os/persistentdata/persistentstorage/sqlite3api/SQLite/build.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains C code routines that are called by the SQLite parser
    13 ** when syntax rules are reduced.  The routines in this file handle the
    14 ** following kinds of SQL syntax:
    15 **
    16 **     CREATE TABLE
    17 **     DROP TABLE
    18 **     CREATE INDEX
    19 **     DROP INDEX
    20 **     creating ID lists
    21 **     BEGIN TRANSACTION
    22 **     COMMIT
    23 **     ROLLBACK
    24 **
    25 ** $Id: build.c,v 1.496 2008/08/20 16:35:10 drh Exp $
    26 */
    27 #include "sqliteInt.h"
    28 #include <ctype.h>
    29 
    30 /*
    31 ** This routine is called when a new SQL statement is beginning to
    32 ** be parsed.  Initialize the pParse structure as needed.
    33 */
    34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
    35   pParse->explain = explainFlag;
    36   pParse->nVar = 0;
    37 }
    38 
    39 #ifndef SQLITE_OMIT_SHARED_CACHE
    40 /*
    41 ** The TableLock structure is only used by the sqlite3TableLock() and
    42 ** codeTableLocks() functions.
    43 */
    44 struct TableLock {
    45   int iDb;             /* The database containing the table to be locked */
    46   int iTab;            /* The root page of the table to be locked */
    47   u8 isWriteLock;      /* True for write lock.  False for a read lock */
    48   const char *zName;   /* Name of the table */
    49 };
    50 
    51 /*
    52 ** Record the fact that we want to lock a table at run-time.  
    53 **
    54 ** The table to be locked has root page iTab and is found in database iDb.
    55 ** A read or a write lock can be taken depending on isWritelock.
    56 **
    57 ** This routine just records the fact that the lock is desired.  The
    58 ** code to make the lock occur is generated by a later call to
    59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
    60 */
    61 void sqlite3TableLock(
    62   Parse *pParse,     /* Parsing context */
    63   int iDb,           /* Index of the database containing the table to lock */
    64   int iTab,          /* Root page number of the table to be locked */
    65   u8 isWriteLock,    /* True for a write lock */
    66   const char *zName  /* Name of the table to be locked */
    67 ){
    68   int i;
    69   int nBytes;
    70   TableLock *p;
    71 
    72   if( iDb<0 ){
    73     return;
    74   }
    75 
    76   for(i=0; i<pParse->nTableLock; i++){
    77     p = &pParse->aTableLock[i];
    78     if( p->iDb==iDb && p->iTab==iTab ){
    79       p->isWriteLock = (p->isWriteLock || isWriteLock);
    80       return;
    81     }
    82   }
    83 
    84   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
    85   pParse->aTableLock = 
    86       sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
    87   if( pParse->aTableLock ){
    88     p = &pParse->aTableLock[pParse->nTableLock++];
    89     p->iDb = iDb;
    90     p->iTab = iTab;
    91     p->isWriteLock = isWriteLock;
    92     p->zName = zName;
    93   }else{
    94     pParse->nTableLock = 0;
    95     pParse->db->mallocFailed = 1;
    96   }
    97 }
    98 
    99 /*
   100 ** Code an OP_TableLock instruction for each table locked by the
   101 ** statement (configured by calls to sqlite3TableLock()).
   102 */
   103 static void codeTableLocks(Parse *pParse){
   104   int i;
   105   Vdbe *pVdbe; 
   106 
   107   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
   108     return;
   109   }
   110 
   111   for(i=0; i<pParse->nTableLock; i++){
   112     TableLock *p = &pParse->aTableLock[i];
   113     int p1 = p->iDb;
   114     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
   115                       p->zName, P4_STATIC);
   116   }
   117 }
   118 #else
   119   #define codeTableLocks(x)
   120 #endif
   121 
   122 /*
   123 ** This routine is called after a single SQL statement has been
   124 ** parsed and a VDBE program to execute that statement has been
   125 ** prepared.  This routine puts the finishing touches on the
   126 ** VDBE program and resets the pParse structure for the next
   127 ** parse.
   128 **
   129 ** Note that if an error occurred, it might be the case that
   130 ** no VDBE code was generated.
   131 */
   132 void sqlite3FinishCoding(Parse *pParse){
   133   sqlite3 *db;
   134   Vdbe *v;
   135 
   136   db = pParse->db;
   137   if( db->mallocFailed ) return;
   138   if( pParse->nested ) return;
   139   if( pParse->nErr ) return;
   140 
   141   /* Begin by generating some termination code at the end of the
   142   ** vdbe program
   143   */
   144   v = sqlite3GetVdbe(pParse);
   145   if( v ){
   146     sqlite3VdbeAddOp0(v, OP_Halt);
   147 
   148     /* The cookie mask contains one bit for each database file open.
   149     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
   150     ** set for each database that is used.  Generate code to start a
   151     ** transaction on each used database and to verify the schema cookie
   152     ** on each used database.
   153     */
   154     if( pParse->cookieGoto>0 ){
   155       u32 mask;
   156       int iDb;
   157       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
   158       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
   159         if( (mask & pParse->cookieMask)==0 ) continue;
   160         sqlite3VdbeUsesBtree(v, iDb);
   161         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
   162         sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
   163       }
   164 #ifndef SQLITE_OMIT_VIRTUALTABLE
   165       {
   166         int i;
   167         for(i=0; i<pParse->nVtabLock; i++){
   168           char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
   169           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
   170         }
   171         pParse->nVtabLock = 0;
   172       }
   173 #endif
   174 
   175       /* Once all the cookies have been verified and transactions opened, 
   176       ** obtain the required table-locks. This is a no-op unless the 
   177       ** shared-cache feature is enabled.
   178       */
   179       codeTableLocks(pParse);
   180       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
   181     }
   182 
   183 #ifndef SQLITE_OMIT_TRACE
   184     if( !db->init.busy ){
   185       /* Change the P4 argument of the first opcode (which will always be
   186       ** an OP_Trace) to be the complete text of the current SQL statement.
   187       */
   188       VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
   189       if( pOp && pOp->opcode==OP_Trace ){
   190         sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
   191       }
   192     }
   193 #endif /* SQLITE_OMIT_TRACE */
   194   }
   195 
   196 
   197   /* Get the VDBE program ready for execution
   198   */
   199   if( v && pParse->nErr==0 && !db->mallocFailed ){
   200 #ifdef SQLITE_DEBUG
   201     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
   202     sqlite3VdbeTrace(v, trace);
   203 #endif
   204     assert( pParse->disableColCache==0 );  /* Disables and re-enables match */
   205     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
   206                          pParse->nTab+3, pParse->explain);
   207     pParse->rc = SQLITE_DONE;
   208     pParse->colNamesSet = 0;
   209   }else if( pParse->rc==SQLITE_OK ){
   210     pParse->rc = SQLITE_ERROR;
   211   }
   212   pParse->nTab = 0;
   213   pParse->nMem = 0;
   214   pParse->nSet = 0;
   215   pParse->nVar = 0;
   216   pParse->cookieMask = 0;
   217   pParse->cookieGoto = 0;
   218 }
   219 
   220 /*
   221 ** Run the parser and code generator recursively in order to generate
   222 ** code for the SQL statement given onto the end of the pParse context
   223 ** currently under construction.  When the parser is run recursively
   224 ** this way, the final OP_Halt is not appended and other initialization
   225 ** and finalization steps are omitted because those are handling by the
   226 ** outermost parser.
   227 **
   228 ** Not everything is nestable.  This facility is designed to permit
   229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
   230 ** care if you decide to try to use this routine for some other purposes.
   231 */
   232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
   233   va_list ap;
   234   char *zSql;
   235   char *zErrMsg = 0;
   236   sqlite3 *db = pParse->db;
   237 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
   238   char saveBuf[SAVE_SZ];
   239 
   240   if( pParse->nErr ) return;
   241   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
   242   va_start(ap, zFormat);
   243   zSql = sqlite3VMPrintf(db, zFormat, ap);
   244   va_end(ap);
   245   if( zSql==0 ){
   246     return;   /* A malloc must have failed */
   247   }
   248   pParse->nested++;
   249   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
   250   memset(&pParse->nVar, 0, SAVE_SZ);
   251   sqlite3RunParser(pParse, zSql, &zErrMsg);
   252   sqlite3DbFree(db, zErrMsg);
   253   sqlite3DbFree(db, zSql);
   254   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
   255   pParse->nested--;
   256 }
   257 
   258 /*
   259 ** Locate the in-memory structure that describes a particular database
   260 ** table given the name of that table and (optionally) the name of the
   261 ** database containing the table.  Return NULL if not found.
   262 **
   263 ** If zDatabase is 0, all databases are searched for the table and the
   264 ** first matching table is returned.  (No checking for duplicate table
   265 ** names is done.)  The search order is TEMP first, then MAIN, then any
   266 ** auxiliary databases added using the ATTACH command.
   267 **
   268 ** See also sqlite3LocateTable().
   269 */
   270 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
   271   Table *p = 0;
   272   int i;
   273   int nName;
   274   assert( zName!=0 );
   275   nName = sqlite3Strlen(db, zName) + 1;
   276   for(i=OMIT_TEMPDB; i<db->nDb; i++){
   277     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
   278     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
   279     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
   280     if( p ) break;
   281   }
   282   return p;
   283 }
   284 
   285 /*
   286 ** Locate the in-memory structure that describes a particular database
   287 ** table given the name of that table and (optionally) the name of the
   288 ** database containing the table.  Return NULL if not found.  Also leave an
   289 ** error message in pParse->zErrMsg.
   290 **
   291 ** The difference between this routine and sqlite3FindTable() is that this
   292 ** routine leaves an error message in pParse->zErrMsg where
   293 ** sqlite3FindTable() does not.
   294 */
   295 Table *sqlite3LocateTable(
   296   Parse *pParse,         /* context in which to report errors */
   297   int isView,            /* True if looking for a VIEW rather than a TABLE */
   298   const char *zName,     /* Name of the table we are looking for */
   299   const char *zDbase     /* Name of the database.  Might be NULL */
   300 ){
   301   Table *p;
   302 
   303   /* Read the database schema. If an error occurs, leave an error message
   304   ** and code in pParse and return NULL. */
   305   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   306     return 0;
   307   }
   308 
   309   p = sqlite3FindTable(pParse->db, zName, zDbase);
   310   if( p==0 ){
   311     const char *zMsg = isView ? "no such view" : "no such table";
   312     if( zDbase ){
   313       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
   314     }else{
   315       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
   316     }
   317     pParse->checkSchema = 1;
   318   }
   319   return p;
   320 }
   321 
   322 /*
   323 ** Locate the in-memory structure that describes 
   324 ** a particular index given the name of that index
   325 ** and the name of the database that contains the index.
   326 ** Return NULL if not found.
   327 **
   328 ** If zDatabase is 0, all databases are searched for the
   329 ** table and the first matching index is returned.  (No checking
   330 ** for duplicate index names is done.)  The search order is
   331 ** TEMP first, then MAIN, then any auxiliary databases added
   332 ** using the ATTACH command.
   333 */
   334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
   335   Index *p = 0;
   336   int i;
   337   int nName = sqlite3Strlen(db, zName)+1;
   338   for(i=OMIT_TEMPDB; i<db->nDb; i++){
   339     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
   340     Schema *pSchema = db->aDb[j].pSchema;
   341     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
   342     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
   343     if( pSchema ){
   344       p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
   345     }
   346     if( p ) break;
   347   }
   348   return p;
   349 }
   350 
   351 /*
   352 ** Reclaim the memory used by an index
   353 */
   354 static void freeIndex(Index *p){
   355   sqlite3 *db = p->pTable->db;
   356   sqlite3DbFree(db, p->zColAff);
   357   sqlite3DbFree(db, p);
   358 }
   359 
   360 /*
   361 ** Remove the given index from the index hash table, and free
   362 ** its memory structures.
   363 **
   364 ** The index is removed from the database hash tables but
   365 ** it is not unlinked from the Table that it indexes.
   366 ** Unlinking from the Table must be done by the calling function.
   367 */
   368 static void sqliteDeleteIndex(Index *p){
   369   Index *pOld;
   370   const char *zName = p->zName;
   371 
   372   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
   373   assert( pOld==0 || pOld==p );
   374   freeIndex(p);
   375 }
   376 
   377 /*
   378 ** For the index called zIdxName which is found in the database iDb,
   379 ** unlike that index from its Table then remove the index from
   380 ** the index hash table and free all memory structures associated
   381 ** with the index.
   382 */
   383 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
   384   Index *pIndex;
   385   int len;
   386   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
   387 
   388   len = sqlite3Strlen(db, zIdxName);
   389   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
   390   if( pIndex ){
   391     if( pIndex->pTable->pIndex==pIndex ){
   392       pIndex->pTable->pIndex = pIndex->pNext;
   393     }else{
   394       Index *p;
   395       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
   396       if( p && p->pNext==pIndex ){
   397         p->pNext = pIndex->pNext;
   398       }
   399     }
   400     freeIndex(pIndex);
   401   }
   402   db->flags |= SQLITE_InternChanges;
   403 }
   404 
   405 /*
   406 ** Erase all schema information from the in-memory hash tables of
   407 ** a single database.  This routine is called to reclaim memory
   408 ** before the database closes.  It is also called during a rollback
   409 ** if there were schema changes during the transaction or if a
   410 ** schema-cookie mismatch occurs.
   411 **
   412 ** If iDb<=0 then reset the internal schema tables for all database
   413 ** files.  If iDb>=2 then reset the internal schema for only the
   414 ** single file indicated.
   415 */
   416 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
   417   int i, j;
   418   assert( iDb>=0 && iDb<db->nDb );
   419 
   420   if( iDb==0 ){
   421     sqlite3BtreeEnterAll(db);
   422   }
   423   for(i=iDb; i<db->nDb; i++){
   424     Db *pDb = &db->aDb[i];
   425     if( pDb->pSchema ){
   426       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
   427       sqlite3SchemaFree(pDb->pSchema);
   428     }
   429     if( iDb>0 ) return;
   430   }
   431   assert( iDb==0 );
   432   db->flags &= ~SQLITE_InternChanges;
   433   sqlite3BtreeLeaveAll(db);
   434 
   435   /* If one or more of the auxiliary database files has been closed,
   436   ** then remove them from the auxiliary database list.  We take the
   437   ** opportunity to do this here since we have just deleted all of the
   438   ** schema hash tables and therefore do not have to make any changes
   439   ** to any of those tables.
   440   */
   441   for(i=0; i<db->nDb; i++){
   442     struct Db *pDb = &db->aDb[i];
   443     if( pDb->pBt==0 ){
   444       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
   445       pDb->pAux = 0;
   446     }
   447   }
   448   for(i=j=2; i<db->nDb; i++){
   449     struct Db *pDb = &db->aDb[i];
   450     if( pDb->pBt==0 ){
   451       sqlite3DbFree(db, pDb->zName);
   452       pDb->zName = 0;
   453       continue;
   454     }
   455     if( j<i ){
   456       db->aDb[j] = db->aDb[i];
   457     }
   458     j++;
   459   }
   460   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
   461   db->nDb = j;
   462   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
   463     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
   464     sqlite3DbFree(db, db->aDb);
   465     db->aDb = db->aDbStatic;
   466   }
   467 }
   468 
   469 /*
   470 ** This routine is called when a commit occurs.
   471 */
   472 void sqlite3CommitInternalChanges(sqlite3 *db){
   473   db->flags &= ~SQLITE_InternChanges;
   474 }
   475 
   476 /*
   477 ** Clear the column names from a table or view.
   478 */
   479 static void sqliteResetColumnNames(Table *pTable){
   480   int i;
   481   Column *pCol;
   482   sqlite3 *db = pTable->db;
   483   assert( pTable!=0 );
   484   if( (pCol = pTable->aCol)!=0 ){
   485     for(i=0; i<pTable->nCol; i++, pCol++){
   486       sqlite3DbFree(db, pCol->zName);
   487       sqlite3ExprDelete(db, pCol->pDflt);
   488       sqlite3DbFree(db, pCol->zType);
   489       sqlite3DbFree(db, pCol->zColl);
   490     }
   491     sqlite3DbFree(db, pTable->aCol);
   492   }
   493   pTable->aCol = 0;
   494   pTable->nCol = 0;
   495 }
   496 
   497 /*
   498 ** Remove the memory data structures associated with the given
   499 ** Table.  No changes are made to disk by this routine.
   500 **
   501 ** This routine just deletes the data structure.  It does not unlink
   502 ** the table data structure from the hash table.  Nor does it remove
   503 ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
   504 ** memory structures of the indices and foreign keys associated with 
   505 ** the table.
   506 */
   507 void sqlite3DeleteTable(Table *pTable){
   508   Index *pIndex, *pNext;
   509   FKey *pFKey, *pNextFKey;
   510   sqlite3 *db;
   511 
   512   if( pTable==0 ) return;
   513   db = pTable->db;
   514 
   515   /* Do not delete the table until the reference count reaches zero. */
   516   pTable->nRef--;
   517   if( pTable->nRef>0 ){
   518     return;
   519   }
   520   assert( pTable->nRef==0 );
   521 
   522   /* Delete all indices associated with this table
   523   */
   524   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
   525     pNext = pIndex->pNext;
   526     assert( pIndex->pSchema==pTable->pSchema );
   527     sqliteDeleteIndex(pIndex);
   528   }
   529 
   530 #ifndef SQLITE_OMIT_FOREIGN_KEY
   531   /* Delete all foreign keys associated with this table.  The keys
   532   ** should have already been unlinked from the pSchema->aFKey hash table 
   533   */
   534   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
   535     pNextFKey = pFKey->pNextFrom;
   536     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
   537                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
   538     sqlite3DbFree(db, pFKey);
   539   }
   540 #endif
   541 
   542   /* Delete the Table structure itself.
   543   */
   544   sqliteResetColumnNames(pTable);
   545   sqlite3DbFree(db, pTable->zName);
   546   sqlite3DbFree(db, pTable->zColAff);
   547   sqlite3SelectDelete(db, pTable->pSelect);
   548 #ifndef SQLITE_OMIT_CHECK
   549   sqlite3ExprDelete(db, pTable->pCheck);
   550 #endif
   551   sqlite3VtabClear(pTable);
   552   sqlite3DbFree(db, pTable);
   553 }
   554 
   555 /*
   556 ** Unlink the given table from the hash tables and the delete the
   557 ** table structure with all its indices and foreign keys.
   558 */
   559 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
   560   Table *p;
   561   FKey *pF1, *pF2;
   562   Db *pDb;
   563 
   564   assert( db!=0 );
   565   assert( iDb>=0 && iDb<db->nDb );
   566   assert( zTabName && zTabName[0] );
   567   pDb = &db->aDb[iDb];
   568   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
   569   if( p ){
   570 #ifndef SQLITE_OMIT_FOREIGN_KEY
   571     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
   572       int nTo = strlen(pF1->zTo) + 1;
   573       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
   574       if( pF2==pF1 ){
   575         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
   576       }else{
   577         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
   578         if( pF2 ){
   579           pF2->pNextTo = pF1->pNextTo;
   580         }
   581       }
   582     }
   583 #endif
   584     sqlite3DeleteTable(p);
   585   }
   586   db->flags |= SQLITE_InternChanges;
   587 }
   588 
   589 /*
   590 ** Given a token, return a string that consists of the text of that
   591 ** token with any quotations removed.  Space to hold the returned string
   592 ** is obtained from sqliteMalloc() and must be freed by the calling
   593 ** function.
   594 **
   595 ** Tokens are often just pointers into the original SQL text and so
   596 ** are not \000 terminated and are not persistent.  The returned string
   597 ** is \000 terminated and is persistent.
   598 */
   599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
   600   char *zName;
   601   if( pName ){
   602     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
   603     sqlite3Dequote(zName);
   604   }else{
   605     zName = 0;
   606   }
   607   return zName;
   608 }
   609 
   610 /*
   611 ** Open the sqlite_master table stored in database number iDb for
   612 ** writing. The table is opened using cursor 0.
   613 */
   614 void sqlite3OpenMasterTable(Parse *p, int iDb){
   615   Vdbe *v = sqlite3GetVdbe(p);
   616   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
   617   sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
   618   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
   619 }
   620 
   621 /*
   622 ** The token *pName contains the name of a database (either "main" or
   623 ** "temp" or the name of an attached db). This routine returns the
   624 ** index of the named database in db->aDb[], or -1 if the named db 
   625 ** does not exist.
   626 */
   627 int sqlite3FindDb(sqlite3 *db, Token *pName){
   628   int i = -1;    /* Database number */
   629   int n;         /* Number of characters in the name */
   630   Db *pDb;       /* A database whose name space is being searched */
   631   char *zName;   /* Name we are searching for */
   632 
   633   zName = sqlite3NameFromToken(db, pName);
   634   if( zName ){
   635     n = strlen(zName);
   636     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
   637       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
   638           0==sqlite3StrICmp(pDb->zName, zName) ){
   639         break;
   640       }
   641     }
   642     sqlite3DbFree(db, zName);
   643   }
   644   return i;
   645 }
   646 
   647 /* The table or view or trigger name is passed to this routine via tokens
   648 ** pName1 and pName2. If the table name was fully qualified, for example:
   649 **
   650 ** CREATE TABLE xxx.yyy (...);
   651 ** 
   652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
   653 ** the table name is not fully qualified, i.e.:
   654 **
   655 ** CREATE TABLE yyy(...);
   656 **
   657 ** Then pName1 is set to "yyy" and pName2 is "".
   658 **
   659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
   660 ** pName2) that stores the unqualified table name.  The index of the
   661 ** database "xxx" is returned.
   662 */
   663 int sqlite3TwoPartName(
   664   Parse *pParse,      /* Parsing and code generating context */
   665   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
   666   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
   667   Token **pUnqual     /* Write the unqualified object name here */
   668 ){
   669   int iDb;                    /* Database holding the object */
   670   sqlite3 *db = pParse->db;
   671 
   672   if( pName2 && pName2->n>0 ){
   673     assert( !db->init.busy );
   674     *pUnqual = pName2;
   675     iDb = sqlite3FindDb(db, pName1);
   676     if( iDb<0 ){
   677       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
   678       pParse->nErr++;
   679       return -1;
   680     }
   681   }else{
   682     assert( db->init.iDb==0 || db->init.busy );
   683     iDb = db->init.iDb;
   684     *pUnqual = pName1;
   685   }
   686   return iDb;
   687 }
   688 
   689 /*
   690 ** This routine is used to check if the UTF-8 string zName is a legal
   691 ** unqualified name for a new schema object (table, index, view or
   692 ** trigger). All names are legal except those that begin with the string
   693 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
   694 ** is reserved for internal use.
   695 */
   696 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
   697   if( !pParse->db->init.busy && pParse->nested==0 
   698           && (pParse->db->flags & SQLITE_WriteSchema)==0
   699           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
   700     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
   701     return SQLITE_ERROR;
   702   }
   703   return SQLITE_OK;
   704 }
   705 
   706 /*
   707 ** Begin constructing a new table representation in memory.  This is
   708 ** the first of several action routines that get called in response
   709 ** to a CREATE TABLE statement.  In particular, this routine is called
   710 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
   711 ** flag is true if the table should be stored in the auxiliary database
   712 ** file instead of in the main database file.  This is normally the case
   713 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
   714 ** CREATE and TABLE.
   715 **
   716 ** The new table record is initialized and put in pParse->pNewTable.
   717 ** As more of the CREATE TABLE statement is parsed, additional action
   718 ** routines will be called to add more information to this record.
   719 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
   720 ** is called to complete the construction of the new table record.
   721 */
   722 void sqlite3StartTable(
   723   Parse *pParse,   /* Parser context */
   724   Token *pName1,   /* First part of the name of the table or view */
   725   Token *pName2,   /* Second part of the name of the table or view */
   726   int isTemp,      /* True if this is a TEMP table */
   727   int isView,      /* True if this is a VIEW */
   728   int isVirtual,   /* True if this is a VIRTUAL table */
   729   int noErr        /* Do nothing if table already exists */
   730 ){
   731   Table *pTable;
   732   char *zName = 0; /* The name of the new table */
   733   sqlite3 *db = pParse->db;
   734   Vdbe *v;
   735   int iDb;         /* Database number to create the table in */
   736   Token *pName;    /* Unqualified name of the table to create */
   737 
   738   /* The table or view name to create is passed to this routine via tokens
   739   ** pName1 and pName2. If the table name was fully qualified, for example:
   740   **
   741   ** CREATE TABLE xxx.yyy (...);
   742   ** 
   743   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
   744   ** the table name is not fully qualified, i.e.:
   745   **
   746   ** CREATE TABLE yyy(...);
   747   **
   748   ** Then pName1 is set to "yyy" and pName2 is "".
   749   **
   750   ** The call below sets the pName pointer to point at the token (pName1 or
   751   ** pName2) that stores the unqualified table name. The variable iDb is
   752   ** set to the index of the database that the table or view is to be
   753   ** created in.
   754   */
   755   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
   756   if( iDb<0 ) return;
   757   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
   758     /* If creating a temp table, the name may not be qualified */
   759     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
   760     return;
   761   }
   762   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
   763 
   764   pParse->sNameToken = *pName;
   765   zName = sqlite3NameFromToken(db, pName);
   766   if( zName==0 ) return;
   767   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
   768     goto begin_table_error;
   769   }
   770   if( db->init.iDb==1 ) isTemp = 1;
   771 #ifndef SQLITE_OMIT_AUTHORIZATION
   772   assert( (isTemp & 1)==isTemp );
   773   {
   774     int code;
   775     char *zDb = db->aDb[iDb].zName;
   776     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
   777       goto begin_table_error;
   778     }
   779     if( isView ){
   780       if( !OMIT_TEMPDB && isTemp ){
   781         code = SQLITE_CREATE_TEMP_VIEW;
   782       }else{
   783         code = SQLITE_CREATE_VIEW;
   784       }
   785     }else{
   786       if( !OMIT_TEMPDB && isTemp ){
   787         code = SQLITE_CREATE_TEMP_TABLE;
   788       }else{
   789         code = SQLITE_CREATE_TABLE;
   790       }
   791     }
   792     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
   793       goto begin_table_error;
   794     }
   795   }
   796 #endif
   797 
   798   /* Make sure the new table name does not collide with an existing
   799   ** index or table name in the same database.  Issue an error message if
   800   ** it does. The exception is if the statement being parsed was passed
   801   ** to an sqlite3_declare_vtab() call. In that case only the column names
   802   ** and types will be used, so there is no need to test for namespace
   803   ** collisions.
   804   */
   805   if( !IN_DECLARE_VTAB ){
   806     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
   807       goto begin_table_error;
   808     }
   809     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
   810     if( pTable ){
   811       if( !noErr ){
   812         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
   813       }
   814       goto begin_table_error;
   815     }
   816     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
   817       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
   818       goto begin_table_error;
   819     }
   820   }
   821 
   822   pTable = sqlite3DbMallocZero(db, sizeof(Table));
   823   if( pTable==0 ){
   824     db->mallocFailed = 1;
   825     pParse->rc = SQLITE_NOMEM;
   826     pParse->nErr++;
   827     goto begin_table_error;
   828   }
   829   pTable->zName = zName;
   830   pTable->iPKey = -1;
   831   pTable->pSchema = db->aDb[iDb].pSchema;
   832   pTable->nRef = 1;
   833   pTable->db = db;
   834   if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
   835   pParse->pNewTable = pTable;
   836 
   837   /* If this is the magic sqlite_sequence table used by autoincrement,
   838   ** then record a pointer to this table in the main database structure
   839   ** so that INSERT can find the table easily.
   840   */
   841 #ifndef SQLITE_OMIT_AUTOINCREMENT
   842   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
   843     pTable->pSchema->pSeqTab = pTable;
   844   }
   845 #endif
   846 
   847   /* Begin generating the code that will insert the table record into
   848   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
   849   ** and allocate the record number for the table entry now.  Before any
   850   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
   851   ** indices to be created and the table record must come before the 
   852   ** indices.  Hence, the record number for the table must be allocated
   853   ** now.
   854   */
   855   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
   856     int j1;
   857     int fileFormat;
   858     int reg1, reg2, reg3;
   859     sqlite3BeginWriteOperation(pParse, 0, iDb);
   860 
   861 #ifndef SQLITE_OMIT_VIRTUALTABLE
   862     if( isVirtual ){
   863       sqlite3VdbeAddOp0(v, OP_VBegin);
   864     }
   865 #endif
   866 
   867     /* If the file format and encoding in the database have not been set, 
   868     ** set them now.
   869     */
   870     reg1 = pParse->regRowid = ++pParse->nMem;
   871     reg2 = pParse->regRoot = ++pParse->nMem;
   872     reg3 = ++pParse->nMem;
   873     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1);   /* file_format */
   874     sqlite3VdbeUsesBtree(v, iDb);
   875     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
   876     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
   877                   1 : SQLITE_MAX_FILE_FORMAT;
   878     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
   879     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
   880     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
   881     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
   882     sqlite3VdbeJumpHere(v, j1);
   883 
   884     /* This just creates a place-holder record in the sqlite_master table.
   885     ** The record created does not contain anything yet.  It will be replaced
   886     ** by the real entry in code generated at sqlite3EndTable().
   887     **
   888     ** The rowid for the new entry is left on the top of the stack.
   889     ** The rowid value is needed by the code that sqlite3EndTable will
   890     ** generate.
   891     */
   892 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
   893     if( isView || isVirtual ){
   894       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
   895     }else
   896 #endif
   897     {
   898       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
   899     }
   900     sqlite3OpenMasterTable(pParse, iDb);
   901     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
   902     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
   903     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
   904     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
   905     sqlite3VdbeAddOp0(v, OP_Close);
   906   }
   907 
   908   /* Normal (non-error) return. */
   909   return;
   910 
   911   /* If an error occurs, we jump here */
   912 begin_table_error:
   913   sqlite3DbFree(db, zName);
   914   return;
   915 }
   916 
   917 /*
   918 ** This macro is used to compare two strings in a case-insensitive manner.
   919 ** It is slightly faster than calling sqlite3StrICmp() directly, but
   920 ** produces larger code.
   921 **
   922 ** WARNING: This macro is not compatible with the strcmp() family. It
   923 ** returns true if the two strings are equal, otherwise false.
   924 */
   925 #define STRICMP(x, y) (\
   926 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
   927 sqlite3UpperToLower[*(unsigned char *)(y)]     \
   928 && sqlite3StrICmp((x)+1,(y)+1)==0 )
   929 
   930 /*
   931 ** Add a new column to the table currently being constructed.
   932 **
   933 ** The parser calls this routine once for each column declaration
   934 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
   935 ** first to get things going.  Then this routine is called for each
   936 ** column.
   937 */
   938 void sqlite3AddColumn(Parse *pParse, Token *pName){
   939   Table *p;
   940   int i;
   941   char *z;
   942   Column *pCol;
   943   sqlite3 *db = pParse->db;
   944   if( (p = pParse->pNewTable)==0 ) return;
   945 #if SQLITE_MAX_COLUMN
   946   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
   947     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
   948     return;
   949   }
   950 #endif
   951   z = sqlite3NameFromToken(pParse->db, pName);
   952   if( z==0 ) return;
   953   for(i=0; i<p->nCol; i++){
   954     if( STRICMP(z, p->aCol[i].zName) ){
   955       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
   956       sqlite3DbFree(db, z);
   957       return;
   958     }
   959   }
   960   if( (p->nCol & 0x7)==0 ){
   961     Column *aNew;
   962     aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
   963     if( aNew==0 ){
   964       sqlite3DbFree(db, z);
   965       return;
   966     }
   967     p->aCol = aNew;
   968   }
   969   pCol = &p->aCol[p->nCol];
   970   memset(pCol, 0, sizeof(p->aCol[0]));
   971   pCol->zName = z;
   972  
   973   /* If there is no type specified, columns have the default affinity
   974   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
   975   ** be called next to set pCol->affinity correctly.
   976   */
   977   pCol->affinity = SQLITE_AFF_NONE;
   978   p->nCol++;
   979 }
   980 
   981 /*
   982 ** This routine is called by the parser while in the middle of
   983 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
   984 ** been seen on a column.  This routine sets the notNull flag on
   985 ** the column currently under construction.
   986 */
   987 void sqlite3AddNotNull(Parse *pParse, int onError){
   988   Table *p;
   989   int i;
   990   if( (p = pParse->pNewTable)==0 ) return;
   991   i = p->nCol-1;
   992   if( i>=0 ) p->aCol[i].notNull = onError;
   993 }
   994 
   995 /*
   996 ** Scan the column type name zType (length nType) and return the
   997 ** associated affinity type.
   998 **
   999 ** This routine does a case-independent search of zType for the 
  1000 ** substrings in the following table. If one of the substrings is
  1001 ** found, the corresponding affinity is returned. If zType contains
  1002 ** more than one of the substrings, entries toward the top of 
  1003 ** the table take priority. For example, if zType is 'BLOBINT', 
  1004 ** SQLITE_AFF_INTEGER is returned.
  1005 **
  1006 ** Substring     | Affinity
  1007 ** --------------------------------
  1008 ** 'INT'         | SQLITE_AFF_INTEGER
  1009 ** 'CHAR'        | SQLITE_AFF_TEXT
  1010 ** 'CLOB'        | SQLITE_AFF_TEXT
  1011 ** 'TEXT'        | SQLITE_AFF_TEXT
  1012 ** 'BLOB'        | SQLITE_AFF_NONE
  1013 ** 'REAL'        | SQLITE_AFF_REAL
  1014 ** 'FLOA'        | SQLITE_AFF_REAL
  1015 ** 'DOUB'        | SQLITE_AFF_REAL
  1016 **
  1017 ** If none of the substrings in the above table are found,
  1018 ** SQLITE_AFF_NUMERIC is returned.
  1019 */
  1020 char sqlite3AffinityType(const Token *pType){
  1021   u32 h = 0;
  1022   char aff = SQLITE_AFF_NUMERIC;
  1023   const unsigned char *zIn = pType->z;
  1024   const unsigned char *zEnd = &pType->z[pType->n];
  1025 
  1026   while( zIn!=zEnd ){
  1027     h = (h<<8) + sqlite3UpperToLower[*zIn];
  1028     zIn++;
  1029     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
  1030       aff = SQLITE_AFF_TEXT; 
  1031     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
  1032       aff = SQLITE_AFF_TEXT;
  1033     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
  1034       aff = SQLITE_AFF_TEXT;
  1035     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
  1036         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
  1037       aff = SQLITE_AFF_NONE;
  1038 #ifndef SQLITE_OMIT_FLOATING_POINT
  1039     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
  1040         && aff==SQLITE_AFF_NUMERIC ){
  1041       aff = SQLITE_AFF_REAL;
  1042     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
  1043         && aff==SQLITE_AFF_NUMERIC ){
  1044       aff = SQLITE_AFF_REAL;
  1045     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
  1046         && aff==SQLITE_AFF_NUMERIC ){
  1047       aff = SQLITE_AFF_REAL;
  1048 #endif
  1049     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
  1050       aff = SQLITE_AFF_INTEGER;
  1051       break;
  1052     }
  1053   }
  1054 
  1055   return aff;
  1056 }
  1057 
  1058 /*
  1059 ** This routine is called by the parser while in the middle of
  1060 ** parsing a CREATE TABLE statement.  The pFirst token is the first
  1061 ** token in the sequence of tokens that describe the type of the
  1062 ** column currently under construction.   pLast is the last token
  1063 ** in the sequence.  Use this information to construct a string
  1064 ** that contains the typename of the column and store that string
  1065 ** in zType.
  1066 */ 
  1067 void sqlite3AddColumnType(Parse *pParse, Token *pType){
  1068   Table *p;
  1069   int i;
  1070   Column *pCol;
  1071   sqlite3 *db;
  1072 
  1073   if( (p = pParse->pNewTable)==0 ) return;
  1074   i = p->nCol-1;
  1075   if( i<0 ) return;
  1076   pCol = &p->aCol[i];
  1077   db = pParse->db;
  1078   sqlite3DbFree(db, pCol->zType);
  1079   pCol->zType = sqlite3NameFromToken(db, pType);
  1080   pCol->affinity = sqlite3AffinityType(pType);
  1081 }
  1082 
  1083 /*
  1084 ** The expression is the default value for the most recently added column
  1085 ** of the table currently under construction.
  1086 **
  1087 ** Default value expressions must be constant.  Raise an exception if this
  1088 ** is not the case.
  1089 **
  1090 ** This routine is called by the parser while in the middle of
  1091 ** parsing a CREATE TABLE statement.
  1092 */
  1093 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
  1094   Table *p;
  1095   Column *pCol;
  1096   sqlite3 *db = pParse->db;
  1097   if( (p = pParse->pNewTable)!=0 ){
  1098     pCol = &(p->aCol[p->nCol-1]);
  1099     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
  1100       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
  1101           pCol->zName);
  1102     }else{
  1103       Expr *pCopy;
  1104       sqlite3ExprDelete(db, pCol->pDflt);
  1105       pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
  1106       if( pCopy ){
  1107         sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
  1108       }
  1109     }
  1110   }
  1111   sqlite3ExprDelete(db, pExpr);
  1112 }
  1113 
  1114 /*
  1115 ** Designate the PRIMARY KEY for the table.  pList is a list of names 
  1116 ** of columns that form the primary key.  If pList is NULL, then the
  1117 ** most recently added column of the table is the primary key.
  1118 **
  1119 ** A table can have at most one primary key.  If the table already has
  1120 ** a primary key (and this is the second primary key) then create an
  1121 ** error.
  1122 **
  1123 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
  1124 ** then we will try to use that column as the rowid.  Set the Table.iPKey
  1125 ** field of the table under construction to be the index of the
  1126 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
  1127 ** no INTEGER PRIMARY KEY.
  1128 **
  1129 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
  1130 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
  1131 */
  1132 void sqlite3AddPrimaryKey(
  1133   Parse *pParse,    /* Parsing context */
  1134   ExprList *pList,  /* List of field names to be indexed */
  1135   int onError,      /* What to do with a uniqueness conflict */
  1136   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
  1137   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
  1138 ){
  1139   Table *pTab = pParse->pNewTable;
  1140   char *zType = 0;
  1141   int iCol = -1, i;
  1142   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
  1143   if( pTab->tabFlags & TF_HasPrimaryKey ){
  1144     sqlite3ErrorMsg(pParse, 
  1145       "table \"%s\" has more than one primary key", pTab->zName);
  1146     goto primary_key_exit;
  1147   }
  1148   pTab->tabFlags |= TF_HasPrimaryKey;
  1149   if( pList==0 ){
  1150     iCol = pTab->nCol - 1;
  1151     pTab->aCol[iCol].isPrimKey = 1;
  1152   }else{
  1153     for(i=0; i<pList->nExpr; i++){
  1154       for(iCol=0; iCol<pTab->nCol; iCol++){
  1155         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
  1156           break;
  1157         }
  1158       }
  1159       if( iCol<pTab->nCol ){
  1160         pTab->aCol[iCol].isPrimKey = 1;
  1161       }
  1162     }
  1163     if( pList->nExpr>1 ) iCol = -1;
  1164   }
  1165   if( iCol>=0 && iCol<pTab->nCol ){
  1166     zType = pTab->aCol[iCol].zType;
  1167   }
  1168   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
  1169         && sortOrder==SQLITE_SO_ASC ){
  1170     pTab->iPKey = iCol;
  1171     pTab->keyConf = onError;
  1172     assert( autoInc==0 || autoInc==1 );
  1173     pTab->tabFlags |= autoInc*TF_Autoincrement;
  1174   }else if( autoInc ){
  1175 #ifndef SQLITE_OMIT_AUTOINCREMENT
  1176     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
  1177        "INTEGER PRIMARY KEY");
  1178 #endif
  1179   }else{
  1180     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
  1181     pList = 0;
  1182   }
  1183 
  1184 primary_key_exit:
  1185   sqlite3ExprListDelete(pParse->db, pList);
  1186   return;
  1187 }
  1188 
  1189 /*
  1190 ** Add a new CHECK constraint to the table currently under construction.
  1191 */
  1192 void sqlite3AddCheckConstraint(
  1193   Parse *pParse,    /* Parsing context */
  1194   Expr *pCheckExpr  /* The check expression */
  1195 ){
  1196   sqlite3 *db = pParse->db;
  1197 #ifndef SQLITE_OMIT_CHECK
  1198   Table *pTab = pParse->pNewTable;
  1199   if( pTab && !IN_DECLARE_VTAB ){
  1200     /* The CHECK expression must be duplicated so that tokens refer
  1201     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
  1202     ** statement */
  1203     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 
  1204                                   sqlite3ExprDup(db, pCheckExpr));
  1205   }
  1206 #endif
  1207   sqlite3ExprDelete(db, pCheckExpr);
  1208 }
  1209 
  1210 /*
  1211 ** Set the collation function of the most recently parsed table column
  1212 ** to the CollSeq given.
  1213 */
  1214 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
  1215   Table *p;
  1216   int i;
  1217   char *zColl;              /* Dequoted name of collation sequence */
  1218   sqlite3 *db;
  1219 
  1220   if( (p = pParse->pNewTable)==0 ) return;
  1221   i = p->nCol-1;
  1222   db = pParse->db;
  1223   zColl = sqlite3NameFromToken(db, pToken);
  1224   if( !zColl ) return;
  1225 
  1226   if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
  1227     Index *pIdx;
  1228     p->aCol[i].zColl = zColl;
  1229   
  1230     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
  1231     ** then an index may have been created on this column before the
  1232     ** collation type was added. Correct this if it is the case.
  1233     */
  1234     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
  1235       assert( pIdx->nColumn==1 );
  1236       if( pIdx->aiColumn[0]==i ){
  1237         pIdx->azColl[0] = p->aCol[i].zColl;
  1238       }
  1239     }
  1240   }else{
  1241     sqlite3DbFree(db, zColl);
  1242   }
  1243 }
  1244 
  1245 /*
  1246 ** This function returns the collation sequence for database native text
  1247 ** encoding identified by the string zName, length nName.
  1248 **
  1249 ** If the requested collation sequence is not available, or not available
  1250 ** in the database native encoding, the collation factory is invoked to
  1251 ** request it. If the collation factory does not supply such a sequence,
  1252 ** and the sequence is available in another text encoding, then that is
  1253 ** returned instead.
  1254 **
  1255 ** If no versions of the requested collations sequence are available, or
  1256 ** another error occurs, NULL is returned and an error message written into
  1257 ** pParse.
  1258 **
  1259 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
  1260 ** invokes the collation factory if the named collation cannot be found
  1261 ** and generates an error message.
  1262 */
  1263 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
  1264   sqlite3 *db = pParse->db;
  1265   u8 enc = ENC(db);
  1266   u8 initbusy = db->init.busy;
  1267   CollSeq *pColl;
  1268 
  1269   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
  1270   if( !initbusy && (!pColl || !pColl->xCmp) ){
  1271     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
  1272     if( !pColl ){
  1273       if( nName<0 ){
  1274         nName = sqlite3Strlen(db, zName);
  1275       }
  1276       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
  1277       pColl = 0;
  1278     }
  1279   }
  1280 
  1281   return pColl;
  1282 }
  1283 
  1284 
  1285 /*
  1286 ** Generate code that will increment the schema cookie.
  1287 **
  1288 ** The schema cookie is used to determine when the schema for the
  1289 ** database changes.  After each schema change, the cookie value
  1290 ** changes.  When a process first reads the schema it records the
  1291 ** cookie.  Thereafter, whenever it goes to access the database,
  1292 ** it checks the cookie to make sure the schema has not changed
  1293 ** since it was last read.
  1294 **
  1295 ** This plan is not completely bullet-proof.  It is possible for
  1296 ** the schema to change multiple times and for the cookie to be
  1297 ** set back to prior value.  But schema changes are infrequent
  1298 ** and the probability of hitting the same cookie value is only
  1299 ** 1 chance in 2^32.  So we're safe enough.
  1300 */
  1301 void sqlite3ChangeCookie(Parse *pParse, int iDb){
  1302   int r1 = sqlite3GetTempReg(pParse);
  1303   sqlite3 *db = pParse->db;
  1304   Vdbe *v = pParse->pVdbe;
  1305   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
  1306   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
  1307   sqlite3ReleaseTempReg(pParse, r1);
  1308 }
  1309 
  1310 /*
  1311 ** Measure the number of characters needed to output the given
  1312 ** identifier.  The number returned includes any quotes used
  1313 ** but does not include the null terminator.
  1314 **
  1315 ** The estimate is conservative.  It might be larger that what is
  1316 ** really needed.
  1317 */
  1318 static int identLength(const char *z){
  1319   int n;
  1320   for(n=0; *z; n++, z++){
  1321     if( *z=='"' ){ n++; }
  1322   }
  1323   return n + 2;
  1324 }
  1325 
  1326 /*
  1327 ** Write an identifier onto the end of the given string.  Add
  1328 ** quote characters as needed.
  1329 */
  1330 static void identPut(char *z, int *pIdx, char *zSignedIdent){
  1331   unsigned char *zIdent = (unsigned char*)zSignedIdent;
  1332   int i, j, needQuote;
  1333   i = *pIdx;
  1334   for(j=0; zIdent[j]; j++){
  1335     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
  1336   }
  1337   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
  1338                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
  1339   if( needQuote ) z[i++] = '"';
  1340   for(j=0; zIdent[j]; j++){
  1341     z[i++] = zIdent[j];
  1342     if( zIdent[j]=='"' ) z[i++] = '"';
  1343   }
  1344   if( needQuote ) z[i++] = '"';
  1345   z[i] = 0;
  1346   *pIdx = i;
  1347 }
  1348 
  1349 /*
  1350 ** Generate a CREATE TABLE statement appropriate for the given
  1351 ** table.  Memory to hold the text of the statement is obtained
  1352 ** from sqliteMalloc() and must be freed by the calling function.
  1353 */
  1354 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
  1355   int i, k, n;
  1356   char *zStmt;
  1357   char *zSep, *zSep2, *zEnd, *z;
  1358   Column *pCol;
  1359   n = 0;
  1360   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
  1361     n += identLength(pCol->zName);
  1362     z = pCol->zType;
  1363     if( z ){
  1364       n += (strlen(z) + 1);
  1365     }
  1366   }
  1367   n += identLength(p->zName);
  1368   if( n<50 ){
  1369     zSep = "";
  1370     zSep2 = ",";
  1371     zEnd = ")";
  1372   }else{
  1373     zSep = "\n  ";
  1374     zSep2 = ",\n  ";
  1375     zEnd = "\n)";
  1376   }
  1377   n += 35 + 6*p->nCol;
  1378   zStmt = sqlite3Malloc( n );
  1379   if( zStmt==0 ){
  1380     db->mallocFailed = 1;
  1381     return 0;
  1382   }
  1383   sqlite3_snprintf(n, zStmt,
  1384                   !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
  1385   k = strlen(zStmt);
  1386   identPut(zStmt, &k, p->zName);
  1387   zStmt[k++] = '(';
  1388   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
  1389     sqlite3_snprintf(n-k, &zStmt[k], zSep);
  1390     k += strlen(&zStmt[k]);
  1391     zSep = zSep2;
  1392     identPut(zStmt, &k, pCol->zName);
  1393     if( (z = pCol->zType)!=0 ){
  1394       zStmt[k++] = ' ';
  1395       assert( strlen(z)+k+1<=n );
  1396       sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
  1397       k += strlen(z);
  1398     }
  1399   }
  1400   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
  1401   return zStmt;
  1402 }
  1403 
  1404 /*
  1405 ** This routine is called to report the final ")" that terminates
  1406 ** a CREATE TABLE statement.
  1407 **
  1408 ** The table structure that other action routines have been building
  1409 ** is added to the internal hash tables, assuming no errors have
  1410 ** occurred.
  1411 **
  1412 ** An entry for the table is made in the master table on disk, unless
  1413 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
  1414 ** it means we are reading the sqlite_master table because we just
  1415 ** connected to the database or because the sqlite_master table has
  1416 ** recently changed, so the entry for this table already exists in
  1417 ** the sqlite_master table.  We do not want to create it again.
  1418 **
  1419 ** If the pSelect argument is not NULL, it means that this routine
  1420 ** was called to create a table generated from a 
  1421 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
  1422 ** the new table will match the result set of the SELECT.
  1423 */
  1424 void sqlite3EndTable(
  1425   Parse *pParse,          /* Parse context */
  1426   Token *pCons,           /* The ',' token after the last column defn. */
  1427   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
  1428   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
  1429 ){
  1430   Table *p;
  1431   sqlite3 *db = pParse->db;
  1432   int iDb;
  1433 
  1434   if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
  1435     return;
  1436   }
  1437   p = pParse->pNewTable;
  1438   if( p==0 ) return;
  1439 
  1440   assert( !db->init.busy || !pSelect );
  1441 
  1442   iDb = sqlite3SchemaToIndex(db, p->pSchema);
  1443 
  1444 #ifndef SQLITE_OMIT_CHECK
  1445   /* Resolve names in all CHECK constraint expressions.
  1446   */
  1447   if( p->pCheck ){
  1448     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
  1449     NameContext sNC;                /* Name context for pParse->pNewTable */
  1450 
  1451     memset(&sNC, 0, sizeof(sNC));
  1452     memset(&sSrc, 0, sizeof(sSrc));
  1453     sSrc.nSrc = 1;
  1454     sSrc.a[0].zName = p->zName;
  1455     sSrc.a[0].pTab = p;
  1456     sSrc.a[0].iCursor = -1;
  1457     sNC.pParse = pParse;
  1458     sNC.pSrcList = &sSrc;
  1459     sNC.isCheck = 1;
  1460     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
  1461       return;
  1462     }
  1463   }
  1464 #endif /* !defined(SQLITE_OMIT_CHECK) */
  1465 
  1466   /* If the db->init.busy is 1 it means we are reading the SQL off the
  1467   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  1468   ** So do not write to the disk again.  Extract the root page number
  1469   ** for the table from the db->init.newTnum field.  (The page number
  1470   ** should have been put there by the sqliteOpenCb routine.)
  1471   */
  1472   if( db->init.busy ){
  1473     p->tnum = db->init.newTnum;
  1474   }
  1475 
  1476   /* If not initializing, then create a record for the new table
  1477   ** in the SQLITE_MASTER table of the database.  The record number
  1478   ** for the new table entry should already be on the stack.
  1479   **
  1480   ** If this is a TEMPORARY table, write the entry into the auxiliary
  1481   ** file instead of into the main database file.
  1482   */
  1483   if( !db->init.busy ){
  1484     int n;
  1485     Vdbe *v;
  1486     char *zType;    /* "view" or "table" */
  1487     char *zType2;   /* "VIEW" or "TABLE" */
  1488     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
  1489 
  1490     v = sqlite3GetVdbe(pParse);
  1491     if( v==0 ) return;
  1492 
  1493     sqlite3VdbeAddOp1(v, OP_Close, 0);
  1494 
  1495     /* Create the rootpage for the new table and push it onto the stack.
  1496     ** A view has no rootpage, so just push a zero onto the stack for
  1497     ** views.  Initialize zType at the same time.
  1498     */
  1499     if( p->pSelect==0 ){
  1500       /* A regular table */
  1501       zType = "table";
  1502       zType2 = "TABLE";
  1503 #ifndef SQLITE_OMIT_VIEW
  1504     }else{
  1505       /* A view */
  1506       zType = "view";
  1507       zType2 = "VIEW";
  1508 #endif
  1509     }
  1510 
  1511     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
  1512     ** statement to populate the new table. The root-page number for the
  1513     ** new table is on the top of the vdbe stack.
  1514     **
  1515     ** Once the SELECT has been coded by sqlite3Select(), it is in a
  1516     ** suitable state to query for the column names and types to be used
  1517     ** by the new table.
  1518     **
  1519     ** A shared-cache write-lock is not required to write to the new table,
  1520     ** as a schema-lock must have already been obtained to create it. Since
  1521     ** a schema-lock excludes all other database users, the write-lock would
  1522     ** be redundant.
  1523     */
  1524     if( pSelect ){
  1525       SelectDest dest;
  1526       Table *pSelTab;
  1527 
  1528       assert(pParse->nTab==0);
  1529       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
  1530       sqlite3VdbeChangeP5(v, 1);
  1531       pParse->nTab = 2;
  1532       sqlite3SelectDestInit(&dest, SRT_Table, 1);
  1533       sqlite3Select(pParse, pSelect, &dest);
  1534       sqlite3VdbeAddOp1(v, OP_Close, 1);
  1535       if( pParse->nErr==0 ){
  1536         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
  1537         if( pSelTab==0 ) return;
  1538         assert( p->aCol==0 );
  1539         p->nCol = pSelTab->nCol;
  1540         p->aCol = pSelTab->aCol;
  1541         pSelTab->nCol = 0;
  1542         pSelTab->aCol = 0;
  1543         sqlite3DeleteTable(pSelTab);
  1544       }
  1545     }
  1546 
  1547     /* Compute the complete text of the CREATE statement */
  1548     if( pSelect ){
  1549       zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
  1550     }else{
  1551       n = pEnd->z - pParse->sNameToken.z + 1;
  1552       zStmt = sqlite3MPrintf(db, 
  1553           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
  1554       );
  1555     }
  1556 
  1557     /* A slot for the record has already been allocated in the 
  1558     ** SQLITE_MASTER table.  We just need to update that slot with all
  1559     ** the information we've collected.  The rowid for the preallocated
  1560     ** slot is the 2nd item on the stack.  The top of the stack is the
  1561     ** root page for the new table (or a 0 if this is a view).
  1562     */
  1563     sqlite3NestedParse(pParse,
  1564       "UPDATE %Q.%s "
  1565          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
  1566        "WHERE rowid=#%d",
  1567       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
  1568       zType,
  1569       p->zName,
  1570       p->zName,
  1571       pParse->regRoot,
  1572       zStmt,
  1573       pParse->regRowid
  1574     );
  1575     sqlite3DbFree(db, zStmt);
  1576     sqlite3ChangeCookie(pParse, iDb);
  1577 
  1578 #ifndef SQLITE_OMIT_AUTOINCREMENT
  1579     /* Check to see if we need to create an sqlite_sequence table for
  1580     ** keeping track of autoincrement keys.
  1581     */
  1582     if( p->tabFlags & TF_Autoincrement ){
  1583       Db *pDb = &db->aDb[iDb];
  1584       if( pDb->pSchema->pSeqTab==0 ){
  1585         sqlite3NestedParse(pParse,
  1586           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
  1587           pDb->zName
  1588         );
  1589       }
  1590     }
  1591 #endif
  1592 
  1593     /* Reparse everything to update our internal data structures */
  1594     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
  1595         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
  1596   }
  1597 
  1598 
  1599   /* Add the table to the in-memory representation of the database.
  1600   */
  1601   if( db->init.busy && pParse->nErr==0 ){
  1602     Table *pOld;
  1603     FKey *pFKey; 
  1604     Schema *pSchema = p->pSchema;
  1605     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
  1606     if( pOld ){
  1607       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
  1608       db->mallocFailed = 1;
  1609       return;
  1610     }
  1611 #ifndef SQLITE_OMIT_FOREIGN_KEY
  1612     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
  1613       void *data;
  1614       int nTo = strlen(pFKey->zTo) + 1;
  1615       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
  1616       data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
  1617       if( data==(void *)pFKey ){
  1618         db->mallocFailed = 1;
  1619       }
  1620     }
  1621 #endif
  1622     pParse->pNewTable = 0;
  1623     db->nTable++;
  1624     db->flags |= SQLITE_InternChanges;
  1625 
  1626 #ifndef SQLITE_OMIT_ALTERTABLE
  1627     if( !p->pSelect ){
  1628       const char *zName = (const char *)pParse->sNameToken.z;
  1629       int nName;
  1630       assert( !pSelect && pCons && pEnd );
  1631       if( pCons->z==0 ){
  1632         pCons = pEnd;
  1633       }
  1634       nName = (const char *)pCons->z - zName;
  1635       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
  1636     }
  1637 #endif
  1638   }
  1639 }
  1640 
  1641 #ifndef SQLITE_OMIT_VIEW
  1642 /*
  1643 ** The parser calls this routine in order to create a new VIEW
  1644 */
  1645 void sqlite3CreateView(
  1646   Parse *pParse,     /* The parsing context */
  1647   Token *pBegin,     /* The CREATE token that begins the statement */
  1648   Token *pName1,     /* The token that holds the name of the view */
  1649   Token *pName2,     /* The token that holds the name of the view */
  1650   Select *pSelect,   /* A SELECT statement that will become the new view */
  1651   int isTemp,        /* TRUE for a TEMPORARY view */
  1652   int noErr          /* Suppress error messages if VIEW already exists */
  1653 ){
  1654   Table *p;
  1655   int n;
  1656   const unsigned char *z;
  1657   Token sEnd;
  1658   DbFixer sFix;
  1659   Token *pName;
  1660   int iDb;
  1661   sqlite3 *db = pParse->db;
  1662 
  1663   if( pParse->nVar>0 ){
  1664     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
  1665     sqlite3SelectDelete(db, pSelect);
  1666     return;
  1667   }
  1668   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
  1669   p = pParse->pNewTable;
  1670   if( p==0 || pParse->nErr ){
  1671     sqlite3SelectDelete(db, pSelect);
  1672     return;
  1673   }
  1674   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
  1675   iDb = sqlite3SchemaToIndex(db, p->pSchema);
  1676   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
  1677     && sqlite3FixSelect(&sFix, pSelect)
  1678   ){
  1679     sqlite3SelectDelete(db, pSelect);
  1680     return;
  1681   }
  1682 
  1683   /* Make a copy of the entire SELECT statement that defines the view.
  1684   ** This will force all the Expr.token.z values to be dynamically
  1685   ** allocated rather than point to the input string - which means that
  1686   ** they will persist after the current sqlite3_exec() call returns.
  1687   */
  1688   p->pSelect = sqlite3SelectDup(db, pSelect);
  1689   sqlite3SelectDelete(db, pSelect);
  1690   if( db->mallocFailed ){
  1691     return;
  1692   }
  1693   if( !db->init.busy ){
  1694     sqlite3ViewGetColumnNames(pParse, p);
  1695   }
  1696 
  1697   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
  1698   ** the end.
  1699   */
  1700   sEnd = pParse->sLastToken;
  1701   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
  1702     sEnd.z += sEnd.n;
  1703   }
  1704   sEnd.n = 0;
  1705   n = sEnd.z - pBegin->z;
  1706   z = (const unsigned char*)pBegin->z;
  1707   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
  1708   sEnd.z = &z[n-1];
  1709   sEnd.n = 1;
  1710 
  1711   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
  1712   sqlite3EndTable(pParse, 0, &sEnd, 0);
  1713   return;
  1714 }
  1715 #endif /* SQLITE_OMIT_VIEW */
  1716 
  1717 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
  1718 /*
  1719 ** The Table structure pTable is really a VIEW.  Fill in the names of
  1720 ** the columns of the view in the pTable structure.  Return the number
  1721 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
  1722 */
  1723 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
  1724   Table *pSelTab;   /* A fake table from which we get the result set */
  1725   Select *pSel;     /* Copy of the SELECT that implements the view */
  1726   int nErr = 0;     /* Number of errors encountered */
  1727   int n;            /* Temporarily holds the number of cursors assigned */
  1728   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
  1729   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
  1730 
  1731   assert( pTable );
  1732 
  1733 #ifndef SQLITE_OMIT_VIRTUALTABLE
  1734   if( sqlite3VtabCallConnect(pParse, pTable) ){
  1735     return SQLITE_ERROR;
  1736   }
  1737   if( IsVirtual(pTable) ) return 0;
  1738 #endif
  1739 
  1740 #ifndef SQLITE_OMIT_VIEW
  1741   /* A positive nCol means the columns names for this view are
  1742   ** already known.
  1743   */
  1744   if( pTable->nCol>0 ) return 0;
  1745 
  1746   /* A negative nCol is a special marker meaning that we are currently
  1747   ** trying to compute the column names.  If we enter this routine with
  1748   ** a negative nCol, it means two or more views form a loop, like this:
  1749   **
  1750   **     CREATE VIEW one AS SELECT * FROM two;
  1751   **     CREATE VIEW two AS SELECT * FROM one;
  1752   **
  1753   ** Actually, this error is caught previously and so the following test
  1754   ** should always fail.  But we will leave it in place just to be safe.
  1755   */
  1756   if( pTable->nCol<0 ){
  1757     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
  1758     return 1;
  1759   }
  1760   assert( pTable->nCol>=0 );
  1761 
  1762   /* If we get this far, it means we need to compute the table names.
  1763   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
  1764   ** "*" elements in the results set of the view and will assign cursors
  1765   ** to the elements of the FROM clause.  But we do not want these changes
  1766   ** to be permanent.  So the computation is done on a copy of the SELECT
  1767   ** statement that defines the view.
  1768   */
  1769   assert( pTable->pSelect );
  1770   pSel = sqlite3SelectDup(db, pTable->pSelect);
  1771   if( pSel ){
  1772     n = pParse->nTab;
  1773     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
  1774     pTable->nCol = -1;
  1775 #ifndef SQLITE_OMIT_AUTHORIZATION
  1776     xAuth = db->xAuth;
  1777     db->xAuth = 0;
  1778     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
  1779     db->xAuth = xAuth;
  1780 #else
  1781     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
  1782 #endif
  1783     pParse->nTab = n;
  1784     if( pSelTab ){
  1785       assert( pTable->aCol==0 );
  1786       pTable->nCol = pSelTab->nCol;
  1787       pTable->aCol = pSelTab->aCol;
  1788       pSelTab->nCol = 0;
  1789       pSelTab->aCol = 0;
  1790       sqlite3DeleteTable(pSelTab);
  1791       pTable->pSchema->flags |= DB_UnresetViews;
  1792     }else{
  1793       pTable->nCol = 0;
  1794       nErr++;
  1795     }
  1796     sqlite3SelectDelete(db, pSel);
  1797   } else {
  1798     nErr++;
  1799   }
  1800 #endif /* SQLITE_OMIT_VIEW */
  1801   return nErr;  
  1802 }
  1803 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
  1804 
  1805 #ifndef SQLITE_OMIT_VIEW
  1806 /*
  1807 ** Clear the column names from every VIEW in database idx.
  1808 */
  1809 static void sqliteViewResetAll(sqlite3 *db, int idx){
  1810   HashElem *i;
  1811   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
  1812   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
  1813     Table *pTab = sqliteHashData(i);
  1814     if( pTab->pSelect ){
  1815       sqliteResetColumnNames(pTab);
  1816     }
  1817   }
  1818   DbClearProperty(db, idx, DB_UnresetViews);
  1819 }
  1820 #else
  1821 # define sqliteViewResetAll(A,B)
  1822 #endif /* SQLITE_OMIT_VIEW */
  1823 
  1824 /*
  1825 ** This function is called by the VDBE to adjust the internal schema
  1826 ** used by SQLite when the btree layer moves a table root page. The
  1827 ** root-page of a table or index in database iDb has changed from iFrom
  1828 ** to iTo.
  1829 **
  1830 ** Ticket #1728:  The symbol table might still contain information
  1831 ** on tables and/or indices that are the process of being deleted.
  1832 ** If you are unlucky, one of those deleted indices or tables might
  1833 ** have the same rootpage number as the real table or index that is
  1834 ** being moved.  So we cannot stop searching after the first match 
  1835 ** because the first match might be for one of the deleted indices
  1836 ** or tables and not the table/index that is actually being moved.
  1837 ** We must continue looping until all tables and indices with
  1838 ** rootpage==iFrom have been converted to have a rootpage of iTo
  1839 ** in order to be certain that we got the right one.
  1840 */
  1841 #ifndef SQLITE_OMIT_AUTOVACUUM
  1842 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
  1843   HashElem *pElem;
  1844   Hash *pHash;
  1845 
  1846   pHash = &pDb->pSchema->tblHash;
  1847   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
  1848     Table *pTab = sqliteHashData(pElem);
  1849     if( pTab->tnum==iFrom ){
  1850       pTab->tnum = iTo;
  1851     }
  1852   }
  1853   pHash = &pDb->pSchema->idxHash;
  1854   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
  1855     Index *pIdx = sqliteHashData(pElem);
  1856     if( pIdx->tnum==iFrom ){
  1857       pIdx->tnum = iTo;
  1858     }
  1859   }
  1860 }
  1861 #endif
  1862 
  1863 /*
  1864 ** Write code to erase the table with root-page iTable from database iDb.
  1865 ** Also write code to modify the sqlite_master table and internal schema
  1866 ** if a root-page of another table is moved by the btree-layer whilst
  1867 ** erasing iTable (this can happen with an auto-vacuum database).
  1868 */ 
  1869 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  1870   Vdbe *v = sqlite3GetVdbe(pParse);
  1871   int r1 = sqlite3GetTempReg(pParse);
  1872   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  1873 #ifndef SQLITE_OMIT_AUTOVACUUM
  1874   /* OP_Destroy stores an in integer r1. If this integer
  1875   ** is non-zero, then it is the root page number of a table moved to
  1876   ** location iTable. The following code modifies the sqlite_master table to
  1877   ** reflect this.
  1878   **
  1879   ** The "#%d" in the SQL is a special constant that means whatever value
  1880   ** is on the top of the stack.  See sqlite3RegisterExpr().
  1881   */
  1882   sqlite3NestedParse(pParse, 
  1883      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
  1884      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
  1885 #endif
  1886   sqlite3ReleaseTempReg(pParse, r1);
  1887 }
  1888 
  1889 /*
  1890 ** Write VDBE code to erase table pTab and all associated indices on disk.
  1891 ** Code to update the sqlite_master tables and internal schema definitions
  1892 ** in case a root-page belonging to another table is moved by the btree layer
  1893 ** is also added (this can happen with an auto-vacuum database).
  1894 */
  1895 static void destroyTable(Parse *pParse, Table *pTab){
  1896 #ifdef SQLITE_OMIT_AUTOVACUUM
  1897   Index *pIdx;
  1898   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  1899   destroyRootPage(pParse, pTab->tnum, iDb);
  1900   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
  1901     destroyRootPage(pParse, pIdx->tnum, iDb);
  1902   }
  1903 #else
  1904   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
  1905   ** is not defined), then it is important to call OP_Destroy on the
  1906   ** table and index root-pages in order, starting with the numerically 
  1907   ** largest root-page number. This guarantees that none of the root-pages
  1908   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
  1909   ** following were coded:
  1910   **
  1911   ** OP_Destroy 4 0
  1912   ** ...
  1913   ** OP_Destroy 5 0
  1914   **
  1915   ** and root page 5 happened to be the largest root-page number in the
  1916   ** database, then root page 5 would be moved to page 4 by the 
  1917   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
  1918   ** a free-list page.
  1919   */
  1920   int iTab = pTab->tnum;
  1921   int iDestroyed = 0;
  1922 
  1923   while( 1 ){
  1924     Index *pIdx;
  1925     int iLargest = 0;
  1926 
  1927     if( iDestroyed==0 || iTab<iDestroyed ){
  1928       iLargest = iTab;
  1929     }
  1930     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
  1931       int iIdx = pIdx->tnum;
  1932       assert( pIdx->pSchema==pTab->pSchema );
  1933       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
  1934         iLargest = iIdx;
  1935       }
  1936     }
  1937     if( iLargest==0 ){
  1938       return;
  1939     }else{
  1940       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  1941       destroyRootPage(pParse, iLargest, iDb);
  1942       iDestroyed = iLargest;
  1943     }
  1944   }
  1945 #endif
  1946 }
  1947 
  1948 /*
  1949 ** This routine is called to do the work of a DROP TABLE statement.
  1950 ** pName is the name of the table to be dropped.
  1951 */
  1952 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
  1953   Table *pTab;
  1954   Vdbe *v;
  1955   sqlite3 *db = pParse->db;
  1956   int iDb;
  1957 
  1958   if( pParse->nErr || db->mallocFailed ){
  1959     goto exit_drop_table;
  1960   }
  1961   assert( pName->nSrc==1 );
  1962   pTab = sqlite3LocateTable(pParse, isView, 
  1963                             pName->a[0].zName, pName->a[0].zDatabase);
  1964 
  1965   if( pTab==0 ){
  1966     if( noErr ){
  1967       sqlite3ErrorClear(pParse);
  1968     }
  1969     goto exit_drop_table;
  1970   }
  1971   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  1972   assert( iDb>=0 && iDb<db->nDb );
  1973 
  1974   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
  1975   ** it is initialized.
  1976   */
  1977   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
  1978     goto exit_drop_table;
  1979   }
  1980 #ifndef SQLITE_OMIT_AUTHORIZATION
  1981   {
  1982     int code;
  1983     const char *zTab = SCHEMA_TABLE(iDb);
  1984     const char *zDb = db->aDb[iDb].zName;
  1985     const char *zArg2 = 0;
  1986     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
  1987       goto exit_drop_table;
  1988     }
  1989     if( isView ){
  1990       if( !OMIT_TEMPDB && iDb==1 ){
  1991         code = SQLITE_DROP_TEMP_VIEW;
  1992       }else{
  1993         code = SQLITE_DROP_VIEW;
  1994       }
  1995 #ifndef SQLITE_OMIT_VIRTUALTABLE
  1996     }else if( IsVirtual(pTab) ){
  1997       code = SQLITE_DROP_VTABLE;
  1998       zArg2 = pTab->pMod->zName;
  1999 #endif
  2000     }else{
  2001       if( !OMIT_TEMPDB && iDb==1 ){
  2002         code = SQLITE_DROP_TEMP_TABLE;
  2003       }else{
  2004         code = SQLITE_DROP_TABLE;
  2005       }
  2006     }
  2007     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
  2008       goto exit_drop_table;
  2009     }
  2010     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
  2011       goto exit_drop_table;
  2012     }
  2013   }
  2014 #endif
  2015   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
  2016     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
  2017     goto exit_drop_table;
  2018   }
  2019 
  2020 #ifndef SQLITE_OMIT_VIEW
  2021   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
  2022   ** on a table.
  2023   */
  2024   if( isView && pTab->pSelect==0 ){
  2025     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
  2026     goto exit_drop_table;
  2027   }
  2028   if( !isView && pTab->pSelect ){
  2029     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
  2030     goto exit_drop_table;
  2031   }
  2032 #endif
  2033 
  2034   /* Generate code to remove the table from the master table
  2035   ** on disk.
  2036   */
  2037   v = sqlite3GetVdbe(pParse);
  2038   if( v ){
  2039     Trigger *pTrigger;
  2040     Db *pDb = &db->aDb[iDb];
  2041     sqlite3BeginWriteOperation(pParse, 1, iDb);
  2042 
  2043 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2044     if( IsVirtual(pTab) ){
  2045       Vdbe *v = sqlite3GetVdbe(pParse);
  2046       if( v ){
  2047         sqlite3VdbeAddOp0(v, OP_VBegin);
  2048       }
  2049     }
  2050 #endif
  2051 
  2052     /* Drop all triggers associated with the table being dropped. Code
  2053     ** is generated to remove entries from sqlite_master and/or
  2054     ** sqlite_temp_master if required.
  2055     */
  2056     pTrigger = pTab->pTrigger;
  2057     while( pTrigger ){
  2058       assert( pTrigger->pSchema==pTab->pSchema || 
  2059           pTrigger->pSchema==db->aDb[1].pSchema );
  2060       sqlite3DropTriggerPtr(pParse, pTrigger);
  2061       pTrigger = pTrigger->pNext;
  2062     }
  2063 
  2064 #ifndef SQLITE_OMIT_AUTOINCREMENT
  2065     /* Remove any entries of the sqlite_sequence table associated with
  2066     ** the table being dropped. This is done before the table is dropped
  2067     ** at the btree level, in case the sqlite_sequence table needs to
  2068     ** move as a result of the drop (can happen in auto-vacuum mode).
  2069     */
  2070     if( pTab->tabFlags & TF_Autoincrement ){
  2071       sqlite3NestedParse(pParse,
  2072         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
  2073         pDb->zName, pTab->zName
  2074       );
  2075     }
  2076 #endif
  2077 
  2078     /* Drop all SQLITE_MASTER table and index entries that refer to the
  2079     ** table. The program name loops through the master table and deletes
  2080     ** every row that refers to a table of the same name as the one being
  2081     ** dropped. Triggers are handled seperately because a trigger can be
  2082     ** created in the temp database that refers to a table in another
  2083     ** database.
  2084     */
  2085     sqlite3NestedParse(pParse, 
  2086         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
  2087         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
  2088 
  2089     /* Drop any statistics from the sqlite_stat1 table, if it exists */
  2090     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
  2091       sqlite3NestedParse(pParse,
  2092         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
  2093       );
  2094     }
  2095 
  2096     if( !isView && !IsVirtual(pTab) ){
  2097       destroyTable(pParse, pTab);
  2098     }
  2099 
  2100     /* Remove the table entry from SQLite's internal schema and modify
  2101     ** the schema cookie.
  2102     */
  2103     if( IsVirtual(pTab) ){
  2104       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
  2105     }
  2106     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
  2107     sqlite3ChangeCookie(pParse, iDb);
  2108   }
  2109   sqliteViewResetAll(db, iDb);
  2110 
  2111 exit_drop_table:
  2112   sqlite3SrcListDelete(db, pName);
  2113 }
  2114 
  2115 /*
  2116 ** This routine is called to create a new foreign key on the table
  2117 ** currently under construction.  pFromCol determines which columns
  2118 ** in the current table point to the foreign key.  If pFromCol==0 then
  2119 ** connect the key to the last column inserted.  pTo is the name of
  2120 ** the table referred to.  pToCol is a list of tables in the other
  2121 ** pTo table that the foreign key points to.  flags contains all
  2122 ** information about the conflict resolution algorithms specified
  2123 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
  2124 **
  2125 ** An FKey structure is created and added to the table currently
  2126 ** under construction in the pParse->pNewTable field.  The new FKey
  2127 ** is not linked into db->aFKey at this point - that does not happen
  2128 ** until sqlite3EndTable().
  2129 **
  2130 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
  2131 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
  2132 */
  2133 void sqlite3CreateForeignKey(
  2134   Parse *pParse,       /* Parsing context */
  2135   ExprList *pFromCol,  /* Columns in this table that point to other table */
  2136   Token *pTo,          /* Name of the other table */
  2137   ExprList *pToCol,    /* Columns in the other table */
  2138   int flags            /* Conflict resolution algorithms. */
  2139 ){
  2140   sqlite3 *db = pParse->db;
  2141 #ifndef SQLITE_OMIT_FOREIGN_KEY
  2142   FKey *pFKey = 0;
  2143   Table *p = pParse->pNewTable;
  2144   int nByte;
  2145   int i;
  2146   int nCol;
  2147   char *z;
  2148 
  2149   assert( pTo!=0 );
  2150   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
  2151   if( pFromCol==0 ){
  2152     int iCol = p->nCol-1;
  2153     if( iCol<0 ) goto fk_end;
  2154     if( pToCol && pToCol->nExpr!=1 ){
  2155       sqlite3ErrorMsg(pParse, "foreign key on %s"
  2156          " should reference only one column of table %T",
  2157          p->aCol[iCol].zName, pTo);
  2158       goto fk_end;
  2159     }
  2160     nCol = 1;
  2161   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
  2162     sqlite3ErrorMsg(pParse,
  2163         "number of columns in foreign key does not match the number of "
  2164         "columns in the referenced table");
  2165     goto fk_end;
  2166   }else{
  2167     nCol = pFromCol->nExpr;
  2168   }
  2169   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
  2170   if( pToCol ){
  2171     for(i=0; i<pToCol->nExpr; i++){
  2172       nByte += strlen(pToCol->a[i].zName) + 1;
  2173     }
  2174   }
  2175   pFKey = sqlite3DbMallocZero(db, nByte );
  2176   if( pFKey==0 ){
  2177     goto fk_end;
  2178   }
  2179   pFKey->pFrom = p;
  2180   pFKey->pNextFrom = p->pFKey;
  2181   z = (char*)&pFKey[1];
  2182   pFKey->aCol = (struct sColMap*)z;
  2183   z += sizeof(struct sColMap)*nCol;
  2184   pFKey->zTo = z;
  2185   memcpy(z, pTo->z, pTo->n);
  2186   z[pTo->n] = 0;
  2187   z += pTo->n+1;
  2188   pFKey->pNextTo = 0;
  2189   pFKey->nCol = nCol;
  2190   if( pFromCol==0 ){
  2191     pFKey->aCol[0].iFrom = p->nCol-1;
  2192   }else{
  2193     for(i=0; i<nCol; i++){
  2194       int j;
  2195       for(j=0; j<p->nCol; j++){
  2196         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
  2197           pFKey->aCol[i].iFrom = j;
  2198           break;
  2199         }
  2200       }
  2201       if( j>=p->nCol ){
  2202         sqlite3ErrorMsg(pParse, 
  2203           "unknown column \"%s\" in foreign key definition", 
  2204           pFromCol->a[i].zName);
  2205         goto fk_end;
  2206       }
  2207     }
  2208   }
  2209   if( pToCol ){
  2210     for(i=0; i<nCol; i++){
  2211       int n = strlen(pToCol->a[i].zName);
  2212       pFKey->aCol[i].zCol = z;
  2213       memcpy(z, pToCol->a[i].zName, n);
  2214       z[n] = 0;
  2215       z += n+1;
  2216     }
  2217   }
  2218   pFKey->isDeferred = 0;
  2219   pFKey->deleteConf = flags & 0xff;
  2220   pFKey->updateConf = (flags >> 8 ) & 0xff;
  2221   pFKey->insertConf = (flags >> 16 ) & 0xff;
  2222 
  2223   /* Link the foreign key to the table as the last step.
  2224   */
  2225   p->pFKey = pFKey;
  2226   pFKey = 0;
  2227 
  2228 fk_end:
  2229   sqlite3DbFree(db, pFKey);
  2230 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
  2231   sqlite3ExprListDelete(db, pFromCol);
  2232   sqlite3ExprListDelete(db, pToCol);
  2233 }
  2234 
  2235 /*
  2236 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
  2237 ** clause is seen as part of a foreign key definition.  The isDeferred
  2238 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
  2239 ** The behavior of the most recently created foreign key is adjusted
  2240 ** accordingly.
  2241 */
  2242 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
  2243 #ifndef SQLITE_OMIT_FOREIGN_KEY
  2244   Table *pTab;
  2245   FKey *pFKey;
  2246   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
  2247   pFKey->isDeferred = isDeferred;
  2248 #endif
  2249 }
  2250 
  2251 /*
  2252 ** Generate code that will erase and refill index *pIdx.  This is
  2253 ** used to initialize a newly created index or to recompute the
  2254 ** content of an index in response to a REINDEX command.
  2255 **
  2256 ** if memRootPage is not negative, it means that the index is newly
  2257 ** created.  The register specified by memRootPage contains the
  2258 ** root page number of the index.  If memRootPage is negative, then
  2259 ** the index already exists and must be cleared before being refilled and
  2260 ** the root page number of the index is taken from pIndex->tnum.
  2261 */
  2262 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
  2263   Table *pTab = pIndex->pTable;  /* The table that is indexed */
  2264   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
  2265   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
  2266   int addr1;                     /* Address of top of loop */
  2267   int tnum;                      /* Root page of index */
  2268   Vdbe *v;                       /* Generate code into this virtual machine */
  2269   KeyInfo *pKey;                 /* KeyInfo for index */
  2270   int regIdxKey;                 /* Registers containing the index key */
  2271   int regRecord;                 /* Register holding assemblied index record */
  2272   sqlite3 *db = pParse->db;      /* The database connection */
  2273   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
  2274 
  2275 #ifndef SQLITE_OMIT_AUTHORIZATION
  2276   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
  2277       db->aDb[iDb].zName ) ){
  2278     return;
  2279   }
  2280 #endif
  2281 
  2282   /* Require a write-lock on the table to perform this operation */
  2283   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
  2284 
  2285   v = sqlite3GetVdbe(pParse);
  2286   if( v==0 ) return;
  2287   if( memRootPage>=0 ){
  2288     tnum = memRootPage;
  2289   }else{
  2290     tnum = pIndex->tnum;
  2291     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  2292   }
  2293   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  2294   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
  2295                     (char *)pKey, P4_KEYINFO_HANDOFF);
  2296   if( memRootPage>=0 ){
  2297     sqlite3VdbeChangeP5(v, 1);
  2298   }
  2299   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  2300   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
  2301   regRecord = sqlite3GetTempReg(pParse);
  2302   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
  2303   if( pIndex->onError!=OE_None ){
  2304     int j1, j2;
  2305     int regRowid;
  2306 
  2307     regRowid = regIdxKey + pIndex->nColumn;
  2308     j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
  2309     j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
  2310                            0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
  2311     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
  2312                     "indexed columns are not unique", P4_STATIC);
  2313     sqlite3VdbeJumpHere(v, j1);
  2314     sqlite3VdbeJumpHere(v, j2);
  2315   }
  2316   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
  2317   sqlite3ReleaseTempReg(pParse, regRecord);
  2318   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
  2319   sqlite3VdbeJumpHere(v, addr1);
  2320   sqlite3VdbeAddOp1(v, OP_Close, iTab);
  2321   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
  2322 }
  2323 
  2324 /*
  2325 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
  2326 ** and pTblList is the name of the table that is to be indexed.  Both will 
  2327 ** be NULL for a primary key or an index that is created to satisfy a
  2328 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
  2329 ** as the table to be indexed.  pParse->pNewTable is a table that is
  2330 ** currently being constructed by a CREATE TABLE statement.
  2331 **
  2332 ** pList is a list of columns to be indexed.  pList will be NULL if this
  2333 ** is a primary key or unique-constraint on the most recent column added
  2334 ** to the table currently under construction.  
  2335 */
  2336 void sqlite3CreateIndex(
  2337   Parse *pParse,     /* All information about this parse */
  2338   Token *pName1,     /* First part of index name. May be NULL */
  2339   Token *pName2,     /* Second part of index name. May be NULL */
  2340   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
  2341   ExprList *pList,   /* A list of columns to be indexed */
  2342   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  2343   Token *pStart,     /* The CREATE token that begins this statement */
  2344   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
  2345   int sortOrder,     /* Sort order of primary key when pList==NULL */
  2346   int ifNotExist     /* Omit error if index already exists */
  2347 ){
  2348   Table *pTab = 0;     /* Table to be indexed */
  2349   Index *pIndex = 0;   /* The index to be created */
  2350   char *zName = 0;     /* Name of the index */
  2351   int nName;           /* Number of characters in zName */
  2352   int i, j;
  2353   Token nullId;        /* Fake token for an empty ID list */
  2354   DbFixer sFix;        /* For assigning database names to pTable */
  2355   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
  2356   sqlite3 *db = pParse->db;
  2357   Db *pDb;             /* The specific table containing the indexed database */
  2358   int iDb;             /* Index of the database that is being written */
  2359   Token *pName = 0;    /* Unqualified name of the index to create */
  2360   struct ExprList_item *pListItem; /* For looping over pList */
  2361   int nCol;
  2362   int nExtra = 0;
  2363   char *zExtra;
  2364 
  2365   if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
  2366     goto exit_create_index;
  2367   }
  2368 
  2369   /*
  2370   ** Find the table that is to be indexed.  Return early if not found.
  2371   */
  2372   if( pTblName!=0 ){
  2373 
  2374     /* Use the two-part index name to determine the database 
  2375     ** to search for the table. 'Fix' the table name to this db
  2376     ** before looking up the table.
  2377     */
  2378     assert( pName1 && pName2 );
  2379     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
  2380     if( iDb<0 ) goto exit_create_index;
  2381 
  2382 #ifndef SQLITE_OMIT_TEMPDB
  2383     /* If the index name was unqualified, check if the the table
  2384     ** is a temp table. If so, set the database to 1. Do not do this
  2385     ** if initialising a database schema.
  2386     */
  2387     if( !db->init.busy ){
  2388       pTab = sqlite3SrcListLookup(pParse, pTblName);
  2389       if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
  2390         iDb = 1;
  2391       }
  2392     }
  2393 #endif
  2394 
  2395     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
  2396         sqlite3FixSrcList(&sFix, pTblName)
  2397     ){
  2398       /* Because the parser constructs pTblName from a single identifier,
  2399       ** sqlite3FixSrcList can never fail. */
  2400       assert(0);
  2401     }
  2402     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 
  2403         pTblName->a[0].zDatabase);
  2404     if( !pTab ) goto exit_create_index;
  2405     assert( db->aDb[iDb].pSchema==pTab->pSchema );
  2406   }else{
  2407     assert( pName==0 );
  2408     pTab = pParse->pNewTable;
  2409     if( !pTab ) goto exit_create_index;
  2410     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  2411   }
  2412   pDb = &db->aDb[iDb];
  2413 
  2414   if( pTab==0 || pParse->nErr ) goto exit_create_index;
  2415   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
  2416     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
  2417     goto exit_create_index;
  2418   }
  2419 #ifndef SQLITE_OMIT_VIEW
  2420   if( pTab->pSelect ){
  2421     sqlite3ErrorMsg(pParse, "views may not be indexed");
  2422     goto exit_create_index;
  2423   }
  2424 #endif
  2425 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2426   if( IsVirtual(pTab) ){
  2427     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
  2428     goto exit_create_index;
  2429   }
  2430 #endif
  2431 
  2432   /*
  2433   ** Find the name of the index.  Make sure there is not already another
  2434   ** index or table with the same name.  
  2435   **
  2436   ** Exception:  If we are reading the names of permanent indices from the
  2437   ** sqlite_master table (because some other process changed the schema) and
  2438   ** one of the index names collides with the name of a temporary table or
  2439   ** index, then we will continue to process this index.
  2440   **
  2441   ** If pName==0 it means that we are
  2442   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
  2443   ** own name.
  2444   */
  2445   if( pName ){
  2446     zName = sqlite3NameFromToken(db, pName);
  2447     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
  2448     if( zName==0 ) goto exit_create_index;
  2449     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
  2450       goto exit_create_index;
  2451     }
  2452     if( !db->init.busy ){
  2453       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
  2454       if( sqlite3FindTable(db, zName, 0)!=0 ){
  2455         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
  2456         goto exit_create_index;
  2457       }
  2458     }
  2459     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
  2460       if( !ifNotExist ){
  2461         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
  2462       }
  2463       goto exit_create_index;
  2464     }
  2465   }else{
  2466     int n;
  2467     Index *pLoop;
  2468     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
  2469     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
  2470     if( zName==0 ){
  2471       goto exit_create_index;
  2472     }
  2473   }
  2474 
  2475   /* Check for authorization to create an index.
  2476   */
  2477 #ifndef SQLITE_OMIT_AUTHORIZATION
  2478   {
  2479     const char *zDb = pDb->zName;
  2480     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
  2481       goto exit_create_index;
  2482     }
  2483     i = SQLITE_CREATE_INDEX;
  2484     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
  2485     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
  2486       goto exit_create_index;
  2487     }
  2488   }
  2489 #endif
  2490 
  2491   /* If pList==0, it means this routine was called to make a primary
  2492   ** key out of the last column added to the table under construction.
  2493   ** So create a fake list to simulate this.
  2494   */
  2495   if( pList==0 ){
  2496     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
  2497     nullId.n = strlen((char*)nullId.z);
  2498     pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
  2499     if( pList==0 ) goto exit_create_index;
  2500     pList->a[0].sortOrder = sortOrder;
  2501   }
  2502 
  2503   /* Figure out how many bytes of space are required to store explicitly
  2504   ** specified collation sequence names.
  2505   */
  2506   for(i=0; i<pList->nExpr; i++){
  2507     Expr *pExpr;
  2508     CollSeq *pColl;
  2509     if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){
  2510       nExtra += (1 + strlen(pColl->zName));
  2511     }
  2512   }
  2513 
  2514   /* 
  2515   ** Allocate the index structure. 
  2516   */
  2517   nName = strlen(zName);
  2518   nCol = pList->nExpr;
  2519   pIndex = sqlite3DbMallocZero(db, 
  2520       sizeof(Index) +              /* Index structure  */
  2521       sizeof(int)*nCol +           /* Index.aiColumn   */
  2522       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
  2523       sizeof(char *)*nCol +        /* Index.azColl     */
  2524       sizeof(u8)*nCol +            /* Index.aSortOrder */
  2525       nName + 1 +                  /* Index.zName      */
  2526       nExtra                       /* Collation sequence names */
  2527   );
  2528   if( db->mallocFailed ){
  2529     goto exit_create_index;
  2530   }
  2531   pIndex->azColl = (char**)(&pIndex[1]);
  2532   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
  2533   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
  2534   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
  2535   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  2536   zExtra = (char *)(&pIndex->zName[nName+1]);
  2537   memcpy(pIndex->zName, zName, nName+1);
  2538   pIndex->pTable = pTab;
  2539   pIndex->nColumn = pList->nExpr;
  2540   pIndex->onError = onError;
  2541   pIndex->autoIndex = pName==0;
  2542   pIndex->pSchema = db->aDb[iDb].pSchema;
  2543 
  2544   /* Check to see if we should honor DESC requests on index columns
  2545   */
  2546   if( pDb->pSchema->file_format>=4 ){
  2547     sortOrderMask = -1;   /* Honor DESC */
  2548   }else{
  2549     sortOrderMask = 0;    /* Ignore DESC */
  2550   }
  2551 
  2552   /* Scan the names of the columns of the table to be indexed and
  2553   ** load the column indices into the Index structure.  Report an error
  2554   ** if any column is not found.
  2555   */
  2556   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
  2557     const char *zColName = pListItem->zName;
  2558     Column *pTabCol;
  2559     int requestedSortOrder;
  2560     char *zColl;                   /* Collation sequence name */
  2561 
  2562     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
  2563       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
  2564     }
  2565     if( j>=pTab->nCol ){
  2566       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
  2567         pTab->zName, zColName);
  2568       goto exit_create_index;
  2569     }
  2570     /* TODO:  Add a test to make sure that the same column is not named
  2571     ** more than once within the same index.  Only the first instance of
  2572     ** the column will ever be used by the optimizer.  Note that using the
  2573     ** same column more than once cannot be an error because that would 
  2574     ** break backwards compatibility - it needs to be a warning.
  2575     */
  2576     pIndex->aiColumn[i] = j;
  2577     if( pListItem->pExpr && pListItem->pExpr->pColl ){
  2578       assert( pListItem->pExpr->pColl );
  2579       zColl = zExtra;
  2580       sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
  2581       zExtra += (strlen(zColl) + 1);
  2582     }else{
  2583       zColl = pTab->aCol[j].zColl;
  2584       if( !zColl ){
  2585         zColl = db->pDfltColl->zName;
  2586       }
  2587     }
  2588     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
  2589       goto exit_create_index;
  2590     }
  2591     pIndex->azColl[i] = zColl;
  2592     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
  2593     pIndex->aSortOrder[i] = requestedSortOrder;
  2594   }
  2595   sqlite3DefaultRowEst(pIndex);
  2596 
  2597   if( pTab==pParse->pNewTable ){
  2598     /* This routine has been called to create an automatic index as a
  2599     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
  2600     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
  2601     ** i.e. one of:
  2602     **
  2603     ** CREATE TABLE t(x PRIMARY KEY, y);
  2604     ** CREATE TABLE t(x, y, UNIQUE(x, y));
  2605     **
  2606     ** Either way, check to see if the table already has such an index. If
  2607     ** so, don't bother creating this one. This only applies to
  2608     ** automatically created indices. Users can do as they wish with
  2609     ** explicit indices.
  2610     */
  2611     Index *pIdx;
  2612     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
  2613       int k;
  2614       assert( pIdx->onError!=OE_None );
  2615       assert( pIdx->autoIndex );
  2616       assert( pIndex->onError!=OE_None );
  2617 
  2618       if( pIdx->nColumn!=pIndex->nColumn ) continue;
  2619       for(k=0; k<pIdx->nColumn; k++){
  2620         const char *z1 = pIdx->azColl[k];
  2621         const char *z2 = pIndex->azColl[k];
  2622         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
  2623         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
  2624         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
  2625       }
  2626       if( k==pIdx->nColumn ){
  2627         if( pIdx->onError!=pIndex->onError ){
  2628           /* This constraint creates the same index as a previous
  2629           ** constraint specified somewhere in the CREATE TABLE statement.
  2630           ** However the ON CONFLICT clauses are different. If both this 
  2631           ** constraint and the previous equivalent constraint have explicit
  2632           ** ON CONFLICT clauses this is an error. Otherwise, use the
  2633           ** explicitly specified behaviour for the index.
  2634           */
  2635           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
  2636             sqlite3ErrorMsg(pParse, 
  2637                 "conflicting ON CONFLICT clauses specified", 0);
  2638           }
  2639           if( pIdx->onError==OE_Default ){
  2640             pIdx->onError = pIndex->onError;
  2641           }
  2642         }
  2643         goto exit_create_index;
  2644       }
  2645     }
  2646   }
  2647 
  2648   /* Link the new Index structure to its table and to the other
  2649   ** in-memory database structures. 
  2650   */
  2651   if( db->init.busy ){
  2652     Index *p;
  2653     p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
  2654                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
  2655     if( p ){
  2656       assert( p==pIndex );  /* Malloc must have failed */
  2657       db->mallocFailed = 1;
  2658       goto exit_create_index;
  2659     }
  2660     db->flags |= SQLITE_InternChanges;
  2661     if( pTblName!=0 ){
  2662       pIndex->tnum = db->init.newTnum;
  2663     }
  2664   }
  2665 
  2666   /* If the db->init.busy is 0 then create the index on disk.  This
  2667   ** involves writing the index into the master table and filling in the
  2668   ** index with the current table contents.
  2669   **
  2670   ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
  2671   ** command.  db->init.busy is 1 when a database is opened and 
  2672   ** CREATE INDEX statements are read out of the master table.  In
  2673   ** the latter case the index already exists on disk, which is why
  2674   ** we don't want to recreate it.
  2675   **
  2676   ** If pTblName==0 it means this index is generated as a primary key
  2677   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
  2678   ** has just been created, it contains no data and the index initialization
  2679   ** step can be skipped.
  2680   */
  2681   else if( db->init.busy==0 ){
  2682     Vdbe *v;
  2683     char *zStmt;
  2684     int iMem = ++pParse->nMem;
  2685 
  2686     v = sqlite3GetVdbe(pParse);
  2687     if( v==0 ) goto exit_create_index;
  2688 
  2689 
  2690     /* Create the rootpage for the index
  2691     */
  2692     sqlite3BeginWriteOperation(pParse, 1, iDb);
  2693     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
  2694 
  2695     /* Gather the complete text of the CREATE INDEX statement into
  2696     ** the zStmt variable
  2697     */
  2698     if( pStart && pEnd ){
  2699       /* A named index with an explicit CREATE INDEX statement */
  2700       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
  2701         onError==OE_None ? "" : " UNIQUE",
  2702         pEnd->z - pName->z + 1,
  2703         pName->z);
  2704     }else{
  2705       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
  2706       /* zStmt = sqlite3MPrintf(""); */
  2707       zStmt = 0;
  2708     }
  2709 
  2710     /* Add an entry in sqlite_master for this index
  2711     */
  2712     sqlite3NestedParse(pParse, 
  2713         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
  2714         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
  2715         pIndex->zName,
  2716         pTab->zName,
  2717         iMem,
  2718         zStmt
  2719     );
  2720     sqlite3DbFree(db, zStmt);
  2721 
  2722     /* Fill the index with data and reparse the schema. Code an OP_Expire
  2723     ** to invalidate all pre-compiled statements.
  2724     */
  2725     if( pTblName ){
  2726       sqlite3RefillIndex(pParse, pIndex, iMem);
  2727       sqlite3ChangeCookie(pParse, iDb);
  2728       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
  2729          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
  2730       sqlite3VdbeAddOp1(v, OP_Expire, 0);
  2731     }
  2732   }
  2733 
  2734   /* When adding an index to the list of indices for a table, make
  2735   ** sure all indices labeled OE_Replace come after all those labeled
  2736   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
  2737   ** and INSERT.
  2738   */
  2739   if( db->init.busy || pTblName==0 ){
  2740     if( onError!=OE_Replace || pTab->pIndex==0
  2741          || pTab->pIndex->onError==OE_Replace){
  2742       pIndex->pNext = pTab->pIndex;
  2743       pTab->pIndex = pIndex;
  2744     }else{
  2745       Index *pOther = pTab->pIndex;
  2746       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
  2747         pOther = pOther->pNext;
  2748       }
  2749       pIndex->pNext = pOther->pNext;
  2750       pOther->pNext = pIndex;
  2751     }
  2752     pIndex = 0;
  2753   }
  2754 
  2755   /* Clean up before exiting */
  2756 exit_create_index:
  2757   if( pIndex ){
  2758     sqlite3_free(pIndex->zColAff);
  2759     sqlite3DbFree(db, pIndex);
  2760   }
  2761   sqlite3ExprListDelete(db, pList);
  2762   sqlite3SrcListDelete(db, pTblName);
  2763   sqlite3DbFree(db, zName);
  2764   return;
  2765 }
  2766 
  2767 /*
  2768 ** Generate code to make sure the file format number is at least minFormat.
  2769 ** The generated code will increase the file format number if necessary.
  2770 */
  2771 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
  2772   Vdbe *v;
  2773   v = sqlite3GetVdbe(pParse);
  2774   if( v ){
  2775     int r1 = sqlite3GetTempReg(pParse);
  2776     int r2 = sqlite3GetTempReg(pParse);
  2777     int j1;
  2778     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
  2779     sqlite3VdbeUsesBtree(v, iDb);
  2780     sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
  2781     j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
  2782     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
  2783     sqlite3VdbeJumpHere(v, j1);
  2784     sqlite3ReleaseTempReg(pParse, r1);
  2785     sqlite3ReleaseTempReg(pParse, r2);
  2786   }
  2787 }
  2788 
  2789 /*
  2790 ** Fill the Index.aiRowEst[] array with default information - information
  2791 ** to be used when we have not run the ANALYZE command.
  2792 **
  2793 ** aiRowEst[0] is suppose to contain the number of elements in the index.
  2794 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
  2795 ** number of rows in the table that match any particular value of the
  2796 ** first column of the index.  aiRowEst[2] is an estimate of the number
  2797 ** of rows that match any particular combiniation of the first 2 columns
  2798 ** of the index.  And so forth.  It must always be the case that
  2799 *
  2800 **           aiRowEst[N]<=aiRowEst[N-1]
  2801 **           aiRowEst[N]>=1
  2802 **
  2803 ** Apart from that, we have little to go on besides intuition as to
  2804 ** how aiRowEst[] should be initialized.  The numbers generated here
  2805 ** are based on typical values found in actual indices.
  2806 */
  2807 void sqlite3DefaultRowEst(Index *pIdx){
  2808   unsigned *a = pIdx->aiRowEst;
  2809   int i;
  2810   assert( a!=0 );
  2811   a[0] = 1000000;
  2812   for(i=pIdx->nColumn; i>=5; i--){
  2813     a[i] = 5;
  2814   }
  2815   while( i>=1 ){
  2816     a[i] = 11 - i;
  2817     i--;
  2818   }
  2819   if( pIdx->onError!=OE_None ){
  2820     a[pIdx->nColumn] = 1;
  2821   }
  2822 }
  2823 
  2824 /*
  2825 ** This routine will drop an existing named index.  This routine
  2826 ** implements the DROP INDEX statement.
  2827 */
  2828 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
  2829   Index *pIndex;
  2830   Vdbe *v;
  2831   sqlite3 *db = pParse->db;
  2832   int iDb;
  2833 
  2834   if( pParse->nErr || db->mallocFailed ){
  2835     goto exit_drop_index;
  2836   }
  2837   assert( pName->nSrc==1 );
  2838   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
  2839     goto exit_drop_index;
  2840   }
  2841   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
  2842   if( pIndex==0 ){
  2843     if( !ifExists ){
  2844       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
  2845     }
  2846     pParse->checkSchema = 1;
  2847     goto exit_drop_index;
  2848   }
  2849   if( pIndex->autoIndex ){
  2850     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
  2851       "or PRIMARY KEY constraint cannot be dropped", 0);
  2852     goto exit_drop_index;
  2853   }
  2854   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
  2855 #ifndef SQLITE_OMIT_AUTHORIZATION
  2856   {
  2857     int code = SQLITE_DROP_INDEX;
  2858     Table *pTab = pIndex->pTable;
  2859     const char *zDb = db->aDb[iDb].zName;
  2860     const char *zTab = SCHEMA_TABLE(iDb);
  2861     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
  2862       goto exit_drop_index;
  2863     }
  2864     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
  2865     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
  2866       goto exit_drop_index;
  2867     }
  2868   }
  2869 #endif
  2870 
  2871   /* Generate code to remove the index and from the master table */
  2872   v = sqlite3GetVdbe(pParse);
  2873   if( v ){
  2874     sqlite3BeginWriteOperation(pParse, 1, iDb);
  2875     sqlite3NestedParse(pParse,
  2876        "DELETE FROM %Q.%s WHERE name=%Q",
  2877        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
  2878        pIndex->zName
  2879     );
  2880     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
  2881       sqlite3NestedParse(pParse,
  2882         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
  2883         db->aDb[iDb].zName, pIndex->zName
  2884       );
  2885     }
  2886     sqlite3ChangeCookie(pParse, iDb);
  2887     destroyRootPage(pParse, pIndex->tnum, iDb);
  2888     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
  2889   }
  2890 
  2891 exit_drop_index:
  2892   sqlite3SrcListDelete(db, pName);
  2893 }
  2894 
  2895 /*
  2896 ** pArray is a pointer to an array of objects.  Each object in the
  2897 ** array is szEntry bytes in size.  This routine allocates a new
  2898 ** object on the end of the array.
  2899 **
  2900 ** *pnEntry is the number of entries already in use.  *pnAlloc is
  2901 ** the previously allocated size of the array.  initSize is the
  2902 ** suggested initial array size allocation.
  2903 **
  2904 ** The index of the new entry is returned in *pIdx.
  2905 **
  2906 ** This routine returns a pointer to the array of objects.  This
  2907 ** might be the same as the pArray parameter or it might be a different
  2908 ** pointer if the array was resized.
  2909 */
  2910 void *sqlite3ArrayAllocate(
  2911   sqlite3 *db,      /* Connection to notify of malloc failures */
  2912   void *pArray,     /* Array of objects.  Might be reallocated */
  2913   int szEntry,      /* Size of each object in the array */
  2914   int initSize,     /* Suggested initial allocation, in elements */
  2915   int *pnEntry,     /* Number of objects currently in use */
  2916   int *pnAlloc,     /* Current size of the allocation, in elements */
  2917   int *pIdx         /* Write the index of a new slot here */
  2918 ){
  2919   char *z;
  2920   if( *pnEntry >= *pnAlloc ){
  2921     void *pNew;
  2922     int newSize;
  2923     newSize = (*pnAlloc)*2 + initSize;
  2924     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
  2925     if( pNew==0 ){
  2926       *pIdx = -1;
  2927       return pArray;
  2928     }
  2929     *pnAlloc = newSize;
  2930     pArray = pNew;
  2931   }
  2932   z = (char*)pArray;
  2933   memset(&z[*pnEntry * szEntry], 0, szEntry);
  2934   *pIdx = *pnEntry;
  2935   ++*pnEntry;
  2936   return pArray;
  2937 }
  2938 
  2939 /*
  2940 ** Append a new element to the given IdList.  Create a new IdList if
  2941 ** need be.
  2942 **
  2943 ** A new IdList is returned, or NULL if malloc() fails.
  2944 */
  2945 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
  2946   int i;
  2947   if( pList==0 ){
  2948     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
  2949     if( pList==0 ) return 0;
  2950     pList->nAlloc = 0;
  2951   }
  2952   pList->a = sqlite3ArrayAllocate(
  2953       db,
  2954       pList->a,
  2955       sizeof(pList->a[0]),
  2956       5,
  2957       &pList->nId,
  2958       &pList->nAlloc,
  2959       &i
  2960   );
  2961   if( i<0 ){
  2962     sqlite3IdListDelete(db, pList);
  2963     return 0;
  2964   }
  2965   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
  2966   return pList;
  2967 }
  2968 
  2969 /*
  2970 ** Delete an IdList.
  2971 */
  2972 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
  2973   int i;
  2974   if( pList==0 ) return;
  2975   for(i=0; i<pList->nId; i++){
  2976     sqlite3DbFree(db, pList->a[i].zName);
  2977   }
  2978   sqlite3DbFree(db, pList->a);
  2979   sqlite3DbFree(db, pList);
  2980 }
  2981 
  2982 /*
  2983 ** Return the index in pList of the identifier named zId.  Return -1
  2984 ** if not found.
  2985 */
  2986 int sqlite3IdListIndex(IdList *pList, const char *zName){
  2987   int i;
  2988   if( pList==0 ) return -1;
  2989   for(i=0; i<pList->nId; i++){
  2990     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
  2991   }
  2992   return -1;
  2993 }
  2994 
  2995 /*
  2996 ** Append a new table name to the given SrcList.  Create a new SrcList if
  2997 ** need be.  A new entry is created in the SrcList even if pToken is NULL.
  2998 **
  2999 ** A new SrcList is returned, or NULL if malloc() fails.
  3000 **
  3001 ** If pDatabase is not null, it means that the table has an optional
  3002 ** database name prefix.  Like this:  "database.table".  The pDatabase
  3003 ** points to the table name and the pTable points to the database name.
  3004 ** The SrcList.a[].zName field is filled with the table name which might
  3005 ** come from pTable (if pDatabase is NULL) or from pDatabase.  
  3006 ** SrcList.a[].zDatabase is filled with the database name from pTable,
  3007 ** or with NULL if no database is specified.
  3008 **
  3009 ** In other words, if call like this:
  3010 **
  3011 **         sqlite3SrcListAppend(D,A,B,0);
  3012 **
  3013 ** Then B is a table name and the database name is unspecified.  If called
  3014 ** like this:
  3015 **
  3016 **         sqlite3SrcListAppend(D,A,B,C);
  3017 **
  3018 ** Then C is the table name and B is the database name.
  3019 */
  3020 SrcList *sqlite3SrcListAppend(
  3021   sqlite3 *db,        /* Connection to notify of malloc failures */
  3022   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
  3023   Token *pTable,      /* Table to append */
  3024   Token *pDatabase    /* Database of the table */
  3025 ){
  3026   struct SrcList_item *pItem;
  3027   if( pList==0 ){
  3028     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
  3029     if( pList==0 ) return 0;
  3030     pList->nAlloc = 1;
  3031   }
  3032   if( pList->nSrc>=pList->nAlloc ){
  3033     SrcList *pNew;
  3034     pList->nAlloc *= 2;
  3035     pNew = sqlite3DbRealloc(db, pList,
  3036                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
  3037     if( pNew==0 ){
  3038       sqlite3SrcListDelete(db, pList);
  3039       return 0;
  3040     }
  3041     pList = pNew;
  3042   }
  3043   pItem = &pList->a[pList->nSrc];
  3044   memset(pItem, 0, sizeof(pList->a[0]));
  3045   if( pDatabase && pDatabase->z==0 ){
  3046     pDatabase = 0;
  3047   }
  3048   if( pDatabase && pTable ){
  3049     Token *pTemp = pDatabase;
  3050     pDatabase = pTable;
  3051     pTable = pTemp;
  3052   }
  3053   pItem->zName = sqlite3NameFromToken(db, pTable);
  3054   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
  3055   pItem->iCursor = -1;
  3056   pItem->isPopulated = 0;
  3057   pList->nSrc++;
  3058   return pList;
  3059 }
  3060 
  3061 /*
  3062 ** Assign cursors to all tables in a SrcList
  3063 */
  3064 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
  3065   int i;
  3066   struct SrcList_item *pItem;
  3067   assert(pList || pParse->db->mallocFailed );
  3068   if( pList ){
  3069     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
  3070       if( pItem->iCursor>=0 ) break;
  3071       pItem->iCursor = pParse->nTab++;
  3072       if( pItem->pSelect ){
  3073         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
  3074       }
  3075     }
  3076   }
  3077 }
  3078 
  3079 /*
  3080 ** Delete an entire SrcList including all its substructure.
  3081 */
  3082 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
  3083   int i;
  3084   struct SrcList_item *pItem;
  3085   if( pList==0 ) return;
  3086   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
  3087     sqlite3DbFree(db, pItem->zDatabase);
  3088     sqlite3DbFree(db, pItem->zName);
  3089     sqlite3DbFree(db, pItem->zAlias);
  3090     sqlite3DeleteTable(pItem->pTab);
  3091     sqlite3SelectDelete(db, pItem->pSelect);
  3092     sqlite3ExprDelete(db, pItem->pOn);
  3093     sqlite3IdListDelete(db, pItem->pUsing);
  3094   }
  3095   sqlite3DbFree(db, pList);
  3096 }
  3097 
  3098 /*
  3099 ** This routine is called by the parser to add a new term to the
  3100 ** end of a growing FROM clause.  The "p" parameter is the part of
  3101 ** the FROM clause that has already been constructed.  "p" is NULL
  3102 ** if this is the first term of the FROM clause.  pTable and pDatabase
  3103 ** are the name of the table and database named in the FROM clause term.
  3104 ** pDatabase is NULL if the database name qualifier is missing - the
  3105 ** usual case.  If the term has a alias, then pAlias points to the
  3106 ** alias token.  If the term is a subquery, then pSubquery is the
  3107 ** SELECT statement that the subquery encodes.  The pTable and
  3108 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
  3109 ** parameters are the content of the ON and USING clauses.
  3110 **
  3111 ** Return a new SrcList which encodes is the FROM with the new
  3112 ** term added.
  3113 */
  3114 SrcList *sqlite3SrcListAppendFromTerm(
  3115   Parse *pParse,          /* Parsing context */
  3116   SrcList *p,             /* The left part of the FROM clause already seen */
  3117   Token *pTable,          /* Name of the table to add to the FROM clause */
  3118   Token *pDatabase,       /* Name of the database containing pTable */
  3119   Token *pAlias,          /* The right-hand side of the AS subexpression */
  3120   Select *pSubquery,      /* A subquery used in place of a table name */
  3121   Expr *pOn,              /* The ON clause of a join */
  3122   IdList *pUsing          /* The USING clause of a join */
  3123 ){
  3124   struct SrcList_item *pItem;
  3125   sqlite3 *db = pParse->db;
  3126   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
  3127   if( p==0 || p->nSrc==0 ){
  3128     sqlite3ExprDelete(db, pOn);
  3129     sqlite3IdListDelete(db, pUsing);
  3130     sqlite3SelectDelete(db, pSubquery);
  3131     return p;
  3132   }
  3133   pItem = &p->a[p->nSrc-1];
  3134   if( pAlias && pAlias->n ){
  3135     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
  3136   }
  3137   pItem->pSelect = pSubquery;
  3138   pItem->pOn = pOn;
  3139   pItem->pUsing = pUsing;
  3140   return p;
  3141 }
  3142 
  3143 /*
  3144 ** When building up a FROM clause in the parser, the join operator
  3145 ** is initially attached to the left operand.  But the code generator
  3146 ** expects the join operator to be on the right operand.  This routine
  3147 ** Shifts all join operators from left to right for an entire FROM
  3148 ** clause.
  3149 **
  3150 ** Example: Suppose the join is like this:
  3151 **
  3152 **           A natural cross join B
  3153 **
  3154 ** The operator is "natural cross join".  The A and B operands are stored
  3155 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
  3156 ** operator with A.  This routine shifts that operator over to B.
  3157 */
  3158 void sqlite3SrcListShiftJoinType(SrcList *p){
  3159   if( p && p->a ){
  3160     int i;
  3161     for(i=p->nSrc-1; i>0; i--){
  3162       p->a[i].jointype = p->a[i-1].jointype;
  3163     }
  3164     p->a[0].jointype = 0;
  3165   }
  3166 }
  3167 
  3168 /*
  3169 ** Begin a transaction
  3170 */
  3171 void sqlite3BeginTransaction(Parse *pParse, int type){
  3172   sqlite3 *db;
  3173   Vdbe *v;
  3174   int i;
  3175 
  3176   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  3177   if( pParse->nErr || db->mallocFailed ) return;
  3178   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
  3179 
  3180   v = sqlite3GetVdbe(pParse);
  3181   if( !v ) return;
  3182   if( type!=TK_DEFERRED ){
  3183     for(i=0; i<db->nDb; i++){
  3184       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
  3185       sqlite3VdbeUsesBtree(v, i);
  3186     }
  3187   }
  3188   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
  3189 }
  3190 
  3191 /*
  3192 ** Commit a transaction
  3193 */
  3194 void sqlite3CommitTransaction(Parse *pParse){
  3195   sqlite3 *db;
  3196   Vdbe *v;
  3197 
  3198   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  3199   if( pParse->nErr || db->mallocFailed ) return;
  3200   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
  3201 
  3202   v = sqlite3GetVdbe(pParse);
  3203   if( v ){
  3204     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
  3205   }
  3206 }
  3207 
  3208 /*
  3209 ** Rollback a transaction
  3210 */
  3211 void sqlite3RollbackTransaction(Parse *pParse){
  3212   sqlite3 *db;
  3213   Vdbe *v;
  3214 
  3215   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
  3216   if( pParse->nErr || db->mallocFailed ) return;
  3217   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
  3218 
  3219   v = sqlite3GetVdbe(pParse);
  3220   if( v ){
  3221     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
  3222   }
  3223 }
  3224 
  3225 /*
  3226 ** Make sure the TEMP database is open and available for use.  Return
  3227 ** the number of errors.  Leave any error messages in the pParse structure.
  3228 */
  3229 int sqlite3OpenTempDatabase(Parse *pParse){
  3230   sqlite3 *db = pParse->db;
  3231   if( db->aDb[1].pBt==0 && !pParse->explain ){
  3232     int rc;
  3233     static const int flags = 
  3234           SQLITE_OPEN_READWRITE |
  3235           SQLITE_OPEN_CREATE |
  3236           SQLITE_OPEN_EXCLUSIVE |
  3237           SQLITE_OPEN_DELETEONCLOSE |
  3238           SQLITE_OPEN_TEMP_DB;
  3239 
  3240     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
  3241                                  &db->aDb[1].pBt);
  3242     if( rc!=SQLITE_OK ){
  3243       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
  3244         "file for storing temporary tables");
  3245       pParse->rc = rc;
  3246       return 1;
  3247     }
  3248     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
  3249     assert( db->aDb[1].pSchema );
  3250     sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
  3251                             db->dfltJournalMode);
  3252   }
  3253   return 0;
  3254 }
  3255 
  3256 /*
  3257 ** Generate VDBE code that will verify the schema cookie and start
  3258 ** a read-transaction for all named database files.
  3259 **
  3260 ** It is important that all schema cookies be verified and all
  3261 ** read transactions be started before anything else happens in
  3262 ** the VDBE program.  But this routine can be called after much other
  3263 ** code has been generated.  So here is what we do:
  3264 **
  3265 ** The first time this routine is called, we code an OP_Goto that
  3266 ** will jump to a subroutine at the end of the program.  Then we
  3267 ** record every database that needs its schema verified in the
  3268 ** pParse->cookieMask field.  Later, after all other code has been
  3269 ** generated, the subroutine that does the cookie verifications and
  3270 ** starts the transactions will be coded and the OP_Goto P2 value
  3271 ** will be made to point to that subroutine.  The generation of the
  3272 ** cookie verification subroutine code happens in sqlite3FinishCoding().
  3273 **
  3274 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
  3275 ** schema on any databases.  This can be used to position the OP_Goto
  3276 ** early in the code, before we know if any database tables will be used.
  3277 */
  3278 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
  3279   sqlite3 *db;
  3280   Vdbe *v;
  3281   int mask;
  3282 
  3283   v = sqlite3GetVdbe(pParse);
  3284   if( v==0 ) return;  /* This only happens if there was a prior error */
  3285   db = pParse->db;
  3286   if( pParse->cookieGoto==0 ){
  3287     pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
  3288   }
  3289   if( iDb>=0 ){
  3290     assert( iDb<db->nDb );
  3291     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
  3292     assert( iDb<SQLITE_MAX_ATTACHED+2 );
  3293     mask = 1<<iDb;
  3294     if( (pParse->cookieMask & mask)==0 ){
  3295       pParse->cookieMask |= mask;
  3296       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
  3297       if( !OMIT_TEMPDB && iDb==1 ){
  3298         sqlite3OpenTempDatabase(pParse);
  3299       }
  3300     }
  3301   }
  3302 }
  3303 
  3304 /*
  3305 ** Generate VDBE code that prepares for doing an operation that
  3306 ** might change the database.
  3307 **
  3308 ** This routine starts a new transaction if we are not already within
  3309 ** a transaction.  If we are already within a transaction, then a checkpoint
  3310 ** is set if the setStatement parameter is true.  A checkpoint should
  3311 ** be set for operations that might fail (due to a constraint) part of
  3312 ** the way through and which will need to undo some writes without having to
  3313 ** rollback the whole transaction.  For operations where all constraints
  3314 ** can be checked before any changes are made to the database, it is never
  3315 ** necessary to undo a write and the checkpoint should not be set.
  3316 **
  3317 ** Only database iDb and the temp database are made writable by this call.
  3318 ** If iDb==0, then the main and temp databases are made writable.   If
  3319 ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
  3320 ** specified auxiliary database and the temp database are made writable.
  3321 */
  3322 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
  3323   Vdbe *v = sqlite3GetVdbe(pParse);
  3324   if( v==0 ) return;
  3325   sqlite3CodeVerifySchema(pParse, iDb);
  3326   pParse->writeMask |= 1<<iDb;
  3327   if( setStatement && pParse->nested==0 ){
  3328     sqlite3VdbeAddOp1(v, OP_Statement, iDb);
  3329   }
  3330   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
  3331     sqlite3BeginWriteOperation(pParse, setStatement, 1);
  3332   }
  3333 }
  3334 
  3335 /*
  3336 ** Check to see if pIndex uses the collating sequence pColl.  Return
  3337 ** true if it does and false if it does not.
  3338 */
  3339 #ifndef SQLITE_OMIT_REINDEX
  3340 static int collationMatch(const char *zColl, Index *pIndex){
  3341   int i;
  3342   for(i=0; i<pIndex->nColumn; i++){
  3343     const char *z = pIndex->azColl[i];
  3344     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
  3345       return 1;
  3346     }
  3347   }
  3348   return 0;
  3349 }
  3350 #endif
  3351 
  3352 /*
  3353 ** Recompute all indices of pTab that use the collating sequence pColl.
  3354 ** If pColl==0 then recompute all indices of pTab.
  3355 */
  3356 #ifndef SQLITE_OMIT_REINDEX
  3357 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
  3358   Index *pIndex;              /* An index associated with pTab */
  3359 
  3360   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
  3361     if( zColl==0 || collationMatch(zColl, pIndex) ){
  3362       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  3363       sqlite3BeginWriteOperation(pParse, 0, iDb);
  3364       sqlite3RefillIndex(pParse, pIndex, -1);
  3365     }
  3366   }
  3367 }
  3368 #endif
  3369 
  3370 /*
  3371 ** Recompute all indices of all tables in all databases where the
  3372 ** indices use the collating sequence pColl.  If pColl==0 then recompute
  3373 ** all indices everywhere.
  3374 */
  3375 #ifndef SQLITE_OMIT_REINDEX
  3376 static void reindexDatabases(Parse *pParse, char const *zColl){
  3377   Db *pDb;                    /* A single database */
  3378   int iDb;                    /* The database index number */
  3379   sqlite3 *db = pParse->db;   /* The database connection */
  3380   HashElem *k;                /* For looping over tables in pDb */
  3381   Table *pTab;                /* A table in the database */
  3382 
  3383   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
  3384     assert( pDb!=0 );
  3385     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
  3386       pTab = (Table*)sqliteHashData(k);
  3387       reindexTable(pParse, pTab, zColl);
  3388     }
  3389   }
  3390 }
  3391 #endif
  3392 
  3393 /*
  3394 ** Generate code for the REINDEX command.
  3395 **
  3396 **        REINDEX                            -- 1
  3397 **        REINDEX  <collation>               -- 2
  3398 **        REINDEX  ?<database>.?<tablename>  -- 3
  3399 **        REINDEX  ?<database>.?<indexname>  -- 4
  3400 **
  3401 ** Form 1 causes all indices in all attached databases to be rebuilt.
  3402 ** Form 2 rebuilds all indices in all databases that use the named
  3403 ** collating function.  Forms 3 and 4 rebuild the named index or all
  3404 ** indices associated with the named table.
  3405 */
  3406 #ifndef SQLITE_OMIT_REINDEX
  3407 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
  3408   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
  3409   char *z;                    /* Name of a table or index */
  3410   const char *zDb;            /* Name of the database */
  3411   Table *pTab;                /* A table in the database */
  3412   Index *pIndex;              /* An index associated with pTab */
  3413   int iDb;                    /* The database index number */
  3414   sqlite3 *db = pParse->db;   /* The database connection */
  3415   Token *pObjName;            /* Name of the table or index to be reindexed */
  3416 
  3417   /* Read the database schema. If an error occurs, leave an error message
  3418   ** and code in pParse and return NULL. */
  3419   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
  3420     return;
  3421   }
  3422 
  3423   if( pName1==0 || pName1->z==0 ){
  3424     reindexDatabases(pParse, 0);
  3425     return;
  3426   }else if( pName2==0 || pName2->z==0 ){
  3427     char *zColl;
  3428     assert( pName1->z );
  3429     zColl = sqlite3NameFromToken(pParse->db, pName1);
  3430     if( !zColl ) return;
  3431     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
  3432     if( pColl ){
  3433       if( zColl ){
  3434         reindexDatabases(pParse, zColl);
  3435         sqlite3DbFree(db, zColl);
  3436       }
  3437       return;
  3438     }
  3439     sqlite3DbFree(db, zColl);
  3440   }
  3441   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
  3442   if( iDb<0 ) return;
  3443   z = sqlite3NameFromToken(db, pObjName);
  3444   if( z==0 ) return;
  3445   zDb = db->aDb[iDb].zName;
  3446   pTab = sqlite3FindTable(db, z, zDb);
  3447   if( pTab ){
  3448     reindexTable(pParse, pTab, 0);
  3449     sqlite3DbFree(db, z);
  3450     return;
  3451   }
  3452   pIndex = sqlite3FindIndex(db, z, zDb);
  3453   sqlite3DbFree(db, z);
  3454   if( pIndex ){
  3455     sqlite3BeginWriteOperation(pParse, 0, iDb);
  3456     sqlite3RefillIndex(pParse, pIndex, -1);
  3457     return;
  3458   }
  3459   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
  3460 }
  3461 #endif
  3462 
  3463 /*
  3464 ** Return a dynamicly allocated KeyInfo structure that can be used
  3465 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
  3466 **
  3467 ** If successful, a pointer to the new structure is returned. In this case
  3468 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 
  3469 ** pointer. If an error occurs (out of memory or missing collation 
  3470 ** sequence), NULL is returned and the state of pParse updated to reflect
  3471 ** the error.
  3472 */
  3473 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
  3474   int i;
  3475   int nCol = pIdx->nColumn;
  3476   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
  3477   sqlite3 *db = pParse->db;
  3478   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
  3479 
  3480   if( pKey ){
  3481     pKey->db = pParse->db;
  3482     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
  3483     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
  3484     for(i=0; i<nCol; i++){
  3485       char *zColl = pIdx->azColl[i];
  3486       assert( zColl );
  3487       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
  3488       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
  3489     }
  3490     pKey->nField = nCol;
  3491   }
  3492 
  3493   if( pParse->nErr ){
  3494     sqlite3DbFree(db, pKey);
  3495     pKey = 0;
  3496   }
  3497   return pKey;
  3498 }