Update contrib.
1 /* fts2 has a design flaw which can lead to database corruption (see
2 ** below). It is recommended not to use it any longer, instead use
3 ** fts3 (or higher). If you believe that your use of fts2 is safe,
4 ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS.
6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \
7 && !defined(SQLITE_ENABLE_BROKEN_FTS2)
8 #error fts2 has a design flaw and has been deprecated.
10 /* The flaw is that fts2 uses the content table's unaliased rowid as
11 ** the unique docid. fts2 embeds the rowid in the index it builds,
12 ** and expects the rowid to not change. The SQLite VACUUM operation
13 ** will renumber such rowids, thereby breaking fts2. If you are using
14 ** fts2 in a system which has disabled VACUUM, then you can continue
15 ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable
16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke
19 ** Unlike fts1, which is safe across VACUUM if you never delete
20 ** documents, fts2 has a second exposure to this flaw, in the segments
21 ** table. So fts2 should be considered unsafe across VACUUM in all
28 ** The author disclaims copyright to this source code. In place of
29 ** a legal notice, here is a blessing:
31 ** May you do good and not evil.
32 ** May you find forgiveness for yourself and forgive others.
33 ** May you share freely, never taking more than you give.
35 ******************************************************************************
37 ** This is an SQLite module implementing full-text search.
41 ** The code in this file is only compiled if:
43 ** * The FTS2 module is being built as an extension
44 ** (in which case SQLITE_CORE is not defined), or
46 ** * The FTS2 module is being built into the core of
47 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
50 /* TODO(shess) Consider exporting this comment to an HTML file or the
53 /* The full-text index is stored in a series of b+tree (-like)
54 ** structures called segments which map terms to doclists. The
55 ** structures are like b+trees in layout, but are constructed from the
56 ** bottom up in optimal fashion and are not updatable. Since trees
57 ** are built from the bottom up, things will be described from the
62 ** The basic unit of encoding is a variable-length integer called a
63 ** varint. We encode variable-length integers in little-endian order
64 ** using seven bits * per byte as follows:
67 ** A = 0xxxxxxx 7 bits of data and one flag bit
68 ** B = 1xxxxxxx 7 bits of data and one flag bit
75 ** This is identical to how sqlite encodes varints (see util.c).
78 **** Document lists ****
79 ** A doclist (document list) holds a docid-sorted list of hits for a
80 ** given term. Doclists hold docids, and can optionally associate
81 ** token positions and offsets with docids.
83 ** A DL_POSITIONS_OFFSETS doclist is stored like this:
87 ** array { (position list for column 0)
88 ** varint position; (delta from previous position plus POS_BASE)
89 ** varint startOffset; (delta from previous startOffset)
90 ** varint endOffset; (delta from startOffset)
93 ** varint POS_COLUMN; (marks start of position list for new column)
94 ** varint column; (index of new column)
96 ** varint position; (delta from previous position plus POS_BASE)
97 ** varint startOffset;(delta from previous startOffset)
98 ** varint endOffset; (delta from startOffset)
101 ** varint POS_END; (marks end of positions for this document.
104 ** Here, array { X } means zero or more occurrences of X, adjacent in
105 ** memory. A "position" is an index of a token in the token stream
106 ** generated by the tokenizer, while an "offset" is a byte offset,
107 ** both based at 0. Note that POS_END and POS_COLUMN occur in the
108 ** same logical place as the position element, and act as sentinals
109 ** ending a position list array.
111 ** A DL_POSITIONS doclist omits the startOffset and endOffset
112 ** information. A DL_DOCIDS doclist omits both the position and
113 ** offset information, becoming an array of varint-encoded docids.
115 ** On-disk data is stored as type DL_DEFAULT, so we don't serialize
116 ** the type. Due to how deletion is implemented in the segmentation
117 ** system, on-disk doclists MUST store at least positions.
120 **** Segment leaf nodes ****
121 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
122 ** nodes are written using LeafWriter, and read using LeafReader (to
123 ** iterate through a single leaf node's data) and LeavesReader (to
124 ** iterate through a segment's entire leaf layer). Leaf nodes have
127 ** varint iHeight; (height from leaf level, always 0)
128 ** varint nTerm; (length of first term)
129 ** char pTerm[nTerm]; (content of first term)
130 ** varint nDoclist; (length of term's associated doclist)
131 ** char pDoclist[nDoclist]; (content of doclist)
133 ** (further terms are delta-encoded)
134 ** varint nPrefix; (length of prefix shared with previous term)
135 ** varint nSuffix; (length of unshared suffix)
136 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
137 ** varint nDoclist; (length of term's associated doclist)
138 ** char pDoclist[nDoclist]; (content of doclist)
141 ** Here, array { X } means zero or more occurrences of X, adjacent in
144 ** Leaf nodes are broken into blocks which are stored contiguously in
145 ** the %_segments table in sorted order. This means that when the end
146 ** of a node is reached, the next term is in the node with the next
149 ** New data is spilled to a new leaf node when the current node
150 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
151 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
152 ** node (a leaf node with a single term and doclist). The goal of
153 ** these settings is to pack together groups of small doclists while
154 ** making it efficient to directly access large doclists. The
155 ** assumption is that large doclists represent terms which are more
156 ** likely to be query targets.
158 ** TODO(shess) It may be useful for blocking decisions to be more
159 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
160 ** node rather than splitting into 2k and .5k nodes. My intuition is
161 ** that this might extend through 2x or 4x the pagesize.
164 **** Segment interior nodes ****
165 ** Segment interior nodes store blockids for subtree nodes and terms
166 ** to describe what data is stored by the each subtree. Interior
167 ** nodes are written using InteriorWriter, and read using
168 ** InteriorReader. InteriorWriters are created as needed when
169 ** SegmentWriter creates new leaf nodes, or when an interior node
170 ** itself grows too big and must be split. The format of interior
173 ** varint iHeight; (height from leaf level, always >0)
174 ** varint iBlockid; (block id of node's leftmost subtree)
176 ** varint nTerm; (length of first term)
177 ** char pTerm[nTerm]; (content of first term)
179 ** (further terms are delta-encoded)
180 ** varint nPrefix; (length of shared prefix with previous term)
181 ** varint nSuffix; (length of unshared suffix)
182 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
186 ** Here, optional { X } means an optional element, while array { X }
187 ** means zero or more occurrences of X, adjacent in memory.
189 ** An interior node encodes n terms separating n+1 subtrees. The
190 ** subtree blocks are contiguous, so only the first subtree's blockid
191 ** is encoded. The subtree at iBlockid will contain all terms less
192 ** than the first term encoded (or all terms if no term is encoded).
193 ** Otherwise, for terms greater than or equal to pTerm[i] but less
194 ** than pTerm[i+1], the subtree for that term will be rooted at
195 ** iBlockid+i. Interior nodes only store enough term data to
196 ** distinguish adjacent children (if the rightmost term of the left
197 ** child is "something", and the leftmost term of the right child is
198 ** "wicked", only "w" is stored).
200 ** New data is spilled to a new interior node at the same height when
201 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
202 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
203 ** interior nodes and making the tree too skinny. The interior nodes
204 ** at a given height are naturally tracked by interior nodes at
205 ** height+1, and so on.
208 **** Segment directory ****
209 ** The segment directory in table %_segdir stores meta-information for
210 ** merging and deleting segments, and also the root node of the
213 ** The root node is the top node of the segment's tree after encoding
214 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
215 ** This could be either a leaf node or an interior node. If the top
216 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
217 ** and a new root interior node is generated (which should always fit
218 ** within ROOT_MAX because it only needs space for 2 varints, the
219 ** height and the blockid of the previous root).
221 ** The meta-information in the segment directory is:
222 ** level - segment level (see below)
223 ** idx - index within level
224 ** - (level,idx uniquely identify a segment)
225 ** start_block - first leaf node
226 ** leaves_end_block - last leaf node
227 ** end_block - last block (including interior nodes)
228 ** root - contents of root node
230 ** If the root node is a leaf node, then start_block,
231 ** leaves_end_block, and end_block are all 0.
234 **** Segment merging ****
235 ** To amortize update costs, segments are groups into levels and
236 ** merged in matches. Each increase in level represents exponentially
239 ** New documents (actually, document updates) are tokenized and
240 ** written individually (using LeafWriter) to a level 0 segment, with
241 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
242 ** level 0 segments are merged into a single level 1 segment. Level 1
243 ** is populated like level 0, and eventually MERGE_COUNT level 1
244 ** segments are merged to a single level 2 segment (representing
245 ** MERGE_COUNT^2 updates), and so on.
247 ** A segment merge traverses all segments at a given level in
248 ** parallel, performing a straightforward sorted merge. Since segment
249 ** leaf nodes are written in to the %_segments table in order, this
250 ** merge traverses the underlying sqlite disk structures efficiently.
251 ** After the merge, all segment blocks from the merged level are
254 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
255 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
256 ** very similar performance numbers to 16 on insertion, though they're
257 ** a tiny bit slower (perhaps due to more overhead in merge-time
258 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
259 ** 16, 2 about 66% slower than 16.
261 ** At query time, high MERGE_COUNT increases the number of segments
262 ** which need to be scanned and merged. For instance, with 100k docs
265 ** MERGE_COUNT segments
271 ** This appears to have only a moderate impact on queries for very
272 ** frequent terms (which are somewhat dominated by segment merge
273 ** costs), and infrequent and non-existent terms still seem to be fast
274 ** even with many segments.
276 ** TODO(shess) That said, it would be nice to have a better query-side
277 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
278 ** optimizations to things like doclist merging will swing the sweet
283 **** Handling of deletions and updates ****
284 ** Since we're using a segmented structure, with no docid-oriented
285 ** index into the term index, we clearly cannot simply update the term
286 ** index when a document is deleted or updated. For deletions, we
287 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
288 ** we simply write the new doclist. Segment merges overwrite older
289 ** data for a particular docid with newer data, so deletes or updates
290 ** will eventually overtake the earlier data and knock it out. The
291 ** query logic likewise merges doclists so that newer data knocks out
294 ** TODO(shess) Provide a VACUUM type operation to clear out all
295 ** deletions and duplications. This would basically be a forced merge
296 ** into a single segment.
299 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
301 #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE)
302 # define SQLITE_CORE 1
312 #include "fts2_hash.h"
313 #include "fts2_tokenizer.h"
315 #include "sqlite3ext.h"
316 SQLITE_EXTENSION_INIT1
319 /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
320 ** would be nice to order the file better, perhaps something along the
323 ** - utility functions
324 ** - table setup functions
325 ** - table update functions
326 ** - table query functions
328 ** Put the query functions last because they're likely to reference
329 ** typedefs or functions from the table update section.
333 # define TRACE(A) printf A; fflush(stdout)
338 /* It is not safe to call isspace(), tolower(), or isalnum() on
339 ** hi-bit-set characters. This is the same solution used in the
342 /* TODO(shess) The snippet-generation code should be using the
343 ** tokenizer-generated tokens rather than doing its own local
346 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
347 static int safe_isspace(char c){
348 return (c&0x80)==0 ? isspace(c) : 0;
350 static int safe_tolower(char c){
351 return (c&0x80)==0 ? tolower(c) : c;
353 static int safe_isalnum(char c){
354 return (c&0x80)==0 ? isalnum(c) : 0;
357 typedef enum DocListType {
358 DL_DOCIDS, /* docids only */
359 DL_POSITIONS, /* docids + positions */
360 DL_POSITIONS_OFFSETS /* docids + positions + offsets */
364 ** By default, only positions and not offsets are stored in the doclists.
365 ** To change this so that offsets are stored too, compile with
367 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
369 ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
370 ** into (no deletes or updates).
373 # define DL_DEFAULT DL_POSITIONS
377 POS_END = 0, /* end of this position list */
378 POS_COLUMN, /* followed by new column number */
382 /* MERGE_COUNT controls how often we merge segments (see comment at
385 #define MERGE_COUNT 16
387 /* utility functions */
389 /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
390 ** record to prevent errors of the form:
392 ** my_function(SomeType *b){
393 ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
396 /* TODO(shess) Obvious candidates for a header file. */
397 #define CLEAR(b) memset(b, '\0', sizeof(*(b)))
400 # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
405 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
406 #define VARINT_MAX 10
408 /* Write a 64-bit variable-length integer to memory starting at p[0].
409 * The length of data written will be between 1 and VARINT_MAX bytes.
410 * The number of bytes written is returned. */
411 static int putVarint(char *p, sqlite_int64 v){
412 unsigned char *q = (unsigned char *) p;
413 sqlite_uint64 vu = v;
415 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
418 q[-1] &= 0x7f; /* turn off high bit in final byte */
419 assert( q - (unsigned char *)p <= VARINT_MAX );
420 return (int) (q - (unsigned char *)p);
423 /* Read a 64-bit variable-length integer from memory starting at p[0].
424 * Return the number of bytes read, or 0 on error.
425 * The value is stored in *v. */
426 static int getVarint(const char *p, sqlite_int64 *v){
427 const unsigned char *q = (const unsigned char *) p;
428 sqlite_uint64 x = 0, y = 1;
429 while( (*q & 0x80) == 0x80 ){
430 x += y * (*q++ & 0x7f);
432 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
438 *v = (sqlite_int64) x;
439 return (int) (q - (unsigned char *)p);
442 static int getVarint32(const char *p, int *pi){
444 int ret = getVarint(p, &i);
450 /*******************************************************************/
451 /* DataBuffer is used to collect data into a buffer in piecemeal
452 ** fashion. It implements the usual distinction between amount of
453 ** data currently stored (nData) and buffer capacity (nCapacity).
455 ** dataBufferInit - create a buffer with given initial capacity.
456 ** dataBufferReset - forget buffer's data, retaining capacity.
457 ** dataBufferDestroy - free buffer's data.
458 ** dataBufferSwap - swap contents of two buffers.
459 ** dataBufferExpand - expand capacity without adding data.
460 ** dataBufferAppend - append data.
461 ** dataBufferAppend2 - append two pieces of data at once.
462 ** dataBufferReplace - replace buffer's data.
464 typedef struct DataBuffer {
465 char *pData; /* Pointer to malloc'ed buffer. */
466 int nCapacity; /* Size of pData buffer. */
467 int nData; /* End of data loaded into pData. */
470 static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
471 assert( nCapacity>=0 );
473 pBuffer->nCapacity = nCapacity;
474 pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
476 static void dataBufferReset(DataBuffer *pBuffer){
479 static void dataBufferDestroy(DataBuffer *pBuffer){
480 if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
483 static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
484 DataBuffer tmp = *pBuffer1;
485 *pBuffer1 = *pBuffer2;
488 static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
489 assert( nAddCapacity>0 );
490 /* TODO(shess) Consider expanding more aggressively. Note that the
491 ** underlying malloc implementation may take care of such things for
494 if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
495 pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
496 pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
499 static void dataBufferAppend(DataBuffer *pBuffer,
500 const char *pSource, int nSource){
501 assert( nSource>0 && pSource!=NULL );
502 dataBufferExpand(pBuffer, nSource);
503 memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
504 pBuffer->nData += nSource;
506 static void dataBufferAppend2(DataBuffer *pBuffer,
507 const char *pSource1, int nSource1,
508 const char *pSource2, int nSource2){
509 assert( nSource1>0 && pSource1!=NULL );
510 assert( nSource2>0 && pSource2!=NULL );
511 dataBufferExpand(pBuffer, nSource1+nSource2);
512 memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
513 memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
514 pBuffer->nData += nSource1+nSource2;
516 static void dataBufferReplace(DataBuffer *pBuffer,
517 const char *pSource, int nSource){
518 dataBufferReset(pBuffer);
519 dataBufferAppend(pBuffer, pSource, nSource);
522 /* StringBuffer is a null-terminated version of DataBuffer. */
523 typedef struct StringBuffer {
524 DataBuffer b; /* Includes null terminator. */
527 static void initStringBuffer(StringBuffer *sb){
528 dataBufferInit(&sb->b, 100);
529 dataBufferReplace(&sb->b, "", 1);
531 static int stringBufferLength(StringBuffer *sb){
532 return sb->b.nData-1;
534 static char *stringBufferData(StringBuffer *sb){
537 static void stringBufferDestroy(StringBuffer *sb){
538 dataBufferDestroy(&sb->b);
541 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
542 assert( sb->b.nData>0 );
545 dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
548 static void append(StringBuffer *sb, const char *zFrom){
549 nappend(sb, zFrom, strlen(zFrom));
552 /* Append a list of strings separated by commas. */
553 static void appendList(StringBuffer *sb, int nString, char **azString){
555 for(i=0; i<nString; ++i){
556 if( i>0 ) append(sb, ", ");
557 append(sb, azString[i]);
561 static int endsInWhiteSpace(StringBuffer *p){
562 return stringBufferLength(p)>0 &&
563 safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
566 /* If the StringBuffer ends in something other than white space, add a
567 ** single space character to the end.
569 static void appendWhiteSpace(StringBuffer *p){
570 if( stringBufferLength(p)==0 ) return;
571 if( !endsInWhiteSpace(p) ) append(p, " ");
574 /* Remove white space from the end of the StringBuffer */
575 static void trimWhiteSpace(StringBuffer *p){
576 while( endsInWhiteSpace(p) ){
577 p->b.pData[--p->b.nData-1] = '\0';
581 /*******************************************************************/
582 /* DLReader is used to read document elements from a doclist. The
583 ** current docid is cached, so dlrDocid() is fast. DLReader does not
584 ** own the doclist buffer.
586 ** dlrAtEnd - true if there's no more data to read.
587 ** dlrDocid - docid of current document.
588 ** dlrDocData - doclist data for current document (including docid).
589 ** dlrDocDataBytes - length of same.
590 ** dlrAllDataBytes - length of all remaining data.
591 ** dlrPosData - position data for current document.
592 ** dlrPosDataLen - length of pos data for current document (incl POS_END).
593 ** dlrStep - step to current document.
594 ** dlrInit - initial for doclist of given type against given data.
595 ** dlrDestroy - clean up.
597 ** Expected usage is something like:
600 ** dlrInit(&reader, pData, nData);
601 ** while( !dlrAtEnd(&reader) ){
602 ** // calls to dlrDocid() and kin.
605 ** dlrDestroy(&reader);
607 typedef struct DLReader {
616 static int dlrAtEnd(DLReader *pReader){
617 assert( pReader->nData>=0 );
618 return pReader->nData==0;
620 static sqlite_int64 dlrDocid(DLReader *pReader){
621 assert( !dlrAtEnd(pReader) );
622 return pReader->iDocid;
624 static const char *dlrDocData(DLReader *pReader){
625 assert( !dlrAtEnd(pReader) );
626 return pReader->pData;
628 static int dlrDocDataBytes(DLReader *pReader){
629 assert( !dlrAtEnd(pReader) );
630 return pReader->nElement;
632 static int dlrAllDataBytes(DLReader *pReader){
633 assert( !dlrAtEnd(pReader) );
634 return pReader->nData;
636 /* TODO(shess) Consider adding a field to track iDocid varint length
637 ** to make these two functions faster. This might matter (a tiny bit)
640 static const char *dlrPosData(DLReader *pReader){
642 int n = getVarint(pReader->pData, &iDummy);
643 assert( !dlrAtEnd(pReader) );
644 return pReader->pData+n;
646 static int dlrPosDataLen(DLReader *pReader){
648 int n = getVarint(pReader->pData, &iDummy);
649 assert( !dlrAtEnd(pReader) );
650 return pReader->nElement-n;
652 static void dlrStep(DLReader *pReader){
653 assert( !dlrAtEnd(pReader) );
655 /* Skip past current doclist element. */
656 assert( pReader->nElement<=pReader->nData );
657 pReader->pData += pReader->nElement;
658 pReader->nData -= pReader->nElement;
660 /* If there is more data, read the next doclist element. */
661 if( pReader->nData!=0 ){
662 sqlite_int64 iDocidDelta;
663 int iDummy, n = getVarint(pReader->pData, &iDocidDelta);
664 pReader->iDocid += iDocidDelta;
665 if( pReader->iType>=DL_POSITIONS ){
666 assert( n<pReader->nData );
668 n += getVarint32(pReader->pData+n, &iDummy);
669 assert( n<=pReader->nData );
670 if( iDummy==POS_END ) break;
671 if( iDummy==POS_COLUMN ){
672 n += getVarint32(pReader->pData+n, &iDummy);
673 assert( n<pReader->nData );
674 }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
675 n += getVarint32(pReader->pData+n, &iDummy);
676 n += getVarint32(pReader->pData+n, &iDummy);
677 assert( n<pReader->nData );
681 pReader->nElement = n;
682 assert( pReader->nElement<=pReader->nData );
685 static void dlrInit(DLReader *pReader, DocListType iType,
686 const char *pData, int nData){
687 assert( pData!=NULL && nData!=0 );
688 pReader->iType = iType;
689 pReader->pData = pData;
690 pReader->nData = nData;
691 pReader->nElement = 0;
694 /* Load the first element's data. There must be a first element. */
697 static void dlrDestroy(DLReader *pReader){
702 /* Verify that the doclist can be validly decoded. Also returns the
703 ** last docid found because it is convenient in other assertions for
706 static void docListValidate(DocListType iType, const char *pData, int nData,
707 sqlite_int64 *pLastDocid){
708 sqlite_int64 iPrevDocid = 0;
711 assert( pData+nData>pData );
713 sqlite_int64 iDocidDelta;
714 int n = getVarint(pData, &iDocidDelta);
715 iPrevDocid += iDocidDelta;
716 if( iType>DL_DOCIDS ){
719 n += getVarint32(pData+n, &iDummy);
720 if( iDummy==POS_END ) break;
721 if( iDummy==POS_COLUMN ){
722 n += getVarint32(pData+n, &iDummy);
723 }else if( iType>DL_POSITIONS ){
724 n += getVarint32(pData+n, &iDummy);
725 n += getVarint32(pData+n, &iDummy);
734 if( pLastDocid ) *pLastDocid = iPrevDocid;
736 #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
738 #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
741 /*******************************************************************/
742 /* DLWriter is used to write doclist data to a DataBuffer. DLWriter
743 ** always appends to the buffer and does not own it.
745 ** dlwInit - initialize to write a given type doclistto a buffer.
746 ** dlwDestroy - clear the writer's memory. Does not free buffer.
747 ** dlwAppend - append raw doclist data to buffer.
748 ** dlwCopy - copy next doclist from reader to writer.
749 ** dlwAdd - construct doclist element and append to buffer.
750 ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
752 typedef struct DLWriter {
755 sqlite_int64 iPrevDocid;
761 static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
763 pWriter->iType = iType;
764 pWriter->iPrevDocid = 0;
766 pWriter->has_iPrevDocid = 0;
769 static void dlwDestroy(DLWriter *pWriter){
772 /* iFirstDocid is the first docid in the doclist in pData. It is
773 ** needed because pData may point within a larger doclist, in which
774 ** case the first item would be delta-encoded.
776 ** iLastDocid is the final docid in the doclist in pData. It is
777 ** needed to create the new iPrevDocid for future delta-encoding. The
778 ** code could decode the passed doclist to recreate iLastDocid, but
779 ** the only current user (docListMerge) already has decoded this
782 /* TODO(shess) This has become just a helper for docListMerge.
783 ** Consider a refactor to make this cleaner.
785 static void dlwAppend(DLWriter *pWriter,
786 const char *pData, int nData,
787 sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
788 sqlite_int64 iDocid = 0;
790 int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
792 sqlite_int64 iLastDocidDelta;
795 /* Recode the initial docid as delta from iPrevDocid. */
796 nFirstOld = getVarint(pData, &iDocid);
797 assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
798 nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid);
800 /* Verify that the incoming doclist is valid AND that it ends with
801 ** the expected docid. This is essential because we'll trust this
802 ** docid in future delta-encoding.
804 ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
805 assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
807 /* Append recoded initial docid and everything else. Rest of docids
808 ** should have been delta-encoded from previous initial docid.
810 if( nFirstOld<nData ){
811 dataBufferAppend2(pWriter->b, c, nFirstNew,
812 pData+nFirstOld, nData-nFirstOld);
814 dataBufferAppend(pWriter->b, c, nFirstNew);
816 pWriter->iPrevDocid = iLastDocid;
818 static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
819 dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
820 dlrDocid(pReader), dlrDocid(pReader));
822 static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
824 int n = putVarint(c, iDocid-pWriter->iPrevDocid);
826 /* Docids must ascend. */
827 assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
828 assert( pWriter->iType==DL_DOCIDS );
830 dataBufferAppend(pWriter->b, c, n);
831 pWriter->iPrevDocid = iDocid;
833 pWriter->has_iPrevDocid = 1;
837 /*******************************************************************/
838 /* PLReader is used to read data from a document's position list. As
839 ** the caller steps through the list, data is cached so that varints
840 ** only need to be decoded once.
842 ** plrInit, plrDestroy - create/destroy a reader.
843 ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
844 ** plrAtEnd - at end of stream, only call plrDestroy once true.
845 ** plrStep - step to the next element.
847 typedef struct PLReader {
848 /* These refer to the next position's data. nData will reach 0 when
849 ** reading the last position, so plrStep() signals EOF by setting
856 int iColumn; /* the last column read */
857 int iPosition; /* the last position read */
858 int iStartOffset; /* the last start offset read */
859 int iEndOffset; /* the last end offset read */
862 static int plrAtEnd(PLReader *pReader){
863 return pReader->pData==NULL;
865 static int plrColumn(PLReader *pReader){
866 assert( !plrAtEnd(pReader) );
867 return pReader->iColumn;
869 static int plrPosition(PLReader *pReader){
870 assert( !plrAtEnd(pReader) );
871 return pReader->iPosition;
873 static int plrStartOffset(PLReader *pReader){
874 assert( !plrAtEnd(pReader) );
875 return pReader->iStartOffset;
877 static int plrEndOffset(PLReader *pReader){
878 assert( !plrAtEnd(pReader) );
879 return pReader->iEndOffset;
881 static void plrStep(PLReader *pReader){
884 assert( !plrAtEnd(pReader) );
886 if( pReader->nData==0 ){
887 pReader->pData = NULL;
891 n = getVarint32(pReader->pData, &i);
893 n += getVarint32(pReader->pData+n, &pReader->iColumn);
894 pReader->iPosition = 0;
895 pReader->iStartOffset = 0;
896 n += getVarint32(pReader->pData+n, &i);
898 /* Should never see adjacent column changes. */
899 assert( i!=POS_COLUMN );
903 pReader->pData = NULL;
907 pReader->iPosition += i-POS_BASE;
908 if( pReader->iType==DL_POSITIONS_OFFSETS ){
909 n += getVarint32(pReader->pData+n, &i);
910 pReader->iStartOffset += i;
911 n += getVarint32(pReader->pData+n, &i);
912 pReader->iEndOffset = pReader->iStartOffset+i;
914 assert( n<=pReader->nData );
919 static void plrInit(PLReader *pReader, DLReader *pDLReader){
920 pReader->pData = dlrPosData(pDLReader);
921 pReader->nData = dlrPosDataLen(pDLReader);
922 pReader->iType = pDLReader->iType;
923 pReader->iColumn = 0;
924 pReader->iPosition = 0;
925 pReader->iStartOffset = 0;
926 pReader->iEndOffset = 0;
929 static void plrDestroy(PLReader *pReader){
933 /*******************************************************************/
934 /* PLWriter is used in constructing a document's position list. As a
935 ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
936 ** PLWriter writes to the associated DLWriter's buffer.
938 ** plwInit - init for writing a document's poslist.
939 ** plwDestroy - clear a writer.
940 ** plwAdd - append position and offset information.
941 ** plwCopy - copy next position's data from reader to writer.
942 ** plwTerminate - add any necessary doclist terminator.
944 ** Calling plwAdd() after plwTerminate() may result in a corrupt
947 /* TODO(shess) Until we've written the second item, we can cache the
948 ** first item's information. Then we'd have three states:
950 ** - initialized with docid, no positions.
951 ** - docid and one position.
952 ** - docid and multiple positions.
954 ** Only the last state needs to actually write to dlw->b, which would
955 ** be an improvement in the DLCollector case.
957 typedef struct PLWriter {
960 int iColumn; /* the last column written */
961 int iPos; /* the last position written */
962 int iOffset; /* the last start offset written */
965 /* TODO(shess) In the case where the parent is reading these values
966 ** from a PLReader, we could optimize to a copy if that PLReader has
967 ** the same type as pWriter.
969 static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
970 int iStartOffset, int iEndOffset){
971 /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
972 ** iStartOffsetDelta, and iEndOffsetDelta.
974 char c[5*VARINT_MAX];
977 /* Ban plwAdd() after plwTerminate(). */
978 assert( pWriter->iPos!=-1 );
980 if( pWriter->dlw->iType==DL_DOCIDS ) return;
982 if( iColumn!=pWriter->iColumn ){
983 n += putVarint(c+n, POS_COLUMN);
984 n += putVarint(c+n, iColumn);
985 pWriter->iColumn = iColumn;
987 pWriter->iOffset = 0;
989 assert( iPos>=pWriter->iPos );
990 n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
991 pWriter->iPos = iPos;
992 if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
993 assert( iStartOffset>=pWriter->iOffset );
994 n += putVarint(c+n, iStartOffset-pWriter->iOffset);
995 pWriter->iOffset = iStartOffset;
996 assert( iEndOffset>=iStartOffset );
997 n += putVarint(c+n, iEndOffset-iStartOffset);
999 dataBufferAppend(pWriter->dlw->b, c, n);
1001 static void plwCopy(PLWriter *pWriter, PLReader *pReader){
1002 plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
1003 plrStartOffset(pReader), plrEndOffset(pReader));
1005 static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
1011 /* Docids must ascend. */
1012 assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
1013 n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid);
1014 dataBufferAppend(pWriter->dlw->b, c, n);
1015 pWriter->dlw->iPrevDocid = iDocid;
1017 pWriter->dlw->has_iPrevDocid = 1;
1020 pWriter->iColumn = 0;
1022 pWriter->iOffset = 0;
1024 /* TODO(shess) Should plwDestroy() also terminate the doclist? But
1025 ** then plwDestroy() would no longer be just a destructor, it would
1026 ** also be doing work, which isn't consistent with the overall idiom.
1027 ** Another option would be for plwAdd() to always append any necessary
1028 ** terminator, so that the output is always correct. But that would
1029 ** add incremental work to the common case with the only benefit being
1030 ** API elegance. Punt for now.
1032 static void plwTerminate(PLWriter *pWriter){
1033 if( pWriter->dlw->iType>DL_DOCIDS ){
1035 int n = putVarint(c, POS_END);
1036 dataBufferAppend(pWriter->dlw->b, c, n);
1039 /* Mark as terminated for assert in plwAdd(). */
1043 static void plwDestroy(PLWriter *pWriter){
1047 /*******************************************************************/
1048 /* DLCollector wraps PLWriter and DLWriter to provide a
1049 ** dynamically-allocated doclist area to use during tokenization.
1051 ** dlcNew - malloc up and initialize a collector.
1052 ** dlcDelete - destroy a collector and all contained items.
1053 ** dlcAddPos - append position and offset information.
1054 ** dlcAddDoclist - add the collected doclist to the given buffer.
1055 ** dlcNext - terminate the current document and open another.
1057 typedef struct DLCollector {
1063 /* TODO(shess) This could also be done by calling plwTerminate() and
1064 ** dataBufferAppend(). I tried that, expecting nominal performance
1065 ** differences, but it seemed to pretty reliably be worth 1% to code
1066 ** it this way. I suspect it is the incremental malloc overhead (some
1067 ** percentage of the plwTerminate() calls will cause a realloc), so
1068 ** this might be worth revisiting if the DataBuffer implementation
1071 static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
1072 if( pCollector->dlw.iType>DL_DOCIDS ){
1074 int n = putVarint(c, POS_END);
1075 dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
1077 dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
1080 static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
1081 plwTerminate(&pCollector->plw);
1082 plwDestroy(&pCollector->plw);
1083 plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
1085 static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
1086 int iStartOffset, int iEndOffset){
1087 plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
1090 static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
1091 DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
1092 dataBufferInit(&pCollector->b, 0);
1093 dlwInit(&pCollector->dlw, iType, &pCollector->b);
1094 plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
1097 static void dlcDelete(DLCollector *pCollector){
1098 plwDestroy(&pCollector->plw);
1099 dlwDestroy(&pCollector->dlw);
1100 dataBufferDestroy(&pCollector->b);
1101 SCRAMBLE(pCollector);
1102 sqlite3_free(pCollector);
1106 /* Copy the doclist data of iType in pData/nData into *out, trimming
1107 ** unnecessary data as we go. Only columns matching iColumn are
1108 ** copied, all columns copied if iColumn is -1. Elements with no
1109 ** matching columns are dropped. The output is an iOutType doclist.
1111 /* NOTE(shess) This code is only valid after all doclists are merged.
1112 ** If this is run before merges, then doclist items which represent
1113 ** deletion will be trimmed, and will thus not effect a deletion
1114 ** during the merge.
1116 static void docListTrim(DocListType iType, const char *pData, int nData,
1117 int iColumn, DocListType iOutType, DataBuffer *out){
1121 assert( iOutType<=iType );
1123 dlrInit(&dlReader, iType, pData, nData);
1124 dlwInit(&dlWriter, iOutType, out);
1126 while( !dlrAtEnd(&dlReader) ){
1131 plrInit(&plReader, &dlReader);
1133 while( !plrAtEnd(&plReader) ){
1134 if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
1136 plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
1139 plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
1140 plrStartOffset(&plReader), plrEndOffset(&plReader));
1145 plwTerminate(&plWriter);
1146 plwDestroy(&plWriter);
1149 plrDestroy(&plReader);
1152 dlwDestroy(&dlWriter);
1153 dlrDestroy(&dlReader);
1156 /* Used by docListMerge() to keep doclists in the ascending order by
1157 ** docid, then ascending order by age (so the newest comes first).
1159 typedef struct OrderedDLReader {
1162 /* TODO(shess) If we assume that docListMerge pReaders is ordered by
1163 ** age (which we do), then we could use pReader comparisons to break
1169 /* Order eof to end, then by docid asc, idx desc. */
1170 static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
1171 if( dlrAtEnd(r1->pReader) ){
1172 if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
1173 return 1; /* Only r1 atEnd(). */
1175 if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
1177 if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
1178 if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
1180 /* Descending on idx. */
1181 return r2->idx-r1->idx;
1184 /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
1185 ** p[1..n-1] is already sorted.
1187 /* TODO(shess) Is this frequent enough to warrant a binary search?
1188 ** Before implementing that, instrument the code to check. In most
1189 ** current usage, I expect that p[0] will be less than p[1] a very
1190 ** high proportion of the time.
1192 static void orderedDLReaderReorder(OrderedDLReader *p, int n){
1193 while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
1194 OrderedDLReader tmp = p[0];
1202 /* Given an array of doclist readers, merge their doclist elements
1203 ** into out in sorted order (by docid), dropping elements from older
1204 ** readers when there is a duplicate docid. pReaders is assumed to be
1205 ** ordered by age, oldest first.
1207 /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
1210 static void docListMerge(DataBuffer *out,
1211 DLReader *pReaders, int nReaders){
1212 OrderedDLReader readers[MERGE_COUNT];
1215 const char *pStart = 0;
1217 sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
1219 assert( nReaders>0 );
1221 dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
1225 assert( nReaders<=MERGE_COUNT );
1227 for(i=0; i<nReaders; i++){
1228 assert( pReaders[i].iType==pReaders[0].iType );
1229 readers[i].pReader = pReaders+i;
1231 n += dlrAllDataBytes(&pReaders[i]);
1233 /* Conservatively size output to sum of inputs. Output should end
1234 ** up strictly smaller than input.
1236 dataBufferExpand(out, n);
1238 /* Get the readers into sorted order. */
1240 orderedDLReaderReorder(readers+i, nReaders-i);
1243 dlwInit(&writer, pReaders[0].iType, out);
1244 while( !dlrAtEnd(readers[0].pReader) ){
1245 sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
1247 /* If this is a continuation of the current buffer to copy, extend
1248 ** that buffer. memcpy() seems to be more efficient if it has a
1249 ** lots of data to copy.
1251 if( dlrDocData(readers[0].pReader)==pStart+nStart ){
1252 nStart += dlrDocDataBytes(readers[0].pReader);
1255 dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
1257 pStart = dlrDocData(readers[0].pReader);
1258 nStart = dlrDocDataBytes(readers[0].pReader);
1259 iFirstDocid = iDocid;
1261 iLastDocid = iDocid;
1262 dlrStep(readers[0].pReader);
1264 /* Drop all of the older elements with the same docid. */
1265 for(i=1; i<nReaders &&
1266 !dlrAtEnd(readers[i].pReader) &&
1267 dlrDocid(readers[i].pReader)==iDocid; i++){
1268 dlrStep(readers[i].pReader);
1271 /* Get the readers back into order. */
1273 orderedDLReaderReorder(readers+i, nReaders-i);
1277 /* Copy over any remaining elements. */
1278 if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
1279 dlwDestroy(&writer);
1282 /* Helper function for posListUnion(). Compares the current position
1283 ** between left and right, returning as standard C idiom of <0 if
1284 ** left<right, >0 if left>right, and 0 if left==right. "End" always
1285 ** compares greater.
1287 static int posListCmp(PLReader *pLeft, PLReader *pRight){
1288 assert( pLeft->iType==pRight->iType );
1289 if( pLeft->iType==DL_DOCIDS ) return 0;
1291 if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
1292 if( plrAtEnd(pRight) ) return -1;
1294 if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
1295 if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
1297 if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
1298 if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
1299 if( pLeft->iType==DL_POSITIONS ) return 0;
1301 if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
1302 if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
1304 if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
1305 if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
1310 /* Write the union of position lists in pLeft and pRight to pOut.
1311 ** "Union" in this case meaning "All unique position tuples". Should
1312 ** work with any doclist type, though both inputs and the output
1313 ** should be the same type.
1315 static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
1316 PLReader left, right;
1319 assert( dlrDocid(pLeft)==dlrDocid(pRight) );
1320 assert( pLeft->iType==pRight->iType );
1321 assert( pLeft->iType==pOut->iType );
1323 plrInit(&left, pLeft);
1324 plrInit(&right, pRight);
1325 plwInit(&writer, pOut, dlrDocid(pLeft));
1327 while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
1328 int c = posListCmp(&left, &right);
1330 plwCopy(&writer, &left);
1333 plwCopy(&writer, &right);
1336 plwCopy(&writer, &left);
1342 plwTerminate(&writer);
1343 plwDestroy(&writer);
1348 /* Write the union of doclists in pLeft and pRight to pOut. For
1349 ** docids in common between the inputs, the union of the position
1350 ** lists is written. Inputs and outputs are always type DL_DEFAULT.
1352 static void docListUnion(
1353 const char *pLeft, int nLeft,
1354 const char *pRight, int nRight,
1355 DataBuffer *pOut /* Write the combined doclist here */
1357 DLReader left, right;
1361 if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
1365 dataBufferAppend(pOut, pLeft, nLeft);
1369 dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
1370 dlrInit(&right, DL_DEFAULT, pRight, nRight);
1371 dlwInit(&writer, DL_DEFAULT, pOut);
1373 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
1374 if( dlrAtEnd(&right) ){
1375 dlwCopy(&writer, &left);
1377 }else if( dlrAtEnd(&left) ){
1378 dlwCopy(&writer, &right);
1380 }else if( dlrDocid(&left)<dlrDocid(&right) ){
1381 dlwCopy(&writer, &left);
1383 }else if( dlrDocid(&left)>dlrDocid(&right) ){
1384 dlwCopy(&writer, &right);
1387 posListUnion(&left, &right, &writer);
1395 dlwDestroy(&writer);
1398 /* pLeft and pRight are DLReaders positioned to the same docid.
1400 ** If there are no instances in pLeft or pRight where the position
1401 ** of pLeft is one less than the position of pRight, then this
1402 ** routine adds nothing to pOut.
1404 ** If there are one or more instances where positions from pLeft
1405 ** are exactly one less than positions from pRight, then add a new
1406 ** document record to pOut. If pOut wants to hold positions, then
1407 ** include the positions from pRight that are one more than a
1408 ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1.
1410 static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight,
1412 PLReader left, right;
1416 assert( dlrDocid(pLeft)==dlrDocid(pRight) );
1417 assert( pOut->iType!=DL_POSITIONS_OFFSETS );
1419 plrInit(&left, pLeft);
1420 plrInit(&right, pRight);
1422 while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
1423 if( plrColumn(&left)<plrColumn(&right) ){
1425 }else if( plrColumn(&left)>plrColumn(&right) ){
1427 }else if( plrPosition(&left)+1<plrPosition(&right) ){
1429 }else if( plrPosition(&left)+1>plrPosition(&right) ){
1433 plwInit(&writer, pOut, dlrDocid(pLeft));
1436 plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
1443 plwTerminate(&writer);
1444 plwDestroy(&writer);
1451 /* We have two doclists with positions: pLeft and pRight.
1452 ** Write the phrase intersection of these two doclists into pOut.
1454 ** A phrase intersection means that two documents only match
1455 ** if pLeft.iPos+1==pRight.iPos.
1457 ** iType controls the type of data written to pOut. If iType is
1458 ** DL_POSITIONS, the positions are those from pRight.
1460 static void docListPhraseMerge(
1461 const char *pLeft, int nLeft,
1462 const char *pRight, int nRight,
1464 DataBuffer *pOut /* Write the combined doclist here */
1466 DLReader left, right;
1469 if( nLeft==0 || nRight==0 ) return;
1471 assert( iType!=DL_POSITIONS_OFFSETS );
1473 dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
1474 dlrInit(&right, DL_POSITIONS, pRight, nRight);
1475 dlwInit(&writer, iType, pOut);
1477 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
1478 if( dlrDocid(&left)<dlrDocid(&right) ){
1480 }else if( dlrDocid(&right)<dlrDocid(&left) ){
1483 posListPhraseMerge(&left, &right, &writer);
1491 dlwDestroy(&writer);
1494 /* We have two DL_DOCIDS doclists: pLeft and pRight.
1495 ** Write the intersection of these two doclists into pOut as a
1496 ** DL_DOCIDS doclist.
1498 static void docListAndMerge(
1499 const char *pLeft, int nLeft,
1500 const char *pRight, int nRight,
1501 DataBuffer *pOut /* Write the combined doclist here */
1503 DLReader left, right;
1506 if( nLeft==0 || nRight==0 ) return;
1508 dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1509 dlrInit(&right, DL_DOCIDS, pRight, nRight);
1510 dlwInit(&writer, DL_DOCIDS, pOut);
1512 while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
1513 if( dlrDocid(&left)<dlrDocid(&right) ){
1515 }else if( dlrDocid(&right)<dlrDocid(&left) ){
1518 dlwAdd(&writer, dlrDocid(&left));
1526 dlwDestroy(&writer);
1529 /* We have two DL_DOCIDS doclists: pLeft and pRight.
1530 ** Write the union of these two doclists into pOut as a
1531 ** DL_DOCIDS doclist.
1533 static void docListOrMerge(
1534 const char *pLeft, int nLeft,
1535 const char *pRight, int nRight,
1536 DataBuffer *pOut /* Write the combined doclist here */
1538 DLReader left, right;
1542 if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
1546 dataBufferAppend(pOut, pLeft, nLeft);
1550 dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1551 dlrInit(&right, DL_DOCIDS, pRight, nRight);
1552 dlwInit(&writer, DL_DOCIDS, pOut);
1554 while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
1555 if( dlrAtEnd(&right) ){
1556 dlwAdd(&writer, dlrDocid(&left));
1558 }else if( dlrAtEnd(&left) ){
1559 dlwAdd(&writer, dlrDocid(&right));
1561 }else if( dlrDocid(&left)<dlrDocid(&right) ){
1562 dlwAdd(&writer, dlrDocid(&left));
1564 }else if( dlrDocid(&right)<dlrDocid(&left) ){
1565 dlwAdd(&writer, dlrDocid(&right));
1568 dlwAdd(&writer, dlrDocid(&left));
1576 dlwDestroy(&writer);
1579 /* We have two DL_DOCIDS doclists: pLeft and pRight.
1580 ** Write into pOut as DL_DOCIDS doclist containing all documents that
1581 ** occur in pLeft but not in pRight.
1583 static void docListExceptMerge(
1584 const char *pLeft, int nLeft,
1585 const char *pRight, int nRight,
1586 DataBuffer *pOut /* Write the combined doclist here */
1588 DLReader left, right;
1591 if( nLeft==0 ) return;
1593 dataBufferAppend(pOut, pLeft, nLeft);
1597 dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1598 dlrInit(&right, DL_DOCIDS, pRight, nRight);
1599 dlwInit(&writer, DL_DOCIDS, pOut);
1601 while( !dlrAtEnd(&left) ){
1602 while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
1605 if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
1606 dlwAdd(&writer, dlrDocid(&left));
1613 dlwDestroy(&writer);
1616 static char *string_dup_n(const char *s, int n){
1617 char *str = sqlite3_malloc(n + 1);
1623 /* Duplicate a string; the caller must free() the returned string.
1624 * (We don't use strdup() since it is not part of the standard C library and
1625 * may not be available everywhere.) */
1626 static char *string_dup(const char *s){
1627 return string_dup_n(s, strlen(s));
1630 /* Format a string, replacing each occurrence of the % character with
1631 * zDb.zName. This may be more convenient than sqlite_mprintf()
1632 * when one string is used repeatedly in a format string.
1633 * The caller must free() the returned string. */
1634 static char *string_format(const char *zFormat,
1635 const char *zDb, const char *zName){
1638 size_t nDb = strlen(zDb);
1639 size_t nName = strlen(zName);
1640 size_t nFullTableName = nDb+1+nName;
1644 /* first compute length needed */
1645 for(p = zFormat ; *p ; ++p){
1646 len += (*p=='%' ? nFullTableName : 1);
1648 len += 1; /* for null terminator */
1650 r = result = sqlite3_malloc(len);
1651 for(p = zFormat; *p; ++p){
1653 memcpy(r, zDb, nDb);
1656 memcpy(r, zName, nName);
1663 assert( r == result + len );
1667 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
1668 const char *zFormat){
1669 char *zCommand = string_format(zFormat, zDb, zName);
1671 TRACE(("FTS2 sql: %s\n", zCommand));
1672 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
1673 sqlite3_free(zCommand);
1677 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
1678 sqlite3_stmt **ppStmt, const char *zFormat){
1679 char *zCommand = string_format(zFormat, zDb, zName);
1681 TRACE(("FTS2 prepare: %s\n", zCommand));
1682 rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
1683 sqlite3_free(zCommand);
1687 /* end utility functions */
1689 /* Forward reference */
1690 typedef struct fulltext_vtab fulltext_vtab;
1692 /* A single term in a query is represented by an instances of
1693 ** the following structure.
1695 typedef struct QueryTerm {
1696 short int nPhrase; /* How many following terms are part of the same phrase */
1697 short int iPhrase; /* This is the i-th term of a phrase. */
1698 short int iColumn; /* Column of the index that must match this term */
1699 signed char isOr; /* this term is preceded by "OR" */
1700 signed char isNot; /* this term is preceded by "-" */
1701 signed char isPrefix; /* this term is followed by "*" */
1702 char *pTerm; /* text of the term. '\000' terminated. malloced */
1703 int nTerm; /* Number of bytes in pTerm[] */
1707 /* A query string is parsed into a Query structure.
1709 * We could, in theory, allow query strings to be complicated
1710 * nested expressions with precedence determined by parentheses.
1711 * But none of the major search engines do this. (Perhaps the
1712 * feeling is that an parenthesized expression is two complex of
1713 * an idea for the average user to grasp.) Taking our lead from
1714 * the major search engines, we will allow queries to be a list
1715 * of terms (with an implied AND operator) or phrases in double-quotes,
1716 * with a single optional "-" before each non-phrase term to designate
1717 * negation and an optional OR connector.
1719 * OR binds more tightly than the implied AND, which is what the
1720 * major search engines seem to do. So, for example:
1722 * [one two OR three] ==> one AND (two OR three)
1723 * [one OR two three] ==> (one OR two) AND three
1725 * A "-" before a term matches all entries that lack that term.
1726 * The "-" must occur immediately before the term with in intervening
1727 * space. This is how the search engines do it.
1729 * A NOT term cannot be the right-hand operand of an OR. If this
1730 * occurs in the query string, the NOT is ignored:
1732 * [one OR -two] ==> one OR two
1735 typedef struct Query {
1736 fulltext_vtab *pFts; /* The full text index */
1737 int nTerms; /* Number of terms in the query */
1738 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
1739 int nextIsOr; /* Set the isOr flag on the next inserted term */
1740 int nextColumn; /* Next word parsed must be in this column */
1741 int dfltColumn; /* The default column */
1746 ** An instance of the following structure keeps track of generated
1747 ** matching-word offset information and snippets.
1749 typedef struct Snippet {
1750 int nMatch; /* Total number of matches */
1751 int nAlloc; /* Space allocated for aMatch[] */
1752 struct snippetMatch { /* One entry for each matching term */
1753 char snStatus; /* Status flag for use while constructing snippets */
1754 short int iCol; /* The column that contains the match */
1755 short int iTerm; /* The index in Query.pTerms[] of the matching term */
1756 short int nByte; /* Number of bytes in the term */
1757 int iStart; /* The offset to the first character of the term */
1758 } *aMatch; /* Points to space obtained from malloc */
1759 char *zOffset; /* Text rendering of aMatch[] */
1760 int nOffset; /* strlen(zOffset) */
1761 char *zSnippet; /* Snippet text */
1762 int nSnippet; /* strlen(zSnippet) */
1766 typedef enum QueryType {
1767 QUERY_GENERIC, /* table scan */
1768 QUERY_ROWID, /* lookup by rowid */
1769 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
1772 typedef enum fulltext_statement {
1773 CONTENT_INSERT_STMT,
1774 CONTENT_SELECT_STMT,
1775 CONTENT_UPDATE_STMT,
1776 CONTENT_DELETE_STMT,
1777 CONTENT_EXISTS_STMT,
1782 BLOCK_DELETE_ALL_STMT,
1784 SEGDIR_MAX_INDEX_STMT,
1786 SEGDIR_SELECT_LEVEL_STMT,
1789 SEGDIR_SELECT_SEGMENT_STMT,
1790 SEGDIR_SELECT_ALL_STMT,
1791 SEGDIR_DELETE_ALL_STMT,
1794 MAX_STMT /* Always at end! */
1795 } fulltext_statement;
1797 /* These must exactly match the enum above. */
1798 /* TODO(shess): Is there some risk that a statement will be used in two
1799 ** cursors at once, e.g. if a query joins a virtual table to itself?
1800 ** If so perhaps we should move some of these to the cursor object.
1802 static const char *const fulltext_zStatement[MAX_STMT] = {
1803 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
1804 /* CONTENT_SELECT */ "select * from %_content where rowid = ?",
1805 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
1806 /* CONTENT_DELETE */ "delete from %_content where rowid = ?",
1807 /* CONTENT_EXISTS */ "select rowid from %_content limit 1",
1809 /* BLOCK_INSERT */ "insert into %_segments values (?)",
1810 /* BLOCK_SELECT */ "select block from %_segments where rowid = ?",
1811 /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?",
1812 /* BLOCK_DELETE_ALL */ "delete from %_segments",
1814 /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
1815 /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
1816 /* SEGDIR_SELECT_LEVEL */
1817 "select start_block, leaves_end_block, root from %_segdir "
1818 " where level = ? order by idx",
1820 "select min(start_block), max(end_block) from %_segdir "
1821 " where level = ? and start_block <> 0",
1822 /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
1824 /* NOTE(shess): The first three results of the following two
1825 ** statements must match.
1827 /* SEGDIR_SELECT_SEGMENT */
1828 "select start_block, leaves_end_block, root from %_segdir "
1829 " where level = ? and idx = ?",
1830 /* SEGDIR_SELECT_ALL */
1831 "select start_block, leaves_end_block, root from %_segdir "
1832 " order by level desc, idx asc",
1833 /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
1834 /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
1838 ** A connection to a fulltext index is an instance of the following
1839 ** structure. The xCreate and xConnect methods create an instance
1840 ** of this structure and xDestroy and xDisconnect free that instance.
1841 ** All other methods receive a pointer to the structure as one of their
1844 struct fulltext_vtab {
1845 sqlite3_vtab base; /* Base class used by SQLite core */
1846 sqlite3 *db; /* The database connection */
1847 const char *zDb; /* logical database name */
1848 const char *zName; /* virtual table name */
1849 int nColumn; /* number of columns in virtual table */
1850 char **azColumn; /* column names. malloced */
1851 char **azContentColumn; /* column names in content table; malloced */
1852 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
1854 /* Precompiled statements which we keep as long as the table is
1857 sqlite3_stmt *pFulltextStatements[MAX_STMT];
1859 /* Precompiled statements used for segment merges. We run a
1860 ** separate select across the leaf level of each tree being merged.
1862 sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
1863 /* The statement used to prepare pLeafSelectStmts. */
1864 #define LEAF_SELECT \
1865 "select block from %_segments where rowid between ? and ? order by rowid"
1867 /* These buffer pending index updates during transactions.
1868 ** nPendingData estimates the memory size of the pending data. It
1869 ** doesn't include the hash-bucket overhead, nor any malloc
1870 ** overhead. When nPendingData exceeds kPendingThreshold, the
1871 ** buffer is flushed even before the transaction closes.
1872 ** pendingTerms stores the data, and is only valid when nPendingData
1873 ** is >=0 (nPendingData<0 means pendingTerms has not been
1874 ** initialized). iPrevDocid is the last docid written, used to make
1875 ** certain we're inserting in sorted order.
1878 #define kPendingThreshold (1*1024*1024)
1879 sqlite_int64 iPrevDocid;
1880 fts2Hash pendingTerms;
1884 ** When the core wants to do a query, it create a cursor using a
1885 ** call to xOpen. This structure is an instance of a cursor. It
1886 ** is destroyed by xClose.
1888 typedef struct fulltext_cursor {
1889 sqlite3_vtab_cursor base; /* Base class used by SQLite core */
1890 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
1891 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
1892 int eof; /* True if at End Of Results */
1893 Query q; /* Parsed query string */
1894 Snippet snippet; /* Cached snippet for the current row */
1895 int iColumn; /* Column being searched */
1896 DataBuffer result; /* Doclist results from fulltextQuery */
1897 DLReader reader; /* Result reader if result not empty */
1900 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
1901 return (fulltext_vtab *) c->base.pVtab;
1904 static const sqlite3_module fts2Module; /* forward declaration */
1906 /* Return a dynamically generated statement of the form
1907 * insert into %_content (rowid, ...) values (?, ...)
1909 static const char *contentInsertStatement(fulltext_vtab *v){
1913 initStringBuffer(&sb);
1914 append(&sb, "insert into %_content (rowid, ");
1915 appendList(&sb, v->nColumn, v->azContentColumn);
1916 append(&sb, ") values (?");
1917 for(i=0; i<v->nColumn; ++i)
1920 return stringBufferData(&sb);
1923 /* Return a dynamically generated statement of the form
1924 * update %_content set [col_0] = ?, [col_1] = ?, ...
1927 static const char *contentUpdateStatement(fulltext_vtab *v){
1931 initStringBuffer(&sb);
1932 append(&sb, "update %_content set ");
1933 for(i=0; i<v->nColumn; ++i) {
1937 append(&sb, v->azContentColumn[i]);
1938 append(&sb, " = ?");
1940 append(&sb, " where rowid = ?");
1941 return stringBufferData(&sb);
1944 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
1945 ** If the indicated statement has never been prepared, it is prepared
1946 ** and cached, otherwise the cached version is reset.
1948 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
1949 sqlite3_stmt **ppStmt){
1950 assert( iStmt<MAX_STMT );
1951 if( v->pFulltextStatements[iStmt]==NULL ){
1955 case CONTENT_INSERT_STMT:
1956 zStmt = contentInsertStatement(v); break;
1957 case CONTENT_UPDATE_STMT:
1958 zStmt = contentUpdateStatement(v); break;
1960 zStmt = fulltext_zStatement[iStmt];
1962 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
1964 if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
1965 if( rc!=SQLITE_OK ) return rc;
1967 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
1968 if( rc!=SQLITE_OK ) return rc;
1971 *ppStmt = v->pFulltextStatements[iStmt];
1975 /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
1976 ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
1977 ** where we expect no results.
1979 static int sql_single_step(sqlite3_stmt *s){
1980 int rc = sqlite3_step(s);
1981 return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
1984 /* Like sql_get_statement(), but for special replicated LEAF_SELECT
1985 ** statements. idx -1 is a special case for an uncached version of
1986 ** the statement (used in the optimize implementation).
1988 /* TODO(shess) Write version for generic statements and then share
1989 ** that between the cached-statement functions.
1991 static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
1992 sqlite3_stmt **ppStmt){
1993 assert( idx>=-1 && idx<MERGE_COUNT );
1995 return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
1996 }else if( v->pLeafSelectStmts[idx]==NULL ){
1997 int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
1999 if( rc!=SQLITE_OK ) return rc;
2001 int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
2002 if( rc!=SQLITE_OK ) return rc;
2005 *ppStmt = v->pLeafSelectStmts[idx];
2009 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */
2010 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid,
2011 sqlite3_value **pValues){
2014 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
2015 if( rc!=SQLITE_OK ) return rc;
2017 rc = sqlite3_bind_value(s, 1, rowid);
2018 if( rc!=SQLITE_OK ) return rc;
2020 for(i=0; i<v->nColumn; ++i){
2021 rc = sqlite3_bind_value(s, 2+i, pValues[i]);
2022 if( rc!=SQLITE_OK ) return rc;
2025 return sql_single_step(s);
2028 /* update %_content set col0 = pValues[0], col1 = pValues[1], ...
2029 * where rowid = [iRowid] */
2030 static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
2031 sqlite_int64 iRowid){
2034 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
2035 if( rc!=SQLITE_OK ) return rc;
2037 for(i=0; i<v->nColumn; ++i){
2038 rc = sqlite3_bind_value(s, 1+i, pValues[i]);
2039 if( rc!=SQLITE_OK ) return rc;
2042 rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid);
2043 if( rc!=SQLITE_OK ) return rc;
2045 return sql_single_step(s);
2048 static void freeStringArray(int nString, const char **pString){
2051 for (i=0 ; i < nString ; ++i) {
2052 if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
2054 sqlite3_free((void *) pString);
2057 /* select * from %_content where rowid = [iRow]
2058 * The caller must delete the returned array and all strings in it.
2059 * null fields will be NULL in the returned array.
2061 * TODO: Perhaps we should return pointer/length strings here for consistency
2062 * with other code which uses pointer/length. */
2063 static int content_select(fulltext_vtab *v, sqlite_int64 iRow,
2064 const char ***pValues){
2066 const char **values;
2072 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
2073 if( rc!=SQLITE_OK ) return rc;
2075 rc = sqlite3_bind_int64(s, 1, iRow);
2076 if( rc!=SQLITE_OK ) return rc;
2078 rc = sqlite3_step(s);
2079 if( rc!=SQLITE_ROW ) return rc;
2081 values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
2082 for(i=0; i<v->nColumn; ++i){
2083 if( sqlite3_column_type(s, i)==SQLITE_NULL ){
2086 values[i] = string_dup((char*)sqlite3_column_text(s, i));
2090 /* We expect only one row. We must execute another sqlite3_step()
2091 * to complete the iteration; otherwise the table will remain locked. */
2092 rc = sqlite3_step(s);
2093 if( rc==SQLITE_DONE ){
2098 freeStringArray(v->nColumn, values);
2102 /* delete from %_content where rowid = [iRow ] */
2103 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){
2105 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
2106 if( rc!=SQLITE_OK ) return rc;
2108 rc = sqlite3_bind_int64(s, 1, iRow);
2109 if( rc!=SQLITE_OK ) return rc;
2111 return sql_single_step(s);
2114 /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
2115 ** no rows exist, and any error in case of failure.
2117 static int content_exists(fulltext_vtab *v){
2119 int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
2120 if( rc!=SQLITE_OK ) return rc;
2122 rc = sqlite3_step(s);
2123 if( rc!=SQLITE_ROW ) return rc;
2125 /* We expect only one row. We must execute another sqlite3_step()
2126 * to complete the iteration; otherwise the table will remain locked. */
2127 rc = sqlite3_step(s);
2128 if( rc==SQLITE_DONE ) return SQLITE_ROW;
2129 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2133 /* insert into %_segments values ([pData])
2134 ** returns assigned rowid in *piBlockid
2136 static int block_insert(fulltext_vtab *v, const char *pData, int nData,
2137 sqlite_int64 *piBlockid){
2139 int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
2140 if( rc!=SQLITE_OK ) return rc;
2142 rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
2143 if( rc!=SQLITE_OK ) return rc;
2145 rc = sqlite3_step(s);
2146 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2147 if( rc!=SQLITE_DONE ) return rc;
2149 *piBlockid = sqlite3_last_insert_rowid(v->db);
2153 /* delete from %_segments
2154 ** where rowid between [iStartBlockid] and [iEndBlockid]
2156 ** Deletes the range of blocks, inclusive, used to delete the blocks
2157 ** which form a segment.
2159 static int block_delete(fulltext_vtab *v,
2160 sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
2162 int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
2163 if( rc!=SQLITE_OK ) return rc;
2165 rc = sqlite3_bind_int64(s, 1, iStartBlockid);
2166 if( rc!=SQLITE_OK ) return rc;
2168 rc = sqlite3_bind_int64(s, 2, iEndBlockid);
2169 if( rc!=SQLITE_OK ) return rc;
2171 return sql_single_step(s);
2174 /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
2175 ** at iLevel. Returns SQLITE_DONE if there are no segments at
2176 ** iLevel. Otherwise returns an error.
2178 static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
2180 int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
2181 if( rc!=SQLITE_OK ) return rc;
2183 rc = sqlite3_bind_int(s, 1, iLevel);
2184 if( rc!=SQLITE_OK ) return rc;
2186 rc = sqlite3_step(s);
2187 /* Should always get at least one row due to how max() works. */
2188 if( rc==SQLITE_DONE ) return SQLITE_DONE;
2189 if( rc!=SQLITE_ROW ) return rc;
2191 /* NULL means that there were no inputs to max(). */
2192 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
2193 rc = sqlite3_step(s);
2194 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2198 *pidx = sqlite3_column_int(s, 0);
2200 /* We expect only one row. We must execute another sqlite3_step()
2201 * to complete the iteration; otherwise the table will remain locked. */
2202 rc = sqlite3_step(s);
2203 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2204 if( rc!=SQLITE_DONE ) return rc;
2208 /* insert into %_segdir values (
2210 ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
2214 static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
2215 sqlite_int64 iStartBlockid,
2216 sqlite_int64 iLeavesEndBlockid,
2217 sqlite_int64 iEndBlockid,
2218 const char *pRootData, int nRootData){
2220 int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
2221 if( rc!=SQLITE_OK ) return rc;
2223 rc = sqlite3_bind_int(s, 1, iLevel);
2224 if( rc!=SQLITE_OK ) return rc;
2226 rc = sqlite3_bind_int(s, 2, idx);
2227 if( rc!=SQLITE_OK ) return rc;
2229 rc = sqlite3_bind_int64(s, 3, iStartBlockid);
2230 if( rc!=SQLITE_OK ) return rc;
2232 rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
2233 if( rc!=SQLITE_OK ) return rc;
2235 rc = sqlite3_bind_int64(s, 5, iEndBlockid);
2236 if( rc!=SQLITE_OK ) return rc;
2238 rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
2239 if( rc!=SQLITE_OK ) return rc;
2241 return sql_single_step(s);
2244 /* Queries %_segdir for the block span of the segments in level
2245 ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
2246 ** SQLITE_ROW if there are blocks, else an error.
2248 static int segdir_span(fulltext_vtab *v, int iLevel,
2249 sqlite_int64 *piStartBlockid,
2250 sqlite_int64 *piEndBlockid){
2252 int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
2253 if( rc!=SQLITE_OK ) return rc;
2255 rc = sqlite3_bind_int(s, 1, iLevel);
2256 if( rc!=SQLITE_OK ) return rc;
2258 rc = sqlite3_step(s);
2259 if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
2260 if( rc!=SQLITE_ROW ) return rc;
2262 /* This happens if all segments at this level are entirely inline. */
2263 if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
2264 /* We expect only one row. We must execute another sqlite3_step()
2265 * to complete the iteration; otherwise the table will remain locked. */
2266 int rc2 = sqlite3_step(s);
2267 if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
2271 *piStartBlockid = sqlite3_column_int64(s, 0);
2272 *piEndBlockid = sqlite3_column_int64(s, 1);
2274 /* We expect only one row. We must execute another sqlite3_step()
2275 * to complete the iteration; otherwise the table will remain locked. */
2276 rc = sqlite3_step(s);
2277 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2278 if( rc!=SQLITE_DONE ) return rc;
2282 /* Delete the segment blocks and segment directory records for all
2283 ** segments at iLevel.
2285 static int segdir_delete(fulltext_vtab *v, int iLevel){
2287 sqlite_int64 iStartBlockid, iEndBlockid;
2288 int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
2289 if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
2291 if( rc==SQLITE_ROW ){
2292 rc = block_delete(v, iStartBlockid, iEndBlockid);
2293 if( rc!=SQLITE_OK ) return rc;
2296 /* Delete the segment directory itself. */
2297 rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
2298 if( rc!=SQLITE_OK ) return rc;
2300 rc = sqlite3_bind_int64(s, 1, iLevel);
2301 if( rc!=SQLITE_OK ) return rc;
2303 return sql_single_step(s);
2306 /* Delete entire fts index, SQLITE_OK on success, relevant error on
2309 static int segdir_delete_all(fulltext_vtab *v){
2311 int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
2312 if( rc!=SQLITE_OK ) return rc;
2314 rc = sql_single_step(s);
2315 if( rc!=SQLITE_OK ) return rc;
2317 rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
2318 if( rc!=SQLITE_OK ) return rc;
2320 return sql_single_step(s);
2323 /* Returns SQLITE_OK with *pnSegments set to the number of entries in
2324 ** %_segdir and *piMaxLevel set to the highest level which has a
2325 ** segment. Otherwise returns the SQLite error which caused failure.
2327 static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
2329 int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
2330 if( rc!=SQLITE_OK ) return rc;
2332 rc = sqlite3_step(s);
2333 /* TODO(shess): This case should not be possible? Should stronger
2334 ** measures be taken if it happens?
2336 if( rc==SQLITE_DONE ){
2341 if( rc!=SQLITE_ROW ) return rc;
2343 *pnSegments = sqlite3_column_int(s, 0);
2344 *piMaxLevel = sqlite3_column_int(s, 1);
2346 /* We expect only one row. We must execute another sqlite3_step()
2347 * to complete the iteration; otherwise the table will remain locked. */
2348 rc = sqlite3_step(s);
2349 if( rc==SQLITE_DONE ) return SQLITE_OK;
2350 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
2354 /* TODO(shess) clearPendingTerms() is far down the file because
2355 ** writeZeroSegment() is far down the file because LeafWriter is far
2356 ** down the file. Consider refactoring the code to move the non-vtab
2357 ** code above the vtab code so that we don't need this forward
2360 static int clearPendingTerms(fulltext_vtab *v);
2363 ** Free the memory used to contain a fulltext_vtab structure.
2365 static void fulltext_vtab_destroy(fulltext_vtab *v){
2368 TRACE(("FTS2 Destroy %p\n", v));
2369 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
2370 if( v->pFulltextStatements[iStmt]!=NULL ){
2371 sqlite3_finalize(v->pFulltextStatements[iStmt]);
2372 v->pFulltextStatements[iStmt] = NULL;
2376 for( i=0; i<MERGE_COUNT; i++ ){
2377 if( v->pLeafSelectStmts[i]!=NULL ){
2378 sqlite3_finalize(v->pLeafSelectStmts[i]);
2379 v->pLeafSelectStmts[i] = NULL;
2383 if( v->pTokenizer!=NULL ){
2384 v->pTokenizer->pModule->xDestroy(v->pTokenizer);
2385 v->pTokenizer = NULL;
2388 clearPendingTerms(v);
2390 sqlite3_free(v->azColumn);
2391 for(i = 0; i < v->nColumn; ++i) {
2392 sqlite3_free(v->azContentColumn[i]);
2394 sqlite3_free(v->azContentColumn);
2399 ** Token types for parsing the arguments to xConnect or xCreate.
2401 #define TOKEN_EOF 0 /* End of file */
2402 #define TOKEN_SPACE 1 /* Any kind of whitespace */
2403 #define TOKEN_ID 2 /* An identifier */
2404 #define TOKEN_STRING 3 /* A string literal */
2405 #define TOKEN_PUNCT 4 /* A single punctuation character */
2408 ** If X is a character that can be used in an identifier then
2409 ** IdChar(X) will be true. Otherwise it is false.
2411 ** For ASCII, any character with the high-order bit set is
2412 ** allowed in an identifier. For 7-bit characters,
2413 ** sqlite3IsIdChar[X] must be 1.
2415 ** Ticket #1066. the SQL standard does not allow '$' in the
2416 ** middle of identfiers. But many SQL implementations do.
2417 ** SQLite will allow '$' in identifiers for compatibility.
2418 ** But the feature is undocumented.
2420 static const char isIdChar[] = {
2421 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
2422 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
2423 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
2424 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
2425 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
2426 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
2427 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
2429 #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20]))
2433 ** Return the length of the token that begins at z[0].
2434 ** Store the token type in *tokenType before returning.
2436 static int getToken(const char *z, int *tokenType){
2440 *tokenType = TOKEN_EOF;
2443 case ' ': case '\t': case '\n': case '\f': case '\r': {
2444 for(i=1; safe_isspace(z[i]); i++){}
2445 *tokenType = TOKEN_SPACE;
2452 for(i=1; (c=z[i])!=0; i++){
2454 if( z[i+1]==delim ){
2461 *tokenType = TOKEN_STRING;
2465 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
2466 *tokenType = TOKEN_ID;
2473 for(i=1; IdChar(z[i]); i++){}
2474 *tokenType = TOKEN_ID;
2478 *tokenType = TOKEN_PUNCT;
2483 ** A token extracted from a string is an instance of the following
2486 typedef struct Token {
2487 const char *z; /* Pointer to token text. Not '\000' terminated */
2488 short int n; /* Length of the token text in bytes. */
2492 ** Given a input string (which is really one of the argv[] parameters
2493 ** passed into xConnect or xCreate) split the string up into tokens.
2494 ** Return an array of pointers to '\000' terminated strings, one string
2495 ** for each non-whitespace token.
2497 ** The returned array is terminated by a single NULL pointer.
2499 ** Space to hold the returned array is obtained from a single
2500 ** malloc and should be freed by passing the return value to free().
2501 ** The individual strings within the token list are all a part of
2502 ** the single memory allocation and will all be freed at once.
2504 static char **tokenizeString(const char *z, int *pnToken){
2506 Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
2513 n = getToken(z, &e);
2514 if( e!=TOKEN_SPACE ){
2515 aToken[nToken].z = z;
2516 aToken[nToken].n = n;
2522 azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
2523 zCopy = (char*)&azToken[nToken];
2525 for(i=0; i<nToken; i++){
2528 memcpy(zCopy, aToken[i].z, n);
2532 azToken[nToken] = 0;
2533 sqlite3_free(aToken);
2539 ** Convert an SQL-style quoted string into a normal string by removing
2540 ** the quote characters. The conversion is done in-place. If the
2541 ** input does not begin with a quote character, then this routine
2546 ** "abc" becomes abc
2547 ** 'xyz' becomes xyz
2548 ** [pqr] becomes pqr
2549 ** `mno` becomes mno
2551 static void dequoteString(char *z){
2559 case '`': break; /* For MySQL compatibility */
2560 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
2563 for(i=1, j=0; z[i]; i++){
2565 if( z[i+1]==quote ){
2579 ** The input azIn is a NULL-terminated list of tokens. Remove the first
2580 ** token and all punctuation tokens. Remove the quotes from
2581 ** around string literal tokens.
2585 ** input: tokenize chinese ( 'simplifed' , 'mixed' )
2586 ** output: chinese simplifed mixed
2590 ** input: delimiters ( '[' , ']' , '...' )
2593 static void tokenListToIdList(char **azIn){
2596 for(i=0, j=-1; azIn[i]; i++){
2597 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
2598 dequoteString(azIn[i]);
2611 ** Find the first alphanumeric token in the string zIn. Null-terminate
2612 ** this token. Remove any quotation marks. And return a pointer to
2615 static char *firstToken(char *zIn, char **pzTail){
2618 n = getToken(zIn, &ttype);
2619 if( ttype==TOKEN_SPACE ){
2621 }else if( ttype==TOKEN_EOF ){
2634 /* Return true if...
2636 ** * s begins with the string t, ignoring case
2637 ** * s is longer than t
2638 ** * The first character of s beyond t is not a alphanumeric
2640 ** Ignore leading space in *s.
2642 ** To put it another way, return true if the first token of
2645 static int startsWith(const char *s, const char *t){
2646 while( safe_isspace(*s) ){ s++; }
2648 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
2650 return *s!='_' && !safe_isalnum(*s);
2654 ** An instance of this structure defines the "spec" of a
2655 ** full text index. This structure is populated by parseSpec
2656 ** and use by fulltextConnect and fulltextCreate.
2658 typedef struct TableSpec {
2659 const char *zDb; /* Logical database name */
2660 const char *zName; /* Name of the full-text index */
2661 int nColumn; /* Number of columns to be indexed */
2662 char **azColumn; /* Original names of columns to be indexed */
2663 char **azContentColumn; /* Column names for %_content */
2664 char **azTokenizer; /* Name of tokenizer and its arguments */
2668 ** Reclaim all of the memory used by a TableSpec
2670 static void clearTableSpec(TableSpec *p) {
2671 sqlite3_free(p->azColumn);
2672 sqlite3_free(p->azContentColumn);
2673 sqlite3_free(p->azTokenizer);
2676 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
2678 * CREATE VIRTUAL TABLE email
2679 * USING fts2(subject, body, tokenize mytokenizer(myarg))
2681 * We return parsed information in a TableSpec structure.
2684 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
2689 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
2692 /* Current interface:
2693 ** argv[0] - module name
2694 ** argv[1] - database name
2695 ** argv[2] - table name
2696 ** argv[3..] - columns, optionally followed by tokenizer specification
2697 ** and snippet delimiters specification.
2700 /* Make a copy of the complete argv[][] array in a single allocation.
2701 ** The argv[][] array is read-only and transient. We can write to the
2702 ** copy in order to modify things and the copy is persistent.
2705 for(i=n=0; i<argc; i++){
2706 n += strlen(argv[i]) + 1;
2708 azArg = sqlite3_malloc( sizeof(char*)*argc + n );
2710 return SQLITE_NOMEM;
2712 z = (char*)&azArg[argc];
2713 for(i=0; i<argc; i++){
2719 /* Identify the column names and the tokenizer and delimiter arguments
2720 ** in the argv[][] array.
2722 pSpec->zDb = azArg[1];
2723 pSpec->zName = azArg[2];
2725 pSpec->azColumn = azArg;
2726 zTokenizer = "tokenize simple";
2727 for(i=3; i<argc; ++i){
2728 if( startsWith(azArg[i],"tokenize") ){
2729 zTokenizer = azArg[i];
2731 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
2735 if( pSpec->nColumn==0 ){
2736 azArg[0] = "content";
2741 ** Construct the list of content column names.
2743 ** Each content column name will be of the form cNNAAAA
2744 ** where NN is the column number and AAAA is the sanitized
2745 ** column name. "sanitized" means that special characters are
2746 ** converted to "_". The cNN prefix guarantees that all column
2747 ** names are unique.
2749 ** The AAAA suffix is not strictly necessary. It is included
2750 ** for the convenience of people who might examine the generated
2751 ** %_content table and wonder what the columns are used for.
2753 pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
2754 if( pSpec->azContentColumn==0 ){
2755 clearTableSpec(pSpec);
2756 return SQLITE_NOMEM;
2758 for(i=0; i<pSpec->nColumn; i++){
2760 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
2761 for (p = pSpec->azContentColumn[i]; *p ; ++p) {
2762 if( !safe_isalnum(*p) ) *p = '_';
2767 ** Parse the tokenizer specification string.
2769 pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
2770 tokenListToIdList(pSpec->azTokenizer);
2776 ** Generate a CREATE TABLE statement that describes the schema of
2777 ** the virtual table. Return a pointer to this schema string.
2779 ** Space is obtained from sqlite3_mprintf() and should be freed
2780 ** using sqlite3_free().
2782 static char *fulltextSchema(
2783 int nColumn, /* Number of columns */
2784 const char *const* azColumn, /* List of columns */
2785 const char *zTableName /* Name of the table */
2788 char *zSchema, *zNext;
2789 const char *zSep = "(";
2790 zSchema = sqlite3_mprintf("CREATE TABLE x");
2791 for(i=0; i<nColumn; i++){
2792 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
2793 sqlite3_free(zSchema);
2797 zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName);
2798 sqlite3_free(zSchema);
2803 ** Build a new sqlite3_vtab structure that will describe the
2804 ** fulltext index defined by spec.
2806 static int constructVtab(
2807 sqlite3 *db, /* The SQLite database connection */
2808 fts2Hash *pHash, /* Hash table containing tokenizers */
2809 TableSpec *spec, /* Parsed spec information from parseSpec() */
2810 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
2811 char **pzErr /* Write any error message here */
2815 fulltext_vtab *v = 0;
2816 const sqlite3_tokenizer_module *m = NULL;
2819 char const *zTok; /* Name of tokenizer to use for this fts table */
2820 int nTok; /* Length of zTok, including nul terminator */
2822 v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
2823 if( v==0 ) return SQLITE_NOMEM;
2825 /* sqlite will initialize v->base */
2827 v->zDb = spec->zDb; /* Freed when azColumn is freed */
2828 v->zName = spec->zName; /* Freed when azColumn is freed */
2829 v->nColumn = spec->nColumn;
2830 v->azContentColumn = spec->azContentColumn;
2831 spec->azContentColumn = 0;
2832 v->azColumn = spec->azColumn;
2835 if( spec->azTokenizer==0 ){
2836 return SQLITE_NOMEM;
2839 zTok = spec->azTokenizer[0];
2843 nTok = strlen(zTok)+1;
2845 m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok);
2847 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
2852 for(n=0; spec->azTokenizer[n]; n++){}
2854 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
2857 rc = m->xCreate(0, 0, &v->pTokenizer);
2859 if( rc!=SQLITE_OK ) goto err;
2860 v->pTokenizer->pModule = m;
2862 /* TODO: verify the existence of backing tables foo_content, foo_term */
2864 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
2866 rc = sqlite3_declare_vtab(db, schema);
2867 sqlite3_free(schema);
2868 if( rc!=SQLITE_OK ) goto err;
2870 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
2872 /* Indicate that the buffer is not live. */
2873 v->nPendingData = -1;
2876 TRACE(("FTS2 Connect %p\n", v));
2881 fulltext_vtab_destroy(v);
2885 static int fulltextConnect(
2888 int argc, const char *const*argv,
2889 sqlite3_vtab **ppVTab,
2893 int rc = parseSpec(&spec, argc, argv, pzErr);
2894 if( rc!=SQLITE_OK ) return rc;
2896 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
2897 clearTableSpec(&spec);
2901 /* The %_content table holds the text of each document, with
2902 ** the rowid used as the docid.
2904 /* TODO(shess) This comment needs elaboration to match the updated
2905 ** code. Work it into the top-of-file comment at that time.
2907 static int fulltextCreate(sqlite3 *db, void *pAux,
2908 int argc, const char * const *argv,
2909 sqlite3_vtab **ppVTab, char **pzErr){
2912 StringBuffer schema;
2913 TRACE(("FTS2 Create\n"));
2915 rc = parseSpec(&spec, argc, argv, pzErr);
2916 if( rc!=SQLITE_OK ) return rc;
2918 initStringBuffer(&schema);
2919 append(&schema, "CREATE TABLE %_content(");
2920 appendList(&schema, spec.nColumn, spec.azContentColumn);
2921 append(&schema, ")");
2922 rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
2923 stringBufferDestroy(&schema);
2924 if( rc!=SQLITE_OK ) goto out;
2926 rc = sql_exec(db, spec.zDb, spec.zName,
2927 "create table %_segments(block blob);");
2928 if( rc!=SQLITE_OK ) goto out;
2930 rc = sql_exec(db, spec.zDb, spec.zName,
2931 "create table %_segdir("
2934 " start_block integer,"
2935 " leaves_end_block integer,"
2936 " end_block integer,"
2938 " primary key(level, idx)"
2940 if( rc!=SQLITE_OK ) goto out;
2942 rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr);
2945 clearTableSpec(&spec);
2949 /* Decide how to handle an SQL query. */
2950 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
2952 TRACE(("FTS2 BestIndex\n"));
2954 for(i=0; i<pInfo->nConstraint; ++i){
2955 const struct sqlite3_index_constraint *pConstraint;
2956 pConstraint = &pInfo->aConstraint[i];
2957 if( pConstraint->usable ) {
2958 if( pConstraint->iColumn==-1 &&
2959 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
2960 pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */
2961 TRACE(("FTS2 QUERY_ROWID\n"));
2962 } else if( pConstraint->iColumn>=0 &&
2963 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
2964 /* full-text search */
2965 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
2966 TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
2969 pInfo->aConstraintUsage[i].argvIndex = 1;
2970 pInfo->aConstraintUsage[i].omit = 1;
2972 /* An arbitrary value for now.
2973 * TODO: Perhaps rowid matches should be considered cheaper than
2974 * full-text searches. */
2975 pInfo->estimatedCost = 1.0;
2980 pInfo->idxNum = QUERY_GENERIC;
2984 static int fulltextDisconnect(sqlite3_vtab *pVTab){
2985 TRACE(("FTS2 Disconnect %p\n", pVTab));
2986 fulltext_vtab_destroy((fulltext_vtab *)pVTab);
2990 static int fulltextDestroy(sqlite3_vtab *pVTab){
2991 fulltext_vtab *v = (fulltext_vtab *)pVTab;
2994 TRACE(("FTS2 Destroy %p\n", pVTab));
2995 rc = sql_exec(v->db, v->zDb, v->zName,
2996 "drop table if exists %_content;"
2997 "drop table if exists %_segments;"
2998 "drop table if exists %_segdir;"
3000 if( rc!=SQLITE_OK ) return rc;
3002 fulltext_vtab_destroy((fulltext_vtab *)pVTab);
3006 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
3009 c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
3011 memset(c, 0, sizeof(fulltext_cursor));
3012 /* sqlite will initialize c->base */
3013 *ppCursor = &c->base;
3014 TRACE(("FTS2 Open %p: %p\n", pVTab, c));
3017 return SQLITE_NOMEM;
3022 /* Free all of the dynamically allocated memory held by *q
3024 static void queryClear(Query *q){
3026 for(i = 0; i < q->nTerms; ++i){
3027 sqlite3_free(q->pTerms[i].pTerm);
3029 sqlite3_free(q->pTerms);
3033 /* Free all of the dynamically allocated memory held by the
3036 static void snippetClear(Snippet *p){
3037 sqlite3_free(p->aMatch);
3038 sqlite3_free(p->zOffset);
3039 sqlite3_free(p->zSnippet);
3043 ** Append a single entry to the p->aMatch[] log.
3045 static void snippetAppendMatch(
3046 Snippet *p, /* Append the entry to this snippet */
3047 int iCol, int iTerm, /* The column and query term */
3048 int iStart, int nByte /* Offset and size of the match */
3051 struct snippetMatch *pMatch;
3052 if( p->nMatch+1>=p->nAlloc ){
3053 p->nAlloc = p->nAlloc*2 + 10;
3054 p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
3062 pMatch = &p->aMatch[i];
3063 pMatch->iCol = iCol;
3064 pMatch->iTerm = iTerm;
3065 pMatch->iStart = iStart;
3066 pMatch->nByte = nByte;
3070 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
3072 #define FTS2_ROTOR_SZ (32)
3073 #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1)
3076 ** Add entries to pSnippet->aMatch[] for every match that occurs against
3077 ** document zDoc[0..nDoc-1] which is stored in column iColumn.
3079 static void snippetOffsetsOfColumn(
3086 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
3087 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
3088 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
3089 fulltext_vtab *pVtab; /* The full text index */
3090 int nColumn; /* Number of columns in the index */
3091 const QueryTerm *aTerm; /* Query string terms */
3092 int nTerm; /* Number of query string terms */
3093 int i, j; /* Loop counters */
3094 int rc; /* Return code */
3095 unsigned int match, prevMatch; /* Phrase search bitmasks */
3096 const char *zToken; /* Next token from the tokenizer */
3097 int nToken; /* Size of zToken */
3098 int iBegin, iEnd, iPos; /* Offsets of beginning and end */
3100 /* The following variables keep a circular buffer of the last
3102 unsigned int iRotor = 0; /* Index of current token */
3103 int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */
3104 int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */
3106 pVtab = pQuery->pFts;
3107 nColumn = pVtab->nColumn;
3108 pTokenizer = pVtab->pTokenizer;
3109 pTModule = pTokenizer->pModule;
3110 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
3112 pTCursor->pTokenizer = pTokenizer;
3113 aTerm = pQuery->pTerms;
3114 nTerm = pQuery->nTerms;
3115 if( nTerm>=FTS2_ROTOR_SZ ){
3116 nTerm = FTS2_ROTOR_SZ - 1;
3120 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
3122 iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin;
3123 iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin;
3125 for(i=0; i<nTerm; i++){
3127 iCol = aTerm[i].iColumn;
3128 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
3129 if( aTerm[i].nTerm>nToken ) continue;
3130 if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
3131 assert( aTerm[i].nTerm<=nToken );
3132 if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
3133 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
3135 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
3136 for(j=aTerm[i].iPhrase-1; j>=0; j--){
3137 int k = (iRotor-j) & FTS2_ROTOR_MASK;
3138 snippetAppendMatch(pSnippet, iColumn, i-j,
3139 iRotorBegin[k], iRotorLen[k]);
3143 prevMatch = match<<1;
3146 pTModule->xClose(pTCursor);
3151 ** Compute all offsets for the current row of the query.
3152 ** If the offsets have already been computed, this routine is a no-op.
3154 static void snippetAllOffsets(fulltext_cursor *p){
3158 fulltext_vtab *pFts;
3160 if( p->snippet.nMatch ) return;
3161 if( p->q.nTerms==0 ) return;
3163 nColumn = pFts->nColumn;
3164 iColumn = (p->iCursorType - QUERY_FULLTEXT);
3165 if( iColumn<0 || iColumn>=nColumn ){
3172 for(i=iFirst; i<=iLast; i++){
3175 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
3176 nDoc = sqlite3_column_bytes(p->pStmt, i+1);
3177 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
3182 ** Convert the information in the aMatch[] array of the snippet
3183 ** into the string zOffset[0..nOffset-1].
3185 static void snippetOffsetText(Snippet *p){
3190 if( p->zOffset ) return;
3191 initStringBuffer(&sb);
3192 for(i=0; i<p->nMatch; i++){
3193 struct snippetMatch *pMatch = &p->aMatch[i];
3195 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
3196 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
3200 p->zOffset = stringBufferData(&sb);
3201 p->nOffset = stringBufferLength(&sb);
3205 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
3206 ** of matching words some of which might be in zDoc. zDoc is column
3209 ** iBreak is suggested spot in zDoc where we could begin or end an
3210 ** excerpt. Return a value similar to iBreak but possibly adjusted
3211 ** to be a little left or right so that the break point is better.
3213 static int wordBoundary(
3214 int iBreak, /* The suggested break point */
3215 const char *zDoc, /* Document text */
3216 int nDoc, /* Number of bytes in zDoc[] */
3217 struct snippetMatch *aMatch, /* Matching words */
3218 int nMatch, /* Number of entries in aMatch[] */
3219 int iCol /* The column number for zDoc[] */
3225 if( iBreak>=nDoc-10 ){
3228 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
3229 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
3231 if( aMatch[i].iStart<iBreak+10 ){
3232 return aMatch[i].iStart;
3234 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
3235 return aMatch[i-1].iStart;
3238 for(i=1; i<=10; i++){
3239 if( safe_isspace(zDoc[iBreak-i]) ){
3240 return iBreak - i + 1;
3242 if( safe_isspace(zDoc[iBreak+i]) ){
3243 return iBreak + i + 1;
3252 ** Allowed values for Snippet.aMatch[].snStatus
3254 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
3255 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
3258 ** Generate the text of a snippet.
3260 static void snippetText(
3261 fulltext_cursor *pCursor, /* The cursor we need the snippet for */
3262 const char *zStartMark, /* Markup to appear before each match */
3263 const char *zEndMark, /* Markup to appear after each match */
3264 const char *zEllipsis /* Ellipsis mark */
3267 struct snippetMatch *aMatch;
3277 int tailEllipsis = 0;
3281 sqlite3_free(pCursor->snippet.zSnippet);
3282 pCursor->snippet.zSnippet = 0;
3283 aMatch = pCursor->snippet.aMatch;
3284 nMatch = pCursor->snippet.nMatch;
3285 initStringBuffer(&sb);
3287 for(i=0; i<nMatch; i++){
3288 aMatch[i].snStatus = SNIPPET_IGNORE;
3291 for(i=0; i<pCursor->q.nTerms; i++){
3292 for(j=0; j<nMatch; j++){
3293 if( aMatch[j].iTerm==i ){
3294 aMatch[j].snStatus = SNIPPET_DESIRED;
3304 for(i=0; i<nMatch && nDesired>0; i++){
3305 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
3307 iCol = aMatch[i].iCol;
3308 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
3309 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
3310 iStart = aMatch[i].iStart - 40;
3311 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
3315 if( iCol==tailCol && iStart<=tailOffset+20 ){
3316 iStart = tailOffset;
3318 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
3319 trimWhiteSpace(&sb);
3320 appendWhiteSpace(&sb);
3321 append(&sb, zEllipsis);
3322 appendWhiteSpace(&sb);
3324 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
3325 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
3326 if( iEnd>=nDoc-10 ){
3332 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
3333 while( iStart<iEnd ){
3334 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
3335 && aMatch[iMatch].iCol<=iCol ){
3338 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
3339 && aMatch[iMatch].iCol==iCol ){
3340 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
3341 iStart = aMatch[iMatch].iStart;
3342 append(&sb, zStartMark);
3343 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
3344 append(&sb, zEndMark);
3345 iStart += aMatch[iMatch].nByte;
3346 for(j=iMatch+1; j<nMatch; j++){
3347 if( aMatch[j].iTerm==aMatch[iMatch].iTerm
3348 && aMatch[j].snStatus==SNIPPET_DESIRED ){
3350 aMatch[j].snStatus = SNIPPET_IGNORE;
3354 nappend(&sb, &zDoc[iStart], iEnd - iStart);
3361 trimWhiteSpace(&sb);
3363 appendWhiteSpace(&sb);
3364 append(&sb, zEllipsis);
3366 pCursor->snippet.zSnippet = stringBufferData(&sb);
3367 pCursor->snippet.nSnippet = stringBufferLength(&sb);
3372 ** Close the cursor. For additional information see the documentation
3373 ** on the xClose method of the virtual table interface.
3375 static int fulltextClose(sqlite3_vtab_cursor *pCursor){
3376 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3377 TRACE(("FTS2 Close %p\n", c));
3378 sqlite3_finalize(c->pStmt);
3380 snippetClear(&c->snippet);
3381 if( c->result.nData!=0 ) dlrDestroy(&c->reader);
3382 dataBufferDestroy(&c->result);
3387 static int fulltextNext(sqlite3_vtab_cursor *pCursor){
3388 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3391 TRACE(("FTS2 Next %p\n", pCursor));
3392 snippetClear(&c->snippet);
3393 if( c->iCursorType < QUERY_FULLTEXT ){
3394 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
3395 rc = sqlite3_step(c->pStmt);
3407 } else { /* full-text query */
3408 rc = sqlite3_reset(c->pStmt);
3409 if( rc!=SQLITE_OK ) return rc;
3411 if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
3415 rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
3416 dlrStep(&c->reader);
3417 if( rc!=SQLITE_OK ) return rc;
3418 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
3419 rc = sqlite3_step(c->pStmt);
3420 if( rc==SQLITE_ROW ){ /* the case we expect */
3424 /* an error occurred; abort */
3425 return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
3430 /* TODO(shess) If we pushed LeafReader to the top of the file, or to
3431 ** another file, term_select() could be pushed above
3434 static int termSelect(fulltext_vtab *v, int iColumn,
3435 const char *pTerm, int nTerm, int isPrefix,
3436 DocListType iType, DataBuffer *out);
3438 /* Return a DocList corresponding to the query term *pTerm. If *pTerm
3439 ** is the first term of a phrase query, go ahead and evaluate the phrase
3440 ** query and return the doclist for the entire phrase query.
3442 ** The resulting DL_DOCIDS doclist is stored in pResult, which is
3445 static int docListOfTerm(
3446 fulltext_vtab *v, /* The full text index */
3447 int iColumn, /* column to restrict to. No restriction if >=nColumn */
3448 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
3449 DataBuffer *pResult /* Write the result here */
3451 DataBuffer left, right, new;
3454 /* No phrase search if no position info. */
3455 assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
3457 /* This code should never be called with buffered updates. */
3458 assert( v->nPendingData<0 );
3460 dataBufferInit(&left, 0);
3461 rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
3462 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left);
3464 for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
3465 dataBufferInit(&right, 0);
3466 rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
3467 pQTerm[i].isPrefix, DL_POSITIONS, &right);
3469 dataBufferDestroy(&left);
3472 dataBufferInit(&new, 0);
3473 docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
3474 i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new);
3475 dataBufferDestroy(&left);
3476 dataBufferDestroy(&right);
3483 /* Add a new term pTerm[0..nTerm-1] to the query *q.
3485 static void queryAdd(Query *q, const char *pTerm, int nTerm){
3488 q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
3493 t = &q->pTerms[q->nTerms - 1];
3495 t->pTerm = sqlite3_malloc(nTerm+1);
3496 memcpy(t->pTerm, pTerm, nTerm);
3497 t->pTerm[nTerm] = 0;
3499 t->isOr = q->nextIsOr;
3502 t->iColumn = q->nextColumn;
3503 q->nextColumn = q->dfltColumn;
3507 ** Check to see if the string zToken[0...nToken-1] matches any
3508 ** column name in the virtual table. If it does,
3509 ** return the zero-indexed column number. If not, return -1.
3511 static int checkColumnSpecifier(
3512 fulltext_vtab *pVtab, /* The virtual table */
3513 const char *zToken, /* Text of the token */
3514 int nToken /* Number of characters in the token */
3517 for(i=0; i<pVtab->nColumn; i++){
3518 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
3519 && pVtab->azColumn[i][nToken]==0 ){
3527 ** Parse the text at pSegment[0..nSegment-1]. Add additional terms
3528 ** to the query being assemblied in pQuery.
3530 ** inPhrase is true if pSegment[0..nSegement-1] is contained within
3531 ** double-quotes. If inPhrase is true, then the first term
3532 ** is marked with the number of terms in the phrase less one and
3533 ** OR and "-" syntax is ignored. If inPhrase is false, then every
3534 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
3536 static int tokenizeSegment(
3537 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
3538 const char *pSegment, int nSegment, /* Query expression being parsed */
3539 int inPhrase, /* True if within "..." */
3540 Query *pQuery /* Append results here */
3542 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
3543 sqlite3_tokenizer_cursor *pCursor;
3544 int firstIndex = pQuery->nTerms;
3548 int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor);
3549 if( rc!=SQLITE_OK ) return rc;
3550 pCursor->pTokenizer = pTokenizer;
3554 int nToken, iBegin, iEnd, iPos;
3556 rc = pModule->xNext(pCursor,
3558 &iBegin, &iEnd, &iPos);
3559 if( rc!=SQLITE_OK ) break;
3561 pSegment[iEnd]==':' &&
3562 (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){
3563 pQuery->nextColumn = iCol;
3566 if( !inPhrase && pQuery->nTerms>0 && nToken==2
3567 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){
3568 pQuery->nextIsOr = 1;
3571 queryAdd(pQuery, pToken, nToken);
3572 if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){
3573 pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
3575 if( iEnd<nSegment && pSegment[iEnd]=='*' ){
3576 pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
3578 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
3584 if( inPhrase && pQuery->nTerms>firstIndex ){
3585 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
3588 return pModule->xClose(pCursor);
3591 /* Parse a query string, yielding a Query object pQuery.
3593 ** The calling function will need to queryClear() to clean up
3594 ** the dynamically allocated memory held by pQuery.
3596 static int parseQuery(
3597 fulltext_vtab *v, /* The fulltext index */
3598 const char *zInput, /* Input text of the query string */
3599 int nInput, /* Size of the input text */
3600 int dfltColumn, /* Default column of the index to match against */
3601 Query *pQuery /* Write the parse results here. */
3603 int iInput, inPhrase = 0;
3605 if( zInput==0 ) nInput = 0;
3606 if( nInput<0 ) nInput = strlen(zInput);
3608 pQuery->pTerms = NULL;
3609 pQuery->nextIsOr = 0;
3610 pQuery->nextColumn = dfltColumn;
3611 pQuery->dfltColumn = dfltColumn;
3614 for(iInput=0; iInput<nInput; ++iInput){
3616 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
3618 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
3623 assert( zInput[i]=='"' );
3624 inPhrase = !inPhrase;
3629 /* unmatched quote */
3631 return SQLITE_ERROR;
3636 /* TODO(shess) Refactor the code to remove this forward decl. */
3637 static int flushPendingTerms(fulltext_vtab *v);
3639 /* Perform a full-text query using the search expression in
3640 ** zInput[0..nInput-1]. Return a list of matching documents
3643 ** Queries must match column iColumn. Or if iColumn>=nColumn
3644 ** they are allowed to match against any column.
3646 static int fulltextQuery(
3647 fulltext_vtab *v, /* The full text index */
3648 int iColumn, /* Match against this column by default */
3649 const char *zInput, /* The query string */
3650 int nInput, /* Number of bytes in zInput[] */
3651 DataBuffer *pResult, /* Write the result doclist here */
3652 Query *pQuery /* Put parsed query string here */
3655 DataBuffer left, right, or, new;
3659 /* TODO(shess) Instead of flushing pendingTerms, we could query for
3660 ** the relevant term and merge the doclist into what we receive from
3661 ** the database. Wait and see if this is a common issue, first.
3663 ** A good reason not to flush is to not generate update-related
3664 ** error codes from here.
3667 /* Flush any buffered updates before executing the query. */
3668 rc = flushPendingTerms(v);
3669 if( rc!=SQLITE_OK ) return rc;
3671 /* TODO(shess) I think that the queryClear() calls below are not
3672 ** necessary, because fulltextClose() already clears the query.
3674 rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
3675 if( rc!=SQLITE_OK ) return rc;
3677 /* Empty or NULL queries return no results. */
3678 if( pQuery->nTerms==0 ){
3679 dataBufferInit(pResult, 0);
3683 /* Merge AND terms. */
3684 /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
3685 aTerm = pQuery->pTerms;
3686 for(i = 0; i<pQuery->nTerms; i=iNext){
3687 if( aTerm[i].isNot ){
3688 /* Handle all NOT terms in a separate pass */
3690 iNext = i + aTerm[i].nPhrase+1;
3693 iNext = i + aTerm[i].nPhrase + 1;
3694 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
3696 if( i!=nNot ) dataBufferDestroy(&left);
3700 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
3701 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
3702 iNext += aTerm[iNext].nPhrase + 1;
3704 if( i!=nNot ) dataBufferDestroy(&left);
3705 dataBufferDestroy(&right);
3709 dataBufferInit(&new, 0);
3710 docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
3711 dataBufferDestroy(&right);
3712 dataBufferDestroy(&or);
3715 if( i==nNot ){ /* first term processed. */
3718 dataBufferInit(&new, 0);
3719 docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
3720 dataBufferDestroy(&right);
3721 dataBufferDestroy(&left);
3726 if( nNot==pQuery->nTerms ){
3727 /* We do not yet know how to handle a query of only NOT terms */
3728 return SQLITE_ERROR;
3731 /* Do the EXCEPT terms */
3732 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
3733 if( !aTerm[i].isNot ) continue;
3734 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
3737 dataBufferDestroy(&left);
3740 dataBufferInit(&new, 0);
3741 docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
3742 dataBufferDestroy(&right);
3743 dataBufferDestroy(&left);
3752 ** This is the xFilter interface for the virtual table. See
3753 ** the virtual table xFilter method documentation for additional
3756 ** If idxNum==QUERY_GENERIC then do a full table scan against
3757 ** the %_content table.
3759 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry
3760 ** in the %_content table.
3762 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The
3763 ** column on the left-hand side of the MATCH operator is column
3764 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
3765 ** side of the MATCH operator.
3767 /* TODO(shess) Upgrade the cursor initialization and destruction to
3768 ** account for fulltextFilter() being called multiple times on the
3769 ** same cursor. The current solution is very fragile. Apply fix to
3770 ** fts2 as appropriate.
3772 static int fulltextFilter(
3773 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3774 int idxNum, const char *idxStr, /* Which indexing scheme to use */
3775 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
3777 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3778 fulltext_vtab *v = cursor_vtab(c);
3781 TRACE(("FTS2 Filter %p\n",pCursor));
3783 /* If the cursor has a statement that was not prepared according to
3784 ** idxNum, clear it. I believe all calls to fulltextFilter with a
3785 ** given cursor will have the same idxNum , but in this case it's
3788 if( c->pStmt && c->iCursorType!=idxNum ){
3789 sqlite3_finalize(c->pStmt);
3793 /* Get a fresh statement appropriate to idxNum. */
3794 /* TODO(shess): Add a prepared-statement cache in the vt structure.
3795 ** The cache must handle multiple open cursors. Easier to cache the
3796 ** statement variants at the vt to reduce malloc/realloc/free here.
3797 ** Or we could have a StringBuffer variant which allowed stack
3798 ** construction for small values.
3801 char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s",
3802 idxNum==QUERY_GENERIC ? "" : "where rowid=?");
3803 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql);
3805 if( rc!=SQLITE_OK ) return rc;
3806 c->iCursorType = idxNum;
3808 sqlite3_reset(c->pStmt);
3809 assert( c->iCursorType==idxNum );
3817 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
3818 if( rc!=SQLITE_OK ) return rc;
3821 default: /* full-text search */
3823 const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
3824 assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
3827 if( c->result.nData!=0 ){
3828 /* This case happens if the same cursor is used repeatedly. */
3829 dlrDestroy(&c->reader);
3830 dataBufferReset(&c->result);
3832 dataBufferInit(&c->result, 0);
3834 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
3835 if( rc!=SQLITE_OK ) return rc;
3836 if( c->result.nData!=0 ){
3837 dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
3843 return fulltextNext(pCursor);
3846 /* This is the xEof method of the virtual table. The SQLite core
3847 ** calls this routine to find out if it has reached the end of
3848 ** a query's results set.
3850 static int fulltextEof(sqlite3_vtab_cursor *pCursor){
3851 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3855 /* This is the xColumn method of the virtual table. The SQLite
3856 ** core calls this method during a query when it needs the value
3857 ** of a column from the virtual table. This method needs to use
3858 ** one of the sqlite3_result_*() routines to store the requested
3859 ** value back in the pContext.
3861 static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
3862 sqlite3_context *pContext, int idxCol){
3863 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3864 fulltext_vtab *v = cursor_vtab(c);
3866 if( idxCol<v->nColumn ){
3867 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
3868 sqlite3_result_value(pContext, pVal);
3869 }else if( idxCol==v->nColumn ){
3870 /* The extra column whose name is the same as the table.
3871 ** Return a blob which is a pointer to the cursor
3873 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
3878 /* This is the xRowid method. The SQLite core calls this routine to
3879 ** retrive the rowid for the current row of the result set. The
3880 ** rowid should be written to *pRowid.
3882 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3883 fulltext_cursor *c = (fulltext_cursor *) pCursor;
3885 *pRowid = sqlite3_column_int64(c->pStmt, 0);
3889 /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
3890 ** we also store positions and offsets in the hash table using that
3893 static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
3894 const char *zText, int iColumn){
3895 sqlite3_tokenizer *pTokenizer = v->pTokenizer;
3896 sqlite3_tokenizer_cursor *pCursor;
3899 int iStartOffset, iEndOffset, iPosition;
3902 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
3903 if( rc!=SQLITE_OK ) return rc;
3905 pCursor->pTokenizer = pTokenizer;
3906 while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
3907 &pToken, &nTokenBytes,
3908 &iStartOffset, &iEndOffset,
3911 int nData; /* Size of doclist before our update. */
3913 /* Positions can't be negative; we use -1 as a terminator
3914 * internally. Token can't be NULL or empty. */
3915 if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
3920 p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes);
3923 p = dlcNew(iDocid, DL_DEFAULT);
3924 fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
3926 /* Overhead for our hash table entry, the key, and the value. */
3927 v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes;
3930 if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
3933 dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
3936 /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
3937 v->nPendingData += p->b.nData-nData;
3940 /* TODO(shess) Check return? Should this be able to cause errors at
3941 ** this point? Actually, same question about sqlite3_finalize(),
3942 ** though one could argue that failure there means that the data is
3943 ** not durable. *ponder*
3945 pTokenizer->pModule->xClose(pCursor);
3946 if( SQLITE_DONE == rc ) return SQLITE_OK;
3950 /* Add doclists for all terms in [pValues] to pendingTerms table. */
3951 static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid,
3952 sqlite3_value **pValues){
3954 for(i = 0; i < v->nColumn ; ++i){
3955 char *zText = (char*)sqlite3_value_text(pValues[i]);
3956 int rc = buildTerms(v, iRowid, zText, i);
3957 if( rc!=SQLITE_OK ) return rc;
3962 /* Add empty doclists for all terms in the given row's content to
3965 static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){
3966 const char **pValues;
3969 /* TODO(shess) Should we allow such tables at all? */
3970 if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
3972 rc = content_select(v, iRowid, &pValues);
3973 if( rc!=SQLITE_OK ) return rc;
3975 for(i = 0 ; i < v->nColumn; ++i) {
3976 rc = buildTerms(v, iRowid, pValues[i], -1);
3977 if( rc!=SQLITE_OK ) break;
3980 freeStringArray(v->nColumn, pValues);
3984 /* TODO(shess) Refactor the code to remove this forward decl. */
3985 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
3987 /* Insert a row into the %_content table; set *piRowid to be the ID of the
3988 ** new row. Add doclists for terms to pendingTerms.
3990 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid,
3991 sqlite3_value **pValues, sqlite_int64 *piRowid){
3994 rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */
3995 if( rc!=SQLITE_OK ) return rc;
3997 *piRowid = sqlite3_last_insert_rowid(v->db);
3998 rc = initPendingTerms(v, *piRowid);
3999 if( rc!=SQLITE_OK ) return rc;
4001 return insertTerms(v, *piRowid, pValues);
4004 /* Delete a row from the %_content table; add empty doclists for terms
4007 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
4008 int rc = initPendingTerms(v, iRow);
4009 if( rc!=SQLITE_OK ) return rc;
4011 rc = deleteTerms(v, iRow);
4012 if( rc!=SQLITE_OK ) return rc;
4014 return content_delete(v, iRow); /* execute an SQL DELETE */
4017 /* Update a row in the %_content table; add delete doclists to
4018 ** pendingTerms for old terms not in the new data, add insert doclists
4019 ** to pendingTerms for terms in the new data.
4021 static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
4022 sqlite3_value **pValues){
4023 int rc = initPendingTerms(v, iRow);
4024 if( rc!=SQLITE_OK ) return rc;
4026 /* Generate an empty doclist for each term that previously appeared in this
4028 rc = deleteTerms(v, iRow);
4029 if( rc!=SQLITE_OK ) return rc;
4031 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
4032 if( rc!=SQLITE_OK ) return rc;
4034 /* Now add positions for terms which appear in the updated row. */
4035 return insertTerms(v, iRow, pValues);
4038 /*******************************************************************/
4039 /* InteriorWriter is used to collect terms and block references into
4040 ** interior nodes in %_segments. See commentary at top of file for
4044 /* How large interior nodes can grow. */
4045 #define INTERIOR_MAX 2048
4047 /* Minimum number of terms per interior node (except the root). This
4048 ** prevents large terms from making the tree too skinny - must be >0
4049 ** so that the tree always makes progress. Note that the min tree
4050 ** fanout will be INTERIOR_MIN_TERMS+1.
4052 #define INTERIOR_MIN_TERMS 7
4053 #if INTERIOR_MIN_TERMS<1
4054 # error INTERIOR_MIN_TERMS must be greater than 0.
4057 /* ROOT_MAX controls how much data is stored inline in the segment
4060 /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
4061 ** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
4062 ** can both see it, but if the caller passed it in, we wouldn't even
4065 #define ROOT_MAX 1024
4066 #if ROOT_MAX<VARINT_MAX*2
4067 # error ROOT_MAX must have enough space for a header.
4070 /* InteriorBlock stores a linked-list of interior blocks while a lower
4071 ** layer is being constructed.
4073 typedef struct InteriorBlock {
4074 DataBuffer term; /* Leftmost term in block's subtree. */
4075 DataBuffer data; /* Accumulated data for the block. */
4076 struct InteriorBlock *next;
4079 static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
4080 const char *pTerm, int nTerm){
4081 InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
4082 char c[VARINT_MAX+VARINT_MAX];
4086 memset(block, 0, sizeof(*block));
4087 dataBufferInit(&block->term, 0);
4088 dataBufferReplace(&block->term, pTerm, nTerm);
4090 n = putVarint(c, iHeight);
4091 n += putVarint(c+n, iChildBlock);
4092 dataBufferInit(&block->data, INTERIOR_MAX);
4093 dataBufferReplace(&block->data, c, n);
4099 /* Verify that the data is readable as an interior node. */
4100 static void interiorBlockValidate(InteriorBlock *pBlock){
4101 const char *pData = pBlock->data.pData;
4102 int nData = pBlock->data.nData;
4104 sqlite_int64 iBlockid;
4108 assert( pData+nData>pData );
4110 /* Must lead with height of node as a varint(n), n>0 */
4111 n = getVarint32(pData, &iDummy);
4118 /* Must contain iBlockid. */
4119 n = getVarint(pData, &iBlockid);
4125 /* Zero or more terms of positive length */
4127 /* First term is not delta-encoded. */
4128 n = getVarint32(pData, &iDummy);
4131 assert( n+iDummy>0);
4132 assert( n+iDummy<=nData );
4136 /* Following terms delta-encoded. */
4138 /* Length of shared prefix. */
4139 n = getVarint32(pData, &iDummy);
4141 assert( iDummy>=0 );
4146 /* Length and data of distinct suffix. */
4147 n = getVarint32(pData, &iDummy);
4150 assert( n+iDummy>0);
4151 assert( n+iDummy<=nData );
4157 #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
4159 #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
4162 typedef struct InteriorWriter {
4163 int iHeight; /* from 0 at leaves. */
4164 InteriorBlock *first, *last;
4165 struct InteriorWriter *parentWriter;
4167 DataBuffer term; /* Last term written to block "last". */
4168 sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
4170 sqlite_int64 iLastChildBlock; /* for consistency checks. */
4174 /* Initialize an interior node where pTerm[nTerm] marks the leftmost
4175 ** term in the tree. iChildBlock is the leftmost child block at the
4176 ** next level down the tree.
4178 static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
4179 sqlite_int64 iChildBlock,
4180 InteriorWriter *pWriter){
4181 InteriorBlock *block;
4182 assert( iHeight>0 );
4185 pWriter->iHeight = iHeight;
4186 pWriter->iOpeningChildBlock = iChildBlock;
4188 pWriter->iLastChildBlock = iChildBlock;
4190 block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
4191 pWriter->last = pWriter->first = block;
4192 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
4193 dataBufferInit(&pWriter->term, 0);
4196 /* Append the child node rooted at iChildBlock to the interior node,
4197 ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
4199 static void interiorWriterAppend(InteriorWriter *pWriter,
4200 const char *pTerm, int nTerm,
4201 sqlite_int64 iChildBlock){
4202 char c[VARINT_MAX+VARINT_MAX];
4205 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
4207 /* The first term written into an interior node is actually
4208 ** associated with the second child added (the first child was added
4209 ** in interiorWriterInit, or in the if clause at the bottom of this
4210 ** function). That term gets encoded straight up, with nPrefix left
4213 if( pWriter->term.nData==0 ){
4214 n = putVarint(c, nTerm);
4216 while( nPrefix<pWriter->term.nData &&
4217 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
4221 n = putVarint(c, nPrefix);
4222 n += putVarint(c+n, nTerm-nPrefix);
4226 pWriter->iLastChildBlock++;
4228 assert( pWriter->iLastChildBlock==iChildBlock );
4230 /* Overflow to a new block if the new term makes the current block
4231 ** too big, and the current block already has enough terms.
4233 if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
4234 iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
4235 pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
4237 pWriter->last = pWriter->last->next;
4238 pWriter->iOpeningChildBlock = iChildBlock;
4239 dataBufferReset(&pWriter->term);
4241 dataBufferAppend2(&pWriter->last->data, c, n,
4242 pTerm+nPrefix, nTerm-nPrefix);
4243 dataBufferReplace(&pWriter->term, pTerm, nTerm);
4245 ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
4248 /* Free the space used by pWriter, including the linked-list of
4249 ** InteriorBlocks, and parentWriter, if present.
4251 static int interiorWriterDestroy(InteriorWriter *pWriter){
4252 InteriorBlock *block = pWriter->first;
4254 while( block!=NULL ){
4255 InteriorBlock *b = block;
4256 block = block->next;
4257 dataBufferDestroy(&b->term);
4258 dataBufferDestroy(&b->data);
4261 if( pWriter->parentWriter!=NULL ){
4262 interiorWriterDestroy(pWriter->parentWriter);
4263 sqlite3_free(pWriter->parentWriter);
4265 dataBufferDestroy(&pWriter->term);
4270 /* If pWriter can fit entirely in ROOT_MAX, return it as the root info
4271 ** directly, leaving *piEndBlockid unchanged. Otherwise, flush
4272 ** pWriter to %_segments, building a new layer of interior nodes, and
4273 ** recursively ask for their root into.
4275 static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
4276 char **ppRootInfo, int *pnRootInfo,
4277 sqlite_int64 *piEndBlockid){
4278 InteriorBlock *block = pWriter->first;
4279 sqlite_int64 iBlockid = 0;
4282 /* If we can fit the segment inline */
4283 if( block==pWriter->last && block->data.nData<ROOT_MAX ){
4284 *ppRootInfo = block->data.pData;
4285 *pnRootInfo = block->data.nData;
4289 /* Flush the first block to %_segments, and create a new level of
4292 ASSERT_VALID_INTERIOR_BLOCK(block);
4293 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
4294 if( rc!=SQLITE_OK ) return rc;
4295 *piEndBlockid = iBlockid;
4297 pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
4298 interiorWriterInit(pWriter->iHeight+1,
4299 block->term.pData, block->term.nData,
4300 iBlockid, pWriter->parentWriter);
4302 /* Flush additional blocks and append to the higher interior
4305 for(block=block->next; block!=NULL; block=block->next){
4306 ASSERT_VALID_INTERIOR_BLOCK(block);
4307 rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
4308 if( rc!=SQLITE_OK ) return rc;
4309 *piEndBlockid = iBlockid;
4311 interiorWriterAppend(pWriter->parentWriter,
4312 block->term.pData, block->term.nData, iBlockid);
4315 /* Parent node gets the chance to be the root. */
4316 return interiorWriterRootInfo(v, pWriter->parentWriter,
4317 ppRootInfo, pnRootInfo, piEndBlockid);
4320 /****************************************************************/
4321 /* InteriorReader is used to read off the data from an interior node
4322 ** (see comment at top of file for the format).
4324 typedef struct InteriorReader {
4328 DataBuffer term; /* previous term, for decoding term delta. */
4330 sqlite_int64 iBlockid;
4333 static void interiorReaderDestroy(InteriorReader *pReader){
4334 dataBufferDestroy(&pReader->term);
4338 /* TODO(shess) The assertions are great, but what if we're in NDEBUG
4339 ** and the blob is empty or otherwise contains suspect data?
4341 static void interiorReaderInit(const char *pData, int nData,
4342 InteriorReader *pReader){
4345 /* Require at least the leading flag byte */
4347 assert( pData[0]!='\0' );
4351 /* Decode the base blockid, and set the cursor to the first term. */
4352 n = getVarint(pData+1, &pReader->iBlockid);
4353 assert( 1+n<=nData );
4354 pReader->pData = pData+1+n;
4355 pReader->nData = nData-(1+n);
4357 /* A single-child interior node (such as when a leaf node was too
4358 ** large for the segment directory) won't have any terms.
4359 ** Otherwise, decode the first term.
4361 if( pReader->nData==0 ){
4362 dataBufferInit(&pReader->term, 0);
4364 n = getVarint32(pReader->pData, &nTerm);
4365 dataBufferInit(&pReader->term, nTerm);
4366 dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
4367 assert( n+nTerm<=pReader->nData );
4368 pReader->pData += n+nTerm;
4369 pReader->nData -= n+nTerm;
4373 static int interiorReaderAtEnd(InteriorReader *pReader){
4374 return pReader->term.nData==0;
4377 static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
4378 return pReader->iBlockid;
4381 static int interiorReaderTermBytes(InteriorReader *pReader){
4382 assert( !interiorReaderAtEnd(pReader) );
4383 return pReader->term.nData;
4385 static const char *interiorReaderTerm(InteriorReader *pReader){
4386 assert( !interiorReaderAtEnd(pReader) );
4387 return pReader->term.pData;
4390 /* Step forward to the next term in the node. */
4391 static void interiorReaderStep(InteriorReader *pReader){
4392 assert( !interiorReaderAtEnd(pReader) );
4394 /* If the last term has been read, signal eof, else construct the
4397 if( pReader->nData==0 ){
4398 dataBufferReset(&pReader->term);
4400 int n, nPrefix, nSuffix;
4402 n = getVarint32(pReader->pData, &nPrefix);
4403 n += getVarint32(pReader->pData+n, &nSuffix);
4405 /* Truncate the current term and append suffix data. */
4406 pReader->term.nData = nPrefix;
4407 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
4409 assert( n+nSuffix<=pReader->nData );
4410 pReader->pData += n+nSuffix;
4411 pReader->nData -= n+nSuffix;
4413 pReader->iBlockid++;
4416 /* Compare the current term to pTerm[nTerm], returning strcmp-style
4417 ** results. If isPrefix, equality means equal through nTerm bytes.
4419 static int interiorReaderTermCmp(InteriorReader *pReader,
4420 const char *pTerm, int nTerm, int isPrefix){
4421 const char *pReaderTerm = interiorReaderTerm(pReader);
4422 int nReaderTerm = interiorReaderTermBytes(pReader);
4423 int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
4426 if( nReaderTerm>0 ) return -1;
4427 if( nTerm>0 ) return 1;
4431 c = memcmp(pReaderTerm, pTerm, n);
4432 if( c!=0 ) return c;
4433 if( isPrefix && n==nTerm ) return 0;
4434 return nReaderTerm - nTerm;
4437 /****************************************************************/
4438 /* LeafWriter is used to collect terms and associated doclist data
4439 ** into leaf blocks in %_segments (see top of file for format info).
4440 ** Expected usage is:
4442 ** LeafWriter writer;
4443 ** leafWriterInit(0, 0, &writer);
4444 ** while( sorted_terms_left_to_process ){
4445 ** // data is doclist data for that term.
4446 ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
4447 ** if( rc!=SQLITE_OK ) goto err;
4449 ** rc = leafWriterFinalize(v, &writer);
4451 ** leafWriterDestroy(&writer);
4454 ** leafWriterStep() may write a collected leaf out to %_segments.
4455 ** leafWriterFinalize() finishes writing any buffered data and stores
4456 ** a root node in %_segdir. leafWriterDestroy() frees all buffers and
4457 ** InteriorWriters allocated as part of writing this segment.
4459 ** TODO(shess) Document leafWriterStepMerge().
4462 /* Put terms with data this big in their own block. */
4463 #define STANDALONE_MIN 1024
4465 /* Keep leaf blocks below this size. */
4466 #define LEAF_MAX 2048
4468 typedef struct LeafWriter {
4471 sqlite_int64 iStartBlockid; /* needed to create the root info */
4472 sqlite_int64 iEndBlockid; /* when we're done writing. */
4474 DataBuffer term; /* previous encoded term */
4475 DataBuffer data; /* encoding buffer */
4477 /* bytes of first term in the current node which distinguishes that
4478 ** term from the last term of the previous node.
4482 InteriorWriter parentWriter; /* if we overflow */
4486 static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
4488 pWriter->iLevel = iLevel;
4491 dataBufferInit(&pWriter->term, 32);
4493 /* Start out with a reasonably sized block, though it can grow. */
4494 dataBufferInit(&pWriter->data, LEAF_MAX);
4498 /* Verify that the data is readable as a leaf node. */
4499 static void leafNodeValidate(const char *pData, int nData){
4502 if( nData==0 ) return;
4505 assert( pData+nData>pData );
4507 /* Must lead with a varint(0) */
4508 n = getVarint32(pData, &iDummy);
4509 assert( iDummy==0 );
4515 /* Leading term length and data must fit in buffer. */
4516 n = getVarint32(pData, &iDummy);
4519 assert( n+iDummy>0 );
4520 assert( n+iDummy<nData );
4524 /* Leading term's doclist length and data must fit. */
4525 n = getVarint32(pData, &iDummy);
4528 assert( n+iDummy>0 );
4529 assert( n+iDummy<=nData );
4530 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
4534 /* Verify that trailing terms and doclists also are readable. */
4536 n = getVarint32(pData, &iDummy);
4538 assert( iDummy>=0 );
4542 n = getVarint32(pData, &iDummy);
4545 assert( n+iDummy>0 );
4546 assert( n+iDummy<nData );
4550 n = getVarint32(pData, &iDummy);
4553 assert( n+iDummy>0 );
4554 assert( n+iDummy<=nData );
4555 ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
4560 #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
4562 #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
4565 /* Flush the current leaf node to %_segments, and adding the resulting
4566 ** blockid and the starting term to the interior node which will
4569 static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
4570 int iData, int nData){
4571 sqlite_int64 iBlockid = 0;
4572 const char *pStartingTerm;
4573 int nStartingTerm, rc, n;
4575 /* Must have the leading varint(0) flag, plus at least some
4576 ** valid-looking data.
4580 assert( iData+nData<=pWriter->data.nData );
4581 ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
4583 rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
4584 if( rc!=SQLITE_OK ) return rc;
4585 assert( iBlockid!=0 );
4587 /* Reconstruct the first term in the leaf for purposes of building
4588 ** the interior node.
4590 n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
4591 pStartingTerm = pWriter->data.pData+iData+1+n;
4592 assert( pWriter->data.nData>iData+1+n+nStartingTerm );
4593 assert( pWriter->nTermDistinct>0 );
4594 assert( pWriter->nTermDistinct<=nStartingTerm );
4595 nStartingTerm = pWriter->nTermDistinct;
4597 if( pWriter->has_parent ){
4598 interiorWriterAppend(&pWriter->parentWriter,
4599 pStartingTerm, nStartingTerm, iBlockid);
4601 interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
4602 &pWriter->parentWriter);
4603 pWriter->has_parent = 1;
4606 /* Track the span of this segment's leaf nodes. */
4607 if( pWriter->iEndBlockid==0 ){
4608 pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
4610 pWriter->iEndBlockid++;
4611 assert( iBlockid==pWriter->iEndBlockid );
4616 static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
4617 int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
4618 if( rc!=SQLITE_OK ) return rc;
4620 /* Re-initialize the output buffer. */
4621 dataBufferReset(&pWriter->data);
4626 /* Fetch the root info for the segment. If the entire leaf fits
4627 ** within ROOT_MAX, then it will be returned directly, otherwise it
4628 ** will be flushed and the root info will be returned from the
4629 ** interior node. *piEndBlockid is set to the blockid of the last
4630 ** interior or leaf node written to disk (0 if none are written at
4633 static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
4634 char **ppRootInfo, int *pnRootInfo,
4635 sqlite_int64 *piEndBlockid){
4636 /* we can fit the segment entirely inline */
4637 if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
4638 *ppRootInfo = pWriter->data.pData;
4639 *pnRootInfo = pWriter->data.nData;
4644 /* Flush remaining leaf data. */
4645 if( pWriter->data.nData>0 ){
4646 int rc = leafWriterFlush(v, pWriter);
4647 if( rc!=SQLITE_OK ) return rc;
4650 /* We must have flushed a leaf at some point. */
4651 assert( pWriter->has_parent );
4653 /* Tenatively set the end leaf blockid as the end blockid. If the
4654 ** interior node can be returned inline, this will be the final
4655 ** blockid, otherwise it will be overwritten by
4656 ** interiorWriterRootInfo().
4658 *piEndBlockid = pWriter->iEndBlockid;
4660 return interiorWriterRootInfo(v, &pWriter->parentWriter,
4661 ppRootInfo, pnRootInfo, piEndBlockid);
4664 /* Collect the rootInfo data and store it into the segment directory.
4665 ** This has the effect of flushing the segment's leaf data to
4666 ** %_segments, and also flushing any interior nodes to %_segments.
4668 static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
4669 sqlite_int64 iEndBlockid;
4673 rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
4674 if( rc!=SQLITE_OK ) return rc;
4676 /* Don't bother storing an entirely empty segment. */
4677 if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
4679 return segdir_set(v, pWriter->iLevel, pWriter->idx,
4680 pWriter->iStartBlockid, pWriter->iEndBlockid,
4681 iEndBlockid, pRootInfo, nRootInfo);
4684 static void leafWriterDestroy(LeafWriter *pWriter){
4685 if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
4686 dataBufferDestroy(&pWriter->term);
4687 dataBufferDestroy(&pWriter->data);
4690 /* Encode a term into the leafWriter, delta-encoding as appropriate.
4691 ** Returns the length of the new term which distinguishes it from the
4692 ** previous term, which can be used to set nTermDistinct when a node
4693 ** boundary is crossed.
4695 static int leafWriterEncodeTerm(LeafWriter *pWriter,
4696 const char *pTerm, int nTerm){
4697 char c[VARINT_MAX+VARINT_MAX];
4701 while( nPrefix<pWriter->term.nData &&
4702 pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
4704 /* Failing this implies that the terms weren't in order. */
4705 assert( nPrefix<nTerm );
4708 if( pWriter->data.nData==0 ){
4709 /* Encode the node header and leading term as:
4712 ** char pTerm[nTerm]
4714 n = putVarint(c, '\0');
4715 n += putVarint(c+n, nTerm);
4716 dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
4718 /* Delta-encode the term as:
4721 ** char pTermSuffix[nSuffix]
4723 n = putVarint(c, nPrefix);
4724 n += putVarint(c+n, nTerm-nPrefix);
4725 dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
4727 dataBufferReplace(&pWriter->term, pTerm, nTerm);
4732 /* Used to avoid a memmove when a large amount of doclist data is in
4733 ** the buffer. This constructs a node and term header before
4734 ** iDoclistData and flushes the resulting complete node using
4735 ** leafWriterInternalFlush().
4737 static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
4738 const char *pTerm, int nTerm,
4740 char c[VARINT_MAX+VARINT_MAX];
4741 int iData, n = putVarint(c, 0);
4742 n += putVarint(c+n, nTerm);
4744 /* There should always be room for the header. Even if pTerm shared
4745 ** a substantial prefix with the previous term, the entire prefix
4746 ** could be constructed from earlier data in the doclist, so there
4749 assert( iDoclistData>=n+nTerm );
4751 iData = iDoclistData-(n+nTerm);
4752 memcpy(pWriter->data.pData+iData, c, n);
4753 memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
4755 return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
4758 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
4761 static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
4762 const char *pTerm, int nTerm,
4763 DLReader *pReaders, int nReaders){
4764 char c[VARINT_MAX+VARINT_MAX];
4765 int iTermData = pWriter->data.nData, iDoclistData;
4766 int i, nData, n, nActualData, nActual, rc, nTermDistinct;
4768 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
4769 nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
4771 /* Remember nTermDistinct if opening a new node. */
4772 if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
4774 iDoclistData = pWriter->data.nData;
4776 /* Estimate the length of the merged doclist so we can leave space
4779 for(i=0, nData=0; i<nReaders; i++){
4780 nData += dlrAllDataBytes(&pReaders[i]);
4782 n = putVarint(c, nData);
4783 dataBufferAppend(&pWriter->data, c, n);
4785 docListMerge(&pWriter->data, pReaders, nReaders);
4786 ASSERT_VALID_DOCLIST(DL_DEFAULT,
4787 pWriter->data.pData+iDoclistData+n,
4788 pWriter->data.nData-iDoclistData-n, NULL);
4790 /* The actual amount of doclist data at this point could be smaller
4791 ** than the length we encoded. Additionally, the space required to
4792 ** encode this length could be smaller. For small doclists, this is
4793 ** not a big deal, we can just use memmove() to adjust things.
4795 nActualData = pWriter->data.nData-(iDoclistData+n);
4796 nActual = putVarint(c, nActualData);
4797 assert( nActualData<=nData );
4798 assert( nActual<=n );
4800 /* If the new doclist is big enough for force a standalone leaf
4801 ** node, we can immediately flush it inline without doing the
4804 /* TODO(shess) This test matches leafWriterStep(), which does this
4805 ** test before it knows the cost to varint-encode the term and
4806 ** doclist lengths. At some point, change to
4807 ** pWriter->data.nData-iTermData>STANDALONE_MIN.
4809 if( nTerm+nActualData>STANDALONE_MIN ){
4810 /* Push leaf node from before this term. */
4812 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
4813 if( rc!=SQLITE_OK ) return rc;
4815 pWriter->nTermDistinct = nTermDistinct;
4818 /* Fix the encoded doclist length. */
4819 iDoclistData += n - nActual;
4820 memcpy(pWriter->data.pData+iDoclistData, c, nActual);
4822 /* Push the standalone leaf node. */
4823 rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
4824 if( rc!=SQLITE_OK ) return rc;
4826 /* Leave the node empty. */
4827 dataBufferReset(&pWriter->data);
4832 /* At this point, we know that the doclist was small, so do the
4833 ** memmove if indicated.
4836 memmove(pWriter->data.pData+iDoclistData+nActual,
4837 pWriter->data.pData+iDoclistData+n,
4838 pWriter->data.nData-(iDoclistData+n));
4839 pWriter->data.nData -= n-nActual;
4842 /* Replace written length with actual length. */
4843 memcpy(pWriter->data.pData+iDoclistData, c, nActual);
4845 /* If the node is too large, break things up. */
4846 /* TODO(shess) This test matches leafWriterStep(), which does this
4847 ** test before it knows the cost to varint-encode the term and
4848 ** doclist lengths. At some point, change to
4849 ** pWriter->data.nData>LEAF_MAX.
4851 if( iTermData+nTerm+nActualData>LEAF_MAX ){
4852 /* Flush out the leading data as a node */
4853 rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
4854 if( rc!=SQLITE_OK ) return rc;
4856 pWriter->nTermDistinct = nTermDistinct;
4858 /* Rebuild header using the current term */
4859 n = putVarint(pWriter->data.pData, 0);
4860 n += putVarint(pWriter->data.pData+n, nTerm);
4861 memcpy(pWriter->data.pData+n, pTerm, nTerm);
4864 /* There should always be room, because the previous encoding
4865 ** included all data necessary to construct the term.
4867 assert( n<iDoclistData );
4868 /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
4869 ** following memcpy() is safe (as opposed to needing a memmove).
4871 assert( 2*STANDALONE_MIN<=LEAF_MAX );
4872 assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
4873 memcpy(pWriter->data.pData+n,
4874 pWriter->data.pData+iDoclistData,
4875 pWriter->data.nData-iDoclistData);
4876 pWriter->data.nData -= iDoclistData-n;
4878 ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
4883 /* Push pTerm[nTerm] along with the doclist data to the leaf layer of
4886 /* TODO(shess) Revise writeZeroSegment() so that doclists are
4887 ** constructed directly in pWriter->data.
4889 static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
4890 const char *pTerm, int nTerm,
4891 const char *pData, int nData){
4895 dlrInit(&reader, DL_DEFAULT, pData, nData);
4896 rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
4897 dlrDestroy(&reader);
4903 /****************************************************************/
4904 /* LeafReader is used to iterate over an individual leaf node. */
4905 typedef struct LeafReader {
4906 DataBuffer term; /* copy of current term. */
4908 const char *pData; /* data for current term. */
4912 static void leafReaderDestroy(LeafReader *pReader){
4913 dataBufferDestroy(&pReader->term);
4917 static int leafReaderAtEnd(LeafReader *pReader){
4918 return pReader->nData<=0;
4921 /* Access the current term. */
4922 static int leafReaderTermBytes(LeafReader *pReader){
4923 return pReader->term.nData;
4925 static const char *leafReaderTerm(LeafReader *pReader){
4926 assert( pReader->term.nData>0 );
4927 return pReader->term.pData;
4930 /* Access the doclist data for the current term. */
4931 static int leafReaderDataBytes(LeafReader *pReader){
4933 assert( pReader->term.nData>0 );
4934 getVarint32(pReader->pData, &nData);
4937 static const char *leafReaderData(LeafReader *pReader){
4939 assert( pReader->term.nData>0 );
4940 n = getVarint32(pReader->pData, &nData);
4941 return pReader->pData+n;
4944 static void leafReaderInit(const char *pData, int nData,
4945 LeafReader *pReader){
4949 assert( pData[0]=='\0' );
4953 /* Read the first term, skipping the header byte. */
4954 n = getVarint32(pData+1, &nTerm);
4955 dataBufferInit(&pReader->term, nTerm);
4956 dataBufferReplace(&pReader->term, pData+1+n, nTerm);
4958 /* Position after the first term. */
4959 assert( 1+n+nTerm<nData );
4960 pReader->pData = pData+1+n+nTerm;
4961 pReader->nData = nData-1-n-nTerm;
4964 /* Step the reader forward to the next term. */
4965 static void leafReaderStep(LeafReader *pReader){
4966 int n, nData, nPrefix, nSuffix;
4967 assert( !leafReaderAtEnd(pReader) );
4969 /* Skip previous entry's data block. */
4970 n = getVarint32(pReader->pData, &nData);
4971 assert( n+nData<=pReader->nData );
4972 pReader->pData += n+nData;
4973 pReader->nData -= n+nData;
4975 if( !leafReaderAtEnd(pReader) ){
4976 /* Construct the new term using a prefix from the old term plus a
4977 ** suffix from the leaf data.
4979 n = getVarint32(pReader->pData, &nPrefix);
4980 n += getVarint32(pReader->pData+n, &nSuffix);
4981 assert( n+nSuffix<pReader->nData );
4982 pReader->term.nData = nPrefix;
4983 dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
4985 pReader->pData += n+nSuffix;
4986 pReader->nData -= n+nSuffix;
4990 /* strcmp-style comparison of pReader's current term against pTerm.
4991 ** If isPrefix, equality means equal through nTerm bytes.
4993 static int leafReaderTermCmp(LeafReader *pReader,
4994 const char *pTerm, int nTerm, int isPrefix){
4995 int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
4997 if( pReader->term.nData>0 ) return -1;
4998 if(nTerm>0 ) return 1;
5002 c = memcmp(pReader->term.pData, pTerm, n);
5003 if( c!=0 ) return c;
5004 if( isPrefix && n==nTerm ) return 0;
5005 return pReader->term.nData - nTerm;
5009 /****************************************************************/
5010 /* LeavesReader wraps LeafReader to allow iterating over the entire
5011 ** leaf layer of the tree.
5013 typedef struct LeavesReader {
5014 int idx; /* Index within the segment. */
5016 sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
5017 int eof; /* we've seen SQLITE_DONE from pStmt. */
5019 LeafReader leafReader; /* reader for the current leaf. */
5020 DataBuffer rootData; /* root data for inline. */
5023 /* Access the current term. */
5024 static int leavesReaderTermBytes(LeavesReader *pReader){
5025 assert( !pReader->eof );
5026 return leafReaderTermBytes(&pReader->leafReader);
5028 static const char *leavesReaderTerm(LeavesReader *pReader){
5029 assert( !pReader->eof );
5030 return leafReaderTerm(&pReader->leafReader);
5033 /* Access the doclist data for the current term. */
5034 static int leavesReaderDataBytes(LeavesReader *pReader){
5035 assert( !pReader->eof );
5036 return leafReaderDataBytes(&pReader->leafReader);
5038 static const char *leavesReaderData(LeavesReader *pReader){
5039 assert( !pReader->eof );
5040 return leafReaderData(&pReader->leafReader);
5043 static int leavesReaderAtEnd(LeavesReader *pReader){
5044 return pReader->eof;
5047 /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
5048 ** leaving the statement handle open, which locks the table.
5050 /* TODO(shess) This "solution" is not satisfactory. Really, there
5051 ** should be check-in function for all statement handles which
5052 ** arranges to call sqlite3_reset(). This most likely will require
5053 ** modification to control flow all over the place, though, so for now
5056 ** Note the the current system assumes that segment merges will run to
5057 ** completion, which is why this particular probably hasn't arisen in
5058 ** this case. Probably a brittle assumption.
5060 static int leavesReaderReset(LeavesReader *pReader){
5061 return sqlite3_reset(pReader->pStmt);
5064 static void leavesReaderDestroy(LeavesReader *pReader){
5065 /* If idx is -1, that means we're using a non-cached statement
5066 ** handle in the optimize() case, so we need to release it.
5068 if( pReader->pStmt!=NULL && pReader->idx==-1 ){
5069 sqlite3_finalize(pReader->pStmt);
5071 leafReaderDestroy(&pReader->leafReader);
5072 dataBufferDestroy(&pReader->rootData);
5076 /* Initialize pReader with the given root data (if iStartBlockid==0
5077 ** the leaf data was entirely contained in the root), or from the
5078 ** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
5080 static int leavesReaderInit(fulltext_vtab *v,
5082 sqlite_int64 iStartBlockid,
5083 sqlite_int64 iEndBlockid,
5084 const char *pRootData, int nRootData,
5085 LeavesReader *pReader){
5089 dataBufferInit(&pReader->rootData, 0);
5090 if( iStartBlockid==0 ){
5091 /* Entire leaf level fit in root data. */
5092 dataBufferReplace(&pReader->rootData, pRootData, nRootData);
5093 leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
5094 &pReader->leafReader);
5097 int rc = sql_get_leaf_statement(v, idx, &s);
5098 if( rc!=SQLITE_OK ) return rc;
5100 rc = sqlite3_bind_int64(s, 1, iStartBlockid);
5101 if( rc!=SQLITE_OK ) return rc;
5103 rc = sqlite3_bind_int64(s, 2, iEndBlockid);
5104 if( rc!=SQLITE_OK ) return rc;
5106 rc = sqlite3_step(s);
5107 if( rc==SQLITE_DONE ){
5111 if( rc!=SQLITE_ROW ) return rc;
5114 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
5115 sqlite3_column_bytes(pReader->pStmt, 0),
5116 &pReader->leafReader);
5121 /* Step the current leaf forward to the next term. If we reach the
5122 ** end of the current leaf, step forward to the next leaf block.
5124 static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
5125 assert( !leavesReaderAtEnd(pReader) );
5126 leafReaderStep(&pReader->leafReader);
5128 if( leafReaderAtEnd(&pReader->leafReader) ){
5130 if( pReader->rootData.pData ){
5134 rc = sqlite3_step(pReader->pStmt);
5135 if( rc!=SQLITE_ROW ){
5137 return rc==SQLITE_DONE ? SQLITE_OK : rc;
5139 leafReaderDestroy(&pReader->leafReader);
5140 leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
5141 sqlite3_column_bytes(pReader->pStmt, 0),
5142 &pReader->leafReader);
5147 /* Order LeavesReaders by their term, ignoring idx. Readers at eof
5148 ** always sort to the end.
5150 static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
5151 if( leavesReaderAtEnd(lr1) ){
5152 if( leavesReaderAtEnd(lr2) ) return 0;
5155 if( leavesReaderAtEnd(lr2) ) return -1;
5157 return leafReaderTermCmp(&lr1->leafReader,
5158 leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
5162 /* Similar to leavesReaderTermCmp(), with additional ordering by idx
5163 ** so that older segments sort before newer segments.
5165 static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
5166 int c = leavesReaderTermCmp(lr1, lr2);
5167 if( c!=0 ) return c;
5168 return lr1->idx-lr2->idx;
5171 /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
5174 static void leavesReaderReorder(LeavesReader *pLr, int nLr){
5175 while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
5176 LeavesReader tmp = pLr[0];
5184 /* Initializes pReaders with the segments from level iLevel, returning
5185 ** the number of segments in *piReaders. Leaves pReaders in sorted
5188 static int leavesReadersInit(fulltext_vtab *v, int iLevel,
5189 LeavesReader *pReaders, int *piReaders){
5191 int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
5192 if( rc!=SQLITE_OK ) return rc;
5194 rc = sqlite3_bind_int(s, 1, iLevel);
5195 if( rc!=SQLITE_OK ) return rc;
5198 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
5199 sqlite_int64 iStart = sqlite3_column_int64(s, 0);
5200 sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
5201 const char *pRootData = sqlite3_column_blob(s, 2);
5202 int nRootData = sqlite3_column_bytes(s, 2);
5204 assert( i<MERGE_COUNT );
5205 rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
5207 if( rc!=SQLITE_OK ) break;
5211 if( rc!=SQLITE_DONE ){
5213 leavesReaderDestroy(&pReaders[i]);
5220 /* Leave our results sorted by term, then age. */
5222 leavesReaderReorder(pReaders+i, *piReaders-i);
5227 /* Merge doclists from pReaders[nReaders] into a single doclist, which
5228 ** is written to pWriter. Assumes pReaders is ordered oldest to
5231 /* TODO(shess) Consider putting this inline in segmentMerge(). */
5232 static int leavesReadersMerge(fulltext_vtab *v,
5233 LeavesReader *pReaders, int nReaders,
5234 LeafWriter *pWriter){
5235 DLReader dlReaders[MERGE_COUNT];
5236 const char *pTerm = leavesReaderTerm(pReaders);
5237 int i, nTerm = leavesReaderTermBytes(pReaders);
5239 assert( nReaders<=MERGE_COUNT );
5241 for(i=0; i<nReaders; i++){
5242 dlrInit(&dlReaders[i], DL_DEFAULT,
5243 leavesReaderData(pReaders+i),
5244 leavesReaderDataBytes(pReaders+i));
5247 return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
5250 /* Forward ref due to mutual recursion with segdirNextIndex(). */
5251 static int segmentMerge(fulltext_vtab *v, int iLevel);
5253 /* Put the next available index at iLevel into *pidx. If iLevel
5254 ** already has MERGE_COUNT segments, they are merged to a higher
5255 ** level to make room.
5257 static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
5258 int rc = segdir_max_index(v, iLevel, pidx);
5259 if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
5261 }else if( rc==SQLITE_ROW ){
5262 if( *pidx==(MERGE_COUNT-1) ){
5263 rc = segmentMerge(v, iLevel);
5264 if( rc!=SQLITE_OK ) return rc;
5275 /* Merge MERGE_COUNT segments at iLevel into a new segment at
5276 ** iLevel+1. If iLevel+1 is already full of segments, those will be
5277 ** merged to make room.
5279 static int segmentMerge(fulltext_vtab *v, int iLevel){
5281 LeavesReader lrs[MERGE_COUNT];
5284 /* Determine the next available segment index at the next level,
5285 ** merging as necessary.
5287 rc = segdirNextIndex(v, iLevel+1, &idx);
5288 if( rc!=SQLITE_OK ) return rc;
5290 /* TODO(shess) This assumes that we'll always see exactly
5291 ** MERGE_COUNT segments to merge at a given level. That will be
5292 ** broken if we allow the developer to request preemptive or
5293 ** deferred merging.
5295 memset(&lrs, '\0', sizeof(lrs));
5296 rc = leavesReadersInit(v, iLevel, lrs, &i);
5297 if( rc!=SQLITE_OK ) return rc;
5298 assert( i==MERGE_COUNT );
5300 leafWriterInit(iLevel+1, idx, &writer);
5302 /* Since leavesReaderReorder() pushes readers at eof to the end,
5303 ** when the first reader is empty, all will be empty.
5305 while( !leavesReaderAtEnd(lrs) ){
5306 /* Figure out how many readers share their next term. */
5307 for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
5308 if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
5311 rc = leavesReadersMerge(v, lrs, i, &writer);
5312 if( rc!=SQLITE_OK ) goto err;
5314 /* Step forward those that were merged. */
5316 rc = leavesReaderStep(v, lrs+i);
5317 if( rc!=SQLITE_OK ) goto err;
5319 /* Reorder by term, then by age. */
5320 leavesReaderReorder(lrs+i, MERGE_COUNT-i);
5324 for(i=0; i<MERGE_COUNT; i++){
5325 leavesReaderDestroy(&lrs[i]);
5328 rc = leafWriterFinalize(v, &writer);
5329 leafWriterDestroy(&writer);
5330 if( rc!=SQLITE_OK ) return rc;
5332 /* Delete the merged segment data. */
5333 return segdir_delete(v, iLevel);
5336 for(i=0; i<MERGE_COUNT; i++){
5337 leavesReaderDestroy(&lrs[i]);
5339 leafWriterDestroy(&writer);
5343 /* Accumulate the union of *acc and *pData into *acc. */
5344 static void docListAccumulateUnion(DataBuffer *acc,
5345 const char *pData, int nData) {
5346 DataBuffer tmp = *acc;
5347 dataBufferInit(acc, tmp.nData+nData);
5348 docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
5349 dataBufferDestroy(&tmp);
5352 /* TODO(shess) It might be interesting to explore different merge
5353 ** strategies, here. For instance, since this is a sorted merge, we
5354 ** could easily merge many doclists in parallel. With some
5355 ** comprehension of the storage format, we could merge all of the
5356 ** doclists within a leaf node directly from the leaf node's storage.
5357 ** It may be worthwhile to merge smaller doclists before larger
5358 ** doclists, since they can be traversed more quickly - but the
5359 ** results may have less overlap, making them more expensive in a
5363 /* Scan pReader for pTerm/nTerm, and merge the term's doclist over
5364 ** *out (any doclists with duplicate docids overwrite those in *out).
5365 ** Internal function for loadSegmentLeaf().
5367 static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
5368 const char *pTerm, int nTerm, int isPrefix,
5370 /* doclist data is accumulated into pBuffers similar to how one does
5371 ** increment in binary arithmetic. If index 0 is empty, the data is
5372 ** stored there. If there is data there, it is merged and the
5373 ** results carried into position 1, with further merge-and-carry
5374 ** until an empty position is found.
5376 DataBuffer *pBuffers = NULL;
5377 int nBuffers = 0, nMaxBuffers = 0, rc;
5381 for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
5382 rc=leavesReaderStep(v, pReader)){
5383 /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
5384 ** already taken to compare the terms of two LeavesReaders. Think
5385 ** on a better name. [Meanwhile, break encapsulation rather than
5386 ** use a confusing name.]
5388 int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
5389 if( c>0 ) break; /* Past any possible matches. */
5391 const char *pData = leavesReaderData(pReader);
5392 int iBuffer, nData = leavesReaderDataBytes(pReader);
5394 /* Find the first empty buffer. */
5395 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
5396 if( 0==pBuffers[iBuffer].nData ) break;
5399 /* Out of buffers, add an empty one. */
5400 if( iBuffer==nBuffers ){
5401 if( nBuffers==nMaxBuffers ){
5405 /* Manual realloc so we can handle NULL appropriately. */
5406 p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
5413 assert(pBuffers!=NULL);
5414 memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
5415 sqlite3_free(pBuffers);
5419 dataBufferInit(&(pBuffers[nBuffers]), 0);
5423 /* At this point, must have an empty at iBuffer. */
5424 assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
5426 /* If empty was first buffer, no need for merge logic. */
5428 dataBufferReplace(&(pBuffers[0]), pData, nData);
5430 /* pAcc is the empty buffer the merged data will end up in. */
5431 DataBuffer *pAcc = &(pBuffers[iBuffer]);
5432 DataBuffer *p = &(pBuffers[0]);
5434 /* Handle position 0 specially to avoid need to prime pAcc
5435 ** with pData/nData.
5437 dataBufferSwap(p, pAcc);
5438 docListAccumulateUnion(pAcc, pData, nData);
5440 /* Accumulate remaining doclists into pAcc. */
5441 for(++p; p<pAcc; ++p){
5442 docListAccumulateUnion(pAcc, p->pData, p->nData);
5444 /* dataBufferReset() could allow a large doclist to blow up
5445 ** our memory requirements.
5447 if( p->nCapacity<1024 ){
5450 dataBufferDestroy(p);
5451 dataBufferInit(p, 0);
5458 /* Union all the doclists together into *out. */
5459 /* TODO(shess) What if *out is big? Sigh. */
5460 if( rc==SQLITE_OK && nBuffers>0 ){
5462 for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
5463 if( pBuffers[iBuffer].nData>0 ){
5464 if( out->nData==0 ){
5465 dataBufferSwap(out, &(pBuffers[iBuffer]));
5467 docListAccumulateUnion(out, pBuffers[iBuffer].pData,
5468 pBuffers[iBuffer].nData);
5474 while( nBuffers-- ){
5475 dataBufferDestroy(&(pBuffers[nBuffers]));
5477 if( pBuffers!=NULL ) sqlite3_free(pBuffers);
5482 /* Call loadSegmentLeavesInt() with pData/nData as input. */
5483 static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
5484 const char *pTerm, int nTerm, int isPrefix,
5486 LeavesReader reader;
5490 assert( *pData=='\0' );
5491 rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
5492 if( rc!=SQLITE_OK ) return rc;
5494 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
5495 leavesReaderReset(&reader);
5496 leavesReaderDestroy(&reader);
5500 /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
5501 ** iEndLeaf (inclusive) as input, and merge the resulting doclist into
5504 static int loadSegmentLeaves(fulltext_vtab *v,
5505 sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
5506 const char *pTerm, int nTerm, int isPrefix,
5509 LeavesReader reader;
5511 assert( iStartLeaf<=iEndLeaf );
5512 rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
5513 if( rc!=SQLITE_OK ) return rc;
5515 rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
5516 leavesReaderReset(&reader);
5517 leavesReaderDestroy(&reader);
5521 /* Taking pData/nData as an interior node, find the sequence of child
5522 ** nodes which could include pTerm/nTerm/isPrefix. Note that the
5523 ** interior node terms logically come between the blocks, so there is
5524 ** one more blockid than there are terms (that block contains terms >=
5525 ** the last interior-node term).
5527 /* TODO(shess) The calling code may already know that the end child is
5528 ** not worth calculating, because the end may be in a later sibling
5529 ** node. Consider whether breaking symmetry is worthwhile. I suspect
5530 ** it is not worthwhile.
5532 static void getChildrenContaining(const char *pData, int nData,
5533 const char *pTerm, int nTerm, int isPrefix,
5534 sqlite_int64 *piStartChild,
5535 sqlite_int64 *piEndChild){
5536 InteriorReader reader;
5539 assert( *pData!='\0' );
5540 interiorReaderInit(pData, nData, &reader);
5542 /* Scan for the first child which could contain pTerm/nTerm. */
5543 while( !interiorReaderAtEnd(&reader) ){
5544 if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
5545 interiorReaderStep(&reader);
5547 *piStartChild = interiorReaderCurrentBlockid(&reader);
5549 /* Keep scanning to find a term greater than our term, using prefix
5550 ** comparison if indicated. If isPrefix is false, this will be the
5551 ** same blockid as the starting block.
5553 while( !interiorReaderAtEnd(&reader) ){
5554 if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
5555 interiorReaderStep(&reader);
5557 *piEndChild = interiorReaderCurrentBlockid(&reader);
5559 interiorReaderDestroy(&reader);
5561 /* Children must ascend, and if !prefix, both must be the same. */
5562 assert( *piEndChild>=*piStartChild );
5563 assert( isPrefix || *piStartChild==*piEndChild );
5566 /* Read block at iBlockid and pass it with other params to
5567 ** getChildrenContaining().
5569 static int loadAndGetChildrenContaining(
5571 sqlite_int64 iBlockid,
5572 const char *pTerm, int nTerm, int isPrefix,
5573 sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
5575 sqlite3_stmt *s = NULL;
5578 assert( iBlockid!=0 );
5579 assert( pTerm!=NULL );
5580 assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
5581 assert( piStartChild!=NULL );
5582 assert( piEndChild!=NULL );
5584 rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
5585 if( rc!=SQLITE_OK ) return rc;
5587 rc = sqlite3_bind_int64(s, 1, iBlockid);
5588 if( rc!=SQLITE_OK ) return rc;
5590 rc = sqlite3_step(s);
5591 if( rc==SQLITE_DONE ) return SQLITE_ERROR;
5592 if( rc!=SQLITE_ROW ) return rc;
5594 getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
5595 pTerm, nTerm, isPrefix, piStartChild, piEndChild);
5597 /* We expect only one row. We must execute another sqlite3_step()
5598 * to complete the iteration; otherwise the table will remain
5600 rc = sqlite3_step(s);
5601 if( rc==SQLITE_ROW ) return SQLITE_ERROR;
5602 if( rc!=SQLITE_DONE ) return rc;
5607 /* Traverse the tree represented by pData[nData] looking for
5608 ** pTerm[nTerm], placing its doclist into *out. This is internal to
5609 ** loadSegment() to make error-handling cleaner.
5611 static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
5612 sqlite_int64 iLeavesEnd,
5613 const char *pTerm, int nTerm, int isPrefix,
5615 /* Special case where root is a leaf. */
5617 return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
5620 sqlite_int64 iStartChild, iEndChild;
5622 /* Process pData as an interior node, then loop down the tree
5623 ** until we find the set of leaf nodes to scan for the term.
5625 getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
5626 &iStartChild, &iEndChild);
5627 while( iStartChild>iLeavesEnd ){
5628 sqlite_int64 iNextStart, iNextEnd;
5629 rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
5630 &iNextStart, &iNextEnd);
5631 if( rc!=SQLITE_OK ) return rc;
5633 /* If we've branched, follow the end branch, too. */
5634 if( iStartChild!=iEndChild ){
5635 sqlite_int64 iDummy;
5636 rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
5637 &iDummy, &iNextEnd);
5638 if( rc!=SQLITE_OK ) return rc;
5641 assert( iNextStart<=iNextEnd );
5642 iStartChild = iNextStart;
5643 iEndChild = iNextEnd;
5645 assert( iStartChild<=iLeavesEnd );
5646 assert( iEndChild<=iLeavesEnd );
5648 /* Scan through the leaf segments for doclists. */
5649 return loadSegmentLeaves(v, iStartChild, iEndChild,
5650 pTerm, nTerm, isPrefix, out);
5654 /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
5655 ** merge its doclist over *out (any duplicate doclists read from the
5656 ** segment rooted at pData will overwrite those in *out).
5658 /* TODO(shess) Consider changing this to determine the depth of the
5659 ** leaves using either the first characters of interior nodes (when
5660 ** ==1, we're one level above the leaves), or the first character of
5661 ** the root (which will describe the height of the tree directly).
5662 ** Either feels somewhat tricky to me.
5664 /* TODO(shess) The current merge is likely to be slow for large
5665 ** doclists (though it should process from newest/smallest to
5666 ** oldest/largest, so it may not be that bad). It might be useful to
5667 ** modify things to allow for N-way merging. This could either be
5668 ** within a segment, with pairwise merges across segments, or across
5669 ** all segments at once.
5671 static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
5672 sqlite_int64 iLeavesEnd,
5673 const char *pTerm, int nTerm, int isPrefix,
5680 /* This code should never be called with buffered updates. */
5681 assert( v->nPendingData<0 );
5683 dataBufferInit(&result, 0);
5684 rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
5685 pTerm, nTerm, isPrefix, &result);
5686 if( rc==SQLITE_OK && result.nData>0 ){
5687 if( out->nData==0 ){
5688 DataBuffer tmp = *out;
5693 DLReader readers[2];
5695 dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
5696 dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
5697 dataBufferInit(&merged, out->nData+result.nData);
5698 docListMerge(&merged, readers, 2);
5699 dataBufferDestroy(out);
5701 dlrDestroy(&readers[0]);
5702 dlrDestroy(&readers[1]);
5705 dataBufferDestroy(&result);
5709 /* Scan the database and merge together the posting lists for the term
5712 static int termSelect(fulltext_vtab *v, int iColumn,
5713 const char *pTerm, int nTerm, int isPrefix,
5714 DocListType iType, DataBuffer *out){
5717 int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
5718 if( rc!=SQLITE_OK ) return rc;
5720 /* This code should never be called with buffered updates. */
5721 assert( v->nPendingData<0 );
5723 dataBufferInit(&doclist, 0);
5725 /* Traverse the segments from oldest to newest so that newer doclist
5726 ** elements for given docids overwrite older elements.
5728 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
5729 const char *pData = sqlite3_column_blob(s, 2);
5730 const int nData = sqlite3_column_bytes(s, 2);
5731 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
5732 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
5734 if( rc!=SQLITE_OK ) goto err;
5736 if( rc==SQLITE_DONE ){
5737 if( doclist.nData!=0 ){
5738 /* TODO(shess) The old term_select_all() code applied the column
5739 ** restrict as we merged segments, leading to smaller buffers.
5740 ** This is probably worthwhile to bring back, once the new storage
5741 ** system is checked in.
5743 if( iColumn==v->nColumn) iColumn = -1;
5744 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
5745 iColumn, iType, out);
5751 dataBufferDestroy(&doclist);
5755 /****************************************************************/
5756 /* Used to hold hashtable data for sorting. */
5757 typedef struct TermData {
5760 DLCollector *pCollector;
5763 /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
5764 ** for equal, >0 for greater-than).
5766 static int termDataCmp(const void *av, const void *bv){
5767 const TermData *a = (const TermData *)av;
5768 const TermData *b = (const TermData *)bv;
5769 int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
5770 int c = memcmp(a->pTerm, b->pTerm, n);
5771 if( c!=0 ) return c;
5772 return a->nTerm-b->nTerm;
5775 /* Order pTerms data by term, then write a new level 0 segment using
5778 static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){
5785 /* Determine the next index at level 0, merging as necessary. */
5786 rc = segdirNextIndex(v, 0, &idx);
5787 if( rc!=SQLITE_OK ) return rc;
5789 n = fts2HashCount(pTerms);
5790 pData = sqlite3_malloc(n*sizeof(TermData));
5792 for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){
5794 pData[i].pTerm = fts2HashKey(e);
5795 pData[i].nTerm = fts2HashKeysize(e);
5796 pData[i].pCollector = fts2HashData(e);
5800 /* TODO(shess) Should we allow user-defined collation sequences,
5801 ** here? I think we only need that once we support prefix searches.
5803 if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
5805 /* TODO(shess) Refactor so that we can write directly to the segment
5806 ** DataBuffer, as happens for segment merges.
5808 leafWriterInit(0, idx, &writer);
5809 dataBufferInit(&dl, 0);
5811 dataBufferReset(&dl);
5812 dlcAddDoclist(pData[i].pCollector, &dl);
5813 rc = leafWriterStep(v, &writer,
5814 pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
5815 if( rc!=SQLITE_OK ) goto err;
5817 rc = leafWriterFinalize(v, &writer);
5820 dataBufferDestroy(&dl);
5821 sqlite3_free(pData);
5822 leafWriterDestroy(&writer);
5826 /* If pendingTerms has data, free it. */
5827 static int clearPendingTerms(fulltext_vtab *v){
5828 if( v->nPendingData>=0 ){
5830 for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){
5831 dlcDelete(fts2HashData(e));
5833 fts2HashClear(&v->pendingTerms);
5834 v->nPendingData = -1;
5839 /* If pendingTerms has data, flush it to a level-zero segment, and
5842 static int flushPendingTerms(fulltext_vtab *v){
5843 if( v->nPendingData>=0 ){
5844 int rc = writeZeroSegment(v, &v->pendingTerms);
5845 if( rc==SQLITE_OK ) clearPendingTerms(v);
5851 /* If pendingTerms is "too big", or docid is out of order, flush it.
5852 ** Regardless, be certain that pendingTerms is initialized for use.
5854 static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
5855 /* TODO(shess) Explore whether partially flushing the buffer on
5856 ** forced-flush would provide better performance. I suspect that if
5857 ** we ordered the doclists by size and flushed the largest until the
5858 ** buffer was half empty, that would let the less frequent terms
5859 ** generate longer doclists.
5861 if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
5862 int rc = flushPendingTerms(v);
5863 if( rc!=SQLITE_OK ) return rc;
5865 if( v->nPendingData<0 ){
5866 fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1);
5867 v->nPendingData = 0;
5869 v->iPrevDocid = iDocid;
5873 /* This function implements the xUpdate callback; it is the top-level entry
5874 * point for inserting, deleting or updating a row in a full-text table. */
5875 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
5876 sqlite_int64 *pRowid){
5877 fulltext_vtab *v = (fulltext_vtab *) pVtab;
5880 TRACE(("FTS2 Update %p\n", pVtab));
5883 rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
5884 if( rc==SQLITE_OK ){
5885 /* If we just deleted the last row in the table, clear out the
5888 rc = content_exists(v);
5889 if( rc==SQLITE_ROW ){
5891 }else if( rc==SQLITE_DONE ){
5892 /* Clear the pending terms so we don't flush a useless level-0
5893 ** segment when the transaction closes.
5895 rc = clearPendingTerms(v);
5896 if( rc==SQLITE_OK ){
5897 rc = segdir_delete_all(v);
5901 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
5903 * ppArg[0] = old rowid
5904 * ppArg[1] = new rowid
5905 * ppArg[2..2+v->nColumn-1] = values
5906 * ppArg[2+v->nColumn] = value for magic column (we ignore this)
5908 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
5909 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
5910 sqlite3_value_int64(ppArg[1]) != rowid ){
5911 rc = SQLITE_ERROR; /* we don't allow changing the rowid */
5913 assert( nArg==2+v->nColumn+1);
5914 rc = index_update(v, rowid, &ppArg[2]);
5918 * ppArg[1] = requested rowid
5919 * ppArg[2..2+v->nColumn-1] = values
5920 * ppArg[2+v->nColumn] = value for magic column (we ignore this)
5922 assert( nArg==2+v->nColumn+1);
5923 rc = index_insert(v, ppArg[1], &ppArg[2], pRowid);
5929 static int fulltextSync(sqlite3_vtab *pVtab){
5930 TRACE(("FTS2 xSync()\n"));
5931 return flushPendingTerms((fulltext_vtab *)pVtab);
5934 static int fulltextBegin(sqlite3_vtab *pVtab){
5935 fulltext_vtab *v = (fulltext_vtab *) pVtab;
5936 TRACE(("FTS2 xBegin()\n"));
5938 /* Any buffered updates should have been cleared by the previous
5941 assert( v->nPendingData<0 );
5942 return clearPendingTerms(v);
5945 static int fulltextCommit(sqlite3_vtab *pVtab){
5946 fulltext_vtab *v = (fulltext_vtab *) pVtab;
5947 TRACE(("FTS2 xCommit()\n"));
5949 /* Buffered updates should have been cleared by fulltextSync(). */
5950 assert( v->nPendingData<0 );
5951 return clearPendingTerms(v);
5954 static int fulltextRollback(sqlite3_vtab *pVtab){
5955 TRACE(("FTS2 xRollback()\n"));
5956 return clearPendingTerms((fulltext_vtab *)pVtab);
5960 ** Implementation of the snippet() function for FTS2
5962 static void snippetFunc(
5963 sqlite3_context *pContext,
5965 sqlite3_value **argv
5967 fulltext_cursor *pCursor;
5968 if( argc<1 ) return;
5969 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
5970 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
5971 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
5973 const char *zStart = "<b>";
5974 const char *zEnd = "</b>";
5975 const char *zEllipsis = "<b>...</b>";
5976 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
5978 zStart = (const char*)sqlite3_value_text(argv[1]);
5980 zEnd = (const char*)sqlite3_value_text(argv[2]);
5982 zEllipsis = (const char*)sqlite3_value_text(argv[3]);
5986 snippetAllOffsets(pCursor);
5987 snippetText(pCursor, zStart, zEnd, zEllipsis);
5988 sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
5989 pCursor->snippet.nSnippet, SQLITE_STATIC);
5994 ** Implementation of the offsets() function for FTS2
5996 static void snippetOffsetsFunc(
5997 sqlite3_context *pContext,
5999 sqlite3_value **argv
6001 fulltext_cursor *pCursor;
6002 if( argc<1 ) return;
6003 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6004 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6005 sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
6007 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6008 snippetAllOffsets(pCursor);
6009 snippetOffsetText(&pCursor->snippet);
6010 sqlite3_result_text(pContext,
6011 pCursor->snippet.zOffset, pCursor->snippet.nOffset,
6016 /* OptLeavesReader is nearly identical to LeavesReader, except that
6017 ** where LeavesReader is geared towards the merging of complete
6018 ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
6019 ** is geared towards implementation of the optimize() function, and
6020 ** can merge all segments simultaneously. This version may be
6021 ** somewhat less efficient than LeavesReader because it merges into an
6022 ** accumulator rather than doing an N-way merge, but since segment
6023 ** size grows exponentially (so segment count logrithmically) this is
6024 ** probably not an immediate problem.
6026 /* TODO(shess): Prove that assertion, or extend the merge code to
6027 ** merge tree fashion (like the prefix-searching code does).
6029 /* TODO(shess): OptLeavesReader and LeavesReader could probably be
6030 ** merged with little or no loss of performance for LeavesReader. The
6031 ** merged code would need to handle >MERGE_COUNT segments, and would
6032 ** also need to be able to optionally optimize away deletes.
6034 typedef struct OptLeavesReader {
6035 /* Segment number, to order readers by age. */
6037 LeavesReader reader;
6040 static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
6041 return leavesReaderAtEnd(&pReader->reader);
6043 static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
6044 return leavesReaderTermBytes(&pReader->reader);
6046 static const char *optLeavesReaderData(OptLeavesReader *pReader){
6047 return leavesReaderData(&pReader->reader);
6049 static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
6050 return leavesReaderDataBytes(&pReader->reader);
6052 static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
6053 return leavesReaderTerm(&pReader->reader);
6055 static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
6056 return leavesReaderStep(v, &pReader->reader);
6058 static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
6059 return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
6061 /* Order by term ascending, segment ascending (oldest to newest), with
6062 ** exhausted readers to the end.
6064 static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
6065 int c = optLeavesReaderTermCmp(lr1, lr2);
6066 if( c!=0 ) return c;
6067 return lr1->segment-lr2->segment;
6069 /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
6070 ** pLr[1..nLr-1] is already sorted.
6072 static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
6073 while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
6074 OptLeavesReader tmp = pLr[0];
6082 /* optimize() helper function. Put the readers in order and iterate
6083 ** through them, merging doclists for matching terms into pWriter.
6084 ** Returns SQLITE_OK on success, or the SQLite error code which
6085 ** prevented success.
6087 static int optimizeInternal(fulltext_vtab *v,
6088 OptLeavesReader *readers, int nReaders,
6089 LeafWriter *pWriter){
6090 int i, rc = SQLITE_OK;
6091 DataBuffer doclist, merged, tmp;
6093 /* Order the readers. */
6096 optLeavesReaderReorder(&readers[i], nReaders-i);
6099 dataBufferInit(&doclist, LEAF_MAX);
6100 dataBufferInit(&merged, LEAF_MAX);
6102 /* Exhausted readers bubble to the end, so when the first reader is
6103 ** at eof, all are at eof.
6105 while( !optLeavesReaderAtEnd(&readers[0]) ){
6107 /* Figure out how many readers share the next term. */
6108 for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
6109 if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
6112 /* Special-case for no merge. */
6114 /* Trim deletions from the doclist. */
6115 dataBufferReset(&merged);
6116 docListTrim(DL_DEFAULT,
6117 optLeavesReaderData(&readers[0]),
6118 optLeavesReaderDataBytes(&readers[0]),
6119 -1, DL_DEFAULT, &merged);
6121 DLReader dlReaders[MERGE_COUNT];
6122 int iReader, nReaders;
6124 /* Prime the pipeline with the first reader's doclist. After
6125 ** one pass index 0 will reference the accumulated doclist.
6127 dlrInit(&dlReaders[0], DL_DEFAULT,
6128 optLeavesReaderData(&readers[0]),
6129 optLeavesReaderDataBytes(&readers[0]));
6132 assert( iReader<i ); /* Must execute the loop at least once. */
6134 /* Merge 16 inputs per pass. */
6135 for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
6136 iReader++, nReaders++ ){
6137 dlrInit(&dlReaders[nReaders], DL_DEFAULT,
6138 optLeavesReaderData(&readers[iReader]),
6139 optLeavesReaderDataBytes(&readers[iReader]));
6142 /* Merge doclists and swap result into accumulator. */
6143 dataBufferReset(&merged);
6144 docListMerge(&merged, dlReaders, nReaders);
6149 while( nReaders-- > 0 ){
6150 dlrDestroy(&dlReaders[nReaders]);
6153 /* Accumulated doclist to reader 0 for next pass. */
6154 dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
6157 /* Destroy reader that was left in the pipeline. */
6158 dlrDestroy(&dlReaders[0]);
6160 /* Trim deletions from the doclist. */
6161 dataBufferReset(&merged);
6162 docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
6163 -1, DL_DEFAULT, &merged);
6166 /* Only pass doclists with hits (skip if all hits deleted). */
6167 if( merged.nData>0 ){
6168 rc = leafWriterStep(v, pWriter,
6169 optLeavesReaderTerm(&readers[0]),
6170 optLeavesReaderTermBytes(&readers[0]),
6171 merged.pData, merged.nData);
6172 if( rc!=SQLITE_OK ) goto err;
6175 /* Step merged readers to next term and reorder. */
6177 rc = optLeavesReaderStep(v, &readers[i]);
6178 if( rc!=SQLITE_OK ) goto err;
6180 optLeavesReaderReorder(&readers[i], nReaders-i);
6185 dataBufferDestroy(&doclist);
6186 dataBufferDestroy(&merged);
6190 /* Implement optimize() function for FTS3. optimize(t) merges all
6191 ** segments in the fts index into a single segment. 't' is the magic
6192 ** table-named column.
6194 static void optimizeFunc(sqlite3_context *pContext,
6195 int argc, sqlite3_value **argv){
6196 fulltext_cursor *pCursor;
6198 sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
6199 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6200 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6201 sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
6204 int i, rc, iMaxLevel;
6205 OptLeavesReader *readers;
6210 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6211 v = cursor_vtab(pCursor);
6213 /* Flush any buffered updates before optimizing. */
6214 rc = flushPendingTerms(v);
6215 if( rc!=SQLITE_OK ) goto err;
6217 rc = segdir_count(v, &nReaders, &iMaxLevel);
6218 if( rc!=SQLITE_OK ) goto err;
6219 if( nReaders==0 || nReaders==1 ){
6220 sqlite3_result_text(pContext, "Index already optimal", -1,
6225 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
6226 if( rc!=SQLITE_OK ) goto err;
6228 readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
6229 if( readers==NULL ) goto err;
6231 /* Note that there will already be a segment at this position
6232 ** until we call segdir_delete() on iMaxLevel.
6234 leafWriterInit(iMaxLevel, 0, &writer);
6237 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
6238 sqlite_int64 iStart = sqlite3_column_int64(s, 0);
6239 sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
6240 const char *pRootData = sqlite3_column_blob(s, 2);
6241 int nRootData = sqlite3_column_bytes(s, 2);
6243 assert( i<nReaders );
6244 rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
6245 &readers[i].reader);
6246 if( rc!=SQLITE_OK ) break;
6248 readers[i].segment = i;
6252 /* If we managed to succesfully read them all, optimize them. */
6253 if( rc==SQLITE_DONE ){
6254 assert( i==nReaders );
6255 rc = optimizeInternal(v, readers, nReaders, &writer);
6259 leavesReaderDestroy(&readers[i].reader);
6261 sqlite3_free(readers);
6263 /* If we've successfully gotten to here, delete the old segments
6264 ** and flush the interior structure of the new segment.
6266 if( rc==SQLITE_OK ){
6267 for( i=0; i<=iMaxLevel; i++ ){
6268 rc = segdir_delete(v, i);
6269 if( rc!=SQLITE_OK ) break;
6272 if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
6275 leafWriterDestroy(&writer);
6277 if( rc!=SQLITE_OK ) goto err;
6279 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
6282 /* TODO(shess): Error-handling needs to be improved along the
6283 ** lines of the dump_ functions.
6288 sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
6289 sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
6290 sqlite3_result_error(pContext, buf, -1);
6296 /* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
6297 ** pull the error from the context's db handle.
6299 static void generateError(sqlite3_context *pContext,
6300 const char *prefix, const char *msg){
6302 if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
6303 sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
6304 sqlite3_result_error(pContext, buf, -1);
6307 /* Helper function to collect the set of terms in the segment into
6308 ** pTerms. The segment is defined by the leaf nodes between
6309 ** iStartBlockid and iEndBlockid, inclusive, or by the contents of
6310 ** pRootData if iStartBlockid is 0 (in which case the entire segment
6313 static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
6315 const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
6316 const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
6317 const char *pRootData = sqlite3_column_blob(s, 2);
6318 const int nRootData = sqlite3_column_bytes(s, 2);
6319 LeavesReader reader;
6320 int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
6321 pRootData, nRootData, &reader);
6322 if( rc!=SQLITE_OK ) return rc;
6324 while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
6325 const char *pTerm = leavesReaderTerm(&reader);
6326 const int nTerm = leavesReaderTermBytes(&reader);
6327 void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm);
6328 void *newValue = (void *)((char *)oldValue+1);
6330 /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c,
6331 ** the data value passed is returned in case of malloc failure.
6333 if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){
6336 rc = leavesReaderStep(v, &reader);
6340 leavesReaderDestroy(&reader);
6344 /* Helper function to build the result string for dump_terms(). */
6345 static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){
6346 int iTerm, nTerms, nResultBytes, iByte;
6351 /* Iterate pTerms to generate an array of terms in pData for
6354 nTerms = fts2HashCount(pTerms);
6356 pData = sqlite3_malloc(nTerms*sizeof(TermData));
6357 if( pData==NULL ) return SQLITE_NOMEM;
6360 for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){
6361 nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */
6362 assert( iTerm<nTerms );
6363 pData[iTerm].pTerm = fts2HashKey(e);
6364 pData[iTerm].nTerm = fts2HashKeysize(e);
6365 pData[iTerm].pCollector = fts2HashData(e); /* unused */
6367 assert( iTerm==nTerms );
6369 assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
6370 result = sqlite3_malloc(nResultBytes);
6372 sqlite3_free(pData);
6373 return SQLITE_NOMEM;
6376 if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
6378 /* Read the terms in order to build the result. */
6380 for(iTerm=0; iTerm<nTerms; ++iTerm){
6381 memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
6382 iByte += pData[iTerm].nTerm;
6383 result[iByte++] = ' ';
6385 assert( iByte==nResultBytes );
6386 assert( result[nResultBytes-1]==' ' );
6387 result[nResultBytes-1] = '\0';
6389 /* Passes away ownership of result. */
6390 sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
6391 sqlite3_free(pData);
6395 /* Implements dump_terms() for use in inspecting the fts2 index from
6396 ** tests. TEXT result containing the ordered list of terms joined by
6397 ** spaces. dump_terms(t, level, idx) dumps the terms for the segment
6398 ** specified by level, idx (in %_segdir), while dump_terms(t) dumps
6399 ** all terms in the index. In both cases t is the fts table's magic
6400 ** table-named column.
6402 static void dumpTermsFunc(
6403 sqlite3_context *pContext,
6404 int argc, sqlite3_value **argv
6406 fulltext_cursor *pCursor;
6407 if( argc!=3 && argc!=1 ){
6408 generateError(pContext, "dump_terms", "incorrect arguments");
6409 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6410 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6411 generateError(pContext, "dump_terms", "illegal first argument");
6415 sqlite3_stmt *s = NULL;
6418 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6419 v = cursor_vtab(pCursor);
6421 /* If passed only the cursor column, get all segments. Otherwise
6422 ** get the segment described by the following two arguments.
6425 rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
6427 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
6428 if( rc==SQLITE_OK ){
6429 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
6430 if( rc==SQLITE_OK ){
6431 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
6436 if( rc!=SQLITE_OK ){
6437 generateError(pContext, "dump_terms", NULL);
6441 /* Collect the terms for each segment. */
6442 sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1);
6443 while( (rc = sqlite3_step(s))==SQLITE_ROW ){
6444 rc = collectSegmentTerms(v, s, &terms);
6445 if( rc!=SQLITE_OK ) break;
6448 if( rc!=SQLITE_DONE ){
6450 generateError(pContext, "dump_terms", NULL);
6452 const int nTerms = fts2HashCount(&terms);
6454 rc = generateTermsResult(pContext, &terms);
6455 if( rc==SQLITE_NOMEM ){
6456 generateError(pContext, "dump_terms", "out of memory");
6458 assert( rc==SQLITE_OK );
6460 }else if( argc==3 ){
6461 /* The specific segment asked for could not be found. */
6462 generateError(pContext, "dump_terms", "segment not found");
6464 /* No segments found. */
6465 /* TODO(shess): It should be impossible to reach this. This
6466 ** case can only happen for an empty table, in which case
6467 ** SQLite has no rows to call this function on.
6469 sqlite3_result_null(pContext);
6472 sqlite3Fts2HashClear(&terms);
6476 /* Expand the DL_DEFAULT doclist in pData into a text result in
6479 static void createDoclistResult(sqlite3_context *pContext,
6480 const char *pData, int nData){
6484 assert( pData!=NULL && nData>0 );
6486 dataBufferInit(&dump, 0);
6487 dlrInit(&dlReader, DL_DEFAULT, pData, nData);
6488 for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
6492 plrInit(&plReader, &dlReader);
6493 if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
6494 sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
6495 dataBufferAppend(&dump, buf, strlen(buf));
6497 int iColumn = plrColumn(&plReader);
6499 sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
6500 dlrDocid(&dlReader), iColumn);
6501 dataBufferAppend(&dump, buf, strlen(buf));
6503 for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
6504 if( plrColumn(&plReader)!=iColumn ){
6505 iColumn = plrColumn(&plReader);
6506 sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
6507 assert( dump.nData>0 );
6508 dump.nData--; /* Overwrite trailing space. */
6509 assert( dump.pData[dump.nData]==' ');
6510 dataBufferAppend(&dump, buf, strlen(buf));
6512 if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
6513 sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
6514 plrPosition(&plReader),
6515 plrStartOffset(&plReader), plrEndOffset(&plReader));
6516 }else if( DL_DEFAULT==DL_POSITIONS ){
6517 sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
6519 assert( NULL=="Unhandled DL_DEFAULT value");
6521 dataBufferAppend(&dump, buf, strlen(buf));
6523 plrDestroy(&plReader);
6525 assert( dump.nData>0 );
6526 dump.nData--; /* Overwrite trailing space. */
6527 assert( dump.pData[dump.nData]==' ');
6528 dataBufferAppend(&dump, "]] ", 3);
6531 dlrDestroy(&dlReader);
6533 assert( dump.nData>0 );
6534 dump.nData--; /* Overwrite trailing space. */
6535 assert( dump.pData[dump.nData]==' ');
6536 dump.pData[dump.nData] = '\0';
6537 assert( dump.nData>0 );
6539 /* Passes ownership of dump's buffer to pContext. */
6540 sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
6542 dump.nData = dump.nCapacity = 0;
6545 /* Implements dump_doclist() for use in inspecting the fts2 index from
6546 ** tests. TEXT result containing a string representation of the
6547 ** doclist for the indicated term. dump_doclist(t, term, level, idx)
6548 ** dumps the doclist for term from the segment specified by level, idx
6549 ** (in %_segdir), while dump_doclist(t, term) dumps the logical
6550 ** doclist for the term across all segments. The per-segment doclist
6551 ** can contain deletions, while the full-index doclist will not
6552 ** (deletions are omitted).
6554 ** Result formats differ with the setting of DL_DEFAULTS. Examples:
6556 ** DL_DOCIDS: [1] [3] [7]
6557 ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
6558 ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
6560 ** In each case the number after the outer '[' is the docid. In the
6561 ** latter two cases, the number before the inner '[' is the column
6562 ** associated with the values within. For DL_POSITIONS the numbers
6563 ** within are the positions, for DL_POSITIONS_OFFSETS they are the
6564 ** position, the start offset, and the end offset.
6566 static void dumpDoclistFunc(
6567 sqlite3_context *pContext,
6568 int argc, sqlite3_value **argv
6570 fulltext_cursor *pCursor;
6571 if( argc!=2 && argc!=4 ){
6572 generateError(pContext, "dump_doclist", "incorrect arguments");
6573 }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
6574 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
6575 generateError(pContext, "dump_doclist", "illegal first argument");
6576 }else if( sqlite3_value_text(argv[1])==NULL ||
6577 sqlite3_value_text(argv[1])[0]=='\0' ){
6578 generateError(pContext, "dump_doclist", "empty second argument");
6580 const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
6581 const int nTerm = strlen(pTerm);
6586 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
6587 v = cursor_vtab(pCursor);
6589 dataBufferInit(&doclist, 0);
6591 /* termSelect() yields the same logical doclist that queries are
6595 rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
6597 sqlite3_stmt *s = NULL;
6599 /* Get our specific segment's information. */
6600 rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
6601 if( rc==SQLITE_OK ){
6602 rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
6603 if( rc==SQLITE_OK ){
6604 rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
6608 if( rc==SQLITE_OK ){
6609 rc = sqlite3_step(s);
6611 if( rc==SQLITE_DONE ){
6612 dataBufferDestroy(&doclist);
6613 generateError(pContext, "dump_doclist", "segment not found");
6617 /* Found a segment, load it into doclist. */
6618 if( rc==SQLITE_ROW ){
6619 const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
6620 const char *pData = sqlite3_column_blob(s, 2);
6621 const int nData = sqlite3_column_bytes(s, 2);
6623 /* loadSegment() is used by termSelect() to load each
6626 rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
6628 if( rc==SQLITE_OK ){
6629 rc = sqlite3_step(s);
6631 /* Should not have more than one matching segment. */
6632 if( rc!=SQLITE_DONE ){
6634 dataBufferDestroy(&doclist);
6635 generateError(pContext, "dump_doclist", "invalid segdir");
6646 if( rc==SQLITE_OK ){
6647 if( doclist.nData>0 ){
6648 createDoclistResult(pContext, doclist.pData, doclist.nData);
6650 /* TODO(shess): This can happen if the term is not present, or
6651 ** if all instances of the term have been deleted and this is
6652 ** an all-index dump. It may be interesting to distinguish
6655 sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
6657 }else if( rc==SQLITE_NOMEM ){
6658 /* Handle out-of-memory cases specially because if they are
6659 ** generated in fts2 code they may not be reflected in the db
6662 /* TODO(shess): Handle this more comprehensively.
6663 ** sqlite3ErrStr() has what I need, but is internal.
6665 generateError(pContext, "dump_doclist", "out of memory");
6667 generateError(pContext, "dump_doclist", NULL);
6670 dataBufferDestroy(&doclist);
6676 ** This routine implements the xFindFunction method for the FTS2
6679 static int fulltextFindFunction(
6680 sqlite3_vtab *pVtab,
6683 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
6686 if( strcmp(zName,"snippet")==0 ){
6687 *pxFunc = snippetFunc;
6689 }else if( strcmp(zName,"offsets")==0 ){
6690 *pxFunc = snippetOffsetsFunc;
6692 }else if( strcmp(zName,"optimize")==0 ){
6693 *pxFunc = optimizeFunc;
6696 /* NOTE(shess): These functions are present only for testing
6697 ** purposes. No particular effort is made to optimize their
6698 ** execution or how they build their results.
6700 }else if( strcmp(zName,"dump_terms")==0 ){
6701 /* fprintf(stderr, "Found dump_terms\n"); */
6702 *pxFunc = dumpTermsFunc;
6704 }else if( strcmp(zName,"dump_doclist")==0 ){
6705 /* fprintf(stderr, "Found dump_doclist\n"); */
6706 *pxFunc = dumpDoclistFunc;
6714 ** Rename an fts2 table.
6716 static int fulltextRename(
6717 sqlite3_vtab *pVtab,
6720 fulltext_vtab *p = (fulltext_vtab *)pVtab;
6721 int rc = SQLITE_NOMEM;
6722 char *zSql = sqlite3_mprintf(
6723 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
6724 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
6725 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
6726 , p->zDb, p->zName, zName
6727 , p->zDb, p->zName, zName
6728 , p->zDb, p->zName, zName
6731 rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
6737 static const sqlite3_module fts2Module = {
6739 /* xCreate */ fulltextCreate,
6740 /* xConnect */ fulltextConnect,
6741 /* xBestIndex */ fulltextBestIndex,
6742 /* xDisconnect */ fulltextDisconnect,
6743 /* xDestroy */ fulltextDestroy,
6744 /* xOpen */ fulltextOpen,
6745 /* xClose */ fulltextClose,
6746 /* xFilter */ fulltextFilter,
6747 /* xNext */ fulltextNext,
6748 /* xEof */ fulltextEof,
6749 /* xColumn */ fulltextColumn,
6750 /* xRowid */ fulltextRowid,
6751 /* xUpdate */ fulltextUpdate,
6752 /* xBegin */ fulltextBegin,
6753 /* xSync */ fulltextSync,
6754 /* xCommit */ fulltextCommit,
6755 /* xRollback */ fulltextRollback,
6756 /* xFindFunction */ fulltextFindFunction,
6757 /* xRename */ fulltextRename,
6760 static void hashDestroy(void *p){
6761 fts2Hash *pHash = (fts2Hash *)p;
6762 sqlite3Fts2HashClear(pHash);
6763 sqlite3_free(pHash);
6767 ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented
6768 ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following
6769 ** two forward declarations are for functions declared in these files
6770 ** used to retrieve the respective implementations.
6772 ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed
6773 ** to by the argument to point a the "simple" tokenizer implementation.
6774 ** Function ...PorterTokenizerModule() sets *pModule to point to the
6775 ** porter tokenizer/stemmer implementation.
6777 void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
6778 void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
6779 void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
6781 int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *);
6784 ** Initialise the fts2 extension. If this extension is built as part
6785 ** of the sqlite library, then this function is called directly by
6786 ** SQLite. If fts2 is built as a dynamically loadable extension, this
6787 ** function is called by the sqlite3_extension_init() entry point.
6789 int sqlite3Fts2Init(sqlite3 *db){
6791 fts2Hash *pHash = 0;
6792 const sqlite3_tokenizer_module *pSimple = 0;
6793 const sqlite3_tokenizer_module *pPorter = 0;
6794 const sqlite3_tokenizer_module *pIcu = 0;
6796 sqlite3Fts2SimpleTokenizerModule(&pSimple);
6797 sqlite3Fts2PorterTokenizerModule(&pPorter);
6798 #ifdef SQLITE_ENABLE_ICU
6799 sqlite3Fts2IcuTokenizerModule(&pIcu);
6802 /* Allocate and initialise the hash-table used to store tokenizers. */
6803 pHash = sqlite3_malloc(sizeof(fts2Hash));
6807 sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1);
6810 /* Load the built-in tokenizers into the hash table */
6811 if( rc==SQLITE_OK ){
6812 if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple)
6813 || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter)
6814 || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu))
6820 /* Create the virtual table wrapper around the hash-table and overload
6821 ** the two scalar functions. If this is successful, register the
6822 ** module with sqlite.
6825 && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer"))
6826 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
6827 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
6828 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
6830 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
6831 && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
6834 return sqlite3_create_module_v2(
6835 db, "fts2", &fts2Module, (void *)pHash, hashDestroy
6839 /* An error has occured. Delete the hash table and return the error code. */
6840 assert( rc!=SQLITE_OK );
6842 sqlite3Fts2HashClear(pHash);
6843 sqlite3_free(pHash);
6849 int sqlite3_extension_init(
6852 const sqlite3_api_routines *pApi
6854 SQLITE_EXTENSION_INIT2(pApi)
6855 return sqlite3Fts2Init(db);
6859 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */