
  1032 static void plwTerminate(PLWriter *pWriter){
  1033   if( pWriter->dlw->iType>DL_DOCIDS ){
  1034     char c[VARINT_MAX];
  1035     int n = putVarint(c, POS_END);
  1036     dataBufferAppend(pWriter->dlw->b, c, n);
  1037   }
  1038 #ifndef NDEBUG
  1039   /* Mark as terminated for assert in plwAdd(). */
  1040   pWriter->iPos = -1;
  1041 #endif
  1042 }
  1043 static void plwDestroy(PLWriter *pWriter){
  1044   SCRAMBLE(pWriter);
  1045 }
  1046 
  1047 /*******************************************************************/
  1048 /* DLCollector wraps PLWriter and DLWriter to provide a
  1049 ** dynamically-allocated doclist area to use during tokenization.
  1050 **
  1051 ** dlcNew - malloc up and initialize a collector.
  1052 ** dlcDelete - destroy a collector and all contained items.
  1053 ** dlcAddPos - append position and offset information.
  1054 ** dlcAddDoclist - add the collected doclist to the given buffer.
  1055 ** dlcNext - terminate the current document and open another.
  1056 */
  1057 typedef struct DLCollector {
  1058   DataBuffer b;
  1059   DLWriter dlw;
  1060   PLWriter plw;
  1061 } DLCollector;
  1062 
  1063 /* TODO(shess) This could also be done by calling plwTerminate() and
  1064 ** dataBufferAppend().  I tried that, expecting nominal performance
  1065 ** differences, but it seemed to pretty reliably be worth 1% to code
  1066 ** it this way.  I suspect it is the incremental malloc overhead (some
  1067 ** percentage of the plwTerminate() calls will cause a realloc), so
  1068 ** this might be worth revisiting if the DataBuffer implementation
  1069 ** changes.
  1070 */
  1071 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
  1072   if( pCollector->dlw.iType>DL_DOCIDS ){
  1073     char c[VARINT_MAX];
  1074     int n = putVarint(c, POS_END);
  1075     dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
  1076   }else{
  1077     dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
  1078   }
  1079 }
  1080 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
  1081   plwTerminate(&pCollector->plw);
  1082   plwDestroy(&pCollector->plw);
  1083   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
  1084 }
  1085 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
  1086                       int iStartOffset, int iEndOffset){
  1087   plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
  1088 }
  1089 
  1090 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
  1091   DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
  1092   dataBufferInit(&pCollector->b, 0);
  1093   dlwInit(&pCollector->dlw, iType, &pCollector->b);
  1094   plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
  1095   return pCollector;
  1096 }
  1097 static void dlcDelete(DLCollector *pCollector){
  1098   plwDestroy(&pCollector->plw);
  1099   dlwDestroy(&pCollector->dlw);
  1100   dataBufferDestroy(&pCollector->b);
  1101   SCRAMBLE(pCollector);
  1102   sqlite3_free(pCollector);
  1103 }
  1104 
  1105 
  1106 /* Copy the doclist data of iType in pData/nData into *out, trimming
  1107 ** unnecessary data as we go.  Only columns matching iColumn are
  1108 ** copied, all columns copied if iColumn is -1.  Elements with no
  1109 ** matching columns are dropped.  The output is an iOutType doclist.
  1110 */
  1111 /* NOTE(shess) This code is only valid after all doclists are merged.
  1112 ** If this is run before merges, then doclist items which represent
  1113 ** deletion will be trimmed, and will thus not effect a deletion
  1114 ** during the merge.
  1115 */
  1116 static void docListTrim(DocListType iType, const char *pData, int nData,
  1117                         int iColumn, DocListType iOutType, DataBuffer *out){
  1118   DLReader dlReader;
  1119   DLWriter dlWriter;
  1120 
  1121   assert( iOutType<=iType );
  1122 
  1123   dlrInit(&dlReader, iType, pData, nData);
  1124   dlwInit(&dlWriter, iOutType, out);
  1125 
  1126   while( !dlrAtEnd(&dlReader) ){
  1127     PLReader plReader;
  1128     PLWriter plWriter;
  1129     int match = 0;
  1130 
  1131     plrInit(&plReader, &dlReader);
  1132 
  1133     while( !plrAtEnd(&plReader) ){
  1134       if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
  1135         if( !match ){
  1136           plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
  1137           match = 1;
  1138         }
  1139         plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
  1140                plrStartOffset(&plReader), plrEndOffset(&plReader));
  1141       }
  1142       plrStep(&plReader);
  1143     }
  1144     if( match ){
  1145       plwTerminate(&plWriter);
  1146       plwDestroy(&plWriter);
  1147     }
  1148 
  1149     plrDestroy(&plReader);
  1150     dlrStep(&dlReader);
  1151   }
  1152   dlwDestroy(&dlWriter);
  1153   dlrDestroy(&dlReader);
  1154 }
  1155 
  1156 /* Used by docListMerge() to keep doclists in the ascending order by
  1157 ** docid, then ascending order by age (so the newest comes first).
  1158 */
  1159 typedef struct OrderedDLReader {
  1160   DLReader *pReader;
  1161 
  1162   /* TODO(shess) If we assume that docListMerge pReaders is ordered by
  1163   ** age (which we do), then we could use pReader comparisons to break
  1164   ** ties.
  1165   */
  1166   int idx;
  1167 } OrderedDLReader;
  1168 
  1169 /* Order eof to end, then by docid asc, idx desc. */
  1170 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
  1171   if( dlrAtEnd(r1->pReader) ){
  1172     if( dlrAtEnd(r2->pReader) ) return 0;  /* Both atEnd(). */
  1173     return 1;                              /* Only r1 atEnd(). */
  1174   }
  1175   if( dlrAtEnd(r2->pReader) ) return -1;   /* Only r2 atEnd(). */
  1176 
  1177   if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
  1178   if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
  1179 
  1180   /* Descending on idx. */
  1181   return r2->idx-r1->idx;
  1182 }
  1183 
  1184 /* Bubble p[0] to appropriate place in p[1..n-1].  Assumes that
  1185 ** p[1..n-1] is already sorted.
  1186 */
  1187 /* TODO(shess) Is this frequent enough to warrant a binary search?
  1188 ** Before implementing that, instrument the code to check.  In most
  1189 ** current usage, I expect that p[0] will be less than p[1] a very
  1190 ** high proportion of the time.
  1191 */
  1192 static void orderedDLReaderReorder(OrderedDLReader *p, int n){
  1193   while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
  1194     OrderedDLReader tmp = p[0];
  1195     p[0] = p[1];
  1196     p[1] = tmp;
  1197     n--;
  1198     p++;
  1199   }
  1200 }
  1201 
  1202 /* Given an array of doclist readers, merge their doclist elements
  1203 ** into out in sorted order (by docid), dropping elements from older
  1204 ** readers when there is a duplicate docid.  pReaders is assumed to be
  1205 ** ordered by age, oldest first.
  1206 */
  1207 /* TODO(shess) nReaders must be <= MERGE_COUNT.  This should probably
  1208 ** be fixed.
  1209 */
  1210 static void docListMerge(DataBuffer *out,
  1211                          DLReader *pReaders, int nReaders){
  1212   OrderedDLReader readers[MERGE_COUNT];
  1213   DLWriter writer;
  1214   int i, n;
  1215   const char *pStart = 0;
  1216   int nStart = 0;
  1217   sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
  1218 
  1219   assert( nReaders>0 );
  1220   if( nReaders==1 ){
  1221     dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
  1222     return;
  1223   }
  1224 
  1225   assert( nReaders<=MERGE_COUNT );
  1226   n = 0;
  1227   for(i=0; i<nReaders; i++){
  1228     assert( pReaders[i].iType==pReaders[0].iType );
  1229     readers[i].pReader = pReaders+i;
  1230     readers[i].idx = i;
  1231     n += dlrAllDataBytes(&pReaders[i]);
  1232   }
  1233   /* Conservatively size output to sum of inputs.  Output should end
  1234   ** up strictly smaller than input.
  1235   */
  1236   dataBufferExpand(out, n);
  1237 
  1238   /* Get the readers into sorted order. */
  1239   while( i-->0 ){
  1240     orderedDLReaderReorder(readers+i, nReaders-i);
  1241   }
  1242 
  1243   dlwInit(&writer, pReaders[0].iType, out);
  1244   while( !dlrAtEnd(readers[0].pReader) ){
  1245     sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
  1246 
  1247     /* If this is a continuation of the current buffer to copy, extend
  1248     ** that buffer.  memcpy() seems to be more efficient if it has a
  1249     ** lots of data to copy.
  1250     */
  1251     if( dlrDocData(readers[0].pReader)==pStart+nStart ){
  1252       nStart += dlrDocDataBytes(readers[0].pReader);
  1253     }else{
  1254       if( pStart!=0 ){
  1255         dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
  1256       }
  1257       pStart = dlrDocData(readers[0].pReader);
  1258       nStart = dlrDocDataBytes(readers[0].pReader);
  1259       iFirstDocid = iDocid;
  1260     }
  1261     iLastDocid = iDocid;
  1262     dlrStep(readers[0].pReader);
  1263 
  1264     /* Drop all of the older elements with the same docid. */
  1265     for(i=1; i<nReaders &&
  1266              !dlrAtEnd(readers[i].pReader) &&
  1267              dlrDocid(readers[i].pReader)==iDocid; i++){
  1268       dlrStep(readers[i].pReader);
  1269     }
  1270 
  1271     /* Get the readers back into order. */
  1272     while( i-->0 ){
  1273       orderedDLReaderReorder(readers+i, nReaders-i);
  1274     }
  1275   }
  1276 
  1277   /* Copy over any remaining elements. */
  1278   if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
  1279   dlwDestroy(&writer);
  1280 }
  1281 
  1282 /* Helper function for posListUnion().  Compares the current position
  1283 ** between left and right, returning as standard C idiom of <0 if
  1284 ** left<right, >0 if left>right, and 0 if left==right.  "End" always
  1285 ** compares greater.
  1286 */
  1287 static int posListCmp(PLReader *pLeft, PLReader *pRight){
  1288   assert( pLeft->iType==pRight->iType );
  1289   if( pLeft->iType==DL_DOCIDS ) return 0;
  1290 
  1291   if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
  1292   if( plrAtEnd(pRight) ) return -1;
  1293 
  1294   if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
  1295   if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
  1296 
  1297   if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
  1298   if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
  1299   if( pLeft->iType==DL_POSITIONS ) return 0;
  1300 
  1301   if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
  1302   if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
  1303 
  1304   if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
  1305   if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
  1306 
  1307   return 0;
  1308 }
  1309 
  1310 /* Write the union of position lists in pLeft and pRight to pOut.
  1311 ** "Union" in this case meaning "All unique position tuples".  Should
  1312 ** work with any doclist type, though both inputs and the output
  1313 ** should be the same type.
  1314 */
  1315 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
  1316   PLReader left, right;
  1317   PLWriter writer;
  1318 
  1319   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
  1320   assert( pLeft->iType==pRight->iType );
  1321   assert( pLeft->iType==pOut->iType );
  1322 
  1323   plrInit(&left, pLeft);
  1324   plrInit(&right, pRight);
  1325   plwInit(&writer, pOut, dlrDocid(pLeft));
  1326 
  1327   while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
  1328     int c = posListCmp(&left, &right);
  1329     if( c<0 ){
  1330       plwCopy(&writer, &left);
  1331       plrStep(&left);
  1332     }else if( c>0 ){
  1333       plwCopy(&writer, &right);
  1334       plrStep(&right);
  1335     }else{
  1336       plwCopy(&writer, &left);
  1337       plrStep(&left);
  1338       plrStep(&right);
  1339     }
  1340   }
  1341 
  1342   plwTerminate(&writer);
  1343   plwDestroy(&writer);
  1344   plrDestroy(&left);
  1345   plrDestroy(&right);
  1346 }
  1347 
  1348 /* Write the union of doclists in pLeft and pRight to pOut.  For
  1349 ** docids in common between the inputs, the union of the position
  1350 ** lists is written.  Inputs and outputs are always type DL_DEFAULT.
  1351 */
  1352 static void docListUnion(
  1353   const char *pLeft, int nLeft,
  1354   const char *pRight, int nRight,
  1355   DataBuffer *pOut      /* Write the combined doclist here */
  1356 ){
  1357   DLReader left, right;
  1358   DLWriter writer;
  1359 
  1360   if( nLeft==0 ){
  1361     if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
  1362     return;
  1363   }
  1364   if( nRight==0 ){
  1365     dataBufferAppend(pOut, pLeft, nLeft);
  1366     return;
  1367   }
  1368 
  1369   dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
  1370   dlrInit(&right, DL_DEFAULT, pRight, nRight);
  1371   dlwInit(&writer, DL_DEFAULT, pOut);
  1372 
  1373   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
  1374     if( dlrAtEnd(&right) ){
  1375       dlwCopy(&writer, &left);
  1376       dlrStep(&left);
  1377     }else if( dlrAtEnd(&left) ){
  1378       dlwCopy(&writer, &right);
  1379       dlrStep(&right);
  1380     }else if( dlrDocid(&left)<dlrDocid(&right) ){
  1381       dlwCopy(&writer, &left);
  1382       dlrStep(&left);
  1383     }else if( dlrDocid(&left)>dlrDocid(&right) ){
  1384       dlwCopy(&writer, &right);
  1385       dlrStep(&right);
  1386     }else{
  1387       posListUnion(&left, &right, &writer);
  1388       dlrStep(&left);
  1389       dlrStep(&right);
  1390     }
  1391   }
  1392 
  1393   dlrDestroy(&left);
  1394   dlrDestroy(&right);
  1395   dlwDestroy(&writer);
  1396 }
  1397 
  1398 /* pLeft and pRight are DLReaders positioned to the same docid.
  1399 **
  1400 ** If there are no instances in pLeft or pRight where the position
  1401 ** of pLeft is one less than the position of pRight, then this
  1402 ** routine adds nothing to pOut.
  1403 **
  1404 ** If there are one or more instances where positions from pLeft
  1405 ** are exactly one less than positions from pRight, then add a new
  1406 ** document record to pOut.  If pOut wants to hold positions, then
  1407 ** include the positions from pRight that are one more than a
  1408 ** position in pLeft.  In other words:  pRight.iPos==pLeft.iPos+1.
  1409 */
  1410 static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight,
  1411                                DLWriter *pOut){
  1412   PLReader left, right;
  1413   PLWriter writer;
  1414   int match = 0;
  1415 
  1416   assert( dlrDocid(pLeft)==dlrDocid(pRight) );
  1417   assert( pOut->iType!=DL_POSITIONS_OFFSETS );
  1418 
  1419   plrInit(&left, pLeft);
  1420   plrInit(&right, pRight);
  1421 
  1422   while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
  1423     if( plrColumn(&left)<plrColumn(&right) ){
  1424       plrStep(&left);
  1425     }else if( plrColumn(&left)>plrColumn(&right) ){
  1426       plrStep(&right);
  1427     }else if( plrPosition(&left)+1<plrPosition(&right) ){
  1428       plrStep(&left);
  1429     }else if( plrPosition(&left)+1>plrPosition(&right) ){
  1430       plrStep(&right);
  1431     }else{
  1432       if( !match ){
  1433         plwInit(&writer, pOut, dlrDocid(pLeft));
  1434         match = 1;
  1435       }
  1436       plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
  1437       plrStep(&left);
  1438       plrStep(&right);
  1439     }
  1440   }
  1441 
  1442   if( match ){
  1443     plwTerminate(&writer);
  1444     plwDestroy(&writer);
  1445   }
  1446 
  1447   plrDestroy(&left);
  1448   plrDestroy(&right);
  1449 }
  1450 
  1451 /* We have two doclists with positions:  pLeft and pRight.
  1452 ** Write the phrase intersection of these two doclists into pOut.
  1453 **
  1454 ** A phrase intersection means that two documents only match
  1455 ** if pLeft.iPos+1==pRight.iPos.
  1456 **
  1457 ** iType controls the type of data written to pOut.  If iType is
  1458 ** DL_POSITIONS, the positions are those from pRight.
  1459 */
  1460 static void docListPhraseMerge(
  1461   const char *pLeft, int nLeft,
  1462   const char *pRight, int nRight,
  1463   DocListType iType,
  1464   DataBuffer *pOut      /* Write the combined doclist here */
  1465 ){
  1466   DLReader left, right;
  1467   DLWriter writer;
  1468 
  1469   if( nLeft==0 || nRight==0 ) return;
  1470 
  1471   assert( iType!=DL_POSITIONS_OFFSETS );
  1472 
  1473   dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
  1474   dlrInit(&right, DL_POSITIONS, pRight, nRight);
  1475   dlwInit(&writer, iType, pOut);
  1476 
  1477   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
  1478     if( dlrDocid(&left)<dlrDocid(&right) ){
  1479       dlrStep(&left);
  1480     }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1481       dlrStep(&right);
  1482     }else{
  1483       posListPhraseMerge(&left, &right, &writer);
  1484       dlrStep(&left);
  1485       dlrStep(&right);
  1486     }
  1487   }
  1488 
  1489   dlrDestroy(&left);
  1490   dlrDestroy(&right);
  1491   dlwDestroy(&writer);
  1492 }
  1493 
  1494 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1495 ** Write the intersection of these two doclists into pOut as a
  1496 ** DL_DOCIDS doclist.
  1497 */
  1498 static void docListAndMerge(
  1499   const char *pLeft, int nLeft,
  1500   const char *pRight, int nRight,
  1501   DataBuffer *pOut      /* Write the combined doclist here */
  1502 ){
  1503   DLReader left, right;
  1504   DLWriter writer;
  1505 
  1506   if( nLeft==0 || nRight==0 ) return;
  1507 
  1508   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1509   dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1510   dlwInit(&writer, DL_DOCIDS, pOut);
  1511 
  1512   while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
  1513     if( dlrDocid(&left)<dlrDocid(&right) ){
  1514       dlrStep(&left);
  1515     }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1516       dlrStep(&right);
  1517     }else{
  1518       dlwAdd(&writer, dlrDocid(&left));
  1519       dlrStep(&left);
  1520       dlrStep(&right);
  1521     }
  1522   }
  1523 
  1524   dlrDestroy(&left);
  1525   dlrDestroy(&right);
  1526   dlwDestroy(&writer);
  1527 }
  1528 
  1529 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1530 ** Write the union of these two doclists into pOut as a
  1531 ** DL_DOCIDS doclist.
  1532 */
  1533 static void docListOrMerge(
  1534   const char *pLeft, int nLeft,
  1535   const char *pRight, int nRight,
  1536   DataBuffer *pOut      /* Write the combined doclist here */
  1537 ){
  1538   DLReader left, right;
  1539   DLWriter writer;
  1540 
  1541   if( nLeft==0 ){
  1542     if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
  1543     return;
  1544   }
  1545   if( nRight==0 ){
  1546     dataBufferAppend(pOut, pLeft, nLeft);
  1547     return;
  1548   }
  1549 
  1550   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1551   dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1552   dlwInit(&writer, DL_DOCIDS, pOut);
  1553 
  1554   while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
  1555     if( dlrAtEnd(&right) ){
  1556       dlwAdd(&writer, dlrDocid(&left));
  1557       dlrStep(&left);
  1558     }else if( dlrAtEnd(&left) ){
  1559       dlwAdd(&writer, dlrDocid(&right));
  1560       dlrStep(&right);
  1561     }else if( dlrDocid(&left)<dlrDocid(&right) ){
  1562       dlwAdd(&writer, dlrDocid(&left));
  1563       dlrStep(&left);
  1564     }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1565       dlwAdd(&writer, dlrDocid(&right));
  1566       dlrStep(&right);
  1567     }else{
  1568       dlwAdd(&writer, dlrDocid(&left));
  1569       dlrStep(&left);
  1570       dlrStep(&right);
  1571     }
  1572   }
  1573 
  1574   dlrDestroy(&left);
  1575   dlrDestroy(&right);
  1576   dlwDestroy(&writer);
  1577 }
  1578 
  1579 /* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1580 ** Write into pOut as DL_DOCIDS doclist containing all documents that
  1581 ** occur in pLeft but not in pRight.
  1582 */
  1583 static void docListExceptMerge(
  1584   const char *pLeft, int nLeft,
  1585   const char *pRight, int nRight,
  1586   DataBuffer *pOut      /* Write the combined doclist here */
  1587 ){
  1588   DLReader left, right;
  1589   DLWriter writer;
  1590 
  1591   if( nLeft==0 ) return;
  1592   if( nRight==0 ){
  1593     dataBufferAppend(pOut, pLeft, nLeft);
  1594     return;
  1595   }
  1596 
  1597   dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1598   dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1599   dlwInit(&writer, DL_DOCIDS, pOut);
  1600 
  1601   while( !dlrAtEnd(&left) ){
  1602     while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
  1603       dlrStep(&right);
  1604     }
  1605     if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
  1606       dlwAdd(&writer, dlrDocid(&left));
  1607     }
  1608     dlrStep(&left);
  1609   }
  1610 
  1611   dlrDestroy(&left);
  1612   dlrDestroy(&right);
  1613   dlwDestroy(&writer);
  1614 }
  1615 
  1616 static char *string_dup_n(const char *s, int n){
  1617   char *str = sqlite3_malloc(n + 1);
  1618   memcpy(str, s, n);
  1619   str[n] = '\0';
  1620   return str;
  1621 }
  1622 
  1623 /* Duplicate a string; the caller must free() the returned string.
  1624  * (We don't use strdup() since it is not part of the standard C library and
  1625  * may not be available everywhere.) */
  1626 static char *string_dup(const char *s){
  1627   return string_dup_n(s, strlen(s));
  1628 }
  1629 
  1630 /* Format a string, replacing each occurrence of the % character with
  1631  * zDb.zName.  This may be more convenient than sqlite_mprintf()
  1632  * when one string is used repeatedly in a format string.
  1633  * The caller must free() the returned string. */
  1634 static char *string_format(const char *zFormat,
  1635                            const char *zDb, const char *zName){
  1636   const char *p;
  1637   size_t len = 0;
  1638   size_t nDb = strlen(zDb);
  1639   size_t nName = strlen(zName);
  1640   size_t nFullTableName = nDb+1+nName;
  1641   char *result;
  1642   char *r;
  1643 
  1644   /* first compute length needed */
  1645   for(p = zFormat ; *p ; ++p){
  1646     len += (*p=='%' ? nFullTableName : 1);
  1647   }
  1648   len += 1;  /* for null terminator */
  1649 
  1650   r = result = sqlite3_malloc(len);
  1651   for(p = zFormat; *p; ++p){
  1652     if( *p=='%' ){
  1653       memcpy(r, zDb, nDb);
  1654       r += nDb;
  1655       *r++ = '.';
  1656       memcpy(r, zName, nName);
  1657       r += nName;
  1658     } else {
  1659       *r++ = *p;
  1660     }
  1661   }
  1662   *r++ = '\0';
  1663   assert( r == result + len );
  1664   return result;
  1665 }
  1666 
  1667 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
  1668                     const char *zFormat){
  1669   char *zCommand = string_format(zFormat, zDb, zName);
  1670   int rc;
  1671   TRACE(("FTS2 sql: %s\n", zCommand));
  1672   rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
  1673   sqlite3_free(zCommand);
  1674   return rc;
  1675 }
  1676 
  1677 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
  1678                        sqlite3_stmt **ppStmt, const char *zFormat){
  1679   char *zCommand = string_format(zFormat, zDb, zName);
  1680   int rc;
  1681   TRACE(("FTS2 prepare: %s\n", zCommand));
  1682   rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
  1683   sqlite3_free(zCommand);
  1684   return rc;
  1685 }
  1686 
  1687 /* end utility functions */
  1688 
  1689 /* Forward reference */
  1690 typedef struct fulltext_vtab fulltext_vtab;
  1691 
  1692 /* A single term in a query is represented by an instances of
  1693 ** the following structure.
  1694 */
  1695 typedef struct QueryTerm {
  1696   short int nPhrase; /* How many following terms are part of the same phrase */
  1697   short int iPhrase; /* This is the i-th term of a phrase. */
  1698   short int iColumn; /* Column of the index that must match this term */
  1699   signed char isOr;  /* this term is preceded by "OR" */
  1700   signed char isNot; /* this term is preceded by "-" */
  1701   signed char isPrefix; /* this term is followed by "*" */
  1702   char *pTerm;       /* text of the term.  '\000' terminated.  malloced */
  1703   int nTerm;         /* Number of bytes in pTerm[] */
  1704 } QueryTerm;
  1705 
  1706 
  1707 /* A query string is parsed into a Query structure.
  1708  *
  1709  * We could, in theory, allow query strings to be complicated
  1710  * nested expressions with precedence determined by parentheses.
  1711  * But none of the major search engines do this.  (Perhaps the
  1712  * feeling is that an parenthesized expression is two complex of
  1713  * an idea for the average user to grasp.)  Taking our lead from
  1714  * the major search engines, we will allow queries to be a list
  1715  * of terms (with an implied AND operator) or phrases in double-quotes,
  1716  * with a single optional "-" before each non-phrase term to designate
  1717  * negation and an optional OR connector.
  1718  *
  1719  * OR binds more tightly than the implied AND, which is what the
  1720  * major search engines seem to do.  So, for example:
  1721  * 
  1722  *    [one two OR three]     ==>    one AND (two OR three)
  1723  *    [one OR two three]     ==>    (one OR two) AND three
  1724  *
  1725  * A "-" before a term matches all entries that lack that term.
  1726  * The "-" must occur immediately before the term with in intervening
  1727  * space.  This is how the search engines do it.
  1728  *
  1729  * A NOT term cannot be the right-hand operand of an OR.  If this
  1730  * occurs in the query string, the NOT is ignored:
  1731  *
  1732  *    [one OR -two]          ==>    one OR two
  1733  *
  1734  */
  1735 typedef struct Query {
  1736   fulltext_vtab *pFts;  /* The full text index */
  1737   int nTerms;           /* Number of terms in the query */
  1738   QueryTerm *pTerms;    /* Array of terms.  Space obtained from malloc() */
  1739   int nextIsOr;         /* Set the isOr flag on the next inserted term */
  1740   int nextColumn;       /* Next word parsed must be in this column */
  1741   int dfltColumn;       /* The default column */
  1742 } Query;
  1743 
  1744 
  1745 /*
  1746 ** An instance of the following structure keeps track of generated
  1747 ** matching-word offset information and snippets.
  1748 */
  1749 typedef struct Snippet {
  1750   int nMatch;     /* Total number of matches */
  1751   int nAlloc;     /* Space allocated for aMatch[] */
  1752   struct snippetMatch { /* One entry for each matching term */
  1753     char snStatus;       /* Status flag for use while constructing snippets */
  1754     short int iCol;      /* The column that contains the match */
  1755     short int iTerm;     /* The index in Query.pTerms[] of the matching term */
  1756     short int nByte;     /* Number of bytes in the term */
  1757     int iStart;          /* The offset to the first character of the term */
  1758   } *aMatch;      /* Points to space obtained from malloc */
  1759   char *zOffset;  /* Text rendering of aMatch[] */
  1760   int nOffset;    /* strlen(zOffset) */
  1761   char *zSnippet; /* Snippet text */
  1762   int nSnippet;   /* strlen(zSnippet) */
  1763 } Snippet;
  1764 
  1765 
  1766 typedef enum QueryType {
  1767   QUERY_GENERIC,   /* table scan */
  1768   QUERY_ROWID,     /* lookup by rowid */
  1769   QUERY_FULLTEXT   /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
  1770 } QueryType;
  1771 
  1772 typedef enum fulltext_statement {
  1773   CONTENT_INSERT_STMT,
  1774   CONTENT_SELECT_STMT,
  1775   CONTENT_UPDATE_STMT,
  1776   CONTENT_DELETE_STMT,
  1777   CONTENT_EXISTS_STMT,
  1778 
  1779   BLOCK_INSERT_STMT,
  1780   BLOCK_SELECT_STMT,
  1781   BLOCK_DELETE_STMT,
  1782   BLOCK_DELETE_ALL_STMT,
  1783 
  1784   SEGDIR_MAX_INDEX_STMT,
  1785   SEGDIR_SET_STMT,
  1786   SEGDIR_SELECT_LEVEL_STMT,
  1787   SEGDIR_SPAN_STMT,
  1788   SEGDIR_DELETE_STMT,
  1789   SEGDIR_SELECT_SEGMENT_STMT,
  1790   SEGDIR_SELECT_ALL_STMT,
  1791   SEGDIR_DELETE_ALL_STMT,
  1792   SEGDIR_COUNT_STMT,
  1793 
  1794   MAX_STMT                     /* Always at end! */
  1795 } fulltext_statement;
  1796 
  1797 /* These must exactly match the enum above. */
  1798 /* TODO(shess): Is there some risk that a statement will be used in two
  1799 ** cursors at once, e.g.  if a query joins a virtual table to itself?
  1800 ** If so perhaps we should move some of these to the cursor object.
  1801 */
  1802 static const char *const fulltext_zStatement[MAX_STMT] = {
  1803   /* CONTENT_INSERT */ NULL,  /* generated in contentInsertStatement() */
  1804   /* CONTENT_SELECT */ "select * from %_content where rowid = ?",
  1805   /* CONTENT_UPDATE */ NULL,  /* generated in contentUpdateStatement() */
  1806   /* CONTENT_DELETE */ "delete from %_content where rowid = ?",
  1807   /* CONTENT_EXISTS */ "select rowid from %_content limit 1",
  1808 
  1809   /* BLOCK_INSERT */ "insert into %_segments values (?)",
  1810   /* BLOCK_SELECT */ "select block from %_segments where rowid = ?",
  1811   /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?",
  1812   /* BLOCK_DELETE_ALL */ "delete from %_segments",
  1813 
  1814   /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
  1815   /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
  1816   /* SEGDIR_SELECT_LEVEL */
  1817   "select start_block, leaves_end_block, root from %_segdir "
  1818   " where level = ? order by idx",
  1819   /* SEGDIR_SPAN */
  1820   "select min(start_block), max(end_block) from %_segdir "
  1821   " where level = ? and start_block <> 0",
  1822   /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
  1823 
  1824   /* NOTE(shess): The first three results of the following two
  1825   ** statements must match.
  1826   */
  1827   /* SEGDIR_SELECT_SEGMENT */
  1828   "select start_block, leaves_end_block, root from %_segdir "
  1829   " where level = ? and idx = ?",
  1830   /* SEGDIR_SELECT_ALL */
  1831   "select start_block, leaves_end_block, root from %_segdir "
  1832   " order by level desc, idx asc",
  1833   /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
  1834   /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
  1835 };
  1836 
  1837 /*
  1838 ** A connection to a fulltext index is an instance of the following
  1839 ** structure.  The xCreate and xConnect methods create an instance
  1840 ** of this structure and xDestroy and xDisconnect free that instance.
  1841 ** All other methods receive a pointer to the structure as one of their
  1842 ** arguments.
  1843 */
  1844 struct fulltext_vtab {
  1845   sqlite3_vtab base;               /* Base class used by SQLite core */
  1846   sqlite3 *db;                     /* The database connection */
  1847   const char *zDb;                 /* logical database name */
  1848   const char *zName;               /* virtual table name */
  1849   int nColumn;                     /* number of columns in virtual table */
  1850   char **azColumn;                 /* column names.  malloced */
  1851   char **azContentColumn;          /* column names in content table; malloced */
  1852   sqlite3_tokenizer *pTokenizer;   /* tokenizer for inserts and queries */
  1853 
  1854   /* Precompiled statements which we keep as long as the table is
  1855   ** open.
  1856   */
  1857   sqlite3_stmt *pFulltextStatements[MAX_STMT];
  1858 
  1859   /* Precompiled statements used for segment merges.  We run a
  1860   ** separate select across the leaf level of each tree being merged.
  1861   */
  1862   sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
  1863   /* The statement used to prepare pLeafSelectStmts. */
  1864 #define LEAF_SELECT \
  1865   "select block from %_segments where rowid between ? and ? order by rowid"
  1866 
  1867   /* These buffer pending index updates during transactions.
  1868   ** nPendingData estimates the memory size of the pending data.  It
  1869   ** doesn't include the hash-bucket overhead, nor any malloc
  1870   ** overhead.  When nPendingData exceeds kPendingThreshold, the
  1871   ** buffer is flushed even before the transaction closes.
  1872   ** pendingTerms stores the data, and is only valid when nPendingData
  1873   ** is >=0 (nPendingData<0 means pendingTerms has not been
  1874   ** initialized).  iPrevDocid is the last docid written, used to make
  1875   ** certain we're inserting in sorted order.
  1876   */
  1877   int nPendingData;
  1878 #define kPendingThreshold (1*1024*1024)
  1879   sqlite_int64 iPrevDocid;
  1880   fts2Hash pendingTerms;
  1881 };
  1882 
  1883 /*
  1884 ** When the core wants to do a query, it create a cursor using a
  1885 ** call to xOpen.  This structure is an instance of a cursor.  It
  1886 ** is destroyed by xClose.
  1887 */
  1888 typedef struct fulltext_cursor {
  1889   sqlite3_vtab_cursor base;        /* Base class used by SQLite core */
  1890   QueryType iCursorType;           /* Copy of sqlite3_index_info.idxNum */
  1891   sqlite3_stmt *pStmt;             /* Prepared statement in use by the cursor */
  1892   int eof;                         /* True if at End Of Results */
  1893   Query q;                         /* Parsed query string */
  1894   Snippet snippet;                 /* Cached snippet for the current row */
  1895   int iColumn;                     /* Column being searched */
  1896   DataBuffer result;               /* Doclist results from fulltextQuery */
  1897   DLReader reader;                 /* Result reader if result not empty */
  1898 } fulltext_cursor;
  1899 
  1900 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
  1901   return (fulltext_vtab *) c->base.pVtab;
  1902 }
  1903 
  1904 static const sqlite3_module fts2Module;   /* forward declaration */
  1905 
  1906 /* Return a dynamically generated statement of the form
  1907  *   insert into %_content (rowid, ...) values (?, ...)
  1908  */
  1909 static const char *contentInsertStatement(fulltext_vtab *v){
  1910   StringBuffer sb;
  1911   int i;
  1912 
  1913   initStringBuffer(&sb);
  1914   append(&sb, "insert into %_content (rowid, ");
  1915   appendList(&sb, v->nColumn, v->azContentColumn);
  1916   append(&sb, ") values (?");
  1917   for(i=0; i<v->nColumn; ++i)
  1918     append(&sb, ", ?");
  1919   append(&sb, ")");
  1920   return stringBufferData(&sb);
  1921 }
  1922 
  1923 /* Return a dynamically generated statement of the form
  1924  *   update %_content set [col_0] = ?, [col_1] = ?, ...
  1925  *                    where rowid = ?
  1926  */
  1927 static const char *contentUpdateStatement(fulltext_vtab *v){
  1928   StringBuffer sb;
  1929   int i;
  1930 
  1931   initStringBuffer(&sb);
  1932   append(&sb, "update %_content set ");
  1933   for(i=0; i<v->nColumn; ++i) {
  1934     if( i>0 ){
  1935       append(&sb, ", ");
  1936     }
  1937     append(&sb, v->azContentColumn[i]);
  1938     append(&sb, " = ?");
  1939   }
  1940   append(&sb, " where rowid = ?");
  1941   return stringBufferData(&sb);
  1942 }
  1943 
  1944 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
  1945 ** If the indicated statement has never been prepared, it is prepared
  1946 ** and cached, otherwise the cached version is reset.
  1947 */
  1948 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
  1949                              sqlite3_stmt **ppStmt){
  1950   assert( iStmt<MAX_STMT );
  1951   if( v->pFulltextStatements[iStmt]==NULL ){
  1952     const char *zStmt;
  1953     int rc;
  1954     switch( iStmt ){
  1955       case CONTENT_INSERT_STMT:
  1956         zStmt = contentInsertStatement(v); break;
  1957       case CONTENT_UPDATE_STMT:
  1958         zStmt = contentUpdateStatement(v); break;
  1959       default:
  1960         zStmt = fulltext_zStatement[iStmt];
  1961     }
  1962     rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
  1963                          zStmt);
  1964     if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
  1965     if( rc!=SQLITE_OK ) return rc;
  1966   } else {
  1967     int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
  1968     if( rc!=SQLITE_OK ) return rc;
  1969   }
  1970 
  1971   *ppStmt = v->pFulltextStatements[iStmt];
  1972   return SQLITE_OK;
  1973 }
  1974 
  1975 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
  1976 ** SQLITE_ROW to SQLITE_ERROR.  Useful for statements like UPDATE,
  1977 ** where we expect no results.
  1978 */
  1979 static int sql_single_step(sqlite3_stmt *s){
  1980   int rc = sqlite3_step(s);
  1981   return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
  1982 }
  1983 
  1984 /* Like sql_get_statement(), but for special replicated LEAF_SELECT
  1985 ** statements.  idx -1 is a special case for an uncached version of
  1986 ** the statement (used in the optimize implementation).
  1987 */
  1988 /* TODO(shess) Write version for generic statements and then share
  1989 ** that between the cached-statement functions.
  1990 */
  1991 static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
  1992                                   sqlite3_stmt **ppStmt){
  1993   assert( idx>=-1 && idx<MERGE_COUNT );
  1994   if( idx==-1 ){
  1995     return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
  1996   }else if( v->pLeafSelectStmts[idx]==NULL ){
  1997     int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
  1998                          LEAF_SELECT);
  1999     if( rc!=SQLITE_OK ) return rc;
  2000   }else{
  2001     int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
  2002     if( rc!=SQLITE_OK ) return rc;
  2003   }
  2004 
  2005   *ppStmt = v->pLeafSelectStmts[idx];
  2006   return SQLITE_OK;
  2007 }
  2008 
  2009 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */
  2010 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid,
  2011                           sqlite3_value **pValues){
  2012   sqlite3_stmt *s;
  2013   int i;
  2014   int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
  2015   if( rc!=SQLITE_OK ) return rc;
  2016 
  2017   rc = sqlite3_bind_value(s, 1, rowid);
  2018   if( rc!=SQLITE_OK ) return rc;
  2019 
  2020   for(i=0; i<v->nColumn; ++i){
  2021     rc = sqlite3_bind_value(s, 2+i, pValues[i]);
  2022     if( rc!=SQLITE_OK ) return rc;
  2023   }
  2024 
  2025   return sql_single_step(s);
  2026 }
  2027 
  2028 /* update %_content set col0 = pValues[0], col1 = pValues[1], ...
  2029  *                  where rowid = [iRowid] */
  2030 static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
  2031                           sqlite_int64 iRowid){
  2032   sqlite3_stmt *s;
  2033   int i;
  2034   int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
  2035   if( rc!=SQLITE_OK ) return rc;
  2036 
  2037   for(i=0; i<v->nColumn; ++i){
  2038     rc = sqlite3_bind_value(s, 1+i, pValues[i]);
  2039     if( rc!=SQLITE_OK ) return rc;
  2040   }
  2041 
  2042   rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid);
  2043   if( rc!=SQLITE_OK ) return rc;
  2044 
  2045   return sql_single_step(s);
  2046 }
  2047 
  2048 static void freeStringArray(int nString, const char **pString){
  2049   int i;
  2050 
  2051   for (i=0 ; i < nString ; ++i) {
  2052     if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
  2053   }
  2054   sqlite3_free((void *) pString);
  2055 }
  2056 
  2057 /* select * from %_content where rowid = [iRow]
  2058  * The caller must delete the returned array and all strings in it.
  2059  * null fields will be NULL in the returned array.
  2060  *
  2061  * TODO: Perhaps we should return pointer/length strings here for consistency
  2062  * with other code which uses pointer/length. */
  2063 static int content_select(fulltext_vtab *v, sqlite_int64 iRow,
  2064                           const char ***pValues){
  2065   sqlite3_stmt *s;
  2066   const char **values;
  2067   int i;
  2068   int rc;
  2069 
  2070   *pValues = NULL;
  2071 
  2072   rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
  2073   if( rc!=SQLITE_OK ) return rc;
  2074 
  2075   rc = sqlite3_bind_int64(s, 1, iRow);
  2076   if( rc!=SQLITE_OK ) return rc;
  2077 
  2078   rc = sqlite3_step(s);
  2079   if( rc!=SQLITE_ROW ) return rc;
  2080 
  2081   values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
  2082   for(i=0; i<v->nColumn; ++i){
  2083     if( sqlite3_column_type(s, i)==SQLITE_NULL ){
  2084       values[i] = NULL;
  2085     }else{
  2086       values[i] = string_dup((char*)sqlite3_column_text(s, i));
  2087     }
  2088   }
  2089 
  2090   /* We expect only one row.  We must execute another sqlite3_step()
  2091    * to complete the iteration; otherwise the table will remain locked. */
  2092   rc = sqlite3_step(s);
  2093   if( rc==SQLITE_DONE ){
  2094     *pValues = values;
  2095     return SQLITE_OK;
  2096   }
  2097 
  2098   freeStringArray(v->nColumn, values);
  2099   return rc;
  2100 }
  2101 
  2102 /* delete from %_content where rowid = [iRow ] */
  2103 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){
  2104   sqlite3_stmt *s;
  2105   int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
  2106   if( rc!=SQLITE_OK ) return rc;
  2107 
  2108   rc = sqlite3_bind_int64(s, 1, iRow);
  2109   if( rc!=SQLITE_OK ) return rc;
  2110 
  2111   return sql_single_step(s);
  2112 }
  2113 
  2114 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
  2115 ** no rows exist, and any error in case of failure.
  2116 */
  2117 static int content_exists(fulltext_vtab *v){
  2118   sqlite3_stmt *s;
  2119   int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
  2120   if( rc!=SQLITE_OK ) return rc;
  2121 
  2122   rc = sqlite3_step(s);
  2123   if( rc!=SQLITE_ROW ) return rc;
  2124 
  2125   /* We expect only one row.  We must execute another sqlite3_step()
  2126    * to complete the iteration; otherwise the table will remain locked. */
  2127   rc = sqlite3_step(s);
  2128   if( rc==SQLITE_DONE ) return SQLITE_ROW;
  2129   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2130   return rc;
  2131 }
  2132 
  2133 /* insert into %_segments values ([pData])
  2134 **   returns assigned rowid in *piBlockid
  2135 */
  2136 static int block_insert(fulltext_vtab *v, const char *pData, int nData,
  2137                         sqlite_int64 *piBlockid){
  2138   sqlite3_stmt *s;
  2139   int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
  2140   if( rc!=SQLITE_OK ) return rc;
  2141 
  2142   rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
  2143   if( rc!=SQLITE_OK ) return rc;
  2144 
  2145   rc = sqlite3_step(s);
  2146   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2147   if( rc!=SQLITE_DONE ) return rc;
  2148 
  2149   *piBlockid = sqlite3_last_insert_rowid(v->db);
  2150   return SQLITE_OK;
  2151 }
  2152 
  2153 /* delete from %_segments
  2154 **   where rowid between [iStartBlockid] and [iEndBlockid]
  2155 **
  2156 ** Deletes the range of blocks, inclusive, used to delete the blocks
  2157 ** which form a segment.
  2158 */
  2159 static int block_delete(fulltext_vtab *v,
  2160                         sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
  2161   sqlite3_stmt *s;
  2162   int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
  2163   if( rc!=SQLITE_OK ) return rc;
  2164 
  2165   rc = sqlite3_bind_int64(s, 1, iStartBlockid);
  2166   if( rc!=SQLITE_OK ) return rc;
  2167 
  2168   rc = sqlite3_bind_int64(s, 2, iEndBlockid);
  2169   if( rc!=SQLITE_OK ) return rc;
  2170 
  2171   return sql_single_step(s);
  2172 }
  2173 
  2174 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
  2175 ** at iLevel.  Returns SQLITE_DONE if there are no segments at
  2176 ** iLevel.  Otherwise returns an error.
  2177 */
  2178 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
  2179   sqlite3_stmt *s;
  2180   int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
  2181   if( rc!=SQLITE_OK ) return rc;
  2182 
  2183   rc = sqlite3_bind_int(s, 1, iLevel);
  2184   if( rc!=SQLITE_OK ) return rc;
  2185 
  2186   rc = sqlite3_step(s);
  2187   /* Should always get at least one row due to how max() works. */
  2188   if( rc==SQLITE_DONE ) return SQLITE_DONE;
  2189   if( rc!=SQLITE_ROW ) return rc;
  2190 
  2191   /* NULL means that there were no inputs to max(). */
  2192   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
  2193     rc = sqlite3_step(s);
  2194     if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2195     return rc;
  2196   }
  2197 
  2198   *pidx = sqlite3_column_int(s, 0);
  2199 
  2200   /* We expect only one row.  We must execute another sqlite3_step()
  2201    * to complete the iteration; otherwise the table will remain locked. */
  2202   rc = sqlite3_step(s);
  2203   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2204   if( rc!=SQLITE_DONE ) return rc;
  2205   return SQLITE_ROW;
  2206 }
  2207 
  2208 /* insert into %_segdir values (
  2209 **   [iLevel], [idx],
  2210 **   [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
  2211 **   [pRootData]
  2212 ** )
  2213 */
  2214 static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
  2215                       sqlite_int64 iStartBlockid,
  2216                       sqlite_int64 iLeavesEndBlockid,
  2217                       sqlite_int64 iEndBlockid,
  2218                       const char *pRootData, int nRootData){
  2219   sqlite3_stmt *s;
  2220   int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
  2221   if( rc!=SQLITE_OK ) return rc;
  2222 
  2223   rc = sqlite3_bind_int(s, 1, iLevel);
  2224   if( rc!=SQLITE_OK ) return rc;
  2225 
  2226   rc = sqlite3_bind_int(s, 2, idx);
  2227   if( rc!=SQLITE_OK ) return rc;
  2228 
  2229   rc = sqlite3_bind_int64(s, 3, iStartBlockid);
  2230   if( rc!=SQLITE_OK ) return rc;
  2231 
  2232   rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
  2233   if( rc!=SQLITE_OK ) return rc;
  2234 
  2235   rc = sqlite3_bind_int64(s, 5, iEndBlockid);
  2236   if( rc!=SQLITE_OK ) return rc;
  2237 
  2238   rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
  2239   if( rc!=SQLITE_OK ) return rc;
  2240 
  2241   return sql_single_step(s);
  2242 }
  2243 
  2244 /* Queries %_segdir for the block span of the segments in level
  2245 ** iLevel.  Returns SQLITE_DONE if there are no blocks for iLevel,
  2246 ** SQLITE_ROW if there are blocks, else an error.
  2247 */
  2248 static int segdir_span(fulltext_vtab *v, int iLevel,
  2249                        sqlite_int64 *piStartBlockid,
  2250                        sqlite_int64 *piEndBlockid){
  2251   sqlite3_stmt *s;
  2252   int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
  2253   if( rc!=SQLITE_OK ) return rc;
  2254 
  2255   rc = sqlite3_bind_int(s, 1, iLevel);
  2256   if( rc!=SQLITE_OK ) return rc;
  2257 
  2258   rc = sqlite3_step(s);
  2259   if( rc==SQLITE_DONE ) return SQLITE_DONE;  /* Should never happen */
  2260   if( rc!=SQLITE_ROW ) return rc;
  2261 
  2262   /* This happens if all segments at this level are entirely inline. */
  2263   if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
  2264     /* We expect only one row.  We must execute another sqlite3_step()
  2265      * to complete the iteration; otherwise the table will remain locked. */
  2266     int rc2 = sqlite3_step(s);
  2267     if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
  2268     return rc2;
  2269   }
  2270 
  2271   *piStartBlockid = sqlite3_column_int64(s, 0);
  2272   *piEndBlockid = sqlite3_column_int64(s, 1);
  2273 
  2274   /* We expect only one row.  We must execute another sqlite3_step()
  2275    * to complete the iteration; otherwise the table will remain locked. */
  2276   rc = sqlite3_step(s);
  2277   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2278   if( rc!=SQLITE_DONE ) return rc;
  2279   return SQLITE_ROW;
  2280 }
  2281 
  2282 /* Delete the segment blocks and segment directory records for all
  2283 ** segments at iLevel.
  2284 */
  2285 static int segdir_delete(fulltext_vtab *v, int iLevel){
  2286   sqlite3_stmt *s;
  2287   sqlite_int64 iStartBlockid, iEndBlockid;
  2288   int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
  2289   if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
  2290 
  2291   if( rc==SQLITE_ROW ){
  2292     rc = block_delete(v, iStartBlockid, iEndBlockid);
  2293     if( rc!=SQLITE_OK ) return rc;
  2294   }
  2295 
  2296   /* Delete the segment directory itself. */
  2297   rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
  2298   if( rc!=SQLITE_OK ) return rc;
  2299 
  2300   rc = sqlite3_bind_int64(s, 1, iLevel);
  2301   if( rc!=SQLITE_OK ) return rc;
  2302 
  2303   return sql_single_step(s);
  2304 }
  2305 
  2306 /* Delete entire fts index, SQLITE_OK on success, relevant error on
  2307 ** failure.
  2308 */
  2309 static int segdir_delete_all(fulltext_vtab *v){
  2310   sqlite3_stmt *s;
  2311   int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
  2312   if( rc!=SQLITE_OK ) return rc;
  2313 
  2314   rc = sql_single_step(s);
  2315   if( rc!=SQLITE_OK ) return rc;
  2316 
  2317   rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
  2318   if( rc!=SQLITE_OK ) return rc;
  2319 
  2320   return sql_single_step(s);
  2321 }
  2322 
  2323 /* Returns SQLITE_OK with *pnSegments set to the number of entries in
  2324 ** %_segdir and *piMaxLevel set to the highest level which has a
  2325 ** segment.  Otherwise returns the SQLite error which caused failure.
  2326 */
  2327 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
  2328   sqlite3_stmt *s;
  2329   int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
  2330   if( rc!=SQLITE_OK ) return rc;
  2331 
  2332   rc = sqlite3_step(s);
  2333   /* TODO(shess): This case should not be possible?  Should stronger
  2334   ** measures be taken if it happens?
  2335   */
  2336   if( rc==SQLITE_DONE ){
  2337     *pnSegments = 0;
  2338     *piMaxLevel = 0;
  2339     return SQLITE_OK;
  2340   }
  2341   if( rc!=SQLITE_ROW ) return rc;
  2342 
  2343   *pnSegments = sqlite3_column_int(s, 0);
  2344   *piMaxLevel = sqlite3_column_int(s, 1);
  2345 
  2346   /* We expect only one row.  We must execute another sqlite3_step()
  2347    * to complete the iteration; otherwise the table will remain locked. */
  2348   rc = sqlite3_step(s);
  2349   if( rc==SQLITE_DONE ) return SQLITE_OK;
  2350   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  2351   return rc;
  2352 }
  2353 
  2354 /* TODO(shess) clearPendingTerms() is far down the file because
  2355 ** writeZeroSegment() is far down the file because LeafWriter is far
  2356 ** down the file.  Consider refactoring the code to move the non-vtab
  2357 ** code above the vtab code so that we don't need this forward
  2358 ** reference.
  2359 */
  2360 static int clearPendingTerms(fulltext_vtab *v);
  2361 
  2362 /*
  2363 ** Free the memory used to contain a fulltext_vtab structure.
  2364 */
  2365 static void fulltext_vtab_destroy(fulltext_vtab *v){
  2366   int iStmt, i;
  2367 
  2368   TRACE(("FTS2 Destroy %p\n", v));
  2369   for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
  2370     if( v->pFulltextStatements[iStmt]!=NULL ){
  2371       sqlite3_finalize(v->pFulltextStatements[iStmt]);
  2372       v->pFulltextStatements[iStmt] = NULL;
  2373     }
  2374   }
  2375 
  2376   for( i=0; i<MERGE_COUNT; i++ ){
  2377     if( v->pLeafSelectStmts[i]!=NULL ){
  2378       sqlite3_finalize(v->pLeafSelectStmts[i]);
  2379       v->pLeafSelectStmts[i] = NULL;
  2380     }
  2381   }
  2382 
  2383   if( v->pTokenizer!=NULL ){
  2384     v->pTokenizer->pModule->xDestroy(v->pTokenizer);
  2385     v->pTokenizer = NULL;
  2386   }
  2387 
  2388   clearPendingTerms(v);
  2389 
  2390   sqlite3_free(v->azColumn);
  2391   for(i = 0; i < v->nColumn; ++i) {
  2392     sqlite3_free(v->azContentColumn[i]);
  2393   }
  2394   sqlite3_free(v->azContentColumn);
  2395   sqlite3_free(v);
  2396 }
  2397 
  2398 /*
  2399 ** Token types for parsing the arguments to xConnect or xCreate.
  2400 */
  2401 #define TOKEN_EOF         0    /* End of file */
  2402 #define TOKEN_SPACE       1    /* Any kind of whitespace */
  2403 #define TOKEN_ID          2    /* An identifier */
  2404 #define TOKEN_STRING      3    /* A string literal */
  2405 #define TOKEN_PUNCT       4    /* A single punctuation character */
  2406 
  2407 /*
  2408 ** If X is a character that can be used in an identifier then
  2409 ** IdChar(X) will be true.  Otherwise it is false.
  2410 **
  2411 ** For ASCII, any character with the high-order bit set is
  2412 ** allowed in an identifier.  For 7-bit characters, 
  2413 ** sqlite3IsIdChar[X] must be 1.
  2414 **
  2415 ** Ticket #1066.  the SQL standard does not allow '$' in the
  2416 ** middle of identfiers.  But many SQL implementations do. 
  2417 ** SQLite will allow '$' in identifiers for compatibility.
  2418 ** But the feature is undocumented.
  2419 */
  2420 static const char isIdChar[] = {
  2421 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
  2422     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
  2423     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
  2424     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
  2425     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
  2426     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
  2427     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
  2428 };
  2429 #define IdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20]))
  2430 
  2431 
  2432 /*
  2433 ** Return the length of the token that begins at z[0]. 
  2434 ** Store the token type in *tokenType before returning.
  2435 */
  2436 static int getToken(const char *z, int *tokenType){
  2437   int i, c;
  2438   switch( *z ){
  2439     case 0: {
  2440       *tokenType = TOKEN_EOF;
  2441       return 0;
  2442     }
  2443     case ' ': case '\t': case '\n': case '\f': case '\r': {
  2444       for(i=1; safe_isspace(z[i]); i++){}
  2445       *tokenType = TOKEN_SPACE;
  2446       return i;
  2447     }
  2448     case '`':
  2449     case '\'':
  2450     case '"': {
  2451       int delim = z[0];
  2452       for(i=1; (c=z[i])!=0; i++){
  2453         if( c==delim ){
  2454           if( z[i+1]==delim ){
  2455             i++;
  2456           }else{
  2457             break;
  2458           }
  2459         }
  2460       }
  2461       *tokenType = TOKEN_STRING;
  2462       return i + (c!=0);
  2463     }
  2464     case '[': {
  2465       for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
  2466       *tokenType = TOKEN_ID;
  2467       return i;
  2468     }
  2469     default: {
  2470       if( !IdChar(*z) ){
  2471         break;
  2472       }
  2473       for(i=1; IdChar(z[i]); i++){}
  2474       *tokenType = TOKEN_ID;
  2475       return i;
  2476     }
  2477   }
  2478   *tokenType = TOKEN_PUNCT;
  2479   return 1;
  2480 }
  2481 
  2482 /*
  2483 ** A token extracted from a string is an instance of the following
  2484 ** structure.
  2485 */
  2486 typedef struct Token {
  2487   const char *z;       /* Pointer to token text.  Not '\000' terminated */
  2488   short int n;         /* Length of the token text in bytes. */
  2489 } Token;
  2490 
  2491 /*
  2492 ** Given a input string (which is really one of the argv[] parameters
  2493 ** passed into xConnect or xCreate) split the string up into tokens.
  2494 ** Return an array of pointers to '\000' terminated strings, one string
  2495 ** for each non-whitespace token.
  2496 **
  2497 ** The returned array is terminated by a single NULL pointer.
  2498 **
  2499 ** Space to hold the returned array is obtained from a single
  2500 ** malloc and should be freed by passing the return value to free().
  2501 ** The individual strings within the token list are all a part of
  2502 ** the single memory allocation and will all be freed at once.
  2503 */
  2504 static char **tokenizeString(const char *z, int *pnToken){
  2505   int nToken = 0;
  2506   Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
  2507   int n = 1;
  2508   int e, i;
  2509   int totalSize = 0;
  2510   char **azToken;
  2511   char *zCopy;
  2512   while( n>0 ){
  2513     n = getToken(z, &e);
  2514     if( e!=TOKEN_SPACE ){
  2515       aToken[nToken].z = z;
  2516       aToken[nToken].n = n;
  2517       nToken++;
  2518       totalSize += n+1;
  2519     }
  2520     z += n;
  2521   }
  2522   azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
  2523   zCopy = (char*)&azToken[nToken];
  2524   nToken--;
  2525   for(i=0; i<nToken; i++){
  2526     azToken[i] = zCopy;
  2527     n = aToken[i].n;
  2528     memcpy(zCopy, aToken[i].z, n);
  2529     zCopy[n] = 0;
  2530     zCopy += n+1;
  2531   }
  2532   azToken[nToken] = 0;
  2533   sqlite3_free(aToken);
  2534   *pnToken = nToken;
  2535   return azToken;
  2536 }
  2537 
  2538 /*
  2539 ** Convert an SQL-style quoted string into a normal string by removing
  2540 ** the quote characters.  The conversion is done in-place.  If the
  2541 ** input does not begin with a quote character, then this routine
  2542 ** is a no-op.
  2543 **
  2544 ** Examples:
  2545 **
  2546 **     "abc"   becomes   abc
  2547 **     'xyz'   becomes   xyz
  2548 **     [pqr]   becomes   pqr
  2549 **     `mno`   becomes   mno
  2550 */
  2551 static void dequoteString(char *z){
  2552   int quote;
  2553   int i, j;
  2554   if( z==0 ) return;
  2555   quote = z[0];
  2556   switch( quote ){
  2557     case '\'':  break;
  2558     case '"':   break;
  2559     case '`':   break;                /* For MySQL compatibility */
  2560     case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
  2561     default:    return;
  2562   }
  2563   for(i=1, j=0; z[i]; i++){
  2564     if( z[i]==quote ){
  2565       if( z[i+1]==quote ){
  2566         z[j++] = quote;
  2567         i++;
  2568       }else{
  2569         z[j++] = 0;
  2570         break;
  2571       }
  2572     }else{
  2573       z[j++] = z[i];
  2574     }
  2575   }
  2576 }
  2577 
  2578 /*
  2579 ** The input azIn is a NULL-terminated list of tokens.  Remove the first
  2580 ** token and all punctuation tokens.  Remove the quotes from
  2581 ** around string literal tokens.
  2582 **
  2583 ** Example:
  2584 **
  2585 **     input:      tokenize chinese ( 'simplifed' , 'mixed' )
  2586 **     output:     chinese simplifed mixed
  2587 **
  2588 ** Another example:
  2589 **
  2590 **     input:      delimiters ( '[' , ']' , '...' )
  2591 **     output:     [ ] ...
  2592 */
  2593 static void tokenListToIdList(char **azIn){
  2594   int i, j;
  2595   if( azIn ){
  2596     for(i=0, j=-1; azIn[i]; i++){
  2597       if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
  2598         dequoteString(azIn[i]);
  2599         if( j>=0 ){
  2600           azIn[j] = azIn[i];
  2601         }
  2602         j++;
  2603       }
  2604     }
  2605     azIn[j] = 0;
  2606   }
  2607 }
  2608 
  2609 
  2610 /*
  2611 ** Find the first alphanumeric token in the string zIn.  Null-terminate
  2612 ** this token.  Remove any quotation marks.  And return a pointer to
  2613 ** the result.
  2614 */
  2615 static char *firstToken(char *zIn, char **pzTail){
  2616   int n, ttype;
  2617   while(1){
  2618     n = getToken(zIn, &ttype);
  2619     if( ttype==TOKEN_SPACE ){
  2620       zIn += n;
  2621     }else if( ttype==TOKEN_EOF ){
  2622       *pzTail = zIn;
  2623       return 0;
  2624     }else{
  2625       zIn[n] = 0;
  2626       *pzTail = &zIn[1];
  2627       dequoteString(zIn);
  2628       return zIn;
  2629     }
  2630   }
  2631   /*NOTREACHED*/
  2632 }
  2633 
  2634 /* Return true if...
  2635 **
  2636 **   *  s begins with the string t, ignoring case
  2637 **   *  s is longer than t
  2638 **   *  The first character of s beyond t is not a alphanumeric
  2639 ** 
  2640 ** Ignore leading space in *s.
  2641 **
  2642 ** To put it another way, return true if the first token of
  2643 ** s[] is t[].
  2644 */
  2645 static int startsWith(const char *s, const char *t){
  2646   while( safe_isspace(*s) ){ s++; }
  2647   while( *t ){
  2648     if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
  2649   }
  2650   return *s!='_' && !safe_isalnum(*s);
  2651 }
  2652 
  2653 /*
  2654 ** An instance of this structure defines the "spec" of a
  2655 ** full text index.  This structure is populated by parseSpec
  2656 ** and use by fulltextConnect and fulltextCreate.
  2657 */
  2658 typedef struct TableSpec {
  2659   const char *zDb;         /* Logical database name */
  2660   const char *zName;       /* Name of the full-text index */
  2661   int nColumn;             /* Number of columns to be indexed */
  2662   char **azColumn;         /* Original names of columns to be indexed */
  2663   char **azContentColumn;  /* Column names for %_content */
  2664   char **azTokenizer;      /* Name of tokenizer and its arguments */
  2665 } TableSpec;
  2666 
  2667 /*
  2668 ** Reclaim all of the memory used by a TableSpec
  2669 */
  2670 static void clearTableSpec(TableSpec *p) {
  2671   sqlite3_free(p->azColumn);
  2672   sqlite3_free(p->azContentColumn);
  2673   sqlite3_free(p->azTokenizer);
  2674 }
  2675 
  2676 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
  2677  *
  2678  * CREATE VIRTUAL TABLE email
  2679  *        USING fts2(subject, body, tokenize mytokenizer(myarg))
  2680  *
  2681  * We return parsed information in a TableSpec structure.
  2682  * 
  2683  */
  2684 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
  2685                      char**pzErr){
  2686   int i, n;
  2687   char *z, *zDummy;
  2688   char **azArg;
  2689   const char *zTokenizer = 0;    /* argv[] entry describing the tokenizer */
  2690 
  2691   assert( argc>=3 );
  2692   /* Current interface:
  2693   ** argv[0] - module name
  2694   ** argv[1] - database name
  2695   ** argv[2] - table name
  2696   ** argv[3..] - columns, optionally followed by tokenizer specification
  2697   **             and snippet delimiters specification.
  2698   */
  2699 
  2700   /* Make a copy of the complete argv[][] array in a single allocation.
  2701   ** The argv[][] array is read-only and transient.  We can write to the
  2702   ** copy in order to modify things and the copy is persistent.
  2703   */
  2704   CLEAR(pSpec);
  2705   for(i=n=0; i<argc; i++){
  2706     n += strlen(argv[i]) + 1;
  2707   }
  2708   azArg = sqlite3_malloc( sizeof(char*)*argc + n );
  2709   if( azArg==0 ){
  2710     return SQLITE_NOMEM;
  2711   }
  2712   z = (char*)&azArg[argc];
  2713   for(i=0; i<argc; i++){
  2714     azArg[i] = z;
  2715     strcpy(z, argv[i]);
  2716     z += strlen(z)+1;
  2717   }
  2718 
  2719   /* Identify the column names and the tokenizer and delimiter arguments
  2720   ** in the argv[][] array.
  2721   */
  2722   pSpec->zDb = azArg[1];
  2723   pSpec->zName = azArg[2];
  2724   pSpec->nColumn = 0;
  2725   pSpec->azColumn = azArg;
  2726   zTokenizer = "tokenize simple";
  2727   for(i=3; i<argc; ++i){
  2728     if( startsWith(azArg[i],"tokenize") ){
  2729       zTokenizer = azArg[i];
  2730     }else{
  2731       z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
  2732       pSpec->nColumn++;
  2733     }
  2734   }
  2735   if( pSpec->nColumn==0 ){
  2736     azArg[0] = "content";
  2737     pSpec->nColumn = 1;
  2738   }
  2739 
  2740   /*
  2741   ** Construct the list of content column names.
  2742   **
  2743   ** Each content column name will be of the form cNNAAAA
  2744   ** where NN is the column number and AAAA is the sanitized
  2745   ** column name.  "sanitized" means that special characters are
  2746   ** converted to "_".  The cNN prefix guarantees that all column
  2747   ** names are unique.
  2748   **
  2749   ** The AAAA suffix is not strictly necessary.  It is included
  2750   ** for the convenience of people who might examine the generated
  2751   ** %_content table and wonder what the columns are used for.
  2752   */
  2753   pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
  2754   if( pSpec->azContentColumn==0 ){
  2755     clearTableSpec(pSpec);
  2756     return SQLITE_NOMEM;
  2757   }
  2758   for(i=0; i<pSpec->nColumn; i++){
  2759     char *p;
  2760     pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
  2761     for (p = pSpec->azContentColumn[i]; *p ; ++p) {
  2762       if( !safe_isalnum(*p) ) *p = '_';
  2763     }
  2764   }
  2765 
  2766   /*
  2767   ** Parse the tokenizer specification string.
  2768   */
  2769   pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
  2770   tokenListToIdList(pSpec->azTokenizer);
  2771 
  2772   return SQLITE_OK;
  2773 }
  2774 
  2775 /*
  2776 ** Generate a CREATE TABLE statement that describes the schema of
  2777 ** the virtual table.  Return a pointer to this schema string.
  2778 **
  2779 ** Space is obtained from sqlite3_mprintf() and should be freed
  2780 ** using sqlite3_free().
  2781 */
  2782 static char *fulltextSchema(
  2783   int nColumn,                  /* Number of columns */
  2784   const char *const* azColumn,  /* List of columns */
  2785   const char *zTableName        /* Name of the table */
  2786 ){
  2787   int i;
  2788   char *zSchema, *zNext;
  2789   const char *zSep = "(";
  2790   zSchema = sqlite3_mprintf("CREATE TABLE x");
  2791   for(i=0; i<nColumn; i++){
  2792     zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
  2793     sqlite3_free(zSchema);
  2794     zSchema = zNext;
  2795     zSep = ",";
  2796   }
  2797   zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName);
  2798   sqlite3_free(zSchema);
  2799   return zNext;
  2800 }
  2801 
  2802 /*
  2803 ** Build a new sqlite3_vtab structure that will describe the
  2804 ** fulltext index defined by spec.
  2805 */
  2806 static int constructVtab(
  2807   sqlite3 *db,              /* The SQLite database connection */
  2808   fts2Hash *pHash,          /* Hash table containing tokenizers */
  2809   TableSpec *spec,          /* Parsed spec information from parseSpec() */
  2810   sqlite3_vtab **ppVTab,    /* Write the resulting vtab structure here */
  2811   char **pzErr              /* Write any error message here */
  2812 ){
  2813   int rc;
  2814   int n;
  2815   fulltext_vtab *v = 0;
  2816   const sqlite3_tokenizer_module *m = NULL;
  2817   char *schema;
  2818 
  2819   char const *zTok;         /* Name of tokenizer to use for this fts table */
  2820   int nTok;                 /* Length of zTok, including nul terminator */
  2821 
  2822   v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
  2823   if( v==0 ) return SQLITE_NOMEM;
  2824   CLEAR(v);
  2825   /* sqlite will initialize v->base */
  2826   v->db = db;
  2827   v->zDb = spec->zDb;       /* Freed when azColumn is freed */
  2828   v->zName = spec->zName;   /* Freed when azColumn is freed */
  2829   v->nColumn = spec->nColumn;
  2830   v->azContentColumn = spec->azContentColumn;
  2831   spec->azContentColumn = 0;
  2832   v->azColumn = spec->azColumn;
  2833   spec->azColumn = 0;
  2834 
  2835   if( spec->azTokenizer==0 ){
  2836     return SQLITE_NOMEM;
  2837   }
  2838 
  2839   zTok = spec->azTokenizer[0]; 
  2840   if( !zTok ){
  2841     zTok = "simple";
  2842   }
  2843   nTok = strlen(zTok)+1;
  2844 
  2845   m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok);
  2846   if( !m ){
  2847     *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
  2848     rc = SQLITE_ERROR;
  2849     goto err;
  2850   }
  2851 
  2852   for(n=0; spec->azTokenizer[n]; n++){}
  2853   if( n ){
  2854     rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
  2855                     &v->pTokenizer);
  2856   }else{
  2857     rc = m->xCreate(0, 0, &v->pTokenizer);
  2858   }
  2859   if( rc!=SQLITE_OK ) goto err;
  2860   v->pTokenizer->pModule = m;
  2861 
  2862   /* TODO: verify the existence of backing tables foo_content, foo_term */
  2863 
  2864   schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
  2865                           spec->zName);
  2866   rc = sqlite3_declare_vtab(db, schema);
  2867   sqlite3_free(schema);
  2868   if( rc!=SQLITE_OK ) goto err;
  2869 
  2870   memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
  2871 
  2872   /* Indicate that the buffer is not live. */
  2873   v->nPendingData = -1;
  2874 
  2875   *ppVTab = &v->base;
  2876   TRACE(("FTS2 Connect %p\n", v));
  2877 
  2878   return rc;
  2879 
  2880 err:
  2881   fulltext_vtab_destroy(v);
  2882   return rc;
  2883 }
  2884 
  2885 static int fulltextConnect(
  2886   sqlite3 *db,
  2887   void *pAux,
  2888   int argc, const char *const*argv,
  2889   sqlite3_vtab **ppVTab,
  2890   char **pzErr
  2891 ){
  2892   TableSpec spec;
  2893   int rc = parseSpec(&spec, argc, argv, pzErr);
  2894   if( rc!=SQLITE_OK ) return rc;
  2895 
  2896   rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
  2897   clearTableSpec(&spec);
  2898   return rc;
  2899 }
  2900 
  2901 /* The %_content table holds the text of each document, with
  2902 ** the rowid used as the docid.
  2903 */
  2904 /* TODO(shess) This comment needs elaboration to match the updated
  2905 ** code.  Work it into the top-of-file comment at that time.
  2906 */
  2907 static int fulltextCreate(sqlite3 *db, void *pAux,
  2908                           int argc, const char * const *argv,
  2909                           sqlite3_vtab **ppVTab, char **pzErr){
  2910   int rc;
  2911   TableSpec spec;
  2912   StringBuffer schema;
  2913   TRACE(("FTS2 Create\n"));
  2914 
  2915   rc = parseSpec(&spec, argc, argv, pzErr);
  2916   if( rc!=SQLITE_OK ) return rc;
  2917 
  2918   initStringBuffer(&schema);
  2919   append(&schema, "CREATE TABLE %_content(");
  2920   appendList(&schema, spec.nColumn, spec.azContentColumn);
  2921   append(&schema, ")");
  2922   rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
  2923   stringBufferDestroy(&schema);
  2924   if( rc!=SQLITE_OK ) goto out;
  2925 
  2926   rc = sql_exec(db, spec.zDb, spec.zName,
  2927                 "create table %_segments(block blob);");
  2928   if( rc!=SQLITE_OK ) goto out;
  2929 
  2930   rc = sql_exec(db, spec.zDb, spec.zName,
  2931                 "create table %_segdir("
  2932                 "  level integer,"
  2933                 "  idx integer,"
  2934                 "  start_block integer,"
  2935                 "  leaves_end_block integer,"
  2936                 "  end_block integer,"
  2937                 "  root blob,"
  2938                 "  primary key(level, idx)"
  2939                 ");");
  2940   if( rc!=SQLITE_OK ) goto out;
  2941 
  2942   rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
  2943 
  2944 out:
  2945   clearTableSpec(&spec);
  2946   return rc;
  2947 }
  2948 
  2949 /* Decide how to handle an SQL query. */
  2950 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  2951   int i;
  2952   TRACE(("FTS2 BestIndex\n"));
  2953 
  2954   for(i=0; i<pInfo->nConstraint; ++i){
  2955     const struct sqlite3_index_constraint *pConstraint;
  2956     pConstraint = &pInfo->aConstraint[i];
  2957     if( pConstraint->usable ) {
  2958       if( pConstraint->iColumn==-1 &&
  2959           pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
  2960         pInfo->idxNum = QUERY_ROWID;      /* lookup by rowid */
  2961         TRACE(("FTS2 QUERY_ROWID\n"));
  2962       } else if( pConstraint->iColumn>=0 &&
  2963                  pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
  2964         /* full-text search */
  2965         pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
  2966         TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
  2967       } else continue;
  2968 
  2969       pInfo->aConstraintUsage[i].argvIndex = 1;
  2970       pInfo->aConstraintUsage[i].omit = 1;
  2971 
  2972       /* An arbitrary value for now.
  2973        * TODO: Perhaps rowid matches should be considered cheaper than
  2974        * full-text searches. */
  2975       pInfo->estimatedCost = 1.0;   
  2976 
  2977       return SQLITE_OK;
  2978     }
  2979   }
  2980   pInfo->idxNum = QUERY_GENERIC;
  2981   return SQLITE_OK;
  2982 }
  2983 
  2984 static int fulltextDisconnect(sqlite3_vtab *pVTab){
  2985   TRACE(("FTS2 Disconnect %p\n", pVTab));
  2986   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
  2987   return SQLITE_OK;
  2988 }
  2989 
  2990 static int fulltextDestroy(sqlite3_vtab *pVTab){
  2991   fulltext_vtab *v = (fulltext_vtab *)pVTab;
  2992   int rc;
  2993 
  2994   TRACE(("FTS2 Destroy %p\n", pVTab));
  2995   rc = sql_exec(v->db, v->zDb, v->zName,
  2996                 "drop table if exists %_content;"
  2997                 "drop table if exists %_segments;"
  2998                 "drop table if exists %_segdir;"
  2999                 );
  3000   if( rc!=SQLITE_OK ) return rc;
  3001 
  3002   fulltext_vtab_destroy((fulltext_vtab *)pVTab);
  3003   return SQLITE_OK;
  3004 }
  3005 
  3006 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  3007   fulltext_cursor *c;
  3008 
  3009   c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
  3010   if( c ){
  3011     memset(c, 0, sizeof(fulltext_cursor));
  3012     /* sqlite will initialize c->base */
  3013     *ppCursor = &c->base;
  3014     TRACE(("FTS2 Open %p: %p\n", pVTab, c));
  3015     return SQLITE_OK;
  3016   }else{
  3017     return SQLITE_NOMEM;
  3018   }
  3019 }
  3020 
  3021 
  3022 /* Free all of the dynamically allocated memory held by *q
  3023 */
  3024 static void queryClear(Query *q){
  3025   int i;
  3026   for(i = 0; i < q->nTerms; ++i){
  3027     sqlite3_free(q->pTerms[i].pTerm);
  3028   }
  3029   sqlite3_free(q->pTerms);
  3030   CLEAR(q);
  3031 }
  3032 
  3033 /* Free all of the dynamically allocated memory held by the
  3034 ** Snippet
  3035 */
  3036 static void snippetClear(Snippet *p){
  3037   sqlite3_free(p->aMatch);
  3038   sqlite3_free(p->zOffset);
  3039   sqlite3_free(p->zSnippet);
  3040   CLEAR(p);
  3041 }
  3042 /*
  3043 ** Append a single entry to the p->aMatch[] log.
  3044 */
  3045 static void snippetAppendMatch(
  3046   Snippet *p,               /* Append the entry to this snippet */
  3047   int iCol, int iTerm,      /* The column and query term */
  3048   int iStart, int nByte     /* Offset and size of the match */
  3049 ){
  3050   int i;
  3051   struct snippetMatch *pMatch;
  3052   if( p->nMatch+1>=p->nAlloc ){
  3053     p->nAlloc = p->nAlloc*2 + 10;
  3054     p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
  3055     if( p->aMatch==0 ){
  3056       p->nMatch = 0;
  3057       p->nAlloc = 0;
  3058       return;
  3059     }
  3060   }
  3061   i = p->nMatch++;
  3062   pMatch = &p->aMatch[i];
  3063   pMatch->iCol = iCol;
  3064   pMatch->iTerm = iTerm;
  3065   pMatch->iStart = iStart;
  3066   pMatch->nByte = nByte;
  3067 }
  3068 
  3069 /*
  3070 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
  3071 */
  3072 #define FTS2_ROTOR_SZ   (32)
  3073 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1)
  3074 
  3075 /*
  3076 ** Add entries to pSnippet->aMatch[] for every match that occurs against
  3077 ** document zDoc[0..nDoc-1] which is stored in column iColumn.
  3078 */
  3079 static void snippetOffsetsOfColumn(
  3080   Query *pQuery,
  3081   Snippet *pSnippet,
  3082   int iColumn,
  3083   const char *zDoc,
  3084   int nDoc
  3085 ){
  3086   const sqlite3_tokenizer_module *pTModule;  /* The tokenizer module */
  3087   sqlite3_tokenizer *pTokenizer;             /* The specific tokenizer */
  3088   sqlite3_tokenizer_cursor *pTCursor;        /* Tokenizer cursor */
  3089   fulltext_vtab *pVtab;                /* The full text index */
  3090   int nColumn;                         /* Number of columns in the index */
  3091   const QueryTerm *aTerm;              /* Query string terms */
  3092   int nTerm;                           /* Number of query string terms */  
  3093   int i, j;                            /* Loop counters */
  3094   int rc;                              /* Return code */
  3095   unsigned int match, prevMatch;       /* Phrase search bitmasks */
  3096   const char *zToken;                  /* Next token from the tokenizer */
  3097   int nToken;                          /* Size of zToken */
  3098   int iBegin, iEnd, iPos;              /* Offsets of beginning and end */
  3099 
  3100   /* The following variables keep a circular buffer of the last
  3101   ** few tokens */
  3102   unsigned int iRotor = 0;             /* Index of current token */
  3103   int iRotorBegin[FTS2_ROTOR_SZ];      /* Beginning offset of token */
  3104   int iRotorLen[FTS2_ROTOR_SZ];        /* Length of token */
  3105 
  3106   pVtab = pQuery->pFts;
  3107   nColumn = pVtab->nColumn;
  3108   pTokenizer = pVtab->pTokenizer;
  3109   pTModule = pTokenizer->pModule;
  3110   rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
  3111   if( rc ) return;
  3112   pTCursor->pTokenizer = pTokenizer;
  3113   aTerm = pQuery->pTerms;
  3114   nTerm = pQuery->nTerms;
  3115   if( nTerm>=FTS2_ROTOR_SZ ){
  3116     nTerm = FTS2_ROTOR_SZ - 1;
  3117   }
  3118   prevMatch = 0;
  3119   while(1){
  3120     rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
  3121     if( rc ) break;
  3122     iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin;
  3123     iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin;
  3124     match = 0;
  3125     for(i=0; i<nTerm; i++){
  3126       int iCol;
  3127       iCol = aTerm[i].iColumn;
  3128       if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
  3129       if( aTerm[i].nTerm>nToken ) continue;
  3130       if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
  3131       assert( aTerm[i].nTerm<=nToken );
  3132       if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
  3133       if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
  3134       match |= 1<<i;
  3135       if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
  3136         for(j=aTerm[i].iPhrase-1; j>=0; j--){
  3137           int k = (iRotor-j) & FTS2_ROTOR_MASK;
  3138           snippetAppendMatch(pSnippet, iColumn, i-j,
  3139                 iRotorBegin[k], iRotorLen[k]);
  3140         }
  3141       }
  3142     }
  3143     prevMatch = match<<1;
  3144     iRotor++;
  3145   }
  3146   pTModule->xClose(pTCursor);  
  3147 }
  3148 
  3149 
  3150 /*
  3151 ** Compute all offsets for the current row of the query.  
  3152 ** If the offsets have already been computed, this routine is a no-op.
  3153 */
  3154 static void snippetAllOffsets(fulltext_cursor *p){
  3155   int nColumn;
  3156   int iColumn, i;
  3157   int iFirst, iLast;
  3158   fulltext_vtab *pFts;
  3159 
  3160   if( p->snippet.nMatch ) return;
  3161   if( p->q.nTerms==0 ) return;
  3162   pFts = p->q.pFts;
  3163   nColumn = pFts->nColumn;
  3164   iColumn = (p->iCursorType - QUERY_FULLTEXT);
  3165   if( iColumn<0 || iColumn>=nColumn ){
  3166     iFirst = 0;
  3167     iLast = nColumn-1;
  3168   }else{
  3169     iFirst = iColumn;
  3170     iLast = iColumn;
  3171   }
  3172   for(i=iFirst; i<=iLast; i++){
  3173     const char *zDoc;
  3174     int nDoc;
  3175     zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
  3176     nDoc = sqlite3_column_bytes(p->pStmt, i+1);
  3177     snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
  3178   }
  3179 }
  3180 
  3181 /*
  3182 ** Convert the information in the aMatch[] array of the snippet
  3183 ** into the string zOffset[0..nOffset-1].
  3184 */
  3185 static void snippetOffsetText(Snippet *p){
  3186   int i;
  3187   int cnt = 0;
  3188   StringBuffer sb;
  3189   char zBuf[200];
  3190   if( p->zOffset ) return;
  3191   initStringBuffer(&sb);
  3192   for(i=0; i<p->nMatch; i++){
  3193     struct snippetMatch *pMatch = &p->aMatch[i];
  3194     zBuf[0] = ' ';
  3195     sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
  3196         pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
  3197     append(&sb, zBuf);
  3198     cnt++;
  3199   }
  3200   p->zOffset = stringBufferData(&sb);
  3201   p->nOffset = stringBufferLength(&sb);
  3202 }
  3203 
  3204 /*
  3205 ** zDoc[0..nDoc-1] is phrase of text.  aMatch[0..nMatch-1] are a set
  3206 ** of matching words some of which might be in zDoc.  zDoc is column
  3207 ** number iCol.
  3208 **
  3209 ** iBreak is suggested spot in zDoc where we could begin or end an
  3210 ** excerpt.  Return a value similar to iBreak but possibly adjusted
  3211 ** to be a little left or right so that the break point is better.
  3212 */
  3213 static int wordBoundary(
  3214   int iBreak,                   /* The suggested break point */
  3215   const char *zDoc,             /* Document text */
  3216   int nDoc,                     /* Number of bytes in zDoc[] */
  3217   struct snippetMatch *aMatch,  /* Matching words */
  3218   int nMatch,                   /* Number of entries in aMatch[] */
  3219   int iCol                      /* The column number for zDoc[] */
  3220 ){
  3221   int i;
  3222   if( iBreak<=10 ){
  3223     return 0;
  3224   }
  3225   if( iBreak>=nDoc-10 ){
  3226     return nDoc;
  3227   }
  3228   for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
  3229   while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
  3230   if( i<nMatch ){
  3231     if( aMatch[i].iStart<iBreak+10 ){
  3232       return aMatch[i].iStart;
  3233     }
  3234     if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
  3235       return aMatch[i-1].iStart;
  3236     }
  3237   }
  3238   for(i=1; i<=10; i++){
  3239     if( safe_isspace(zDoc[iBreak-i]) ){
  3240       return iBreak - i + 1;
  3241     }
  3242     if( safe_isspace(zDoc[iBreak+i]) ){
  3243       return iBreak + i + 1;
  3244     }
  3245   }
  3246   return iBreak;
  3247 }
  3248 
  3249 
  3250 
  3251 /*
  3252 ** Allowed values for Snippet.aMatch[].snStatus
  3253 */
  3254 #define SNIPPET_IGNORE  0   /* It is ok to omit this match from the snippet */
  3255 #define SNIPPET_DESIRED 1   /* We want to include this match in the snippet */
  3256 
  3257 /*
  3258 ** Generate the text of a snippet.
  3259 */
  3260 static void snippetText(
  3261   fulltext_cursor *pCursor,   /* The cursor we need the snippet for */
  3262   const char *zStartMark,     /* Markup to appear before each match */
  3263   const char *zEndMark,       /* Markup to appear after each match */
  3264   const char *zEllipsis       /* Ellipsis mark */
  3265 ){
  3266   int i, j;
  3267   struct snippetMatch *aMatch;
  3268   int nMatch;
  3269   int nDesired;
  3270   StringBuffer sb;
  3271   int tailCol;
  3272   int tailOffset;
  3273   int iCol;
  3274   int nDoc;
  3275   const char *zDoc;
  3276   int iStart, iEnd;
  3277   int tailEllipsis = 0;
  3278   int iMatch;
  3279   
  3280 
  3281   sqlite3_free(pCursor->snippet.zSnippet);
  3282   pCursor->snippet.zSnippet = 0;
  3283   aMatch = pCursor->snippet.aMatch;
  3284   nMatch = pCursor->snippet.nMatch;
  3285   initStringBuffer(&sb);
  3286 
  3287   for(i=0; i<nMatch; i++){
  3288     aMatch[i].snStatus = SNIPPET_IGNORE;
  3289   }
  3290   nDesired = 0;
  3291   for(i=0; i<pCursor->q.nTerms; i++){
  3292     for(j=0; j<nMatch; j++){
  3293       if( aMatch[j].iTerm==i ){
  3294         aMatch[j].snStatus = SNIPPET_DESIRED;
  3295         nDesired++;
  3296         break;
  3297       }
  3298     }
  3299   }
  3300 
  3301   iMatch = 0;
  3302   tailCol = -1;
  3303   tailOffset = 0;
  3304   for(i=0; i<nMatch && nDesired>0; i++){
  3305     if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
  3306     nDesired--;
  3307     iCol = aMatch[i].iCol;
  3308     zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
  3309     nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
  3310     iStart = aMatch[i].iStart - 40;
  3311     iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
  3312     if( iStart<=10 ){
  3313       iStart = 0;
  3314     }
  3315     if( iCol==tailCol && iStart<=tailOffset+20 ){
  3316       iStart = tailOffset;
  3317     }
  3318     if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
  3319       trimWhiteSpace(&sb);
  3320       appendWhiteSpace(&sb);
  3321       append(&sb, zEllipsis);
  3322       appendWhiteSpace(&sb);
  3323     }
  3324     iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
  3325     iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
  3326     if( iEnd>=nDoc-10 ){
  3327       iEnd = nDoc;
  3328       tailEllipsis = 0;
  3329     }else{
  3330       tailEllipsis = 1;
  3331     }
  3332     while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
  3333     while( iStart<iEnd ){
  3334       while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
  3335              && aMatch[iMatch].iCol<=iCol ){
  3336         iMatch++;
  3337       }
  3338       if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
  3339              && aMatch[iMatch].iCol==iCol ){
  3340         nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
  3341         iStart = aMatch[iMatch].iStart;
  3342         append(&sb, zStartMark);
  3343         nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
  3344         append(&sb, zEndMark);
  3345         iStart += aMatch[iMatch].nByte;
  3346         for(j=iMatch+1; j<nMatch; j++){
  3347           if( aMatch[j].iTerm==aMatch[iMatch].iTerm
  3348               && aMatch[j].snStatus==SNIPPET_DESIRED ){
  3349             nDesired--;
  3350             aMatch[j].snStatus = SNIPPET_IGNORE;
  3351           }
  3352         }
  3353       }else{
  3354         nappend(&sb, &zDoc[iStart], iEnd - iStart);
  3355         iStart = iEnd;
  3356       }
  3357     }
  3358     tailCol = iCol;
  3359     tailOffset = iEnd;
  3360   }
  3361   trimWhiteSpace(&sb);
  3362   if( tailEllipsis ){
  3363     appendWhiteSpace(&sb);
  3364     append(&sb, zEllipsis);
  3365   }
  3366   pCursor->snippet.zSnippet = stringBufferData(&sb);
  3367   pCursor->snippet.nSnippet = stringBufferLength(&sb);
  3368 }
  3369 
  3370 
  3371 /*
  3372 ** Close the cursor.  For additional information see the documentation
  3373 ** on the xClose method of the virtual table interface.
  3374 */
  3375 static int fulltextClose(sqlite3_vtab_cursor *pCursor){
  3376   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3377   TRACE(("FTS2 Close %p\n", c));
  3378   sqlite3_finalize(c->pStmt);
  3379   queryClear(&c->q);
  3380   snippetClear(&c->snippet);
  3381   if( c->result.nData!=0 ) dlrDestroy(&c->reader);
  3382   dataBufferDestroy(&c->result);
  3383   sqlite3_free(c);
  3384   return SQLITE_OK;
  3385 }
  3386 
  3387 static int fulltextNext(sqlite3_vtab_cursor *pCursor){
  3388   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3389   int rc;
  3390 
  3391   TRACE(("FTS2 Next %p\n", pCursor));
  3392   snippetClear(&c->snippet);
  3393   if( c->iCursorType < QUERY_FULLTEXT ){
  3394     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
  3395     rc = sqlite3_step(c->pStmt);
  3396     switch( rc ){
  3397       case SQLITE_ROW:
  3398         c->eof = 0;
  3399         return SQLITE_OK;
  3400       case SQLITE_DONE:
  3401         c->eof = 1;
  3402         return SQLITE_OK;
  3403       default:
  3404         c->eof = 1;
  3405         return rc;
  3406     }
  3407   } else {  /* full-text query */
  3408     rc = sqlite3_reset(c->pStmt);
  3409     if( rc!=SQLITE_OK ) return rc;
  3410 
  3411     if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
  3412       c->eof = 1;
  3413       return SQLITE_OK;
  3414     }
  3415     rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
  3416     dlrStep(&c->reader);
  3417     if( rc!=SQLITE_OK ) return rc;
  3418     /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
  3419     rc = sqlite3_step(c->pStmt);
  3420     if( rc==SQLITE_ROW ){   /* the case we expect */
  3421       c->eof = 0;
  3422       return SQLITE_OK;
  3423     }
  3424     /* an error occurred; abort */
  3425     return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
  3426   }
  3427 }
  3428 
  3429 
  3430 /* TODO(shess) If we pushed LeafReader to the top of the file, or to
  3431 ** another file, term_select() could be pushed above
  3432 ** docListOfTerm().
  3433 */
  3434 static int termSelect(fulltext_vtab *v, int iColumn,
  3435                       const char *pTerm, int nTerm, int isPrefix,
  3436                       DocListType iType, DataBuffer *out);
  3437 
  3438 /* Return a DocList corresponding to the query term *pTerm.  If *pTerm
  3439 ** is the first term of a phrase query, go ahead and evaluate the phrase
  3440 ** query and return the doclist for the entire phrase query.
  3441 **
  3442 ** The resulting DL_DOCIDS doclist is stored in pResult, which is
  3443 ** overwritten.
  3444 */
  3445 static int docListOfTerm(
  3446   fulltext_vtab *v,   /* The full text index */
  3447   int iColumn,        /* column to restrict to.  No restriction if >=nColumn */
  3448   QueryTerm *pQTerm,  /* Term we are looking for, or 1st term of a phrase */
  3449   DataBuffer *pResult /* Write the result here */
  3450 ){
  3451   DataBuffer left, right, new;
  3452   int i, rc;
  3453 
  3454   /* No phrase search if no position info. */
  3455   assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
  3456 
  3457   /* This code should never be called with buffered updates. */
  3458   assert( v->nPendingData<0 );
  3459 
  3460   dataBufferInit(&left, 0);
  3461   rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
  3462                   0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left);
  3463   if( rc ) return rc;
  3464   for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
  3465     dataBufferInit(&right, 0);
  3466     rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
  3467                     pQTerm[i].isPrefix, DL_POSITIONS, &right);
  3468     if( rc ){
  3469       dataBufferDestroy(&left);
  3470       return rc;
  3471     }
  3472     dataBufferInit(&new, 0);
  3473     docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
  3474                        i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new);
  3475     dataBufferDestroy(&left);
  3476     dataBufferDestroy(&right);
  3477     left = new;
  3478   }
  3479   *pResult = left;
  3480   return SQLITE_OK;
  3481 }
  3482 
  3483 /* Add a new term pTerm[0..nTerm-1] to the query *q.
  3484 */
  3485 static void queryAdd(Query *q, const char *pTerm, int nTerm){
  3486   QueryTerm *t;
  3487   ++q->nTerms;
  3488   q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
  3489   if( q->pTerms==0 ){
  3490     q->nTerms = 0;
  3491     return;
  3492   }
  3493   t = &q->pTerms[q->nTerms - 1];
  3494   CLEAR(t);
  3495   t->pTerm = sqlite3_malloc(nTerm+1);
  3496   memcpy(t->pTerm, pTerm, nTerm);
  3497   t->pTerm[nTerm] = 0;
  3498   t->nTerm = nTerm;
  3499   t->isOr = q->nextIsOr;
  3500   t->isPrefix = 0;
  3501   q->nextIsOr = 0;
  3502   t->iColumn = q->nextColumn;
  3503   q->nextColumn = q->dfltColumn;
  3504 }
  3505 
  3506 /*
  3507 ** Check to see if the string zToken[0...nToken-1] matches any
  3508 ** column name in the virtual table.   If it does,
  3509 ** return the zero-indexed column number.  If not, return -1.
  3510 */
  3511 static int checkColumnSpecifier(
  3512   fulltext_vtab *pVtab,    /* The virtual table */
  3513   const char *zToken,      /* Text of the token */
  3514   int nToken               /* Number of characters in the token */
  3515 ){
  3516   int i;
  3517   for(i=0; i<pVtab->nColumn; i++){
  3518     if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
  3519         && pVtab->azColumn[i][nToken]==0 ){
  3520       return i;
  3521     }
  3522   }
  3523   return -1;
  3524 }
  3525 
  3526 /*
  3527 ** Parse the text at pSegment[0..nSegment-1].  Add additional terms
  3528 ** to the query being assemblied in pQuery.
  3529 **
  3530 ** inPhrase is true if pSegment[0..nSegement-1] is contained within
  3531 ** double-quotes.  If inPhrase is true, then the first term
  3532 ** is marked with the number of terms in the phrase less one and
  3533 ** OR and "-" syntax is ignored.  If inPhrase is false, then every
  3534 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
  3535 */
  3536 static int tokenizeSegment(
  3537   sqlite3_tokenizer *pTokenizer,          /* The tokenizer to use */
  3538   const char *pSegment, int nSegment,     /* Query expression being parsed */
  3539   int inPhrase,                           /* True if within "..." */
  3540   Query *pQuery                           /* Append results here */
  3541 ){
  3542   const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
  3543   sqlite3_tokenizer_cursor *pCursor;
  3544   int firstIndex = pQuery->nTerms;
  3545   int iCol;
  3546   int nTerm = 1;
  3547   
  3548   int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
  3549   if( rc!=SQLITE_OK ) return rc;
  3550   pCursor->pTokenizer = pTokenizer;
  3551 
  3552   while( 1 ){
  3553     const char *pToken;
  3554     int nToken, iBegin, iEnd, iPos;
  3555 
  3556     rc = pModule->xNext(pCursor,
  3557                         &pToken, &nToken,
  3558                         &iBegin, &iEnd, &iPos);
  3559     if( rc!=SQLITE_OK ) break;
  3560     if( !inPhrase &&
  3561         pSegment[iEnd]==':' &&
  3562          (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
  3563       pQuery->nextColumn = iCol;
  3564       continue;
  3565     }
  3566     if( !inPhrase && pQuery->nTerms>0 && nToken==2
  3567          && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){
  3568       pQuery->nextIsOr = 1;
  3569       continue;
  3570     }
  3571     queryAdd(pQuery, pToken, nToken);
  3572     if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
  3573       pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
  3574     }
  3575     if( iEnd<nSegment && pSegment[iEnd]=='*' ){
  3576       pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
  3577     }
  3578     pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
  3579     if( inPhrase ){
  3580       nTerm++;
  3581     }
  3582   }
  3583 
  3584   if( inPhrase && pQuery->nTerms>firstIndex ){
  3585     pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
  3586   }
  3587 
  3588   return pModule->xClose(pCursor);
  3589 }
  3590 
  3591 /* Parse a query string, yielding a Query object pQuery.
  3592 **
  3593 ** The calling function will need to queryClear() to clean up
  3594 ** the dynamically allocated memory held by pQuery.
  3595 */
  3596 static int parseQuery(
  3597   fulltext_vtab *v,        /* The fulltext index */
  3598   const char *zInput,      /* Input text of the query string */
  3599   int nInput,              /* Size of the input text */
  3600   int dfltColumn,          /* Default column of the index to match against */
  3601   Query *pQuery            /* Write the parse results here. */
  3602 ){
  3603   int iInput, inPhrase = 0;
  3604 
  3605   if( zInput==0 ) nInput = 0;
  3606   if( nInput<0 ) nInput = strlen(zInput);
  3607   pQuery->nTerms = 0;
  3608   pQuery->pTerms = NULL;
  3609   pQuery->nextIsOr = 0;
  3610   pQuery->nextColumn = dfltColumn;
  3611   pQuery->dfltColumn = dfltColumn;
  3612   pQuery->pFts = v;
  3613 
  3614   for(iInput=0; iInput<nInput; ++iInput){
  3615     int i;
  3616     for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
  3617     if( i>iInput ){
  3618       tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
  3619                        pQuery);
  3620     }
  3621     iInput = i;
  3622     if( i<nInput ){
  3623       assert( zInput[i]=='"' );
  3624       inPhrase = !inPhrase;
  3625     }
  3626   }
  3627 
  3628   if( inPhrase ){
  3629     /* unmatched quote */
  3630     queryClear(pQuery);
  3631     return SQLITE_ERROR;
  3632   }
  3633   return SQLITE_OK;
  3634 }
  3635 
  3636 /* TODO(shess) Refactor the code to remove this forward decl. */
  3637 static int flushPendingTerms(fulltext_vtab *v);
  3638 
  3639 /* Perform a full-text query using the search expression in
  3640 ** zInput[0..nInput-1].  Return a list of matching documents
  3641 ** in pResult.
  3642 **
  3643 ** Queries must match column iColumn.  Or if iColumn>=nColumn
  3644 ** they are allowed to match against any column.
  3645 */
  3646 static int fulltextQuery(
  3647   fulltext_vtab *v,      /* The full text index */
  3648   int iColumn,           /* Match against this column by default */
  3649   const char *zInput,    /* The query string */
  3650   int nInput,            /* Number of bytes in zInput[] */
  3651   DataBuffer *pResult,   /* Write the result doclist here */
  3652   Query *pQuery          /* Put parsed query string here */
  3653 ){
  3654   int i, iNext, rc;
  3655   DataBuffer left, right, or, new;
  3656   int nNot = 0;
  3657   QueryTerm *aTerm;
  3658 
  3659   /* TODO(shess) Instead of flushing pendingTerms, we could query for
  3660   ** the relevant term and merge the doclist into what we receive from
  3661   ** the database.  Wait and see if this is a common issue, first.
  3662   **
  3663   ** A good reason not to flush is to not generate update-related
  3664   ** error codes from here.
  3665   */
  3666 
  3667   /* Flush any buffered updates before executing the query. */
  3668   rc = flushPendingTerms(v);
  3669   if( rc!=SQLITE_OK ) return rc;
  3670 
  3671   /* TODO(shess) I think that the queryClear() calls below are not
  3672   ** necessary, because fulltextClose() already clears the query.
  3673   */
  3674   rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
  3675   if( rc!=SQLITE_OK ) return rc;
  3676 
  3677   /* Empty or NULL queries return no results. */
  3678   if( pQuery->nTerms==0 ){
  3679     dataBufferInit(pResult, 0);
  3680     return SQLITE_OK;
  3681   }
  3682 
  3683   /* Merge AND terms. */
  3684   /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
  3685   aTerm = pQuery->pTerms;
  3686   for(i = 0; i<pQuery->nTerms; i=iNext){
  3687     if( aTerm[i].isNot ){
  3688       /* Handle all NOT terms in a separate pass */
  3689       nNot++;
  3690       iNext = i + aTerm[i].nPhrase+1;
  3691       continue;
  3692     }
  3693     iNext = i + aTerm[i].nPhrase + 1;
  3694     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
  3695     if( rc ){
  3696       if( i!=nNot ) dataBufferDestroy(&left);
  3697       queryClear(pQuery);
  3698       return rc;
  3699     }
  3700     while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
  3701       rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
  3702       iNext += aTerm[iNext].nPhrase + 1;
  3703       if( rc ){
  3704         if( i!=nNot ) dataBufferDestroy(&left);
  3705         dataBufferDestroy(&right);
  3706         queryClear(pQuery);
  3707         return rc;
  3708       }
  3709       dataBufferInit(&new, 0);
  3710       docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
  3711       dataBufferDestroy(&right);
  3712       dataBufferDestroy(&or);
  3713       right = new;
  3714     }
  3715     if( i==nNot ){           /* first term processed. */
  3716       left = right;
  3717     }else{
  3718       dataBufferInit(&new, 0);
  3719       docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
  3720       dataBufferDestroy(&right);
  3721       dataBufferDestroy(&left);
  3722       left = new;
  3723     }
  3724   }
  3725 
  3726   if( nNot==pQuery->nTerms ){
  3727     /* We do not yet know how to handle a query of only NOT terms */
  3728     return SQLITE_ERROR;
  3729   }
  3730 
  3731   /* Do the EXCEPT terms */
  3732   for(i=0; i<pQuery->nTerms;  i += aTerm[i].nPhrase + 1){
  3733     if( !aTerm[i].isNot ) continue;
  3734     rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
  3735     if( rc ){
  3736       queryClear(pQuery);
  3737       dataBufferDestroy(&left);
  3738       return rc;
  3739     }
  3740     dataBufferInit(&new, 0);
  3741     docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
  3742     dataBufferDestroy(&right);
  3743     dataBufferDestroy(&left);
  3744     left = new;
  3745   }
  3746 
  3747   *pResult = left;
  3748   return rc;
  3749 }
  3750 
  3751 /*
  3752 ** This is the xFilter interface for the virtual table.  See
  3753 ** the virtual table xFilter method documentation for additional
  3754 ** information.
  3755 **
  3756 ** If idxNum==QUERY_GENERIC then do a full table scan against
  3757 ** the %_content table.
  3758 **
  3759 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry
  3760 ** in the %_content table.
  3761 **
  3762 ** If idxNum>=QUERY_FULLTEXT then use the full text index.  The
  3763 ** column on the left-hand side of the MATCH operator is column
  3764 ** number idxNum-QUERY_FULLTEXT, 0 indexed.  argv[0] is the right-hand
  3765 ** side of the MATCH operator.
  3766 */
  3767 /* TODO(shess) Upgrade the cursor initialization and destruction to
  3768 ** account for fulltextFilter() being called multiple times on the
  3769 ** same cursor.  The current solution is very fragile.  Apply fix to
  3770 ** fts2 as appropriate.
  3771 */
  3772 static int fulltextFilter(
  3773   sqlite3_vtab_cursor *pCursor,     /* The cursor used for this query */
  3774   int idxNum, const char *idxStr,   /* Which indexing scheme to use */
  3775   int argc, sqlite3_value **argv    /* Arguments for the indexing scheme */
  3776 ){
  3777   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3778   fulltext_vtab *v = cursor_vtab(c);
  3779   int rc;
  3780 
  3781   TRACE(("FTS2 Filter %p\n",pCursor));
  3782 
  3783   /* If the cursor has a statement that was not prepared according to
  3784   ** idxNum, clear it.  I believe all calls to fulltextFilter with a
  3785   ** given cursor will have the same idxNum , but in this case it's
  3786   ** easy to be safe.
  3787   */
  3788   if( c->pStmt && c->iCursorType!=idxNum ){
  3789     sqlite3_finalize(c->pStmt);
  3790     c->pStmt = NULL;
  3791   }
  3792 
  3793   /* Get a fresh statement appropriate to idxNum. */
  3794   /* TODO(shess): Add a prepared-statement cache in the vt structure.
  3795   ** The cache must handle multiple open cursors.  Easier to cache the
  3796   ** statement variants at the vt to reduce malloc/realloc/free here.
  3797   ** Or we could have a StringBuffer variant which allowed stack
  3798   ** construction for small values.
  3799   */
  3800   if( !c->pStmt ){
  3801     char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s",
  3802                                  idxNum==QUERY_GENERIC ? "" : "where rowid=?");
  3803     rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql);
  3804     sqlite3_free(zSql);
  3805     if( rc!=SQLITE_OK ) return rc;
  3806     c->iCursorType = idxNum;
  3807   }else{
  3808     sqlite3_reset(c->pStmt);
  3809     assert( c->iCursorType==idxNum );
  3810   }
  3811 
  3812   switch( idxNum ){
  3813     case QUERY_GENERIC:
  3814       break;
  3815 
  3816     case QUERY_ROWID:
  3817       rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
  3818       if( rc!=SQLITE_OK ) return rc;
  3819       break;
  3820 
  3821     default:   /* full-text search */
  3822     {
  3823       const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
  3824       assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
  3825       assert( argc==1 );
  3826       queryClear(&c->q);
  3827       if( c->result.nData!=0 ){
  3828         /* This case happens if the same cursor is used repeatedly. */
  3829         dlrDestroy(&c->reader);
  3830         dataBufferReset(&c->result);
  3831       }else{
  3832         dataBufferInit(&c->result, 0);
  3833       }
  3834       rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
  3835       if( rc!=SQLITE_OK ) return rc;
  3836       if( c->result.nData!=0 ){
  3837         dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
  3838       }
  3839       break;
  3840     }
  3841   }
  3842 
  3843   return fulltextNext(pCursor);
  3844 }
  3845 
  3846 /* This is the xEof method of the virtual table.  The SQLite core
  3847 ** calls this routine to find out if it has reached the end of
  3848 ** a query's results set.
  3849 */
  3850 static int fulltextEof(sqlite3_vtab_cursor *pCursor){
  3851   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3852   return c->eof;
  3853 }
  3854 
  3855 /* This is the xColumn method of the virtual table.  The SQLite
  3856 ** core calls this method during a query when it needs the value
  3857 ** of a column from the virtual table.  This method needs to use
  3858 ** one of the sqlite3_result_*() routines to store the requested
  3859 ** value back in the pContext.
  3860 */
  3861 static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
  3862                           sqlite3_context *pContext, int idxCol){
  3863   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3864   fulltext_vtab *v = cursor_vtab(c);
  3865 
  3866   if( idxCol<v->nColumn ){
  3867     sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
  3868     sqlite3_result_value(pContext, pVal);
  3869   }else if( idxCol==v->nColumn ){
  3870     /* The extra column whose name is the same as the table.
  3871     ** Return a blob which is a pointer to the cursor
  3872     */
  3873     sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
  3874   }
  3875   return SQLITE_OK;
  3876 }
  3877 
  3878 /* This is the xRowid method.  The SQLite core calls this routine to
  3879 ** retrive the rowid for the current row of the result set.  The
  3880 ** rowid should be written to *pRowid.
  3881 */
  3882 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  3883   fulltext_cursor *c = (fulltext_cursor *) pCursor;
  3884 
  3885   *pRowid = sqlite3_column_int64(c->pStmt, 0);
  3886   return SQLITE_OK;
  3887 }
  3888 
  3889 /* Add all terms in [zText] to pendingTerms table.  If [iColumn] > 0,
  3890 ** we also store positions and offsets in the hash table using that
  3891 ** column number.
  3892 */
  3893 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
  3894                       const char *zText, int iColumn){
  3895   sqlite3_tokenizer *pTokenizer = v->pTokenizer;
  3896   sqlite3_tokenizer_cursor *pCursor;
  3897   const char *pToken;
  3898   int nTokenBytes;
  3899   int iStartOffset, iEndOffset, iPosition;
  3900   int rc;
  3901 
  3902   rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
  3903   if( rc!=SQLITE_OK ) return rc;
  3904 
  3905   pCursor->pTokenizer = pTokenizer;
  3906   while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
  3907                                                    &pToken, &nTokenBytes,
  3908                                                    &iStartOffset, &iEndOffset,
  3909                                                    &iPosition)) ){
  3910     DLCollector *p;
  3911     int nData;                   /* Size of doclist before our update. */
  3912 
  3913     /* Positions can't be negative; we use -1 as a terminator
  3914      * internally.  Token can't be NULL or empty. */
  3915     if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
  3916       rc = SQLITE_ERROR;
  3917       break;
  3918     }
  3919 
  3920     p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes);
  3921     if( p==NULL ){
  3922       nData = 0;
  3923       p = dlcNew(iDocid, DL_DEFAULT);
  3924       fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
  3925 
  3926       /* Overhead for our hash table entry, the key, and the value. */
  3927       v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes;
  3928     }else{
  3929       nData = p->b.nData;
  3930       if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
  3931     }
  3932     if( iColumn>=0 ){
  3933       dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
  3934     }
  3935 
  3936     /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
  3937     v->nPendingData += p->b.nData-nData;
  3938   }
  3939 
  3940   /* TODO(shess) Check return?  Should this be able to cause errors at
  3941   ** this point?  Actually, same question about sqlite3_finalize(),
  3942   ** though one could argue that failure there means that the data is
  3943   ** not durable.  *ponder*
  3944   */
  3945   pTokenizer->pModule->xClose(pCursor);
  3946   if( SQLITE_DONE == rc ) return SQLITE_OK;
  3947   return rc;
  3948 }
  3949 
  3950 /* Add doclists for all terms in [pValues] to pendingTerms table. */
  3951 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid,
  3952                        sqlite3_value **pValues){
  3953   int i;
  3954   for(i = 0; i < v->nColumn ; ++i){
  3955     char *zText = (char*)sqlite3_value_text(pValues[i]);
  3956     int rc = buildTerms(v, iRowid, zText, i);
  3957     if( rc!=SQLITE_OK ) return rc;
  3958   }
  3959   return SQLITE_OK;
  3960 }
  3961 
  3962 /* Add empty doclists for all terms in the given row's content to
  3963 ** pendingTerms.
  3964 */
  3965 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){
  3966   const char **pValues;
  3967   int i, rc;
  3968 
  3969   /* TODO(shess) Should we allow such tables at all? */
  3970   if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
  3971 
  3972   rc = content_select(v, iRowid, &pValues);
  3973   if( rc!=SQLITE_OK ) return rc;
  3974 
  3975   for(i = 0 ; i < v->nColumn; ++i) {
  3976     rc = buildTerms(v, iRowid, pValues[i], -1);
  3977     if( rc!=SQLITE_OK ) break;
  3978   }
  3979 
  3980   freeStringArray(v->nColumn, pValues);
  3981   return SQLITE_OK;
  3982 }
  3983 
  3984 /* TODO(shess) Refactor the code to remove this forward decl. */
  3985 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
  3986 
  3987 /* Insert a row into the %_content table; set *piRowid to be the ID of the
  3988 ** new row.  Add doclists for terms to pendingTerms.
  3989 */
  3990 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid,
  3991                         sqlite3_value **pValues, sqlite_int64 *piRowid){
  3992   int rc;
  3993 
  3994   rc = content_insert(v, pRequestRowid, pValues);  /* execute an SQL INSERT */
  3995   if( rc!=SQLITE_OK ) return rc;
  3996 
  3997   *piRowid = sqlite3_last_insert_rowid(v->db);
  3998   rc = initPendingTerms(v, *piRowid);
  3999   if( rc!=SQLITE_OK ) return rc;
  4000 
  4001   return insertTerms(v, *piRowid, pValues);
  4002 }
  4003 
  4004 /* Delete a row from the %_content table; add empty doclists for terms
  4005 ** to pendingTerms.
  4006 */
  4007 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
  4008   int rc = initPendingTerms(v, iRow);
  4009   if( rc!=SQLITE_OK ) return rc;
  4010 
  4011   rc = deleteTerms(v, iRow);
  4012   if( rc!=SQLITE_OK ) return rc;
  4013 
  4014   return content_delete(v, iRow);  /* execute an SQL DELETE */
  4015 }
  4016 
  4017 /* Update a row in the %_content table; add delete doclists to
  4018 ** pendingTerms for old terms not in the new data, add insert doclists
  4019 ** to pendingTerms for terms in the new data.
  4020 */
  4021 static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
  4022                         sqlite3_value **pValues){
  4023   int rc = initPendingTerms(v, iRow);
  4024   if( rc!=SQLITE_OK ) return rc;
  4025 
  4026   /* Generate an empty doclist for each term that previously appeared in this
  4027    * row. */
  4028   rc = deleteTerms(v, iRow);
  4029   if( rc!=SQLITE_OK ) return rc;
  4030 
  4031   rc = content_update(v, pValues, iRow);  /* execute an SQL UPDATE */
  4032   if( rc!=SQLITE_OK ) return rc;
  4033 
  4034   /* Now add positions for terms which appear in the updated row. */
  4035   return insertTerms(v, iRow, pValues);
  4036 }
  4037 
  4038 /*******************************************************************/
  4039 /* InteriorWriter is used to collect terms and block references into
  4040 ** interior nodes in %_segments.  See commentary at top of file for
  4041 ** format.
  4042 */
  4043 
  4044 /* How large interior nodes can grow. */
  4045 #define INTERIOR_MAX 2048
  4046 
  4047 /* Minimum number of terms per interior node (except the root). This
  4048 ** prevents large terms from making the tree too skinny - must be >0
  4049 ** so that the tree always makes progress.  Note that the min tree
  4050 ** fanout will be INTERIOR_MIN_TERMS+1.
  4051 */
  4052 #define INTERIOR_MIN_TERMS 7
  4053 #if INTERIOR_MIN_TERMS<1
  4054 # error INTERIOR_MIN_TERMS must be greater than 0.
  4055 #endif
  4056 
  4057 /* ROOT_MAX controls how much data is stored inline in the segment
  4058 ** directory.
  4059 */
  4060 /* TODO(shess) Push ROOT_MAX down to whoever is writing things.  It's
  4061 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
  4062 ** can both see it, but if the caller passed it in, we wouldn't even
  4063 ** need a define.
  4064 */
  4065 #define ROOT_MAX 1024
  4066 #if ROOT_MAX<VARINT_MAX*2
  4067 # error ROOT_MAX must have enough space for a header.
  4068 #endif
  4069 
  4070 /* InteriorBlock stores a linked-list of interior blocks while a lower
  4071 ** layer is being constructed.
  4072 */
  4073 typedef struct InteriorBlock {
  4074   DataBuffer term;           /* Leftmost term in block's subtree. */
  4075   DataBuffer data;           /* Accumulated data for the block. */
  4076   struct InteriorBlock *next;
  4077 } InteriorBlock;
  4078 
  4079 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
  4080                                        const char *pTerm, int nTerm){
  4081   InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
  4082   char c[VARINT_MAX+VARINT_MAX];
  4083   int n;
  4084 
  4085   if( block ){
  4086     memset(block, 0, sizeof(*block));
  4087     dataBufferInit(&block->term, 0);
  4088     dataBufferReplace(&block->term, pTerm, nTerm);
  4089 
  4090     n = putVarint(c, iHeight);
  4091     n += putVarint(c+n, iChildBlock);
  4092     dataBufferInit(&block->data, INTERIOR_MAX);
  4093     dataBufferReplace(&block->data, c, n);
  4094   }
  4095   return block;
  4096 }
  4097 
  4098 #ifndef NDEBUG
  4099 /* Verify that the data is readable as an interior node. */
  4100 static void interiorBlockValidate(InteriorBlock *pBlock){
  4101   const char *pData = pBlock->data.pData;
  4102   int nData = pBlock->data.nData;
  4103   int n, iDummy;
  4104   sqlite_int64 iBlockid;
  4105 
  4106   assert( nData>0 );
  4107   assert( pData!=0 );
  4108   assert( pData+nData>pData );
  4109 
  4110   /* Must lead with height of node as a varint(n), n>0 */
  4111   n = getVarint32(pData, &iDummy);
  4112   assert( n>0 );
  4113   assert( iDummy>0 );
  4114   assert( n<nData );
  4115   pData += n;
  4116   nData -= n;
  4117 
  4118   /* Must contain iBlockid. */
  4119   n = getVarint(pData, &iBlockid);
  4120   assert( n>0 );
  4121   assert( n<=nData );
  4122   pData += n;
  4123   nData -= n;
  4124 
  4125   /* Zero or more terms of positive length */
  4126   if( nData!=0 ){
  4127     /* First term is not delta-encoded. */
  4128     n = getVarint32(pData, &iDummy);
  4129     assert( n>0 );
  4130     assert( iDummy>0 );
  4131     assert( n+iDummy>0);
  4132     assert( n+iDummy<=nData );
  4133     pData += n+iDummy;
  4134     nData -= n+iDummy;
  4135 
  4136     /* Following terms delta-encoded. */
  4137     while( nData!=0 ){
  4138       /* Length of shared prefix. */
  4139       n = getVarint32(pData, &iDummy);
  4140       assert( n>0 );
  4141       assert( iDummy>=0 );
  4142       assert( n<nData );
  4143       pData += n;
  4144       nData -= n;
  4145 
  4146       /* Length and data of distinct suffix. */
  4147       n = getVarint32(pData, &iDummy);
  4148       assert( n>0 );
  4149       assert( iDummy>0 );
  4150       assert( n+iDummy>0);
  4151       assert( n+iDummy<=nData );
  4152       pData += n+iDummy;
  4153       nData -= n+iDummy;
  4154     }
  4155   }
  4156 }
  4157 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
  4158 #else
  4159 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
  4160 #endif
  4161 
  4162 typedef struct InteriorWriter {
  4163   int iHeight;                   /* from 0 at leaves. */
  4164   InteriorBlock *first, *last;
  4165   struct InteriorWriter *parentWriter;
  4166 
  4167   DataBuffer term;               /* Last term written to block "last". */
  4168   sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
  4169 #ifndef NDEBUG
  4170   sqlite_int64 iLastChildBlock;  /* for consistency checks. */
  4171 #endif
  4172 } InteriorWriter;
  4173 
  4174 /* Initialize an interior node where pTerm[nTerm] marks the leftmost
  4175 ** term in the tree.  iChildBlock is the leftmost child block at the
  4176 ** next level down the tree.
  4177 */
  4178 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
  4179                                sqlite_int64 iChildBlock,
  4180                                InteriorWriter *pWriter){
  4181   InteriorBlock *block;
  4182   assert( iHeight>0 );
  4183   CLEAR(pWriter);
  4184 
  4185   pWriter->iHeight = iHeight;
  4186   pWriter->iOpeningChildBlock = iChildBlock;
  4187 #ifndef NDEBUG
  4188   pWriter->iLastChildBlock = iChildBlock;
  4189 #endif
  4190   block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
  4191   pWriter->last = pWriter->first = block;
  4192   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  4193   dataBufferInit(&pWriter->term, 0);
  4194 }
  4195 
  4196 /* Append the child node rooted at iChildBlock to the interior node,
  4197 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
  4198 */
  4199 static void interiorWriterAppend(InteriorWriter *pWriter,
  4200                                  const char *pTerm, int nTerm,
  4201                                  sqlite_int64 iChildBlock){
  4202   char c[VARINT_MAX+VARINT_MAX];
  4203   int n, nPrefix = 0;
  4204 
  4205   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  4206 
  4207   /* The first term written into an interior node is actually
  4208   ** associated with the second child added (the first child was added
  4209   ** in interiorWriterInit, or in the if clause at the bottom of this
  4210   ** function).  That term gets encoded straight up, with nPrefix left
  4211   ** at 0.
  4212   */
  4213   if( pWriter->term.nData==0 ){
  4214     n = putVarint(c, nTerm);
  4215   }else{
  4216     while( nPrefix<pWriter->term.nData &&
  4217            pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
  4218       nPrefix++;
  4219     }
  4220 
  4221     n = putVarint(c, nPrefix);
  4222     n += putVarint(c+n, nTerm-nPrefix);
  4223   }
  4224 
  4225 #ifndef NDEBUG
  4226   pWriter->iLastChildBlock++;
  4227 #endif
  4228   assert( pWriter->iLastChildBlock==iChildBlock );
  4229 
  4230   /* Overflow to a new block if the new term makes the current block
  4231   ** too big, and the current block already has enough terms.
  4232   */
  4233   if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
  4234       iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
  4235     pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
  4236                                            pTerm, nTerm);
  4237     pWriter->last = pWriter->last->next;
  4238     pWriter->iOpeningChildBlock = iChildBlock;
  4239     dataBufferReset(&pWriter->term);
  4240   }else{
  4241     dataBufferAppend2(&pWriter->last->data, c, n,
  4242                       pTerm+nPrefix, nTerm-nPrefix);
  4243     dataBufferReplace(&pWriter->term, pTerm, nTerm);
  4244   }
  4245   ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  4246 }
  4247 
  4248 /* Free the space used by pWriter, including the linked-list of
  4249 ** InteriorBlocks, and parentWriter, if present.
  4250 */
  4251 static int interiorWriterDestroy(InteriorWriter *pWriter){
  4252   InteriorBlock *block = pWriter->first;
  4253 
  4254   while( block!=NULL ){
  4255     InteriorBlock *b = block;
  4256     block = block->next;
  4257     dataBufferDestroy(&b->term);
  4258     dataBufferDestroy(&b->data);
  4259     sqlite3_free(b);
  4260   }
  4261   if( pWriter->parentWriter!=NULL ){
  4262     interiorWriterDestroy(pWriter->parentWriter);
  4263     sqlite3_free(pWriter->parentWriter);
  4264   }
  4265   dataBufferDestroy(&pWriter->term);
  4266   SCRAMBLE(pWriter);
  4267   return SQLITE_OK;
  4268 }
  4269 
  4270 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info
  4271 ** directly, leaving *piEndBlockid unchanged.  Otherwise, flush
  4272 ** pWriter to %_segments, building a new layer of interior nodes, and
  4273 ** recursively ask for their root into.
  4274 */
  4275 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
  4276                                   char **ppRootInfo, int *pnRootInfo,
  4277                                   sqlite_int64 *piEndBlockid){
  4278   InteriorBlock *block = pWriter->first;
  4279   sqlite_int64 iBlockid = 0;
  4280   int rc;
  4281 
  4282   /* If we can fit the segment inline */
  4283   if( block==pWriter->last && block->data.nData<ROOT_MAX ){
  4284     *ppRootInfo = block->data.pData;
  4285     *pnRootInfo = block->data.nData;
  4286     return SQLITE_OK;
  4287   }
  4288 
  4289   /* Flush the first block to %_segments, and create a new level of
  4290   ** interior node.
  4291   */
  4292   ASSERT_VALID_INTERIOR_BLOCK(block);
  4293   rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
  4294   if( rc!=SQLITE_OK ) return rc;
  4295   *piEndBlockid = iBlockid;
  4296 
  4297   pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
  4298   interiorWriterInit(pWriter->iHeight+1,
  4299                      block->term.pData, block->term.nData,
  4300                      iBlockid, pWriter->parentWriter);
  4301 
  4302   /* Flush additional blocks and append to the higher interior
  4303   ** node.
  4304   */
  4305   for(block=block->next; block!=NULL; block=block->next){
  4306     ASSERT_VALID_INTERIOR_BLOCK(block);
  4307     rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
  4308     if( rc!=SQLITE_OK ) return rc;
  4309     *piEndBlockid = iBlockid;
  4310 
  4311     interiorWriterAppend(pWriter->parentWriter,
  4312                          block->term.pData, block->term.nData, iBlockid);
  4313   }
  4314 
  4315   /* Parent node gets the chance to be the root. */
  4316   return interiorWriterRootInfo(v, pWriter->parentWriter,
  4317                                 ppRootInfo, pnRootInfo, piEndBlockid);
  4318 }
  4319 
  4320 /****************************************************************/
  4321 /* InteriorReader is used to read off the data from an interior node
  4322 ** (see comment at top of file for the format).
  4323 */
  4324 typedef struct InteriorReader {
  4325   const char *pData;
  4326   int nData;
  4327 
  4328   DataBuffer term;          /* previous term, for decoding term delta. */
  4329 
  4330   sqlite_int64 iBlockid;
  4331 } InteriorReader;
  4332 
  4333 static void interiorReaderDestroy(InteriorReader *pReader){
  4334   dataBufferDestroy(&pReader->term);
  4335   SCRAMBLE(pReader);
  4336 }
  4337 
  4338 /* TODO(shess) The assertions are great, but what if we're in NDEBUG
  4339 ** and the blob is empty or otherwise contains suspect data?
  4340 */
  4341 static void interiorReaderInit(const char *pData, int nData,
  4342                                InteriorReader *pReader){
  4343   int n, nTerm;
  4344 
  4345   /* Require at least the leading flag byte */
  4346   assert( nData>0 );
  4347   assert( pData[0]!='\0' );
  4348 
  4349   CLEAR(pReader);
  4350 
  4351   /* Decode the base blockid, and set the cursor to the first term. */
  4352   n = getVarint(pData+1, &pReader->iBlockid);
  4353   assert( 1+n<=nData );
  4354   pReader->pData = pData+1+n;
  4355   pReader->nData = nData-(1+n);
  4356 
  4357   /* A single-child interior node (such as when a leaf node was too
  4358   ** large for the segment directory) won't have any terms.
  4359   ** Otherwise, decode the first term.
  4360   */
  4361   if( pReader->nData==0 ){
  4362     dataBufferInit(&pReader->term, 0);
  4363   }else{
  4364     n = getVarint32(pReader->pData, &nTerm);
  4365     dataBufferInit(&pReader->term, nTerm);
  4366     dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
  4367     assert( n+nTerm<=pReader->nData );
  4368     pReader->pData += n+nTerm;
  4369     pReader->nData -= n+nTerm;
  4370   }
  4371 }
  4372 
  4373 static int interiorReaderAtEnd(InteriorReader *pReader){
  4374   return pReader->term.nData==0;
  4375 }
  4376 
  4377 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
  4378   return pReader->iBlockid;
  4379 }
  4380 
  4381 static int interiorReaderTermBytes(InteriorReader *pReader){
  4382   assert( !interiorReaderAtEnd(pReader) );
  4383   return pReader->term.nData;
  4384 }
  4385 static const char *interiorReaderTerm(InteriorReader *pReader){
  4386   assert( !interiorReaderAtEnd(pReader) );
  4387   return pReader->term.pData;
  4388 }
  4389 
  4390 /* Step forward to the next term in the node. */
  4391 static void interiorReaderStep(InteriorReader *pReader){
  4392   assert( !interiorReaderAtEnd(pReader) );
  4393 
  4394   /* If the last term has been read, signal eof, else construct the
  4395   ** next term.
  4396   */
  4397   if( pReader->nData==0 ){
  4398     dataBufferReset(&pReader->term);
  4399   }else{
  4400     int n, nPrefix, nSuffix;
  4401 
  4402     n = getVarint32(pReader->pData, &nPrefix);
  4403     n += getVarint32(pReader->pData+n, &nSuffix);
  4404 
  4405     /* Truncate the current term and append suffix data. */
  4406     pReader->term.nData = nPrefix;
  4407     dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
  4408 
  4409     assert( n+nSuffix<=pReader->nData );
  4410     pReader->pData += n+nSuffix;
  4411     pReader->nData -= n+nSuffix;
  4412   }
  4413   pReader->iBlockid++;
  4414 }
  4415 
  4416 /* Compare the current term to pTerm[nTerm], returning strcmp-style
  4417 ** results.  If isPrefix, equality means equal through nTerm bytes.
  4418 */
  4419 static int interiorReaderTermCmp(InteriorReader *pReader,
  4420                                  const char *pTerm, int nTerm, int isPrefix){
  4421   const char *pReaderTerm = interiorReaderTerm(pReader);
  4422   int nReaderTerm = interiorReaderTermBytes(pReader);
  4423   int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
  4424 
  4425   if( n==0 ){
  4426     if( nReaderTerm>0 ) return -1;
  4427     if( nTerm>0 ) return 1;
  4428     return 0;
  4429   }
  4430 
  4431   c = memcmp(pReaderTerm, pTerm, n);
  4432   if( c!=0 ) return c;
  4433   if( isPrefix && n==nTerm ) return 0;
  4434   return nReaderTerm - nTerm;
  4435 }
  4436 
  4437 /****************************************************************/
  4438 /* LeafWriter is used to collect terms and associated doclist data
  4439 ** into leaf blocks in %_segments (see top of file for format info).
  4440 ** Expected usage is:
  4441 **
  4442 ** LeafWriter writer;
  4443 ** leafWriterInit(0, 0, &writer);
  4444 ** while( sorted_terms_left_to_process ){
  4445 **   // data is doclist data for that term.
  4446 **   rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
  4447 **   if( rc!=SQLITE_OK ) goto err;
  4448 ** }
  4449 ** rc = leafWriterFinalize(v, &writer);
  4450 **err:
  4451 ** leafWriterDestroy(&writer);
  4452 ** return rc;
  4453 **
  4454 ** leafWriterStep() may write a collected leaf out to %_segments.
  4455 ** leafWriterFinalize() finishes writing any buffered data and stores
  4456 ** a root node in %_segdir.  leafWriterDestroy() frees all buffers and
  4457 ** InteriorWriters allocated as part of writing this segment.
  4458 **
  4459 ** TODO(shess) Document leafWriterStepMerge().
  4460 */
  4461 
  4462 /* Put terms with data this big in their own block. */
  4463 #define STANDALONE_MIN 1024
  4464 
  4465 /* Keep leaf blocks below this size. */
  4466 #define LEAF_MAX 2048
  4467 
  4468 typedef struct LeafWriter {
  4469   int iLevel;
  4470   int idx;
  4471   sqlite_int64 iStartBlockid;     /* needed to create the root info */
  4472   sqlite_int64 iEndBlockid;       /* when we're done writing. */
  4473 
  4474   DataBuffer term;                /* previous encoded term */
  4475   DataBuffer data;                /* encoding buffer */
  4476 
  4477   /* bytes of first term in the current node which distinguishes that
  4478   ** term from the last term of the previous node.
  4479   */
  4480   int nTermDistinct;
  4481 
  4482   InteriorWriter parentWriter;    /* if we overflow */
  4483   int has_parent;
  4484 } LeafWriter;
  4485 
  4486 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
  4487   CLEAR(pWriter);
  4488   pWriter->iLevel = iLevel;
  4489   pWriter->idx = idx;
  4490 
  4491   dataBufferInit(&pWriter->term, 32);
  4492 
  4493   /* Start out with a reasonably sized block, though it can grow. */
  4494   dataBufferInit(&pWriter->data, LEAF_MAX);
  4495 }
  4496 
  4497 #ifndef NDEBUG
  4498 /* Verify that the data is readable as a leaf node. */
  4499 static void leafNodeValidate(const char *pData, int nData){
  4500   int n, iDummy;
  4501 
  4502   if( nData==0 ) return;
  4503   assert( nData>0 );
  4504   assert( pData!=0 );
  4505   assert( pData+nData>pData );
  4506 
  4507   /* Must lead with a varint(0) */
  4508   n = getVarint32(pData, &iDummy);
  4509   assert( iDummy==0 );
  4510   assert( n>0 );
  4511   assert( n<nData );
  4512   pData += n;
  4513   nData -= n;
  4514 
  4515   /* Leading term length and data must fit in buffer. */
  4516   n = getVarint32(pData, &iDummy);
  4517   assert( n>0 );
  4518   assert( iDummy>0 );
  4519   assert( n+iDummy>0 );
  4520   assert( n+iDummy<nData );
  4521   pData += n+iDummy;
  4522   nData -= n+iDummy;
  4523 
  4524   /* Leading term's doclist length and data must fit. */
  4525   n = getVarint32(pData, &iDummy);
  4526   assert( n>0 );
  4527   assert( iDummy>0 );
  4528   assert( n+iDummy>0 );
  4529   assert( n+iDummy<=nData );
  4530   ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
  4531   pData += n+iDummy;
  4532   nData -= n+iDummy;
  4533 
  4534   /* Verify that trailing terms and doclists also are readable. */
  4535   while( nData!=0 ){
  4536     n = getVarint32(pData, &iDummy);
  4537     assert( n>0 );
  4538     assert( iDummy>=0 );
  4539     assert( n<nData );
  4540     pData += n;
  4541     nData -= n;
  4542     n = getVarint32(pData, &iDummy);
  4543     assert( n>0 );
  4544     assert( iDummy>0 );
  4545     assert( n+iDummy>0 );
  4546     assert( n+iDummy<nData );
  4547     pData += n+iDummy;
  4548     nData -= n+iDummy;
  4549 
  4550     n = getVarint32(pData, &iDummy);
  4551     assert( n>0 );
  4552     assert( iDummy>0 );
  4553     assert( n+iDummy>0 );
  4554     assert( n+iDummy<=nData );
  4555     ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
  4556     pData += n+iDummy;
  4557     nData -= n+iDummy;
  4558   }
  4559 }
  4560 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
  4561 #else
  4562 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
  4563 #endif
  4564 
  4565 /* Flush the current leaf node to %_segments, and adding the resulting
  4566 ** blockid and the starting term to the interior node which will
  4567 ** contain it.
  4568 */
  4569 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
  4570                                    int iData, int nData){
  4571   sqlite_int64 iBlockid = 0;
  4572   const char *pStartingTerm;
  4573   int nStartingTerm, rc, n;
  4574 
  4575   /* Must have the leading varint(0) flag, plus at least some
  4576   ** valid-looking data.
  4577   */
  4578   assert( nData>2 );
  4579   assert( iData>=0 );
  4580   assert( iData+nData<=pWriter->data.nData );
  4581   ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
  4582 
  4583   rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
  4584   if( rc!=SQLITE_OK ) return rc;
  4585   assert( iBlockid!=0 );
  4586 
  4587   /* Reconstruct the first term in the leaf for purposes of building
  4588   ** the interior node.
  4589   */
  4590   n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
  4591   pStartingTerm = pWriter->data.pData+iData+1+n;
  4592   assert( pWriter->data.nData>iData+1+n+nStartingTerm );
  4593   assert( pWriter->nTermDistinct>0 );
  4594   assert( pWriter->nTermDistinct<=nStartingTerm );
  4595   nStartingTerm = pWriter->nTermDistinct;
  4596 
  4597   if( pWriter->has_parent ){
  4598     interiorWriterAppend(&pWriter->parentWriter,
  4599                          pStartingTerm, nStartingTerm, iBlockid);
  4600   }else{
  4601     interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
  4602                        &pWriter->parentWriter);
  4603     pWriter->has_parent = 1;
  4604   }
  4605 
  4606   /* Track the span of this segment's leaf nodes. */
  4607   if( pWriter->iEndBlockid==0 ){
  4608     pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
  4609   }else{
  4610     pWriter->iEndBlockid++;
  4611     assert( iBlockid==pWriter->iEndBlockid );
  4612   }
  4613 
  4614   return SQLITE_OK;
  4615 }
  4616 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
  4617   int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
  4618   if( rc!=SQLITE_OK ) return rc;
  4619 
  4620   /* Re-initialize the output buffer. */
  4621   dataBufferReset(&pWriter->data);
  4622 
  4623   return SQLITE_OK;
  4624 }
  4625 
  4626 /* Fetch the root info for the segment.  If the entire leaf fits
  4627 ** within ROOT_MAX, then it will be returned directly, otherwise it
  4628 ** will be flushed and the root info will be returned from the
  4629 ** interior node.  *piEndBlockid is set to the blockid of the last
  4630 ** interior or leaf node written to disk (0 if none are written at
  4631 ** all).
  4632 */
  4633 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
  4634                               char **ppRootInfo, int *pnRootInfo,
  4635                               sqlite_int64 *piEndBlockid){
  4636   /* we can fit the segment entirely inline */
  4637   if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
  4638     *ppRootInfo = pWriter->data.pData;
  4639     *pnRootInfo = pWriter->data.nData;
  4640     *piEndBlockid = 0;
  4641     return SQLITE_OK;
  4642   }
  4643 
  4644   /* Flush remaining leaf data. */
  4645   if( pWriter->data.nData>0 ){
  4646     int rc = leafWriterFlush(v, pWriter);
  4647     if( rc!=SQLITE_OK ) return rc;
  4648   }
  4649 
  4650   /* We must have flushed a leaf at some point. */
  4651   assert( pWriter->has_parent );
  4652 
  4653   /* Tenatively set the end leaf blockid as the end blockid.  If the
  4654   ** interior node can be returned inline, this will be the final
  4655   ** blockid, otherwise it will be overwritten by
  4656   ** interiorWriterRootInfo().
  4657   */
  4658   *piEndBlockid = pWriter->iEndBlockid;
  4659 
  4660   return interiorWriterRootInfo(v, &pWriter->parentWriter,
  4661                                 ppRootInfo, pnRootInfo, piEndBlockid);
  4662 }
  4663 
  4664 /* Collect the rootInfo data and store it into the segment directory.
  4665 ** This has the effect of flushing the segment's leaf data to
  4666 ** %_segments, and also flushing any interior nodes to %_segments.
  4667 */
  4668 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
  4669   sqlite_int64 iEndBlockid;
  4670   char *pRootInfo;
  4671   int rc, nRootInfo;
  4672 
  4673   rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
  4674   if( rc!=SQLITE_OK ) return rc;
  4675 
  4676   /* Don't bother storing an entirely empty segment. */
  4677   if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
  4678 
  4679   return segdir_set(v, pWriter->iLevel, pWriter->idx,
  4680                     pWriter->iStartBlockid, pWriter->iEndBlockid,
  4681                     iEndBlockid, pRootInfo, nRootInfo);
  4682 }
  4683 
  4684 static void leafWriterDestroy(LeafWriter *pWriter){
  4685   if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
  4686   dataBufferDestroy(&pWriter->term);
  4687   dataBufferDestroy(&pWriter->data);
  4688 }
  4689 
  4690 /* Encode a term into the leafWriter, delta-encoding as appropriate.
  4691 ** Returns the length of the new term which distinguishes it from the
  4692 ** previous term, which can be used to set nTermDistinct when a node
  4693 ** boundary is crossed.
  4694 */
  4695 static int leafWriterEncodeTerm(LeafWriter *pWriter,
  4696                                 const char *pTerm, int nTerm){
  4697   char c[VARINT_MAX+VARINT_MAX];
  4698   int n, nPrefix = 0;
  4699 
  4700   assert( nTerm>0 );
  4701   while( nPrefix<pWriter->term.nData &&
  4702          pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
  4703     nPrefix++;
  4704     /* Failing this implies that the terms weren't in order. */
  4705     assert( nPrefix<nTerm );
  4706   }
  4707 
  4708   if( pWriter->data.nData==0 ){
  4709     /* Encode the node header and leading term as:
  4710     **  varint(0)
  4711     **  varint(nTerm)
  4712     **  char pTerm[nTerm]
  4713     */
  4714     n = putVarint(c, '\0');
  4715     n += putVarint(c+n, nTerm);
  4716     dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
  4717   }else{
  4718     /* Delta-encode the term as:
  4719     **  varint(nPrefix)
  4720     **  varint(nSuffix)
  4721     **  char pTermSuffix[nSuffix]
  4722     */
  4723     n = putVarint(c, nPrefix);
  4724     n += putVarint(c+n, nTerm-nPrefix);
  4725     dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
  4726   }
  4727   dataBufferReplace(&pWriter->term, pTerm, nTerm);
  4728 
  4729   return nPrefix+1;
  4730 }
  4731 
  4732 /* Used to avoid a memmove when a large amount of doclist data is in
  4733 ** the buffer.  This constructs a node and term header before
  4734 ** iDoclistData and flushes the resulting complete node using
  4735 ** leafWriterInternalFlush().
  4736 */
  4737 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
  4738                                  const char *pTerm, int nTerm,
  4739                                  int iDoclistData){
  4740   char c[VARINT_MAX+VARINT_MAX];
  4741   int iData, n = putVarint(c, 0);
  4742   n += putVarint(c+n, nTerm);
  4743 
  4744   /* There should always be room for the header.  Even if pTerm shared
  4745   ** a substantial prefix with the previous term, the entire prefix
  4746   ** could be constructed from earlier data in the doclist, so there
  4747   ** should be room.
  4748   */
  4749   assert( iDoclistData>=n+nTerm );
  4750 
  4751   iData = iDoclistData-(n+nTerm);
  4752   memcpy(pWriter->data.pData+iData, c, n);
  4753   memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
  4754 
  4755   return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
  4756 }
  4757 
  4758 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
  4759 ** %_segments.
  4760 */
  4761 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
  4762                                const char *pTerm, int nTerm,
  4763                                DLReader *pReaders, int nReaders){
  4764   char c[VARINT_MAX+VARINT_MAX];
  4765   int iTermData = pWriter->data.nData, iDoclistData;
  4766   int i, nData, n, nActualData, nActual, rc, nTermDistinct;
  4767 
  4768   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
  4769   nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
  4770 
  4771   /* Remember nTermDistinct if opening a new node. */
  4772   if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
  4773 
  4774   iDoclistData = pWriter->data.nData;
  4775 
  4776   /* Estimate the length of the merged doclist so we can leave space
  4777   ** to encode it.
  4778   */
  4779   for(i=0, nData=0; i<nReaders; i++){
  4780     nData += dlrAllDataBytes(&pReaders[i]);
  4781   }
  4782   n = putVarint(c, nData);
  4783   dataBufferAppend(&pWriter->data, c, n);
  4784 
  4785   docListMerge(&pWriter->data, pReaders, nReaders);
  4786   ASSERT_VALID_DOCLIST(DL_DEFAULT,
  4787                        pWriter->data.pData+iDoclistData+n,
  4788                        pWriter->data.nData-iDoclistData-n, NULL);
  4789 
  4790   /* The actual amount of doclist data at this point could be smaller
  4791   ** than the length we encoded.  Additionally, the space required to
  4792   ** encode this length could be smaller.  For small doclists, this is
  4793   ** not a big deal, we can just use memmove() to adjust things.
  4794   */
  4795   nActualData = pWriter->data.nData-(iDoclistData+n);
  4796   nActual = putVarint(c, nActualData);
  4797   assert( nActualData<=nData );
  4798   assert( nActual<=n );
  4799 
  4800   /* If the new doclist is big enough for force a standalone leaf
  4801   ** node, we can immediately flush it inline without doing the
  4802   ** memmove().
  4803   */
  4804   /* TODO(shess) This test matches leafWriterStep(), which does this
  4805   ** test before it knows the cost to varint-encode the term and
  4806   ** doclist lengths.  At some point, change to
  4807   ** pWriter->data.nData-iTermData>STANDALONE_MIN.
  4808   */
  4809   if( nTerm+nActualData>STANDALONE_MIN ){
  4810     /* Push leaf node from before this term. */
  4811     if( iTermData>0 ){
  4812       rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
  4813       if( rc!=SQLITE_OK ) return rc;
  4814 
  4815       pWriter->nTermDistinct = nTermDistinct;
  4816     }
  4817 
  4818     /* Fix the encoded doclist length. */
  4819     iDoclistData += n - nActual;
  4820     memcpy(pWriter->data.pData+iDoclistData, c, nActual);
  4821 
  4822     /* Push the standalone leaf node. */
  4823     rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
  4824     if( rc!=SQLITE_OK ) return rc;
  4825 
  4826     /* Leave the node empty. */
  4827     dataBufferReset(&pWriter->data);
  4828 
  4829     return rc;
  4830   }
  4831 
  4832   /* At this point, we know that the doclist was small, so do the
  4833   ** memmove if indicated.
  4834   */
  4835   if( nActual<n ){
  4836     memmove(pWriter->data.pData+iDoclistData+nActual,
  4837             pWriter->data.pData+iDoclistData+n,
  4838             pWriter->data.nData-(iDoclistData+n));
  4839     pWriter->data.nData -= n-nActual;
  4840   }
  4841 
  4842   /* Replace written length with actual length. */
  4843   memcpy(pWriter->data.pData+iDoclistData, c, nActual);
  4844 
  4845   /* If the node is too large, break things up. */
  4846   /* TODO(shess) This test matches leafWriterStep(), which does this
  4847   ** test before it knows the cost to varint-encode the term and
  4848   ** doclist lengths.  At some point, change to
  4849   ** pWriter->data.nData>LEAF_MAX.
  4850   */
  4851   if( iTermData+nTerm+nActualData>LEAF_MAX ){
  4852     /* Flush out the leading data as a node */
  4853     rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
  4854     if( rc!=SQLITE_OK ) return rc;
  4855 
  4856     pWriter->nTermDistinct = nTermDistinct;
  4857 
  4858     /* Rebuild header using the current term */
  4859     n = putVarint(pWriter->data.pData, 0);
  4860     n += putVarint(pWriter->data.pData+n, nTerm);
  4861     memcpy(pWriter->data.pData+n, pTerm, nTerm);
  4862     n += nTerm;
  4863 
  4864     /* There should always be room, because the previous encoding
  4865     ** included all data necessary to construct the term.
  4866     */
  4867     assert( n<iDoclistData );
  4868     /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
  4869     ** following memcpy() is safe (as opposed to needing a memmove).
  4870     */
  4871     assert( 2*STANDALONE_MIN<=LEAF_MAX );
  4872     assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
  4873     memcpy(pWriter->data.pData+n,
  4874            pWriter->data.pData+iDoclistData,
  4875            pWriter->data.nData-iDoclistData);
  4876     pWriter->data.nData -= iDoclistData-n;
  4877   }
  4878   ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
  4879 
  4880   return SQLITE_OK;
  4881 }
  4882 
  4883 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
  4884 ** %_segments.
  4885 */
  4886 /* TODO(shess) Revise writeZeroSegment() so that doclists are
  4887 ** constructed directly in pWriter->data.
  4888 */
  4889 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
  4890                           const char *pTerm, int nTerm,
  4891                           const char *pData, int nData){
  4892   int rc;
  4893   DLReader reader;
  4894 
  4895   dlrInit(&reader, DL_DEFAULT, pData, nData);
  4896   rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
  4897   dlrDestroy(&reader);
  4898 
  4899   return rc;
  4900 }
  4901 
  4902 
  4903 /****************************************************************/
  4904 /* LeafReader is used to iterate over an individual leaf node. */
  4905 typedef struct LeafReader {
  4906   DataBuffer term;          /* copy of current term. */
  4907 
  4908   const char *pData;        /* data for current term. */
  4909   int nData;
  4910 } LeafReader;
  4911 
  4912 static void leafReaderDestroy(LeafReader *pReader){
  4913   dataBufferDestroy(&pReader->term);
  4914   SCRAMBLE(pReader);
  4915 }
  4916 
  4917 static int leafReaderAtEnd(LeafReader *pReader){
  4918   return pReader->nData<=0;
  4919 }
  4920 
  4921 /* Access the current term. */
  4922 static int leafReaderTermBytes(LeafReader *pReader){
  4923   return pReader->term.nData;
  4924 }
  4925 static const char *leafReaderTerm(LeafReader *pReader){
  4926   assert( pReader->term.nData>0 );
  4927   return pReader->term.pData;
  4928 }
  4929 
  4930 /* Access the doclist data for the current term. */
  4931 static int leafReaderDataBytes(LeafReader *pReader){
  4932   int nData;
  4933   assert( pReader->term.nData>0 );
  4934   getVarint32(pReader->pData, &nData);
  4935   return nData;
  4936 }
  4937 static const char *leafReaderData(LeafReader *pReader){
  4938   int n, nData;
  4939   assert( pReader->term.nData>0 );
  4940   n = getVarint32(pReader->pData, &nData);
  4941   return pReader->pData+n;
  4942 }
  4943 
  4944 static void leafReaderInit(const char *pData, int nData,
  4945                            LeafReader *pReader){
  4946   int nTerm, n;
  4947 
  4948   assert( nData>0 );
  4949   assert( pData[0]=='\0' );
  4950 
  4951   CLEAR(pReader);
  4952 
  4953   /* Read the first term, skipping the header byte. */
  4954   n = getVarint32(pData+1, &nTerm);
  4955   dataBufferInit(&pReader->term, nTerm);
  4956   dataBufferReplace(&pReader->term, pData+1+n, nTerm);
  4957 
  4958   /* Position after the first term. */
  4959   assert( 1+n+nTerm<nData );
  4960   pReader->pData = pData+1+n+nTerm;
  4961   pReader->nData = nData-1-n-nTerm;
  4962 }
  4963 
  4964 /* Step the reader forward to the next term. */
  4965 static void leafReaderStep(LeafReader *pReader){
  4966   int n, nData, nPrefix, nSuffix;
  4967   assert( !leafReaderAtEnd(pReader) );
  4968 
  4969   /* Skip previous entry's data block. */
  4970   n = getVarint32(pReader->pData, &nData);
  4971   assert( n+nData<=pReader->nData );
  4972   pReader->pData += n+nData;
  4973   pReader->nData -= n+nData;
  4974 
  4975   if( !leafReaderAtEnd(pReader) ){
  4976     /* Construct the new term using a prefix from the old term plus a
  4977     ** suffix from the leaf data.
  4978     */
  4979     n = getVarint32(pReader->pData, &nPrefix);
  4980     n += getVarint32(pReader->pData+n, &nSuffix);
  4981     assert( n+nSuffix<pReader->nData );
  4982     pReader->term.nData = nPrefix;
  4983     dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
  4984 
  4985     pReader->pData += n+nSuffix;
  4986     pReader->nData -= n+nSuffix;
  4987   }
  4988 }
  4989 
  4990 /* strcmp-style comparison of pReader's current term against pTerm.
  4991 ** If isPrefix, equality means equal through nTerm bytes.
  4992 */
  4993 static int leafReaderTermCmp(LeafReader *pReader,
  4994                              const char *pTerm, int nTerm, int isPrefix){
  4995   int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
  4996   if( n==0 ){
  4997     if( pReader->term.nData>0 ) return -1;
  4998     if(nTerm>0 ) return 1;
  4999     return 0;
  5000   }
  5001 
  5002   c = memcmp(pReader->term.pData, pTerm, n);
  5003   if( c!=0 ) return c;
  5004   if( isPrefix && n==nTerm ) return 0;
  5005   return pReader->term.nData - nTerm;
  5006 }
  5007 
  5008 
  5009 /****************************************************************/
  5010 /* LeavesReader wraps LeafReader to allow iterating over the entire
  5011 ** leaf layer of the tree.
  5012 */
  5013 typedef struct LeavesReader {
  5014   int idx;                  /* Index within the segment. */
  5015 
  5016   sqlite3_stmt *pStmt;      /* Statement we're streaming leaves from. */
  5017   int eof;                  /* we've seen SQLITE_DONE from pStmt. */
  5018 
  5019   LeafReader leafReader;    /* reader for the current leaf. */
  5020   DataBuffer rootData;      /* root data for inline. */
  5021 } LeavesReader;
  5022 
  5023 /* Access the current term. */
  5024 static int leavesReaderTermBytes(LeavesReader *pReader){
  5025   assert( !pReader->eof );
  5026   return leafReaderTermBytes(&pReader->leafReader);
  5027 }
  5028 static const char *leavesReaderTerm(LeavesReader *pReader){
  5029   assert( !pReader->eof );
  5030   return leafReaderTerm(&pReader->leafReader);
  5031 }
  5032 
  5033 /* Access the doclist data for the current term. */
  5034 static int leavesReaderDataBytes(LeavesReader *pReader){
  5035   assert( !pReader->eof );
  5036   return leafReaderDataBytes(&pReader->leafReader);
  5037 }
  5038 static const char *leavesReaderData(LeavesReader *pReader){
  5039   assert( !pReader->eof );
  5040   return leafReaderData(&pReader->leafReader);
  5041 }
  5042 
  5043 static int leavesReaderAtEnd(LeavesReader *pReader){
  5044   return pReader->eof;
  5045 }
  5046 
  5047 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
  5048 ** leaving the statement handle open, which locks the table.
  5049 */
  5050 /* TODO(shess) This "solution" is not satisfactory.  Really, there
  5051 ** should be check-in function for all statement handles which
  5052 ** arranges to call sqlite3_reset().  This most likely will require
  5053 ** modification to control flow all over the place, though, so for now
  5054 ** just punt.
  5055 **
  5056 ** Note the the current system assumes that segment merges will run to
  5057 ** completion, which is why this particular probably hasn't arisen in
  5058 ** this case.  Probably a brittle assumption.
  5059 */
  5060 static int leavesReaderReset(LeavesReader *pReader){
  5061   return sqlite3_reset(pReader->pStmt);
  5062 }
  5063 
  5064 static void leavesReaderDestroy(LeavesReader *pReader){
  5065   /* If idx is -1, that means we're using a non-cached statement
  5066   ** handle in the optimize() case, so we need to release it.
  5067   */
  5068   if( pReader->pStmt!=NULL && pReader->idx==-1 ){
  5069     sqlite3_finalize(pReader->pStmt);
  5070   }
  5071   leafReaderDestroy(&pReader->leafReader);
  5072   dataBufferDestroy(&pReader->rootData);
  5073   SCRAMBLE(pReader);
  5074 }
  5075 
  5076 /* Initialize pReader with the given root data (if iStartBlockid==0
  5077 ** the leaf data was entirely contained in the root), or from the
  5078 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
  5079 */
  5080 static int leavesReaderInit(fulltext_vtab *v,
  5081                             int idx,
  5082                             sqlite_int64 iStartBlockid,
  5083                             sqlite_int64 iEndBlockid,
  5084                             const char *pRootData, int nRootData,
  5085                             LeavesReader *pReader){
  5086   CLEAR(pReader);
  5087   pReader->idx = idx;
  5088 
  5089   dataBufferInit(&pReader->rootData, 0);
  5090   if( iStartBlockid==0 ){
  5091     /* Entire leaf level fit in root data. */
  5092     dataBufferReplace(&pReader->rootData, pRootData, nRootData);
  5093     leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
  5094                    &pReader->leafReader);
  5095   }else{
  5096     sqlite3_stmt *s;
  5097     int rc = sql_get_leaf_statement(v, idx, &s);
  5098     if( rc!=SQLITE_OK ) return rc;
  5099 
  5100     rc = sqlite3_bind_int64(s, 1, iStartBlockid);
  5101     if( rc!=SQLITE_OK ) return rc;
  5102 
  5103     rc = sqlite3_bind_int64(s, 2, iEndBlockid);
  5104     if( rc!=SQLITE_OK ) return rc;
  5105 
  5106     rc = sqlite3_step(s);
  5107     if( rc==SQLITE_DONE ){
  5108       pReader->eof = 1;
  5109       return SQLITE_OK;
  5110     }
  5111     if( rc!=SQLITE_ROW ) return rc;
  5112 
  5113     pReader->pStmt = s;
  5114     leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
  5115                    sqlite3_column_bytes(pReader->pStmt, 0),
  5116                    &pReader->leafReader);
  5117   }
  5118   return SQLITE_OK;
  5119 }
  5120 
  5121 /* Step the current leaf forward to the next term.  If we reach the
  5122 ** end of the current leaf, step forward to the next leaf block.
  5123 */
  5124 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
  5125   assert( !leavesReaderAtEnd(pReader) );
  5126   leafReaderStep(&pReader->leafReader);
  5127 
  5128   if( leafReaderAtEnd(&pReader->leafReader) ){
  5129     int rc;
  5130     if( pReader->rootData.pData ){
  5131       pReader->eof = 1;
  5132       return SQLITE_OK;
  5133     }
  5134     rc = sqlite3_step(pReader->pStmt);
  5135     if( rc!=SQLITE_ROW ){
  5136       pReader->eof = 1;
  5137       return rc==SQLITE_DONE ? SQLITE_OK : rc;
  5138     }
  5139     leafReaderDestroy(&pReader->leafReader);
  5140     leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
  5141                    sqlite3_column_bytes(pReader->pStmt, 0),
  5142                    &pReader->leafReader);
  5143   }
  5144   return SQLITE_OK;
  5145 }
  5146 
  5147 /* Order LeavesReaders by their term, ignoring idx.  Readers at eof
  5148 ** always sort to the end.
  5149 */
  5150 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
  5151   if( leavesReaderAtEnd(lr1) ){
  5152     if( leavesReaderAtEnd(lr2) ) return 0;
  5153     return 1;
  5154   }
  5155   if( leavesReaderAtEnd(lr2) ) return -1;
  5156 
  5157   return leafReaderTermCmp(&lr1->leafReader,
  5158                            leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
  5159                            0);
  5160 }
  5161 
  5162 /* Similar to leavesReaderTermCmp(), with additional ordering by idx
  5163 ** so that older segments sort before newer segments.
  5164 */
  5165 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
  5166   int c = leavesReaderTermCmp(lr1, lr2);
  5167   if( c!=0 ) return c;
  5168   return lr1->idx-lr2->idx;
  5169 }
  5170 
  5171 /* Assume that pLr[1]..pLr[nLr] are sorted.  Bubble pLr[0] into its
  5172 ** sorted position.
  5173 */
  5174 static void leavesReaderReorder(LeavesReader *pLr, int nLr){
  5175   while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
  5176     LeavesReader tmp = pLr[0];
  5177     pLr[0] = pLr[1];
  5178     pLr[1] = tmp;
  5179     nLr--;
  5180     pLr++;
  5181   }
  5182 }
  5183 
  5184 /* Initializes pReaders with the segments from level iLevel, returning
  5185 ** the number of segments in *piReaders.  Leaves pReaders in sorted
  5186 ** order.
  5187 */
  5188 static int leavesReadersInit(fulltext_vtab *v, int iLevel,
  5189                              LeavesReader *pReaders, int *piReaders){
  5190   sqlite3_stmt *s;
  5191   int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
  5192   if( rc!=SQLITE_OK ) return rc;
  5193 
  5194   rc = sqlite3_bind_int(s, 1, iLevel);
  5195   if( rc!=SQLITE_OK ) return rc;
  5196 
  5197   i = 0;
  5198   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  5199     sqlite_int64 iStart = sqlite3_column_int64(s, 0);
  5200     sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
  5201     const char *pRootData = sqlite3_column_blob(s, 2);
  5202     int nRootData = sqlite3_column_bytes(s, 2);
  5203 
  5204     assert( i<MERGE_COUNT );
  5205     rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
  5206                           &pReaders[i]);
  5207     if( rc!=SQLITE_OK ) break;
  5208 
  5209     i++;
  5210   }
  5211   if( rc!=SQLITE_DONE ){
  5212     while( i-->0 ){
  5213       leavesReaderDestroy(&pReaders[i]);
  5214     }
  5215     return rc;
  5216   }
  5217 
  5218   *piReaders = i;
  5219 
  5220   /* Leave our results sorted by term, then age. */
  5221   while( i-- ){
  5222     leavesReaderReorder(pReaders+i, *piReaders-i);
  5223   }
  5224   return SQLITE_OK;
  5225 }
  5226 
  5227 /* Merge doclists from pReaders[nReaders] into a single doclist, which
  5228 ** is written to pWriter.  Assumes pReaders is ordered oldest to
  5229 ** newest.
  5230 */
  5231 /* TODO(shess) Consider putting this inline in segmentMerge(). */
  5232 static int leavesReadersMerge(fulltext_vtab *v,
  5233                               LeavesReader *pReaders, int nReaders,
  5234                               LeafWriter *pWriter){
  5235   DLReader dlReaders[MERGE_COUNT];
  5236   const char *pTerm = leavesReaderTerm(pReaders);
  5237   int i, nTerm = leavesReaderTermBytes(pReaders);
  5238 
  5239   assert( nReaders<=MERGE_COUNT );
  5240 
  5241   for(i=0; i<nReaders; i++){
  5242     dlrInit(&dlReaders[i], DL_DEFAULT,
  5243             leavesReaderData(pReaders+i),
  5244             leavesReaderDataBytes(pReaders+i));
  5245   }
  5246 
  5247   return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
  5248 }
  5249 
  5250 /* Forward ref due to mutual recursion with segdirNextIndex(). */
  5251 static int segmentMerge(fulltext_vtab *v, int iLevel);
  5252 
  5253 /* Put the next available index at iLevel into *pidx.  If iLevel
  5254 ** already has MERGE_COUNT segments, they are merged to a higher
  5255 ** level to make room.
  5256 */
  5257 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
  5258   int rc = segdir_max_index(v, iLevel, pidx);
  5259   if( rc==SQLITE_DONE ){              /* No segments at iLevel. */
  5260     *pidx = 0;
  5261   }else if( rc==SQLITE_ROW ){
  5262     if( *pidx==(MERGE_COUNT-1) ){
  5263       rc = segmentMerge(v, iLevel);
  5264       if( rc!=SQLITE_OK ) return rc;
  5265       *pidx = 0;
  5266     }else{
  5267       (*pidx)++;
  5268     }
  5269   }else{
  5270     return rc;
  5271   }
  5272   return SQLITE_OK;
  5273 }
  5274 
  5275 /* Merge MERGE_COUNT segments at iLevel into a new segment at
  5276 ** iLevel+1.  If iLevel+1 is already full of segments, those will be
  5277 ** merged to make room.
  5278 */
  5279 static int segmentMerge(fulltext_vtab *v, int iLevel){
  5280   LeafWriter writer;
  5281   LeavesReader lrs[MERGE_COUNT];
  5282   int i, rc, idx = 0;
  5283 
  5284   /* Determine the next available segment index at the next level,
  5285   ** merging as necessary.
  5286   */
  5287   rc = segdirNextIndex(v, iLevel+1, &idx);
  5288   if( rc!=SQLITE_OK ) return rc;
  5289 
  5290   /* TODO(shess) This assumes that we'll always see exactly
  5291   ** MERGE_COUNT segments to merge at a given level.  That will be
  5292   ** broken if we allow the developer to request preemptive or
  5293   ** deferred merging.
  5294   */
  5295   memset(&lrs, '\0', sizeof(lrs));
  5296   rc = leavesReadersInit(v, iLevel, lrs, &i);
  5297   if( rc!=SQLITE_OK ) return rc;
  5298   assert( i==MERGE_COUNT );
  5299 
  5300   leafWriterInit(iLevel+1, idx, &writer);
  5301 
  5302   /* Since leavesReaderReorder() pushes readers at eof to the end,
  5303   ** when the first reader is empty, all will be empty.
  5304   */
  5305   while( !leavesReaderAtEnd(lrs) ){
  5306     /* Figure out how many readers share their next term. */
  5307     for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
  5308       if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
  5309     }
  5310 
  5311     rc = leavesReadersMerge(v, lrs, i, &writer);
  5312     if( rc!=SQLITE_OK ) goto err;
  5313 
  5314     /* Step forward those that were merged. */
  5315     while( i-->0 ){
  5316       rc = leavesReaderStep(v, lrs+i);
  5317       if( rc!=SQLITE_OK ) goto err;
  5318 
  5319       /* Reorder by term, then by age. */
  5320       leavesReaderReorder(lrs+i, MERGE_COUNT-i);
  5321     }
  5322   }
  5323 
  5324   for(i=0; i<MERGE_COUNT; i++){
  5325     leavesReaderDestroy(&lrs[i]);
  5326   }
  5327 
  5328   rc = leafWriterFinalize(v, &writer);
  5329   leafWriterDestroy(&writer);
  5330   if( rc!=SQLITE_OK ) return rc;
  5331 
  5332   /* Delete the merged segment data. */
  5333   return segdir_delete(v, iLevel);
  5334 
  5335  err:
  5336   for(i=0; i<MERGE_COUNT; i++){
  5337     leavesReaderDestroy(&lrs[i]);
  5338   }
  5339   leafWriterDestroy(&writer);
  5340   return rc;
  5341 }
  5342 
  5343 /* Accumulate the union of *acc and *pData into *acc. */
  5344 static void docListAccumulateUnion(DataBuffer *acc,
  5345                                    const char *pData, int nData) {
  5346   DataBuffer tmp = *acc;
  5347   dataBufferInit(acc, tmp.nData+nData);
  5348   docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
  5349   dataBufferDestroy(&tmp);
  5350 }
  5351 
  5352 /* TODO(shess) It might be interesting to explore different merge
  5353 ** strategies, here.  For instance, since this is a sorted merge, we
  5354 ** could easily merge many doclists in parallel.  With some
  5355 ** comprehension of the storage format, we could merge all of the
  5356 ** doclists within a leaf node directly from the leaf node's storage.
  5357 ** It may be worthwhile to merge smaller doclists before larger
  5358 ** doclists, since they can be traversed more quickly - but the
  5359 ** results may have less overlap, making them more expensive in a
  5360 ** different way.
  5361 */
  5362 
  5363 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over
  5364 ** *out (any doclists with duplicate docids overwrite those in *out).
  5365 ** Internal function for loadSegmentLeaf().
  5366 */
  5367 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
  5368                                 const char *pTerm, int nTerm, int isPrefix,
  5369                                 DataBuffer *out){
  5370   /* doclist data is accumulated into pBuffers similar to how one does
  5371   ** increment in binary arithmetic.  If index 0 is empty, the data is
  5372   ** stored there.  If there is data there, it is merged and the
  5373   ** results carried into position 1, with further merge-and-carry
  5374   ** until an empty position is found.
  5375   */
  5376   DataBuffer *pBuffers = NULL;
  5377   int nBuffers = 0, nMaxBuffers = 0, rc;
  5378 
  5379   assert( nTerm>0 );
  5380 
  5381   for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
  5382       rc=leavesReaderStep(v, pReader)){
  5383     /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
  5384     ** already taken to compare the terms of two LeavesReaders.  Think
  5385     ** on a better name.  [Meanwhile, break encapsulation rather than
  5386     ** use a confusing name.]
  5387     */
  5388     int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
  5389     if( c>0 ) break;      /* Past any possible matches. */
  5390     if( c==0 ){
  5391       const char *pData = leavesReaderData(pReader);
  5392       int iBuffer, nData = leavesReaderDataBytes(pReader);
  5393 
  5394       /* Find the first empty buffer. */
  5395       for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
  5396         if( 0==pBuffers[iBuffer].nData ) break;
  5397       }
  5398 
  5399       /* Out of buffers, add an empty one. */
  5400       if( iBuffer==nBuffers ){
  5401         if( nBuffers==nMaxBuffers ){
  5402           DataBuffer *p;
  5403           nMaxBuffers += 20;
  5404 
  5405           /* Manual realloc so we can handle NULL appropriately. */
  5406           p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
  5407           if( p==NULL ){
  5408             rc = SQLITE_NOMEM;
  5409             break;
  5410           }
  5411 
  5412           if( nBuffers>0 ){
  5413             assert(pBuffers!=NULL);
  5414             memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
  5415             sqlite3_free(pBuffers);
  5416           }
  5417           pBuffers = p;
  5418         }
  5419         dataBufferInit(&(pBuffers[nBuffers]), 0);
  5420         nBuffers++;
  5421       }
  5422 
  5423       /* At this point, must have an empty at iBuffer. */
  5424       assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
  5425 
  5426       /* If empty was first buffer, no need for merge logic. */
  5427       if( iBuffer==0 ){
  5428         dataBufferReplace(&(pBuffers[0]), pData, nData);
  5429       }else{
  5430         /* pAcc is the empty buffer the merged data will end up in. */
  5431         DataBuffer *pAcc = &(pBuffers[iBuffer]);
  5432         DataBuffer *p = &(pBuffers[0]);
  5433 
  5434         /* Handle position 0 specially to avoid need to prime pAcc
  5435         ** with pData/nData.
  5436         */
  5437         dataBufferSwap(p, pAcc);
  5438         docListAccumulateUnion(pAcc, pData, nData);
  5439 
  5440         /* Accumulate remaining doclists into pAcc. */
  5441         for(++p; p<pAcc; ++p){
  5442           docListAccumulateUnion(pAcc, p->pData, p->nData);
  5443 
  5444           /* dataBufferReset() could allow a large doclist to blow up
  5445           ** our memory requirements.
  5446           */
  5447           if( p->nCapacity<1024 ){
  5448             dataBufferReset(p);
  5449           }else{
  5450             dataBufferDestroy(p);
  5451             dataBufferInit(p, 0);
  5452           }
  5453         }
  5454       }
  5455     }
  5456   }
  5457 
  5458   /* Union all the doclists together into *out. */
  5459   /* TODO(shess) What if *out is big?  Sigh. */
  5460   if( rc==SQLITE_OK && nBuffers>0 ){
  5461     int iBuffer;
  5462     for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
  5463       if( pBuffers[iBuffer].nData>0 ){
  5464         if( out->nData==0 ){
  5465           dataBufferSwap(out, &(pBuffers[iBuffer]));
  5466         }else{
  5467           docListAccumulateUnion(out, pBuffers[iBuffer].pData,
  5468                                  pBuffers[iBuffer].nData);
  5469         }
  5470       }
  5471     }
  5472   }
  5473 
  5474   while( nBuffers-- ){
  5475     dataBufferDestroy(&(pBuffers[nBuffers]));
  5476   }
  5477   if( pBuffers!=NULL ) sqlite3_free(pBuffers);
  5478 
  5479   return rc;
  5480 }
  5481 
  5482 /* Call loadSegmentLeavesInt() with pData/nData as input. */
  5483 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
  5484                            const char *pTerm, int nTerm, int isPrefix,
  5485                            DataBuffer *out){
  5486   LeavesReader reader;
  5487   int rc;
  5488 
  5489   assert( nData>1 );
  5490   assert( *pData=='\0' );
  5491   rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
  5492   if( rc!=SQLITE_OK ) return rc;
  5493 
  5494   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
  5495   leavesReaderReset(&reader);
  5496   leavesReaderDestroy(&reader);
  5497   return rc;
  5498 }
  5499 
  5500 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
  5501 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into
  5502 ** out.
  5503 */
  5504 static int loadSegmentLeaves(fulltext_vtab *v,
  5505                              sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
  5506                              const char *pTerm, int nTerm, int isPrefix,
  5507                              DataBuffer *out){
  5508   int rc;
  5509   LeavesReader reader;
  5510 
  5511   assert( iStartLeaf<=iEndLeaf );
  5512   rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
  5513   if( rc!=SQLITE_OK ) return rc;
  5514 
  5515   rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
  5516   leavesReaderReset(&reader);
  5517   leavesReaderDestroy(&reader);
  5518   return rc;
  5519 }
  5520 
  5521 /* Taking pData/nData as an interior node, find the sequence of child
  5522 ** nodes which could include pTerm/nTerm/isPrefix.  Note that the
  5523 ** interior node terms logically come between the blocks, so there is
  5524 ** one more blockid than there are terms (that block contains terms >=
  5525 ** the last interior-node term).
  5526 */
  5527 /* TODO(shess) The calling code may already know that the end child is
  5528 ** not worth calculating, because the end may be in a later sibling
  5529 ** node.  Consider whether breaking symmetry is worthwhile.  I suspect
  5530 ** it is not worthwhile.
  5531 */
  5532 static void getChildrenContaining(const char *pData, int nData,
  5533                                   const char *pTerm, int nTerm, int isPrefix,
  5534                                   sqlite_int64 *piStartChild,
  5535                                   sqlite_int64 *piEndChild){
  5536   InteriorReader reader;
  5537 
  5538   assert( nData>1 );
  5539   assert( *pData!='\0' );
  5540   interiorReaderInit(pData, nData, &reader);
  5541 
  5542   /* Scan for the first child which could contain pTerm/nTerm. */
  5543   while( !interiorReaderAtEnd(&reader) ){
  5544     if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
  5545     interiorReaderStep(&reader);
  5546   }
  5547   *piStartChild = interiorReaderCurrentBlockid(&reader);
  5548 
  5549   /* Keep scanning to find a term greater than our term, using prefix
  5550   ** comparison if indicated.  If isPrefix is false, this will be the
  5551   ** same blockid as the starting block.
  5552   */
  5553   while( !interiorReaderAtEnd(&reader) ){
  5554     if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
  5555     interiorReaderStep(&reader);
  5556   }
  5557   *piEndChild = interiorReaderCurrentBlockid(&reader);
  5558 
  5559   interiorReaderDestroy(&reader);
  5560 
  5561   /* Children must ascend, and if !prefix, both must be the same. */
  5562   assert( *piEndChild>=*piStartChild );
  5563   assert( isPrefix || *piStartChild==*piEndChild );
  5564 }
  5565 
  5566 /* Read block at iBlockid and pass it with other params to
  5567 ** getChildrenContaining().
  5568 */
  5569 static int loadAndGetChildrenContaining(
  5570   fulltext_vtab *v,
  5571   sqlite_int64 iBlockid,
  5572   const char *pTerm, int nTerm, int isPrefix,
  5573   sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
  5574 ){
  5575   sqlite3_stmt *s = NULL;
  5576   int rc;
  5577 
  5578   assert( iBlockid!=0 );
  5579   assert( pTerm!=NULL );
  5580   assert( nTerm!=0 );        /* TODO(shess) Why not allow this? */
  5581   assert( piStartChild!=NULL );
  5582   assert( piEndChild!=NULL );
  5583 
  5584   rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
  5585   if( rc!=SQLITE_OK ) return rc;
  5586 
  5587   rc = sqlite3_bind_int64(s, 1, iBlockid);
  5588   if( rc!=SQLITE_OK ) return rc;
  5589 
  5590   rc = sqlite3_step(s);
  5591   if( rc==SQLITE_DONE ) return SQLITE_ERROR;
  5592   if( rc!=SQLITE_ROW ) return rc;
  5593 
  5594   getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
  5595                         pTerm, nTerm, isPrefix, piStartChild, piEndChild);
  5596 
  5597   /* We expect only one row.  We must execute another sqlite3_step()
  5598    * to complete the iteration; otherwise the table will remain
  5599    * locked. */
  5600   rc = sqlite3_step(s);
  5601   if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  5602   if( rc!=SQLITE_DONE ) return rc;
  5603 
  5604   return SQLITE_OK;
  5605 }
  5606 
  5607 /* Traverse the tree represented by pData[nData] looking for
  5608 ** pTerm[nTerm], placing its doclist into *out.  This is internal to
  5609 ** loadSegment() to make error-handling cleaner.
  5610 */
  5611 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
  5612                           sqlite_int64 iLeavesEnd,
  5613                           const char *pTerm, int nTerm, int isPrefix,
  5614                           DataBuffer *out){
  5615   /* Special case where root is a leaf. */
  5616   if( *pData=='\0' ){
  5617     return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
  5618   }else{
  5619     int rc;
  5620     sqlite_int64 iStartChild, iEndChild;
  5621 
  5622     /* Process pData as an interior node, then loop down the tree
  5623     ** until we find the set of leaf nodes to scan for the term.
  5624     */
  5625     getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
  5626                           &iStartChild, &iEndChild);
  5627     while( iStartChild>iLeavesEnd ){
  5628       sqlite_int64 iNextStart, iNextEnd;
  5629       rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
  5630                                         &iNextStart, &iNextEnd);
  5631       if( rc!=SQLITE_OK ) return rc;
  5632 
  5633       /* If we've branched, follow the end branch, too. */
  5634       if( iStartChild!=iEndChild ){
  5635         sqlite_int64 iDummy;
  5636         rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
  5637                                           &iDummy, &iNextEnd);
  5638         if( rc!=SQLITE_OK ) return rc;
  5639       }
  5640 
  5641       assert( iNextStart<=iNextEnd );
  5642       iStartChild = iNextStart;
  5643       iEndChild = iNextEnd;
  5644     }
  5645     assert( iStartChild<=iLeavesEnd );
  5646     assert( iEndChild<=iLeavesEnd );
  5647 
  5648     /* Scan through the leaf segments for doclists. */
  5649     return loadSegmentLeaves(v, iStartChild, iEndChild,
  5650                              pTerm, nTerm, isPrefix, out);
  5651   }
  5652 }
  5653 
  5654 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
  5655 ** merge its doclist over *out (any duplicate doclists read from the
  5656 ** segment rooted at pData will overwrite those in *out).
  5657 */
  5658 /* TODO(shess) Consider changing this to determine the depth of the
  5659 ** leaves using either the first characters of interior nodes (when
  5660 ** ==1, we're one level above the leaves), or the first character of
  5661 ** the root (which will describe the height of the tree directly).
  5662 ** Either feels somewhat tricky to me.
  5663 */
  5664 /* TODO(shess) The current merge is likely to be slow for large
  5665 ** doclists (though it should process from newest/smallest to
  5666 ** oldest/largest, so it may not be that bad).  It might be useful to
  5667 ** modify things to allow for N-way merging.  This could either be
  5668 ** within a segment, with pairwise merges across segments, or across
  5669 ** all segments at once.
  5670 */
  5671 static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
  5672                        sqlite_int64 iLeavesEnd,
  5673                        const char *pTerm, int nTerm, int isPrefix,
  5674                        DataBuffer *out){
  5675   DataBuffer result;
  5676   int rc;
  5677 
  5678   assert( nData>1 );
  5679 
  5680   /* This code should never be called with buffered updates. */
  5681   assert( v->nPendingData<0 );
  5682 
  5683   dataBufferInit(&result, 0);
  5684   rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
  5685                       pTerm, nTerm, isPrefix, &result);
  5686   if( rc==SQLITE_OK && result.nData>0 ){
  5687     if( out->nData==0 ){
  5688       DataBuffer tmp = *out;
  5689       *out = result;
  5690       result = tmp;
  5691     }else{
  5692       DataBuffer merged;
  5693       DLReader readers[2];
  5694 
  5695       dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
  5696       dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
  5697       dataBufferInit(&merged, out->nData+result.nData);
  5698       docListMerge(&merged, readers, 2);
  5699       dataBufferDestroy(out);
  5700       *out = merged;
  5701       dlrDestroy(&readers[0]);
  5702       dlrDestroy(&readers[1]);
  5703     }
  5704   }
  5705   dataBufferDestroy(&result);
  5706   return rc;
  5707 }
  5708 
  5709 /* Scan the database and merge together the posting lists for the term
  5710 ** into *out.
  5711 */
  5712 static int termSelect(fulltext_vtab *v, int iColumn,
  5713                       const char *pTerm, int nTerm, int isPrefix,
  5714                       DocListType iType, DataBuffer *out){
  5715   DataBuffer doclist;
  5716   sqlite3_stmt *s;
  5717   int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  5718   if( rc!=SQLITE_OK ) return rc;
  5719 
  5720   /* This code should never be called with buffered updates. */
  5721   assert( v->nPendingData<0 );
  5722 
  5723   dataBufferInit(&doclist, 0);
  5724 
  5725   /* Traverse the segments from oldest to newest so that newer doclist
  5726   ** elements for given docids overwrite older elements.
  5727   */
  5728   while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  5729     const char *pData = sqlite3_column_blob(s, 2);
  5730     const int nData = sqlite3_column_bytes(s, 2);
  5731     const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
  5732     rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
  5733                      &doclist);
  5734     if( rc!=SQLITE_OK ) goto err;
  5735   }
  5736   if( rc==SQLITE_DONE ){
  5737     if( doclist.nData!=0 ){
  5738       /* TODO(shess) The old term_select_all() code applied the column
  5739       ** restrict as we merged segments, leading to smaller buffers.
  5740       ** This is probably worthwhile to bring back, once the new storage
  5741       ** system is checked in.
  5742       */
  5743       if( iColumn==v->nColumn) iColumn = -1;
  5744       docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
  5745                   iColumn, iType, out);
  5746     }
  5747     rc = SQLITE_OK;
  5748   }
  5749 
  5750  err:
  5751   dataBufferDestroy(&doclist);
  5752   return rc;
  5753 }
  5754 
  5755 /****************************************************************/
  5756 /* Used to hold hashtable data for sorting. */
  5757 typedef struct TermData {
  5758   const char *pTerm;
  5759   int nTerm;
  5760   DLCollector *pCollector;
  5761 } TermData;
  5762 
  5763 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
  5764 ** for equal, >0 for greater-than).
  5765 */
  5766 static int termDataCmp(const void *av, const void *bv){
  5767   const TermData *a = (const TermData *)av;
  5768   const TermData *b = (const TermData *)bv;
  5769   int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
  5770   int c = memcmp(a->pTerm, b->pTerm, n);
  5771   if( c!=0 ) return c;
  5772   return a->nTerm-b->nTerm;
  5773 }
  5774 
  5775 /* Order pTerms data by term, then write a new level 0 segment using
  5776 ** LeafWriter.
  5777 */
  5778 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){
  5779   fts2HashElem *e;
  5780   int idx, rc, i, n;
  5781   TermData *pData;
  5782   LeafWriter writer;
  5783   DataBuffer dl;
  5784 
  5785   /* Determine the next index at level 0, merging as necessary. */
  5786   rc = segdirNextIndex(v, 0, &idx);
  5787   if( rc!=SQLITE_OK ) return rc;
  5788 
  5789   n = fts2HashCount(pTerms);
  5790   pData = sqlite3_malloc(n*sizeof(TermData));
  5791 
  5792   for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){
  5793     assert( i<n );
  5794     pData[i].pTerm = fts2HashKey(e);
  5795     pData[i].nTerm = fts2HashKeysize(e);
  5796     pData[i].pCollector = fts2HashData(e);
  5797   }
  5798   assert( i==n );
  5799 
  5800   /* TODO(shess) Should we allow user-defined collation sequences,
  5801   ** here?  I think we only need that once we support prefix searches.
  5802   */
  5803   if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
  5804 
  5805   /* TODO(shess) Refactor so that we can write directly to the segment
  5806   ** DataBuffer, as happens for segment merges.
  5807   */
  5808   leafWriterInit(0, idx, &writer);
  5809   dataBufferInit(&dl, 0);
  5810   for(i=0; i<n; i++){
  5811     dataBufferReset(&dl);
  5812     dlcAddDoclist(pData[i].pCollector, &dl);
  5813     rc = leafWriterStep(v, &writer,
  5814                         pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
  5815     if( rc!=SQLITE_OK ) goto err;
  5816   }
  5817   rc = leafWriterFinalize(v, &writer);
  5818 
  5819  err:
  5820   dataBufferDestroy(&dl);
  5821   sqlite3_free(pData);
  5822   leafWriterDestroy(&writer);
  5823   return rc;
  5824 }
  5825 
  5826 /* If pendingTerms has data, free it. */
  5827 static int clearPendingTerms(fulltext_vtab *v){
  5828   if( v->nPendingData>=0 ){
  5829     fts2HashElem *e;
  5830     for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){
  5831       dlcDelete(fts2HashData(e));
  5832     }
  5833     fts2HashClear(&v->pendingTerms);
  5834     v->nPendingData = -1;
  5835   }
  5836   return SQLITE_OK;
  5837 }
  5838 
  5839 /* If pendingTerms has data, flush it to a level-zero segment, and
  5840 ** free it.
  5841 */
  5842 static int flushPendingTerms(fulltext_vtab *v){
  5843   if( v->nPendingData>=0 ){
  5844     int rc = writeZeroSegment(v, &v->pendingTerms);
  5845     if( rc==SQLITE_OK ) clearPendingTerms(v);
  5846     return rc;
  5847   }
  5848   return SQLITE_OK;
  5849 }
  5850 
  5851 /* If pendingTerms is "too big", or docid is out of order, flush it.
  5852 ** Regardless, be certain that pendingTerms is initialized for use.
  5853 */
  5854 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
  5855   /* TODO(shess) Explore whether partially flushing the buffer on
  5856   ** forced-flush would provide better performance.  I suspect that if
  5857   ** we ordered the doclists by size and flushed the largest until the
  5858   ** buffer was half empty, that would let the less frequent terms
  5859   ** generate longer doclists.
  5860   */
  5861   if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
  5862     int rc = flushPendingTerms(v);
  5863     if( rc!=SQLITE_OK ) return rc;
  5864   }
  5865   if( v->nPendingData<0 ){
  5866     fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1);
  5867     v->nPendingData = 0;
  5868   }
  5869   v->iPrevDocid = iDocid;
  5870   return SQLITE_OK;
  5871 }
  5872 
  5873 /* This function implements the xUpdate callback; it is the top-level entry
  5874  * point for inserting, deleting or updating a row in a full-text table. */
  5875 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
  5876                    sqlite_int64 *pRowid){
  5877   fulltext_vtab *v = (fulltext_vtab *) pVtab;
  5878   int rc;
  5879 
  5880   TRACE(("FTS2 Update %p\n", pVtab));
  5881 
  5882   if( nArg<2 ){
  5883     rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
  5884     if( rc==SQLITE_OK ){
  5885       /* If we just deleted the last row in the table, clear out the
  5886       ** index data.
  5887       */
  5888       rc = content_exists(v);
  5889       if( rc==SQLITE_ROW ){
  5890         rc = SQLITE_OK;
  5891       }else if( rc==SQLITE_DONE ){
  5892         /* Clear the pending terms so we don't flush a useless level-0
  5893         ** segment when the transaction closes.
  5894         */
  5895         rc = clearPendingTerms(v);
  5896         if( rc==SQLITE_OK ){
  5897           rc = segdir_delete_all(v);
  5898         }
  5899       }
  5900     }
  5901   } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
  5902     /* An update:
  5903      * ppArg[0] = old rowid
  5904      * ppArg[1] = new rowid
  5905      * ppArg[2..2+v->nColumn-1] = values
  5906      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
  5907      */
  5908     sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
  5909     if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
  5910       sqlite3_value_int64(ppArg[1]) != rowid ){
  5911       rc = SQLITE_ERROR;  /* we don't allow changing the rowid */
  5912     } else {
  5913       assert( nArg==2+v->nColumn+1);
  5914       rc = index_update(v, rowid, &ppArg[2]);
  5915     }
  5916   } else {
  5917     /* An insert:
  5918      * ppArg[1] = requested rowid
  5919      * ppArg[2..2+v->nColumn-1] = values
  5920      * ppArg[2+v->nColumn] = value for magic column (we ignore this)
  5921      */
  5922     assert( nArg==2+v->nColumn+1);
  5923     rc = index_insert(v, ppArg[1], &ppArg[2], pRowid);
  5924   }
  5925 
  5926   return rc;
  5927 }
  5928 
  5929 static int fulltextSync(sqlite3_vtab *pVtab){
  5930   TRACE(("FTS2 xSync()\n"));
  5931   return flushPendingTerms((fulltext_vtab *)pVtab);
  5932 }
  5933 
  5934 static int fulltextBegin(sqlite3_vtab *pVtab){
  5935   fulltext_vtab *v = (fulltext_vtab *) pVtab;
  5936   TRACE(("FTS2 xBegin()\n"));
  5937 
  5938   /* Any buffered updates should have been cleared by the previous
  5939   ** transaction.
  5940   */
  5941   assert( v->nPendingData<0 );
  5942   return clearPendingTerms(v);
  5943 }
  5944 
  5945 static int fulltextCommit(sqlite3_vtab *pVtab){
  5946   fulltext_vtab *v = (fulltext_vtab *) pVtab;
  5947   TRACE(("FTS2 xCommit()\n"));
  5948 
  5949   /* Buffered updates should have been cleared by fulltextSync(). */
  5950   assert( v->nPendingData<0 );
  5951   return clearPendingTerms(v);
  5952 }
  5953 
  5954 static int fulltextRollback(sqlite3_vtab *pVtab){
  5955   TRACE(("FTS2 xRollback()\n"));
  5956   return clearPendingTerms((fulltext_vtab *)pVtab);
  5957 }
  5958 
  5959 /*
  5960 ** Implementation of the snippet() function for FTS2
  5961 */
  5962 static void snippetFunc(
  5963   sqlite3_context *pContext,
  5964   int argc,
  5965   sqlite3_value **argv
  5966 ){
  5967   fulltext_cursor *pCursor;
  5968   if( argc<1 ) return;
  5969   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  5970       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  5971     sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
  5972   }else{
  5973     const char *zStart = "<b>";
  5974     const char *zEnd = "</b>";
  5975     const char *zEllipsis = "<b>...</b>";
  5976     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  5977     if( argc>=2 ){
  5978       zStart = (const char*)sqlite3_value_text(argv[1]);
  5979       if( argc>=3 ){
  5980         zEnd = (const char*)sqlite3_value_text(argv[2]);
  5981         if( argc>=4 ){
  5982           zEllipsis = (const char*)sqlite3_value_text(argv[3]);
  5983         }
  5984       }
  5985     }
  5986     snippetAllOffsets(pCursor);
  5987     snippetText(pCursor, zStart, zEnd, zEllipsis);
  5988     sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
  5989                         pCursor->snippet.nSnippet, SQLITE_STATIC);
  5990   }
  5991 }
  5992 
  5993 /*
  5994 ** Implementation of the offsets() function for FTS2
  5995 */
  5996 static void snippetOffsetsFunc(
  5997   sqlite3_context *pContext,
  5998   int argc,
  5999   sqlite3_value **argv
  6000 ){
  6001   fulltext_cursor *pCursor;
  6002   if( argc<1 ) return;
  6003   if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6004       sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6005     sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
  6006   }else{
  6007     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6008     snippetAllOffsets(pCursor);
  6009     snippetOffsetText(&pCursor->snippet);
  6010     sqlite3_result_text(pContext,
  6011                         pCursor->snippet.zOffset, pCursor->snippet.nOffset,
  6012                         SQLITE_STATIC);
  6013   }
  6014 }
  6015 
  6016 /* OptLeavesReader is nearly identical to LeavesReader, except that
  6017 ** where LeavesReader is geared towards the merging of complete
  6018 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
  6019 ** is geared towards implementation of the optimize() function, and
  6020 ** can merge all segments simultaneously.  This version may be
  6021 ** somewhat less efficient than LeavesReader because it merges into an
  6022 ** accumulator rather than doing an N-way merge, but since segment
  6023 ** size grows exponentially (so segment count logrithmically) this is
  6024 ** probably not an immediate problem.
  6025 */
  6026 /* TODO(shess): Prove that assertion, or extend the merge code to
  6027 ** merge tree fashion (like the prefix-searching code does).
  6028 */
  6029 /* TODO(shess): OptLeavesReader and LeavesReader could probably be
  6030 ** merged with little or no loss of performance for LeavesReader.  The
  6031 ** merged code would need to handle >MERGE_COUNT segments, and would
  6032 ** also need to be able to optionally optimize away deletes.
  6033 */
  6034 typedef struct OptLeavesReader {
  6035   /* Segment number, to order readers by age. */
  6036   int segment;
  6037   LeavesReader reader;
  6038 } OptLeavesReader;
  6039 
  6040 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
  6041   return leavesReaderAtEnd(&pReader->reader);
  6042 }
  6043 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
  6044   return leavesReaderTermBytes(&pReader->reader);
  6045 }
  6046 static const char *optLeavesReaderData(OptLeavesReader *pReader){
  6047   return leavesReaderData(&pReader->reader);
  6048 }
  6049 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
  6050   return leavesReaderDataBytes(&pReader->reader);
  6051 }
  6052 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
  6053   return leavesReaderTerm(&pReader->reader);
  6054 }
  6055 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
  6056   return leavesReaderStep(v, &pReader->reader);
  6057 }
  6058 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
  6059   return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
  6060 }
  6061 /* Order by term ascending, segment ascending (oldest to newest), with
  6062 ** exhausted readers to the end.
  6063 */
  6064 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
  6065   int c = optLeavesReaderTermCmp(lr1, lr2);
  6066   if( c!=0 ) return c;
  6067   return lr1->segment-lr2->segment;
  6068 }
  6069 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1].  Assumes that
  6070 ** pLr[1..nLr-1] is already sorted.
  6071 */
  6072 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
  6073   while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
  6074     OptLeavesReader tmp = pLr[0];
  6075     pLr[0] = pLr[1];
  6076     pLr[1] = tmp;
  6077     nLr--;
  6078     pLr++;
  6079   }
  6080 }
  6081 
  6082 /* optimize() helper function.  Put the readers in order and iterate
  6083 ** through them, merging doclists for matching terms into pWriter.
  6084 ** Returns SQLITE_OK on success, or the SQLite error code which
  6085 ** prevented success.
  6086 */
  6087 static int optimizeInternal(fulltext_vtab *v,
  6088                             OptLeavesReader *readers, int nReaders,
  6089                             LeafWriter *pWriter){
  6090   int i, rc = SQLITE_OK;
  6091   DataBuffer doclist, merged, tmp;
  6092 
  6093   /* Order the readers. */
  6094   i = nReaders;
  6095   while( i-- > 0 ){
  6096     optLeavesReaderReorder(&readers[i], nReaders-i);
  6097   }
  6098 
  6099   dataBufferInit(&doclist, LEAF_MAX);
  6100   dataBufferInit(&merged, LEAF_MAX);
  6101 
  6102   /* Exhausted readers bubble to the end, so when the first reader is
  6103   ** at eof, all are at eof.
  6104   */
  6105   while( !optLeavesReaderAtEnd(&readers[0]) ){
  6106 
  6107     /* Figure out how many readers share the next term. */
  6108     for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
  6109       if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
  6110     }
  6111 
  6112     /* Special-case for no merge. */
  6113     if( i==1 ){
  6114       /* Trim deletions from the doclist. */
  6115       dataBufferReset(&merged);
  6116       docListTrim(DL_DEFAULT,
  6117                   optLeavesReaderData(&readers[0]),
  6118                   optLeavesReaderDataBytes(&readers[0]),
  6119                   -1, DL_DEFAULT, &merged);
  6120     }else{
  6121       DLReader dlReaders[MERGE_COUNT];
  6122       int iReader, nReaders;
  6123 
  6124       /* Prime the pipeline with the first reader's doclist.  After
  6125       ** one pass index 0 will reference the accumulated doclist.
  6126       */
  6127       dlrInit(&dlReaders[0], DL_DEFAULT,
  6128               optLeavesReaderData(&readers[0]),
  6129               optLeavesReaderDataBytes(&readers[0]));
  6130       iReader = 1;
  6131 
  6132       assert( iReader<i );  /* Must execute the loop at least once. */
  6133       while( iReader<i ){
  6134         /* Merge 16 inputs per pass. */
  6135         for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
  6136              iReader++, nReaders++ ){
  6137           dlrInit(&dlReaders[nReaders], DL_DEFAULT,
  6138                   optLeavesReaderData(&readers[iReader]),
  6139                   optLeavesReaderDataBytes(&readers[iReader]));
  6140         }
  6141 
  6142         /* Merge doclists and swap result into accumulator. */
  6143         dataBufferReset(&merged);
  6144         docListMerge(&merged, dlReaders, nReaders);
  6145         tmp = merged;
  6146         merged = doclist;
  6147         doclist = tmp;
  6148 
  6149         while( nReaders-- > 0 ){
  6150           dlrDestroy(&dlReaders[nReaders]);
  6151         }
  6152 
  6153         /* Accumulated doclist to reader 0 for next pass. */
  6154         dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
  6155       }
  6156 
  6157       /* Destroy reader that was left in the pipeline. */
  6158       dlrDestroy(&dlReaders[0]);
  6159 
  6160       /* Trim deletions from the doclist. */
  6161       dataBufferReset(&merged);
  6162       docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
  6163                   -1, DL_DEFAULT, &merged);
  6164     }
  6165 
  6166     /* Only pass doclists with hits (skip if all hits deleted). */
  6167     if( merged.nData>0 ){
  6168       rc = leafWriterStep(v, pWriter,
  6169                           optLeavesReaderTerm(&readers[0]),
  6170                           optLeavesReaderTermBytes(&readers[0]),
  6171                           merged.pData, merged.nData);
  6172       if( rc!=SQLITE_OK ) goto err;
  6173     }
  6174 
  6175     /* Step merged readers to next term and reorder. */
  6176     while( i-- > 0 ){
  6177       rc = optLeavesReaderStep(v, &readers[i]);
  6178       if( rc!=SQLITE_OK ) goto err;
  6179 
  6180       optLeavesReaderReorder(&readers[i], nReaders-i);
  6181     }
  6182   }
  6183 
  6184  err:
  6185   dataBufferDestroy(&doclist);
  6186   dataBufferDestroy(&merged);
  6187   return rc;
  6188 }
  6189 
  6190 /* Implement optimize() function for FTS3.  optimize(t) merges all
  6191 ** segments in the fts index into a single segment.  't' is the magic
  6192 ** table-named column.
  6193 */
  6194 static void optimizeFunc(sqlite3_context *pContext,
  6195                          int argc, sqlite3_value **argv){
  6196   fulltext_cursor *pCursor;
  6197   if( argc>1 ){
  6198     sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
  6199   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6200             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6201     sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
  6202   }else{
  6203     fulltext_vtab *v;
  6204     int i, rc, iMaxLevel;
  6205     OptLeavesReader *readers;
  6206     int nReaders;
  6207     LeafWriter writer;
  6208     sqlite3_stmt *s;
  6209 
  6210     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6211     v = cursor_vtab(pCursor);
  6212 
  6213     /* Flush any buffered updates before optimizing. */
  6214     rc = flushPendingTerms(v);
  6215     if( rc!=SQLITE_OK ) goto err;
  6216 
  6217     rc = segdir_count(v, &nReaders, &iMaxLevel);
  6218     if( rc!=SQLITE_OK ) goto err;
  6219     if( nReaders==0 || nReaders==1 ){
  6220       sqlite3_result_text(pContext, "Index already optimal", -1,
  6221                           SQLITE_STATIC);
  6222       return;
  6223     }
  6224 
  6225     rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  6226     if( rc!=SQLITE_OK ) goto err;
  6227 
  6228     readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
  6229     if( readers==NULL ) goto err;
  6230 
  6231     /* Note that there will already be a segment at this position
  6232     ** until we call segdir_delete() on iMaxLevel.
  6233     */
  6234     leafWriterInit(iMaxLevel, 0, &writer);
  6235 
  6236     i = 0;
  6237     while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  6238       sqlite_int64 iStart = sqlite3_column_int64(s, 0);
  6239       sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
  6240       const char *pRootData = sqlite3_column_blob(s, 2);
  6241       int nRootData = sqlite3_column_bytes(s, 2);
  6242 
  6243       assert( i<nReaders );
  6244       rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
  6245                             &readers[i].reader);
  6246       if( rc!=SQLITE_OK ) break;
  6247 
  6248       readers[i].segment = i;
  6249       i++;
  6250     }
  6251 
  6252     /* If we managed to succesfully read them all, optimize them. */
  6253     if( rc==SQLITE_DONE ){
  6254       assert( i==nReaders );
  6255       rc = optimizeInternal(v, readers, nReaders, &writer);
  6256     }
  6257 
  6258     while( i-- > 0 ){
  6259       leavesReaderDestroy(&readers[i].reader);
  6260     }
  6261     sqlite3_free(readers);
  6262 
  6263     /* If we've successfully gotten to here, delete the old segments
  6264     ** and flush the interior structure of the new segment.
  6265     */
  6266     if( rc==SQLITE_OK ){
  6267       for( i=0; i<=iMaxLevel; i++ ){
  6268         rc = segdir_delete(v, i);
  6269         if( rc!=SQLITE_OK ) break;
  6270       }
  6271 
  6272       if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
  6273     }
  6274 
  6275     leafWriterDestroy(&writer);
  6276 
  6277     if( rc!=SQLITE_OK ) goto err;
  6278 
  6279     sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
  6280     return;
  6281 
  6282     /* TODO(shess): Error-handling needs to be improved along the
  6283     ** lines of the dump_ functions.
  6284     */
  6285  err:
  6286     {
  6287       char buf[512];
  6288       sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
  6289                        sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
  6290       sqlite3_result_error(pContext, buf, -1);
  6291     }
  6292   }
  6293 }
  6294 
  6295 #ifdef SQLITE_TEST
  6296 /* Generate an error of the form "<prefix>: <msg>".  If msg is NULL,
  6297 ** pull the error from the context's db handle.
  6298 */
  6299 static void generateError(sqlite3_context *pContext,
  6300                           const char *prefix, const char *msg){
  6301   char buf[512];
  6302   if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
  6303   sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
  6304   sqlite3_result_error(pContext, buf, -1);
  6305 }
  6306 
  6307 /* Helper function to collect the set of terms in the segment into
  6308 ** pTerms.  The segment is defined by the leaf nodes between
  6309 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of
  6310 ** pRootData if iStartBlockid is 0 (in which case the entire segment
  6311 ** fit in a leaf).
  6312 */
  6313 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
  6314                                fts2Hash *pTerms){
  6315   const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
  6316   const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
  6317   const char *pRootData = sqlite3_column_blob(s, 2);
  6318   const int nRootData = sqlite3_column_bytes(s, 2);
  6319   LeavesReader reader;
  6320   int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
  6321                             pRootData, nRootData, &reader);
  6322   if( rc!=SQLITE_OK ) return rc;
  6323 
  6324   while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
  6325     const char *pTerm = leavesReaderTerm(&reader);
  6326     const int nTerm = leavesReaderTermBytes(&reader);
  6327     void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm);
  6328     void *newValue = (void *)((char *)oldValue+1);
  6329 
  6330     /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c,
  6331     ** the data value passed is returned in case of malloc failure.
  6332     */
  6333     if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){
  6334       rc = SQLITE_NOMEM;
  6335     }else{
  6336       rc = leavesReaderStep(v, &reader);
  6337     }
  6338   }
  6339 
  6340   leavesReaderDestroy(&reader);
  6341   return rc;
  6342 }
  6343 
  6344 /* Helper function to build the result string for dump_terms(). */
  6345 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){
  6346   int iTerm, nTerms, nResultBytes, iByte;
  6347   char *result;
  6348   TermData *pData;
  6349   fts2HashElem *e;
  6350 
  6351   /* Iterate pTerms to generate an array of terms in pData for
  6352   ** sorting.
  6353   */
  6354   nTerms = fts2HashCount(pTerms);
  6355   assert( nTerms>0 );
  6356   pData = sqlite3_malloc(nTerms*sizeof(TermData));
  6357   if( pData==NULL ) return SQLITE_NOMEM;
  6358 
  6359   nResultBytes = 0;
  6360   for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){
  6361     nResultBytes += fts2HashKeysize(e)+1;   /* Term plus trailing space */
  6362     assert( iTerm<nTerms );
  6363     pData[iTerm].pTerm = fts2HashKey(e);
  6364     pData[iTerm].nTerm = fts2HashKeysize(e);
  6365     pData[iTerm].pCollector = fts2HashData(e);  /* unused */
  6366   }
  6367   assert( iTerm==nTerms );
  6368 
  6369   assert( nResultBytes>0 );   /* nTerms>0, nResultsBytes must be, too. */
  6370   result = sqlite3_malloc(nResultBytes);
  6371   if( result==NULL ){
  6372     sqlite3_free(pData);
  6373     return SQLITE_NOMEM;
  6374   }
  6375 
  6376   if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
  6377 
  6378   /* Read the terms in order to build the result. */
  6379   iByte = 0;
  6380   for(iTerm=0; iTerm<nTerms; ++iTerm){
  6381     memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
  6382     iByte += pData[iTerm].nTerm;
  6383     result[iByte++] = ' ';
  6384   }
  6385   assert( iByte==nResultBytes );
  6386   assert( result[nResultBytes-1]==' ' );
  6387   result[nResultBytes-1] = '\0';
  6388 
  6389   /* Passes away ownership of result. */
  6390   sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
  6391   sqlite3_free(pData);
  6392   return SQLITE_OK;
  6393 }
  6394 
  6395 /* Implements dump_terms() for use in inspecting the fts2 index from
  6396 ** tests.  TEXT result containing the ordered list of terms joined by
  6397 ** spaces.  dump_terms(t, level, idx) dumps the terms for the segment
  6398 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps
  6399 ** all terms in the index.  In both cases t is the fts table's magic
  6400 ** table-named column.
  6401 */
  6402 static void dumpTermsFunc(
  6403   sqlite3_context *pContext,
  6404   int argc, sqlite3_value **argv
  6405 ){
  6406   fulltext_cursor *pCursor;
  6407   if( argc!=3 && argc!=1 ){
  6408     generateError(pContext, "dump_terms", "incorrect arguments");
  6409   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6410             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6411     generateError(pContext, "dump_terms", "illegal first argument");
  6412   }else{
  6413     fulltext_vtab *v;
  6414     fts2Hash terms;
  6415     sqlite3_stmt *s = NULL;
  6416     int rc;
  6417 
  6418     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6419     v = cursor_vtab(pCursor);
  6420 
  6421     /* If passed only the cursor column, get all segments.  Otherwise
  6422     ** get the segment described by the following two arguments.
  6423     */
  6424     if( argc==1 ){
  6425       rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  6426     }else{
  6427       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
  6428       if( rc==SQLITE_OK ){
  6429         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
  6430         if( rc==SQLITE_OK ){
  6431           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
  6432         }
  6433       }
  6434     }
  6435 
  6436     if( rc!=SQLITE_OK ){
  6437       generateError(pContext, "dump_terms", NULL);
  6438       return;
  6439     }
  6440 
  6441     /* Collect the terms for each segment. */
  6442     sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1);
  6443     while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  6444       rc = collectSegmentTerms(v, s, &terms);
  6445       if( rc!=SQLITE_OK ) break;
  6446     }
  6447 
  6448     if( rc!=SQLITE_DONE ){
  6449       sqlite3_reset(s);
  6450       generateError(pContext, "dump_terms", NULL);
  6451     }else{
  6452       const int nTerms = fts2HashCount(&terms);
  6453       if( nTerms>0 ){
  6454         rc = generateTermsResult(pContext, &terms);
  6455         if( rc==SQLITE_NOMEM ){
  6456           generateError(pContext, "dump_terms", "out of memory");
  6457         }else{
  6458           assert( rc==SQLITE_OK );
  6459         }
  6460       }else if( argc==3 ){
  6461         /* The specific segment asked for could not be found. */
  6462         generateError(pContext, "dump_terms", "segment not found");
  6463       }else{
  6464         /* No segments found. */
  6465         /* TODO(shess): It should be impossible to reach this.  This
  6466         ** case can only happen for an empty table, in which case
  6467         ** SQLite has no rows to call this function on.
  6468         */
  6469         sqlite3_result_null(pContext);
  6470       }
  6471     }
  6472     sqlite3Fts2HashClear(&terms);
  6473   }
  6474 }
  6475 
  6476 /* Expand the DL_DEFAULT doclist in pData into a text result in
  6477 ** pContext.
  6478 */
  6479 static void createDoclistResult(sqlite3_context *pContext,
  6480                                 const char *pData, int nData){
  6481   DataBuffer dump;
  6482   DLReader dlReader;
  6483 
  6484   assert( pData!=NULL && nData>0 );
  6485 
  6486   dataBufferInit(&dump, 0);
  6487   dlrInit(&dlReader, DL_DEFAULT, pData, nData);
  6488   for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
  6489     char buf[256];
  6490     PLReader plReader;
  6491 
  6492     plrInit(&plReader, &dlReader);
  6493     if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
  6494       sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
  6495       dataBufferAppend(&dump, buf, strlen(buf));
  6496     }else{
  6497       int iColumn = plrColumn(&plReader);
  6498 
  6499       sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
  6500                        dlrDocid(&dlReader), iColumn);
  6501       dataBufferAppend(&dump, buf, strlen(buf));
  6502 
  6503       for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
  6504         if( plrColumn(&plReader)!=iColumn ){
  6505           iColumn = plrColumn(&plReader);
  6506           sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
  6507           assert( dump.nData>0 );
  6508           dump.nData--;                     /* Overwrite trailing space. */
  6509           assert( dump.pData[dump.nData]==' ');
  6510           dataBufferAppend(&dump, buf, strlen(buf));
  6511         }
  6512         if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
  6513           sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
  6514                            plrPosition(&plReader),
  6515                            plrStartOffset(&plReader), plrEndOffset(&plReader));
  6516         }else if( DL_DEFAULT==DL_POSITIONS ){
  6517           sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
  6518         }else{
  6519           assert( NULL=="Unhandled DL_DEFAULT value");
  6520         }
  6521         dataBufferAppend(&dump, buf, strlen(buf));
  6522       }
  6523       plrDestroy(&plReader);
  6524 
  6525       assert( dump.nData>0 );
  6526       dump.nData--;                     /* Overwrite trailing space. */
  6527       assert( dump.pData[dump.nData]==' ');
  6528       dataBufferAppend(&dump, "]] ", 3);
  6529     }
  6530   }
  6531   dlrDestroy(&dlReader);
  6532 
  6533   assert( dump.nData>0 );
  6534   dump.nData--;                     /* Overwrite trailing space. */
  6535   assert( dump.pData[dump.nData]==' ');
  6536   dump.pData[dump.nData] = '\0';
  6537   assert( dump.nData>0 );
  6538 
  6539   /* Passes ownership of dump's buffer to pContext. */
  6540   sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
  6541   dump.pData = NULL;
  6542   dump.nData = dump.nCapacity = 0;
  6543 }
  6544 
  6545 /* Implements dump_doclist() for use in inspecting the fts2 index from
  6546 ** tests.  TEXT result containing a string representation of the
  6547 ** doclist for the indicated term.  dump_doclist(t, term, level, idx)
  6548 ** dumps the doclist for term from the segment specified by level, idx
  6549 ** (in %_segdir), while dump_doclist(t, term) dumps the logical
  6550 ** doclist for the term across all segments.  The per-segment doclist
  6551 ** can contain deletions, while the full-index doclist will not
  6552 ** (deletions are omitted).
  6553 **
  6554 ** Result formats differ with the setting of DL_DEFAULTS.  Examples:
  6555 **
  6556 ** DL_DOCIDS: [1] [3] [7]
  6557 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
  6558 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
  6559 **
  6560 ** In each case the number after the outer '[' is the docid.  In the
  6561 ** latter two cases, the number before the inner '[' is the column
  6562 ** associated with the values within.  For DL_POSITIONS the numbers
  6563 ** within are the positions, for DL_POSITIONS_OFFSETS they are the
  6564 ** position, the start offset, and the end offset.
  6565 */
  6566 static void dumpDoclistFunc(
  6567   sqlite3_context *pContext,
  6568   int argc, sqlite3_value **argv
  6569 ){
  6570   fulltext_cursor *pCursor;
  6571   if( argc!=2 && argc!=4 ){
  6572     generateError(pContext, "dump_doclist", "incorrect arguments");
  6573   }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  6574             sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  6575     generateError(pContext, "dump_doclist", "illegal first argument");
  6576   }else if( sqlite3_value_text(argv[1])==NULL ||
  6577             sqlite3_value_text(argv[1])[0]=='\0' ){
  6578     generateError(pContext, "dump_doclist", "empty second argument");
  6579   }else{
  6580     const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
  6581     const int nTerm = strlen(pTerm);
  6582     fulltext_vtab *v;
  6583     int rc;
  6584     DataBuffer doclist;
  6585 
  6586     memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  6587     v = cursor_vtab(pCursor);
  6588 
  6589     dataBufferInit(&doclist, 0);
  6590 
  6591     /* termSelect() yields the same logical doclist that queries are
  6592     ** run against.
  6593     */
  6594     if( argc==2 ){
  6595       rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
  6596     }else{
  6597       sqlite3_stmt *s = NULL;
  6598 
  6599       /* Get our specific segment's information. */
  6600       rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
  6601       if( rc==SQLITE_OK ){
  6602         rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
  6603         if( rc==SQLITE_OK ){
  6604           rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
  6605         }
  6606       }
  6607 
  6608       if( rc==SQLITE_OK ){
  6609         rc = sqlite3_step(s);
  6610 
  6611         if( rc==SQLITE_DONE ){
  6612           dataBufferDestroy(&doclist);
  6613           generateError(pContext, "dump_doclist", "segment not found");
  6614           return;
  6615         }
  6616 
  6617         /* Found a segment, load it into doclist. */
  6618         if( rc==SQLITE_ROW ){
  6619           const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
  6620           const char *pData = sqlite3_column_blob(s, 2);
  6621           const int nData = sqlite3_column_bytes(s, 2);
  6622 
  6623           /* loadSegment() is used by termSelect() to load each
  6624           ** segment's data.
  6625           */
  6626           rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
  6627                            &doclist);
  6628           if( rc==SQLITE_OK ){
  6629             rc = sqlite3_step(s);
  6630 
  6631             /* Should not have more than one matching segment. */
  6632             if( rc!=SQLITE_DONE ){
  6633               sqlite3_reset(s);
  6634               dataBufferDestroy(&doclist);
  6635               generateError(pContext, "dump_doclist", "invalid segdir");
  6636               return;
  6637             }
  6638             rc = SQLITE_OK;
  6639           }
  6640         }
  6641       }
  6642 
  6643       sqlite3_reset(s);
  6644     }
  6645 
  6646     if( rc==SQLITE_OK ){
  6647       if( doclist.nData>0 ){
  6648         createDoclistResult(pContext, doclist.pData, doclist.nData);
  6649       }else{
  6650         /* TODO(shess): This can happen if the term is not present, or
  6651         ** if all instances of the term have been deleted and this is
  6652         ** an all-index dump.  It may be interesting to distinguish
  6653         ** these cases.
  6654         */
  6655         sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
  6656       }
  6657     }else if( rc==SQLITE_NOMEM ){
  6658       /* Handle out-of-memory cases specially because if they are
  6659       ** generated in fts2 code they may not be reflected in the db
  6660       ** handle.
  6661       */
  6662       /* TODO(shess): Handle this more comprehensively.
  6663       ** sqlite3ErrStr() has what I need, but is internal.
  6664       */
  6665       generateError(pContext, "dump_doclist", "out of memory");
  6666     }else{
  6667       generateError(pContext, "dump_doclist", NULL);
  6668     }
  6669 
  6670     dataBufferDestroy(&doclist);
  6671   }
  6672 }
  6673 #endif
  6674 
  6675 /*
  6676 ** This routine implements the xFindFunction method for the FTS2
  6677 ** virtual table.
  6678 */
  6679 static int fulltextFindFunction(
  6680   sqlite3_vtab *pVtab,
  6681   int nArg,
  6682   const char *zName,
  6683   void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
  6684   void **ppArg
  6685 ){
  6686   if( strcmp(zName,"snippet")==0 ){
  6687     *pxFunc = snippetFunc;
  6688     return 1;
  6689   }else if( strcmp(zName,"offsets")==0 ){
  6690     *pxFunc = snippetOffsetsFunc;
  6691     return 1;
  6692   }else if( strcmp(zName,"optimize")==0 ){
  6693     *pxFunc = optimizeFunc;
  6694     return 1;
  6695 #ifdef SQLITE_TEST
  6696     /* NOTE(shess): These functions are present only for testing
  6697     ** purposes.  No particular effort is made to optimize their
  6698     ** execution or how they build their results.
  6699     */
  6700   }else if( strcmp(zName,"dump_terms")==0 ){
  6701     /* fprintf(stderr, "Found dump_terms\n"); */
  6702     *pxFunc = dumpTermsFunc;
  6703     return 1;
  6704   }else if( strcmp(zName,"dump_doclist")==0 ){
  6705     /* fprintf(stderr, "Found dump_doclist\n"); */
  6706     *pxFunc = dumpDoclistFunc;
  6707     return 1;
  6708 #endif
  6709   }
  6710   return 0;
  6711 }
  6712 
  6713 /*
  6714 ** Rename an fts2 table.
  6715 */
  6716 static int fulltextRename(
  6717   sqlite3_vtab *pVtab,
  6718   const char *zName
  6719 ){
  6720   fulltext_vtab *p = (fulltext_vtab *)pVtab;
  6721   int rc = SQLITE_NOMEM;
  6722   char *zSql = sqlite3_mprintf(
  6723     "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';"
  6724     "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
  6725     "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';"
  6726     , p->zDb, p->zName, zName 
  6727     , p->zDb, p->zName, zName 
  6728     , p->zDb, p->zName, zName
  6729   );
  6730   if( zSql ){
  6731     rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
  6732     sqlite3_free(zSql);
  6733   }
  6734   return rc;
  6735 }
  6736 
  6737 static const sqlite3_module fts2Module = {
  6738   /* iVersion      */ 0,
  6739   /* xCreate       */ fulltextCreate,
  6740   /* xConnect      */ fulltextConnect,
  6741   /* xBestIndex    */ fulltextBestIndex,
  6742   /* xDisconnect   */ fulltextDisconnect,
  6743   /* xDestroy      */ fulltextDestroy,
  6744   /* xOpen         */ fulltextOpen,
  6745   /* xClose        */ fulltextClose,
  6746   /* xFilter       */ fulltextFilter,
  6747   /* xNext         */ fulltextNext,
  6748   /* xEof          */ fulltextEof,
  6749   /* xColumn       */ fulltextColumn,
  6750   /* xRowid        */ fulltextRowid,
  6751   /* xUpdate       */ fulltextUpdate,
  6752   /* xBegin        */ fulltextBegin,
  6753   /* xSync         */ fulltextSync,
  6754   /* xCommit       */ fulltextCommit,
  6755   /* xRollback     */ fulltextRollback,
  6756   /* xFindFunction */ fulltextFindFunction,
  6757   /* xRename */       fulltextRename,
  6758 };
  6759 
  6760 static void hashDestroy(void *p){
  6761   fts2Hash *pHash = (fts2Hash *)p;
  6762   sqlite3Fts2HashClear(pHash);
  6763   sqlite3_free(pHash);
  6764 }
  6765 
  6766 /*
  6767 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented
  6768 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following
  6769 ** two forward declarations are for functions declared in these files
  6770 ** used to retrieve the respective implementations.
  6771 **
  6772 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed
  6773 ** to by the argument to point a the "simple" tokenizer implementation.
  6774 ** Function ...PorterTokenizerModule() sets *pModule to point to the
  6775 ** porter tokenizer/stemmer implementation.
  6776 */
  6777 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  6778 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  6779 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  6780 
  6781 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *);
  6782 
  6783 /*
  6784 ** Initialise the fts2 extension. If this extension is built as part
  6785 ** of the sqlite library, then this function is called directly by
  6786 ** SQLite. If fts2 is built as a dynamically loadable extension, this
  6787 ** function is called by the sqlite3_extension_init() entry point.
  6788 */
  6789 int sqlite3Fts2Init(sqlite3 *db){
  6790   int rc = SQLITE_OK;
  6791   fts2Hash *pHash = 0;
  6792   const sqlite3_tokenizer_module *pSimple = 0;
  6793   const sqlite3_tokenizer_module *pPorter = 0;
  6794   const sqlite3_tokenizer_module *pIcu = 0;
  6795 
  6796   sqlite3Fts2SimpleTokenizerModule(&pSimple);
  6797   sqlite3Fts2PorterTokenizerModule(&pPorter);
  6798 #ifdef SQLITE_ENABLE_ICU
  6799   sqlite3Fts2IcuTokenizerModule(&pIcu);
  6800 #endif
  6801 
  6802   /* Allocate and initialise the hash-table used to store tokenizers. */
  6803   pHash = sqlite3_malloc(sizeof(fts2Hash));
  6804   if( !pHash ){
  6805     rc = SQLITE_NOMEM;
  6806   }else{
  6807     sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1);
  6808   }
  6809 
  6810   /* Load the built-in tokenizers into the hash table */
  6811   if( rc==SQLITE_OK ){
  6812     if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple)
  6813      || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) 
  6814      || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu))
  6815     ){
  6816       rc = SQLITE_NOMEM;
  6817     }
  6818   }
  6819 
  6820   /* Create the virtual table wrapper around the hash-table and overload 
  6821   ** the two scalar functions. If this is successful, register the
  6822   ** module with sqlite.
  6823   */
  6824   if( SQLITE_OK==rc 
  6825    && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer"))
  6826    && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
  6827    && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
  6828    && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
  6829 #ifdef SQLITE_TEST
  6830    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
  6831    && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
  6832 #endif
  6833   ){
  6834     return sqlite3_create_module_v2(
  6835         db, "fts2", &fts2Module, (void *)pHash, hashDestroy
  6836     );
  6837   }
  6838 
  6839   /* An error has occured. Delete the hash table and return the error code. */
  6840   assert( rc!=SQLITE_OK );
  6841   if( pHash ){
  6842     sqlite3Fts2HashClear(pHash);
  6843     sqlite3_free(pHash);
  6844   }
  6845   return rc;
  6846 }
  6847 
  6848 #if !SQLITE_CORE
  6849 int sqlite3_extension_init(
  6850   sqlite3 *db, 
  6851   char **pzErrMsg,
  6852   const sqlite3_api_routines *pApi
  6853 ){
  6854   SQLITE_EXTENSION_INIT2(pApi)
  6855   return sqlite3Fts2Init(db);
  6856 }
  6857 #endif
  6858 
  6859 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */