os/persistentdata/persistentstorage/sql/SQLite364/vdbeaux.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2003 September 6
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains code used for creating, destroying, and populating
    13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)  Prior
    14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
    15 ** But that file was getting too big so this subroutines were split out.
    16 **
    17 ** $Id: vdbeaux.c,v 1.412 2008/10/11 17:51:39 danielk1977 Exp $
    18 */
    19 #include "sqliteInt.h"
    20 #include <ctype.h>
    21 #include "vdbeInt.h"
    22 
    23 
    24 
    25 /*
    26 ** When debugging the code generator in a symbolic debugger, one can
    27 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
    28 ** as they are added to the instruction stream.
    29 */
    30 #ifdef SQLITE_DEBUG
    31 int sqlite3VdbeAddopTrace = 0;
    32 #endif
    33 
    34 
    35 /*
    36 ** Create a new virtual database engine.
    37 */
    38 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
    39   Vdbe *p;
    40   p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
    41   if( p==0 ) return 0;
    42   p->db = db;
    43   if( db->pVdbe ){
    44     db->pVdbe->pPrev = p;
    45   }
    46   p->pNext = db->pVdbe;
    47   p->pPrev = 0;
    48   db->pVdbe = p;
    49   p->magic = VDBE_MAGIC_INIT;
    50   return p;
    51 }
    52 
    53 /*
    54 ** Remember the SQL string for a prepared statement.
    55 */
    56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
    57   if( p==0 ) return;
    58   assert( p->zSql==0 );
    59   p->zSql = sqlite3DbStrNDup(p->db, z, n);
    60 }
    61 
    62 /*
    63 ** Return the SQL associated with a prepared statement
    64 */
    65 const char *sqlite3_sql(sqlite3_stmt *pStmt){
    66   return ((Vdbe *)pStmt)->zSql;
    67 }
    68 
    69 /*
    70 ** Swap all content between two VDBE structures.
    71 */
    72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
    73   Vdbe tmp, *pTmp;
    74   char *zTmp;
    75   int nTmp;
    76   tmp = *pA;
    77   *pA = *pB;
    78   *pB = tmp;
    79   pTmp = pA->pNext;
    80   pA->pNext = pB->pNext;
    81   pB->pNext = pTmp;
    82   pTmp = pA->pPrev;
    83   pA->pPrev = pB->pPrev;
    84   pB->pPrev = pTmp;
    85   zTmp = pA->zSql;
    86   pA->zSql = pB->zSql;
    87   pB->zSql = zTmp;
    88   nTmp = pA->nSql;
    89   pA->nSql = pB->nSql;
    90   pB->nSql = nTmp;
    91 }
    92 
    93 #ifdef SQLITE_DEBUG
    94 /*
    95 ** Turn tracing on or off
    96 */
    97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
    98   p->trace = trace;
    99 }
   100 #endif
   101 
   102 /*
   103 ** Resize the Vdbe.aOp array so that it contains at least N
   104 ** elements.
   105 **
   106 ** If an out-of-memory error occurs while resizing the array,
   107 ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
   108 ** any opcodes already allocated can be correctly deallocated
   109 ** along with the rest of the Vdbe).
   110 */
   111 static void resizeOpArray(Vdbe *p, int N){
   112   VdbeOp *pNew;
   113   pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
   114   if( pNew ){
   115     p->nOpAlloc = N;
   116     p->aOp = pNew;
   117   }
   118 }
   119 
   120 /*
   121 ** Add a new instruction to the list of instructions current in the
   122 ** VDBE.  Return the address of the new instruction.
   123 **
   124 ** Parameters:
   125 **
   126 **    p               Pointer to the VDBE
   127 **
   128 **    op              The opcode for this instruction
   129 **
   130 **    p1, p2, p3      Operands
   131 **
   132 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
   133 ** the sqlite3VdbeChangeP4() function to change the value of the P4
   134 ** operand.
   135 */
   136 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
   137   int i;
   138   VdbeOp *pOp;
   139 
   140   i = p->nOp;
   141   assert( p->magic==VDBE_MAGIC_INIT );
   142   if( p->nOpAlloc<=i ){
   143     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
   144     if( p->db->mallocFailed ){
   145       return 0;
   146     }
   147   }
   148   p->nOp++;
   149   pOp = &p->aOp[i];
   150   pOp->opcode = op;
   151   pOp->p5 = 0;
   152   pOp->p1 = p1;
   153   pOp->p2 = p2;
   154   pOp->p3 = p3;
   155   pOp->p4.p = 0;
   156   pOp->p4type = P4_NOTUSED;
   157   p->expired = 0;
   158 #ifdef SQLITE_DEBUG
   159   pOp->zComment = 0;
   160   if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
   161 #endif
   162 #ifdef VDBE_PROFILE
   163   pOp->cycles = 0;
   164   pOp->cnt = 0;
   165 #endif
   166   return i;
   167 }
   168 int sqlite3VdbeAddOp0(Vdbe *p, int op){
   169   return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
   170 }
   171 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
   172   return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
   173 }
   174 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
   175   return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
   176 }
   177 
   178 
   179 /*
   180 ** Add an opcode that includes the p4 value as a pointer.
   181 */
   182 int sqlite3VdbeAddOp4(
   183   Vdbe *p,            /* Add the opcode to this VM */
   184   int op,             /* The new opcode */
   185   int p1,             /* The P1 operand */
   186   int p2,             /* The P2 operand */
   187   int p3,             /* The P3 operand */
   188   const char *zP4,    /* The P4 operand */
   189   int p4type          /* P4 operand type */
   190 ){
   191   int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
   192   sqlite3VdbeChangeP4(p, addr, zP4, p4type);
   193   return addr;
   194 }
   195 
   196 /*
   197 ** Create a new symbolic label for an instruction that has yet to be
   198 ** coded.  The symbolic label is really just a negative number.  The
   199 ** label can be used as the P2 value of an operation.  Later, when
   200 ** the label is resolved to a specific address, the VDBE will scan
   201 ** through its operation list and change all values of P2 which match
   202 ** the label into the resolved address.
   203 **
   204 ** The VDBE knows that a P2 value is a label because labels are
   205 ** always negative and P2 values are suppose to be non-negative.
   206 ** Hence, a negative P2 value is a label that has yet to be resolved.
   207 **
   208 ** Zero is returned if a malloc() fails.
   209 */
   210 int sqlite3VdbeMakeLabel(Vdbe *p){
   211   int i;
   212   i = p->nLabel++;
   213   assert( p->magic==VDBE_MAGIC_INIT );
   214   if( i>=p->nLabelAlloc ){
   215     p->nLabelAlloc = p->nLabelAlloc*2 + 10;
   216     p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
   217                                     p->nLabelAlloc*sizeof(p->aLabel[0]));
   218   }
   219   if( p->aLabel ){
   220     p->aLabel[i] = -1;
   221   }
   222   return -1-i;
   223 }
   224 
   225 /*
   226 ** Resolve label "x" to be the address of the next instruction to
   227 ** be inserted.  The parameter "x" must have been obtained from
   228 ** a prior call to sqlite3VdbeMakeLabel().
   229 */
   230 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
   231   int j = -1-x;
   232   assert( p->magic==VDBE_MAGIC_INIT );
   233   assert( j>=0 && j<p->nLabel );
   234   if( p->aLabel ){
   235     p->aLabel[j] = p->nOp;
   236   }
   237 }
   238 
   239 /*
   240 ** Loop through the program looking for P2 values that are negative
   241 ** on jump instructions.  Each such value is a label.  Resolve the
   242 ** label by setting the P2 value to its correct non-zero value.
   243 **
   244 ** This routine is called once after all opcodes have been inserted.
   245 **
   246 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
   247 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by 
   248 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
   249 **
   250 ** This routine also does the following optimization:  It scans for
   251 ** instructions that might cause a statement rollback.  Such instructions
   252 ** are:
   253 **
   254 **   *  OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
   255 **   *  OP_Destroy
   256 **   *  OP_VUpdate
   257 **   *  OP_VRename
   258 **
   259 ** If no such instruction is found, then every Statement instruction 
   260 ** is changed to a Noop.  In this way, we avoid creating the statement 
   261 ** journal file unnecessarily.
   262 */
   263 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
   264   int i;
   265   int nMaxArgs = 0;
   266   Op *pOp;
   267   int *aLabel = p->aLabel;
   268   int doesStatementRollback = 0;
   269   int hasStatementBegin = 0;
   270   for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
   271     u8 opcode = pOp->opcode;
   272 
   273     if( opcode==OP_Function || opcode==OP_AggStep ){
   274       if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
   275 #ifndef SQLITE_OMIT_VIRTUALTABLE
   276     }else if( opcode==OP_VUpdate ){
   277       if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
   278 #endif
   279     }
   280     if( opcode==OP_Halt ){
   281       if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
   282         doesStatementRollback = 1;
   283       }
   284     }else if( opcode==OP_Statement ){
   285       hasStatementBegin = 1;
   286     }else if( opcode==OP_Destroy ){
   287       doesStatementRollback = 1;
   288 #ifndef SQLITE_OMIT_VIRTUALTABLE
   289     }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
   290       doesStatementRollback = 1;
   291     }else if( opcode==OP_VFilter ){
   292       int n;
   293       assert( p->nOp - i >= 3 );
   294       assert( pOp[-1].opcode==OP_Integer );
   295       n = pOp[-1].p1;
   296       if( n>nMaxArgs ) nMaxArgs = n;
   297 #endif
   298     }
   299 
   300     if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
   301       assert( -1-pOp->p2<p->nLabel );
   302       pOp->p2 = aLabel[-1-pOp->p2];
   303     }
   304   }
   305   sqlite3DbFree(p->db, p->aLabel);
   306   p->aLabel = 0;
   307 
   308   *pMaxFuncArgs = nMaxArgs;
   309 
   310   /* If we never rollback a statement transaction, then statement
   311   ** transactions are not needed.  So change every OP_Statement
   312   ** opcode into an OP_Noop.  This avoid a call to sqlite3OsOpenExclusive()
   313   ** which can be expensive on some platforms.
   314   */
   315   if( hasStatementBegin && !doesStatementRollback ){
   316     for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
   317       if( pOp->opcode==OP_Statement ){
   318         pOp->opcode = OP_Noop;
   319       }
   320     }
   321   }
   322 }
   323 
   324 /*
   325 ** Return the address of the next instruction to be inserted.
   326 */
   327 int sqlite3VdbeCurrentAddr(Vdbe *p){
   328   assert( p->magic==VDBE_MAGIC_INIT );
   329   return p->nOp;
   330 }
   331 
   332 /*
   333 ** Add a whole list of operations to the operation stack.  Return the
   334 ** address of the first operation added.
   335 */
   336 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
   337   int addr;
   338   assert( p->magic==VDBE_MAGIC_INIT );
   339   if( p->nOp + nOp > p->nOpAlloc ){
   340     resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
   341     assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
   342   }
   343   if( p->db->mallocFailed ){
   344     return 0;
   345   }
   346   addr = p->nOp;
   347   if( nOp>0 ){
   348     int i;
   349     VdbeOpList const *pIn = aOp;
   350     for(i=0; i<nOp; i++, pIn++){
   351       int p2 = pIn->p2;
   352       VdbeOp *pOut = &p->aOp[i+addr];
   353       pOut->opcode = pIn->opcode;
   354       pOut->p1 = pIn->p1;
   355       if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
   356         pOut->p2 = addr + ADDR(p2);
   357       }else{
   358         pOut->p2 = p2;
   359       }
   360       pOut->p3 = pIn->p3;
   361       pOut->p4type = P4_NOTUSED;
   362       pOut->p4.p = 0;
   363       pOut->p5 = 0;
   364 #ifdef SQLITE_DEBUG
   365       pOut->zComment = 0;
   366       if( sqlite3VdbeAddopTrace ){
   367         sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
   368       }
   369 #endif
   370     }
   371     p->nOp += nOp;
   372   }
   373   return addr;
   374 }
   375 
   376 /*
   377 ** Change the value of the P1 operand for a specific instruction.
   378 ** This routine is useful when a large program is loaded from a
   379 ** static array using sqlite3VdbeAddOpList but we want to make a
   380 ** few minor changes to the program.
   381 */
   382 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
   383   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   384   if( p && addr>=0 && p->nOp>addr && p->aOp ){
   385     p->aOp[addr].p1 = val;
   386   }
   387 }
   388 
   389 /*
   390 ** Change the value of the P2 operand for a specific instruction.
   391 ** This routine is useful for setting a jump destination.
   392 */
   393 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
   394   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   395   if( p && addr>=0 && p->nOp>addr && p->aOp ){
   396     p->aOp[addr].p2 = val;
   397   }
   398 }
   399 
   400 /*
   401 ** Change the value of the P3 operand for a specific instruction.
   402 */
   403 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
   404   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   405   if( p && addr>=0 && p->nOp>addr && p->aOp ){
   406     p->aOp[addr].p3 = val;
   407   }
   408 }
   409 
   410 /*
   411 ** Change the value of the P5 operand for the most recently
   412 ** added operation.
   413 */
   414 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
   415   assert( p==0 || p->magic==VDBE_MAGIC_INIT );
   416   if( p && p->aOp ){
   417     assert( p->nOp>0 );
   418     p->aOp[p->nOp-1].p5 = val;
   419   }
   420 }
   421 
   422 /*
   423 ** Change the P2 operand of instruction addr so that it points to
   424 ** the address of the next instruction to be coded.
   425 */
   426 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
   427   sqlite3VdbeChangeP2(p, addr, p->nOp);
   428 }
   429 
   430 
   431 /*
   432 ** If the input FuncDef structure is ephemeral, then free it.  If
   433 ** the FuncDef is not ephermal, then do nothing.
   434 */
   435 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
   436   if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
   437     sqlite3DbFree(db, pDef);
   438   }
   439 }
   440 
   441 /*
   442 ** Delete a P4 value if necessary.
   443 */
   444 static void freeP4(sqlite3 *db, int p4type, void *p4){
   445   if( p4 ){
   446     switch( p4type ){
   447       case P4_REAL:
   448       case P4_INT64:
   449       case P4_MPRINTF:
   450       case P4_DYNAMIC:
   451       case P4_KEYINFO:
   452       case P4_INTARRAY:
   453       case P4_KEYINFO_HANDOFF: {
   454         sqlite3DbFree(db, p4);
   455         break;
   456       }
   457       case P4_VDBEFUNC: {
   458         VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
   459         freeEphemeralFunction(db, pVdbeFunc->pFunc);
   460         sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
   461         sqlite3DbFree(db, pVdbeFunc);
   462         break;
   463       }
   464       case P4_FUNCDEF: {
   465         freeEphemeralFunction(db, (FuncDef*)p4);
   466         break;
   467       }
   468       case P4_MEM: {
   469         sqlite3ValueFree((sqlite3_value*)p4);
   470         break;
   471       }
   472     }
   473   }
   474 }
   475 
   476 
   477 /*
   478 ** Change N opcodes starting at addr to No-ops.
   479 */
   480 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
   481   if( p && p->aOp ){
   482     VdbeOp *pOp = &p->aOp[addr];
   483     sqlite3 *db = p->db;
   484     while( N-- ){
   485       freeP4(db, pOp->p4type, pOp->p4.p);
   486       memset(pOp, 0, sizeof(pOp[0]));
   487       pOp->opcode = OP_Noop;
   488       pOp++;
   489     }
   490   }
   491 }
   492 
   493 /*
   494 ** Change the value of the P4 operand for a specific instruction.
   495 ** This routine is useful when a large program is loaded from a
   496 ** static array using sqlite3VdbeAddOpList but we want to make a
   497 ** few minor changes to the program.
   498 **
   499 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
   500 ** the string is made into memory obtained from sqlite3_malloc().
   501 ** A value of n==0 means copy bytes of zP4 up to and including the
   502 ** first null byte.  If n>0 then copy n+1 bytes of zP4.
   503 **
   504 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
   505 ** A copy is made of the KeyInfo structure into memory obtained from
   506 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
   507 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
   508 ** stored in memory that the caller has obtained from sqlite3_malloc. The 
   509 ** caller should not free the allocation, it will be freed when the Vdbe is
   510 ** finalized.
   511 ** 
   512 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
   513 ** to a string or structure that is guaranteed to exist for the lifetime of
   514 ** the Vdbe. In these cases we can just copy the pointer.
   515 **
   516 ** If addr<0 then change P4 on the most recently inserted instruction.
   517 */
   518 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
   519   Op *pOp;
   520   sqlite3 *db;
   521   assert( p!=0 );
   522   db = p->db;
   523   assert( p->magic==VDBE_MAGIC_INIT );
   524   if( p->aOp==0 || db->mallocFailed ){
   525     if (n != P4_KEYINFO) {
   526       freeP4(db, n, (void*)*(char**)&zP4);
   527     }
   528     return;
   529   }
   530   assert( addr<p->nOp );
   531   if( addr<0 ){
   532     addr = p->nOp - 1;
   533     if( addr<0 ) return;
   534   }
   535   pOp = &p->aOp[addr];
   536   freeP4(db, pOp->p4type, pOp->p4.p);
   537   pOp->p4.p = 0;
   538   if( n==P4_INT32 ){
   539     /* Note: this cast is safe, because the origin data point was an int
   540     ** that was cast to a (const char *). */
   541     pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
   542     pOp->p4type = n;
   543   }else if( zP4==0 ){
   544     pOp->p4.p = 0;
   545     pOp->p4type = P4_NOTUSED;
   546   }else if( n==P4_KEYINFO ){
   547     KeyInfo *pKeyInfo;
   548     int nField, nByte;
   549 
   550     nField = ((KeyInfo*)zP4)->nField;
   551     nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
   552     pKeyInfo = sqlite3Malloc( nByte );
   553     pOp->p4.pKeyInfo = pKeyInfo;
   554     if( pKeyInfo ){
   555       u8 *aSortOrder;
   556       memcpy(pKeyInfo, zP4, nByte);
   557       aSortOrder = pKeyInfo->aSortOrder;
   558       if( aSortOrder ){
   559         pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
   560         memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
   561       }
   562       pOp->p4type = P4_KEYINFO;
   563     }else{
   564       p->db->mallocFailed = 1;
   565       pOp->p4type = P4_NOTUSED;
   566     }
   567   }else if( n==P4_KEYINFO_HANDOFF ){
   568     pOp->p4.p = (void*)zP4;
   569     pOp->p4type = P4_KEYINFO;
   570   }else if( n<0 ){
   571     pOp->p4.p = (void*)zP4;
   572     pOp->p4type = n;
   573   }else{
   574     if( n==0 ) n = strlen(zP4);
   575     pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
   576     pOp->p4type = P4_DYNAMIC;
   577   }
   578 }
   579 
   580 #ifndef NDEBUG
   581 /*
   582 ** Change the comment on the the most recently coded instruction.  Or
   583 ** insert a No-op and add the comment to that new instruction.  This
   584 ** makes the code easier to read during debugging.  None of this happens
   585 ** in a production build.
   586 */
   587 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
   588   va_list ap;
   589   assert( p->nOp>0 || p->aOp==0 );
   590   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
   591   if( p->nOp ){
   592     char **pz = &p->aOp[p->nOp-1].zComment;
   593     va_start(ap, zFormat);
   594     sqlite3DbFree(p->db, *pz);
   595     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
   596     va_end(ap);
   597   }
   598 }
   599 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
   600   va_list ap;
   601   sqlite3VdbeAddOp0(p, OP_Noop);
   602   assert( p->nOp>0 || p->aOp==0 );
   603   assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
   604   if( p->nOp ){
   605     char **pz = &p->aOp[p->nOp-1].zComment;
   606     va_start(ap, zFormat);
   607     sqlite3DbFree(p->db, *pz);
   608     *pz = sqlite3VMPrintf(p->db, zFormat, ap);
   609     va_end(ap);
   610   }
   611 }
   612 #endif  /* NDEBUG */
   613 
   614 /*
   615 ** Return the opcode for a given address.
   616 */
   617 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
   618   assert( p->magic==VDBE_MAGIC_INIT );
   619   assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
   620   return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
   621 }
   622 
   623 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
   624      || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   625 /*
   626 ** Compute a string that describes the P4 parameter for an opcode.
   627 ** Use zTemp for any required temporary buffer space.
   628 */
   629 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
   630   char *zP4 = zTemp;
   631   assert( nTemp>=20 );
   632   switch( pOp->p4type ){
   633     case P4_KEYINFO_STATIC:
   634     case P4_KEYINFO: {
   635       int i, j;
   636       KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
   637       sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
   638       i = strlen(zTemp);
   639       for(j=0; j<pKeyInfo->nField; j++){
   640         CollSeq *pColl = pKeyInfo->aColl[j];
   641         if( pColl ){
   642           int n = strlen(pColl->zName);
   643           if( i+n>nTemp-6 ){
   644             memcpy(&zTemp[i],",...",4);
   645             break;
   646           }
   647           zTemp[i++] = ',';
   648           if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
   649             zTemp[i++] = '-';
   650           }
   651           memcpy(&zTemp[i], pColl->zName,n+1);
   652           i += n;
   653         }else if( i+4<nTemp-6 ){
   654           memcpy(&zTemp[i],",nil",4);
   655           i += 4;
   656         }
   657       }
   658       zTemp[i++] = ')';
   659       zTemp[i] = 0;
   660       assert( i<nTemp );
   661       break;
   662     }
   663     case P4_COLLSEQ: {
   664       CollSeq *pColl = pOp->p4.pColl;
   665       sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
   666       break;
   667     }
   668     case P4_FUNCDEF: {
   669       FuncDef *pDef = pOp->p4.pFunc;
   670       sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
   671       break;
   672     }
   673     case P4_INT64: {
   674       sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
   675       break;
   676     }
   677     case P4_INT32: {
   678       sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
   679       break;
   680     }
   681     case P4_REAL: {
   682       sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
   683       break;
   684     }
   685     case P4_MEM: {
   686       Mem *pMem = pOp->p4.pMem;
   687       assert( (pMem->flags & MEM_Null)==0 );
   688       if( pMem->flags & MEM_Str ){
   689         zP4 = pMem->z;
   690       }else if( pMem->flags & MEM_Int ){
   691         sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
   692       }else if( pMem->flags & MEM_Real ){
   693         sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
   694       }
   695       break;
   696     }
   697 #ifndef SQLITE_OMIT_VIRTUALTABLE
   698     case P4_VTAB: {
   699       sqlite3_vtab *pVtab = pOp->p4.pVtab;
   700       sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
   701       break;
   702     }
   703 #endif
   704     case P4_INTARRAY: {
   705       sqlite3_snprintf(nTemp, zTemp, "intarray");
   706       break;
   707     }
   708     default: {
   709       zP4 = pOp->p4.z;
   710       if( zP4==0 ){
   711         zP4 = zTemp;
   712         zTemp[0] = 0;
   713       }
   714     }
   715   }
   716   assert( zP4!=0 );
   717   return zP4;
   718 }
   719 #endif
   720 
   721 /*
   722 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
   723 **
   724 */
   725 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
   726   int mask;
   727   assert( i>=0 && i<p->db->nDb );
   728   assert( i<sizeof(p->btreeMask)*8 );
   729   mask = 1<<i;
   730   if( (p->btreeMask & mask)==0 ){
   731     p->btreeMask |= mask;
   732     sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
   733   }
   734 }
   735 
   736 
   737 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
   738 /*
   739 ** Print a single opcode.  This routine is used for debugging only.
   740 */
   741 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
   742   char *zP4;
   743   char zPtr[50];
   744   static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
   745   if( pOut==0 ) pOut = stdout;
   746   zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
   747   fprintf(pOut, zFormat1, pc, 
   748       sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
   749 #ifdef SQLITE_DEBUG
   750       pOp->zComment ? pOp->zComment : ""
   751 #else
   752       ""
   753 #endif
   754   );
   755   fflush(pOut);
   756 }
   757 #endif
   758 
   759 /*
   760 ** Release an array of N Mem elements
   761 */
   762 static void releaseMemArray(Mem *p, int N){
   763   if( p && N ){
   764     Mem *pEnd;
   765     sqlite3 *db = p->db;
   766     int malloc_failed = db->mallocFailed;
   767     for(pEnd=&p[N]; p<pEnd; p++){
   768       assert( (&p[1])==pEnd || p[0].db==p[1].db );
   769 
   770       /* This block is really an inlined version of sqlite3VdbeMemRelease()
   771       ** that takes advantage of the fact that the memory cell value is 
   772       ** being set to NULL after releasing any dynamic resources.
   773       **
   774       ** The justification for duplicating code is that according to 
   775       ** callgrind, this causes a certain test case to hit the CPU 4.7 
   776       ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 
   777       ** sqlite3MemRelease() were called from here. With -O2, this jumps
   778       ** to 6.6 percent. The test case is inserting 1000 rows into a table 
   779       ** with no indexes using a single prepared INSERT statement, bind() 
   780       ** and reset(). Inserts are grouped into a transaction.
   781       */
   782       if( p->flags&(MEM_Agg|MEM_Dyn) ){
   783         sqlite3VdbeMemRelease(p);
   784       }else if( p->zMalloc ){
   785         sqlite3DbFree(db, p->zMalloc);
   786         p->zMalloc = 0;
   787       }
   788 
   789       p->flags = MEM_Null;
   790     }
   791     db->mallocFailed = malloc_failed;
   792   }
   793 }
   794 
   795 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
   796 int sqlite3VdbeReleaseBuffers(Vdbe *p){
   797   int ii;
   798   int nFree = 0;
   799   assert( sqlite3_mutex_held(p->db->mutex) );
   800   for(ii=1; ii<=p->nMem; ii++){
   801     Mem *pMem = &p->aMem[ii];
   802     if( pMem->z && pMem->flags&MEM_Dyn ){
   803       assert( !pMem->xDel );
   804       nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
   805       sqlite3VdbeMemRelease(pMem);
   806     }
   807   }
   808   return nFree;
   809 }
   810 #endif
   811 
   812 #ifndef SQLITE_OMIT_EXPLAIN
   813 /*
   814 ** Give a listing of the program in the virtual machine.
   815 **
   816 ** The interface is the same as sqlite3VdbeExec().  But instead of
   817 ** running the code, it invokes the callback once for each instruction.
   818 ** This feature is used to implement "EXPLAIN".
   819 **
   820 ** When p->explain==1, each instruction is listed.  When
   821 ** p->explain==2, only OP_Explain instructions are listed and these
   822 ** are shown in a different format.  p->explain==2 is used to implement
   823 ** EXPLAIN QUERY PLAN.
   824 */
   825 int sqlite3VdbeList(
   826   Vdbe *p                   /* The VDBE */
   827 ){
   828   sqlite3 *db = p->db;
   829   int i;
   830   int rc = SQLITE_OK;
   831   Mem *pMem = p->pResultSet = &p->aMem[1];
   832 
   833   assert( p->explain );
   834   if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
   835   assert( db->magic==SQLITE_MAGIC_BUSY );
   836   assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
   837 
   838   /* Even though this opcode does not use dynamic strings for
   839   ** the result, result columns may become dynamic if the user calls
   840   ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
   841   */
   842   releaseMemArray(pMem, p->nMem);
   843 
   844   do{
   845     i = p->pc++;
   846   }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
   847   if( i>=p->nOp ){
   848     p->rc = SQLITE_OK;
   849     rc = SQLITE_DONE;
   850   }else if( db->u1.isInterrupted ){
   851     p->rc = SQLITE_INTERRUPT;
   852     rc = SQLITE_ERROR;
   853     sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
   854   }else{
   855     char *z;
   856     Op *pOp = &p->aOp[i];
   857     if( p->explain==1 ){
   858       pMem->flags = MEM_Int;
   859       pMem->type = SQLITE_INTEGER;
   860       pMem->u.i = i;                                /* Program counter */
   861       pMem++;
   862   
   863       pMem->flags = MEM_Static|MEM_Str|MEM_Term;
   864       pMem->z = (char*)sqlite3OpcodeName(pOp->opcode);  /* Opcode */
   865       assert( pMem->z!=0 );
   866       pMem->n = strlen(pMem->z);
   867       pMem->type = SQLITE_TEXT;
   868       pMem->enc = SQLITE_UTF8;
   869       pMem++;
   870     }
   871 
   872     pMem->flags = MEM_Int;
   873     pMem->u.i = pOp->p1;                          /* P1 */
   874     pMem->type = SQLITE_INTEGER;
   875     pMem++;
   876 
   877     pMem->flags = MEM_Int;
   878     pMem->u.i = pOp->p2;                          /* P2 */
   879     pMem->type = SQLITE_INTEGER;
   880     pMem++;
   881 
   882     if( p->explain==1 ){
   883       pMem->flags = MEM_Int;
   884       pMem->u.i = pOp->p3;                          /* P3 */
   885       pMem->type = SQLITE_INTEGER;
   886       pMem++;
   887     }
   888 
   889     if( sqlite3VdbeMemGrow(pMem, 32, 0) ){            /* P4 */
   890       p->db->mallocFailed = 1;
   891       return SQLITE_NOMEM;
   892     }
   893     pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   894     z = displayP4(pOp, pMem->z, 32);
   895     if( z!=pMem->z ){
   896       sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
   897     }else{
   898       assert( pMem->z!=0 );
   899       pMem->n = strlen(pMem->z);
   900       pMem->enc = SQLITE_UTF8;
   901     }
   902     pMem->type = SQLITE_TEXT;
   903     pMem++;
   904 
   905     if( p->explain==1 ){
   906       if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
   907         p->db->mallocFailed = 1;
   908         return SQLITE_NOMEM;
   909       }
   910       pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
   911       pMem->n = 2;
   912       sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5);   /* P5 */
   913       pMem->type = SQLITE_TEXT;
   914       pMem->enc = SQLITE_UTF8;
   915       pMem++;
   916   
   917 #ifdef SQLITE_DEBUG
   918       if( pOp->zComment ){
   919         pMem->flags = MEM_Str|MEM_Term;
   920         pMem->z = pOp->zComment;
   921         pMem->n = strlen(pMem->z);
   922         pMem->enc = SQLITE_UTF8;
   923         pMem->type = SQLITE_TEXT;
   924       }else
   925 #endif
   926       {
   927         pMem->flags = MEM_Null;                       /* Comment */
   928         pMem->type = SQLITE_NULL;
   929       }
   930     }
   931 
   932     p->nResColumn = 8 - 5*(p->explain-1);
   933     p->rc = SQLITE_OK;
   934     rc = SQLITE_ROW;
   935   }
   936   return rc;
   937 }
   938 #endif /* SQLITE_OMIT_EXPLAIN */
   939 
   940 #ifdef SQLITE_DEBUG
   941 /*
   942 ** Print the SQL that was used to generate a VDBE program.
   943 */
   944 void sqlite3VdbePrintSql(Vdbe *p){
   945   int nOp = p->nOp;
   946   VdbeOp *pOp;
   947   if( nOp<1 ) return;
   948   pOp = &p->aOp[0];
   949   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   950     const char *z = pOp->p4.z;
   951     while( isspace(*(u8*)z) ) z++;
   952     printf("SQL: [%s]\n", z);
   953   }
   954 }
   955 #endif
   956 
   957 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
   958 /*
   959 ** Print an IOTRACE message showing SQL content.
   960 */
   961 void sqlite3VdbeIOTraceSql(Vdbe *p){
   962   int nOp = p->nOp;
   963   VdbeOp *pOp;
   964   if( sqlite3IoTrace==0 ) return;
   965   if( nOp<1 ) return;
   966   pOp = &p->aOp[0];
   967   if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
   968     int i, j;
   969     char z[1000];
   970     sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
   971     for(i=0; isspace((unsigned char)z[i]); i++){}
   972     for(j=0; z[i]; i++){
   973       if( isspace((unsigned char)z[i]) ){
   974         if( z[i-1]!=' ' ){
   975           z[j++] = ' ';
   976         }
   977       }else{
   978         z[j++] = z[i];
   979       }
   980     }
   981     z[j] = 0;
   982     sqlite3IoTrace("SQL %s\n", z);
   983   }
   984 }
   985 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
   986 
   987 
   988 /*
   989 ** Prepare a virtual machine for execution.  This involves things such
   990 ** as allocating stack space and initializing the program counter.
   991 ** After the VDBE has be prepped, it can be executed by one or more
   992 ** calls to sqlite3VdbeExec().  
   993 **
   994 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
   995 ** VDBE_MAGIC_RUN.
   996 */
   997 void sqlite3VdbeMakeReady(
   998   Vdbe *p,                       /* The VDBE */
   999   int nVar,                      /* Number of '?' see in the SQL statement */
  1000   int nMem,                      /* Number of memory cells to allocate */
  1001   int nCursor,                   /* Number of cursors to allocate */
  1002   int isExplain                  /* True if the EXPLAIN keywords is present */
  1003 ){
  1004   int n;
  1005   sqlite3 *db = p->db;
  1006 
  1007   assert( p!=0 );
  1008   assert( p->magic==VDBE_MAGIC_INIT );
  1009 
  1010   /* There should be at least one opcode.
  1011   */
  1012   assert( p->nOp>0 );
  1013 
  1014   /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
  1015    * is because the call to resizeOpArray() below may shrink the
  1016    * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN 
  1017    * state.
  1018    */
  1019   p->magic = VDBE_MAGIC_RUN;
  1020 
  1021   /* For each cursor required, also allocate a memory cell. Memory
  1022   ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
  1023   ** the vdbe program. Instead they are used to allocate space for
  1024   ** Cursor/BtCursor structures. The blob of memory associated with 
  1025   ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
  1026   ** stores the blob of memory associated with cursor 1, etc.
  1027   **
  1028   ** See also: allocateCursor().
  1029   */
  1030   nMem += nCursor;
  1031 
  1032   /*
  1033   ** Allocation space for registers.
  1034   */
  1035   if( p->aMem==0 ){
  1036     int nArg;       /* Maximum number of args passed to a user function. */
  1037     resolveP2Values(p, &nArg);
  1038     /*resizeOpArray(p, p->nOp);*/
  1039     assert( nVar>=0 );
  1040     if( isExplain && nMem<10 ){
  1041       p->nMem = nMem = 10;
  1042     }
  1043     p->aMem = sqlite3DbMallocZero(db,
  1044         nMem*sizeof(Mem)               /* aMem */
  1045       + nVar*sizeof(Mem)               /* aVar */
  1046       + nArg*sizeof(Mem*)              /* apArg */
  1047       + nVar*sizeof(char*)             /* azVar */
  1048       + nCursor*sizeof(Cursor*) + 1    /* apCsr */
  1049     );
  1050     if( !db->mallocFailed ){
  1051       p->aMem--;             /* aMem[] goes from 1..nMem */
  1052       p->nMem = nMem;        /*       not from 0..nMem-1 */
  1053       p->aVar = &p->aMem[nMem+1];
  1054       p->nVar = nVar;
  1055       p->okVar = 0;
  1056       p->apArg = (Mem**)&p->aVar[nVar];
  1057       p->azVar = (char**)&p->apArg[nArg];
  1058       p->apCsr = (Cursor**)&p->azVar[nVar];
  1059       p->nCursor = nCursor;
  1060       for(n=0; n<nVar; n++){
  1061         p->aVar[n].flags = MEM_Null;
  1062         p->aVar[n].db = db;
  1063       }
  1064       for(n=1; n<=nMem; n++){
  1065         p->aMem[n].flags = MEM_Null;
  1066         p->aMem[n].db = db;
  1067       }
  1068     }
  1069   }
  1070 #ifdef SQLITE_DEBUG
  1071   for(n=1; n<p->nMem; n++){
  1072     assert( p->aMem[n].db==db );
  1073   }
  1074 #endif
  1075 
  1076   p->pc = -1;
  1077   p->rc = SQLITE_OK;
  1078   p->uniqueCnt = 0;
  1079   p->errorAction = OE_Abort;
  1080   p->explain |= isExplain;
  1081   p->magic = VDBE_MAGIC_RUN;
  1082   p->nChange = 0;
  1083   p->cacheCtr = 1;
  1084   p->minWriteFileFormat = 255;
  1085   p->openedStatement = 0;
  1086 #ifdef VDBE_PROFILE
  1087   {
  1088     int i;
  1089     for(i=0; i<p->nOp; i++){
  1090       p->aOp[i].cnt = 0;
  1091       p->aOp[i].cycles = 0;
  1092     }
  1093   }
  1094 #endif
  1095 }
  1096 
  1097 /*
  1098 ** Close a VDBE cursor and release all the resources that cursor 
  1099 ** happens to hold.
  1100 */
  1101 void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
  1102   if( pCx==0 ){
  1103     return;
  1104   }
  1105   if( pCx->pBt ){
  1106     sqlite3BtreeClose(pCx->pBt);
  1107     /* The pCx->pCursor will be close automatically, if it exists, by
  1108     ** the call above. */
  1109   }else if( pCx->pCursor ){
  1110     sqlite3BtreeCloseCursor(pCx->pCursor);
  1111   }
  1112 #ifndef SQLITE_OMIT_VIRTUALTABLE
  1113   if( pCx->pVtabCursor ){
  1114     sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
  1115     const sqlite3_module *pModule = pCx->pModule;
  1116     p->inVtabMethod = 1;
  1117     (void)sqlite3SafetyOff(p->db);
  1118     pModule->xClose(pVtabCursor);
  1119     (void)sqlite3SafetyOn(p->db);
  1120     p->inVtabMethod = 0;
  1121   }
  1122 #endif
  1123   if( !pCx->ephemPseudoTable ){
  1124     sqlite3DbFree(p->db, pCx->pData);
  1125   }
  1126 }
  1127 
  1128 /*
  1129 ** Close all cursors except for VTab cursors that are currently
  1130 ** in use.
  1131 */
  1132 static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
  1133   int i;
  1134   if( p->apCsr==0 ) return;
  1135   for(i=0; i<p->nCursor; i++){
  1136     Cursor *pC = p->apCsr[i];
  1137     if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
  1138       sqlite3VdbeFreeCursor(p, pC);
  1139       p->apCsr[i] = 0;
  1140     }
  1141   }
  1142 }
  1143 
  1144 /*
  1145 ** Clean up the VM after execution.
  1146 **
  1147 ** This routine will automatically close any cursors, lists, and/or
  1148 ** sorters that were left open.  It also deletes the values of
  1149 ** variables in the aVar[] array.
  1150 */
  1151 static void Cleanup(Vdbe *p){
  1152   int i;
  1153   sqlite3 *db = p->db;
  1154   closeAllCursorsExceptActiveVtabs(p);
  1155   for(i=1; i<=p->nMem; i++){
  1156     MemSetTypeFlag(&p->aMem[i], MEM_Null);
  1157   }
  1158   releaseMemArray(&p->aMem[1], p->nMem);
  1159   sqlite3VdbeFifoClear(&p->sFifo);
  1160   if( p->contextStack ){
  1161     for(i=0; i<p->contextStackTop; i++){
  1162       sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
  1163     }
  1164     sqlite3DbFree(db, p->contextStack);
  1165   }
  1166   p->contextStack = 0;
  1167   p->contextStackDepth = 0;
  1168   p->contextStackTop = 0;
  1169   sqlite3DbFree(db, p->zErrMsg);
  1170   p->zErrMsg = 0;
  1171   p->pResultSet = 0;
  1172 }
  1173 
  1174 /*
  1175 ** Set the number of result columns that will be returned by this SQL
  1176 ** statement. This is now set at compile time, rather than during
  1177 ** execution of the vdbe program so that sqlite3_column_count() can
  1178 ** be called on an SQL statement before sqlite3_step().
  1179 */
  1180 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
  1181   Mem *pColName;
  1182   int n;
  1183   sqlite3 *db = p->db;
  1184 
  1185   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  1186   sqlite3DbFree(db, p->aColName);
  1187   n = nResColumn*COLNAME_N;
  1188   p->nResColumn = nResColumn;
  1189   p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
  1190   if( p->aColName==0 ) return;
  1191   while( n-- > 0 ){
  1192     pColName->flags = MEM_Null;
  1193     pColName->db = p->db;
  1194     pColName++;
  1195   }
  1196 }
  1197 
  1198 /*
  1199 ** Set the name of the idx'th column to be returned by the SQL statement.
  1200 ** zName must be a pointer to a nul terminated string.
  1201 **
  1202 ** This call must be made after a call to sqlite3VdbeSetNumCols().
  1203 **
  1204 ** If N==P4_STATIC  it means that zName is a pointer to a constant static
  1205 ** string and we can just copy the pointer. If it is P4_DYNAMIC, then 
  1206 ** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
  1207 ** it. Otherwise, N bytes of zName are copied.
  1208 */
  1209 int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
  1210   int rc;
  1211   Mem *pColName;
  1212   assert( idx<p->nResColumn );
  1213   assert( var<COLNAME_N );
  1214   if( p->db->mallocFailed ) return SQLITE_NOMEM;
  1215   assert( p->aColName!=0 );
  1216   pColName = &(p->aColName[idx+var*p->nResColumn]);
  1217   if( N==P4_DYNAMIC || N==P4_STATIC ){
  1218     rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
  1219   }else{
  1220     rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
  1221   }
  1222   if( rc==SQLITE_OK && N==P4_DYNAMIC ){
  1223     pColName->flags &= (~MEM_Static);
  1224     pColName->zMalloc = pColName->z;
  1225   }
  1226   return rc;
  1227 }
  1228 
  1229 /*
  1230 ** A read or write transaction may or may not be active on database handle
  1231 ** db. If a transaction is active, commit it. If there is a
  1232 ** write-transaction spanning more than one database file, this routine
  1233 ** takes care of the master journal trickery.
  1234 */
  1235 static int vdbeCommit(sqlite3 *db, Vdbe *p){
  1236   int i;
  1237   int nTrans = 0;  /* Number of databases with an active write-transaction */
  1238   int rc = SQLITE_OK;
  1239   int needXcommit = 0;
  1240 
  1241   /* Before doing anything else, call the xSync() callback for any
  1242   ** virtual module tables written in this transaction. This has to
  1243   ** be done before determining whether a master journal file is 
  1244   ** required, as an xSync() callback may add an attached database
  1245   ** to the transaction.
  1246   */
  1247   rc = sqlite3VtabSync(db, &p->zErrMsg);
  1248   if( rc!=SQLITE_OK ){
  1249     return rc;
  1250   }
  1251 
  1252   /* This loop determines (a) if the commit hook should be invoked and
  1253   ** (b) how many database files have open write transactions, not 
  1254   ** including the temp database. (b) is important because if more than 
  1255   ** one database file has an open write transaction, a master journal
  1256   ** file is required for an atomic commit.
  1257   */ 
  1258   for(i=0; i<db->nDb; i++){ 
  1259     Btree *pBt = db->aDb[i].pBt;
  1260     if( sqlite3BtreeIsInTrans(pBt) ){
  1261       needXcommit = 1;
  1262       if( i!=1 ) nTrans++;
  1263     }
  1264   }
  1265 
  1266   /* If there are any write-transactions at all, invoke the commit hook */
  1267   if( needXcommit && db->xCommitCallback ){
  1268     (void)sqlite3SafetyOff(db);
  1269     rc = db->xCommitCallback(db->pCommitArg);
  1270     (void)sqlite3SafetyOn(db);
  1271     if( rc ){
  1272       return SQLITE_CONSTRAINT;
  1273     }
  1274   }
  1275 
  1276   /* The simple case - no more than one database file (not counting the
  1277   ** TEMP database) has a transaction active.   There is no need for the
  1278   ** master-journal.
  1279   **
  1280   ** If the return value of sqlite3BtreeGetFilename() is a zero length
  1281   ** string, it means the main database is :memory: or a temp file.  In 
  1282   ** that case we do not support atomic multi-file commits, so use the 
  1283   ** simple case then too.
  1284   */
  1285   if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
  1286     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
  1287       Btree *pBt = db->aDb[i].pBt;
  1288       if( pBt ){
  1289         rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
  1290       }
  1291     }
  1292 
  1293     /* Do the commit only if all databases successfully complete phase 1. 
  1294     ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
  1295     ** IO error while deleting or truncating a journal file. It is unlikely,
  1296     ** but could happen. In this case abandon processing and return the error.
  1297     */
  1298     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
  1299       Btree *pBt = db->aDb[i].pBt;
  1300       if( pBt ){
  1301         rc = sqlite3BtreeCommitPhaseTwo(pBt);
  1302       }
  1303     }
  1304     if( rc==SQLITE_OK ){
  1305       sqlite3VtabCommit(db);
  1306     }
  1307   }
  1308 
  1309   /* The complex case - There is a multi-file write-transaction active.
  1310   ** This requires a master journal file to ensure the transaction is
  1311   ** committed atomicly.
  1312   */
  1313 #ifndef SQLITE_OMIT_DISKIO
  1314   else{
  1315     sqlite3_vfs *pVfs = db->pVfs;
  1316     int needSync = 0;
  1317     char *zMaster = 0;   /* File-name for the master journal */
  1318     char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
  1319     sqlite3_file *pMaster = 0;
  1320     i64 offset = 0;
  1321     int res;
  1322 
  1323     /* Select a master journal file name */
  1324     do {
  1325       u32 random;
  1326       sqlite3DbFree(db, zMaster);
  1327       sqlite3_randomness(sizeof(random), &random);
  1328       zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
  1329       if( !zMaster ){
  1330         return SQLITE_NOMEM;
  1331       }
  1332       rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
  1333     }while( rc==SQLITE_OK && res );
  1334     if( rc==SQLITE_OK ){
  1335       /* Open the master journal. */
  1336       rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, 
  1337           SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
  1338           SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
  1339       );
  1340     }
  1341     if( rc!=SQLITE_OK ){
  1342       sqlite3DbFree(db, zMaster);
  1343       return rc;
  1344     }
  1345  
  1346     /* Write the name of each database file in the transaction into the new
  1347     ** master journal file. If an error occurs at this point close
  1348     ** and delete the master journal file. All the individual journal files
  1349     ** still have 'null' as the master journal pointer, so they will roll
  1350     ** back independently if a failure occurs.
  1351     */
  1352     for(i=0; i<db->nDb; i++){
  1353       Btree *pBt = db->aDb[i].pBt;
  1354       if( i==1 ) continue;   /* Ignore the TEMP database */
  1355       if( sqlite3BtreeIsInTrans(pBt) ){
  1356         char const *zFile = sqlite3BtreeGetJournalname(pBt);
  1357         if( zFile[0]==0 ) continue;  /* Ignore :memory: databases */
  1358         if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
  1359           needSync = 1;
  1360         }
  1361         rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
  1362         offset += strlen(zFile)+1;
  1363         if( rc!=SQLITE_OK ){
  1364           sqlite3OsCloseFree(pMaster);
  1365           sqlite3OsDelete(pVfs, zMaster, 0);
  1366           sqlite3DbFree(db, zMaster);
  1367           return rc;
  1368         }
  1369       }
  1370     }
  1371 
  1372     /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
  1373     ** flag is set this is not required.
  1374     */
  1375     zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
  1376     if( (needSync 
  1377      && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
  1378      && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
  1379       sqlite3OsCloseFree(pMaster);
  1380       sqlite3OsDelete(pVfs, zMaster, 0);
  1381       sqlite3DbFree(db, zMaster);
  1382       return rc;
  1383     }
  1384 
  1385     /* Sync all the db files involved in the transaction. The same call
  1386     ** sets the master journal pointer in each individual journal. If
  1387     ** an error occurs here, do not delete the master journal file.
  1388     **
  1389     ** If the error occurs during the first call to
  1390     ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
  1391     ** master journal file will be orphaned. But we cannot delete it,
  1392     ** in case the master journal file name was written into the journal
  1393     ** file before the failure occured.
  1394     */
  1395     for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
  1396       Btree *pBt = db->aDb[i].pBt;
  1397       if( pBt ){
  1398         rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
  1399       }
  1400     }
  1401     sqlite3OsCloseFree(pMaster);
  1402     if( rc!=SQLITE_OK ){
  1403       sqlite3DbFree(db, zMaster);
  1404       return rc;
  1405     }
  1406 
  1407     /* Delete the master journal file. This commits the transaction. After
  1408     ** doing this the directory is synced again before any individual
  1409     ** transaction files are deleted.
  1410     */
  1411     rc = sqlite3OsDelete(pVfs, zMaster, 1);
  1412     sqlite3DbFree(db, zMaster);
  1413     zMaster = 0;
  1414     if( rc ){
  1415       return rc;
  1416     }
  1417 
  1418     /* All files and directories have already been synced, so the following
  1419     ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
  1420     ** deleting or truncating journals. If something goes wrong while
  1421     ** this is happening we don't really care. The integrity of the
  1422     ** transaction is already guaranteed, but some stray 'cold' journals
  1423     ** may be lying around. Returning an error code won't help matters.
  1424     */
  1425     disable_simulated_io_errors();
  1426     sqlite3BeginBenignMalloc();
  1427     for(i=0; i<db->nDb; i++){ 
  1428       Btree *pBt = db->aDb[i].pBt;
  1429       if( pBt ){
  1430         sqlite3BtreeCommitPhaseTwo(pBt);
  1431       }
  1432     }
  1433     sqlite3EndBenignMalloc();
  1434     enable_simulated_io_errors();
  1435 
  1436     sqlite3VtabCommit(db);
  1437   }
  1438 #endif
  1439 
  1440   return rc;
  1441 }
  1442 
  1443 /* 
  1444 ** This routine checks that the sqlite3.activeVdbeCnt count variable
  1445 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
  1446 ** currently active. An assertion fails if the two counts do not match.
  1447 ** This is an internal self-check only - it is not an essential processing
  1448 ** step.
  1449 **
  1450 ** This is a no-op if NDEBUG is defined.
  1451 */
  1452 #ifndef NDEBUG
  1453 static void checkActiveVdbeCnt(sqlite3 *db){
  1454   Vdbe *p;
  1455   int cnt = 0;
  1456   p = db->pVdbe;
  1457   while( p ){
  1458     if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
  1459       cnt++;
  1460     }
  1461     p = p->pNext;
  1462   }
  1463   assert( cnt==db->activeVdbeCnt );
  1464 }
  1465 #else
  1466 #define checkActiveVdbeCnt(x)
  1467 #endif
  1468 
  1469 /*
  1470 ** For every Btree that in database connection db which 
  1471 ** has been modified, "trip" or invalidate each cursor in
  1472 ** that Btree might have been modified so that the cursor
  1473 ** can never be used again.  This happens when a rollback
  1474 *** occurs.  We have to trip all the other cursors, even
  1475 ** cursor from other VMs in different database connections,
  1476 ** so that none of them try to use the data at which they
  1477 ** were pointing and which now may have been changed due
  1478 ** to the rollback.
  1479 **
  1480 ** Remember that a rollback can delete tables complete and
  1481 ** reorder rootpages.  So it is not sufficient just to save
  1482 ** the state of the cursor.  We have to invalidate the cursor
  1483 ** so that it is never used again.
  1484 */
  1485 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
  1486   int i;
  1487   for(i=0; i<db->nDb; i++){
  1488     Btree *p = db->aDb[i].pBt;
  1489     if( p && sqlite3BtreeIsInTrans(p) ){
  1490       sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
  1491     }
  1492   }
  1493 }
  1494 
  1495 /*
  1496 ** This routine is called the when a VDBE tries to halt.  If the VDBE
  1497 ** has made changes and is in autocommit mode, then commit those
  1498 ** changes.  If a rollback is needed, then do the rollback.
  1499 **
  1500 ** This routine is the only way to move the state of a VM from
  1501 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT.  It is harmless to
  1502 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
  1503 **
  1504 ** Return an error code.  If the commit could not complete because of
  1505 ** lock contention, return SQLITE_BUSY.  If SQLITE_BUSY is returned, it
  1506 ** means the close did not happen and needs to be repeated.
  1507 */
  1508 int sqlite3VdbeHalt(Vdbe *p){
  1509   sqlite3 *db = p->db;
  1510   int i;
  1511   int (*xFunc)(Btree *pBt) = 0;  /* Function to call on each btree backend */
  1512   int isSpecialError;            /* Set to true if SQLITE_NOMEM or IOERR */
  1513 
  1514   /* This function contains the logic that determines if a statement or
  1515   ** transaction will be committed or rolled back as a result of the
  1516   ** execution of this virtual machine. 
  1517   **
  1518   ** If any of the following errors occur:
  1519   **
  1520   **     SQLITE_NOMEM
  1521   **     SQLITE_IOERR
  1522   **     SQLITE_FULL
  1523   **     SQLITE_INTERRUPT
  1524   **
  1525   ** Then the internal cache might have been left in an inconsistent
  1526   ** state.  We need to rollback the statement transaction, if there is
  1527   ** one, or the complete transaction if there is no statement transaction.
  1528   */
  1529 
  1530   if( p->db->mallocFailed ){
  1531     p->rc = SQLITE_NOMEM;
  1532   }
  1533   closeAllCursorsExceptActiveVtabs(p);
  1534   if( p->magic!=VDBE_MAGIC_RUN ){
  1535     return SQLITE_OK;
  1536   }
  1537   checkActiveVdbeCnt(db);
  1538 
  1539   /* No commit or rollback needed if the program never started */
  1540   if( p->pc>=0 ){
  1541     int mrc;   /* Primary error code from p->rc */
  1542 
  1543     /* Lock all btrees used by the statement */
  1544     sqlite3BtreeMutexArrayEnter(&p->aMutex);
  1545 
  1546     /* Check for one of the special errors */
  1547     mrc = p->rc & 0xff;
  1548     isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
  1549                      || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
  1550     if( isSpecialError ){
  1551       /* This loop does static analysis of the query to see which of the
  1552       ** following three categories it falls into:
  1553       **
  1554       **     Read-only
  1555       **     Query with statement journal
  1556       **     Query without statement journal
  1557       **
  1558       ** We could do something more elegant than this static analysis (i.e.
  1559       ** store the type of query as part of the compliation phase), but 
  1560       ** handling malloc() or IO failure is a fairly obscure edge case so 
  1561       ** this is probably easier. Todo: Might be an opportunity to reduce 
  1562       ** code size a very small amount though...
  1563       */
  1564       int notReadOnly = 0;
  1565       int isStatement = 0;
  1566       assert(p->aOp || p->nOp==0);
  1567       for(i=0; i<p->nOp; i++){ 
  1568         switch( p->aOp[i].opcode ){
  1569           case OP_Transaction:
  1570             notReadOnly |= p->aOp[i].p2;
  1571             break;
  1572           case OP_Statement:
  1573             isStatement = 1;
  1574             break;
  1575         }
  1576       }
  1577 
  1578    
  1579       /* If the query was read-only, we need do no rollback at all. Otherwise,
  1580       ** proceed with the special handling.
  1581       */
  1582       if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
  1583         if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
  1584           xFunc = sqlite3BtreeRollbackStmt;
  1585           p->rc = SQLITE_BUSY;
  1586         } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
  1587           xFunc = sqlite3BtreeRollbackStmt;
  1588         }else{
  1589           /* We are forced to roll back the active transaction. Before doing
  1590           ** so, abort any other statements this handle currently has active.
  1591           */
  1592           invalidateCursorsOnModifiedBtrees(db);
  1593           sqlite3RollbackAll(db);
  1594           db->autoCommit = 1;
  1595         }
  1596       }
  1597     }
  1598   
  1599     /* If the auto-commit flag is set and this is the only active vdbe, then
  1600     ** we do either a commit or rollback of the current transaction. 
  1601     **
  1602     ** Note: This block also runs if one of the special errors handled 
  1603     ** above has occured. 
  1604     */
  1605     if( db->autoCommit && db->activeVdbeCnt==1 ){
  1606       if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
  1607         /* The auto-commit flag is true, and the vdbe program was 
  1608         ** successful or hit an 'OR FAIL' constraint. This means a commit 
  1609         ** is required.
  1610         */
  1611         int rc = vdbeCommit(db, p);
  1612         if( rc==SQLITE_BUSY ){
  1613           sqlite3BtreeMutexArrayLeave(&p->aMutex);
  1614           return SQLITE_BUSY;
  1615         }else if( rc!=SQLITE_OK ){
  1616           p->rc = rc;
  1617           sqlite3RollbackAll(db);
  1618         }else{
  1619           sqlite3CommitInternalChanges(db);
  1620         }
  1621       }else{
  1622         sqlite3RollbackAll(db);
  1623       }
  1624     }else if( !xFunc ){
  1625       if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
  1626         if( p->openedStatement ){
  1627           xFunc = sqlite3BtreeCommitStmt;
  1628         } 
  1629       }else if( p->errorAction==OE_Abort ){
  1630         xFunc = sqlite3BtreeRollbackStmt;
  1631       }else{
  1632         invalidateCursorsOnModifiedBtrees(db);
  1633         sqlite3RollbackAll(db);
  1634         db->autoCommit = 1;
  1635       }
  1636     }
  1637   
  1638     /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
  1639     ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
  1640     ** and the return code is still SQLITE_OK, set the return code to the new
  1641     ** error value.
  1642     */
  1643     assert(!xFunc ||
  1644       xFunc==sqlite3BtreeCommitStmt ||
  1645       xFunc==sqlite3BtreeRollbackStmt
  1646     );
  1647     for(i=0; xFunc && i<db->nDb; i++){ 
  1648       int rc;
  1649       Btree *pBt = db->aDb[i].pBt;
  1650       if( pBt ){
  1651         rc = xFunc(pBt);
  1652         if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
  1653           p->rc = rc;
  1654           sqlite3DbFree(db, p->zErrMsg);
  1655           p->zErrMsg = 0;
  1656         }
  1657       }
  1658     }
  1659   
  1660     /* If this was an INSERT, UPDATE or DELETE and the statement was committed, 
  1661     ** set the change counter. 
  1662     */
  1663     if( p->changeCntOn && p->pc>=0 ){
  1664       if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
  1665         sqlite3VdbeSetChanges(db, p->nChange);
  1666       }else{
  1667         sqlite3VdbeSetChanges(db, 0);
  1668       }
  1669       p->nChange = 0;
  1670     }
  1671   
  1672     /* Rollback or commit any schema changes that occurred. */
  1673     if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
  1674       sqlite3ResetInternalSchema(db, 0);
  1675       db->flags = (db->flags | SQLITE_InternChanges);
  1676     }
  1677 
  1678     /* Release the locks */
  1679     sqlite3BtreeMutexArrayLeave(&p->aMutex);
  1680   }
  1681 
  1682   /* We have successfully halted and closed the VM.  Record this fact. */
  1683   if( p->pc>=0 ){
  1684     db->activeVdbeCnt--;
  1685   }
  1686   p->magic = VDBE_MAGIC_HALT;
  1687   checkActiveVdbeCnt(db);
  1688   if( p->db->mallocFailed ){
  1689     p->rc = SQLITE_NOMEM;
  1690   }
  1691 
  1692   return SQLITE_OK;
  1693 }
  1694 
  1695 
  1696 /*
  1697 ** Each VDBE holds the result of the most recent sqlite3_step() call
  1698 ** in p->rc.  This routine sets that result back to SQLITE_OK.
  1699 */
  1700 void sqlite3VdbeResetStepResult(Vdbe *p){
  1701   p->rc = SQLITE_OK;
  1702 }
  1703 
  1704 /*
  1705 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
  1706 ** Write any error messages into *pzErrMsg.  Return the result code.
  1707 **
  1708 ** After this routine is run, the VDBE should be ready to be executed
  1709 ** again.
  1710 **
  1711 ** To look at it another way, this routine resets the state of the
  1712 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
  1713 ** VDBE_MAGIC_INIT.
  1714 */
  1715 int sqlite3VdbeReset(Vdbe *p){
  1716   sqlite3 *db;
  1717   db = p->db;
  1718 
  1719   /* If the VM did not run to completion or if it encountered an
  1720   ** error, then it might not have been halted properly.  So halt
  1721   ** it now.
  1722   */
  1723   (void)sqlite3SafetyOn(db);
  1724   sqlite3VdbeHalt(p);
  1725   (void)sqlite3SafetyOff(db);
  1726 
  1727   /* If the VDBE has be run even partially, then transfer the error code
  1728   ** and error message from the VDBE into the main database structure.  But
  1729   ** if the VDBE has just been set to run but has not actually executed any
  1730   ** instructions yet, leave the main database error information unchanged.
  1731   */
  1732   if( p->pc>=0 ){
  1733     if( p->zErrMsg ){
  1734       sqlite3BeginBenignMalloc();
  1735       sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
  1736       sqlite3EndBenignMalloc();
  1737       db->errCode = p->rc;
  1738       sqlite3DbFree(db, p->zErrMsg);
  1739       p->zErrMsg = 0;
  1740     }else if( p->rc ){
  1741       sqlite3Error(db, p->rc, 0);
  1742     }else{
  1743       sqlite3Error(db, SQLITE_OK, 0);
  1744     }
  1745   }else if( p->rc && p->expired ){
  1746     /* The expired flag was set on the VDBE before the first call
  1747     ** to sqlite3_step(). For consistency (since sqlite3_step() was
  1748     ** called), set the database error in this case as well.
  1749     */
  1750     sqlite3Error(db, p->rc, 0);
  1751     sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
  1752     sqlite3DbFree(db, p->zErrMsg);
  1753     p->zErrMsg = 0;
  1754   }
  1755 
  1756   /* Reclaim all memory used by the VDBE
  1757   */
  1758   Cleanup(p);
  1759 
  1760   /* Save profiling information from this VDBE run.
  1761   */
  1762 #ifdef VDBE_PROFILE
  1763   {
  1764     FILE *out = fopen("vdbe_profile.out", "a");
  1765     if( out ){
  1766       int i;
  1767       fprintf(out, "---- ");
  1768       for(i=0; i<p->nOp; i++){
  1769         fprintf(out, "%02x", p->aOp[i].opcode);
  1770       }
  1771       fprintf(out, "\n");
  1772       for(i=0; i<p->nOp; i++){
  1773         fprintf(out, "%6d %10lld %8lld ",
  1774            p->aOp[i].cnt,
  1775            p->aOp[i].cycles,
  1776            p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
  1777         );
  1778         sqlite3VdbePrintOp(out, i, &p->aOp[i]);
  1779       }
  1780       fclose(out);
  1781     }
  1782   }
  1783 #endif
  1784   p->magic = VDBE_MAGIC_INIT;
  1785   return p->rc & db->errMask;
  1786 }
  1787  
  1788 /*
  1789 ** Clean up and delete a VDBE after execution.  Return an integer which is
  1790 ** the result code.  Write any error message text into *pzErrMsg.
  1791 */
  1792 int sqlite3VdbeFinalize(Vdbe *p){
  1793   int rc = SQLITE_OK;
  1794   if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
  1795     rc = sqlite3VdbeReset(p);
  1796     assert( (rc & p->db->errMask)==rc );
  1797   }else if( p->magic!=VDBE_MAGIC_INIT ){
  1798     return SQLITE_MISUSE;
  1799   }
  1800   sqlite3VdbeDelete(p);
  1801   return rc;
  1802 }
  1803 
  1804 /*
  1805 ** Call the destructor for each auxdata entry in pVdbeFunc for which
  1806 ** the corresponding bit in mask is clear.  Auxdata entries beyond 31
  1807 ** are always destroyed.  To destroy all auxdata entries, call this
  1808 ** routine with mask==0.
  1809 */
  1810 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
  1811   int i;
  1812   for(i=0; i<pVdbeFunc->nAux; i++){
  1813     struct AuxData *pAux = &pVdbeFunc->apAux[i];
  1814     if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
  1815       if( pAux->xDelete ){
  1816         pAux->xDelete(pAux->pAux);
  1817       }
  1818       pAux->pAux = 0;
  1819     }
  1820   }
  1821 }
  1822 
  1823 /*
  1824 ** Delete an entire VDBE.
  1825 */
  1826 void sqlite3VdbeDelete(Vdbe *p){
  1827   int i;
  1828   sqlite3 *db;
  1829 
  1830   if( p==0 ) return;
  1831   db = p->db;
  1832   if( p->pPrev ){
  1833     p->pPrev->pNext = p->pNext;
  1834   }else{
  1835     assert( db->pVdbe==p );
  1836     db->pVdbe = p->pNext;
  1837   }
  1838   if( p->pNext ){
  1839     p->pNext->pPrev = p->pPrev;
  1840   }
  1841   if( p->aOp ){
  1842     Op *pOp = p->aOp;
  1843     for(i=0; i<p->nOp; i++, pOp++){
  1844       freeP4(db, pOp->p4type, pOp->p4.p);
  1845 #ifdef SQLITE_DEBUG
  1846       sqlite3DbFree(db, pOp->zComment);
  1847 #endif     
  1848     }
  1849     sqlite3DbFree(db, p->aOp);
  1850   }
  1851   releaseMemArray(p->aVar, p->nVar);
  1852   sqlite3DbFree(db, p->aLabel);
  1853   if( p->aMem ){
  1854     sqlite3DbFree(db, &p->aMem[1]);
  1855   }
  1856   releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
  1857   sqlite3DbFree(db, p->aColName);
  1858   sqlite3DbFree(db, p->zSql);
  1859   p->magic = VDBE_MAGIC_DEAD;
  1860   sqlite3DbFree(db, p);
  1861 }
  1862 
  1863 /*
  1864 ** If a MoveTo operation is pending on the given cursor, then do that
  1865 ** MoveTo now.  Return an error code.  If no MoveTo is pending, this
  1866 ** routine does nothing and returns SQLITE_OK.
  1867 */
  1868 int sqlite3VdbeCursorMoveto(Cursor *p){
  1869   if( p->deferredMoveto ){
  1870     int res, rc;
  1871 #ifdef SQLITE_TEST
  1872     extern int sqlite3_search_count;
  1873 #endif
  1874     assert( p->isTable );
  1875     rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
  1876     if( rc ) return rc;
  1877     p->lastRowid = keyToInt(p->movetoTarget);
  1878     p->rowidIsValid = res==0;
  1879     if( res<0 ){
  1880       rc = sqlite3BtreeNext(p->pCursor, &res);
  1881       if( rc ) return rc;
  1882     }
  1883 #ifdef SQLITE_TEST
  1884     sqlite3_search_count++;
  1885 #endif
  1886     p->deferredMoveto = 0;
  1887     p->cacheStatus = CACHE_STALE;
  1888   }else if( p->pCursor ){
  1889     int hasMoved;
  1890     int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
  1891     if( rc ) return rc;
  1892     if( hasMoved ){
  1893       p->cacheStatus = CACHE_STALE;
  1894       p->nullRow = 1;
  1895     }
  1896   }
  1897   return SQLITE_OK;
  1898 }
  1899 
  1900 /*
  1901 ** The following functions:
  1902 **
  1903 ** sqlite3VdbeSerialType()
  1904 ** sqlite3VdbeSerialTypeLen()
  1905 ** sqlite3VdbeSerialLen()
  1906 ** sqlite3VdbeSerialPut()
  1907 ** sqlite3VdbeSerialGet()
  1908 **
  1909 ** encapsulate the code that serializes values for storage in SQLite
  1910 ** data and index records. Each serialized value consists of a
  1911 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
  1912 ** integer, stored as a varint.
  1913 **
  1914 ** In an SQLite index record, the serial type is stored directly before
  1915 ** the blob of data that it corresponds to. In a table record, all serial
  1916 ** types are stored at the start of the record, and the blobs of data at
  1917 ** the end. Hence these functions allow the caller to handle the
  1918 ** serial-type and data blob seperately.
  1919 **
  1920 ** The following table describes the various storage classes for data:
  1921 **
  1922 **   serial type        bytes of data      type
  1923 **   --------------     ---------------    ---------------
  1924 **      0                     0            NULL
  1925 **      1                     1            signed integer
  1926 **      2                     2            signed integer
  1927 **      3                     3            signed integer
  1928 **      4                     4            signed integer
  1929 **      5                     6            signed integer
  1930 **      6                     8            signed integer
  1931 **      7                     8            IEEE float
  1932 **      8                     0            Integer constant 0
  1933 **      9                     0            Integer constant 1
  1934 **     10,11                               reserved for expansion
  1935 **    N>=12 and even       (N-12)/2        BLOB
  1936 **    N>=13 and odd        (N-13)/2        text
  1937 **
  1938 ** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
  1939 ** of SQLite will not understand those serial types.
  1940 */
  1941 
  1942 /*
  1943 ** Return the serial-type for the value stored in pMem.
  1944 */
  1945 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
  1946   int flags = pMem->flags;
  1947   int n;
  1948 
  1949   if( flags&MEM_Null ){
  1950     return 0;
  1951   }
  1952   if( flags&MEM_Int ){
  1953     /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
  1954 #   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
  1955     i64 i = pMem->u.i;
  1956     u64 u;
  1957     if( file_format>=4 && (i&1)==i ){
  1958       return 8+i;
  1959     }
  1960     u = i<0 ? -i : i;
  1961     if( u<=127 ) return 1;
  1962     if( u<=32767 ) return 2;
  1963     if( u<=8388607 ) return 3;
  1964     if( u<=2147483647 ) return 4;
  1965     if( u<=MAX_6BYTE ) return 5;
  1966     return 6;
  1967   }
  1968   if( flags&MEM_Real ){
  1969     return 7;
  1970   }
  1971   assert( flags&(MEM_Str|MEM_Blob) );
  1972   n = pMem->n;
  1973   if( flags & MEM_Zero ){
  1974     n += pMem->u.i;
  1975   }
  1976   assert( n>=0 );
  1977   return ((n*2) + 12 + ((flags&MEM_Str)!=0));
  1978 }
  1979 
  1980 /*
  1981 ** Return the length of the data corresponding to the supplied serial-type.
  1982 */
  1983 int sqlite3VdbeSerialTypeLen(u32 serial_type){
  1984   if( serial_type>=12 ){
  1985     return (serial_type-12)/2;
  1986   }else{
  1987     static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
  1988     return aSize[serial_type];
  1989   }
  1990 }
  1991 
  1992 /*
  1993 ** If we are on an architecture with mixed-endian floating 
  1994 ** points (ex: ARM7) then swap the lower 4 bytes with the 
  1995 ** upper 4 bytes.  Return the result.
  1996 **
  1997 ** For most architectures, this is a no-op.
  1998 **
  1999 ** (later):  It is reported to me that the mixed-endian problem
  2000 ** on ARM7 is an issue with GCC, not with the ARM7 chip.  It seems
  2001 ** that early versions of GCC stored the two words of a 64-bit
  2002 ** float in the wrong order.  And that error has been propagated
  2003 ** ever since.  The blame is not necessarily with GCC, though.
  2004 ** GCC might have just copying the problem from a prior compiler.
  2005 ** I am also told that newer versions of GCC that follow a different
  2006 ** ABI get the byte order right.
  2007 **
  2008 ** Developers using SQLite on an ARM7 should compile and run their
  2009 ** application using -DSQLITE_DEBUG=1 at least once.  With DEBUG
  2010 ** enabled, some asserts below will ensure that the byte order of
  2011 ** floating point values is correct.
  2012 **
  2013 ** (2007-08-30)  Frank van Vugt has studied this problem closely
  2014 ** and has send his findings to the SQLite developers.  Frank
  2015 ** writes that some Linux kernels offer floating point hardware
  2016 ** emulation that uses only 32-bit mantissas instead of a full 
  2017 ** 48-bits as required by the IEEE standard.  (This is the
  2018 ** CONFIG_FPE_FASTFPE option.)  On such systems, floating point
  2019 ** byte swapping becomes very complicated.  To avoid problems,
  2020 ** the necessary byte swapping is carried out using a 64-bit integer
  2021 ** rather than a 64-bit float.  Frank assures us that the code here
  2022 ** works for him.  We, the developers, have no way to independently
  2023 ** verify this, but Frank seems to know what he is talking about
  2024 ** so we trust him.
  2025 */
  2026 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
  2027 static u64 floatSwap(u64 in){
  2028   union {
  2029     u64 r;
  2030     u32 i[2];
  2031   } u;
  2032   u32 t;
  2033 
  2034   u.r = in;
  2035   t = u.i[0];
  2036   u.i[0] = u.i[1];
  2037   u.i[1] = t;
  2038   return u.r;
  2039 }
  2040 # define swapMixedEndianFloat(X)  X = floatSwap(X)
  2041 #else
  2042 # define swapMixedEndianFloat(X)
  2043 #endif
  2044 
  2045 /*
  2046 ** Write the serialized data blob for the value stored in pMem into 
  2047 ** buf. It is assumed that the caller has allocated sufficient space.
  2048 ** Return the number of bytes written.
  2049 **
  2050 ** nBuf is the amount of space left in buf[].  nBuf must always be
  2051 ** large enough to hold the entire field.  Except, if the field is
  2052 ** a blob with a zero-filled tail, then buf[] might be just the right
  2053 ** size to hold everything except for the zero-filled tail.  If buf[]
  2054 ** is only big enough to hold the non-zero prefix, then only write that
  2055 ** prefix into buf[].  But if buf[] is large enough to hold both the
  2056 ** prefix and the tail then write the prefix and set the tail to all
  2057 ** zeros.
  2058 **
  2059 ** Return the number of bytes actually written into buf[].  The number
  2060 ** of bytes in the zero-filled tail is included in the return value only
  2061 ** if those bytes were zeroed in buf[].
  2062 */ 
  2063 int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
  2064   u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
  2065   int len;
  2066 
  2067   /* Integer and Real */
  2068   if( serial_type<=7 && serial_type>0 ){
  2069     u64 v;
  2070     int i;
  2071     if( serial_type==7 ){
  2072       assert( sizeof(v)==sizeof(pMem->r) );
  2073       memcpy(&v, &pMem->r, sizeof(v));
  2074       swapMixedEndianFloat(v);
  2075     }else{
  2076       v = pMem->u.i;
  2077     }
  2078     len = i = sqlite3VdbeSerialTypeLen(serial_type);
  2079     assert( len<=nBuf );
  2080     while( i-- ){
  2081       buf[i] = (v&0xFF);
  2082       v >>= 8;
  2083     }
  2084     return len;
  2085   }
  2086 
  2087   /* String or blob */
  2088   if( serial_type>=12 ){
  2089     assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
  2090              == sqlite3VdbeSerialTypeLen(serial_type) );
  2091     assert( pMem->n<=nBuf );
  2092     len = pMem->n;
  2093     memcpy(buf, pMem->z, len);
  2094     if( pMem->flags & MEM_Zero ){
  2095       len += pMem->u.i;
  2096       if( len>nBuf ){
  2097         len = nBuf;
  2098       }
  2099       memset(&buf[pMem->n], 0, len-pMem->n);
  2100     }
  2101     return len;
  2102   }
  2103 
  2104   /* NULL or constants 0 or 1 */
  2105   return 0;
  2106 }
  2107 
  2108 /*
  2109 ** Deserialize the data blob pointed to by buf as serial type serial_type
  2110 ** and store the result in pMem.  Return the number of bytes read.
  2111 */ 
  2112 int sqlite3VdbeSerialGet(
  2113   const unsigned char *buf,     /* Buffer to deserialize from */
  2114   u32 serial_type,              /* Serial type to deserialize */
  2115   Mem *pMem                     /* Memory cell to write value into */
  2116 ){
  2117   switch( serial_type ){
  2118     case 10:   /* Reserved for future use */
  2119     case 11:   /* Reserved for future use */
  2120     case 0: {  /* NULL */
  2121       pMem->flags = MEM_Null;
  2122       break;
  2123     }
  2124     case 1: { /* 1-byte signed integer */
  2125       pMem->u.i = (signed char)buf[0];
  2126       pMem->flags = MEM_Int;
  2127       return 1;
  2128     }
  2129     case 2: { /* 2-byte signed integer */
  2130       pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
  2131       pMem->flags = MEM_Int;
  2132       return 2;
  2133     }
  2134     case 3: { /* 3-byte signed integer */
  2135       pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
  2136       pMem->flags = MEM_Int;
  2137       return 3;
  2138     }
  2139     case 4: { /* 4-byte signed integer */
  2140       pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
  2141       pMem->flags = MEM_Int;
  2142       return 4;
  2143     }
  2144     case 5: { /* 6-byte signed integer */
  2145       u64 x = (((signed char)buf[0])<<8) | buf[1];
  2146       u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
  2147       x = (x<<32) | y;
  2148       pMem->u.i = *(i64*)&x;
  2149       pMem->flags = MEM_Int;
  2150       return 6;
  2151     }
  2152     case 6:   /* 8-byte signed integer */
  2153     case 7: { /* IEEE floating point */
  2154       u64 x;
  2155       u32 y;
  2156 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
  2157       /* Verify that integers and floating point values use the same
  2158       ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
  2159       ** defined that 64-bit floating point values really are mixed
  2160       ** endian.
  2161       */
  2162       static const u64 t1 = ((u64)0x3ff00000)<<32;
  2163       static const double r1 = 1.0;
  2164       u64 t2 = t1;
  2165       swapMixedEndianFloat(t2);
  2166       assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
  2167 #endif
  2168 
  2169       x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
  2170       y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
  2171       x = (x<<32) | y;
  2172       if( serial_type==6 ){
  2173         pMem->u.i = *(i64*)&x;
  2174         pMem->flags = MEM_Int;
  2175       }else{
  2176         assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
  2177         swapMixedEndianFloat(x);
  2178         memcpy(&pMem->r, &x, sizeof(x));
  2179         pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
  2180       }
  2181       return 8;
  2182     }
  2183     case 8:    /* Integer 0 */
  2184     case 9: {  /* Integer 1 */
  2185       pMem->u.i = serial_type-8;
  2186       pMem->flags = MEM_Int;
  2187       return 0;
  2188     }
  2189     default: {
  2190       int len = (serial_type-12)/2;
  2191       pMem->z = (char *)buf;
  2192       pMem->n = len;
  2193       pMem->xDel = 0;
  2194       if( serial_type&0x01 ){
  2195         pMem->flags = MEM_Str | MEM_Ephem;
  2196       }else{
  2197         pMem->flags = MEM_Blob | MEM_Ephem;
  2198       }
  2199       return len;
  2200     }
  2201   }
  2202   return 0;
  2203 }
  2204 
  2205 
  2206 /*
  2207 ** Given the nKey-byte encoding of a record in pKey[], parse the
  2208 ** record into a UnpackedRecord structure.  Return a pointer to
  2209 ** that structure.
  2210 **
  2211 ** The calling function might provide szSpace bytes of memory
  2212 ** space at pSpace.  This space can be used to hold the returned
  2213 ** VDbeParsedRecord structure if it is large enough.  If it is
  2214 ** not big enough, space is obtained from sqlite3_malloc().
  2215 **
  2216 ** The returned structure should be closed by a call to
  2217 ** sqlite3VdbeDeleteUnpackedRecord().
  2218 */ 
  2219 UnpackedRecord *sqlite3VdbeRecordUnpack(
  2220   KeyInfo *pKeyInfo,     /* Information about the record format */
  2221   int nKey,              /* Size of the binary record */
  2222   const void *pKey,      /* The binary record */
  2223   UnpackedRecord *pSpace,/* Space available to hold resulting object */
  2224   int szSpace            /* Size of pSpace[] in bytes */
  2225 ){
  2226   const unsigned char *aKey = (const unsigned char *)pKey;
  2227   UnpackedRecord *p;
  2228   int nByte;
  2229   int idx, d;
  2230   u16 u;                 /* Unsigned loop counter */
  2231   u32 szHdr;
  2232   Mem *pMem;
  2233   
  2234   assert( sizeof(Mem)>sizeof(*p) );
  2235   nByte = sizeof(Mem)*(pKeyInfo->nField+2);
  2236   if( nByte>szSpace ){
  2237     p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
  2238     if( p==0 ) return 0;
  2239     p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
  2240   }else{
  2241     p = pSpace;
  2242     p->flags = UNPACKED_NEED_DESTROY;
  2243   }
  2244   p->pKeyInfo = pKeyInfo;
  2245   p->nField = pKeyInfo->nField + 1;
  2246   p->aMem = pMem = &((Mem*)p)[1];
  2247   idx = getVarint32(aKey, szHdr);
  2248   d = szHdr;
  2249   u = 0;
  2250   while( idx<szHdr && u<p->nField ){
  2251     u32 serial_type;
  2252 
  2253     idx += getVarint32( aKey+idx, serial_type);
  2254     if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
  2255     pMem->enc = pKeyInfo->enc;
  2256     pMem->db = pKeyInfo->db;
  2257     pMem->flags = 0;
  2258     pMem->zMalloc = 0;
  2259     d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
  2260     pMem++;
  2261     u++;
  2262   }
  2263   assert( u<=pKeyInfo->nField + 1 );
  2264   p->nField = u;
  2265   return (void*)p;
  2266 }
  2267 
  2268 /*
  2269 ** This routine destroys a UnpackedRecord object
  2270 */
  2271 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
  2272   if( p ){
  2273     if( p->flags & UNPACKED_NEED_DESTROY ){
  2274       int i;
  2275       Mem *pMem;
  2276       for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
  2277         if( pMem->zMalloc ){
  2278           sqlite3VdbeMemRelease(pMem);
  2279         }
  2280       }
  2281     }
  2282     if( p->flags & UNPACKED_NEED_FREE ){
  2283       sqlite3DbFree(p->pKeyInfo->db, p);
  2284     }
  2285   }
  2286 }
  2287 
  2288 /*
  2289 ** This function compares the two table rows or index records
  2290 ** specified by {nKey1, pKey1} and pPKey2.  It returns a negative, zero
  2291 ** or positive integer if key1 is less than, equal to or 
  2292 ** greater than key2.  The {nKey1, pKey1} key must be a blob
  2293 ** created by th OP_MakeRecord opcode of the VDBE.  The pPKey2
  2294 ** key must be a parsed key such as obtained from
  2295 ** sqlite3VdbeParseRecord.
  2296 **
  2297 ** Key1 and Key2 do not have to contain the same number of fields.
  2298 ** The key with fewer fields is usually compares less than the 
  2299 ** longer key.  However if the UNPACKED_INCRKEY flags in pPKey2 is set
  2300 ** and the common prefixes are equal, then key1 is less than key2.
  2301 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
  2302 ** equal, then the keys are considered to be equal and
  2303 ** the parts beyond the common prefix are ignored.
  2304 **
  2305 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
  2306 ** the header of pKey1 is ignored.  It is assumed that pKey1 is
  2307 ** an index key, and thus ends with a rowid value.  The last byte
  2308 ** of the header will therefore be the serial type of the rowid:
  2309 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
  2310 ** The serial type of the final rowid will always be a single byte.
  2311 ** By ignoring this last byte of the header, we force the comparison
  2312 ** to ignore the rowid at the end of key1.
  2313 */
  2314 int sqlite3VdbeRecordCompare(
  2315   int nKey1, const void *pKey1, /* Left key */
  2316   UnpackedRecord *pPKey2        /* Right key */
  2317 ){
  2318   u32 d1;            /* Offset into aKey[] of next data element */
  2319   u32 idx1;          /* Offset into aKey[] of next header element */
  2320   u32 szHdr1;        /* Number of bytes in header */
  2321   int i = 0;
  2322   int nField;
  2323   int rc = 0;
  2324   const unsigned char *aKey1 = (const unsigned char *)pKey1;
  2325   KeyInfo *pKeyInfo;
  2326   Mem mem1;
  2327 
  2328   pKeyInfo = pPKey2->pKeyInfo;
  2329   mem1.enc = pKeyInfo->enc;
  2330   mem1.db = pKeyInfo->db;
  2331   mem1.flags = 0;
  2332   mem1.zMalloc = 0;
  2333   
  2334   idx1 = getVarint32(aKey1, szHdr1);
  2335   d1 = szHdr1;
  2336   if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
  2337     szHdr1--;
  2338   }
  2339   nField = pKeyInfo->nField;
  2340   while( idx1<szHdr1 && i<pPKey2->nField ){
  2341     u32 serial_type1;
  2342 
  2343     /* Read the serial types for the next element in each key. */
  2344     idx1 += getVarint32( aKey1+idx1, serial_type1 );
  2345     if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
  2346 
  2347     /* Extract the values to be compared.
  2348     */
  2349     d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
  2350 
  2351     /* Do the comparison
  2352     */
  2353     rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
  2354                            i<nField ? pKeyInfo->aColl[i] : 0);
  2355     if( rc!=0 ){
  2356       break;
  2357     }
  2358     i++;
  2359   }
  2360   if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
  2361 
  2362   if( rc==0 ){
  2363     /* rc==0 here means that one of the keys ran out of fields and
  2364     ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
  2365     ** flag is set, then break the tie by treating key2 as larger.
  2366     ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
  2367     ** are considered to be equal.  Otherwise, the longer key is the 
  2368     ** larger.  As it happens, the pPKey2 will always be the longer
  2369     ** if there is a difference.
  2370     */
  2371     if( pPKey2->flags & UNPACKED_INCRKEY ){
  2372       rc = -1;
  2373     }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
  2374       /* Leave rc==0 */
  2375     }else if( idx1<szHdr1 ){
  2376       rc = 1;
  2377     }
  2378   }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
  2379                && pKeyInfo->aSortOrder[i] ){
  2380     rc = -rc;
  2381   }
  2382 
  2383   return rc;
  2384 }
  2385  
  2386 
  2387 /*
  2388 ** pCur points at an index entry created using the OP_MakeRecord opcode.
  2389 ** Read the rowid (the last field in the record) and store it in *rowid.
  2390 ** Return SQLITE_OK if everything works, or an error code otherwise.
  2391 */
  2392 int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
  2393   i64 nCellKey = 0;
  2394   int rc;
  2395   u32 szHdr;        /* Size of the header */
  2396   u32 typeRowid;    /* Serial type of the rowid */
  2397   u32 lenRowid;     /* Size of the rowid */
  2398   Mem m, v;
  2399 
  2400   sqlite3BtreeKeySize(pCur, &nCellKey);
  2401   if( nCellKey<=0 ){
  2402     return SQLITE_CORRUPT_BKPT;
  2403   }
  2404   m.flags = 0;
  2405   m.db = 0;
  2406   m.zMalloc = 0;
  2407   rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
  2408   if( rc ){
  2409     return rc;
  2410   }
  2411   (void)getVarint32((u8*)m.z, szHdr);
  2412   (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
  2413   lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
  2414   sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
  2415   *rowid = v.u.i;
  2416   sqlite3VdbeMemRelease(&m);
  2417   return SQLITE_OK;
  2418 }
  2419 
  2420 /*
  2421 ** Compare the key of the index entry that cursor pC is point to against
  2422 ** the key string in pKey (of length nKey).  Write into *pRes a number
  2423 ** that is negative, zero, or positive if pC is less than, equal to,
  2424 ** or greater than pKey.  Return SQLITE_OK on success.
  2425 **
  2426 ** pKey is either created without a rowid or is truncated so that it
  2427 ** omits the rowid at the end.  The rowid at the end of the index entry
  2428 ** is ignored as well.  Hence, this routine only compares the prefixes 
  2429 ** of the keys prior to the final rowid, not the entire key.
  2430 **
  2431 ** pUnpacked may be an unpacked version of pKey,nKey.  If pUnpacked is
  2432 ** supplied it is used in place of pKey,nKey.
  2433 */
  2434 int sqlite3VdbeIdxKeyCompare(
  2435   Cursor *pC,                 /* The cursor to compare against */
  2436   UnpackedRecord *pUnpacked,  /* Unpacked version of pKey and nKey */
  2437   int *res                    /* Write the comparison result here */
  2438 ){
  2439   i64 nCellKey = 0;
  2440   int rc;
  2441   BtCursor *pCur = pC->pCursor;
  2442   Mem m;
  2443 
  2444   sqlite3BtreeKeySize(pCur, &nCellKey);
  2445   if( nCellKey<=0 ){
  2446     *res = 0;
  2447     return SQLITE_OK;
  2448   }
  2449   m.db = 0;
  2450   m.flags = 0;
  2451   m.zMalloc = 0;
  2452   rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
  2453   if( rc ){
  2454     return rc;
  2455   }
  2456   assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
  2457   *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  2458   sqlite3VdbeMemRelease(&m);
  2459   return SQLITE_OK;
  2460 }
  2461 
  2462 /*
  2463 ** This routine sets the value to be returned by subsequent calls to
  2464 ** sqlite3_changes() on the database handle 'db'. 
  2465 */
  2466 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
  2467   assert( sqlite3_mutex_held(db->mutex) );
  2468   db->nChange = nChange;
  2469   db->nTotalChange += nChange;
  2470 }
  2471 
  2472 /*
  2473 ** Set a flag in the vdbe to update the change counter when it is finalised
  2474 ** or reset.
  2475 */
  2476 void sqlite3VdbeCountChanges(Vdbe *v){
  2477   v->changeCntOn = 1;
  2478 }
  2479 
  2480 /*
  2481 ** Mark every prepared statement associated with a database connection
  2482 ** as expired.
  2483 **
  2484 ** An expired statement means that recompilation of the statement is
  2485 ** recommend.  Statements expire when things happen that make their
  2486 ** programs obsolete.  Removing user-defined functions or collating
  2487 ** sequences, or changing an authorization function are the types of
  2488 ** things that make prepared statements obsolete.
  2489 */
  2490 void sqlite3ExpirePreparedStatements(sqlite3 *db){
  2491   Vdbe *p;
  2492   for(p = db->pVdbe; p; p=p->pNext){
  2493     p->expired = 1;
  2494   }
  2495 }
  2496 
  2497 /*
  2498 ** Return the database associated with the Vdbe.
  2499 */
  2500 sqlite3 *sqlite3VdbeDb(Vdbe *v){
  2501   return v->db;
  2502 }