os/persistentdata/persistentstorage/sqlite3api/SQLite/expr.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains routines used for analyzing expressions and
    13 ** for generating VDBE code that evaluates expressions in SQLite.
    14 **
    15 ** $Id: expr.c,v 1.395 2008/10/02 13:50:56 danielk1977 Exp $
    16 */
    17 #include "sqliteInt.h"
    18 #include <ctype.h>
    19 
    20 /*
    21 ** Return the 'affinity' of the expression pExpr if any.
    22 **
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
    24 ** or a sub-select with a column as the return value, then the 
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
    26 ** indicating no affinity for the expression.
    27 **
    28 ** i.e. the WHERE clause expresssions in the following statements all
    29 ** have an affinity:
    30 **
    31 ** CREATE TABLE t1(a);
    32 ** SELECT * FROM t1 WHERE a;
    33 ** SELECT a AS b FROM t1 WHERE b;
    34 ** SELECT * FROM t1 WHERE (select a from t1);
    35 */
    36 char sqlite3ExprAffinity(Expr *pExpr){
    37   int op = pExpr->op;
    38   if( op==TK_SELECT ){
    39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
    40   }
    41 #ifndef SQLITE_OMIT_CAST
    42   if( op==TK_CAST ){
    43     return sqlite3AffinityType(&pExpr->token);
    44   }
    45 #endif
    46   if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
    47     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
    48     ** a TK_COLUMN but was previously evaluated and cached in a register */
    49     int j = pExpr->iColumn;
    50     if( j<0 ) return SQLITE_AFF_INTEGER;
    51     assert( pExpr->pTab && j<pExpr->pTab->nCol );
    52     return pExpr->pTab->aCol[j].affinity;
    53   }
    54   return pExpr->affinity;
    55 }
    56 
    57 /*
    58 ** Set the collating sequence for expression pExpr to be the collating
    59 ** sequence named by pToken.   Return a pointer to the revised expression.
    60 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
    61 ** flag.  An explicit collating sequence will override implicit
    62 ** collating sequences.
    63 */
    64 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
    65   char *zColl = 0;            /* Dequoted name of collation sequence */
    66   CollSeq *pColl;
    67   sqlite3 *db = pParse->db;
    68   zColl = sqlite3NameFromToken(db, pCollName);
    69   if( pExpr && zColl ){
    70     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
    71     if( pColl ){
    72       pExpr->pColl = pColl;
    73       pExpr->flags |= EP_ExpCollate;
    74     }
    75   }
    76   sqlite3DbFree(db, zColl);
    77   return pExpr;
    78 }
    79 
    80 /*
    81 ** Return the default collation sequence for the expression pExpr. If
    82 ** there is no default collation type, return 0.
    83 */
    84 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
    85   CollSeq *pColl = 0;
    86   Expr *p = pExpr;
    87   while( p ){
    88     int op;
    89     pColl = p->pColl;
    90     if( pColl ) break;
    91     op = p->op;
    92     if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
    93       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
    94       ** a TK_COLUMN but was previously evaluated and cached in a register */
    95       const char *zColl;
    96       int j = p->iColumn;
    97       if( j>=0 ){
    98         sqlite3 *db = pParse->db;
    99         zColl = p->pTab->aCol[j].zColl;
   100         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
   101         pExpr->pColl = pColl;
   102       }
   103       break;
   104     }
   105     if( op!=TK_CAST && op!=TK_UPLUS ){
   106       break;
   107     }
   108     p = p->pLeft;
   109   }
   110   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
   111     pColl = 0;
   112   }
   113   return pColl;
   114 }
   115 
   116 /*
   117 ** pExpr is an operand of a comparison operator.  aff2 is the
   118 ** type affinity of the other operand.  This routine returns the
   119 ** type affinity that should be used for the comparison operator.
   120 */
   121 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
   122   char aff1 = sqlite3ExprAffinity(pExpr);
   123   if( aff1 && aff2 ){
   124     /* Both sides of the comparison are columns. If one has numeric
   125     ** affinity, use that. Otherwise use no affinity.
   126     */
   127     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
   128       return SQLITE_AFF_NUMERIC;
   129     }else{
   130       return SQLITE_AFF_NONE;
   131     }
   132   }else if( !aff1 && !aff2 ){
   133     /* Neither side of the comparison is a column.  Compare the
   134     ** results directly.
   135     */
   136     return SQLITE_AFF_NONE;
   137   }else{
   138     /* One side is a column, the other is not. Use the columns affinity. */
   139     assert( aff1==0 || aff2==0 );
   140     return (aff1 + aff2);
   141   }
   142 }
   143 
   144 /*
   145 ** pExpr is a comparison operator.  Return the type affinity that should
   146 ** be applied to both operands prior to doing the comparison.
   147 */
   148 static char comparisonAffinity(Expr *pExpr){
   149   char aff;
   150   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
   151           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
   152           pExpr->op==TK_NE );
   153   assert( pExpr->pLeft );
   154   aff = sqlite3ExprAffinity(pExpr->pLeft);
   155   if( pExpr->pRight ){
   156     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
   157   }
   158   else if( pExpr->pSelect ){
   159     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
   160   }
   161   else if( !aff ){
   162     aff = SQLITE_AFF_NONE;
   163   }
   164   return aff;
   165 }
   166 
   167 /*
   168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
   169 ** idx_affinity is the affinity of an indexed column. Return true
   170 ** if the index with affinity idx_affinity may be used to implement
   171 ** the comparison in pExpr.
   172 */
   173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
   174   char aff = comparisonAffinity(pExpr);
   175   switch( aff ){
   176     case SQLITE_AFF_NONE:
   177       return 1;
   178     case SQLITE_AFF_TEXT:
   179       return idx_affinity==SQLITE_AFF_TEXT;
   180     default:
   181       return sqlite3IsNumericAffinity(idx_affinity);
   182   }
   183 }
   184 
   185 /*
   186 ** Return the P5 value that should be used for a binary comparison
   187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
   188 */
   189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
   190   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
   191   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
   192   return aff;
   193 }
   194 
   195 /*
   196 ** Return a pointer to the collation sequence that should be used by
   197 ** a binary comparison operator comparing pLeft and pRight.
   198 **
   199 ** If the left hand expression has a collating sequence type, then it is
   200 ** used. Otherwise the collation sequence for the right hand expression
   201 ** is used, or the default (BINARY) if neither expression has a collating
   202 ** type.
   203 **
   204 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
   205 ** it is not considered.
   206 */
   207 CollSeq *sqlite3BinaryCompareCollSeq(
   208   Parse *pParse, 
   209   Expr *pLeft, 
   210   Expr *pRight
   211 ){
   212   CollSeq *pColl;
   213   assert( pLeft );
   214   if( pLeft->flags & EP_ExpCollate ){
   215     assert( pLeft->pColl );
   216     pColl = pLeft->pColl;
   217   }else if( pRight && pRight->flags & EP_ExpCollate ){
   218     assert( pRight->pColl );
   219     pColl = pRight->pColl;
   220   }else{
   221     pColl = sqlite3ExprCollSeq(pParse, pLeft);
   222     if( !pColl ){
   223       pColl = sqlite3ExprCollSeq(pParse, pRight);
   224     }
   225   }
   226   return pColl;
   227 }
   228 
   229 /*
   230 ** Generate the operands for a comparison operation.  Before
   231 ** generating the code for each operand, set the EP_AnyAff
   232 ** flag on the expression so that it will be able to used a
   233 ** cached column value that has previously undergone an
   234 ** affinity change.
   235 */
   236 static void codeCompareOperands(
   237   Parse *pParse,    /* Parsing and code generating context */
   238   Expr *pLeft,      /* The left operand */
   239   int *pRegLeft,    /* Register where left operand is stored */
   240   int *pFreeLeft,   /* Free this register when done */
   241   Expr *pRight,     /* The right operand */
   242   int *pRegRight,   /* Register where right operand is stored */
   243   int *pFreeRight   /* Write temp register for right operand there */
   244 ){
   245   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
   246   pLeft->flags |= EP_AnyAff;
   247   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
   248   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
   249   pRight->flags |= EP_AnyAff;
   250   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
   251 }
   252 
   253 /*
   254 ** Generate code for a comparison operator.
   255 */
   256 static int codeCompare(
   257   Parse *pParse,    /* The parsing (and code generating) context */
   258   Expr *pLeft,      /* The left operand */
   259   Expr *pRight,     /* The right operand */
   260   int opcode,       /* The comparison opcode */
   261   int in1, int in2, /* Register holding operands */
   262   int dest,         /* Jump here if true.  */
   263   int jumpIfNull    /* If true, jump if either operand is NULL */
   264 ){
   265   int p5;
   266   int addr;
   267   CollSeq *p4;
   268 
   269   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
   270   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
   271   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
   272                            (void*)p4, P4_COLLSEQ);
   273   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
   274   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
   275     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
   276     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
   277   }
   278   return addr;
   279 }
   280 
   281 #if SQLITE_MAX_EXPR_DEPTH>0
   282 /*
   283 ** Check that argument nHeight is less than or equal to the maximum
   284 ** expression depth allowed. If it is not, leave an error message in
   285 ** pParse.
   286 */
   287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
   288   int rc = SQLITE_OK;
   289   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
   290   if( nHeight>mxHeight ){
   291     sqlite3ErrorMsg(pParse, 
   292        "Expression tree is too large (maximum depth %d)", mxHeight
   293     );
   294     rc = SQLITE_ERROR;
   295   }
   296   return rc;
   297 }
   298 
   299 /* The following three functions, heightOfExpr(), heightOfExprList()
   300 ** and heightOfSelect(), are used to determine the maximum height
   301 ** of any expression tree referenced by the structure passed as the
   302 ** first argument.
   303 **
   304 ** If this maximum height is greater than the current value pointed
   305 ** to by pnHeight, the second parameter, then set *pnHeight to that
   306 ** value.
   307 */
   308 static void heightOfExpr(Expr *p, int *pnHeight){
   309   if( p ){
   310     if( p->nHeight>*pnHeight ){
   311       *pnHeight = p->nHeight;
   312     }
   313   }
   314 }
   315 static void heightOfExprList(ExprList *p, int *pnHeight){
   316   if( p ){
   317     int i;
   318     for(i=0; i<p->nExpr; i++){
   319       heightOfExpr(p->a[i].pExpr, pnHeight);
   320     }
   321   }
   322 }
   323 static void heightOfSelect(Select *p, int *pnHeight){
   324   if( p ){
   325     heightOfExpr(p->pWhere, pnHeight);
   326     heightOfExpr(p->pHaving, pnHeight);
   327     heightOfExpr(p->pLimit, pnHeight);
   328     heightOfExpr(p->pOffset, pnHeight);
   329     heightOfExprList(p->pEList, pnHeight);
   330     heightOfExprList(p->pGroupBy, pnHeight);
   331     heightOfExprList(p->pOrderBy, pnHeight);
   332     heightOfSelect(p->pPrior, pnHeight);
   333   }
   334 }
   335 
   336 /*
   337 ** Set the Expr.nHeight variable in the structure passed as an 
   338 ** argument. An expression with no children, Expr.pList or 
   339 ** Expr.pSelect member has a height of 1. Any other expression
   340 ** has a height equal to the maximum height of any other 
   341 ** referenced Expr plus one.
   342 */
   343 static void exprSetHeight(Expr *p){
   344   int nHeight = 0;
   345   heightOfExpr(p->pLeft, &nHeight);
   346   heightOfExpr(p->pRight, &nHeight);
   347   heightOfExprList(p->pList, &nHeight);
   348   heightOfSelect(p->pSelect, &nHeight);
   349   p->nHeight = nHeight + 1;
   350 }
   351 
   352 /*
   353 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
   354 ** the height is greater than the maximum allowed expression depth,
   355 ** leave an error in pParse.
   356 */
   357 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
   358   exprSetHeight(p);
   359   sqlite3ExprCheckHeight(pParse, p->nHeight);
   360 }
   361 
   362 /*
   363 ** Return the maximum height of any expression tree referenced
   364 ** by the select statement passed as an argument.
   365 */
   366 int sqlite3SelectExprHeight(Select *p){
   367   int nHeight = 0;
   368   heightOfSelect(p, &nHeight);
   369   return nHeight;
   370 }
   371 #else
   372   #define exprSetHeight(y)
   373 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
   374 
   375 /*
   376 ** Construct a new expression node and return a pointer to it.  Memory
   377 ** for this node is obtained from sqlite3_malloc().  The calling function
   378 ** is responsible for making sure the node eventually gets freed.
   379 */
   380 Expr *sqlite3Expr(
   381   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
   382   int op,                 /* Expression opcode */
   383   Expr *pLeft,            /* Left operand */
   384   Expr *pRight,           /* Right operand */
   385   const Token *pToken     /* Argument token */
   386 ){
   387   Expr *pNew;
   388   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
   389   if( pNew==0 ){
   390     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
   391     ** this function must always be allocated with sqlite3Expr() for this 
   392     ** reason. 
   393     */
   394     sqlite3ExprDelete(db, pLeft);
   395     sqlite3ExprDelete(db, pRight);
   396     return 0;
   397   }
   398   pNew->op = op;
   399   pNew->pLeft = pLeft;
   400   pNew->pRight = pRight;
   401   pNew->iAgg = -1;
   402   pNew->span.z = (u8*)"";
   403   if( pToken ){
   404     assert( pToken->dyn==0 );
   405     pNew->span = pNew->token = *pToken;
   406   }else if( pLeft ){
   407     if( pRight ){
   408       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
   409         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
   410       }
   411       if( pRight->flags & EP_ExpCollate ){
   412         pNew->flags |= EP_ExpCollate;
   413         pNew->pColl = pRight->pColl;
   414       }
   415     }
   416     if( pLeft->flags & EP_ExpCollate ){
   417       pNew->flags |= EP_ExpCollate;
   418       pNew->pColl = pLeft->pColl;
   419     }
   420   }
   421 
   422   exprSetHeight(pNew);
   423   return pNew;
   424 }
   425 
   426 /*
   427 ** Works like sqlite3Expr() except that it takes an extra Parse*
   428 ** argument and notifies the associated connection object if malloc fails.
   429 */
   430 Expr *sqlite3PExpr(
   431   Parse *pParse,          /* Parsing context */
   432   int op,                 /* Expression opcode */
   433   Expr *pLeft,            /* Left operand */
   434   Expr *pRight,           /* Right operand */
   435   const Token *pToken     /* Argument token */
   436 ){
   437   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
   438   if( p ){
   439     sqlite3ExprCheckHeight(pParse, p->nHeight);
   440   }
   441   return p;
   442 }
   443 
   444 /*
   445 ** When doing a nested parse, you can include terms in an expression
   446 ** that look like this:   #1 #2 ...  These terms refer to registers
   447 ** in the virtual machine.  #N is the N-th register.
   448 **
   449 ** This routine is called by the parser to deal with on of those terms.
   450 ** It immediately generates code to store the value in a memory location.
   451 ** The returns an expression that will code to extract the value from
   452 ** that memory location as needed.
   453 */
   454 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
   455   Vdbe *v = pParse->pVdbe;
   456   Expr *p;
   457   if( pParse->nested==0 ){
   458     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
   459     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
   460   }
   461   if( v==0 ) return 0;
   462   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
   463   if( p==0 ){
   464     return 0;  /* Malloc failed */
   465   }
   466   p->iTable = atoi((char*)&pToken->z[1]);
   467   return p;
   468 }
   469 
   470 /*
   471 ** Join two expressions using an AND operator.  If either expression is
   472 ** NULL, then just return the other expression.
   473 */
   474 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
   475   if( pLeft==0 ){
   476     return pRight;
   477   }else if( pRight==0 ){
   478     return pLeft;
   479   }else{
   480     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
   481   }
   482 }
   483 
   484 /*
   485 ** Set the Expr.span field of the given expression to span all
   486 ** text between the two given tokens.  Both tokens must be pointing
   487 ** at the same string.
   488 */
   489 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
   490   assert( pRight!=0 );
   491   assert( pLeft!=0 );
   492   if( pExpr ){
   493     pExpr->span.z = pLeft->z;
   494     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
   495   }
   496 }
   497 
   498 /*
   499 ** Construct a new expression node for a function with multiple
   500 ** arguments.
   501 */
   502 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
   503   Expr *pNew;
   504   sqlite3 *db = pParse->db;
   505   assert( pToken );
   506   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
   507   if( pNew==0 ){
   508     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
   509     return 0;
   510   }
   511   pNew->op = TK_FUNCTION;
   512   pNew->pList = pList;
   513   assert( pToken->dyn==0 );
   514   pNew->token = *pToken;
   515   pNew->span = pNew->token;
   516 
   517   sqlite3ExprSetHeight(pParse, pNew);
   518   return pNew;
   519 }
   520 
   521 /*
   522 ** Assign a variable number to an expression that encodes a wildcard
   523 ** in the original SQL statement.  
   524 **
   525 ** Wildcards consisting of a single "?" are assigned the next sequential
   526 ** variable number.
   527 **
   528 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
   529 ** sure "nnn" is not too be to avoid a denial of service attack when
   530 ** the SQL statement comes from an external source.
   531 **
   532 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
   533 ** as the previous instance of the same wildcard.  Or if this is the first
   534 ** instance of the wildcard, the next sequenial variable number is
   535 ** assigned.
   536 */
   537 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
   538   Token *pToken;
   539   sqlite3 *db = pParse->db;
   540 
   541   if( pExpr==0 ) return;
   542   pToken = &pExpr->token;
   543   assert( pToken->n>=1 );
   544   assert( pToken->z!=0 );
   545   assert( pToken->z[0]!=0 );
   546   if( pToken->n==1 ){
   547     /* Wildcard of the form "?".  Assign the next variable number */
   548     pExpr->iTable = ++pParse->nVar;
   549   }else if( pToken->z[0]=='?' ){
   550     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
   551     ** use it as the variable number */
   552     int i;
   553     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
   554     testcase( i==0 );
   555     testcase( i==1 );
   556     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
   557     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
   558     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
   559       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
   560           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
   561     }
   562     if( i>pParse->nVar ){
   563       pParse->nVar = i;
   564     }
   565   }else{
   566     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
   567     ** number as the prior appearance of the same name, or if the name
   568     ** has never appeared before, reuse the same variable number
   569     */
   570     int i, n;
   571     n = pToken->n;
   572     for(i=0; i<pParse->nVarExpr; i++){
   573       Expr *pE;
   574       if( (pE = pParse->apVarExpr[i])!=0
   575           && pE->token.n==n
   576           && memcmp(pE->token.z, pToken->z, n)==0 ){
   577         pExpr->iTable = pE->iTable;
   578         break;
   579       }
   580     }
   581     if( i>=pParse->nVarExpr ){
   582       pExpr->iTable = ++pParse->nVar;
   583       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
   584         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
   585         pParse->apVarExpr =
   586             sqlite3DbReallocOrFree(
   587               db,
   588               pParse->apVarExpr,
   589               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
   590             );
   591       }
   592       if( !db->mallocFailed ){
   593         assert( pParse->apVarExpr!=0 );
   594         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
   595       }
   596     }
   597   } 
   598   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
   599     sqlite3ErrorMsg(pParse, "too many SQL variables");
   600   }
   601 }
   602 
   603 /*
   604 ** Recursively delete an expression tree.
   605 */
   606 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
   607   if( p==0 ) return;
   608   if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
   609   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
   610   sqlite3ExprDelete(db, p->pLeft);
   611   sqlite3ExprDelete(db, p->pRight);
   612   sqlite3ExprListDelete(db, p->pList);
   613   sqlite3SelectDelete(db, p->pSelect);
   614   sqlite3DbFree(db, p);
   615 }
   616 
   617 /*
   618 ** The Expr.token field might be a string literal that is quoted.
   619 ** If so, remove the quotation marks.
   620 */
   621 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
   622   if( ExprHasAnyProperty(p, EP_Dequoted) ){
   623     return;
   624   }
   625   ExprSetProperty(p, EP_Dequoted);
   626   if( p->token.dyn==0 ){
   627     sqlite3TokenCopy(db, &p->token, &p->token);
   628   }
   629   sqlite3Dequote((char*)p->token.z);
   630 }
   631 
   632 /*
   633 ** The following group of routines make deep copies of expressions,
   634 ** expression lists, ID lists, and select statements.  The copies can
   635 ** be deleted (by being passed to their respective ...Delete() routines)
   636 ** without effecting the originals.
   637 **
   638 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
   639 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
   640 ** by subsequent calls to sqlite*ListAppend() routines.
   641 **
   642 ** Any tables that the SrcList might point to are not duplicated.
   643 */
   644 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
   645   Expr *pNew;
   646   if( p==0 ) return 0;
   647   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
   648   if( pNew==0 ) return 0;
   649   memcpy(pNew, p, sizeof(*pNew));
   650   if( p->token.z!=0 ){
   651     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
   652     pNew->token.dyn = 1;
   653   }else{
   654     assert( pNew->token.z==0 );
   655   }
   656   pNew->span.z = 0;
   657   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
   658   pNew->pRight = sqlite3ExprDup(db, p->pRight);
   659   pNew->pList = sqlite3ExprListDup(db, p->pList);
   660   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
   661   return pNew;
   662 }
   663 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
   664   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
   665   if( pFrom->z ){
   666     pTo->n = pFrom->n;
   667     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
   668     pTo->dyn = 1;
   669   }else{
   670     pTo->z = 0;
   671   }
   672 }
   673 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
   674   ExprList *pNew;
   675   struct ExprList_item *pItem, *pOldItem;
   676   int i;
   677   if( p==0 ) return 0;
   678   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
   679   if( pNew==0 ) return 0;
   680   pNew->iECursor = 0;
   681   pNew->nExpr = pNew->nAlloc = p->nExpr;
   682   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
   683   if( pItem==0 ){
   684     sqlite3DbFree(db, pNew);
   685     return 0;
   686   } 
   687   pOldItem = p->a;
   688   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
   689     Expr *pNewExpr, *pOldExpr;
   690     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
   691     if( pOldExpr->span.z!=0 && pNewExpr ){
   692       /* Always make a copy of the span for top-level expressions in the
   693       ** expression list.  The logic in SELECT processing that determines
   694       ** the names of columns in the result set needs this information */
   695       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
   696     }
   697     assert( pNewExpr==0 || pNewExpr->span.z!=0 
   698             || pOldExpr->span.z==0
   699             || db->mallocFailed );
   700     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   701     pItem->sortOrder = pOldItem->sortOrder;
   702     pItem->done = 0;
   703     pItem->iCol = pOldItem->iCol;
   704     pItem->iAlias = pOldItem->iAlias;
   705   }
   706   return pNew;
   707 }
   708 
   709 /*
   710 ** If cursors, triggers, views and subqueries are all omitted from
   711 ** the build, then none of the following routines, except for 
   712 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
   713 ** called with a NULL argument.
   714 */
   715 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
   716  || !defined(SQLITE_OMIT_SUBQUERY)
   717 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
   718   SrcList *pNew;
   719   int i;
   720   int nByte;
   721   if( p==0 ) return 0;
   722   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
   723   pNew = sqlite3DbMallocRaw(db, nByte );
   724   if( pNew==0 ) return 0;
   725   pNew->nSrc = pNew->nAlloc = p->nSrc;
   726   for(i=0; i<p->nSrc; i++){
   727     struct SrcList_item *pNewItem = &pNew->a[i];
   728     struct SrcList_item *pOldItem = &p->a[i];
   729     Table *pTab;
   730     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
   731     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   732     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
   733     pNewItem->jointype = pOldItem->jointype;
   734     pNewItem->iCursor = pOldItem->iCursor;
   735     pNewItem->isPopulated = pOldItem->isPopulated;
   736     pTab = pNewItem->pTab = pOldItem->pTab;
   737     if( pTab ){
   738       pTab->nRef++;
   739     }
   740     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
   741     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
   742     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
   743     pNewItem->colUsed = pOldItem->colUsed;
   744   }
   745   return pNew;
   746 }
   747 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
   748   IdList *pNew;
   749   int i;
   750   if( p==0 ) return 0;
   751   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
   752   if( pNew==0 ) return 0;
   753   pNew->nId = pNew->nAlloc = p->nId;
   754   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
   755   if( pNew->a==0 ){
   756     sqlite3DbFree(db, pNew);
   757     return 0;
   758   }
   759   for(i=0; i<p->nId; i++){
   760     struct IdList_item *pNewItem = &pNew->a[i];
   761     struct IdList_item *pOldItem = &p->a[i];
   762     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   763     pNewItem->idx = pOldItem->idx;
   764   }
   765   return pNew;
   766 }
   767 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
   768   Select *pNew;
   769   if( p==0 ) return 0;
   770   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
   771   if( pNew==0 ) return 0;
   772   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
   773   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
   774   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
   775   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
   776   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
   777   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
   778   pNew->op = p->op;
   779   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
   780   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
   781   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
   782   pNew->iLimit = 0;
   783   pNew->iOffset = 0;
   784   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
   785   pNew->pRightmost = 0;
   786   pNew->addrOpenEphm[0] = -1;
   787   pNew->addrOpenEphm[1] = -1;
   788   pNew->addrOpenEphm[2] = -1;
   789   return pNew;
   790 }
   791 #else
   792 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
   793   assert( p==0 );
   794   return 0;
   795 }
   796 #endif
   797 
   798 
   799 /*
   800 ** Add a new element to the end of an expression list.  If pList is
   801 ** initially NULL, then create a new expression list.
   802 */
   803 ExprList *sqlite3ExprListAppend(
   804   Parse *pParse,          /* Parsing context */
   805   ExprList *pList,        /* List to which to append. Might be NULL */
   806   Expr *pExpr,            /* Expression to be appended */
   807   Token *pName            /* AS keyword for the expression */
   808 ){
   809   sqlite3 *db = pParse->db;
   810   if( pList==0 ){
   811     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
   812     if( pList==0 ){
   813       goto no_mem;
   814     }
   815     assert( pList->nAlloc==0 );
   816   }
   817   if( pList->nAlloc<=pList->nExpr ){
   818     struct ExprList_item *a;
   819     int n = pList->nAlloc*2 + 4;
   820     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
   821     if( a==0 ){
   822       goto no_mem;
   823     }
   824     pList->a = a;
   825     pList->nAlloc = n;
   826   }
   827   assert( pList->a!=0 );
   828   if( pExpr || pName ){
   829     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
   830     memset(pItem, 0, sizeof(*pItem));
   831     pItem->zName = sqlite3NameFromToken(db, pName);
   832     pItem->pExpr = pExpr;
   833     pItem->iAlias = 0;
   834   }
   835   return pList;
   836 
   837 no_mem:     
   838   /* Avoid leaking memory if malloc has failed. */
   839   sqlite3ExprDelete(db, pExpr);
   840   sqlite3ExprListDelete(db, pList);
   841   return 0;
   842 }
   843 
   844 /*
   845 ** If the expression list pEList contains more than iLimit elements,
   846 ** leave an error message in pParse.
   847 */
   848 void sqlite3ExprListCheckLength(
   849   Parse *pParse,
   850   ExprList *pEList,
   851   const char *zObject
   852 ){
   853   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
   854   testcase( pEList && pEList->nExpr==mx );
   855   testcase( pEList && pEList->nExpr==mx+1 );
   856   if( pEList && pEList->nExpr>mx ){
   857     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
   858   }
   859 }
   860 
   861 /*
   862 ** Delete an entire expression list.
   863 */
   864 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
   865   int i;
   866   struct ExprList_item *pItem;
   867   if( pList==0 ) return;
   868   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
   869   assert( pList->nExpr<=pList->nAlloc );
   870   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
   871     sqlite3ExprDelete(db, pItem->pExpr);
   872     sqlite3DbFree(db, pItem->zName);
   873   }
   874   sqlite3DbFree(db, pList->a);
   875   sqlite3DbFree(db, pList);
   876 }
   877 
   878 /*
   879 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
   880 ** to an integer.  These routines are checking an expression to see
   881 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
   882 ** not constant.
   883 **
   884 ** These callback routines are used to implement the following:
   885 **
   886 **     sqlite3ExprIsConstant()
   887 **     sqlite3ExprIsConstantNotJoin()
   888 **     sqlite3ExprIsConstantOrFunction()
   889 **
   890 */
   891 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
   892 
   893   /* If pWalker->u.i is 3 then any term of the expression that comes from
   894   ** the ON or USING clauses of a join disqualifies the expression
   895   ** from being considered constant. */
   896   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
   897     pWalker->u.i = 0;
   898     return WRC_Abort;
   899   }
   900 
   901   switch( pExpr->op ){
   902     /* Consider functions to be constant if all their arguments are constant
   903     ** and pWalker->u.i==2 */
   904     case TK_FUNCTION:
   905       if( pWalker->u.i==2 ) return 0;
   906       /* Fall through */
   907     case TK_ID:
   908     case TK_COLUMN:
   909     case TK_DOT:
   910     case TK_AGG_FUNCTION:
   911     case TK_AGG_COLUMN:
   912 #ifndef SQLITE_OMIT_SUBQUERY
   913     case TK_SELECT:
   914     case TK_EXISTS:
   915       testcase( pExpr->op==TK_SELECT );
   916       testcase( pExpr->op==TK_EXISTS );
   917 #endif
   918       testcase( pExpr->op==TK_ID );
   919       testcase( pExpr->op==TK_COLUMN );
   920       testcase( pExpr->op==TK_DOT );
   921       testcase( pExpr->op==TK_AGG_FUNCTION );
   922       testcase( pExpr->op==TK_AGG_COLUMN );
   923       pWalker->u.i = 0;
   924       return WRC_Abort;
   925     default:
   926       return WRC_Continue;
   927   }
   928 }
   929 static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
   930   pWalker->u.i = 0;
   931   return WRC_Abort;
   932 }
   933 static int exprIsConst(Expr *p, int initFlag){
   934   Walker w;
   935   w.u.i = initFlag;
   936   w.xExprCallback = exprNodeIsConstant;
   937   w.xSelectCallback = selectNodeIsConstant;
   938   sqlite3WalkExpr(&w, p);
   939   return w.u.i;
   940 }
   941 
   942 /*
   943 ** Walk an expression tree.  Return 1 if the expression is constant
   944 ** and 0 if it involves variables or function calls.
   945 **
   946 ** For the purposes of this function, a double-quoted string (ex: "abc")
   947 ** is considered a variable but a single-quoted string (ex: 'abc') is
   948 ** a constant.
   949 */
   950 int sqlite3ExprIsConstant(Expr *p){
   951   return exprIsConst(p, 1);
   952 }
   953 
   954 /*
   955 ** Walk an expression tree.  Return 1 if the expression is constant
   956 ** that does no originate from the ON or USING clauses of a join.
   957 ** Return 0 if it involves variables or function calls or terms from
   958 ** an ON or USING clause.
   959 */
   960 int sqlite3ExprIsConstantNotJoin(Expr *p){
   961   return exprIsConst(p, 3);
   962 }
   963 
   964 /*
   965 ** Walk an expression tree.  Return 1 if the expression is constant
   966 ** or a function call with constant arguments.  Return and 0 if there
   967 ** are any variables.
   968 **
   969 ** For the purposes of this function, a double-quoted string (ex: "abc")
   970 ** is considered a variable but a single-quoted string (ex: 'abc') is
   971 ** a constant.
   972 */
   973 int sqlite3ExprIsConstantOrFunction(Expr *p){
   974   return exprIsConst(p, 2);
   975 }
   976 
   977 /*
   978 ** If the expression p codes a constant integer that is small enough
   979 ** to fit in a 32-bit integer, return 1 and put the value of the integer
   980 ** in *pValue.  If the expression is not an integer or if it is too big
   981 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
   982 */
   983 int sqlite3ExprIsInteger(Expr *p, int *pValue){
   984   int rc = 0;
   985   if( p->flags & EP_IntValue ){
   986     *pValue = p->iTable;
   987     return 1;
   988   }
   989   switch( p->op ){
   990     case TK_INTEGER: {
   991       rc = sqlite3GetInt32((char*)p->token.z, pValue);
   992       break;
   993     }
   994     case TK_UPLUS: {
   995       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
   996       break;
   997     }
   998     case TK_UMINUS: {
   999       int v;
  1000       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
  1001         *pValue = -v;
  1002         rc = 1;
  1003       }
  1004       break;
  1005     }
  1006     default: break;
  1007   }
  1008   if( rc ){
  1009     p->op = TK_INTEGER;
  1010     p->flags |= EP_IntValue;
  1011     p->iTable = *pValue;
  1012   }
  1013   return rc;
  1014 }
  1015 
  1016 /*
  1017 ** Return TRUE if the given string is a row-id column name.
  1018 */
  1019 int sqlite3IsRowid(const char *z){
  1020   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  1021   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  1022   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  1023   return 0;
  1024 }
  1025 
  1026 #ifdef SQLITE_TEST
  1027   int sqlite3_enable_in_opt = 1;
  1028 #else
  1029   #define sqlite3_enable_in_opt 1
  1030 #endif
  1031 
  1032 /*
  1033 ** Return true if the IN operator optimization is enabled and
  1034 ** the SELECT statement p exists and is of the
  1035 ** simple form:
  1036 **
  1037 **     SELECT <column> FROM <table>
  1038 **
  1039 ** If this is the case, it may be possible to use an existing table
  1040 ** or index instead of generating an epheremal table.
  1041 */
  1042 #ifndef SQLITE_OMIT_SUBQUERY
  1043 static int isCandidateForInOpt(Select *p){
  1044   SrcList *pSrc;
  1045   ExprList *pEList;
  1046   Table *pTab;
  1047   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
  1048   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
  1049   if( p->pPrior ) return 0;              /* Not a compound SELECT */
  1050   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
  1051       return 0; /* No DISTINCT keyword and no aggregate functions */
  1052   }
  1053   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
  1054   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
  1055   if( p->pOffset ) return 0;
  1056   if( p->pWhere ) return 0;              /* Has no WHERE clause */
  1057   pSrc = p->pSrc;
  1058   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
  1059   if( pSrc->nSrc!=1 ) return 0;
  1060   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
  1061   pTab = pSrc->a[0].pTab;
  1062   if( pTab==0 ) return 0;
  1063   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
  1064   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
  1065   pEList = p->pEList;
  1066   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
  1067   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
  1068   return 1;
  1069 }
  1070 #endif /* SQLITE_OMIT_SUBQUERY */
  1071 
  1072 /*
  1073 ** This function is used by the implementation of the IN (...) operator.
  1074 ** It's job is to find or create a b-tree structure that may be used
  1075 ** either to test for membership of the (...) set or to iterate through
  1076 ** its members, skipping duplicates.
  1077 **
  1078 ** The cursor opened on the structure (database table, database index 
  1079 ** or ephermal table) is stored in pX->iTable before this function returns.
  1080 ** The returned value indicates the structure type, as follows:
  1081 **
  1082 **   IN_INDEX_ROWID - The cursor was opened on a database table.
  1083 **   IN_INDEX_INDEX - The cursor was opened on a database index.
  1084 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
  1085 **                    populated epheremal table.
  1086 **
  1087 ** An existing structure may only be used if the SELECT is of the simple
  1088 ** form:
  1089 **
  1090 **     SELECT <column> FROM <table>
  1091 **
  1092 ** If prNotFound parameter is 0, then the structure will be used to iterate
  1093 ** through the set members, skipping any duplicates. In this case an
  1094 ** epheremal table must be used unless the selected <column> is guaranteed
  1095 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
  1096 ** is unique by virtue of a constraint or implicit index.
  1097 **
  1098 ** If the prNotFound parameter is not 0, then the structure will be used 
  1099 ** for fast set membership tests. In this case an epheremal table must 
  1100 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
  1101 ** be found with <column> as its left-most column.
  1102 **
  1103 ** When the structure is being used for set membership tests, the user
  1104 ** needs to know whether or not the structure contains an SQL NULL 
  1105 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
  1106 ** If there is a chance that the structure may contain a NULL value at
  1107 ** runtime, then a register is allocated and the register number written
  1108 ** to *prNotFound. If there is no chance that the structure contains a
  1109 ** NULL value, then *prNotFound is left unchanged.
  1110 **
  1111 ** If a register is allocated and its location stored in *prNotFound, then
  1112 ** its initial value is NULL. If the structure does not remain constant
  1113 ** for the duration of the query (i.e. the set is a correlated sub-select), 
  1114 ** the value of the allocated register is reset to NULL each time the 
  1115 ** structure is repopulated. This allows the caller to use vdbe code 
  1116 ** equivalent to the following:
  1117 **
  1118 **   if( register==NULL ){
  1119 **     has_null = <test if data structure contains null>
  1120 **     register = 1
  1121 **   }
  1122 **
  1123 ** in order to avoid running the <test if data structure contains null>
  1124 ** test more often than is necessary.
  1125 */
  1126 #ifndef SQLITE_OMIT_SUBQUERY
  1127 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
  1128   Select *p;
  1129   int eType = 0;
  1130   int iTab = pParse->nTab++;
  1131   int mustBeUnique = !prNotFound;
  1132 
  1133   /* The follwing if(...) expression is true if the SELECT is of the 
  1134   ** simple form:
  1135   **
  1136   **     SELECT <column> FROM <table>
  1137   **
  1138   ** If this is the case, it may be possible to use an existing table
  1139   ** or index instead of generating an epheremal table.
  1140   */
  1141   p = pX->pSelect;
  1142   if( isCandidateForInOpt(p) ){
  1143     sqlite3 *db = pParse->db;
  1144     Index *pIdx;
  1145     Expr *pExpr = p->pEList->a[0].pExpr;
  1146     int iCol = pExpr->iColumn;
  1147     Vdbe *v = sqlite3GetVdbe(pParse);
  1148 
  1149     /* This function is only called from two places. In both cases the vdbe
  1150     ** has already been allocated. So assume sqlite3GetVdbe() is always
  1151     ** successful here.
  1152     */
  1153     assert(v);
  1154     if( iCol<0 ){
  1155       int iMem = ++pParse->nMem;
  1156       int iAddr;
  1157       Table *pTab = p->pSrc->a[0].pTab;
  1158       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  1159       sqlite3VdbeUsesBtree(v, iDb);
  1160 
  1161       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
  1162       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  1163 
  1164       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  1165       eType = IN_INDEX_ROWID;
  1166 
  1167       sqlite3VdbeJumpHere(v, iAddr);
  1168     }else{
  1169       /* The collation sequence used by the comparison. If an index is to 
  1170       ** be used in place of a temp-table, it must be ordered according
  1171       ** to this collation sequence.
  1172       */
  1173       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
  1174 
  1175       /* Check that the affinity that will be used to perform the 
  1176       ** comparison is the same as the affinity of the column. If
  1177       ** it is not, it is not possible to use any index.
  1178       */
  1179       Table *pTab = p->pSrc->a[0].pTab;
  1180       char aff = comparisonAffinity(pX);
  1181       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
  1182 
  1183       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
  1184         if( (pIdx->aiColumn[0]==iCol)
  1185          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
  1186          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
  1187         ){
  1188           int iDb;
  1189           int iMem = ++pParse->nMem;
  1190           int iAddr;
  1191           char *pKey;
  1192   
  1193           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
  1194           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
  1195           sqlite3VdbeUsesBtree(v, iDb);
  1196 
  1197           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
  1198           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  1199   
  1200           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
  1201           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
  1202                                pKey,P4_KEYINFO_HANDOFF);
  1203           VdbeComment((v, "%s", pIdx->zName));
  1204           eType = IN_INDEX_INDEX;
  1205 
  1206           sqlite3VdbeJumpHere(v, iAddr);
  1207           if( prNotFound && !pTab->aCol[iCol].notNull ){
  1208             *prNotFound = ++pParse->nMem;
  1209           }
  1210         }
  1211       }
  1212     }
  1213   }
  1214 
  1215   if( eType==0 ){
  1216     int rMayHaveNull = 0;
  1217     eType = IN_INDEX_EPH;
  1218     if( prNotFound ){
  1219       *prNotFound = rMayHaveNull = ++pParse->nMem;
  1220     }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){
  1221       eType = IN_INDEX_ROWID;
  1222     }
  1223     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
  1224   }else{
  1225     pX->iTable = iTab;
  1226   }
  1227   return eType;
  1228 }
  1229 #endif
  1230 
  1231 /*
  1232 ** Generate code for scalar subqueries used as an expression
  1233 ** and IN operators.  Examples:
  1234 **
  1235 **     (SELECT a FROM b)          -- subquery
  1236 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
  1237 **     x IN (4,5,11)              -- IN operator with list on right-hand side
  1238 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
  1239 **
  1240 ** The pExpr parameter describes the expression that contains the IN
  1241 ** operator or subquery.
  1242 **
  1243 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
  1244 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
  1245 ** to some integer key column of a table B-Tree. In this case, use an
  1246 ** intkey B-Tree to store the set of IN(...) values instead of the usual
  1247 ** (slower) variable length keys B-Tree.
  1248 */
  1249 #ifndef SQLITE_OMIT_SUBQUERY
  1250 void sqlite3CodeSubselect(
  1251   Parse *pParse, 
  1252   Expr *pExpr, 
  1253   int rMayHaveNull,
  1254   int isRowid
  1255 ){
  1256   int testAddr = 0;                       /* One-time test address */
  1257   Vdbe *v = sqlite3GetVdbe(pParse);
  1258   if( v==0 ) return;
  1259 
  1260 
  1261   /* This code must be run in its entirety every time it is encountered
  1262   ** if any of the following is true:
  1263   **
  1264   **    *  The right-hand side is a correlated subquery
  1265   **    *  The right-hand side is an expression list containing variables
  1266   **    *  We are inside a trigger
  1267   **
  1268   ** If all of the above are false, then we can run this code just once
  1269   ** save the results, and reuse the same result on subsequent invocations.
  1270   */
  1271   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
  1272     int mem = ++pParse->nMem;
  1273     sqlite3VdbeAddOp1(v, OP_If, mem);
  1274     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
  1275     assert( testAddr>0 || pParse->db->mallocFailed );
  1276   }
  1277 
  1278   switch( pExpr->op ){
  1279     case TK_IN: {
  1280       char affinity;
  1281       KeyInfo keyInfo;
  1282       int addr;        /* Address of OP_OpenEphemeral instruction */
  1283       Expr *pLeft = pExpr->pLeft;
  1284 
  1285       if( rMayHaveNull ){
  1286         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
  1287       }
  1288 
  1289       affinity = sqlite3ExprAffinity(pLeft);
  1290 
  1291       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
  1292       ** expression it is handled the same way. A virtual table is 
  1293       ** filled with single-field index keys representing the results
  1294       ** from the SELECT or the <exprlist>.
  1295       **
  1296       ** If the 'x' expression is a column value, or the SELECT...
  1297       ** statement returns a column value, then the affinity of that
  1298       ** column is used to build the index keys. If both 'x' and the
  1299       ** SELECT... statement are columns, then numeric affinity is used
  1300       ** if either column has NUMERIC or INTEGER affinity. If neither
  1301       ** 'x' nor the SELECT... statement are columns, then numeric affinity
  1302       ** is used.
  1303       */
  1304       pExpr->iTable = pParse->nTab++;
  1305       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
  1306       memset(&keyInfo, 0, sizeof(keyInfo));
  1307       keyInfo.nField = 1;
  1308 
  1309       if( pExpr->pSelect ){
  1310         /* Case 1:     expr IN (SELECT ...)
  1311         **
  1312         ** Generate code to write the results of the select into the temporary
  1313         ** table allocated and opened above.
  1314         */
  1315         SelectDest dest;
  1316         ExprList *pEList;
  1317 
  1318         assert( !isRowid );
  1319         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
  1320         dest.affinity = (int)affinity;
  1321         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
  1322         if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
  1323           return;
  1324         }
  1325         pEList = pExpr->pSelect->pEList;
  1326         if( pEList && pEList->nExpr>0 ){ 
  1327           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
  1328               pEList->a[0].pExpr);
  1329         }
  1330       }else if( pExpr->pList ){
  1331         /* Case 2:     expr IN (exprlist)
  1332         **
  1333         ** For each expression, build an index key from the evaluation and
  1334         ** store it in the temporary table. If <expr> is a column, then use
  1335         ** that columns affinity when building index keys. If <expr> is not
  1336         ** a column, use numeric affinity.
  1337         */
  1338         int i;
  1339         ExprList *pList = pExpr->pList;
  1340         struct ExprList_item *pItem;
  1341         int r1, r2, r3;
  1342 
  1343         if( !affinity ){
  1344           affinity = SQLITE_AFF_NONE;
  1345         }
  1346         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
  1347 
  1348         /* Loop through each expression in <exprlist>. */
  1349         r1 = sqlite3GetTempReg(pParse);
  1350         r2 = sqlite3GetTempReg(pParse);
  1351         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
  1352           Expr *pE2 = pItem->pExpr;
  1353 
  1354           /* If the expression is not constant then we will need to
  1355           ** disable the test that was generated above that makes sure
  1356           ** this code only executes once.  Because for a non-constant
  1357           ** expression we need to rerun this code each time.
  1358           */
  1359           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
  1360             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
  1361             testAddr = 0;
  1362           }
  1363 
  1364           /* Evaluate the expression and insert it into the temp table */
  1365           pParse->disableColCache++;
  1366           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
  1367           assert( pParse->disableColCache>0 );
  1368           pParse->disableColCache--;
  1369 
  1370           if( isRowid ){
  1371             sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
  1372             sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
  1373             sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
  1374           }else{
  1375             sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
  1376             sqlite3ExprCacheAffinityChange(pParse, r3, 1);
  1377             sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
  1378           }
  1379         }
  1380         sqlite3ReleaseTempReg(pParse, r1);
  1381         sqlite3ReleaseTempReg(pParse, r2);
  1382       }
  1383       if( !isRowid ){
  1384         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
  1385       }
  1386       break;
  1387     }
  1388 
  1389     case TK_EXISTS:
  1390     case TK_SELECT: {
  1391       /* This has to be a scalar SELECT.  Generate code to put the
  1392       ** value of this select in a memory cell and record the number
  1393       ** of the memory cell in iColumn.
  1394       */
  1395       static const Token one = { (u8*)"1", 0, 1 };
  1396       Select *pSel;
  1397       SelectDest dest;
  1398 
  1399       pSel = pExpr->pSelect;
  1400       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
  1401       if( pExpr->op==TK_SELECT ){
  1402         dest.eDest = SRT_Mem;
  1403         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
  1404         VdbeComment((v, "Init subquery result"));
  1405       }else{
  1406         dest.eDest = SRT_Exists;
  1407         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
  1408         VdbeComment((v, "Init EXISTS result"));
  1409       }
  1410       sqlite3ExprDelete(pParse->db, pSel->pLimit);
  1411       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
  1412       if( sqlite3Select(pParse, pSel, &dest) ){
  1413         return;
  1414       }
  1415       pExpr->iColumn = dest.iParm;
  1416       break;
  1417     }
  1418   }
  1419 
  1420   if( testAddr ){
  1421     sqlite3VdbeJumpHere(v, testAddr-1);
  1422   }
  1423 
  1424   return;
  1425 }
  1426 #endif /* SQLITE_OMIT_SUBQUERY */
  1427 
  1428 /*
  1429 ** Duplicate an 8-byte value
  1430 */
  1431 static char *dup8bytes(Vdbe *v, const char *in){
  1432   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
  1433   if( out ){
  1434     memcpy(out, in, 8);
  1435   }
  1436   return out;
  1437 }
  1438 
  1439 /*
  1440 ** Generate an instruction that will put the floating point
  1441 ** value described by z[0..n-1] into register iMem.
  1442 **
  1443 ** The z[] string will probably not be zero-terminated.  But the 
  1444 ** z[n] character is guaranteed to be something that does not look
  1445 ** like the continuation of the number.
  1446 */
  1447 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
  1448   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
  1449   if( z ){
  1450     double value;
  1451     char *zV;
  1452     assert( !isdigit(z[n]) );
  1453     sqlite3AtoF(z, &value);
  1454     if( sqlite3IsNaN(value) ){
  1455       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
  1456     }else{
  1457       if( negateFlag ) value = -value;
  1458       zV = dup8bytes(v, (char*)&value);
  1459       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
  1460     }
  1461   }
  1462 }
  1463 
  1464 
  1465 /*
  1466 ** Generate an instruction that will put the integer describe by
  1467 ** text z[0..n-1] into register iMem.
  1468 **
  1469 ** The z[] string will probably not be zero-terminated.  But the 
  1470 ** z[n] character is guaranteed to be something that does not look
  1471 ** like the continuation of the number.
  1472 */
  1473 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
  1474   const char *z;
  1475   if( pExpr->flags & EP_IntValue ){
  1476     int i = pExpr->iTable;
  1477     if( negFlag ) i = -i;
  1478     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  1479   }else if( (z = (char*)pExpr->token.z)!=0 ){
  1480     int i;
  1481     int n = pExpr->token.n;
  1482     assert( !isdigit(z[n]) );
  1483     if( sqlite3GetInt32(z, &i) ){
  1484       if( negFlag ) i = -i;
  1485       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  1486     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
  1487       i64 value;
  1488       char *zV;
  1489       sqlite3Atoi64(z, &value);
  1490       if( negFlag ) value = -value;
  1491       zV = dup8bytes(v, (char*)&value);
  1492       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
  1493     }else{
  1494       codeReal(v, z, n, negFlag, iMem);
  1495     }
  1496   }
  1497 }
  1498 
  1499 
  1500 /*
  1501 ** Generate code that will extract the iColumn-th column from
  1502 ** table pTab and store the column value in a register.  An effort
  1503 ** is made to store the column value in register iReg, but this is
  1504 ** not guaranteed.  The location of the column value is returned.
  1505 **
  1506 ** There must be an open cursor to pTab in iTable when this routine
  1507 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
  1508 **
  1509 ** This routine might attempt to reuse the value of the column that
  1510 ** has already been loaded into a register.  The value will always
  1511 ** be used if it has not undergone any affinity changes.  But if
  1512 ** an affinity change has occurred, then the cached value will only be
  1513 ** used if allowAffChng is true.
  1514 */
  1515 int sqlite3ExprCodeGetColumn(
  1516   Parse *pParse,   /* Parsing and code generating context */
  1517   Table *pTab,     /* Description of the table we are reading from */
  1518   int iColumn,     /* Index of the table column */
  1519   int iTable,      /* The cursor pointing to the table */
  1520   int iReg,        /* Store results here */
  1521   int allowAffChng /* True if prior affinity changes are OK */
  1522 ){
  1523   Vdbe *v = pParse->pVdbe;
  1524   int i;
  1525   struct yColCache *p;
  1526 
  1527   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
  1528     if( p->iTable==iTable && p->iColumn==iColumn
  1529            && (!p->affChange || allowAffChng) ){
  1530 #if 0
  1531       sqlite3VdbeAddOp0(v, OP_Noop);
  1532       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
  1533 #endif
  1534       return p->iReg;
  1535     }
  1536   }  
  1537   assert( v!=0 );
  1538   if( iColumn<0 ){
  1539     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
  1540     sqlite3VdbeAddOp2(v, op, iTable, iReg);
  1541   }else if( pTab==0 ){
  1542     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
  1543   }else{
  1544     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
  1545     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
  1546     sqlite3ColumnDefault(v, pTab, iColumn);
  1547 #ifndef SQLITE_OMIT_FLOATING_POINT
  1548     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
  1549       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
  1550     }
  1551 #endif
  1552   }
  1553   if( pParse->disableColCache==0 ){
  1554     i = pParse->iColCache;
  1555     p = &pParse->aColCache[i];
  1556     p->iTable = iTable;
  1557     p->iColumn = iColumn;
  1558     p->iReg = iReg;
  1559     p->affChange = 0;
  1560     i++;
  1561     if( i>=ArraySize(pParse->aColCache) ) i = 0;
  1562     if( i>pParse->nColCache ) pParse->nColCache = i;
  1563     pParse->iColCache = i;
  1564   }
  1565   return iReg;
  1566 }
  1567 
  1568 /*
  1569 ** Clear all column cache entries associated with the vdbe
  1570 ** cursor with cursor number iTable.
  1571 */
  1572 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
  1573   if( iTable<0 ){
  1574     pParse->nColCache = 0;
  1575     pParse->iColCache = 0;
  1576   }else{
  1577     int i;
  1578     for(i=0; i<pParse->nColCache; i++){
  1579       if( pParse->aColCache[i].iTable==iTable ){
  1580         testcase( i==pParse->nColCache-1 );
  1581         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
  1582         pParse->iColCache = pParse->nColCache;
  1583       }
  1584     }
  1585   }
  1586 }
  1587 
  1588 /*
  1589 ** Record the fact that an affinity change has occurred on iCount
  1590 ** registers starting with iStart.
  1591 */
  1592 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
  1593   int iEnd = iStart + iCount - 1;
  1594   int i;
  1595   for(i=0; i<pParse->nColCache; i++){
  1596     int r = pParse->aColCache[i].iReg;
  1597     if( r>=iStart && r<=iEnd ){
  1598       pParse->aColCache[i].affChange = 1;
  1599     }
  1600   }
  1601 }
  1602 
  1603 /*
  1604 ** Generate code to move content from registers iFrom...iFrom+nReg-1
  1605 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
  1606 */
  1607 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
  1608   int i;
  1609   if( iFrom==iTo ) return;
  1610   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
  1611   for(i=0; i<pParse->nColCache; i++){
  1612     int x = pParse->aColCache[i].iReg;
  1613     if( x>=iFrom && x<iFrom+nReg ){
  1614       pParse->aColCache[i].iReg += iTo-iFrom;
  1615     }
  1616   }
  1617 }
  1618 
  1619 /*
  1620 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
  1621 ** over to iTo..iTo+nReg-1.
  1622 */
  1623 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
  1624   int i;
  1625   if( iFrom==iTo ) return;
  1626   for(i=0; i<nReg; i++){
  1627     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
  1628   }
  1629 }
  1630 
  1631 /*
  1632 ** Return true if any register in the range iFrom..iTo (inclusive)
  1633 ** is used as part of the column cache.
  1634 */
  1635 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
  1636   int i;
  1637   for(i=0; i<pParse->nColCache; i++){
  1638     int r = pParse->aColCache[i].iReg;
  1639     if( r>=iFrom && r<=iTo ) return 1;
  1640   }
  1641   return 0;
  1642 }
  1643 
  1644 /*
  1645 ** Theres is a value in register iCurrent.  We ultimately want
  1646 ** the value to be in register iTarget.  It might be that
  1647 ** iCurrent and iTarget are the same register.
  1648 **
  1649 ** We are going to modify the value, so we need to make sure it
  1650 ** is not a cached register.  If iCurrent is a cached register,
  1651 ** then try to move the value over to iTarget.  If iTarget is a
  1652 ** cached register, then clear the corresponding cache line.
  1653 **
  1654 ** Return the register that the value ends up in.
  1655 */
  1656 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
  1657   int i;
  1658   assert( pParse->pVdbe!=0 );
  1659   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
  1660     return iCurrent;
  1661   }
  1662   if( iCurrent!=iTarget ){
  1663     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
  1664   }
  1665   for(i=0; i<pParse->nColCache; i++){
  1666     if( pParse->aColCache[i].iReg==iTarget ){
  1667       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
  1668       pParse->iColCache = pParse->nColCache;
  1669     }
  1670   }
  1671   return iTarget;
  1672 }
  1673 
  1674 /*
  1675 ** If the last instruction coded is an ephemeral copy of any of
  1676 ** the registers in the nReg registers beginning with iReg, then
  1677 ** convert the last instruction from OP_SCopy to OP_Copy.
  1678 */
  1679 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
  1680   int addr;
  1681   VdbeOp *pOp;
  1682   Vdbe *v;
  1683 
  1684   v = pParse->pVdbe;
  1685   addr = sqlite3VdbeCurrentAddr(v);
  1686   pOp = sqlite3VdbeGetOp(v, addr-1);
  1687   assert( pOp || pParse->db->mallocFailed );
  1688   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
  1689     pOp->opcode = OP_Copy;
  1690   }
  1691 }
  1692 
  1693 /*
  1694 ** Generate code to store the value of the iAlias-th alias in register
  1695 ** target.  The first time this is called, pExpr is evaluated to compute
  1696 ** the value of the alias.  The value is stored in an auxiliary register
  1697 ** and the number of that register is returned.  On subsequent calls,
  1698 ** the register number is returned without generating any code.
  1699 **
  1700 ** Note that in order for this to work, code must be generated in the
  1701 ** same order that it is executed.
  1702 **
  1703 ** Aliases are numbered starting with 1.  So iAlias is in the range
  1704 ** of 1 to pParse->nAlias inclusive.  
  1705 **
  1706 ** pParse->aAlias[iAlias-1] records the register number where the value
  1707 ** of the iAlias-th alias is stored.  If zero, that means that the
  1708 ** alias has not yet been computed.
  1709 */
  1710 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr){
  1711   sqlite3 *db = pParse->db;
  1712   int iReg;
  1713   if( pParse->aAlias==0 ){
  1714     pParse->aAlias = sqlite3DbMallocZero(db, 
  1715                                  sizeof(pParse->aAlias[0])*pParse->nAlias );
  1716     if( db->mallocFailed ) return 0;
  1717   }
  1718   assert( iAlias>0 && iAlias<=pParse->nAlias );
  1719   iReg = pParse->aAlias[iAlias-1];
  1720   if( iReg==0 ){
  1721     iReg = ++pParse->nMem;
  1722     sqlite3ExprCode(pParse, pExpr, iReg);
  1723     pParse->aAlias[iAlias-1] = iReg;
  1724   }
  1725   return iReg;
  1726 }
  1727 
  1728 /*
  1729 ** Generate code into the current Vdbe to evaluate the given
  1730 ** expression.  Attempt to store the results in register "target".
  1731 ** Return the register where results are stored.
  1732 **
  1733 ** With this routine, there is no guarantee that results will
  1734 ** be stored in target.  The result might be stored in some other
  1735 ** register if it is convenient to do so.  The calling function
  1736 ** must check the return code and move the results to the desired
  1737 ** register.
  1738 */
  1739 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
  1740   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
  1741   int op;                   /* The opcode being coded */
  1742   int inReg = target;       /* Results stored in register inReg */
  1743   int regFree1 = 0;         /* If non-zero free this temporary register */
  1744   int regFree2 = 0;         /* If non-zero free this temporary register */
  1745   int r1, r2, r3, r4;       /* Various register numbers */
  1746   sqlite3 *db;
  1747 
  1748   db = pParse->db;
  1749   assert( v!=0 || db->mallocFailed );
  1750   assert( target>0 && target<=pParse->nMem );
  1751   if( v==0 ) return 0;
  1752 
  1753   if( pExpr==0 ){
  1754     op = TK_NULL;
  1755   }else{
  1756     op = pExpr->op;
  1757   }
  1758   switch( op ){
  1759     case TK_AGG_COLUMN: {
  1760       AggInfo *pAggInfo = pExpr->pAggInfo;
  1761       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
  1762       if( !pAggInfo->directMode ){
  1763         assert( pCol->iMem>0 );
  1764         inReg = pCol->iMem;
  1765         break;
  1766       }else if( pAggInfo->useSortingIdx ){
  1767         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
  1768                               pCol->iSorterColumn, target);
  1769         break;
  1770       }
  1771       /* Otherwise, fall thru into the TK_COLUMN case */
  1772     }
  1773     case TK_COLUMN: {
  1774       if( pExpr->iTable<0 ){
  1775         /* This only happens when coding check constraints */
  1776         assert( pParse->ckBase>0 );
  1777         inReg = pExpr->iColumn + pParse->ckBase;
  1778       }else{
  1779         testcase( (pExpr->flags & EP_AnyAff)!=0 );
  1780         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
  1781                                  pExpr->iColumn, pExpr->iTable, target,
  1782                                  pExpr->flags & EP_AnyAff);
  1783       }
  1784       break;
  1785     }
  1786     case TK_INTEGER: {
  1787       codeInteger(v, pExpr, 0, target);
  1788       break;
  1789     }
  1790     case TK_FLOAT: {
  1791       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
  1792       break;
  1793     }
  1794     case TK_STRING: {
  1795       sqlite3DequoteExpr(db, pExpr);
  1796       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
  1797                         (char*)pExpr->token.z, pExpr->token.n);
  1798       break;
  1799     }
  1800     case TK_NULL: {
  1801       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
  1802       break;
  1803     }
  1804 #ifndef SQLITE_OMIT_BLOB_LITERAL
  1805     case TK_BLOB: {
  1806       int n;
  1807       const char *z;
  1808       char *zBlob;
  1809       assert( pExpr->token.n>=3 );
  1810       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
  1811       assert( pExpr->token.z[1]=='\'' );
  1812       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
  1813       n = pExpr->token.n - 3;
  1814       z = (char*)pExpr->token.z + 2;
  1815       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
  1816       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
  1817       break;
  1818     }
  1819 #endif
  1820     case TK_VARIABLE: {
  1821       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
  1822       if( pExpr->token.n>1 ){
  1823         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
  1824       }
  1825       break;
  1826     }
  1827     case TK_REGISTER: {
  1828       inReg = pExpr->iTable;
  1829       break;
  1830     }
  1831     case TK_AS: {
  1832       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft);
  1833       break;
  1834     }
  1835 #ifndef SQLITE_OMIT_CAST
  1836     case TK_CAST: {
  1837       /* Expressions of the form:   CAST(pLeft AS token) */
  1838       int aff, to_op;
  1839       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  1840       aff = sqlite3AffinityType(&pExpr->token);
  1841       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
  1842       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
  1843       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
  1844       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
  1845       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
  1846       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
  1847       testcase( to_op==OP_ToText );
  1848       testcase( to_op==OP_ToBlob );
  1849       testcase( to_op==OP_ToNumeric );
  1850       testcase( to_op==OP_ToInt );
  1851       testcase( to_op==OP_ToReal );
  1852       sqlite3VdbeAddOp1(v, to_op, inReg);
  1853       testcase( usedAsColumnCache(pParse, inReg, inReg) );
  1854       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
  1855       break;
  1856     }
  1857 #endif /* SQLITE_OMIT_CAST */
  1858     case TK_LT:
  1859     case TK_LE:
  1860     case TK_GT:
  1861     case TK_GE:
  1862     case TK_NE:
  1863     case TK_EQ: {
  1864       assert( TK_LT==OP_Lt );
  1865       assert( TK_LE==OP_Le );
  1866       assert( TK_GT==OP_Gt );
  1867       assert( TK_GE==OP_Ge );
  1868       assert( TK_EQ==OP_Eq );
  1869       assert( TK_NE==OP_Ne );
  1870       testcase( op==TK_LT );
  1871       testcase( op==TK_LE );
  1872       testcase( op==TK_GT );
  1873       testcase( op==TK_GE );
  1874       testcase( op==TK_EQ );
  1875       testcase( op==TK_NE );
  1876       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  1877                                   pExpr->pRight, &r2, &regFree2);
  1878       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  1879                   r1, r2, inReg, SQLITE_STOREP2);
  1880       testcase( regFree1==0 );
  1881       testcase( regFree2==0 );
  1882       break;
  1883     }
  1884     case TK_AND:
  1885     case TK_OR:
  1886     case TK_PLUS:
  1887     case TK_STAR:
  1888     case TK_MINUS:
  1889     case TK_REM:
  1890     case TK_BITAND:
  1891     case TK_BITOR:
  1892     case TK_SLASH:
  1893     case TK_LSHIFT:
  1894     case TK_RSHIFT: 
  1895     case TK_CONCAT: {
  1896       assert( TK_AND==OP_And );
  1897       assert( TK_OR==OP_Or );
  1898       assert( TK_PLUS==OP_Add );
  1899       assert( TK_MINUS==OP_Subtract );
  1900       assert( TK_REM==OP_Remainder );
  1901       assert( TK_BITAND==OP_BitAnd );
  1902       assert( TK_BITOR==OP_BitOr );
  1903       assert( TK_SLASH==OP_Divide );
  1904       assert( TK_LSHIFT==OP_ShiftLeft );
  1905       assert( TK_RSHIFT==OP_ShiftRight );
  1906       assert( TK_CONCAT==OP_Concat );
  1907       testcase( op==TK_AND );
  1908       testcase( op==TK_OR );
  1909       testcase( op==TK_PLUS );
  1910       testcase( op==TK_MINUS );
  1911       testcase( op==TK_REM );
  1912       testcase( op==TK_BITAND );
  1913       testcase( op==TK_BITOR );
  1914       testcase( op==TK_SLASH );
  1915       testcase( op==TK_LSHIFT );
  1916       testcase( op==TK_RSHIFT );
  1917       testcase( op==TK_CONCAT );
  1918       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  1919       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
  1920       sqlite3VdbeAddOp3(v, op, r2, r1, target);
  1921       testcase( regFree1==0 );
  1922       testcase( regFree2==0 );
  1923       break;
  1924     }
  1925     case TK_UMINUS: {
  1926       Expr *pLeft = pExpr->pLeft;
  1927       assert( pLeft );
  1928       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
  1929         if( pLeft->op==TK_FLOAT ){
  1930           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
  1931         }else{
  1932           codeInteger(v, pLeft, 1, target);
  1933         }
  1934       }else{
  1935         regFree1 = r1 = sqlite3GetTempReg(pParse);
  1936         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
  1937         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
  1938         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
  1939         testcase( regFree2==0 );
  1940       }
  1941       inReg = target;
  1942       break;
  1943     }
  1944     case TK_BITNOT:
  1945     case TK_NOT: {
  1946       assert( TK_BITNOT==OP_BitNot );
  1947       assert( TK_NOT==OP_Not );
  1948       testcase( op==TK_BITNOT );
  1949       testcase( op==TK_NOT );
  1950       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  1951       testcase( inReg==target );
  1952       testcase( usedAsColumnCache(pParse, inReg, inReg) );
  1953       inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
  1954       sqlite3VdbeAddOp1(v, op, inReg);
  1955       break;
  1956     }
  1957     case TK_ISNULL:
  1958     case TK_NOTNULL: {
  1959       int addr;
  1960       assert( TK_ISNULL==OP_IsNull );
  1961       assert( TK_NOTNULL==OP_NotNull );
  1962       testcase( op==TK_ISNULL );
  1963       testcase( op==TK_NOTNULL );
  1964       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  1965       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  1966       testcase( regFree1==0 );
  1967       addr = sqlite3VdbeAddOp1(v, op, r1);
  1968       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
  1969       sqlite3VdbeJumpHere(v, addr);
  1970       break;
  1971     }
  1972     case TK_AGG_FUNCTION: {
  1973       AggInfo *pInfo = pExpr->pAggInfo;
  1974       if( pInfo==0 ){
  1975         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
  1976             &pExpr->span);
  1977       }else{
  1978         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
  1979       }
  1980       break;
  1981     }
  1982     case TK_CONST_FUNC:
  1983     case TK_FUNCTION: {
  1984       ExprList *pList = pExpr->pList;
  1985       int nExpr = pList ? pList->nExpr : 0;
  1986       FuncDef *pDef;
  1987       int nId;
  1988       const char *zId;
  1989       int constMask = 0;
  1990       int i;
  1991       u8 enc = ENC(db);
  1992       CollSeq *pColl = 0;
  1993 
  1994       testcase( op==TK_CONST_FUNC );
  1995       testcase( op==TK_FUNCTION );
  1996       zId = (char*)pExpr->token.z;
  1997       nId = pExpr->token.n;
  1998       pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
  1999       assert( pDef!=0 );
  2000       if( pList ){
  2001         nExpr = pList->nExpr;
  2002         r1 = sqlite3GetTempRange(pParse, nExpr);
  2003         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
  2004       }else{
  2005         nExpr = r1 = 0;
  2006       }
  2007 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2008       /* Possibly overload the function if the first argument is
  2009       ** a virtual table column.
  2010       **
  2011       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
  2012       ** second argument, not the first, as the argument to test to
  2013       ** see if it is a column in a virtual table.  This is done because
  2014       ** the left operand of infix functions (the operand we want to
  2015       ** control overloading) ends up as the second argument to the
  2016       ** function.  The expression "A glob B" is equivalent to 
  2017       ** "glob(B,A).  We want to use the A in "A glob B" to test
  2018       ** for function overloading.  But we use the B term in "glob(B,A)".
  2019       */
  2020       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
  2021         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
  2022       }else if( nExpr>0 ){
  2023         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
  2024       }
  2025 #endif
  2026       for(i=0; i<nExpr && i<32; i++){
  2027         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
  2028           constMask |= (1<<i);
  2029         }
  2030         if( pDef->needCollSeq && !pColl ){
  2031           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
  2032         }
  2033       }
  2034       if( pDef->needCollSeq ){
  2035         if( !pColl ) pColl = db->pDfltColl; 
  2036         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
  2037       }
  2038       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
  2039                         (char*)pDef, P4_FUNCDEF);
  2040       sqlite3VdbeChangeP5(v, nExpr);
  2041       if( nExpr ){
  2042         sqlite3ReleaseTempRange(pParse, r1, nExpr);
  2043       }
  2044       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
  2045       break;
  2046     }
  2047 #ifndef SQLITE_OMIT_SUBQUERY
  2048     case TK_EXISTS:
  2049     case TK_SELECT: {
  2050       testcase( op==TK_EXISTS );
  2051       testcase( op==TK_SELECT );
  2052       if( pExpr->iColumn==0 ){
  2053         sqlite3CodeSubselect(pParse, pExpr, 0, 0);
  2054       }
  2055       inReg = pExpr->iColumn;
  2056       break;
  2057     }
  2058     case TK_IN: {
  2059       int rNotFound = 0;
  2060       int rMayHaveNull = 0;
  2061       int j2, j3, j4, j5;
  2062       char affinity;
  2063       int eType;
  2064 
  2065       VdbeNoopComment((v, "begin IN expr r%d", target));
  2066       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
  2067       if( rMayHaveNull ){
  2068         rNotFound = ++pParse->nMem;
  2069       }
  2070 
  2071       /* Figure out the affinity to use to create a key from the results
  2072       ** of the expression. affinityStr stores a static string suitable for
  2073       ** P4 of OP_MakeRecord.
  2074       */
  2075       affinity = comparisonAffinity(pExpr);
  2076 
  2077 
  2078       /* Code the <expr> from "<expr> IN (...)". The temporary table
  2079       ** pExpr->iTable contains the values that make up the (...) set.
  2080       */
  2081       pParse->disableColCache++;
  2082       sqlite3ExprCode(pParse, pExpr->pLeft, target);
  2083       pParse->disableColCache--;
  2084       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
  2085       if( eType==IN_INDEX_ROWID ){
  2086         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
  2087         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
  2088         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2089         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
  2090         sqlite3VdbeJumpHere(v, j3);
  2091         sqlite3VdbeJumpHere(v, j4);
  2092         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
  2093       }else{
  2094         r2 = regFree2 = sqlite3GetTempReg(pParse);
  2095 
  2096         /* Create a record and test for set membership. If the set contains
  2097         ** the value, then jump to the end of the test code. The target
  2098         ** register still contains the true (1) value written to it earlier.
  2099         */
  2100         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
  2101         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2102         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
  2103 
  2104         /* If the set membership test fails, then the result of the 
  2105         ** "x IN (...)" expression must be either 0 or NULL. If the set
  2106         ** contains no NULL values, then the result is 0. If the set 
  2107         ** contains one or more NULL values, then the result of the
  2108         ** expression is also NULL.
  2109         */
  2110         if( rNotFound==0 ){
  2111           /* This branch runs if it is known at compile time (now) that 
  2112           ** the set contains no NULL values. This happens as the result
  2113           ** of a "NOT NULL" constraint in the database schema. No need
  2114           ** to test the data structure at runtime in this case.
  2115           */
  2116           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
  2117         }else{
  2118           /* This block populates the rNotFound register with either NULL
  2119           ** or 0 (an integer value). If the data structure contains one
  2120           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
  2121           ** to 0. If register rMayHaveNull is already set to some value
  2122           ** other than NULL, then the test has already been run and 
  2123           ** rNotFound is already populated.
  2124           */
  2125           static const char nullRecord[] = { 0x02, 0x00 };
  2126           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
  2127           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
  2128           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
  2129                              nullRecord, P4_STATIC);
  2130           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
  2131           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
  2132           sqlite3VdbeJumpHere(v, j4);
  2133           sqlite3VdbeJumpHere(v, j3);
  2134 
  2135           /* Copy the value of register rNotFound (which is either NULL or 0)
  2136           ** into the target register. This will be the result of the
  2137           ** expression.
  2138           */
  2139           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
  2140         }
  2141       }
  2142       sqlite3VdbeJumpHere(v, j2);
  2143       sqlite3VdbeJumpHere(v, j5);
  2144       VdbeComment((v, "end IN expr r%d", target));
  2145       break;
  2146     }
  2147 #endif
  2148     /*
  2149     **    x BETWEEN y AND z
  2150     **
  2151     ** This is equivalent to
  2152     **
  2153     **    x>=y AND x<=z
  2154     **
  2155     ** X is stored in pExpr->pLeft.
  2156     ** Y is stored in pExpr->pList->a[0].pExpr.
  2157     ** Z is stored in pExpr->pList->a[1].pExpr.
  2158     */
  2159     case TK_BETWEEN: {
  2160       Expr *pLeft = pExpr->pLeft;
  2161       struct ExprList_item *pLItem = pExpr->pList->a;
  2162       Expr *pRight = pLItem->pExpr;
  2163 
  2164       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
  2165                                   pRight, &r2, &regFree2);
  2166       testcase( regFree1==0 );
  2167       testcase( regFree2==0 );
  2168       r3 = sqlite3GetTempReg(pParse);
  2169       r4 = sqlite3GetTempReg(pParse);
  2170       codeCompare(pParse, pLeft, pRight, OP_Ge,
  2171                   r1, r2, r3, SQLITE_STOREP2);
  2172       pLItem++;
  2173       pRight = pLItem->pExpr;
  2174       sqlite3ReleaseTempReg(pParse, regFree2);
  2175       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
  2176       testcase( regFree2==0 );
  2177       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
  2178       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
  2179       sqlite3ReleaseTempReg(pParse, r3);
  2180       sqlite3ReleaseTempReg(pParse, r4);
  2181       break;
  2182     }
  2183     case TK_UPLUS: {
  2184       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  2185       break;
  2186     }
  2187 
  2188     /*
  2189     ** Form A:
  2190     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
  2191     **
  2192     ** Form B:
  2193     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
  2194     **
  2195     ** Form A is can be transformed into the equivalent form B as follows:
  2196     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
  2197     **        WHEN x=eN THEN rN ELSE y END
  2198     **
  2199     ** X (if it exists) is in pExpr->pLeft.
  2200     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
  2201     ** ELSE clause and no other term matches, then the result of the
  2202     ** exprssion is NULL.
  2203     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
  2204     **
  2205     ** The result of the expression is the Ri for the first matching Ei,
  2206     ** or if there is no matching Ei, the ELSE term Y, or if there is
  2207     ** no ELSE term, NULL.
  2208     */
  2209     case TK_CASE: {
  2210       int endLabel;                     /* GOTO label for end of CASE stmt */
  2211       int nextCase;                     /* GOTO label for next WHEN clause */
  2212       int nExpr;                        /* 2x number of WHEN terms */
  2213       int i;                            /* Loop counter */
  2214       ExprList *pEList;                 /* List of WHEN terms */
  2215       struct ExprList_item *aListelem;  /* Array of WHEN terms */
  2216       Expr opCompare;                   /* The X==Ei expression */
  2217       Expr cacheX;                      /* Cached expression X */
  2218       Expr *pX;                         /* The X expression */
  2219       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
  2220 
  2221       assert(pExpr->pList);
  2222       assert((pExpr->pList->nExpr % 2) == 0);
  2223       assert(pExpr->pList->nExpr > 0);
  2224       pEList = pExpr->pList;
  2225       aListelem = pEList->a;
  2226       nExpr = pEList->nExpr;
  2227       endLabel = sqlite3VdbeMakeLabel(v);
  2228       if( (pX = pExpr->pLeft)!=0 ){
  2229         cacheX = *pX;
  2230         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
  2231         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
  2232         testcase( regFree1==0 );
  2233         cacheX.op = TK_REGISTER;
  2234         opCompare.op = TK_EQ;
  2235         opCompare.pLeft = &cacheX;
  2236         pTest = &opCompare;
  2237       }
  2238       pParse->disableColCache++;
  2239       for(i=0; i<nExpr; i=i+2){
  2240         if( pX ){
  2241           opCompare.pRight = aListelem[i].pExpr;
  2242         }else{
  2243           pTest = aListelem[i].pExpr;
  2244         }
  2245         nextCase = sqlite3VdbeMakeLabel(v);
  2246         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
  2247         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
  2248         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
  2249         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
  2250         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
  2251         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
  2252         sqlite3VdbeResolveLabel(v, nextCase);
  2253       }
  2254       if( pExpr->pRight ){
  2255         sqlite3ExprCode(pParse, pExpr->pRight, target);
  2256       }else{
  2257         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
  2258       }
  2259       sqlite3VdbeResolveLabel(v, endLabel);
  2260       assert( pParse->disableColCache>0 );
  2261       pParse->disableColCache--;
  2262       break;
  2263     }
  2264 #ifndef SQLITE_OMIT_TRIGGER
  2265     case TK_RAISE: {
  2266       if( !pParse->trigStack ){
  2267         sqlite3ErrorMsg(pParse,
  2268                        "RAISE() may only be used within a trigger-program");
  2269         return 0;
  2270       }
  2271       if( pExpr->iColumn!=OE_Ignore ){
  2272          assert( pExpr->iColumn==OE_Rollback ||
  2273                  pExpr->iColumn == OE_Abort ||
  2274                  pExpr->iColumn == OE_Fail );
  2275          sqlite3DequoteExpr(db, pExpr);
  2276          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
  2277                         (char*)pExpr->token.z, pExpr->token.n);
  2278       } else {
  2279          assert( pExpr->iColumn == OE_Ignore );
  2280          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
  2281          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
  2282          VdbeComment((v, "raise(IGNORE)"));
  2283       }
  2284       break;
  2285     }
  2286 #endif
  2287   }
  2288   sqlite3ReleaseTempReg(pParse, regFree1);
  2289   sqlite3ReleaseTempReg(pParse, regFree2);
  2290   return inReg;
  2291 }
  2292 
  2293 /*
  2294 ** Generate code to evaluate an expression and store the results
  2295 ** into a register.  Return the register number where the results
  2296 ** are stored.
  2297 **
  2298 ** If the register is a temporary register that can be deallocated,
  2299 ** then write its number into *pReg.  If the result register is not
  2300 ** a temporary, then set *pReg to zero.
  2301 */
  2302 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
  2303   int r1 = sqlite3GetTempReg(pParse);
  2304   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
  2305   if( r2==r1 ){
  2306     *pReg = r1;
  2307   }else{
  2308     sqlite3ReleaseTempReg(pParse, r1);
  2309     *pReg = 0;
  2310   }
  2311   return r2;
  2312 }
  2313 
  2314 /*
  2315 ** Generate code that will evaluate expression pExpr and store the
  2316 ** results in register target.  The results are guaranteed to appear
  2317 ** in register target.
  2318 */
  2319 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
  2320   int inReg;
  2321 
  2322   assert( target>0 && target<=pParse->nMem );
  2323   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
  2324   assert( pParse->pVdbe || pParse->db->mallocFailed );
  2325   if( inReg!=target && pParse->pVdbe ){
  2326     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
  2327   }
  2328   return target;
  2329 }
  2330 
  2331 /*
  2332 ** Generate code that evalutes the given expression and puts the result
  2333 ** in register target.
  2334 **
  2335 ** Also make a copy of the expression results into another "cache" register
  2336 ** and modify the expression so that the next time it is evaluated,
  2337 ** the result is a copy of the cache register.
  2338 **
  2339 ** This routine is used for expressions that are used multiple 
  2340 ** times.  They are evaluated once and the results of the expression
  2341 ** are reused.
  2342 */
  2343 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
  2344   Vdbe *v = pParse->pVdbe;
  2345   int inReg;
  2346   inReg = sqlite3ExprCode(pParse, pExpr, target);
  2347   assert( target>0 );
  2348   if( pExpr->op!=TK_REGISTER ){  
  2349     int iMem;
  2350     iMem = ++pParse->nMem;
  2351     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
  2352     pExpr->iTable = iMem;
  2353     pExpr->op = TK_REGISTER;
  2354   }
  2355   return inReg;
  2356 }
  2357 
  2358 /*
  2359 ** Return TRUE if pExpr is an constant expression that is appropriate
  2360 ** for factoring out of a loop.  Appropriate expressions are:
  2361 **
  2362 **    *  Any expression that evaluates to two or more opcodes.
  2363 **
  2364 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
  2365 **       or OP_Variable that does not need to be placed in a 
  2366 **       specific register.
  2367 **
  2368 ** There is no point in factoring out single-instruction constant
  2369 ** expressions that need to be placed in a particular register.  
  2370 ** We could factor them out, but then we would end up adding an
  2371 ** OP_SCopy instruction to move the value into the correct register
  2372 ** later.  We might as well just use the original instruction and
  2373 ** avoid the OP_SCopy.
  2374 */
  2375 static int isAppropriateForFactoring(Expr *p){
  2376   if( !sqlite3ExprIsConstantNotJoin(p) ){
  2377     return 0;  /* Only constant expressions are appropriate for factoring */
  2378   }
  2379   if( (p->flags & EP_FixedDest)==0 ){
  2380     return 1;  /* Any constant without a fixed destination is appropriate */
  2381   }
  2382   while( p->op==TK_UPLUS ) p = p->pLeft;
  2383   switch( p->op ){
  2384 #ifndef SQLITE_OMIT_BLOB_LITERAL
  2385     case TK_BLOB:
  2386 #endif
  2387     case TK_VARIABLE:
  2388     case TK_INTEGER:
  2389     case TK_FLOAT:
  2390     case TK_NULL:
  2391     case TK_STRING: {
  2392       testcase( p->op==TK_BLOB );
  2393       testcase( p->op==TK_VARIABLE );
  2394       testcase( p->op==TK_INTEGER );
  2395       testcase( p->op==TK_FLOAT );
  2396       testcase( p->op==TK_NULL );
  2397       testcase( p->op==TK_STRING );
  2398       /* Single-instruction constants with a fixed destination are
  2399       ** better done in-line.  If we factor them, they will just end
  2400       ** up generating an OP_SCopy to move the value to the destination
  2401       ** register. */
  2402       return 0;
  2403     }
  2404     case TK_UMINUS: {
  2405        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
  2406          return 0;
  2407        }
  2408        break;
  2409     }
  2410     default: {
  2411       break;
  2412     }
  2413   }
  2414   return 1;
  2415 }
  2416 
  2417 /*
  2418 ** If pExpr is a constant expression that is appropriate for
  2419 ** factoring out of a loop, then evaluate the expression
  2420 ** into a register and convert the expression into a TK_REGISTER
  2421 ** expression.
  2422 */
  2423 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
  2424   Parse *pParse = pWalker->pParse;
  2425   switch( pExpr->op ){
  2426     case TK_REGISTER: {
  2427       return 1;
  2428     }
  2429     case TK_FUNCTION:
  2430     case TK_AGG_FUNCTION:
  2431     case TK_CONST_FUNC: {
  2432       /* The arguments to a function have a fixed destination.
  2433       ** Mark them this way to avoid generated unneeded OP_SCopy
  2434       ** instructions. 
  2435       */
  2436       ExprList *pList = pExpr->pList;
  2437       if( pList ){
  2438         int i = pList->nExpr;
  2439         struct ExprList_item *pItem = pList->a;
  2440         for(; i>0; i--, pItem++){
  2441           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
  2442         }
  2443       }
  2444       break;
  2445     }
  2446   }
  2447   if( isAppropriateForFactoring(pExpr) ){
  2448     int r1 = ++pParse->nMem;
  2449     int r2;
  2450     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
  2451     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
  2452     pExpr->op = TK_REGISTER;
  2453     pExpr->iTable = r2;
  2454     return WRC_Prune;
  2455   }
  2456   return WRC_Continue;
  2457 }
  2458 
  2459 /*
  2460 ** Preevaluate constant subexpressions within pExpr and store the
  2461 ** results in registers.  Modify pExpr so that the constant subexpresions
  2462 ** are TK_REGISTER opcodes that refer to the precomputed values.
  2463 */
  2464 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
  2465   Walker w;
  2466   w.xExprCallback = evalConstExpr;
  2467   w.xSelectCallback = 0;
  2468   w.pParse = pParse;
  2469   sqlite3WalkExpr(&w, pExpr);
  2470 }
  2471 
  2472 
  2473 /*
  2474 ** Generate code that pushes the value of every element of the given
  2475 ** expression list into a sequence of registers beginning at target.
  2476 **
  2477 ** Return the number of elements evaluated.
  2478 */
  2479 int sqlite3ExprCodeExprList(
  2480   Parse *pParse,     /* Parsing context */
  2481   ExprList *pList,   /* The expression list to be coded */
  2482   int target,        /* Where to write results */
  2483   int doHardCopy     /* Make a hard copy of every element */
  2484 ){
  2485   struct ExprList_item *pItem;
  2486   int i, n;
  2487   assert( pList!=0 );
  2488   assert( target>0 );
  2489   n = pList->nExpr;
  2490   for(pItem=pList->a, i=0; i<n; i++, pItem++){
  2491     if( pItem->iAlias ){
  2492       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr);
  2493       Vdbe *v = sqlite3GetVdbe(pParse);
  2494       sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
  2495     }else{
  2496       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
  2497     }
  2498     if( doHardCopy ){
  2499       sqlite3ExprHardCopy(pParse, target, n);
  2500     }
  2501   }
  2502   return n;
  2503 }
  2504 
  2505 /*
  2506 ** Generate code for a boolean expression such that a jump is made
  2507 ** to the label "dest" if the expression is true but execution
  2508 ** continues straight thru if the expression is false.
  2509 **
  2510 ** If the expression evaluates to NULL (neither true nor false), then
  2511 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
  2512 **
  2513 ** This code depends on the fact that certain token values (ex: TK_EQ)
  2514 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
  2515 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
  2516 ** the make process cause these values to align.  Assert()s in the code
  2517 ** below verify that the numbers are aligned correctly.
  2518 */
  2519 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  2520   Vdbe *v = pParse->pVdbe;
  2521   int op = 0;
  2522   int regFree1 = 0;
  2523   int regFree2 = 0;
  2524   int r1, r2;
  2525 
  2526   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  2527   if( v==0 || pExpr==0 ) return;
  2528   op = pExpr->op;
  2529   switch( op ){
  2530     case TK_AND: {
  2531       int d2 = sqlite3VdbeMakeLabel(v);
  2532       testcase( jumpIfNull==0 );
  2533       testcase( pParse->disableColCache==0 );
  2534       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
  2535       pParse->disableColCache++;
  2536       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
  2537       assert( pParse->disableColCache>0 );
  2538       pParse->disableColCache--;
  2539       sqlite3VdbeResolveLabel(v, d2);
  2540       break;
  2541     }
  2542     case TK_OR: {
  2543       testcase( jumpIfNull==0 );
  2544       testcase( pParse->disableColCache==0 );
  2545       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
  2546       pParse->disableColCache++;
  2547       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
  2548       assert( pParse->disableColCache>0 );
  2549       pParse->disableColCache--;
  2550       break;
  2551     }
  2552     case TK_NOT: {
  2553       testcase( jumpIfNull==0 );
  2554       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
  2555       break;
  2556     }
  2557     case TK_LT:
  2558     case TK_LE:
  2559     case TK_GT:
  2560     case TK_GE:
  2561     case TK_NE:
  2562     case TK_EQ: {
  2563       assert( TK_LT==OP_Lt );
  2564       assert( TK_LE==OP_Le );
  2565       assert( TK_GT==OP_Gt );
  2566       assert( TK_GE==OP_Ge );
  2567       assert( TK_EQ==OP_Eq );
  2568       assert( TK_NE==OP_Ne );
  2569       testcase( op==TK_LT );
  2570       testcase( op==TK_LE );
  2571       testcase( op==TK_GT );
  2572       testcase( op==TK_GE );
  2573       testcase( op==TK_EQ );
  2574       testcase( op==TK_NE );
  2575       testcase( jumpIfNull==0 );
  2576       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  2577                                   pExpr->pRight, &r2, &regFree2);
  2578       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  2579                   r1, r2, dest, jumpIfNull);
  2580       testcase( regFree1==0 );
  2581       testcase( regFree2==0 );
  2582       break;
  2583     }
  2584     case TK_ISNULL:
  2585     case TK_NOTNULL: {
  2586       assert( TK_ISNULL==OP_IsNull );
  2587       assert( TK_NOTNULL==OP_NotNull );
  2588       testcase( op==TK_ISNULL );
  2589       testcase( op==TK_NOTNULL );
  2590       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  2591       sqlite3VdbeAddOp2(v, op, r1, dest);
  2592       testcase( regFree1==0 );
  2593       break;
  2594     }
  2595     case TK_BETWEEN: {
  2596       /*    x BETWEEN y AND z
  2597       **
  2598       ** Is equivalent to 
  2599       **
  2600       **    x>=y AND x<=z
  2601       **
  2602       ** Code it as such, taking care to do the common subexpression
  2603       ** elementation of x.
  2604       */
  2605       Expr exprAnd;
  2606       Expr compLeft;
  2607       Expr compRight;
  2608       Expr exprX;
  2609 
  2610       exprX = *pExpr->pLeft;
  2611       exprAnd.op = TK_AND;
  2612       exprAnd.pLeft = &compLeft;
  2613       exprAnd.pRight = &compRight;
  2614       compLeft.op = TK_GE;
  2615       compLeft.pLeft = &exprX;
  2616       compLeft.pRight = pExpr->pList->a[0].pExpr;
  2617       compRight.op = TK_LE;
  2618       compRight.pLeft = &exprX;
  2619       compRight.pRight = pExpr->pList->a[1].pExpr;
  2620       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  2621       testcase( regFree1==0 );
  2622       exprX.op = TK_REGISTER;
  2623       testcase( jumpIfNull==0 );
  2624       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  2625       break;
  2626     }
  2627     default: {
  2628       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
  2629       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
  2630       testcase( regFree1==0 );
  2631       testcase( jumpIfNull==0 );
  2632       break;
  2633     }
  2634   }
  2635   sqlite3ReleaseTempReg(pParse, regFree1);
  2636   sqlite3ReleaseTempReg(pParse, regFree2);  
  2637 }
  2638 
  2639 /*
  2640 ** Generate code for a boolean expression such that a jump is made
  2641 ** to the label "dest" if the expression is false but execution
  2642 ** continues straight thru if the expression is true.
  2643 **
  2644 ** If the expression evaluates to NULL (neither true nor false) then
  2645 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
  2646 ** is 0.
  2647 */
  2648 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  2649   Vdbe *v = pParse->pVdbe;
  2650   int op = 0;
  2651   int regFree1 = 0;
  2652   int regFree2 = 0;
  2653   int r1, r2;
  2654 
  2655   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  2656   if( v==0 || pExpr==0 ) return;
  2657 
  2658   /* The value of pExpr->op and op are related as follows:
  2659   **
  2660   **       pExpr->op            op
  2661   **       ---------          ----------
  2662   **       TK_ISNULL          OP_NotNull
  2663   **       TK_NOTNULL         OP_IsNull
  2664   **       TK_NE              OP_Eq
  2665   **       TK_EQ              OP_Ne
  2666   **       TK_GT              OP_Le
  2667   **       TK_LE              OP_Gt
  2668   **       TK_GE              OP_Lt
  2669   **       TK_LT              OP_Ge
  2670   **
  2671   ** For other values of pExpr->op, op is undefined and unused.
  2672   ** The value of TK_ and OP_ constants are arranged such that we
  2673   ** can compute the mapping above using the following expression.
  2674   ** Assert()s verify that the computation is correct.
  2675   */
  2676   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
  2677 
  2678   /* Verify correct alignment of TK_ and OP_ constants
  2679   */
  2680   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
  2681   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
  2682   assert( pExpr->op!=TK_NE || op==OP_Eq );
  2683   assert( pExpr->op!=TK_EQ || op==OP_Ne );
  2684   assert( pExpr->op!=TK_LT || op==OP_Ge );
  2685   assert( pExpr->op!=TK_LE || op==OP_Gt );
  2686   assert( pExpr->op!=TK_GT || op==OP_Le );
  2687   assert( pExpr->op!=TK_GE || op==OP_Lt );
  2688 
  2689   switch( pExpr->op ){
  2690     case TK_AND: {
  2691       testcase( jumpIfNull==0 );
  2692       testcase( pParse->disableColCache==0 );
  2693       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
  2694       pParse->disableColCache++;
  2695       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
  2696       assert( pParse->disableColCache>0 );
  2697       pParse->disableColCache--;
  2698       break;
  2699     }
  2700     case TK_OR: {
  2701       int d2 = sqlite3VdbeMakeLabel(v);
  2702       testcase( jumpIfNull==0 );
  2703       testcase( pParse->disableColCache==0 );
  2704       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
  2705       pParse->disableColCache++;
  2706       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
  2707       assert( pParse->disableColCache>0 );
  2708       pParse->disableColCache--;
  2709       sqlite3VdbeResolveLabel(v, d2);
  2710       break;
  2711     }
  2712     case TK_NOT: {
  2713       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
  2714       break;
  2715     }
  2716     case TK_LT:
  2717     case TK_LE:
  2718     case TK_GT:
  2719     case TK_GE:
  2720     case TK_NE:
  2721     case TK_EQ: {
  2722       testcase( op==TK_LT );
  2723       testcase( op==TK_LE );
  2724       testcase( op==TK_GT );
  2725       testcase( op==TK_GE );
  2726       testcase( op==TK_EQ );
  2727       testcase( op==TK_NE );
  2728       testcase( jumpIfNull==0 );
  2729       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  2730                                   pExpr->pRight, &r2, &regFree2);
  2731       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  2732                   r1, r2, dest, jumpIfNull);
  2733       testcase( regFree1==0 );
  2734       testcase( regFree2==0 );
  2735       break;
  2736     }
  2737     case TK_ISNULL:
  2738     case TK_NOTNULL: {
  2739       testcase( op==TK_ISNULL );
  2740       testcase( op==TK_NOTNULL );
  2741       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  2742       sqlite3VdbeAddOp2(v, op, r1, dest);
  2743       testcase( regFree1==0 );
  2744       break;
  2745     }
  2746     case TK_BETWEEN: {
  2747       /*    x BETWEEN y AND z
  2748       **
  2749       ** Is equivalent to 
  2750       **
  2751       **    x>=y AND x<=z
  2752       **
  2753       ** Code it as such, taking care to do the common subexpression
  2754       ** elementation of x.
  2755       */
  2756       Expr exprAnd;
  2757       Expr compLeft;
  2758       Expr compRight;
  2759       Expr exprX;
  2760 
  2761       exprX = *pExpr->pLeft;
  2762       exprAnd.op = TK_AND;
  2763       exprAnd.pLeft = &compLeft;
  2764       exprAnd.pRight = &compRight;
  2765       compLeft.op = TK_GE;
  2766       compLeft.pLeft = &exprX;
  2767       compLeft.pRight = pExpr->pList->a[0].pExpr;
  2768       compRight.op = TK_LE;
  2769       compRight.pLeft = &exprX;
  2770       compRight.pRight = pExpr->pList->a[1].pExpr;
  2771       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  2772       testcase( regFree1==0 );
  2773       exprX.op = TK_REGISTER;
  2774       testcase( jumpIfNull==0 );
  2775       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  2776       break;
  2777     }
  2778     default: {
  2779       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
  2780       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
  2781       testcase( regFree1==0 );
  2782       testcase( jumpIfNull==0 );
  2783       break;
  2784     }
  2785   }
  2786   sqlite3ReleaseTempReg(pParse, regFree1);
  2787   sqlite3ReleaseTempReg(pParse, regFree2);
  2788 }
  2789 
  2790 /*
  2791 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
  2792 ** if they are identical and return FALSE if they differ in any way.
  2793 **
  2794 ** Sometimes this routine will return FALSE even if the two expressions
  2795 ** really are equivalent.  If we cannot prove that the expressions are
  2796 ** identical, we return FALSE just to be safe.  So if this routine
  2797 ** returns false, then you do not really know for certain if the two
  2798 ** expressions are the same.  But if you get a TRUE return, then you
  2799 ** can be sure the expressions are the same.  In the places where
  2800 ** this routine is used, it does not hurt to get an extra FALSE - that
  2801 ** just might result in some slightly slower code.  But returning
  2802 ** an incorrect TRUE could lead to a malfunction.
  2803 */
  2804 int sqlite3ExprCompare(Expr *pA, Expr *pB){
  2805   int i;
  2806   if( pA==0||pB==0 ){
  2807     return pB==pA;
  2808   }
  2809   if( pA->op!=pB->op ) return 0;
  2810   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
  2811   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
  2812   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
  2813   if( pA->pList ){
  2814     if( pB->pList==0 ) return 0;
  2815     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
  2816     for(i=0; i<pA->pList->nExpr; i++){
  2817       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
  2818         return 0;
  2819       }
  2820     }
  2821   }else if( pB->pList ){
  2822     return 0;
  2823   }
  2824   if( pA->pSelect || pB->pSelect ) return 0;
  2825   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
  2826   if( pA->op!=TK_COLUMN && pA->token.z ){
  2827     if( pB->token.z==0 ) return 0;
  2828     if( pB->token.n!=pA->token.n ) return 0;
  2829     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
  2830       return 0;
  2831     }
  2832   }
  2833   return 1;
  2834 }
  2835 
  2836 
  2837 /*
  2838 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
  2839 ** the new element.  Return a negative number if malloc fails.
  2840 */
  2841 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  2842   int i;
  2843   pInfo->aCol = sqlite3ArrayAllocate(
  2844        db,
  2845        pInfo->aCol,
  2846        sizeof(pInfo->aCol[0]),
  2847        3,
  2848        &pInfo->nColumn,
  2849        &pInfo->nColumnAlloc,
  2850        &i
  2851   );
  2852   return i;
  2853 }    
  2854 
  2855 /*
  2856 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
  2857 ** the new element.  Return a negative number if malloc fails.
  2858 */
  2859 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
  2860   int i;
  2861   pInfo->aFunc = sqlite3ArrayAllocate(
  2862        db, 
  2863        pInfo->aFunc,
  2864        sizeof(pInfo->aFunc[0]),
  2865        3,
  2866        &pInfo->nFunc,
  2867        &pInfo->nFuncAlloc,
  2868        &i
  2869   );
  2870   return i;
  2871 }    
  2872 
  2873 /*
  2874 ** This is the xExprCallback for a tree walker.  It is used to
  2875 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
  2876 ** for additional information.
  2877 */
  2878 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
  2879   int i;
  2880   NameContext *pNC = pWalker->u.pNC;
  2881   Parse *pParse = pNC->pParse;
  2882   SrcList *pSrcList = pNC->pSrcList;
  2883   AggInfo *pAggInfo = pNC->pAggInfo;
  2884 
  2885   switch( pExpr->op ){
  2886     case TK_AGG_COLUMN:
  2887     case TK_COLUMN: {
  2888       testcase( pExpr->op==TK_AGG_COLUMN );
  2889       testcase( pExpr->op==TK_COLUMN );
  2890       /* Check to see if the column is in one of the tables in the FROM
  2891       ** clause of the aggregate query */
  2892       if( pSrcList ){
  2893         struct SrcList_item *pItem = pSrcList->a;
  2894         for(i=0; i<pSrcList->nSrc; i++, pItem++){
  2895           struct AggInfo_col *pCol;
  2896           if( pExpr->iTable==pItem->iCursor ){
  2897             /* If we reach this point, it means that pExpr refers to a table
  2898             ** that is in the FROM clause of the aggregate query.  
  2899             **
  2900             ** Make an entry for the column in pAggInfo->aCol[] if there
  2901             ** is not an entry there already.
  2902             */
  2903             int k;
  2904             pCol = pAggInfo->aCol;
  2905             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
  2906               if( pCol->iTable==pExpr->iTable &&
  2907                   pCol->iColumn==pExpr->iColumn ){
  2908                 break;
  2909               }
  2910             }
  2911             if( (k>=pAggInfo->nColumn)
  2912              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
  2913             ){
  2914               pCol = &pAggInfo->aCol[k];
  2915               pCol->pTab = pExpr->pTab;
  2916               pCol->iTable = pExpr->iTable;
  2917               pCol->iColumn = pExpr->iColumn;
  2918               pCol->iMem = ++pParse->nMem;
  2919               pCol->iSorterColumn = -1;
  2920               pCol->pExpr = pExpr;
  2921               if( pAggInfo->pGroupBy ){
  2922                 int j, n;
  2923                 ExprList *pGB = pAggInfo->pGroupBy;
  2924                 struct ExprList_item *pTerm = pGB->a;
  2925                 n = pGB->nExpr;
  2926                 for(j=0; j<n; j++, pTerm++){
  2927                   Expr *pE = pTerm->pExpr;
  2928                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
  2929                       pE->iColumn==pExpr->iColumn ){
  2930                     pCol->iSorterColumn = j;
  2931                     break;
  2932                   }
  2933                 }
  2934               }
  2935               if( pCol->iSorterColumn<0 ){
  2936                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
  2937               }
  2938             }
  2939             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
  2940             ** because it was there before or because we just created it).
  2941             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
  2942             ** pAggInfo->aCol[] entry.
  2943             */
  2944             pExpr->pAggInfo = pAggInfo;
  2945             pExpr->op = TK_AGG_COLUMN;
  2946             pExpr->iAgg = k;
  2947             break;
  2948           } /* endif pExpr->iTable==pItem->iCursor */
  2949         } /* end loop over pSrcList */
  2950       }
  2951       return WRC_Prune;
  2952     }
  2953     case TK_AGG_FUNCTION: {
  2954       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
  2955       ** to be ignored */
  2956       if( pNC->nDepth==0 ){
  2957         /* Check to see if pExpr is a duplicate of another aggregate 
  2958         ** function that is already in the pAggInfo structure
  2959         */
  2960         struct AggInfo_func *pItem = pAggInfo->aFunc;
  2961         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
  2962           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
  2963             break;
  2964           }
  2965         }
  2966         if( i>=pAggInfo->nFunc ){
  2967           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
  2968           */
  2969           u8 enc = ENC(pParse->db);
  2970           i = addAggInfoFunc(pParse->db, pAggInfo);
  2971           if( i>=0 ){
  2972             pItem = &pAggInfo->aFunc[i];
  2973             pItem->pExpr = pExpr;
  2974             pItem->iMem = ++pParse->nMem;
  2975             pItem->pFunc = sqlite3FindFunction(pParse->db,
  2976                    (char*)pExpr->token.z, pExpr->token.n,
  2977                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
  2978             if( pExpr->flags & EP_Distinct ){
  2979               pItem->iDistinct = pParse->nTab++;
  2980             }else{
  2981               pItem->iDistinct = -1;
  2982             }
  2983           }
  2984         }
  2985         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
  2986         */
  2987         pExpr->iAgg = i;
  2988         pExpr->pAggInfo = pAggInfo;
  2989         return WRC_Prune;
  2990       }
  2991     }
  2992   }
  2993   return WRC_Continue;
  2994 }
  2995 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
  2996   NameContext *pNC = pWalker->u.pNC;
  2997   if( pNC->nDepth==0 ){
  2998     pNC->nDepth++;
  2999     sqlite3WalkSelect(pWalker, pSelect);
  3000     pNC->nDepth--;
  3001     return WRC_Prune;
  3002   }else{
  3003     return WRC_Continue;
  3004   }
  3005 }
  3006 
  3007 /*
  3008 ** Analyze the given expression looking for aggregate functions and
  3009 ** for variables that need to be added to the pParse->aAgg[] array.
  3010 ** Make additional entries to the pParse->aAgg[] array as necessary.
  3011 **
  3012 ** This routine should only be called after the expression has been
  3013 ** analyzed by sqlite3ResolveExprNames().
  3014 */
  3015 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  3016   Walker w;
  3017   w.xExprCallback = analyzeAggregate;
  3018   w.xSelectCallback = analyzeAggregatesInSelect;
  3019   w.u.pNC = pNC;
  3020   sqlite3WalkExpr(&w, pExpr);
  3021 }
  3022 
  3023 /*
  3024 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
  3025 ** expression list.  Return the number of errors.
  3026 **
  3027 ** If an error is found, the analysis is cut short.
  3028 */
  3029 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
  3030   struct ExprList_item *pItem;
  3031   int i;
  3032   if( pList ){
  3033     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
  3034       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
  3035     }
  3036   }
  3037 }
  3038 
  3039 /*
  3040 ** Allocate or deallocate temporary use registers during code generation.
  3041 */
  3042 int sqlite3GetTempReg(Parse *pParse){
  3043   if( pParse->nTempReg==0 ){
  3044     return ++pParse->nMem;
  3045   }
  3046   return pParse->aTempReg[--pParse->nTempReg];
  3047 }
  3048 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
  3049   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
  3050     sqlite3ExprWritableRegister(pParse, iReg, iReg);
  3051     pParse->aTempReg[pParse->nTempReg++] = iReg;
  3052   }
  3053 }
  3054 
  3055 /*
  3056 ** Allocate or deallocate a block of nReg consecutive registers
  3057 */
  3058 int sqlite3GetTempRange(Parse *pParse, int nReg){
  3059   int i, n;
  3060   i = pParse->iRangeReg;
  3061   n = pParse->nRangeReg;
  3062   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
  3063     pParse->iRangeReg += nReg;
  3064     pParse->nRangeReg -= nReg;
  3065   }else{
  3066     i = pParse->nMem+1;
  3067     pParse->nMem += nReg;
  3068   }
  3069   return i;
  3070 }
  3071 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
  3072   if( nReg>pParse->nRangeReg ){
  3073     pParse->nRangeReg = nReg;
  3074     pParse->iRangeReg = iReg;
  3075   }
  3076 }