Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
17 ** $Id: vdbeaux.c,v 1.412 2008/10/11 17:51:39 danielk1977 Exp $
19 #include "sqliteInt.h"
26 ** When debugging the code generator in a symbolic debugger, one can
27 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
28 ** as they are added to the instruction stream.
31 int sqlite3VdbeAddopTrace = 0;
36 ** Create a new virtual database engine.
38 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
40 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
49 p->magic = VDBE_MAGIC_INIT;
54 ** Remember the SQL string for a prepared statement.
56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
59 p->zSql = sqlite3DbStrNDup(p->db, z, n);
63 ** Return the SQL associated with a prepared statement
65 const char *sqlite3_sql(sqlite3_stmt *pStmt){
66 return ((Vdbe *)pStmt)->zSql;
70 ** Swap all content between two VDBE structures.
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
80 pA->pNext = pB->pNext;
83 pA->pPrev = pB->pPrev;
95 ** Turn tracing on or off
97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
103 ** Resize the Vdbe.aOp array so that it contains at least N
106 ** If an out-of-memory error occurs while resizing the array,
107 ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
108 ** any opcodes already allocated can be correctly deallocated
109 ** along with the rest of the Vdbe).
111 static void resizeOpArray(Vdbe *p, int N){
113 pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
121 ** Add a new instruction to the list of instructions current in the
122 ** VDBE. Return the address of the new instruction.
126 ** p Pointer to the VDBE
128 ** op The opcode for this instruction
130 ** p1, p2, p3 Operands
132 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
133 ** the sqlite3VdbeChangeP4() function to change the value of the P4
136 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
141 assert( p->magic==VDBE_MAGIC_INIT );
142 if( p->nOpAlloc<=i ){
143 resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
144 if( p->db->mallocFailed ){
156 pOp->p4type = P4_NOTUSED;
160 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
168 int sqlite3VdbeAddOp0(Vdbe *p, int op){
169 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
171 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
172 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
174 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
175 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
180 ** Add an opcode that includes the p4 value as a pointer.
182 int sqlite3VdbeAddOp4(
183 Vdbe *p, /* Add the opcode to this VM */
184 int op, /* The new opcode */
185 int p1, /* The P1 operand */
186 int p2, /* The P2 operand */
187 int p3, /* The P3 operand */
188 const char *zP4, /* The P4 operand */
189 int p4type /* P4 operand type */
191 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
192 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
197 ** Create a new symbolic label for an instruction that has yet to be
198 ** coded. The symbolic label is really just a negative number. The
199 ** label can be used as the P2 value of an operation. Later, when
200 ** the label is resolved to a specific address, the VDBE will scan
201 ** through its operation list and change all values of P2 which match
202 ** the label into the resolved address.
204 ** The VDBE knows that a P2 value is a label because labels are
205 ** always negative and P2 values are suppose to be non-negative.
206 ** Hence, a negative P2 value is a label that has yet to be resolved.
208 ** Zero is returned if a malloc() fails.
210 int sqlite3VdbeMakeLabel(Vdbe *p){
213 assert( p->magic==VDBE_MAGIC_INIT );
214 if( i>=p->nLabelAlloc ){
215 p->nLabelAlloc = p->nLabelAlloc*2 + 10;
216 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
217 p->nLabelAlloc*sizeof(p->aLabel[0]));
226 ** Resolve label "x" to be the address of the next instruction to
227 ** be inserted. The parameter "x" must have been obtained from
228 ** a prior call to sqlite3VdbeMakeLabel().
230 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
232 assert( p->magic==VDBE_MAGIC_INIT );
233 assert( j>=0 && j<p->nLabel );
235 p->aLabel[j] = p->nOp;
240 ** Loop through the program looking for P2 values that are negative
241 ** on jump instructions. Each such value is a label. Resolve the
242 ** label by setting the P2 value to its correct non-zero value.
244 ** This routine is called once after all opcodes have been inserted.
246 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
247 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
248 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
250 ** This routine also does the following optimization: It scans for
251 ** instructions that might cause a statement rollback. Such instructions
254 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
259 ** If no such instruction is found, then every Statement instruction
260 ** is changed to a Noop. In this way, we avoid creating the statement
261 ** journal file unnecessarily.
263 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
267 int *aLabel = p->aLabel;
268 int doesStatementRollback = 0;
269 int hasStatementBegin = 0;
270 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
271 u8 opcode = pOp->opcode;
273 if( opcode==OP_Function || opcode==OP_AggStep ){
274 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
275 #ifndef SQLITE_OMIT_VIRTUALTABLE
276 }else if( opcode==OP_VUpdate ){
277 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
280 if( opcode==OP_Halt ){
281 if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
282 doesStatementRollback = 1;
284 }else if( opcode==OP_Statement ){
285 hasStatementBegin = 1;
286 }else if( opcode==OP_Destroy ){
287 doesStatementRollback = 1;
288 #ifndef SQLITE_OMIT_VIRTUALTABLE
289 }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
290 doesStatementRollback = 1;
291 }else if( opcode==OP_VFilter ){
293 assert( p->nOp - i >= 3 );
294 assert( pOp[-1].opcode==OP_Integer );
296 if( n>nMaxArgs ) nMaxArgs = n;
300 if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
301 assert( -1-pOp->p2<p->nLabel );
302 pOp->p2 = aLabel[-1-pOp->p2];
305 sqlite3DbFree(p->db, p->aLabel);
308 *pMaxFuncArgs = nMaxArgs;
310 /* If we never rollback a statement transaction, then statement
311 ** transactions are not needed. So change every OP_Statement
312 ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
313 ** which can be expensive on some platforms.
315 if( hasStatementBegin && !doesStatementRollback ){
316 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
317 if( pOp->opcode==OP_Statement ){
318 pOp->opcode = OP_Noop;
325 ** Return the address of the next instruction to be inserted.
327 int sqlite3VdbeCurrentAddr(Vdbe *p){
328 assert( p->magic==VDBE_MAGIC_INIT );
333 ** Add a whole list of operations to the operation stack. Return the
334 ** address of the first operation added.
336 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
338 assert( p->magic==VDBE_MAGIC_INIT );
339 if( p->nOp + nOp > p->nOpAlloc ){
340 resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
341 assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
343 if( p->db->mallocFailed ){
349 VdbeOpList const *pIn = aOp;
350 for(i=0; i<nOp; i++, pIn++){
352 VdbeOp *pOut = &p->aOp[i+addr];
353 pOut->opcode = pIn->opcode;
355 if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
356 pOut->p2 = addr + ADDR(p2);
361 pOut->p4type = P4_NOTUSED;
366 if( sqlite3VdbeAddopTrace ){
367 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
377 ** Change the value of the P1 operand for a specific instruction.
378 ** This routine is useful when a large program is loaded from a
379 ** static array using sqlite3VdbeAddOpList but we want to make a
380 ** few minor changes to the program.
382 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
383 assert( p==0 || p->magic==VDBE_MAGIC_INIT );
384 if( p && addr>=0 && p->nOp>addr && p->aOp ){
385 p->aOp[addr].p1 = val;
390 ** Change the value of the P2 operand for a specific instruction.
391 ** This routine is useful for setting a jump destination.
393 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
394 assert( p==0 || p->magic==VDBE_MAGIC_INIT );
395 if( p && addr>=0 && p->nOp>addr && p->aOp ){
396 p->aOp[addr].p2 = val;
401 ** Change the value of the P3 operand for a specific instruction.
403 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
404 assert( p==0 || p->magic==VDBE_MAGIC_INIT );
405 if( p && addr>=0 && p->nOp>addr && p->aOp ){
406 p->aOp[addr].p3 = val;
411 ** Change the value of the P5 operand for the most recently
414 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
415 assert( p==0 || p->magic==VDBE_MAGIC_INIT );
418 p->aOp[p->nOp-1].p5 = val;
423 ** Change the P2 operand of instruction addr so that it points to
424 ** the address of the next instruction to be coded.
426 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
427 sqlite3VdbeChangeP2(p, addr, p->nOp);
432 ** If the input FuncDef structure is ephemeral, then free it. If
433 ** the FuncDef is not ephermal, then do nothing.
435 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
436 if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
437 sqlite3DbFree(db, pDef);
442 ** Delete a P4 value if necessary.
444 static void freeP4(sqlite3 *db, int p4type, void *p4){
453 case P4_KEYINFO_HANDOFF: {
454 sqlite3DbFree(db, p4);
458 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
459 freeEphemeralFunction(db, pVdbeFunc->pFunc);
460 sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
461 sqlite3DbFree(db, pVdbeFunc);
465 freeEphemeralFunction(db, (FuncDef*)p4);
469 sqlite3ValueFree((sqlite3_value*)p4);
478 ** Change N opcodes starting at addr to No-ops.
480 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
482 VdbeOp *pOp = &p->aOp[addr];
485 freeP4(db, pOp->p4type, pOp->p4.p);
486 memset(pOp, 0, sizeof(pOp[0]));
487 pOp->opcode = OP_Noop;
494 ** Change the value of the P4 operand for a specific instruction.
495 ** This routine is useful when a large program is loaded from a
496 ** static array using sqlite3VdbeAddOpList but we want to make a
497 ** few minor changes to the program.
499 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
500 ** the string is made into memory obtained from sqlite3_malloc().
501 ** A value of n==0 means copy bytes of zP4 up to and including the
502 ** first null byte. If n>0 then copy n+1 bytes of zP4.
504 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
505 ** A copy is made of the KeyInfo structure into memory obtained from
506 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
507 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
508 ** stored in memory that the caller has obtained from sqlite3_malloc. The
509 ** caller should not free the allocation, it will be freed when the Vdbe is
512 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
513 ** to a string or structure that is guaranteed to exist for the lifetime of
514 ** the Vdbe. In these cases we can just copy the pointer.
516 ** If addr<0 then change P4 on the most recently inserted instruction.
518 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
523 assert( p->magic==VDBE_MAGIC_INIT );
524 if( p->aOp==0 || db->mallocFailed ){
525 if (n != P4_KEYINFO) {
526 freeP4(db, n, (void*)*(char**)&zP4);
530 assert( addr<p->nOp );
536 freeP4(db, pOp->p4type, pOp->p4.p);
539 /* Note: this cast is safe, because the origin data point was an int
540 ** that was cast to a (const char *). */
541 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
545 pOp->p4type = P4_NOTUSED;
546 }else if( n==P4_KEYINFO ){
550 nField = ((KeyInfo*)zP4)->nField;
551 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
552 pKeyInfo = sqlite3Malloc( nByte );
553 pOp->p4.pKeyInfo = pKeyInfo;
556 memcpy(pKeyInfo, zP4, nByte);
557 aSortOrder = pKeyInfo->aSortOrder;
559 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
560 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
562 pOp->p4type = P4_KEYINFO;
564 p->db->mallocFailed = 1;
565 pOp->p4type = P4_NOTUSED;
567 }else if( n==P4_KEYINFO_HANDOFF ){
568 pOp->p4.p = (void*)zP4;
569 pOp->p4type = P4_KEYINFO;
571 pOp->p4.p = (void*)zP4;
574 if( n==0 ) n = strlen(zP4);
575 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
576 pOp->p4type = P4_DYNAMIC;
582 ** Change the comment on the the most recently coded instruction. Or
583 ** insert a No-op and add the comment to that new instruction. This
584 ** makes the code easier to read during debugging. None of this happens
585 ** in a production build.
587 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
589 assert( p->nOp>0 || p->aOp==0 );
590 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
592 char **pz = &p->aOp[p->nOp-1].zComment;
593 va_start(ap, zFormat);
594 sqlite3DbFree(p->db, *pz);
595 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
599 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
601 sqlite3VdbeAddOp0(p, OP_Noop);
602 assert( p->nOp>0 || p->aOp==0 );
603 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
605 char **pz = &p->aOp[p->nOp-1].zComment;
606 va_start(ap, zFormat);
607 sqlite3DbFree(p->db, *pz);
608 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
615 ** Return the opcode for a given address.
617 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
618 assert( p->magic==VDBE_MAGIC_INIT );
619 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
620 return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
623 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
624 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
626 ** Compute a string that describes the P4 parameter for an opcode.
627 ** Use zTemp for any required temporary buffer space.
629 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
632 switch( pOp->p4type ){
633 case P4_KEYINFO_STATIC:
636 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
637 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
639 for(j=0; j<pKeyInfo->nField; j++){
640 CollSeq *pColl = pKeyInfo->aColl[j];
642 int n = strlen(pColl->zName);
644 memcpy(&zTemp[i],",...",4);
648 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
651 memcpy(&zTemp[i], pColl->zName,n+1);
653 }else if( i+4<nTemp-6 ){
654 memcpy(&zTemp[i],",nil",4);
664 CollSeq *pColl = pOp->p4.pColl;
665 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
669 FuncDef *pDef = pOp->p4.pFunc;
670 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
674 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
678 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
682 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
686 Mem *pMem = pOp->p4.pMem;
687 assert( (pMem->flags & MEM_Null)==0 );
688 if( pMem->flags & MEM_Str ){
690 }else if( pMem->flags & MEM_Int ){
691 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
692 }else if( pMem->flags & MEM_Real ){
693 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
697 #ifndef SQLITE_OMIT_VIRTUALTABLE
699 sqlite3_vtab *pVtab = pOp->p4.pVtab;
700 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
705 sqlite3_snprintf(nTemp, zTemp, "intarray");
722 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
725 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
727 assert( i>=0 && i<p->db->nDb );
728 assert( i<sizeof(p->btreeMask)*8 );
730 if( (p->btreeMask & mask)==0 ){
731 p->btreeMask |= mask;
732 sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
737 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
739 ** Print a single opcode. This routine is used for debugging only.
741 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
744 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
745 if( pOut==0 ) pOut = stdout;
746 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
747 fprintf(pOut, zFormat1, pc,
748 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
750 pOp->zComment ? pOp->zComment : ""
760 ** Release an array of N Mem elements
762 static void releaseMemArray(Mem *p, int N){
766 int malloc_failed = db->mallocFailed;
767 for(pEnd=&p[N]; p<pEnd; p++){
768 assert( (&p[1])==pEnd || p[0].db==p[1].db );
770 /* This block is really an inlined version of sqlite3VdbeMemRelease()
771 ** that takes advantage of the fact that the memory cell value is
772 ** being set to NULL after releasing any dynamic resources.
774 ** The justification for duplicating code is that according to
775 ** callgrind, this causes a certain test case to hit the CPU 4.7
776 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
777 ** sqlite3MemRelease() were called from here. With -O2, this jumps
778 ** to 6.6 percent. The test case is inserting 1000 rows into a table
779 ** with no indexes using a single prepared INSERT statement, bind()
780 ** and reset(). Inserts are grouped into a transaction.
782 if( p->flags&(MEM_Agg|MEM_Dyn) ){
783 sqlite3VdbeMemRelease(p);
784 }else if( p->zMalloc ){
785 sqlite3DbFree(db, p->zMalloc);
791 db->mallocFailed = malloc_failed;
795 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
796 int sqlite3VdbeReleaseBuffers(Vdbe *p){
799 assert( sqlite3_mutex_held(p->db->mutex) );
800 for(ii=1; ii<=p->nMem; ii++){
801 Mem *pMem = &p->aMem[ii];
802 if( pMem->z && pMem->flags&MEM_Dyn ){
803 assert( !pMem->xDel );
804 nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
805 sqlite3VdbeMemRelease(pMem);
812 #ifndef SQLITE_OMIT_EXPLAIN
814 ** Give a listing of the program in the virtual machine.
816 ** The interface is the same as sqlite3VdbeExec(). But instead of
817 ** running the code, it invokes the callback once for each instruction.
818 ** This feature is used to implement "EXPLAIN".
820 ** When p->explain==1, each instruction is listed. When
821 ** p->explain==2, only OP_Explain instructions are listed and these
822 ** are shown in a different format. p->explain==2 is used to implement
823 ** EXPLAIN QUERY PLAN.
826 Vdbe *p /* The VDBE */
831 Mem *pMem = p->pResultSet = &p->aMem[1];
833 assert( p->explain );
834 if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
835 assert( db->magic==SQLITE_MAGIC_BUSY );
836 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
838 /* Even though this opcode does not use dynamic strings for
839 ** the result, result columns may become dynamic if the user calls
840 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
842 releaseMemArray(pMem, p->nMem);
846 }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
850 }else if( db->u1.isInterrupted ){
851 p->rc = SQLITE_INTERRUPT;
853 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
856 Op *pOp = &p->aOp[i];
858 pMem->flags = MEM_Int;
859 pMem->type = SQLITE_INTEGER;
860 pMem->u.i = i; /* Program counter */
863 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
864 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
865 assert( pMem->z!=0 );
866 pMem->n = strlen(pMem->z);
867 pMem->type = SQLITE_TEXT;
868 pMem->enc = SQLITE_UTF8;
872 pMem->flags = MEM_Int;
873 pMem->u.i = pOp->p1; /* P1 */
874 pMem->type = SQLITE_INTEGER;
877 pMem->flags = MEM_Int;
878 pMem->u.i = pOp->p2; /* P2 */
879 pMem->type = SQLITE_INTEGER;
883 pMem->flags = MEM_Int;
884 pMem->u.i = pOp->p3; /* P3 */
885 pMem->type = SQLITE_INTEGER;
889 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
890 p->db->mallocFailed = 1;
893 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
894 z = displayP4(pOp, pMem->z, 32);
896 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
898 assert( pMem->z!=0 );
899 pMem->n = strlen(pMem->z);
900 pMem->enc = SQLITE_UTF8;
902 pMem->type = SQLITE_TEXT;
906 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
907 p->db->mallocFailed = 1;
910 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
912 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
913 pMem->type = SQLITE_TEXT;
914 pMem->enc = SQLITE_UTF8;
919 pMem->flags = MEM_Str|MEM_Term;
920 pMem->z = pOp->zComment;
921 pMem->n = strlen(pMem->z);
922 pMem->enc = SQLITE_UTF8;
923 pMem->type = SQLITE_TEXT;
927 pMem->flags = MEM_Null; /* Comment */
928 pMem->type = SQLITE_NULL;
932 p->nResColumn = 8 - 5*(p->explain-1);
938 #endif /* SQLITE_OMIT_EXPLAIN */
942 ** Print the SQL that was used to generate a VDBE program.
944 void sqlite3VdbePrintSql(Vdbe *p){
949 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
950 const char *z = pOp->p4.z;
951 while( isspace(*(u8*)z) ) z++;
952 printf("SQL: [%s]\n", z);
957 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
959 ** Print an IOTRACE message showing SQL content.
961 void sqlite3VdbeIOTraceSql(Vdbe *p){
964 if( sqlite3IoTrace==0 ) return;
967 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
970 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
971 for(i=0; isspace((unsigned char)z[i]); i++){}
973 if( isspace((unsigned char)z[i]) ){
982 sqlite3IoTrace("SQL %s\n", z);
985 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
989 ** Prepare a virtual machine for execution. This involves things such
990 ** as allocating stack space and initializing the program counter.
991 ** After the VDBE has be prepped, it can be executed by one or more
992 ** calls to sqlite3VdbeExec().
994 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
997 void sqlite3VdbeMakeReady(
998 Vdbe *p, /* The VDBE */
999 int nVar, /* Number of '?' see in the SQL statement */
1000 int nMem, /* Number of memory cells to allocate */
1001 int nCursor, /* Number of cursors to allocate */
1002 int isExplain /* True if the EXPLAIN keywords is present */
1005 sqlite3 *db = p->db;
1008 assert( p->magic==VDBE_MAGIC_INIT );
1010 /* There should be at least one opcode.
1014 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
1015 * is because the call to resizeOpArray() below may shrink the
1016 * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
1019 p->magic = VDBE_MAGIC_RUN;
1021 /* For each cursor required, also allocate a memory cell. Memory
1022 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1023 ** the vdbe program. Instead they are used to allocate space for
1024 ** Cursor/BtCursor structures. The blob of memory associated with
1025 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1026 ** stores the blob of memory associated with cursor 1, etc.
1028 ** See also: allocateCursor().
1033 ** Allocation space for registers.
1036 int nArg; /* Maximum number of args passed to a user function. */
1037 resolveP2Values(p, &nArg);
1038 /*resizeOpArray(p, p->nOp);*/
1040 if( isExplain && nMem<10 ){
1041 p->nMem = nMem = 10;
1043 p->aMem = sqlite3DbMallocZero(db,
1044 nMem*sizeof(Mem) /* aMem */
1045 + nVar*sizeof(Mem) /* aVar */
1046 + nArg*sizeof(Mem*) /* apArg */
1047 + nVar*sizeof(char*) /* azVar */
1048 + nCursor*sizeof(Cursor*) + 1 /* apCsr */
1050 if( !db->mallocFailed ){
1051 p->aMem--; /* aMem[] goes from 1..nMem */
1052 p->nMem = nMem; /* not from 0..nMem-1 */
1053 p->aVar = &p->aMem[nMem+1];
1056 p->apArg = (Mem**)&p->aVar[nVar];
1057 p->azVar = (char**)&p->apArg[nArg];
1058 p->apCsr = (Cursor**)&p->azVar[nVar];
1059 p->nCursor = nCursor;
1060 for(n=0; n<nVar; n++){
1061 p->aVar[n].flags = MEM_Null;
1064 for(n=1; n<=nMem; n++){
1065 p->aMem[n].flags = MEM_Null;
1071 for(n=1; n<p->nMem; n++){
1072 assert( p->aMem[n].db==db );
1079 p->errorAction = OE_Abort;
1080 p->explain |= isExplain;
1081 p->magic = VDBE_MAGIC_RUN;
1084 p->minWriteFileFormat = 255;
1085 p->openedStatement = 0;
1089 for(i=0; i<p->nOp; i++){
1091 p->aOp[i].cycles = 0;
1098 ** Close a VDBE cursor and release all the resources that cursor
1101 void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
1106 sqlite3BtreeClose(pCx->pBt);
1107 /* The pCx->pCursor will be close automatically, if it exists, by
1108 ** the call above. */
1109 }else if( pCx->pCursor ){
1110 sqlite3BtreeCloseCursor(pCx->pCursor);
1112 #ifndef SQLITE_OMIT_VIRTUALTABLE
1113 if( pCx->pVtabCursor ){
1114 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1115 const sqlite3_module *pModule = pCx->pModule;
1116 p->inVtabMethod = 1;
1117 (void)sqlite3SafetyOff(p->db);
1118 pModule->xClose(pVtabCursor);
1119 (void)sqlite3SafetyOn(p->db);
1120 p->inVtabMethod = 0;
1123 if( !pCx->ephemPseudoTable ){
1124 sqlite3DbFree(p->db, pCx->pData);
1129 ** Close all cursors except for VTab cursors that are currently
1132 static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
1134 if( p->apCsr==0 ) return;
1135 for(i=0; i<p->nCursor; i++){
1136 Cursor *pC = p->apCsr[i];
1137 if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
1138 sqlite3VdbeFreeCursor(p, pC);
1145 ** Clean up the VM after execution.
1147 ** This routine will automatically close any cursors, lists, and/or
1148 ** sorters that were left open. It also deletes the values of
1149 ** variables in the aVar[] array.
1151 static void Cleanup(Vdbe *p){
1153 sqlite3 *db = p->db;
1154 closeAllCursorsExceptActiveVtabs(p);
1155 for(i=1; i<=p->nMem; i++){
1156 MemSetTypeFlag(&p->aMem[i], MEM_Null);
1158 releaseMemArray(&p->aMem[1], p->nMem);
1159 sqlite3VdbeFifoClear(&p->sFifo);
1160 if( p->contextStack ){
1161 for(i=0; i<p->contextStackTop; i++){
1162 sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
1164 sqlite3DbFree(db, p->contextStack);
1166 p->contextStack = 0;
1167 p->contextStackDepth = 0;
1168 p->contextStackTop = 0;
1169 sqlite3DbFree(db, p->zErrMsg);
1175 ** Set the number of result columns that will be returned by this SQL
1176 ** statement. This is now set at compile time, rather than during
1177 ** execution of the vdbe program so that sqlite3_column_count() can
1178 ** be called on an SQL statement before sqlite3_step().
1180 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1183 sqlite3 *db = p->db;
1185 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1186 sqlite3DbFree(db, p->aColName);
1187 n = nResColumn*COLNAME_N;
1188 p->nResColumn = nResColumn;
1189 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1190 if( p->aColName==0 ) return;
1192 pColName->flags = MEM_Null;
1193 pColName->db = p->db;
1199 ** Set the name of the idx'th column to be returned by the SQL statement.
1200 ** zName must be a pointer to a nul terminated string.
1202 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1204 ** If N==P4_STATIC it means that zName is a pointer to a constant static
1205 ** string and we can just copy the pointer. If it is P4_DYNAMIC, then
1206 ** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
1207 ** it. Otherwise, N bytes of zName are copied.
1209 int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
1212 assert( idx<p->nResColumn );
1213 assert( var<COLNAME_N );
1214 if( p->db->mallocFailed ) return SQLITE_NOMEM;
1215 assert( p->aColName!=0 );
1216 pColName = &(p->aColName[idx+var*p->nResColumn]);
1217 if( N==P4_DYNAMIC || N==P4_STATIC ){
1218 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
1220 rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
1222 if( rc==SQLITE_OK && N==P4_DYNAMIC ){
1223 pColName->flags &= (~MEM_Static);
1224 pColName->zMalloc = pColName->z;
1230 ** A read or write transaction may or may not be active on database handle
1231 ** db. If a transaction is active, commit it. If there is a
1232 ** write-transaction spanning more than one database file, this routine
1233 ** takes care of the master journal trickery.
1235 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1237 int nTrans = 0; /* Number of databases with an active write-transaction */
1239 int needXcommit = 0;
1241 /* Before doing anything else, call the xSync() callback for any
1242 ** virtual module tables written in this transaction. This has to
1243 ** be done before determining whether a master journal file is
1244 ** required, as an xSync() callback may add an attached database
1245 ** to the transaction.
1247 rc = sqlite3VtabSync(db, &p->zErrMsg);
1248 if( rc!=SQLITE_OK ){
1252 /* This loop determines (a) if the commit hook should be invoked and
1253 ** (b) how many database files have open write transactions, not
1254 ** including the temp database. (b) is important because if more than
1255 ** one database file has an open write transaction, a master journal
1256 ** file is required for an atomic commit.
1258 for(i=0; i<db->nDb; i++){
1259 Btree *pBt = db->aDb[i].pBt;
1260 if( sqlite3BtreeIsInTrans(pBt) ){
1262 if( i!=1 ) nTrans++;
1266 /* If there are any write-transactions at all, invoke the commit hook */
1267 if( needXcommit && db->xCommitCallback ){
1268 (void)sqlite3SafetyOff(db);
1269 rc = db->xCommitCallback(db->pCommitArg);
1270 (void)sqlite3SafetyOn(db);
1272 return SQLITE_CONSTRAINT;
1276 /* The simple case - no more than one database file (not counting the
1277 ** TEMP database) has a transaction active. There is no need for the
1280 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1281 ** string, it means the main database is :memory: or a temp file. In
1282 ** that case we do not support atomic multi-file commits, so use the
1283 ** simple case then too.
1285 if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
1286 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1287 Btree *pBt = db->aDb[i].pBt;
1289 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1293 /* Do the commit only if all databases successfully complete phase 1.
1294 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1295 ** IO error while deleting or truncating a journal file. It is unlikely,
1296 ** but could happen. In this case abandon processing and return the error.
1298 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1299 Btree *pBt = db->aDb[i].pBt;
1301 rc = sqlite3BtreeCommitPhaseTwo(pBt);
1304 if( rc==SQLITE_OK ){
1305 sqlite3VtabCommit(db);
1309 /* The complex case - There is a multi-file write-transaction active.
1310 ** This requires a master journal file to ensure the transaction is
1311 ** committed atomicly.
1313 #ifndef SQLITE_OMIT_DISKIO
1315 sqlite3_vfs *pVfs = db->pVfs;
1317 char *zMaster = 0; /* File-name for the master journal */
1318 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1319 sqlite3_file *pMaster = 0;
1323 /* Select a master journal file name */
1326 sqlite3DbFree(db, zMaster);
1327 sqlite3_randomness(sizeof(random), &random);
1328 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
1330 return SQLITE_NOMEM;
1332 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1333 }while( rc==SQLITE_OK && res );
1334 if( rc==SQLITE_OK ){
1335 /* Open the master journal. */
1336 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1337 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1338 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1341 if( rc!=SQLITE_OK ){
1342 sqlite3DbFree(db, zMaster);
1346 /* Write the name of each database file in the transaction into the new
1347 ** master journal file. If an error occurs at this point close
1348 ** and delete the master journal file. All the individual journal files
1349 ** still have 'null' as the master journal pointer, so they will roll
1350 ** back independently if a failure occurs.
1352 for(i=0; i<db->nDb; i++){
1353 Btree *pBt = db->aDb[i].pBt;
1354 if( i==1 ) continue; /* Ignore the TEMP database */
1355 if( sqlite3BtreeIsInTrans(pBt) ){
1356 char const *zFile = sqlite3BtreeGetJournalname(pBt);
1357 if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
1358 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1361 rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
1362 offset += strlen(zFile)+1;
1363 if( rc!=SQLITE_OK ){
1364 sqlite3OsCloseFree(pMaster);
1365 sqlite3OsDelete(pVfs, zMaster, 0);
1366 sqlite3DbFree(db, zMaster);
1372 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1373 ** flag is set this is not required.
1375 zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
1377 && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
1378 && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
1379 sqlite3OsCloseFree(pMaster);
1380 sqlite3OsDelete(pVfs, zMaster, 0);
1381 sqlite3DbFree(db, zMaster);
1385 /* Sync all the db files involved in the transaction. The same call
1386 ** sets the master journal pointer in each individual journal. If
1387 ** an error occurs here, do not delete the master journal file.
1389 ** If the error occurs during the first call to
1390 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1391 ** master journal file will be orphaned. But we cannot delete it,
1392 ** in case the master journal file name was written into the journal
1393 ** file before the failure occured.
1395 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1396 Btree *pBt = db->aDb[i].pBt;
1398 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
1401 sqlite3OsCloseFree(pMaster);
1402 if( rc!=SQLITE_OK ){
1403 sqlite3DbFree(db, zMaster);
1407 /* Delete the master journal file. This commits the transaction. After
1408 ** doing this the directory is synced again before any individual
1409 ** transaction files are deleted.
1411 rc = sqlite3OsDelete(pVfs, zMaster, 1);
1412 sqlite3DbFree(db, zMaster);
1418 /* All files and directories have already been synced, so the following
1419 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1420 ** deleting or truncating journals. If something goes wrong while
1421 ** this is happening we don't really care. The integrity of the
1422 ** transaction is already guaranteed, but some stray 'cold' journals
1423 ** may be lying around. Returning an error code won't help matters.
1425 disable_simulated_io_errors();
1426 sqlite3BeginBenignMalloc();
1427 for(i=0; i<db->nDb; i++){
1428 Btree *pBt = db->aDb[i].pBt;
1430 sqlite3BtreeCommitPhaseTwo(pBt);
1433 sqlite3EndBenignMalloc();
1434 enable_simulated_io_errors();
1436 sqlite3VtabCommit(db);
1444 ** This routine checks that the sqlite3.activeVdbeCnt count variable
1445 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1446 ** currently active. An assertion fails if the two counts do not match.
1447 ** This is an internal self-check only - it is not an essential processing
1450 ** This is a no-op if NDEBUG is defined.
1453 static void checkActiveVdbeCnt(sqlite3 *db){
1458 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
1463 assert( cnt==db->activeVdbeCnt );
1466 #define checkActiveVdbeCnt(x)
1470 ** For every Btree that in database connection db which
1471 ** has been modified, "trip" or invalidate each cursor in
1472 ** that Btree might have been modified so that the cursor
1473 ** can never be used again. This happens when a rollback
1474 *** occurs. We have to trip all the other cursors, even
1475 ** cursor from other VMs in different database connections,
1476 ** so that none of them try to use the data at which they
1477 ** were pointing and which now may have been changed due
1480 ** Remember that a rollback can delete tables complete and
1481 ** reorder rootpages. So it is not sufficient just to save
1482 ** the state of the cursor. We have to invalidate the cursor
1483 ** so that it is never used again.
1485 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
1487 for(i=0; i<db->nDb; i++){
1488 Btree *p = db->aDb[i].pBt;
1489 if( p && sqlite3BtreeIsInTrans(p) ){
1490 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
1496 ** This routine is called the when a VDBE tries to halt. If the VDBE
1497 ** has made changes and is in autocommit mode, then commit those
1498 ** changes. If a rollback is needed, then do the rollback.
1500 ** This routine is the only way to move the state of a VM from
1501 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
1502 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
1504 ** Return an error code. If the commit could not complete because of
1505 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
1506 ** means the close did not happen and needs to be repeated.
1508 int sqlite3VdbeHalt(Vdbe *p){
1509 sqlite3 *db = p->db;
1511 int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
1512 int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
1514 /* This function contains the logic that determines if a statement or
1515 ** transaction will be committed or rolled back as a result of the
1516 ** execution of this virtual machine.
1518 ** If any of the following errors occur:
1525 ** Then the internal cache might have been left in an inconsistent
1526 ** state. We need to rollback the statement transaction, if there is
1527 ** one, or the complete transaction if there is no statement transaction.
1530 if( p->db->mallocFailed ){
1531 p->rc = SQLITE_NOMEM;
1533 closeAllCursorsExceptActiveVtabs(p);
1534 if( p->magic!=VDBE_MAGIC_RUN ){
1537 checkActiveVdbeCnt(db);
1539 /* No commit or rollback needed if the program never started */
1541 int mrc; /* Primary error code from p->rc */
1543 /* Lock all btrees used by the statement */
1544 sqlite3BtreeMutexArrayEnter(&p->aMutex);
1546 /* Check for one of the special errors */
1548 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
1549 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
1550 if( isSpecialError ){
1551 /* This loop does static analysis of the query to see which of the
1552 ** following three categories it falls into:
1555 ** Query with statement journal
1556 ** Query without statement journal
1558 ** We could do something more elegant than this static analysis (i.e.
1559 ** store the type of query as part of the compliation phase), but
1560 ** handling malloc() or IO failure is a fairly obscure edge case so
1561 ** this is probably easier. Todo: Might be an opportunity to reduce
1562 ** code size a very small amount though...
1564 int notReadOnly = 0;
1565 int isStatement = 0;
1566 assert(p->aOp || p->nOp==0);
1567 for(i=0; i<p->nOp; i++){
1568 switch( p->aOp[i].opcode ){
1569 case OP_Transaction:
1570 notReadOnly |= p->aOp[i].p2;
1579 /* If the query was read-only, we need do no rollback at all. Otherwise,
1580 ** proceed with the special handling.
1582 if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
1583 if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
1584 xFunc = sqlite3BtreeRollbackStmt;
1585 p->rc = SQLITE_BUSY;
1586 } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
1587 xFunc = sqlite3BtreeRollbackStmt;
1589 /* We are forced to roll back the active transaction. Before doing
1590 ** so, abort any other statements this handle currently has active.
1592 invalidateCursorsOnModifiedBtrees(db);
1593 sqlite3RollbackAll(db);
1599 /* If the auto-commit flag is set and this is the only active vdbe, then
1600 ** we do either a commit or rollback of the current transaction.
1602 ** Note: This block also runs if one of the special errors handled
1603 ** above has occured.
1605 if( db->autoCommit && db->activeVdbeCnt==1 ){
1606 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
1607 /* The auto-commit flag is true, and the vdbe program was
1608 ** successful or hit an 'OR FAIL' constraint. This means a commit
1611 int rc = vdbeCommit(db, p);
1612 if( rc==SQLITE_BUSY ){
1613 sqlite3BtreeMutexArrayLeave(&p->aMutex);
1615 }else if( rc!=SQLITE_OK ){
1617 sqlite3RollbackAll(db);
1619 sqlite3CommitInternalChanges(db);
1622 sqlite3RollbackAll(db);
1625 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
1626 if( p->openedStatement ){
1627 xFunc = sqlite3BtreeCommitStmt;
1629 }else if( p->errorAction==OE_Abort ){
1630 xFunc = sqlite3BtreeRollbackStmt;
1632 invalidateCursorsOnModifiedBtrees(db);
1633 sqlite3RollbackAll(db);
1638 /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
1639 ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
1640 ** and the return code is still SQLITE_OK, set the return code to the new
1644 xFunc==sqlite3BtreeCommitStmt ||
1645 xFunc==sqlite3BtreeRollbackStmt
1647 for(i=0; xFunc && i<db->nDb; i++){
1649 Btree *pBt = db->aDb[i].pBt;
1652 if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
1654 sqlite3DbFree(db, p->zErrMsg);
1660 /* If this was an INSERT, UPDATE or DELETE and the statement was committed,
1661 ** set the change counter.
1663 if( p->changeCntOn && p->pc>=0 ){
1664 if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
1665 sqlite3VdbeSetChanges(db, p->nChange);
1667 sqlite3VdbeSetChanges(db, 0);
1672 /* Rollback or commit any schema changes that occurred. */
1673 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
1674 sqlite3ResetInternalSchema(db, 0);
1675 db->flags = (db->flags | SQLITE_InternChanges);
1678 /* Release the locks */
1679 sqlite3BtreeMutexArrayLeave(&p->aMutex);
1682 /* We have successfully halted and closed the VM. Record this fact. */
1684 db->activeVdbeCnt--;
1686 p->magic = VDBE_MAGIC_HALT;
1687 checkActiveVdbeCnt(db);
1688 if( p->db->mallocFailed ){
1689 p->rc = SQLITE_NOMEM;
1697 ** Each VDBE holds the result of the most recent sqlite3_step() call
1698 ** in p->rc. This routine sets that result back to SQLITE_OK.
1700 void sqlite3VdbeResetStepResult(Vdbe *p){
1705 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
1706 ** Write any error messages into *pzErrMsg. Return the result code.
1708 ** After this routine is run, the VDBE should be ready to be executed
1711 ** To look at it another way, this routine resets the state of the
1712 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
1715 int sqlite3VdbeReset(Vdbe *p){
1719 /* If the VM did not run to completion or if it encountered an
1720 ** error, then it might not have been halted properly. So halt
1723 (void)sqlite3SafetyOn(db);
1725 (void)sqlite3SafetyOff(db);
1727 /* If the VDBE has be run even partially, then transfer the error code
1728 ** and error message from the VDBE into the main database structure. But
1729 ** if the VDBE has just been set to run but has not actually executed any
1730 ** instructions yet, leave the main database error information unchanged.
1734 sqlite3BeginBenignMalloc();
1735 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
1736 sqlite3EndBenignMalloc();
1737 db->errCode = p->rc;
1738 sqlite3DbFree(db, p->zErrMsg);
1741 sqlite3Error(db, p->rc, 0);
1743 sqlite3Error(db, SQLITE_OK, 0);
1745 }else if( p->rc && p->expired ){
1746 /* The expired flag was set on the VDBE before the first call
1747 ** to sqlite3_step(). For consistency (since sqlite3_step() was
1748 ** called), set the database error in this case as well.
1750 sqlite3Error(db, p->rc, 0);
1751 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
1752 sqlite3DbFree(db, p->zErrMsg);
1756 /* Reclaim all memory used by the VDBE
1760 /* Save profiling information from this VDBE run.
1764 FILE *out = fopen("vdbe_profile.out", "a");
1767 fprintf(out, "---- ");
1768 for(i=0; i<p->nOp; i++){
1769 fprintf(out, "%02x", p->aOp[i].opcode);
1772 for(i=0; i<p->nOp; i++){
1773 fprintf(out, "%6d %10lld %8lld ",
1776 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
1778 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
1784 p->magic = VDBE_MAGIC_INIT;
1785 return p->rc & db->errMask;
1789 ** Clean up and delete a VDBE after execution. Return an integer which is
1790 ** the result code. Write any error message text into *pzErrMsg.
1792 int sqlite3VdbeFinalize(Vdbe *p){
1794 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
1795 rc = sqlite3VdbeReset(p);
1796 assert( (rc & p->db->errMask)==rc );
1797 }else if( p->magic!=VDBE_MAGIC_INIT ){
1798 return SQLITE_MISUSE;
1800 sqlite3VdbeDelete(p);
1805 ** Call the destructor for each auxdata entry in pVdbeFunc for which
1806 ** the corresponding bit in mask is clear. Auxdata entries beyond 31
1807 ** are always destroyed. To destroy all auxdata entries, call this
1808 ** routine with mask==0.
1810 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
1812 for(i=0; i<pVdbeFunc->nAux; i++){
1813 struct AuxData *pAux = &pVdbeFunc->apAux[i];
1814 if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
1815 if( pAux->xDelete ){
1816 pAux->xDelete(pAux->pAux);
1824 ** Delete an entire VDBE.
1826 void sqlite3VdbeDelete(Vdbe *p){
1833 p->pPrev->pNext = p->pNext;
1835 assert( db->pVdbe==p );
1836 db->pVdbe = p->pNext;
1839 p->pNext->pPrev = p->pPrev;
1843 for(i=0; i<p->nOp; i++, pOp++){
1844 freeP4(db, pOp->p4type, pOp->p4.p);
1846 sqlite3DbFree(db, pOp->zComment);
1849 sqlite3DbFree(db, p->aOp);
1851 releaseMemArray(p->aVar, p->nVar);
1852 sqlite3DbFree(db, p->aLabel);
1854 sqlite3DbFree(db, &p->aMem[1]);
1856 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1857 sqlite3DbFree(db, p->aColName);
1858 sqlite3DbFree(db, p->zSql);
1859 p->magic = VDBE_MAGIC_DEAD;
1860 sqlite3DbFree(db, p);
1864 ** If a MoveTo operation is pending on the given cursor, then do that
1865 ** MoveTo now. Return an error code. If no MoveTo is pending, this
1866 ** routine does nothing and returns SQLITE_OK.
1868 int sqlite3VdbeCursorMoveto(Cursor *p){
1869 if( p->deferredMoveto ){
1872 extern int sqlite3_search_count;
1874 assert( p->isTable );
1875 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
1877 p->lastRowid = keyToInt(p->movetoTarget);
1878 p->rowidIsValid = res==0;
1880 rc = sqlite3BtreeNext(p->pCursor, &res);
1884 sqlite3_search_count++;
1886 p->deferredMoveto = 0;
1887 p->cacheStatus = CACHE_STALE;
1888 }else if( p->pCursor ){
1890 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
1893 p->cacheStatus = CACHE_STALE;
1901 ** The following functions:
1903 ** sqlite3VdbeSerialType()
1904 ** sqlite3VdbeSerialTypeLen()
1905 ** sqlite3VdbeSerialLen()
1906 ** sqlite3VdbeSerialPut()
1907 ** sqlite3VdbeSerialGet()
1909 ** encapsulate the code that serializes values for storage in SQLite
1910 ** data and index records. Each serialized value consists of a
1911 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
1912 ** integer, stored as a varint.
1914 ** In an SQLite index record, the serial type is stored directly before
1915 ** the blob of data that it corresponds to. In a table record, all serial
1916 ** types are stored at the start of the record, and the blobs of data at
1917 ** the end. Hence these functions allow the caller to handle the
1918 ** serial-type and data blob seperately.
1920 ** The following table describes the various storage classes for data:
1922 ** serial type bytes of data type
1923 ** -------------- --------------- ---------------
1925 ** 1 1 signed integer
1926 ** 2 2 signed integer
1927 ** 3 3 signed integer
1928 ** 4 4 signed integer
1929 ** 5 6 signed integer
1930 ** 6 8 signed integer
1932 ** 8 0 Integer constant 0
1933 ** 9 0 Integer constant 1
1934 ** 10,11 reserved for expansion
1935 ** N>=12 and even (N-12)/2 BLOB
1936 ** N>=13 and odd (N-13)/2 text
1938 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
1939 ** of SQLite will not understand those serial types.
1943 ** Return the serial-type for the value stored in pMem.
1945 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
1946 int flags = pMem->flags;
1949 if( flags&MEM_Null ){
1952 if( flags&MEM_Int ){
1953 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
1954 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
1957 if( file_format>=4 && (i&1)==i ){
1961 if( u<=127 ) return 1;
1962 if( u<=32767 ) return 2;
1963 if( u<=8388607 ) return 3;
1964 if( u<=2147483647 ) return 4;
1965 if( u<=MAX_6BYTE ) return 5;
1968 if( flags&MEM_Real ){
1971 assert( flags&(MEM_Str|MEM_Blob) );
1973 if( flags & MEM_Zero ){
1977 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
1981 ** Return the length of the data corresponding to the supplied serial-type.
1983 int sqlite3VdbeSerialTypeLen(u32 serial_type){
1984 if( serial_type>=12 ){
1985 return (serial_type-12)/2;
1987 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
1988 return aSize[serial_type];
1993 ** If we are on an architecture with mixed-endian floating
1994 ** points (ex: ARM7) then swap the lower 4 bytes with the
1995 ** upper 4 bytes. Return the result.
1997 ** For most architectures, this is a no-op.
1999 ** (later): It is reported to me that the mixed-endian problem
2000 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2001 ** that early versions of GCC stored the two words of a 64-bit
2002 ** float in the wrong order. And that error has been propagated
2003 ** ever since. The blame is not necessarily with GCC, though.
2004 ** GCC might have just copying the problem from a prior compiler.
2005 ** I am also told that newer versions of GCC that follow a different
2006 ** ABI get the byte order right.
2008 ** Developers using SQLite on an ARM7 should compile and run their
2009 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2010 ** enabled, some asserts below will ensure that the byte order of
2011 ** floating point values is correct.
2013 ** (2007-08-30) Frank van Vugt has studied this problem closely
2014 ** and has send his findings to the SQLite developers. Frank
2015 ** writes that some Linux kernels offer floating point hardware
2016 ** emulation that uses only 32-bit mantissas instead of a full
2017 ** 48-bits as required by the IEEE standard. (This is the
2018 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2019 ** byte swapping becomes very complicated. To avoid problems,
2020 ** the necessary byte swapping is carried out using a 64-bit integer
2021 ** rather than a 64-bit float. Frank assures us that the code here
2022 ** works for him. We, the developers, have no way to independently
2023 ** verify this, but Frank seems to know what he is talking about
2026 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2027 static u64 floatSwap(u64 in){
2040 # define swapMixedEndianFloat(X) X = floatSwap(X)
2042 # define swapMixedEndianFloat(X)
2046 ** Write the serialized data blob for the value stored in pMem into
2047 ** buf. It is assumed that the caller has allocated sufficient space.
2048 ** Return the number of bytes written.
2050 ** nBuf is the amount of space left in buf[]. nBuf must always be
2051 ** large enough to hold the entire field. Except, if the field is
2052 ** a blob with a zero-filled tail, then buf[] might be just the right
2053 ** size to hold everything except for the zero-filled tail. If buf[]
2054 ** is only big enough to hold the non-zero prefix, then only write that
2055 ** prefix into buf[]. But if buf[] is large enough to hold both the
2056 ** prefix and the tail then write the prefix and set the tail to all
2059 ** Return the number of bytes actually written into buf[]. The number
2060 ** of bytes in the zero-filled tail is included in the return value only
2061 ** if those bytes were zeroed in buf[].
2063 int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
2064 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2067 /* Integer and Real */
2068 if( serial_type<=7 && serial_type>0 ){
2071 if( serial_type==7 ){
2072 assert( sizeof(v)==sizeof(pMem->r) );
2073 memcpy(&v, &pMem->r, sizeof(v));
2074 swapMixedEndianFloat(v);
2078 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2079 assert( len<=nBuf );
2087 /* String or blob */
2088 if( serial_type>=12 ){
2089 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
2090 == sqlite3VdbeSerialTypeLen(serial_type) );
2091 assert( pMem->n<=nBuf );
2093 memcpy(buf, pMem->z, len);
2094 if( pMem->flags & MEM_Zero ){
2099 memset(&buf[pMem->n], 0, len-pMem->n);
2104 /* NULL or constants 0 or 1 */
2109 ** Deserialize the data blob pointed to by buf as serial type serial_type
2110 ** and store the result in pMem. Return the number of bytes read.
2112 int sqlite3VdbeSerialGet(
2113 const unsigned char *buf, /* Buffer to deserialize from */
2114 u32 serial_type, /* Serial type to deserialize */
2115 Mem *pMem /* Memory cell to write value into */
2117 switch( serial_type ){
2118 case 10: /* Reserved for future use */
2119 case 11: /* Reserved for future use */
2120 case 0: { /* NULL */
2121 pMem->flags = MEM_Null;
2124 case 1: { /* 1-byte signed integer */
2125 pMem->u.i = (signed char)buf[0];
2126 pMem->flags = MEM_Int;
2129 case 2: { /* 2-byte signed integer */
2130 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
2131 pMem->flags = MEM_Int;
2134 case 3: { /* 3-byte signed integer */
2135 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
2136 pMem->flags = MEM_Int;
2139 case 4: { /* 4-byte signed integer */
2140 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2141 pMem->flags = MEM_Int;
2144 case 5: { /* 6-byte signed integer */
2145 u64 x = (((signed char)buf[0])<<8) | buf[1];
2146 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2148 pMem->u.i = *(i64*)&x;
2149 pMem->flags = MEM_Int;
2152 case 6: /* 8-byte signed integer */
2153 case 7: { /* IEEE floating point */
2156 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
2157 /* Verify that integers and floating point values use the same
2158 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2159 ** defined that 64-bit floating point values really are mixed
2162 static const u64 t1 = ((u64)0x3ff00000)<<32;
2163 static const double r1 = 1.0;
2165 swapMixedEndianFloat(t2);
2166 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2169 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2170 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2172 if( serial_type==6 ){
2173 pMem->u.i = *(i64*)&x;
2174 pMem->flags = MEM_Int;
2176 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2177 swapMixedEndianFloat(x);
2178 memcpy(&pMem->r, &x, sizeof(x));
2179 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2183 case 8: /* Integer 0 */
2184 case 9: { /* Integer 1 */
2185 pMem->u.i = serial_type-8;
2186 pMem->flags = MEM_Int;
2190 int len = (serial_type-12)/2;
2191 pMem->z = (char *)buf;
2194 if( serial_type&0x01 ){
2195 pMem->flags = MEM_Str | MEM_Ephem;
2197 pMem->flags = MEM_Blob | MEM_Ephem;
2207 ** Given the nKey-byte encoding of a record in pKey[], parse the
2208 ** record into a UnpackedRecord structure. Return a pointer to
2211 ** The calling function might provide szSpace bytes of memory
2212 ** space at pSpace. This space can be used to hold the returned
2213 ** VDbeParsedRecord structure if it is large enough. If it is
2214 ** not big enough, space is obtained from sqlite3_malloc().
2216 ** The returned structure should be closed by a call to
2217 ** sqlite3VdbeDeleteUnpackedRecord().
2219 UnpackedRecord *sqlite3VdbeRecordUnpack(
2220 KeyInfo *pKeyInfo, /* Information about the record format */
2221 int nKey, /* Size of the binary record */
2222 const void *pKey, /* The binary record */
2223 UnpackedRecord *pSpace,/* Space available to hold resulting object */
2224 int szSpace /* Size of pSpace[] in bytes */
2226 const unsigned char *aKey = (const unsigned char *)pKey;
2230 u16 u; /* Unsigned loop counter */
2234 assert( sizeof(Mem)>sizeof(*p) );
2235 nByte = sizeof(Mem)*(pKeyInfo->nField+2);
2236 if( nByte>szSpace ){
2237 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2238 if( p==0 ) return 0;
2239 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
2242 p->flags = UNPACKED_NEED_DESTROY;
2244 p->pKeyInfo = pKeyInfo;
2245 p->nField = pKeyInfo->nField + 1;
2246 p->aMem = pMem = &((Mem*)p)[1];
2247 idx = getVarint32(aKey, szHdr);
2250 while( idx<szHdr && u<p->nField ){
2253 idx += getVarint32( aKey+idx, serial_type);
2254 if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
2255 pMem->enc = pKeyInfo->enc;
2256 pMem->db = pKeyInfo->db;
2259 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2263 assert( u<=pKeyInfo->nField + 1 );
2269 ** This routine destroys a UnpackedRecord object
2271 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
2273 if( p->flags & UNPACKED_NEED_DESTROY ){
2276 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
2277 if( pMem->zMalloc ){
2278 sqlite3VdbeMemRelease(pMem);
2282 if( p->flags & UNPACKED_NEED_FREE ){
2283 sqlite3DbFree(p->pKeyInfo->db, p);
2289 ** This function compares the two table rows or index records
2290 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
2291 ** or positive integer if key1 is less than, equal to or
2292 ** greater than key2. The {nKey1, pKey1} key must be a blob
2293 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2294 ** key must be a parsed key such as obtained from
2295 ** sqlite3VdbeParseRecord.
2297 ** Key1 and Key2 do not have to contain the same number of fields.
2298 ** The key with fewer fields is usually compares less than the
2299 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2300 ** and the common prefixes are equal, then key1 is less than key2.
2301 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2302 ** equal, then the keys are considered to be equal and
2303 ** the parts beyond the common prefix are ignored.
2305 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
2306 ** the header of pKey1 is ignored. It is assumed that pKey1 is
2307 ** an index key, and thus ends with a rowid value. The last byte
2308 ** of the header will therefore be the serial type of the rowid:
2309 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
2310 ** The serial type of the final rowid will always be a single byte.
2311 ** By ignoring this last byte of the header, we force the comparison
2312 ** to ignore the rowid at the end of key1.
2314 int sqlite3VdbeRecordCompare(
2315 int nKey1, const void *pKey1, /* Left key */
2316 UnpackedRecord *pPKey2 /* Right key */
2318 u32 d1; /* Offset into aKey[] of next data element */
2319 u32 idx1; /* Offset into aKey[] of next header element */
2320 u32 szHdr1; /* Number of bytes in header */
2324 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2328 pKeyInfo = pPKey2->pKeyInfo;
2329 mem1.enc = pKeyInfo->enc;
2330 mem1.db = pKeyInfo->db;
2334 idx1 = getVarint32(aKey1, szHdr1);
2336 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
2339 nField = pKeyInfo->nField;
2340 while( idx1<szHdr1 && i<pPKey2->nField ){
2343 /* Read the serial types for the next element in each key. */
2344 idx1 += getVarint32( aKey1+idx1, serial_type1 );
2345 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
2347 /* Extract the values to be compared.
2349 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2351 /* Do the comparison
2353 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
2354 i<nField ? pKeyInfo->aColl[i] : 0);
2360 if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
2363 /* rc==0 here means that one of the keys ran out of fields and
2364 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
2365 ** flag is set, then break the tie by treating key2 as larger.
2366 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
2367 ** are considered to be equal. Otherwise, the longer key is the
2368 ** larger. As it happens, the pPKey2 will always be the longer
2369 ** if there is a difference.
2371 if( pPKey2->flags & UNPACKED_INCRKEY ){
2373 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
2375 }else if( idx1<szHdr1 ){
2378 }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
2379 && pKeyInfo->aSortOrder[i] ){
2388 ** pCur points at an index entry created using the OP_MakeRecord opcode.
2389 ** Read the rowid (the last field in the record) and store it in *rowid.
2390 ** Return SQLITE_OK if everything works, or an error code otherwise.
2392 int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
2395 u32 szHdr; /* Size of the header */
2396 u32 typeRowid; /* Serial type of the rowid */
2397 u32 lenRowid; /* Size of the rowid */
2400 sqlite3BtreeKeySize(pCur, &nCellKey);
2402 return SQLITE_CORRUPT_BKPT;
2407 rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
2411 (void)getVarint32((u8*)m.z, szHdr);
2412 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
2413 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
2414 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
2416 sqlite3VdbeMemRelease(&m);
2421 ** Compare the key of the index entry that cursor pC is point to against
2422 ** the key string in pKey (of length nKey). Write into *pRes a number
2423 ** that is negative, zero, or positive if pC is less than, equal to,
2424 ** or greater than pKey. Return SQLITE_OK on success.
2426 ** pKey is either created without a rowid or is truncated so that it
2427 ** omits the rowid at the end. The rowid at the end of the index entry
2428 ** is ignored as well. Hence, this routine only compares the prefixes
2429 ** of the keys prior to the final rowid, not the entire key.
2431 ** pUnpacked may be an unpacked version of pKey,nKey. If pUnpacked is
2432 ** supplied it is used in place of pKey,nKey.
2434 int sqlite3VdbeIdxKeyCompare(
2435 Cursor *pC, /* The cursor to compare against */
2436 UnpackedRecord *pUnpacked, /* Unpacked version of pKey and nKey */
2437 int *res /* Write the comparison result here */
2441 BtCursor *pCur = pC->pCursor;
2444 sqlite3BtreeKeySize(pCur, &nCellKey);
2452 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
2456 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
2457 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
2458 sqlite3VdbeMemRelease(&m);
2463 ** This routine sets the value to be returned by subsequent calls to
2464 ** sqlite3_changes() on the database handle 'db'.
2466 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
2467 assert( sqlite3_mutex_held(db->mutex) );
2468 db->nChange = nChange;
2469 db->nTotalChange += nChange;
2473 ** Set a flag in the vdbe to update the change counter when it is finalised
2476 void sqlite3VdbeCountChanges(Vdbe *v){
2481 ** Mark every prepared statement associated with a database connection
2484 ** An expired statement means that recompilation of the statement is
2485 ** recommend. Statements expire when things happen that make their
2486 ** programs obsolete. Removing user-defined functions or collating
2487 ** sequences, or changing an authorization function are the types of
2488 ** things that make prepared statements obsolete.
2490 void sqlite3ExpirePreparedStatements(sqlite3 *db){
2492 for(p = db->pVdbe; p; p=p->pNext){
2498 ** Return the database associated with the Vdbe.
2500 sqlite3 *sqlite3VdbeDb(Vdbe *v){