Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements that page cache.
14 ** @(#) $Id: pcache.c,v 1.33 2008/09/29 11:49:48 danielk1977 Exp $
16 #include "sqliteInt.h"
19 ** A complete page cache is an instance of this structure.
21 ** A cache may only be deleted by its owner and while holding the
22 ** SQLITE_MUTEX_STATUS_LRU mutex.
25 /*********************************************************************
26 ** The first group of elements may be read or written at any time by
27 ** the cache owner without holding the mutex. No thread other than the
28 ** cache owner is permitted to access these elements at any time.
30 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */
31 PgHdr *pSynced; /* Last synced page in dirty page list */
32 int nRef; /* Number of pinned pages */
33 int nPinned; /* Number of pinned and/or dirty pages */
34 int nMax; /* Configured cache size */
35 int nMin; /* Configured minimum cache size */
36 /**********************************************************************
37 ** The next group of elements are fixed when the cache is created and
38 ** may not be changed afterwards. These elements can read at any time by
39 ** the cache owner or by any thread holding the the mutex. Non-owner
40 ** threads must hold the mutex when reading these elements to prevent
41 ** the entire PCache object from being deleted during the read.
43 int szPage; /* Size of every page in this cache */
44 int szExtra; /* Size of extra space for each page */
45 int bPurgeable; /* True if pages are on backing store */
46 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */
47 void *pStress; /* Argument to xStress */
48 /**********************************************************************
49 ** The final group of elements can only be accessed while holding the
50 ** mutex. Both the cache owner and any other thread must hold the mutex
51 ** to read or write any of these elements.
53 int nPage; /* Total number of pages in apHash */
54 int nHash; /* Number of slots in apHash[] */
55 PgHdr **apHash; /* Hash table for fast lookup by pgno */
56 PgHdr *pClean; /* List of clean pages in use */
60 ** Free slots in the page block allocator
62 typedef struct PgFreeslot PgFreeslot;
64 PgFreeslot *pNext; /* Next free slot */
68 ** Global data for the page cache.
70 static SQLITE_WSD struct PCacheGlobal {
71 int isInit; /* True when initialized */
72 sqlite3_mutex *mutex; /* static mutex MUTEX_STATIC_LRU */
74 int nMaxPage; /* Sum of nMaxPage for purgeable caches */
75 int nMinPage; /* Sum of nMinPage for purgeable caches */
76 int nCurrentPage; /* Number of purgeable pages allocated */
77 PgHdr *pLruHead, *pLruTail; /* LRU list of unused clean pgs */
79 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
80 int szSlot; /* Size of each free slot */
81 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
82 PgFreeslot *pFree; /* Free page blocks */
86 ** All code in this file should access the global pcache structure via the
87 ** alias "pcache_g". This ensures that the WSD emulation is used when
88 ** compiling for systems that do not support real WSD.
90 #define pcache_g (GLOBAL(struct PCacheGlobal, pcache))
93 ** All global variables used by this module (all of which are grouped
94 ** together in global structure "pcache" above) are protected by the static
95 ** SQLITE_MUTEX_STATIC_LRU mutex. A pointer to this mutex is stored in
96 ** variable "pcache.mutex".
98 ** Some elements of the PCache and PgHdr structures are protected by the
99 ** SQLITE_MUTEX_STATUS_LRU mutex and other are not. The protected
100 ** elements are grouped at the end of the structures and are clearly
103 ** Use the following macros must surround all access (read or write)
104 ** of protected elements. The mutex is not recursive and may not be
105 ** entered more than once. The pcacheMutexHeld() macro should only be
106 ** used within an assert() to verify that the mutex is being held.
108 #define pcacheEnterMutex() sqlite3_mutex_enter(pcache_g.mutex)
109 #define pcacheExitMutex() sqlite3_mutex_leave(pcache_g.mutex)
110 #define pcacheMutexHeld() sqlite3_mutex_held(pcache_g.mutex)
113 ** Some of the assert() macros in this code are too expensive to run
114 ** even during normal debugging. Use them only rarely on long-running
115 ** tests. Enable the expensive asserts using the
116 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
118 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
119 # define expensive_assert(X) assert(X)
121 # define expensive_assert(X)
124 /********************************** Linked List Management ********************/
126 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
128 ** This routine verifies that the number of entries in the hash table
129 ** is pCache->nPage. This routine is used within assert() statements
130 ** only and is therefore disabled during production builds.
132 static int pcacheCheckHashCount(PCache *pCache){
135 for(i=0; i<pCache->nHash; i++){
137 for(p=pCache->apHash[i]; p; p=p->pNextHash){
141 assert( nPage==pCache->nPage );
144 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
147 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
149 ** Based on the current value of PCache.nRef and the contents of the
150 ** PCache.pDirty list, return the expected value of the PCache.nPinned
151 ** counter. This is only used in debugging builds, as follows:
153 ** expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
155 static int pcachePinnedCount(PCache *pCache){
157 int nPinned = pCache->nRef;
158 for(p=pCache->pDirty; p; p=p->pNext){
165 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
168 #if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
170 ** Check that the pCache->pSynced variable is set correctly. If it
171 ** is not, either fail an assert or return zero. Otherwise, return
172 ** non-zero. This is only used in debugging builds, as follows:
174 ** expensive_assert( pcacheCheckSynced(pCache) );
176 static int pcacheCheckSynced(PCache *pCache){
177 PgHdr *p = pCache->pDirtyTail;
178 for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pPrev){
179 assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
181 return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
183 #endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
188 ** Remove a page from its hash table (PCache.apHash[]).
190 static void pcacheRemoveFromHash(PgHdr *pPage){
191 assert( pcacheMutexHeld() );
192 if( pPage->pPrevHash ){
193 pPage->pPrevHash->pNextHash = pPage->pNextHash;
195 PCache *pCache = pPage->pCache;
196 u32 h = pPage->pgno % pCache->nHash;
197 assert( pCache->apHash[h]==pPage );
198 pCache->apHash[h] = pPage->pNextHash;
200 if( pPage->pNextHash ){
201 pPage->pNextHash->pPrevHash = pPage->pPrevHash;
203 pPage->pCache->nPage--;
204 expensive_assert( pcacheCheckHashCount(pPage->pCache) );
208 ** Insert a page into the hash table
210 ** The mutex must be held by the caller.
212 static void pcacheAddToHash(PgHdr *pPage){
213 PCache *pCache = pPage->pCache;
214 u32 h = pPage->pgno % pCache->nHash;
215 assert( pcacheMutexHeld() );
216 pPage->pNextHash = pCache->apHash[h];
217 pPage->pPrevHash = 0;
218 if( pCache->apHash[h] ){
219 pCache->apHash[h]->pPrevHash = pPage;
221 pCache->apHash[h] = pPage;
223 expensive_assert( pcacheCheckHashCount(pCache) );
227 ** Attempt to increase the size the hash table to contain
228 ** at least nHash buckets.
230 static int pcacheResizeHash(PCache *pCache, int nHash){
233 assert( pcacheMutexHeld() );
234 #ifdef SQLITE_MALLOC_SOFT_LIMIT
235 if( nHash*sizeof(PgHdr*)>SQLITE_MALLOC_SOFT_LIMIT ){
236 nHash = SQLITE_MALLOC_SOFT_LIMIT/sizeof(PgHdr *);
240 pNew = (PgHdr **)sqlite3Malloc(sizeof(PgHdr*)*nHash);
245 memset(pNew, 0, sizeof(PgHdr *)*nHash);
246 sqlite3_free(pCache->apHash);
247 pCache->apHash = pNew;
248 pCache->nHash = nHash;
251 for(p=pCache->pClean; p; p=p->pNext){
254 for(p=pCache->pDirty; p; p=p->pNext){
261 ** Remove a page from a linked list that is headed by *ppHead.
262 ** *ppHead is either PCache.pClean or PCache.pDirty.
264 static void pcacheRemoveFromList(PgHdr **ppHead, PgHdr *pPage){
265 int isDirtyList = (ppHead==&pPage->pCache->pDirty);
266 assert( ppHead==&pPage->pCache->pClean || ppHead==&pPage->pCache->pDirty );
267 assert( pcacheMutexHeld() || ppHead!=&pPage->pCache->pClean );
270 pPage->pPrev->pNext = pPage->pNext;
272 assert( *ppHead==pPage );
273 *ppHead = pPage->pNext;
276 pPage->pNext->pPrev = pPage->pPrev;
280 PCache *pCache = pPage->pCache;
281 assert( pPage->pNext || pCache->pDirtyTail==pPage );
283 pCache->pDirtyTail = pPage->pPrev;
285 if( pCache->pSynced==pPage ){
286 PgHdr *pSynced = pPage->pPrev;
287 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
288 pSynced = pSynced->pPrev;
290 pCache->pSynced = pSynced;
296 ** Add a page from a linked list that is headed by *ppHead.
297 ** *ppHead is either PCache.pClean or PCache.pDirty.
299 static void pcacheAddToList(PgHdr **ppHead, PgHdr *pPage){
300 int isDirtyList = (ppHead==&pPage->pCache->pDirty);
301 assert( ppHead==&pPage->pCache->pClean || ppHead==&pPage->pCache->pDirty );
304 (*ppHead)->pPrev = pPage;
306 pPage->pNext = *ppHead;
311 PCache *pCache = pPage->pCache;
312 if( !pCache->pDirtyTail ){
313 assert( pPage->pNext==0 );
314 pCache->pDirtyTail = pPage;
316 if( !pCache->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
317 pCache->pSynced = pPage;
323 ** Remove a page from the global LRU list
325 static void pcacheRemoveFromLruList(PgHdr *pPage){
326 assert( sqlite3_mutex_held(pcache_g.mutex) );
327 assert( (pPage->flags&PGHDR_DIRTY)==0 );
328 if( pPage->pCache->bPurgeable==0 ) return;
329 if( pPage->pNextLru ){
330 assert( pcache_g.pLruTail!=pPage );
331 pPage->pNextLru->pPrevLru = pPage->pPrevLru;
333 assert( pcache_g.pLruTail==pPage );
334 pcache_g.pLruTail = pPage->pPrevLru;
336 if( pPage->pPrevLru ){
337 assert( pcache_g.pLruHead!=pPage );
338 pPage->pPrevLru->pNextLru = pPage->pNextLru;
340 assert( pcache_g.pLruHead==pPage );
341 pcache_g.pLruHead = pPage->pNextLru;
346 ** Add a page to the global LRU list. The page is normally added
347 ** to the front of the list so that it will be the last page recycled.
348 ** However, if the PGHDR_REUSE_UNLIKELY bit is set, the page is added
349 ** to the end of the LRU list so that it will be the next to be recycled.
351 static void pcacheAddToLruList(PgHdr *pPage){
352 assert( sqlite3_mutex_held(pcache_g.mutex) );
353 assert( (pPage->flags&PGHDR_DIRTY)==0 );
354 if( pPage->pCache->bPurgeable==0 ) return;
355 if( pcache_g.pLruTail && (pPage->flags & PGHDR_REUSE_UNLIKELY)!=0 ){
356 /* If reuse is unlikely. Put the page at the end of the LRU list
357 ** where it will be recycled sooner rather than later.
359 assert( pcache_g.pLruHead );
361 pPage->pPrevLru = pcache_g.pLruTail;
362 pcache_g.pLruTail->pNextLru = pPage;
363 pcache_g.pLruTail = pPage;
364 pPage->flags &= ~PGHDR_REUSE_UNLIKELY;
366 /* If reuse is possible. the page goes at the beginning of the LRU
367 ** list so that it will be the last to be recycled.
369 if( pcache_g.pLruHead ){
370 pcache_g.pLruHead->pPrevLru = pPage;
372 pPage->pNextLru = pcache_g.pLruHead;
373 pcache_g.pLruHead = pPage;
375 if( pcache_g.pLruTail==0 ){
376 pcache_g.pLruTail = pPage;
381 /*********************************************** Memory Allocation ***********
383 ** Initialize the page cache memory pool.
385 ** This must be called at start-time when no page cache lines are
386 ** checked out. This function is not threadsafe.
388 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
391 pcache_g.szSlot = sz;
392 pcache_g.pStart = pBuf;
395 p = (PgFreeslot*)pBuf;
396 p->pNext = pcache_g.pFree;
398 pBuf = (void*)&((char*)pBuf)[sz];
400 pcache_g.pEnd = pBuf;
404 ** Allocate a page cache line. Look in the page cache memory pool first
405 ** and use an element from it first if available. If nothing is available
406 ** in the page cache memory pool, go to the general purpose memory allocator.
408 static void *pcacheMalloc(int sz, PCache *pCache){
409 assert( sqlite3_mutex_held(pcache_g.mutex) );
410 if( sz<=pcache_g.szSlot && pcache_g.pFree ){
411 PgFreeslot *p = pcache_g.pFree;
412 pcache_g.pFree = p->pNext;
413 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, sz);
414 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
419 /* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
420 ** global pcache mutex and unlock the pager-cache object pCache. This is
421 ** so that if the attempt to allocate a new buffer causes the the
422 ** configured soft-heap-limit to be breached, it will be possible to
423 ** reclaim memory from this pager-cache.
426 p = sqlite3Malloc(sz);
430 sz = sqlite3MallocSize(p);
431 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
436 void *sqlite3PageMalloc(int sz){
439 p = pcacheMalloc(sz, 0);
445 ** Release a pager memory allocation
447 static void pcacheFree(void *p){
448 assert( sqlite3_mutex_held(pcache_g.mutex) );
450 if( p>=pcache_g.pStart && p<pcache_g.pEnd ){
452 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
453 pSlot = (PgFreeslot*)p;
454 pSlot->pNext = pcache_g.pFree;
455 pcache_g.pFree = pSlot;
457 int iSize = sqlite3MallocSize(p);
458 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
462 void sqlite3PageFree(void *p){
469 ** Allocate a new page.
471 static PgHdr *pcachePageAlloc(PCache *pCache){
473 int sz = sizeof(*p) + pCache->szPage + pCache->szExtra;
474 assert( sqlite3_mutex_held(pcache_g.mutex) );
475 p = pcacheMalloc(sz, pCache);
477 memset(p, 0, sizeof(PgHdr));
478 p->pData = (void*)&p[1];
479 p->pExtra = (void*)&((char*)p->pData)[pCache->szPage];
480 if( pCache->bPurgeable ){
481 pcache_g.nCurrentPage++;
489 static void pcachePageFree(PgHdr *p){
490 assert( sqlite3_mutex_held(pcache_g.mutex) );
491 if( p->pCache->bPurgeable ){
492 pcache_g.nCurrentPage--;
494 pcacheFree(p->apSave[0]);
495 pcacheFree(p->apSave[1]);
499 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
501 ** Return the number of bytes that will be returned to the heap when
502 ** the argument is passed to pcachePageFree().
504 static int pcachePageSize(PgHdr *p){
505 assert( sqlite3_mutex_held(pcache_g.mutex) );
506 assert( !pcache_g.pStart );
507 assert( p->apSave[0]==0 );
508 assert( p->apSave[1]==0 );
509 assert( p && p->pCache );
510 return sqlite3MallocSize(p);
515 ** Attempt to 'recycle' a page from the global LRU list. Only clean,
516 ** unreferenced pages from purgeable caches are eligible for recycling.
518 ** This function removes page pcache.pLruTail from the global LRU list,
519 ** and from the hash-table and PCache.pClean list of the owner pcache.
520 ** There should be no other references to the page.
522 ** A pointer to the recycled page is returned, or NULL if no page is
523 ** eligible for recycling.
525 static PgHdr *pcacheRecyclePage(void){
527 assert( sqlite3_mutex_held(pcache_g.mutex) );
529 if( (p=pcache_g.pLruTail) ){
530 assert( (p->flags&PGHDR_DIRTY)==0 );
531 pcacheRemoveFromLruList(p);
532 pcacheRemoveFromHash(p);
533 pcacheRemoveFromList(&p->pCache->pClean, p);
540 ** Obtain space for a page. Try to recycle an old page if the limit on the
541 ** number of pages has been reached. If the limit has not been reached or
542 ** there are no pages eligible for recycling, allocate a new page.
544 ** Return a pointer to the new page, or NULL if an OOM condition occurs.
546 static int pcacheRecycleOrAlloc(PCache *pCache, PgHdr **ppPage){
549 int szPage = pCache->szPage;
550 int szExtra = pCache->szExtra;
552 assert( pcache_g.isInit );
553 assert( sqlite3_mutex_held(pcache_g.mutex) );
557 /* If we have reached either the global or the local limit for
558 ** pinned+dirty pages, and there is at least one dirty page,
559 ** invoke the xStress callback to cause a page to become clean.
561 expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
562 expensive_assert( pcacheCheckSynced(pCache) );
565 && (pCache->nPinned>=(pcache_g.nMaxPage+pCache->nMin-pcache_g.nMinPage)
566 || pCache->nPinned>=pCache->nMax)
569 assert(pCache->pDirtyTail);
571 for(pPg=pCache->pSynced;
572 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC));
576 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pPrev);
581 rc = pCache->xStress(pCache->pStress, pPg);
583 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
589 /* If either the local or the global page limit has been reached,
590 ** try to recycle a page.
592 if( pCache->bPurgeable && (pCache->nPage>=pCache->nMax-1 ||
593 pcache_g.nCurrentPage>=pcache_g.nMaxPage) ){
594 p = pcacheRecyclePage();
597 /* If a page has been recycled but it is the wrong size, free it. */
598 if( p && (p->pCache->szPage!=szPage || p->pCache->szPage!=szExtra) ){
604 p = pcachePageAlloc(pCache);
608 return (p?SQLITE_OK:SQLITE_NOMEM);
611 /*************************************************** General Interfaces ******
613 ** Initialize and shutdown the page cache subsystem. Neither of these
614 ** functions are threadsafe.
616 int sqlite3PcacheInitialize(void){
617 assert( pcache_g.isInit==0 );
618 memset(&pcache_g, 0, sizeof(pcache));
619 if( sqlite3GlobalConfig.bCoreMutex ){
620 /* No need to check the return value of sqlite3_mutex_alloc().
621 ** Allocating a static mutex cannot fail.
623 pcache_g.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
628 void sqlite3PcacheShutdown(void){
629 memset(&pcache_g, 0, sizeof(pcache));
633 ** Return the size in bytes of a PCache object.
635 int sqlite3PcacheSize(void){ return sizeof(PCache); }
638 ** Create a new PCache object. Storage space to hold the object
639 ** has already been allocated and is passed in as the p pointer.
641 void sqlite3PcacheOpen(
642 int szPage, /* Size of every page */
643 int szExtra, /* Extra space associated with each page */
644 int bPurgeable, /* True if pages are on backing store */
645 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
646 void *pStress, /* Argument to xStress */
647 PCache *p /* Preallocated space for the PCache */
649 assert( pcache_g.isInit );
650 memset(p, 0, sizeof(PCache));
652 p->szExtra = szExtra;
653 p->bPurgeable = bPurgeable;
654 p->xStress = xStress;
655 p->pStress = pStress;
661 pcache_g.nMaxPage += p->nMax;
662 pcache_g.nMinPage += p->nMin;
669 ** Change the page size for PCache object. This can only happen
670 ** when the cache is empty.
672 void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
673 assert(pCache->nPage==0);
674 pCache->szPage = szPage;
678 ** Try to obtain a page from the cache.
680 int sqlite3PcacheFetch(
681 PCache *pCache, /* Obtain the page from this cache */
682 Pgno pgno, /* Page number to obtain */
683 int createFlag, /* If true, create page if it does not exist already */
684 PgHdr **ppPage /* Write the page here */
689 assert( pcache_g.isInit );
692 expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
696 /* Search the hash table for the requested page. Exit early if it is found. */
697 if( pCache->apHash ){
698 u32 h = pgno % pCache->nHash;
699 for(pPage=pCache->apHash[h]; pPage; pPage=pPage->pNextHash){
700 if( pPage->pgno==pgno ){
701 if( pPage->nRef==0 ){
702 if( 0==(pPage->flags&PGHDR_DIRTY) ){
703 pcacheRemoveFromLruList(pPage);
714 if( !pPage && createFlag ){
715 if( pCache->nHash<=pCache->nPage ){
716 rc = pcacheResizeHash(pCache, pCache->nHash<256 ? 256 : pCache->nHash*2);
719 rc = pcacheRecycleOrAlloc(pCache, &pPage);
726 pPage->pCache = pCache;
730 pcacheAddToList(&pCache->pClean, pPage);
731 pcacheAddToHash(pPage);
738 expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
739 assert( pPage || !createFlag || rc!=SQLITE_OK );
744 ** Dereference a page. When the reference count reaches zero,
745 ** move the page to the LRU list if it is clean.
747 void sqlite3PcacheRelease(PgHdr *p){
751 PCache *pCache = p->pCache;
753 if( (p->flags&PGHDR_DIRTY)==0 ){
756 if( pcache_g.nCurrentPage>pcache_g.nMaxPage ){
757 pcacheRemoveFromList(&pCache->pClean, p);
758 pcacheRemoveFromHash(p);
761 pcacheAddToLruList(p);
765 /* Move the page to the head of the caches dirty list. */
766 pcacheRemoveFromList(&pCache->pDirty, p);
767 pcacheAddToList(&pCache->pDirty, p);
772 void sqlite3PcacheRef(PgHdr *p){
778 ** Drop a page from the cache. There must be exactly one reference to the
779 ** page. This function deletes that reference, so after it returns the
780 ** page pointed to by p is invalid.
782 void sqlite3PcacheDrop(PgHdr *p){
784 assert( p->nRef==1 );
785 assert( 0==(p->flags&PGHDR_DIRTY) );
790 pcacheRemoveFromList(&pCache->pClean, p);
791 pcacheRemoveFromHash(p);
797 ** Make sure the page is marked as dirty. If it isn't dirty already,
800 void sqlite3PcacheMakeDirty(PgHdr *p){
802 p->flags &= ~PGHDR_DONT_WRITE;
803 if( p->flags & PGHDR_DIRTY ) return;
804 assert( (p->flags & PGHDR_DIRTY)==0 );
808 pcacheRemoveFromList(&pCache->pClean, p);
809 pcacheAddToList(&pCache->pDirty, p);
811 p->flags |= PGHDR_DIRTY;
814 static void pcacheMakeClean(PgHdr *p){
815 PCache *pCache = p->pCache;
816 assert( p->apSave[0]==0 && p->apSave[1]==0 );
817 assert( p->flags & PGHDR_DIRTY );
818 pcacheRemoveFromList(&pCache->pDirty, p);
819 pcacheAddToList(&pCache->pClean, p);
820 p->flags &= ~PGHDR_DIRTY;
822 pcacheAddToLruList(p);
825 expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
829 ** Make sure the page is marked as clean. If it isn't clean already,
832 void sqlite3PcacheMakeClean(PgHdr *p){
833 if( (p->flags & PGHDR_DIRTY) ){
841 ** Make every page in the cache clean.
843 void sqlite3PcacheCleanAll(PCache *pCache){
846 while( (p = pCache->pDirty)!=0 ){
847 assert( p->apSave[0]==0 && p->apSave[1]==0 );
848 pcacheRemoveFromList(&pCache->pDirty, p);
849 p->flags &= ~PGHDR_DIRTY;
850 pcacheAddToList(&pCache->pClean, p);
852 pcacheAddToLruList(p);
856 sqlite3PcacheAssertFlags(pCache, 0, PGHDR_DIRTY);
857 expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
862 ** Change the page number of page p to newPgno. If newPgno is 0, then the
863 ** page object is added to the clean-list and the PGHDR_REUSE_UNLIKELY
866 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
869 pcacheRemoveFromHash(p);
872 pcacheFree(p->apSave[0]);
873 pcacheFree(p->apSave[1]);
876 if( (p->flags & PGHDR_DIRTY) ){
879 p->flags = PGHDR_REUSE_UNLIKELY;
886 ** Remove all content from a page cache
888 static void pcacheClear(PCache *pCache){
890 assert( sqlite3_mutex_held(pcache_g.mutex) );
891 for(p=pCache->pClean; p; p=pNext){
893 pcacheRemoveFromLruList(p);
896 for(p=pCache->pDirty; p; p=pNext){
902 pCache->pDirtyTail = 0;
905 memset(pCache->apHash, 0, pCache->nHash*sizeof(pCache->apHash[0]));
910 ** Drop every cache entry whose page number is greater than "pgno".
912 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
914 PgHdr *pDirty = pCache->pDirty;
916 for(p=pCache->pClean; p||pDirty; p=pNext){
924 pcacheRemoveFromHash(p);
925 if( p->flags&PGHDR_DIRTY ){
926 pcacheRemoveFromList(&pCache->pDirty, p);
929 pcacheRemoveFromList(&pCache->pClean, p);
930 pcacheRemoveFromLruList(p);
934 /* If there are references to the page, it cannot be freed. In this
935 ** case, zero the page content instead.
937 memset(p->pData, 0, pCache->szPage);
945 ** If there are currently more than pcache.nMaxPage pages allocated, try
946 ** to recycle pages to reduce the number allocated to pcache.nMaxPage.
948 static void pcacheEnforceMaxPage(void){
950 assert( sqlite3_mutex_held(pcache_g.mutex) );
951 while( pcache_g.nCurrentPage>pcache_g.nMaxPage && (p = pcacheRecyclePage()) ){
959 void sqlite3PcacheClose(PCache *pCache){
962 /* Free all the pages used by this pager and remove them from the LRU list. */
964 if( pCache->bPurgeable ){
965 pcache_g.nMaxPage -= pCache->nMax;
966 pcache_g.nMinPage -= pCache->nMin;
967 pcacheEnforceMaxPage();
969 sqlite3_free(pCache->apHash);
974 ** Preserve the content of the page. It is assumed that the content
975 ** has not been preserved already.
977 ** If idJournal==0 then this is for the overall transaction.
978 ** If idJournal==1 then this is for the statement journal.
980 ** This routine is used for in-memory databases only.
982 ** Return SQLITE_OK or SQLITE_NOMEM if a memory allocation fails.
984 int sqlite3PcachePreserve(PgHdr *p, int idJournal){
987 assert( p->pCache->bPurgeable==0 );
988 assert( p->apSave[idJournal]==0 );
989 sz = p->pCache->szPage;
990 p->apSave[idJournal] = x = sqlite3PageMalloc( sz );
991 if( x==0 ) return SQLITE_NOMEM;
992 memcpy(x, p->pData, sz);
997 ** Commit a change previously preserved.
999 void sqlite3PcacheCommit(PCache *pCache, int idJournal){
1001 int mask = idJournal==0 ? ~PGHDR_IN_JOURNAL : 0xffffff;
1002 pcacheEnterMutex(); /* Mutex is required to call pcacheFree() */
1003 for(p=pCache->pDirty; p; p=p->pNext){
1004 if( p->apSave[idJournal] ){
1005 pcacheFree(p->apSave[idJournal]);
1006 p->apSave[idJournal] = 0;
1014 ** Rollback a change previously preserved.
1016 void sqlite3PcacheRollback(
1017 PCache *pCache, /* Pager cache */
1018 int idJournal, /* Which copy to rollback to */
1019 void (*xReiniter)(PgHdr*) /* Called on each rolled back page */
1023 int mask = idJournal==0 ? ~PGHDR_IN_JOURNAL : 0xffffff;
1024 pcacheEnterMutex(); /* Mutex is required to call pcacheFree() */
1025 sz = pCache->szPage;
1026 for(p=pCache->pDirty; p; p=p->pNext){
1027 if( p->apSave[idJournal] ){
1028 memcpy(p->pData, p->apSave[idJournal], sz);
1029 pcacheFree(p->apSave[idJournal]);
1030 p->apSave[idJournal] = 0;
1042 ** Assert flags settings on all pages. Debugging only.
1044 void sqlite3PcacheAssertFlags(PCache *pCache, int trueMask, int falseMask){
1046 for(p=pCache->pDirty; p; p=p->pNext){
1047 assert( (p->flags&trueMask)==trueMask );
1048 assert( (p->flags&falseMask)==0 );
1050 for(p=pCache->pClean; p; p=p->pNext){
1051 assert( (p->flags&trueMask)==trueMask );
1052 assert( (p->flags&falseMask)==0 );
1058 ** Discard the contents of the cache.
1060 int sqlite3PcacheClear(PCache *pCache){
1061 assert(pCache->nRef==0);
1063 pcacheClear(pCache);
1069 ** Merge two lists of pages connected by pDirty and in pgno order.
1070 ** Do not both fixing the pPrevDirty pointers.
1072 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
1073 PgHdr result, *pTail;
1076 if( pA->pgno<pB->pgno ){
1093 return result.pDirty;
1097 ** Sort the list of pages in accending order by pgno. Pages are
1098 ** connected by pDirty pointers. The pPrevDirty pointers are
1099 ** corrupted by this sort.
1101 #define N_SORT_BUCKET_ALLOC 25
1102 #define N_SORT_BUCKET 25
1104 int sqlite3_pager_n_sort_bucket = 0;
1105 #undef N_SORT_BUCKET
1106 #define N_SORT_BUCKET \
1107 (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
1109 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
1110 PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
1112 memset(a, 0, sizeof(a));
1117 for(i=0; i<N_SORT_BUCKET-1; i++){
1122 p = pcacheMergeDirtyList(a[i], p);
1126 if( i==N_SORT_BUCKET-1 ){
1127 /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
1128 ** elements in the input list. This is possible, but impractical.
1129 ** Testing this line is the point of global variable
1130 ** sqlite3_pager_n_sort_bucket.
1132 a[i] = pcacheMergeDirtyList(a[i], p);
1136 for(i=1; i<N_SORT_BUCKET; i++){
1137 p = pcacheMergeDirtyList(p, a[i]);
1143 ** Return a list of all dirty pages in the cache, sorted by page number.
1145 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
1147 for(p=pCache->pDirty; p; p=p->pNext){
1148 p->pDirty = p->pNext;
1150 return pcacheSortDirtyList(pCache->pDirty);
1154 ** Return the total number of outstanding page references.
1156 int sqlite3PcacheRefCount(PCache *pCache){
1157 return pCache->nRef;
1160 int sqlite3PcachePageRefcount(PgHdr *p){
1165 ** Return the total number of pages in the cache.
1167 int sqlite3PcachePagecount(PCache *pCache){
1168 assert( pCache->nPage>=0 );
1169 return pCache->nPage;
1172 #ifdef SQLITE_CHECK_PAGES
1174 ** This function is used by the pager.c module to iterate through all
1175 ** pages in the cache. At present, this is only required if the
1176 ** SQLITE_CHECK_PAGES macro (used for debugging) is specified.
1178 void sqlite3PcacheIterate(PCache *pCache, void (*xIter)(PgHdr *)){
1180 for(p=pCache->pClean; p; p=p->pNext){
1183 for(p=pCache->pDirty; p; p=p->pNext){
1190 ** Set flags on all pages in the page cache
1192 void sqlite3PcacheClearFlags(PCache *pCache, int mask){
1195 /* Obtain the global mutex before modifying any PgHdr.flags variables
1196 ** or traversing the LRU list.
1201 for(p=pCache->pDirty; p; p=p->pNext){
1204 for(p=pCache->pClean; p; p=p->pNext){
1208 if( 0==(mask&PGHDR_NEED_SYNC) ){
1209 pCache->pSynced = pCache->pDirtyTail;
1210 assert( !pCache->pSynced || (pCache->pSynced->flags&PGHDR_NEED_SYNC)==0 );
1217 ** Set the suggested cache-size value.
1219 int sqlite3PcacheGetCachesize(PCache *pCache){
1220 return pCache->nMax;
1224 ** Set the suggested cache-size value.
1226 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
1230 if( pCache->bPurgeable ){
1232 pcache_g.nMaxPage -= pCache->nMax;
1233 pcache_g.nMaxPage += mxPage;
1234 pcacheEnforceMaxPage();
1237 pCache->nMax = mxPage;
1240 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1242 ** This function is called to free superfluous dynamically allocated memory
1243 ** held by the pager system. Memory in use by any SQLite pager allocated
1244 ** by the current thread may be sqlite3_free()ed.
1246 ** nReq is the number of bytes of memory required. Once this much has
1247 ** been released, the function returns. The return value is the total number
1248 ** of bytes of memory released.
1250 int sqlite3PcacheReleaseMemory(int nReq){
1252 if( pcache_g.pStart==0 ){
1255 while( (nReq<0 || nFree<nReq) && (p=pcacheRecyclePage()) ){
1256 nFree += pcachePageSize(p);
1263 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1266 void sqlite3PcacheStats(
1273 int nRecyclable = 0;
1274 for(p=pcache_g.pLruHead; p; p=p->pNextLru){
1278 *pnCurrent = pcache_g.nCurrentPage;
1279 *pnMax = pcache_g.nMaxPage;
1280 *pnMin = pcache_g.nMinPage;
1281 *pnRecyclable = nRecyclable;