Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 ** $Id: expr.c,v 1.395 2008/10/02 13:50:56 danielk1977 Exp $
17 #include "sqliteInt.h"
21 ** Return the 'affinity' of the expression pExpr if any.
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
28 ** i.e. the WHERE clause expresssions in the following statements all
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
36 char sqlite3ExprAffinity(Expr *pExpr){
39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
41 #ifndef SQLITE_OMIT_CAST
43 return sqlite3AffinityType(&pExpr->token);
46 if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
47 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
48 ** a TK_COLUMN but was previously evaluated and cached in a register */
49 int j = pExpr->iColumn;
50 if( j<0 ) return SQLITE_AFF_INTEGER;
51 assert( pExpr->pTab && j<pExpr->pTab->nCol );
52 return pExpr->pTab->aCol[j].affinity;
54 return pExpr->affinity;
58 ** Set the collating sequence for expression pExpr to be the collating
59 ** sequence named by pToken. Return a pointer to the revised expression.
60 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
61 ** flag. An explicit collating sequence will override implicit
62 ** collating sequences.
64 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
65 char *zColl = 0; /* Dequoted name of collation sequence */
67 sqlite3 *db = pParse->db;
68 zColl = sqlite3NameFromToken(db, pCollName);
70 pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
73 pExpr->flags |= EP_ExpCollate;
76 sqlite3DbFree(db, zColl);
81 ** Return the default collation sequence for the expression pExpr. If
82 ** there is no default collation type, return 0.
84 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
92 if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
93 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
94 ** a TK_COLUMN but was previously evaluated and cached in a register */
98 sqlite3 *db = pParse->db;
99 zColl = p->pTab->aCol[j].zColl;
100 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
101 pExpr->pColl = pColl;
105 if( op!=TK_CAST && op!=TK_UPLUS ){
110 if( sqlite3CheckCollSeq(pParse, pColl) ){
117 ** pExpr is an operand of a comparison operator. aff2 is the
118 ** type affinity of the other operand. This routine returns the
119 ** type affinity that should be used for the comparison operator.
121 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
122 char aff1 = sqlite3ExprAffinity(pExpr);
124 /* Both sides of the comparison are columns. If one has numeric
125 ** affinity, use that. Otherwise use no affinity.
127 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
128 return SQLITE_AFF_NUMERIC;
130 return SQLITE_AFF_NONE;
132 }else if( !aff1 && !aff2 ){
133 /* Neither side of the comparison is a column. Compare the
136 return SQLITE_AFF_NONE;
138 /* One side is a column, the other is not. Use the columns affinity. */
139 assert( aff1==0 || aff2==0 );
140 return (aff1 + aff2);
145 ** pExpr is a comparison operator. Return the type affinity that should
146 ** be applied to both operands prior to doing the comparison.
148 static char comparisonAffinity(Expr *pExpr){
150 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
151 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
153 assert( pExpr->pLeft );
154 aff = sqlite3ExprAffinity(pExpr->pLeft);
156 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
158 else if( pExpr->pSelect ){
159 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
162 aff = SQLITE_AFF_NONE;
168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
169 ** idx_affinity is the affinity of an indexed column. Return true
170 ** if the index with affinity idx_affinity may be used to implement
171 ** the comparison in pExpr.
173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
174 char aff = comparisonAffinity(pExpr);
176 case SQLITE_AFF_NONE:
178 case SQLITE_AFF_TEXT:
179 return idx_affinity==SQLITE_AFF_TEXT;
181 return sqlite3IsNumericAffinity(idx_affinity);
186 ** Return the P5 value that should be used for a binary comparison
187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
190 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
191 aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
196 ** Return a pointer to the collation sequence that should be used by
197 ** a binary comparison operator comparing pLeft and pRight.
199 ** If the left hand expression has a collating sequence type, then it is
200 ** used. Otherwise the collation sequence for the right hand expression
201 ** is used, or the default (BINARY) if neither expression has a collating
204 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
205 ** it is not considered.
207 CollSeq *sqlite3BinaryCompareCollSeq(
214 if( pLeft->flags & EP_ExpCollate ){
215 assert( pLeft->pColl );
216 pColl = pLeft->pColl;
217 }else if( pRight && pRight->flags & EP_ExpCollate ){
218 assert( pRight->pColl );
219 pColl = pRight->pColl;
221 pColl = sqlite3ExprCollSeq(pParse, pLeft);
223 pColl = sqlite3ExprCollSeq(pParse, pRight);
230 ** Generate the operands for a comparison operation. Before
231 ** generating the code for each operand, set the EP_AnyAff
232 ** flag on the expression so that it will be able to used a
233 ** cached column value that has previously undergone an
236 static void codeCompareOperands(
237 Parse *pParse, /* Parsing and code generating context */
238 Expr *pLeft, /* The left operand */
239 int *pRegLeft, /* Register where left operand is stored */
240 int *pFreeLeft, /* Free this register when done */
241 Expr *pRight, /* The right operand */
242 int *pRegRight, /* Register where right operand is stored */
243 int *pFreeRight /* Write temp register for right operand there */
245 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
246 pLeft->flags |= EP_AnyAff;
247 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
248 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
249 pRight->flags |= EP_AnyAff;
250 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
254 ** Generate code for a comparison operator.
256 static int codeCompare(
257 Parse *pParse, /* The parsing (and code generating) context */
258 Expr *pLeft, /* The left operand */
259 Expr *pRight, /* The right operand */
260 int opcode, /* The comparison opcode */
261 int in1, int in2, /* Register holding operands */
262 int dest, /* Jump here if true. */
263 int jumpIfNull /* If true, jump if either operand is NULL */
269 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
270 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
271 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
272 (void*)p4, P4_COLLSEQ);
273 sqlite3VdbeChangeP5(pParse->pVdbe, p5);
274 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
275 sqlite3ExprCacheAffinityChange(pParse, in1, 1);
276 sqlite3ExprCacheAffinityChange(pParse, in2, 1);
281 #if SQLITE_MAX_EXPR_DEPTH>0
283 ** Check that argument nHeight is less than or equal to the maximum
284 ** expression depth allowed. If it is not, leave an error message in
287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
289 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
290 if( nHeight>mxHeight ){
291 sqlite3ErrorMsg(pParse,
292 "Expression tree is too large (maximum depth %d)", mxHeight
299 /* The following three functions, heightOfExpr(), heightOfExprList()
300 ** and heightOfSelect(), are used to determine the maximum height
301 ** of any expression tree referenced by the structure passed as the
304 ** If this maximum height is greater than the current value pointed
305 ** to by pnHeight, the second parameter, then set *pnHeight to that
308 static void heightOfExpr(Expr *p, int *pnHeight){
310 if( p->nHeight>*pnHeight ){
311 *pnHeight = p->nHeight;
315 static void heightOfExprList(ExprList *p, int *pnHeight){
318 for(i=0; i<p->nExpr; i++){
319 heightOfExpr(p->a[i].pExpr, pnHeight);
323 static void heightOfSelect(Select *p, int *pnHeight){
325 heightOfExpr(p->pWhere, pnHeight);
326 heightOfExpr(p->pHaving, pnHeight);
327 heightOfExpr(p->pLimit, pnHeight);
328 heightOfExpr(p->pOffset, pnHeight);
329 heightOfExprList(p->pEList, pnHeight);
330 heightOfExprList(p->pGroupBy, pnHeight);
331 heightOfExprList(p->pOrderBy, pnHeight);
332 heightOfSelect(p->pPrior, pnHeight);
337 ** Set the Expr.nHeight variable in the structure passed as an
338 ** argument. An expression with no children, Expr.pList or
339 ** Expr.pSelect member has a height of 1. Any other expression
340 ** has a height equal to the maximum height of any other
341 ** referenced Expr plus one.
343 static void exprSetHeight(Expr *p){
345 heightOfExpr(p->pLeft, &nHeight);
346 heightOfExpr(p->pRight, &nHeight);
347 heightOfExprList(p->pList, &nHeight);
348 heightOfSelect(p->pSelect, &nHeight);
349 p->nHeight = nHeight + 1;
353 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
354 ** the height is greater than the maximum allowed expression depth,
355 ** leave an error in pParse.
357 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
359 sqlite3ExprCheckHeight(pParse, p->nHeight);
363 ** Return the maximum height of any expression tree referenced
364 ** by the select statement passed as an argument.
366 int sqlite3SelectExprHeight(Select *p){
368 heightOfSelect(p, &nHeight);
372 #define exprSetHeight(y)
373 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
376 ** Construct a new expression node and return a pointer to it. Memory
377 ** for this node is obtained from sqlite3_malloc(). The calling function
378 ** is responsible for making sure the node eventually gets freed.
381 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
382 int op, /* Expression opcode */
383 Expr *pLeft, /* Left operand */
384 Expr *pRight, /* Right operand */
385 const Token *pToken /* Argument token */
388 pNew = sqlite3DbMallocZero(db, sizeof(Expr));
390 /* When malloc fails, delete pLeft and pRight. Expressions passed to
391 ** this function must always be allocated with sqlite3Expr() for this
394 sqlite3ExprDelete(db, pLeft);
395 sqlite3ExprDelete(db, pRight);
400 pNew->pRight = pRight;
402 pNew->span.z = (u8*)"";
404 assert( pToken->dyn==0 );
405 pNew->span = pNew->token = *pToken;
408 if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
409 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
411 if( pRight->flags & EP_ExpCollate ){
412 pNew->flags |= EP_ExpCollate;
413 pNew->pColl = pRight->pColl;
416 if( pLeft->flags & EP_ExpCollate ){
417 pNew->flags |= EP_ExpCollate;
418 pNew->pColl = pLeft->pColl;
427 ** Works like sqlite3Expr() except that it takes an extra Parse*
428 ** argument and notifies the associated connection object if malloc fails.
431 Parse *pParse, /* Parsing context */
432 int op, /* Expression opcode */
433 Expr *pLeft, /* Left operand */
434 Expr *pRight, /* Right operand */
435 const Token *pToken /* Argument token */
437 Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
439 sqlite3ExprCheckHeight(pParse, p->nHeight);
445 ** When doing a nested parse, you can include terms in an expression
446 ** that look like this: #1 #2 ... These terms refer to registers
447 ** in the virtual machine. #N is the N-th register.
449 ** This routine is called by the parser to deal with on of those terms.
450 ** It immediately generates code to store the value in a memory location.
451 ** The returns an expression that will code to extract the value from
452 ** that memory location as needed.
454 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
455 Vdbe *v = pParse->pVdbe;
457 if( pParse->nested==0 ){
458 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
459 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
462 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
464 return 0; /* Malloc failed */
466 p->iTable = atoi((char*)&pToken->z[1]);
471 ** Join two expressions using an AND operator. If either expression is
472 ** NULL, then just return the other expression.
474 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
477 }else if( pRight==0 ){
480 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
485 ** Set the Expr.span field of the given expression to span all
486 ** text between the two given tokens. Both tokens must be pointing
487 ** at the same string.
489 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
493 pExpr->span.z = pLeft->z;
494 pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
499 ** Construct a new expression node for a function with multiple
502 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
504 sqlite3 *db = pParse->db;
506 pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
508 sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
511 pNew->op = TK_FUNCTION;
513 assert( pToken->dyn==0 );
514 pNew->token = *pToken;
515 pNew->span = pNew->token;
517 sqlite3ExprSetHeight(pParse, pNew);
522 ** Assign a variable number to an expression that encodes a wildcard
523 ** in the original SQL statement.
525 ** Wildcards consisting of a single "?" are assigned the next sequential
528 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
529 ** sure "nnn" is not too be to avoid a denial of service attack when
530 ** the SQL statement comes from an external source.
532 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
533 ** as the previous instance of the same wildcard. Or if this is the first
534 ** instance of the wildcard, the next sequenial variable number is
537 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
539 sqlite3 *db = pParse->db;
541 if( pExpr==0 ) return;
542 pToken = &pExpr->token;
543 assert( pToken->n>=1 );
544 assert( pToken->z!=0 );
545 assert( pToken->z[0]!=0 );
547 /* Wildcard of the form "?". Assign the next variable number */
548 pExpr->iTable = ++pParse->nVar;
549 }else if( pToken->z[0]=='?' ){
550 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
551 ** use it as the variable number */
553 pExpr->iTable = i = atoi((char*)&pToken->z[1]);
556 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
557 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
558 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
559 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
560 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
562 if( i>pParse->nVar ){
566 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
567 ** number as the prior appearance of the same name, or if the name
568 ** has never appeared before, reuse the same variable number
572 for(i=0; i<pParse->nVarExpr; i++){
574 if( (pE = pParse->apVarExpr[i])!=0
576 && memcmp(pE->token.z, pToken->z, n)==0 ){
577 pExpr->iTable = pE->iTable;
581 if( i>=pParse->nVarExpr ){
582 pExpr->iTable = ++pParse->nVar;
583 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
584 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
586 sqlite3DbReallocOrFree(
589 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
592 if( !db->mallocFailed ){
593 assert( pParse->apVarExpr!=0 );
594 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
598 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
599 sqlite3ErrorMsg(pParse, "too many SQL variables");
604 ** Recursively delete an expression tree.
606 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
608 if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
609 if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
610 sqlite3ExprDelete(db, p->pLeft);
611 sqlite3ExprDelete(db, p->pRight);
612 sqlite3ExprListDelete(db, p->pList);
613 sqlite3SelectDelete(db, p->pSelect);
614 sqlite3DbFree(db, p);
618 ** The Expr.token field might be a string literal that is quoted.
619 ** If so, remove the quotation marks.
621 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
622 if( ExprHasAnyProperty(p, EP_Dequoted) ){
625 ExprSetProperty(p, EP_Dequoted);
626 if( p->token.dyn==0 ){
627 sqlite3TokenCopy(db, &p->token, &p->token);
629 sqlite3Dequote((char*)p->token.z);
633 ** The following group of routines make deep copies of expressions,
634 ** expression lists, ID lists, and select statements. The copies can
635 ** be deleted (by being passed to their respective ...Delete() routines)
636 ** without effecting the originals.
638 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
639 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
640 ** by subsequent calls to sqlite*ListAppend() routines.
642 ** Any tables that the SrcList might point to are not duplicated.
644 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
647 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
648 if( pNew==0 ) return 0;
649 memcpy(pNew, p, sizeof(*pNew));
651 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
654 assert( pNew->token.z==0 );
657 pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
658 pNew->pRight = sqlite3ExprDup(db, p->pRight);
659 pNew->pList = sqlite3ExprListDup(db, p->pList);
660 pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
663 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
664 if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
667 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
673 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
675 struct ExprList_item *pItem, *pOldItem;
678 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
679 if( pNew==0 ) return 0;
681 pNew->nExpr = pNew->nAlloc = p->nExpr;
682 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
684 sqlite3DbFree(db, pNew);
688 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
689 Expr *pNewExpr, *pOldExpr;
690 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
691 if( pOldExpr->span.z!=0 && pNewExpr ){
692 /* Always make a copy of the span for top-level expressions in the
693 ** expression list. The logic in SELECT processing that determines
694 ** the names of columns in the result set needs this information */
695 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
697 assert( pNewExpr==0 || pNewExpr->span.z!=0
698 || pOldExpr->span.z==0
699 || db->mallocFailed );
700 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
701 pItem->sortOrder = pOldItem->sortOrder;
703 pItem->iCol = pOldItem->iCol;
704 pItem->iAlias = pOldItem->iAlias;
710 ** If cursors, triggers, views and subqueries are all omitted from
711 ** the build, then none of the following routines, except for
712 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
713 ** called with a NULL argument.
715 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
716 || !defined(SQLITE_OMIT_SUBQUERY)
717 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
722 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
723 pNew = sqlite3DbMallocRaw(db, nByte );
724 if( pNew==0 ) return 0;
725 pNew->nSrc = pNew->nAlloc = p->nSrc;
726 for(i=0; i<p->nSrc; i++){
727 struct SrcList_item *pNewItem = &pNew->a[i];
728 struct SrcList_item *pOldItem = &p->a[i];
730 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
731 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
732 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
733 pNewItem->jointype = pOldItem->jointype;
734 pNewItem->iCursor = pOldItem->iCursor;
735 pNewItem->isPopulated = pOldItem->isPopulated;
736 pTab = pNewItem->pTab = pOldItem->pTab;
740 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
741 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
742 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
743 pNewItem->colUsed = pOldItem->colUsed;
747 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
751 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
752 if( pNew==0 ) return 0;
753 pNew->nId = pNew->nAlloc = p->nId;
754 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
756 sqlite3DbFree(db, pNew);
759 for(i=0; i<p->nId; i++){
760 struct IdList_item *pNewItem = &pNew->a[i];
761 struct IdList_item *pOldItem = &p->a[i];
762 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
763 pNewItem->idx = pOldItem->idx;
767 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
770 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
771 if( pNew==0 ) return 0;
772 pNew->pEList = sqlite3ExprListDup(db, p->pEList);
773 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
774 pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
775 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
776 pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
777 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
779 pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
780 pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
781 pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
784 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
785 pNew->pRightmost = 0;
786 pNew->addrOpenEphm[0] = -1;
787 pNew->addrOpenEphm[1] = -1;
788 pNew->addrOpenEphm[2] = -1;
792 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
800 ** Add a new element to the end of an expression list. If pList is
801 ** initially NULL, then create a new expression list.
803 ExprList *sqlite3ExprListAppend(
804 Parse *pParse, /* Parsing context */
805 ExprList *pList, /* List to which to append. Might be NULL */
806 Expr *pExpr, /* Expression to be appended */
807 Token *pName /* AS keyword for the expression */
809 sqlite3 *db = pParse->db;
811 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
815 assert( pList->nAlloc==0 );
817 if( pList->nAlloc<=pList->nExpr ){
818 struct ExprList_item *a;
819 int n = pList->nAlloc*2 + 4;
820 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
827 assert( pList->a!=0 );
828 if( pExpr || pName ){
829 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
830 memset(pItem, 0, sizeof(*pItem));
831 pItem->zName = sqlite3NameFromToken(db, pName);
832 pItem->pExpr = pExpr;
838 /* Avoid leaking memory if malloc has failed. */
839 sqlite3ExprDelete(db, pExpr);
840 sqlite3ExprListDelete(db, pList);
845 ** If the expression list pEList contains more than iLimit elements,
846 ** leave an error message in pParse.
848 void sqlite3ExprListCheckLength(
853 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
854 testcase( pEList && pEList->nExpr==mx );
855 testcase( pEList && pEList->nExpr==mx+1 );
856 if( pEList && pEList->nExpr>mx ){
857 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
862 ** Delete an entire expression list.
864 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
866 struct ExprList_item *pItem;
867 if( pList==0 ) return;
868 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
869 assert( pList->nExpr<=pList->nAlloc );
870 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
871 sqlite3ExprDelete(db, pItem->pExpr);
872 sqlite3DbFree(db, pItem->zName);
874 sqlite3DbFree(db, pList->a);
875 sqlite3DbFree(db, pList);
879 ** These routines are Walker callbacks. Walker.u.pi is a pointer
880 ** to an integer. These routines are checking an expression to see
881 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
884 ** These callback routines are used to implement the following:
886 ** sqlite3ExprIsConstant()
887 ** sqlite3ExprIsConstantNotJoin()
888 ** sqlite3ExprIsConstantOrFunction()
891 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
893 /* If pWalker->u.i is 3 then any term of the expression that comes from
894 ** the ON or USING clauses of a join disqualifies the expression
895 ** from being considered constant. */
896 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
902 /* Consider functions to be constant if all their arguments are constant
903 ** and pWalker->u.i==2 */
905 if( pWalker->u.i==2 ) return 0;
910 case TK_AGG_FUNCTION:
912 #ifndef SQLITE_OMIT_SUBQUERY
915 testcase( pExpr->op==TK_SELECT );
916 testcase( pExpr->op==TK_EXISTS );
918 testcase( pExpr->op==TK_ID );
919 testcase( pExpr->op==TK_COLUMN );
920 testcase( pExpr->op==TK_DOT );
921 testcase( pExpr->op==TK_AGG_FUNCTION );
922 testcase( pExpr->op==TK_AGG_COLUMN );
929 static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
933 static int exprIsConst(Expr *p, int initFlag){
936 w.xExprCallback = exprNodeIsConstant;
937 w.xSelectCallback = selectNodeIsConstant;
938 sqlite3WalkExpr(&w, p);
943 ** Walk an expression tree. Return 1 if the expression is constant
944 ** and 0 if it involves variables or function calls.
946 ** For the purposes of this function, a double-quoted string (ex: "abc")
947 ** is considered a variable but a single-quoted string (ex: 'abc') is
950 int sqlite3ExprIsConstant(Expr *p){
951 return exprIsConst(p, 1);
955 ** Walk an expression tree. Return 1 if the expression is constant
956 ** that does no originate from the ON or USING clauses of a join.
957 ** Return 0 if it involves variables or function calls or terms from
958 ** an ON or USING clause.
960 int sqlite3ExprIsConstantNotJoin(Expr *p){
961 return exprIsConst(p, 3);
965 ** Walk an expression tree. Return 1 if the expression is constant
966 ** or a function call with constant arguments. Return and 0 if there
967 ** are any variables.
969 ** For the purposes of this function, a double-quoted string (ex: "abc")
970 ** is considered a variable but a single-quoted string (ex: 'abc') is
973 int sqlite3ExprIsConstantOrFunction(Expr *p){
974 return exprIsConst(p, 2);
978 ** If the expression p codes a constant integer that is small enough
979 ** to fit in a 32-bit integer, return 1 and put the value of the integer
980 ** in *pValue. If the expression is not an integer or if it is too big
981 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
983 int sqlite3ExprIsInteger(Expr *p, int *pValue){
985 if( p->flags & EP_IntValue ){
991 rc = sqlite3GetInt32((char*)p->token.z, pValue);
995 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1000 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1010 p->flags |= EP_IntValue;
1011 p->iTable = *pValue;
1017 ** Return TRUE if the given string is a row-id column name.
1019 int sqlite3IsRowid(const char *z){
1020 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1021 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1022 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1027 int sqlite3_enable_in_opt = 1;
1029 #define sqlite3_enable_in_opt 1
1033 ** Return true if the IN operator optimization is enabled and
1034 ** the SELECT statement p exists and is of the
1037 ** SELECT <column> FROM <table>
1039 ** If this is the case, it may be possible to use an existing table
1040 ** or index instead of generating an epheremal table.
1042 #ifndef SQLITE_OMIT_SUBQUERY
1043 static int isCandidateForInOpt(Select *p){
1047 if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
1048 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1049 if( p->pPrior ) return 0; /* Not a compound SELECT */
1050 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1051 return 0; /* No DISTINCT keyword and no aggregate functions */
1053 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */
1054 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1055 if( p->pOffset ) return 0;
1056 if( p->pWhere ) return 0; /* Has no WHERE clause */
1058 if( pSrc==0 ) return 0; /* A single table in the FROM clause */
1059 if( pSrc->nSrc!=1 ) return 0;
1060 if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */
1061 pTab = pSrc->a[0].pTab;
1062 if( pTab==0 ) return 0;
1063 if( pTab->pSelect ) return 0; /* FROM clause is not a view */
1064 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1066 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1067 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1070 #endif /* SQLITE_OMIT_SUBQUERY */
1073 ** This function is used by the implementation of the IN (...) operator.
1074 ** It's job is to find or create a b-tree structure that may be used
1075 ** either to test for membership of the (...) set or to iterate through
1076 ** its members, skipping duplicates.
1078 ** The cursor opened on the structure (database table, database index
1079 ** or ephermal table) is stored in pX->iTable before this function returns.
1080 ** The returned value indicates the structure type, as follows:
1082 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1083 ** IN_INDEX_INDEX - The cursor was opened on a database index.
1084 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1085 ** populated epheremal table.
1087 ** An existing structure may only be used if the SELECT is of the simple
1090 ** SELECT <column> FROM <table>
1092 ** If prNotFound parameter is 0, then the structure will be used to iterate
1093 ** through the set members, skipping any duplicates. In this case an
1094 ** epheremal table must be used unless the selected <column> is guaranteed
1095 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1096 ** is unique by virtue of a constraint or implicit index.
1098 ** If the prNotFound parameter is not 0, then the structure will be used
1099 ** for fast set membership tests. In this case an epheremal table must
1100 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1101 ** be found with <column> as its left-most column.
1103 ** When the structure is being used for set membership tests, the user
1104 ** needs to know whether or not the structure contains an SQL NULL
1105 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1106 ** If there is a chance that the structure may contain a NULL value at
1107 ** runtime, then a register is allocated and the register number written
1108 ** to *prNotFound. If there is no chance that the structure contains a
1109 ** NULL value, then *prNotFound is left unchanged.
1111 ** If a register is allocated and its location stored in *prNotFound, then
1112 ** its initial value is NULL. If the structure does not remain constant
1113 ** for the duration of the query (i.e. the set is a correlated sub-select),
1114 ** the value of the allocated register is reset to NULL each time the
1115 ** structure is repopulated. This allows the caller to use vdbe code
1116 ** equivalent to the following:
1118 ** if( register==NULL ){
1119 ** has_null = <test if data structure contains null>
1123 ** in order to avoid running the <test if data structure contains null>
1124 ** test more often than is necessary.
1126 #ifndef SQLITE_OMIT_SUBQUERY
1127 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1130 int iTab = pParse->nTab++;
1131 int mustBeUnique = !prNotFound;
1133 /* The follwing if(...) expression is true if the SELECT is of the
1136 ** SELECT <column> FROM <table>
1138 ** If this is the case, it may be possible to use an existing table
1139 ** or index instead of generating an epheremal table.
1142 if( isCandidateForInOpt(p) ){
1143 sqlite3 *db = pParse->db;
1145 Expr *pExpr = p->pEList->a[0].pExpr;
1146 int iCol = pExpr->iColumn;
1147 Vdbe *v = sqlite3GetVdbe(pParse);
1149 /* This function is only called from two places. In both cases the vdbe
1150 ** has already been allocated. So assume sqlite3GetVdbe() is always
1155 int iMem = ++pParse->nMem;
1157 Table *pTab = p->pSrc->a[0].pTab;
1158 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1159 sqlite3VdbeUsesBtree(v, iDb);
1161 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1162 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1164 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1165 eType = IN_INDEX_ROWID;
1167 sqlite3VdbeJumpHere(v, iAddr);
1169 /* The collation sequence used by the comparison. If an index is to
1170 ** be used in place of a temp-table, it must be ordered according
1171 ** to this collation sequence.
1173 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1175 /* Check that the affinity that will be used to perform the
1176 ** comparison is the same as the affinity of the column. If
1177 ** it is not, it is not possible to use any index.
1179 Table *pTab = p->pSrc->a[0].pTab;
1180 char aff = comparisonAffinity(pX);
1181 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1183 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1184 if( (pIdx->aiColumn[0]==iCol)
1185 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1186 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1189 int iMem = ++pParse->nMem;
1193 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1194 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1195 sqlite3VdbeUsesBtree(v, iDb);
1197 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1198 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1200 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
1201 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1202 pKey,P4_KEYINFO_HANDOFF);
1203 VdbeComment((v, "%s", pIdx->zName));
1204 eType = IN_INDEX_INDEX;
1206 sqlite3VdbeJumpHere(v, iAddr);
1207 if( prNotFound && !pTab->aCol[iCol].notNull ){
1208 *prNotFound = ++pParse->nMem;
1216 int rMayHaveNull = 0;
1217 eType = IN_INDEX_EPH;
1219 *prNotFound = rMayHaveNull = ++pParse->nMem;
1220 }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){
1221 eType = IN_INDEX_ROWID;
1223 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1232 ** Generate code for scalar subqueries used as an expression
1233 ** and IN operators. Examples:
1235 ** (SELECT a FROM b) -- subquery
1236 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1237 ** x IN (4,5,11) -- IN operator with list on right-hand side
1238 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1240 ** The pExpr parameter describes the expression that contains the IN
1241 ** operator or subquery.
1243 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1244 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1245 ** to some integer key column of a table B-Tree. In this case, use an
1246 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1247 ** (slower) variable length keys B-Tree.
1249 #ifndef SQLITE_OMIT_SUBQUERY
1250 void sqlite3CodeSubselect(
1256 int testAddr = 0; /* One-time test address */
1257 Vdbe *v = sqlite3GetVdbe(pParse);
1261 /* This code must be run in its entirety every time it is encountered
1262 ** if any of the following is true:
1264 ** * The right-hand side is a correlated subquery
1265 ** * The right-hand side is an expression list containing variables
1266 ** * We are inside a trigger
1268 ** If all of the above are false, then we can run this code just once
1269 ** save the results, and reuse the same result on subsequent invocations.
1271 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1272 int mem = ++pParse->nMem;
1273 sqlite3VdbeAddOp1(v, OP_If, mem);
1274 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1275 assert( testAddr>0 || pParse->db->mallocFailed );
1278 switch( pExpr->op ){
1282 int addr; /* Address of OP_OpenEphemeral instruction */
1283 Expr *pLeft = pExpr->pLeft;
1286 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1289 affinity = sqlite3ExprAffinity(pLeft);
1291 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1292 ** expression it is handled the same way. A virtual table is
1293 ** filled with single-field index keys representing the results
1294 ** from the SELECT or the <exprlist>.
1296 ** If the 'x' expression is a column value, or the SELECT...
1297 ** statement returns a column value, then the affinity of that
1298 ** column is used to build the index keys. If both 'x' and the
1299 ** SELECT... statement are columns, then numeric affinity is used
1300 ** if either column has NUMERIC or INTEGER affinity. If neither
1301 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1304 pExpr->iTable = pParse->nTab++;
1305 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1306 memset(&keyInfo, 0, sizeof(keyInfo));
1309 if( pExpr->pSelect ){
1310 /* Case 1: expr IN (SELECT ...)
1312 ** Generate code to write the results of the select into the temporary
1313 ** table allocated and opened above.
1319 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1320 dest.affinity = (int)affinity;
1321 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1322 if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
1325 pEList = pExpr->pSelect->pEList;
1326 if( pEList && pEList->nExpr>0 ){
1327 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1328 pEList->a[0].pExpr);
1330 }else if( pExpr->pList ){
1331 /* Case 2: expr IN (exprlist)
1333 ** For each expression, build an index key from the evaluation and
1334 ** store it in the temporary table. If <expr> is a column, then use
1335 ** that columns affinity when building index keys. If <expr> is not
1336 ** a column, use numeric affinity.
1339 ExprList *pList = pExpr->pList;
1340 struct ExprList_item *pItem;
1344 affinity = SQLITE_AFF_NONE;
1346 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1348 /* Loop through each expression in <exprlist>. */
1349 r1 = sqlite3GetTempReg(pParse);
1350 r2 = sqlite3GetTempReg(pParse);
1351 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1352 Expr *pE2 = pItem->pExpr;
1354 /* If the expression is not constant then we will need to
1355 ** disable the test that was generated above that makes sure
1356 ** this code only executes once. Because for a non-constant
1357 ** expression we need to rerun this code each time.
1359 if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1360 sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1364 /* Evaluate the expression and insert it into the temp table */
1365 pParse->disableColCache++;
1366 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1367 assert( pParse->disableColCache>0 );
1368 pParse->disableColCache--;
1371 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1372 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
1373 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1375 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1376 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1377 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1380 sqlite3ReleaseTempReg(pParse, r1);
1381 sqlite3ReleaseTempReg(pParse, r2);
1384 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1391 /* This has to be a scalar SELECT. Generate code to put the
1392 ** value of this select in a memory cell and record the number
1393 ** of the memory cell in iColumn.
1395 static const Token one = { (u8*)"1", 0, 1 };
1399 pSel = pExpr->pSelect;
1400 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1401 if( pExpr->op==TK_SELECT ){
1402 dest.eDest = SRT_Mem;
1403 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1404 VdbeComment((v, "Init subquery result"));
1406 dest.eDest = SRT_Exists;
1407 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1408 VdbeComment((v, "Init EXISTS result"));
1410 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1411 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1412 if( sqlite3Select(pParse, pSel, &dest) ){
1415 pExpr->iColumn = dest.iParm;
1421 sqlite3VdbeJumpHere(v, testAddr-1);
1426 #endif /* SQLITE_OMIT_SUBQUERY */
1429 ** Duplicate an 8-byte value
1431 static char *dup8bytes(Vdbe *v, const char *in){
1432 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1440 ** Generate an instruction that will put the floating point
1441 ** value described by z[0..n-1] into register iMem.
1443 ** The z[] string will probably not be zero-terminated. But the
1444 ** z[n] character is guaranteed to be something that does not look
1445 ** like the continuation of the number.
1447 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
1448 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
1452 assert( !isdigit(z[n]) );
1453 sqlite3AtoF(z, &value);
1454 if( sqlite3IsNaN(value) ){
1455 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
1457 if( negateFlag ) value = -value;
1458 zV = dup8bytes(v, (char*)&value);
1459 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1466 ** Generate an instruction that will put the integer describe by
1467 ** text z[0..n-1] into register iMem.
1469 ** The z[] string will probably not be zero-terminated. But the
1470 ** z[n] character is guaranteed to be something that does not look
1471 ** like the continuation of the number.
1473 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
1475 if( pExpr->flags & EP_IntValue ){
1476 int i = pExpr->iTable;
1477 if( negFlag ) i = -i;
1478 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1479 }else if( (z = (char*)pExpr->token.z)!=0 ){
1481 int n = pExpr->token.n;
1482 assert( !isdigit(z[n]) );
1483 if( sqlite3GetInt32(z, &i) ){
1484 if( negFlag ) i = -i;
1485 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1486 }else if( sqlite3FitsIn64Bits(z, negFlag) ){
1489 sqlite3Atoi64(z, &value);
1490 if( negFlag ) value = -value;
1491 zV = dup8bytes(v, (char*)&value);
1492 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1494 codeReal(v, z, n, negFlag, iMem);
1501 ** Generate code that will extract the iColumn-th column from
1502 ** table pTab and store the column value in a register. An effort
1503 ** is made to store the column value in register iReg, but this is
1504 ** not guaranteed. The location of the column value is returned.
1506 ** There must be an open cursor to pTab in iTable when this routine
1507 ** is called. If iColumn<0 then code is generated that extracts the rowid.
1509 ** This routine might attempt to reuse the value of the column that
1510 ** has already been loaded into a register. The value will always
1511 ** be used if it has not undergone any affinity changes. But if
1512 ** an affinity change has occurred, then the cached value will only be
1513 ** used if allowAffChng is true.
1515 int sqlite3ExprCodeGetColumn(
1516 Parse *pParse, /* Parsing and code generating context */
1517 Table *pTab, /* Description of the table we are reading from */
1518 int iColumn, /* Index of the table column */
1519 int iTable, /* The cursor pointing to the table */
1520 int iReg, /* Store results here */
1521 int allowAffChng /* True if prior affinity changes are OK */
1523 Vdbe *v = pParse->pVdbe;
1525 struct yColCache *p;
1527 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
1528 if( p->iTable==iTable && p->iColumn==iColumn
1529 && (!p->affChange || allowAffChng) ){
1531 sqlite3VdbeAddOp0(v, OP_Noop);
1532 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
1539 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1540 sqlite3VdbeAddOp2(v, op, iTable, iReg);
1541 }else if( pTab==0 ){
1542 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
1544 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1545 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
1546 sqlite3ColumnDefault(v, pTab, iColumn);
1547 #ifndef SQLITE_OMIT_FLOATING_POINT
1548 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1549 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
1553 if( pParse->disableColCache==0 ){
1554 i = pParse->iColCache;
1555 p = &pParse->aColCache[i];
1557 p->iColumn = iColumn;
1561 if( i>=ArraySize(pParse->aColCache) ) i = 0;
1562 if( i>pParse->nColCache ) pParse->nColCache = i;
1563 pParse->iColCache = i;
1569 ** Clear all column cache entries associated with the vdbe
1570 ** cursor with cursor number iTable.
1572 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
1574 pParse->nColCache = 0;
1575 pParse->iColCache = 0;
1578 for(i=0; i<pParse->nColCache; i++){
1579 if( pParse->aColCache[i].iTable==iTable ){
1580 testcase( i==pParse->nColCache-1 );
1581 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
1582 pParse->iColCache = pParse->nColCache;
1589 ** Record the fact that an affinity change has occurred on iCount
1590 ** registers starting with iStart.
1592 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
1593 int iEnd = iStart + iCount - 1;
1595 for(i=0; i<pParse->nColCache; i++){
1596 int r = pParse->aColCache[i].iReg;
1597 if( r>=iStart && r<=iEnd ){
1598 pParse->aColCache[i].affChange = 1;
1604 ** Generate code to move content from registers iFrom...iFrom+nReg-1
1605 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
1607 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
1609 if( iFrom==iTo ) return;
1610 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
1611 for(i=0; i<pParse->nColCache; i++){
1612 int x = pParse->aColCache[i].iReg;
1613 if( x>=iFrom && x<iFrom+nReg ){
1614 pParse->aColCache[i].iReg += iTo-iFrom;
1620 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
1621 ** over to iTo..iTo+nReg-1.
1623 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
1625 if( iFrom==iTo ) return;
1626 for(i=0; i<nReg; i++){
1627 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
1632 ** Return true if any register in the range iFrom..iTo (inclusive)
1633 ** is used as part of the column cache.
1635 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
1637 for(i=0; i<pParse->nColCache; i++){
1638 int r = pParse->aColCache[i].iReg;
1639 if( r>=iFrom && r<=iTo ) return 1;
1645 ** Theres is a value in register iCurrent. We ultimately want
1646 ** the value to be in register iTarget. It might be that
1647 ** iCurrent and iTarget are the same register.
1649 ** We are going to modify the value, so we need to make sure it
1650 ** is not a cached register. If iCurrent is a cached register,
1651 ** then try to move the value over to iTarget. If iTarget is a
1652 ** cached register, then clear the corresponding cache line.
1654 ** Return the register that the value ends up in.
1656 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
1658 assert( pParse->pVdbe!=0 );
1659 if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
1662 if( iCurrent!=iTarget ){
1663 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
1665 for(i=0; i<pParse->nColCache; i++){
1666 if( pParse->aColCache[i].iReg==iTarget ){
1667 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
1668 pParse->iColCache = pParse->nColCache;
1675 ** If the last instruction coded is an ephemeral copy of any of
1676 ** the registers in the nReg registers beginning with iReg, then
1677 ** convert the last instruction from OP_SCopy to OP_Copy.
1679 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
1685 addr = sqlite3VdbeCurrentAddr(v);
1686 pOp = sqlite3VdbeGetOp(v, addr-1);
1687 assert( pOp || pParse->db->mallocFailed );
1688 if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
1689 pOp->opcode = OP_Copy;
1694 ** Generate code to store the value of the iAlias-th alias in register
1695 ** target. The first time this is called, pExpr is evaluated to compute
1696 ** the value of the alias. The value is stored in an auxiliary register
1697 ** and the number of that register is returned. On subsequent calls,
1698 ** the register number is returned without generating any code.
1700 ** Note that in order for this to work, code must be generated in the
1701 ** same order that it is executed.
1703 ** Aliases are numbered starting with 1. So iAlias is in the range
1704 ** of 1 to pParse->nAlias inclusive.
1706 ** pParse->aAlias[iAlias-1] records the register number where the value
1707 ** of the iAlias-th alias is stored. If zero, that means that the
1708 ** alias has not yet been computed.
1710 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr){
1711 sqlite3 *db = pParse->db;
1713 if( pParse->aAlias==0 ){
1714 pParse->aAlias = sqlite3DbMallocZero(db,
1715 sizeof(pParse->aAlias[0])*pParse->nAlias );
1716 if( db->mallocFailed ) return 0;
1718 assert( iAlias>0 && iAlias<=pParse->nAlias );
1719 iReg = pParse->aAlias[iAlias-1];
1721 iReg = ++pParse->nMem;
1722 sqlite3ExprCode(pParse, pExpr, iReg);
1723 pParse->aAlias[iAlias-1] = iReg;
1729 ** Generate code into the current Vdbe to evaluate the given
1730 ** expression. Attempt to store the results in register "target".
1731 ** Return the register where results are stored.
1733 ** With this routine, there is no guarantee that results will
1734 ** be stored in target. The result might be stored in some other
1735 ** register if it is convenient to do so. The calling function
1736 ** must check the return code and move the results to the desired
1739 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
1740 Vdbe *v = pParse->pVdbe; /* The VM under construction */
1741 int op; /* The opcode being coded */
1742 int inReg = target; /* Results stored in register inReg */
1743 int regFree1 = 0; /* If non-zero free this temporary register */
1744 int regFree2 = 0; /* If non-zero free this temporary register */
1745 int r1, r2, r3, r4; /* Various register numbers */
1749 assert( v!=0 || db->mallocFailed );
1750 assert( target>0 && target<=pParse->nMem );
1751 if( v==0 ) return 0;
1759 case TK_AGG_COLUMN: {
1760 AggInfo *pAggInfo = pExpr->pAggInfo;
1761 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1762 if( !pAggInfo->directMode ){
1763 assert( pCol->iMem>0 );
1766 }else if( pAggInfo->useSortingIdx ){
1767 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
1768 pCol->iSorterColumn, target);
1771 /* Otherwise, fall thru into the TK_COLUMN case */
1774 if( pExpr->iTable<0 ){
1775 /* This only happens when coding check constraints */
1776 assert( pParse->ckBase>0 );
1777 inReg = pExpr->iColumn + pParse->ckBase;
1779 testcase( (pExpr->flags & EP_AnyAff)!=0 );
1780 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
1781 pExpr->iColumn, pExpr->iTable, target,
1782 pExpr->flags & EP_AnyAff);
1787 codeInteger(v, pExpr, 0, target);
1791 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
1795 sqlite3DequoteExpr(db, pExpr);
1796 sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
1797 (char*)pExpr->token.z, pExpr->token.n);
1801 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
1804 #ifndef SQLITE_OMIT_BLOB_LITERAL
1809 assert( pExpr->token.n>=3 );
1810 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
1811 assert( pExpr->token.z[1]=='\'' );
1812 assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
1813 n = pExpr->token.n - 3;
1814 z = (char*)pExpr->token.z + 2;
1815 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
1816 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
1821 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
1822 if( pExpr->token.n>1 ){
1823 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1828 inReg = pExpr->iTable;
1832 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft);
1835 #ifndef SQLITE_OMIT_CAST
1837 /* Expressions of the form: CAST(pLeft AS token) */
1839 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
1840 aff = sqlite3AffinityType(&pExpr->token);
1841 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
1842 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
1843 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
1844 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
1845 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
1846 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
1847 testcase( to_op==OP_ToText );
1848 testcase( to_op==OP_ToBlob );
1849 testcase( to_op==OP_ToNumeric );
1850 testcase( to_op==OP_ToInt );
1851 testcase( to_op==OP_ToReal );
1852 sqlite3VdbeAddOp1(v, to_op, inReg);
1853 testcase( usedAsColumnCache(pParse, inReg, inReg) );
1854 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
1857 #endif /* SQLITE_OMIT_CAST */
1864 assert( TK_LT==OP_Lt );
1865 assert( TK_LE==OP_Le );
1866 assert( TK_GT==OP_Gt );
1867 assert( TK_GE==OP_Ge );
1868 assert( TK_EQ==OP_Eq );
1869 assert( TK_NE==OP_Ne );
1870 testcase( op==TK_LT );
1871 testcase( op==TK_LE );
1872 testcase( op==TK_GT );
1873 testcase( op==TK_GE );
1874 testcase( op==TK_EQ );
1875 testcase( op==TK_NE );
1876 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
1877 pExpr->pRight, &r2, ®Free2);
1878 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
1879 r1, r2, inReg, SQLITE_STOREP2);
1880 testcase( regFree1==0 );
1881 testcase( regFree2==0 );
1896 assert( TK_AND==OP_And );
1897 assert( TK_OR==OP_Or );
1898 assert( TK_PLUS==OP_Add );
1899 assert( TK_MINUS==OP_Subtract );
1900 assert( TK_REM==OP_Remainder );
1901 assert( TK_BITAND==OP_BitAnd );
1902 assert( TK_BITOR==OP_BitOr );
1903 assert( TK_SLASH==OP_Divide );
1904 assert( TK_LSHIFT==OP_ShiftLeft );
1905 assert( TK_RSHIFT==OP_ShiftRight );
1906 assert( TK_CONCAT==OP_Concat );
1907 testcase( op==TK_AND );
1908 testcase( op==TK_OR );
1909 testcase( op==TK_PLUS );
1910 testcase( op==TK_MINUS );
1911 testcase( op==TK_REM );
1912 testcase( op==TK_BITAND );
1913 testcase( op==TK_BITOR );
1914 testcase( op==TK_SLASH );
1915 testcase( op==TK_LSHIFT );
1916 testcase( op==TK_RSHIFT );
1917 testcase( op==TK_CONCAT );
1918 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
1919 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
1920 sqlite3VdbeAddOp3(v, op, r2, r1, target);
1921 testcase( regFree1==0 );
1922 testcase( regFree2==0 );
1926 Expr *pLeft = pExpr->pLeft;
1928 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
1929 if( pLeft->op==TK_FLOAT ){
1930 codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
1932 codeInteger(v, pLeft, 1, target);
1935 regFree1 = r1 = sqlite3GetTempReg(pParse);
1936 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
1937 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
1938 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
1939 testcase( regFree2==0 );
1946 assert( TK_BITNOT==OP_BitNot );
1947 assert( TK_NOT==OP_Not );
1948 testcase( op==TK_BITNOT );
1949 testcase( op==TK_NOT );
1950 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
1951 testcase( inReg==target );
1952 testcase( usedAsColumnCache(pParse, inReg, inReg) );
1953 inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
1954 sqlite3VdbeAddOp1(v, op, inReg);
1960 assert( TK_ISNULL==OP_IsNull );
1961 assert( TK_NOTNULL==OP_NotNull );
1962 testcase( op==TK_ISNULL );
1963 testcase( op==TK_NOTNULL );
1964 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
1965 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
1966 testcase( regFree1==0 );
1967 addr = sqlite3VdbeAddOp1(v, op, r1);
1968 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
1969 sqlite3VdbeJumpHere(v, addr);
1972 case TK_AGG_FUNCTION: {
1973 AggInfo *pInfo = pExpr->pAggInfo;
1975 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
1978 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
1984 ExprList *pList = pExpr->pList;
1985 int nExpr = pList ? pList->nExpr : 0;
1994 testcase( op==TK_CONST_FUNC );
1995 testcase( op==TK_FUNCTION );
1996 zId = (char*)pExpr->token.z;
1997 nId = pExpr->token.n;
1998 pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
2001 nExpr = pList->nExpr;
2002 r1 = sqlite3GetTempRange(pParse, nExpr);
2003 sqlite3ExprCodeExprList(pParse, pList, r1, 1);
2007 #ifndef SQLITE_OMIT_VIRTUALTABLE
2008 /* Possibly overload the function if the first argument is
2009 ** a virtual table column.
2011 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2012 ** second argument, not the first, as the argument to test to
2013 ** see if it is a column in a virtual table. This is done because
2014 ** the left operand of infix functions (the operand we want to
2015 ** control overloading) ends up as the second argument to the
2016 ** function. The expression "A glob B" is equivalent to
2017 ** "glob(B,A). We want to use the A in "A glob B" to test
2018 ** for function overloading. But we use the B term in "glob(B,A)".
2020 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2021 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2022 }else if( nExpr>0 ){
2023 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2026 for(i=0; i<nExpr && i<32; i++){
2027 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2028 constMask |= (1<<i);
2030 if( pDef->needCollSeq && !pColl ){
2031 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2034 if( pDef->needCollSeq ){
2035 if( !pColl ) pColl = db->pDfltColl;
2036 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2038 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2039 (char*)pDef, P4_FUNCDEF);
2040 sqlite3VdbeChangeP5(v, nExpr);
2042 sqlite3ReleaseTempRange(pParse, r1, nExpr);
2044 sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
2047 #ifndef SQLITE_OMIT_SUBQUERY
2050 testcase( op==TK_EXISTS );
2051 testcase( op==TK_SELECT );
2052 if( pExpr->iColumn==0 ){
2053 sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2055 inReg = pExpr->iColumn;
2060 int rMayHaveNull = 0;
2065 VdbeNoopComment((v, "begin IN expr r%d", target));
2066 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2068 rNotFound = ++pParse->nMem;
2071 /* Figure out the affinity to use to create a key from the results
2072 ** of the expression. affinityStr stores a static string suitable for
2073 ** P4 of OP_MakeRecord.
2075 affinity = comparisonAffinity(pExpr);
2078 /* Code the <expr> from "<expr> IN (...)". The temporary table
2079 ** pExpr->iTable contains the values that make up the (...) set.
2081 pParse->disableColCache++;
2082 sqlite3ExprCode(pParse, pExpr->pLeft, target);
2083 pParse->disableColCache--;
2084 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2085 if( eType==IN_INDEX_ROWID ){
2086 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2087 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2088 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2089 j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2090 sqlite3VdbeJumpHere(v, j3);
2091 sqlite3VdbeJumpHere(v, j4);
2092 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2094 r2 = regFree2 = sqlite3GetTempReg(pParse);
2096 /* Create a record and test for set membership. If the set contains
2097 ** the value, then jump to the end of the test code. The target
2098 ** register still contains the true (1) value written to it earlier.
2100 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2101 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2102 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2104 /* If the set membership test fails, then the result of the
2105 ** "x IN (...)" expression must be either 0 or NULL. If the set
2106 ** contains no NULL values, then the result is 0. If the set
2107 ** contains one or more NULL values, then the result of the
2108 ** expression is also NULL.
2111 /* This branch runs if it is known at compile time (now) that
2112 ** the set contains no NULL values. This happens as the result
2113 ** of a "NOT NULL" constraint in the database schema. No need
2114 ** to test the data structure at runtime in this case.
2116 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2118 /* This block populates the rNotFound register with either NULL
2119 ** or 0 (an integer value). If the data structure contains one
2120 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2121 ** to 0. If register rMayHaveNull is already set to some value
2122 ** other than NULL, then the test has already been run and
2123 ** rNotFound is already populated.
2125 static const char nullRecord[] = { 0x02, 0x00 };
2126 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2127 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2128 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2129 nullRecord, P4_STATIC);
2130 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2131 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2132 sqlite3VdbeJumpHere(v, j4);
2133 sqlite3VdbeJumpHere(v, j3);
2135 /* Copy the value of register rNotFound (which is either NULL or 0)
2136 ** into the target register. This will be the result of the
2139 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2142 sqlite3VdbeJumpHere(v, j2);
2143 sqlite3VdbeJumpHere(v, j5);
2144 VdbeComment((v, "end IN expr r%d", target));
2149 ** x BETWEEN y AND z
2151 ** This is equivalent to
2155 ** X is stored in pExpr->pLeft.
2156 ** Y is stored in pExpr->pList->a[0].pExpr.
2157 ** Z is stored in pExpr->pList->a[1].pExpr.
2160 Expr *pLeft = pExpr->pLeft;
2161 struct ExprList_item *pLItem = pExpr->pList->a;
2162 Expr *pRight = pLItem->pExpr;
2164 codeCompareOperands(pParse, pLeft, &r1, ®Free1,
2165 pRight, &r2, ®Free2);
2166 testcase( regFree1==0 );
2167 testcase( regFree2==0 );
2168 r3 = sqlite3GetTempReg(pParse);
2169 r4 = sqlite3GetTempReg(pParse);
2170 codeCompare(pParse, pLeft, pRight, OP_Ge,
2171 r1, r2, r3, SQLITE_STOREP2);
2173 pRight = pLItem->pExpr;
2174 sqlite3ReleaseTempReg(pParse, regFree2);
2175 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
2176 testcase( regFree2==0 );
2177 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2178 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2179 sqlite3ReleaseTempReg(pParse, r3);
2180 sqlite3ReleaseTempReg(pParse, r4);
2184 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2190 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2193 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2195 ** Form A is can be transformed into the equivalent form B as follows:
2196 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2197 ** WHEN x=eN THEN rN ELSE y END
2199 ** X (if it exists) is in pExpr->pLeft.
2200 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2201 ** ELSE clause and no other term matches, then the result of the
2202 ** exprssion is NULL.
2203 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2205 ** The result of the expression is the Ri for the first matching Ei,
2206 ** or if there is no matching Ei, the ELSE term Y, or if there is
2207 ** no ELSE term, NULL.
2210 int endLabel; /* GOTO label for end of CASE stmt */
2211 int nextCase; /* GOTO label for next WHEN clause */
2212 int nExpr; /* 2x number of WHEN terms */
2213 int i; /* Loop counter */
2214 ExprList *pEList; /* List of WHEN terms */
2215 struct ExprList_item *aListelem; /* Array of WHEN terms */
2216 Expr opCompare; /* The X==Ei expression */
2217 Expr cacheX; /* Cached expression X */
2218 Expr *pX; /* The X expression */
2219 Expr *pTest; /* X==Ei (form A) or just Ei (form B) */
2221 assert(pExpr->pList);
2222 assert((pExpr->pList->nExpr % 2) == 0);
2223 assert(pExpr->pList->nExpr > 0);
2224 pEList = pExpr->pList;
2225 aListelem = pEList->a;
2226 nExpr = pEList->nExpr;
2227 endLabel = sqlite3VdbeMakeLabel(v);
2228 if( (pX = pExpr->pLeft)!=0 ){
2230 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
2231 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
2232 testcase( regFree1==0 );
2233 cacheX.op = TK_REGISTER;
2234 opCompare.op = TK_EQ;
2235 opCompare.pLeft = &cacheX;
2238 pParse->disableColCache++;
2239 for(i=0; i<nExpr; i=i+2){
2241 opCompare.pRight = aListelem[i].pExpr;
2243 pTest = aListelem[i].pExpr;
2245 nextCase = sqlite3VdbeMakeLabel(v);
2246 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
2247 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2248 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2249 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2250 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2251 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2252 sqlite3VdbeResolveLabel(v, nextCase);
2254 if( pExpr->pRight ){
2255 sqlite3ExprCode(pParse, pExpr->pRight, target);
2257 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2259 sqlite3VdbeResolveLabel(v, endLabel);
2260 assert( pParse->disableColCache>0 );
2261 pParse->disableColCache--;
2264 #ifndef SQLITE_OMIT_TRIGGER
2266 if( !pParse->trigStack ){
2267 sqlite3ErrorMsg(pParse,
2268 "RAISE() may only be used within a trigger-program");
2271 if( pExpr->iColumn!=OE_Ignore ){
2272 assert( pExpr->iColumn==OE_Rollback ||
2273 pExpr->iColumn == OE_Abort ||
2274 pExpr->iColumn == OE_Fail );
2275 sqlite3DequoteExpr(db, pExpr);
2276 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
2277 (char*)pExpr->token.z, pExpr->token.n);
2279 assert( pExpr->iColumn == OE_Ignore );
2280 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2281 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2282 VdbeComment((v, "raise(IGNORE)"));
2288 sqlite3ReleaseTempReg(pParse, regFree1);
2289 sqlite3ReleaseTempReg(pParse, regFree2);
2294 ** Generate code to evaluate an expression and store the results
2295 ** into a register. Return the register number where the results
2298 ** If the register is a temporary register that can be deallocated,
2299 ** then write its number into *pReg. If the result register is not
2300 ** a temporary, then set *pReg to zero.
2302 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2303 int r1 = sqlite3GetTempReg(pParse);
2304 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2308 sqlite3ReleaseTempReg(pParse, r1);
2315 ** Generate code that will evaluate expression pExpr and store the
2316 ** results in register target. The results are guaranteed to appear
2317 ** in register target.
2319 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2322 assert( target>0 && target<=pParse->nMem );
2323 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2324 assert( pParse->pVdbe || pParse->db->mallocFailed );
2325 if( inReg!=target && pParse->pVdbe ){
2326 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2332 ** Generate code that evalutes the given expression and puts the result
2333 ** in register target.
2335 ** Also make a copy of the expression results into another "cache" register
2336 ** and modify the expression so that the next time it is evaluated,
2337 ** the result is a copy of the cache register.
2339 ** This routine is used for expressions that are used multiple
2340 ** times. They are evaluated once and the results of the expression
2343 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2344 Vdbe *v = pParse->pVdbe;
2346 inReg = sqlite3ExprCode(pParse, pExpr, target);
2348 if( pExpr->op!=TK_REGISTER ){
2350 iMem = ++pParse->nMem;
2351 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2352 pExpr->iTable = iMem;
2353 pExpr->op = TK_REGISTER;
2359 ** Return TRUE if pExpr is an constant expression that is appropriate
2360 ** for factoring out of a loop. Appropriate expressions are:
2362 ** * Any expression that evaluates to two or more opcodes.
2364 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2365 ** or OP_Variable that does not need to be placed in a
2366 ** specific register.
2368 ** There is no point in factoring out single-instruction constant
2369 ** expressions that need to be placed in a particular register.
2370 ** We could factor them out, but then we would end up adding an
2371 ** OP_SCopy instruction to move the value into the correct register
2372 ** later. We might as well just use the original instruction and
2373 ** avoid the OP_SCopy.
2375 static int isAppropriateForFactoring(Expr *p){
2376 if( !sqlite3ExprIsConstantNotJoin(p) ){
2377 return 0; /* Only constant expressions are appropriate for factoring */
2379 if( (p->flags & EP_FixedDest)==0 ){
2380 return 1; /* Any constant without a fixed destination is appropriate */
2382 while( p->op==TK_UPLUS ) p = p->pLeft;
2384 #ifndef SQLITE_OMIT_BLOB_LITERAL
2392 testcase( p->op==TK_BLOB );
2393 testcase( p->op==TK_VARIABLE );
2394 testcase( p->op==TK_INTEGER );
2395 testcase( p->op==TK_FLOAT );
2396 testcase( p->op==TK_NULL );
2397 testcase( p->op==TK_STRING );
2398 /* Single-instruction constants with a fixed destination are
2399 ** better done in-line. If we factor them, they will just end
2400 ** up generating an OP_SCopy to move the value to the destination
2405 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2418 ** If pExpr is a constant expression that is appropriate for
2419 ** factoring out of a loop, then evaluate the expression
2420 ** into a register and convert the expression into a TK_REGISTER
2423 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2424 Parse *pParse = pWalker->pParse;
2425 switch( pExpr->op ){
2430 case TK_AGG_FUNCTION:
2431 case TK_CONST_FUNC: {
2432 /* The arguments to a function have a fixed destination.
2433 ** Mark them this way to avoid generated unneeded OP_SCopy
2436 ExprList *pList = pExpr->pList;
2438 int i = pList->nExpr;
2439 struct ExprList_item *pItem = pList->a;
2440 for(; i>0; i--, pItem++){
2441 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
2447 if( isAppropriateForFactoring(pExpr) ){
2448 int r1 = ++pParse->nMem;
2450 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2451 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
2452 pExpr->op = TK_REGISTER;
2456 return WRC_Continue;
2460 ** Preevaluate constant subexpressions within pExpr and store the
2461 ** results in registers. Modify pExpr so that the constant subexpresions
2462 ** are TK_REGISTER opcodes that refer to the precomputed values.
2464 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2466 w.xExprCallback = evalConstExpr;
2467 w.xSelectCallback = 0;
2469 sqlite3WalkExpr(&w, pExpr);
2474 ** Generate code that pushes the value of every element of the given
2475 ** expression list into a sequence of registers beginning at target.
2477 ** Return the number of elements evaluated.
2479 int sqlite3ExprCodeExprList(
2480 Parse *pParse, /* Parsing context */
2481 ExprList *pList, /* The expression list to be coded */
2482 int target, /* Where to write results */
2483 int doHardCopy /* Make a hard copy of every element */
2485 struct ExprList_item *pItem;
2490 for(pItem=pList->a, i=0; i<n; i++, pItem++){
2491 if( pItem->iAlias ){
2492 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr);
2493 Vdbe *v = sqlite3GetVdbe(pParse);
2494 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
2496 sqlite3ExprCode(pParse, pItem->pExpr, target+i);
2499 sqlite3ExprHardCopy(pParse, target, n);
2506 ** Generate code for a boolean expression such that a jump is made
2507 ** to the label "dest" if the expression is true but execution
2508 ** continues straight thru if the expression is false.
2510 ** If the expression evaluates to NULL (neither true nor false), then
2511 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
2513 ** This code depends on the fact that certain token values (ex: TK_EQ)
2514 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2515 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
2516 ** the make process cause these values to align. Assert()s in the code
2517 ** below verify that the numbers are aligned correctly.
2519 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2520 Vdbe *v = pParse->pVdbe;
2526 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2527 if( v==0 || pExpr==0 ) return;
2531 int d2 = sqlite3VdbeMakeLabel(v);
2532 testcase( jumpIfNull==0 );
2533 testcase( pParse->disableColCache==0 );
2534 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
2535 pParse->disableColCache++;
2536 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2537 assert( pParse->disableColCache>0 );
2538 pParse->disableColCache--;
2539 sqlite3VdbeResolveLabel(v, d2);
2543 testcase( jumpIfNull==0 );
2544 testcase( pParse->disableColCache==0 );
2545 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2546 pParse->disableColCache++;
2547 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2548 assert( pParse->disableColCache>0 );
2549 pParse->disableColCache--;
2553 testcase( jumpIfNull==0 );
2554 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2563 assert( TK_LT==OP_Lt );
2564 assert( TK_LE==OP_Le );
2565 assert( TK_GT==OP_Gt );
2566 assert( TK_GE==OP_Ge );
2567 assert( TK_EQ==OP_Eq );
2568 assert( TK_NE==OP_Ne );
2569 testcase( op==TK_LT );
2570 testcase( op==TK_LE );
2571 testcase( op==TK_GT );
2572 testcase( op==TK_GE );
2573 testcase( op==TK_EQ );
2574 testcase( op==TK_NE );
2575 testcase( jumpIfNull==0 );
2576 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
2577 pExpr->pRight, &r2, ®Free2);
2578 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2579 r1, r2, dest, jumpIfNull);
2580 testcase( regFree1==0 );
2581 testcase( regFree2==0 );
2586 assert( TK_ISNULL==OP_IsNull );
2587 assert( TK_NOTNULL==OP_NotNull );
2588 testcase( op==TK_ISNULL );
2589 testcase( op==TK_NOTNULL );
2590 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2591 sqlite3VdbeAddOp2(v, op, r1, dest);
2592 testcase( regFree1==0 );
2596 /* x BETWEEN y AND z
2602 ** Code it as such, taking care to do the common subexpression
2603 ** elementation of x.
2610 exprX = *pExpr->pLeft;
2611 exprAnd.op = TK_AND;
2612 exprAnd.pLeft = &compLeft;
2613 exprAnd.pRight = &compRight;
2614 compLeft.op = TK_GE;
2615 compLeft.pLeft = &exprX;
2616 compLeft.pRight = pExpr->pList->a[0].pExpr;
2617 compRight.op = TK_LE;
2618 compRight.pLeft = &exprX;
2619 compRight.pRight = pExpr->pList->a[1].pExpr;
2620 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
2621 testcase( regFree1==0 );
2622 exprX.op = TK_REGISTER;
2623 testcase( jumpIfNull==0 );
2624 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
2628 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
2629 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
2630 testcase( regFree1==0 );
2631 testcase( jumpIfNull==0 );
2635 sqlite3ReleaseTempReg(pParse, regFree1);
2636 sqlite3ReleaseTempReg(pParse, regFree2);
2640 ** Generate code for a boolean expression such that a jump is made
2641 ** to the label "dest" if the expression is false but execution
2642 ** continues straight thru if the expression is true.
2644 ** If the expression evaluates to NULL (neither true nor false) then
2645 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
2648 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2649 Vdbe *v = pParse->pVdbe;
2655 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2656 if( v==0 || pExpr==0 ) return;
2658 /* The value of pExpr->op and op are related as follows:
2661 ** --------- ----------
2662 ** TK_ISNULL OP_NotNull
2663 ** TK_NOTNULL OP_IsNull
2671 ** For other values of pExpr->op, op is undefined and unused.
2672 ** The value of TK_ and OP_ constants are arranged such that we
2673 ** can compute the mapping above using the following expression.
2674 ** Assert()s verify that the computation is correct.
2676 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2678 /* Verify correct alignment of TK_ and OP_ constants
2680 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2681 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2682 assert( pExpr->op!=TK_NE || op==OP_Eq );
2683 assert( pExpr->op!=TK_EQ || op==OP_Ne );
2684 assert( pExpr->op!=TK_LT || op==OP_Ge );
2685 assert( pExpr->op!=TK_LE || op==OP_Gt );
2686 assert( pExpr->op!=TK_GT || op==OP_Le );
2687 assert( pExpr->op!=TK_GE || op==OP_Lt );
2689 switch( pExpr->op ){
2691 testcase( jumpIfNull==0 );
2692 testcase( pParse->disableColCache==0 );
2693 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2694 pParse->disableColCache++;
2695 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2696 assert( pParse->disableColCache>0 );
2697 pParse->disableColCache--;
2701 int d2 = sqlite3VdbeMakeLabel(v);
2702 testcase( jumpIfNull==0 );
2703 testcase( pParse->disableColCache==0 );
2704 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
2705 pParse->disableColCache++;
2706 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2707 assert( pParse->disableColCache>0 );
2708 pParse->disableColCache--;
2709 sqlite3VdbeResolveLabel(v, d2);
2713 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2722 testcase( op==TK_LT );
2723 testcase( op==TK_LE );
2724 testcase( op==TK_GT );
2725 testcase( op==TK_GE );
2726 testcase( op==TK_EQ );
2727 testcase( op==TK_NE );
2728 testcase( jumpIfNull==0 );
2729 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
2730 pExpr->pRight, &r2, ®Free2);
2731 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2732 r1, r2, dest, jumpIfNull);
2733 testcase( regFree1==0 );
2734 testcase( regFree2==0 );
2739 testcase( op==TK_ISNULL );
2740 testcase( op==TK_NOTNULL );
2741 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2742 sqlite3VdbeAddOp2(v, op, r1, dest);
2743 testcase( regFree1==0 );
2747 /* x BETWEEN y AND z
2753 ** Code it as such, taking care to do the common subexpression
2754 ** elementation of x.
2761 exprX = *pExpr->pLeft;
2762 exprAnd.op = TK_AND;
2763 exprAnd.pLeft = &compLeft;
2764 exprAnd.pRight = &compRight;
2765 compLeft.op = TK_GE;
2766 compLeft.pLeft = &exprX;
2767 compLeft.pRight = pExpr->pList->a[0].pExpr;
2768 compRight.op = TK_LE;
2769 compRight.pLeft = &exprX;
2770 compRight.pRight = pExpr->pList->a[1].pExpr;
2771 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
2772 testcase( regFree1==0 );
2773 exprX.op = TK_REGISTER;
2774 testcase( jumpIfNull==0 );
2775 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
2779 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
2780 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
2781 testcase( regFree1==0 );
2782 testcase( jumpIfNull==0 );
2786 sqlite3ReleaseTempReg(pParse, regFree1);
2787 sqlite3ReleaseTempReg(pParse, regFree2);
2791 ** Do a deep comparison of two expression trees. Return TRUE (non-zero)
2792 ** if they are identical and return FALSE if they differ in any way.
2794 ** Sometimes this routine will return FALSE even if the two expressions
2795 ** really are equivalent. If we cannot prove that the expressions are
2796 ** identical, we return FALSE just to be safe. So if this routine
2797 ** returns false, then you do not really know for certain if the two
2798 ** expressions are the same. But if you get a TRUE return, then you
2799 ** can be sure the expressions are the same. In the places where
2800 ** this routine is used, it does not hurt to get an extra FALSE - that
2801 ** just might result in some slightly slower code. But returning
2802 ** an incorrect TRUE could lead to a malfunction.
2804 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2809 if( pA->op!=pB->op ) return 0;
2810 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2811 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2812 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2814 if( pB->pList==0 ) return 0;
2815 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2816 for(i=0; i<pA->pList->nExpr; i++){
2817 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2821 }else if( pB->pList ){
2824 if( pA->pSelect || pB->pSelect ) return 0;
2825 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2826 if( pA->op!=TK_COLUMN && pA->token.z ){
2827 if( pB->token.z==0 ) return 0;
2828 if( pB->token.n!=pA->token.n ) return 0;
2829 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2838 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
2839 ** the new element. Return a negative number if malloc fails.
2841 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
2843 pInfo->aCol = sqlite3ArrayAllocate(
2846 sizeof(pInfo->aCol[0]),
2849 &pInfo->nColumnAlloc,
2856 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
2857 ** the new element. Return a negative number if malloc fails.
2859 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
2861 pInfo->aFunc = sqlite3ArrayAllocate(
2864 sizeof(pInfo->aFunc[0]),
2874 ** This is the xExprCallback for a tree walker. It is used to
2875 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
2876 ** for additional information.
2878 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
2880 NameContext *pNC = pWalker->u.pNC;
2881 Parse *pParse = pNC->pParse;
2882 SrcList *pSrcList = pNC->pSrcList;
2883 AggInfo *pAggInfo = pNC->pAggInfo;
2885 switch( pExpr->op ){
2888 testcase( pExpr->op==TK_AGG_COLUMN );
2889 testcase( pExpr->op==TK_COLUMN );
2890 /* Check to see if the column is in one of the tables in the FROM
2891 ** clause of the aggregate query */
2893 struct SrcList_item *pItem = pSrcList->a;
2894 for(i=0; i<pSrcList->nSrc; i++, pItem++){
2895 struct AggInfo_col *pCol;
2896 if( pExpr->iTable==pItem->iCursor ){
2897 /* If we reach this point, it means that pExpr refers to a table
2898 ** that is in the FROM clause of the aggregate query.
2900 ** Make an entry for the column in pAggInfo->aCol[] if there
2901 ** is not an entry there already.
2904 pCol = pAggInfo->aCol;
2905 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
2906 if( pCol->iTable==pExpr->iTable &&
2907 pCol->iColumn==pExpr->iColumn ){
2911 if( (k>=pAggInfo->nColumn)
2912 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
2914 pCol = &pAggInfo->aCol[k];
2915 pCol->pTab = pExpr->pTab;
2916 pCol->iTable = pExpr->iTable;
2917 pCol->iColumn = pExpr->iColumn;
2918 pCol->iMem = ++pParse->nMem;
2919 pCol->iSorterColumn = -1;
2920 pCol->pExpr = pExpr;
2921 if( pAggInfo->pGroupBy ){
2923 ExprList *pGB = pAggInfo->pGroupBy;
2924 struct ExprList_item *pTerm = pGB->a;
2926 for(j=0; j<n; j++, pTerm++){
2927 Expr *pE = pTerm->pExpr;
2928 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2929 pE->iColumn==pExpr->iColumn ){
2930 pCol->iSorterColumn = j;
2935 if( pCol->iSorterColumn<0 ){
2936 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2939 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2940 ** because it was there before or because we just created it).
2941 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2942 ** pAggInfo->aCol[] entry.
2944 pExpr->pAggInfo = pAggInfo;
2945 pExpr->op = TK_AGG_COLUMN;
2948 } /* endif pExpr->iTable==pItem->iCursor */
2949 } /* end loop over pSrcList */
2953 case TK_AGG_FUNCTION: {
2954 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2956 if( pNC->nDepth==0 ){
2957 /* Check to see if pExpr is a duplicate of another aggregate
2958 ** function that is already in the pAggInfo structure
2960 struct AggInfo_func *pItem = pAggInfo->aFunc;
2961 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2962 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2966 if( i>=pAggInfo->nFunc ){
2967 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
2969 u8 enc = ENC(pParse->db);
2970 i = addAggInfoFunc(pParse->db, pAggInfo);
2972 pItem = &pAggInfo->aFunc[i];
2973 pItem->pExpr = pExpr;
2974 pItem->iMem = ++pParse->nMem;
2975 pItem->pFunc = sqlite3FindFunction(pParse->db,
2976 (char*)pExpr->token.z, pExpr->token.n,
2977 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
2978 if( pExpr->flags & EP_Distinct ){
2979 pItem->iDistinct = pParse->nTab++;
2981 pItem->iDistinct = -1;
2985 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
2988 pExpr->pAggInfo = pAggInfo;
2993 return WRC_Continue;
2995 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
2996 NameContext *pNC = pWalker->u.pNC;
2997 if( pNC->nDepth==0 ){
2999 sqlite3WalkSelect(pWalker, pSelect);
3003 return WRC_Continue;
3008 ** Analyze the given expression looking for aggregate functions and
3009 ** for variables that need to be added to the pParse->aAgg[] array.
3010 ** Make additional entries to the pParse->aAgg[] array as necessary.
3012 ** This routine should only be called after the expression has been
3013 ** analyzed by sqlite3ResolveExprNames().
3015 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3017 w.xExprCallback = analyzeAggregate;
3018 w.xSelectCallback = analyzeAggregatesInSelect;
3020 sqlite3WalkExpr(&w, pExpr);
3024 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3025 ** expression list. Return the number of errors.
3027 ** If an error is found, the analysis is cut short.
3029 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3030 struct ExprList_item *pItem;
3033 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3034 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3040 ** Allocate or deallocate temporary use registers during code generation.
3042 int sqlite3GetTempReg(Parse *pParse){
3043 if( pParse->nTempReg==0 ){
3044 return ++pParse->nMem;
3046 return pParse->aTempReg[--pParse->nTempReg];
3048 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3049 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3050 sqlite3ExprWritableRegister(pParse, iReg, iReg);
3051 pParse->aTempReg[pParse->nTempReg++] = iReg;
3056 ** Allocate or deallocate a block of nReg consecutive registers
3058 int sqlite3GetTempRange(Parse *pParse, int nReg){
3060 i = pParse->iRangeReg;
3061 n = pParse->nRangeReg;
3062 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3063 pParse->iRangeReg += nReg;
3064 pParse->nRangeReg -= nReg;
3067 pParse->nMem += nReg;
3071 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3072 if( nReg>pParse->nRangeReg ){
3073 pParse->nRangeReg = nReg;
3074 pParse->iRangeReg = iReg;