Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This is the implementation of the page cache subsystem or "pager".
14 ** The pager is used to access a database disk file. It implements
15 ** atomic commit and rollback through the use of a journal file that
16 ** is separate from the database file. The pager also implements file
17 ** locking to prevent two processes from writing the same database
18 ** file simultaneously, or one process from reading the database while
19 ** another is writing.
21 ** @(#) $Id: pager.c,v 1.497 2008/10/07 11:51:20 danielk1977 Exp $
23 #ifndef SQLITE_OMIT_DISKIO
24 #include "sqliteInt.h"
27 ** Macros for troubleshooting. Normally turned off
30 #define sqlite3DebugPrintf printf
31 #define PAGERTRACE1(X) sqlite3DebugPrintf(X)
32 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
33 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
34 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
35 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
37 #define PAGERTRACE1(X)
38 #define PAGERTRACE2(X,Y)
39 #define PAGERTRACE3(X,Y,Z)
40 #define PAGERTRACE4(X,Y,Z,W)
41 #define PAGERTRACE5(X,Y,Z,W,V)
45 ** The following two macros are used within the PAGERTRACEX() macros above
46 ** to print out file-descriptors.
48 ** PAGERID() takes a pointer to a Pager struct as its argument. The
49 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
50 ** struct as its argument.
52 #define PAGERID(p) ((int)(p->fd))
53 #define FILEHANDLEID(fd) ((int)fd)
56 ** The page cache as a whole is always in one of the following
59 ** PAGER_UNLOCK The page cache is not currently reading or
60 ** writing the database file. There is no
61 ** data held in memory. This is the initial
64 ** PAGER_SHARED The page cache is reading the database.
65 ** Writing is not permitted. There can be
66 ** multiple readers accessing the same database
67 ** file at the same time.
69 ** PAGER_RESERVED This process has reserved the database for writing
70 ** but has not yet made any changes. Only one process
71 ** at a time can reserve the database. The original
72 ** database file has not been modified so other
73 ** processes may still be reading the on-disk
76 ** PAGER_EXCLUSIVE The page cache is writing the database.
77 ** Access is exclusive. No other processes or
78 ** threads can be reading or writing while one
79 ** process is writing.
81 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
82 ** after all dirty pages have been written to the
83 ** database file and the file has been synced to
84 ** disk. All that remains to do is to remove or
85 ** truncate the journal file and the transaction
88 ** The page cache comes up in PAGER_UNLOCK. The first time a
89 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
90 ** After all pages have been released using sqlite_page_unref(),
91 ** the state transitions back to PAGER_UNLOCK. The first time
92 ** that sqlite3PagerWrite() is called, the state transitions to
93 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
94 ** called on an outstanding page which means that the pager must
95 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
96 ** PAGER_RESERVED means that there is an open rollback journal.
97 ** The transition to PAGER_EXCLUSIVE occurs before any changes
98 ** are made to the database file, though writes to the rollback
99 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
100 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
101 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
103 #define PAGER_UNLOCK 0
104 #define PAGER_SHARED 1 /* same as SHARED_LOCK */
105 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
106 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
107 #define PAGER_SYNCED 5
110 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
111 ** then failed attempts to get a reserved lock will invoke the busy callback.
112 ** This is off by default. To see why, consider the following scenario:
114 ** Suppose thread A already has a shared lock and wants a reserved lock.
115 ** Thread B already has a reserved lock and wants an exclusive lock. If
116 ** both threads are using their busy callbacks, it might be a long time
117 ** be for one of the threads give up and allows the other to proceed.
118 ** But if the thread trying to get the reserved lock gives up quickly
119 ** (if it never invokes its busy callback) then the contention will be
122 #ifndef SQLITE_BUSY_RESERVED_LOCK
123 # define SQLITE_BUSY_RESERVED_LOCK 0
127 ** This macro rounds values up so that if the value is an address it
128 ** is guaranteed to be an address that is aligned to an 8-byte boundary.
130 #define FORCE_ALIGNMENT(X) (((X)+7)&~7)
133 ** A macro used for invoking the codec if there is one
135 #ifdef SQLITE_HAS_CODEC
136 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
137 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
139 # define CODEC1(P,D,N,X) /* NO-OP */
140 # define CODEC2(P,D,N,X) ((char*)D)
144 ** A open page cache is an instance of the following structure.
146 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
147 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists
148 ** and is returned as the result of every major pager API call. The
149 ** SQLITE_FULL return code is slightly different. It persists only until the
150 ** next successful rollback is performed on the pager cache. Also,
151 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
152 ** APIs, they may still be used successfully.
155 sqlite3_vfs *pVfs; /* OS functions to use for IO */
156 u8 journalOpen; /* True if journal file descriptors is valid */
157 u8 journalStarted; /* True if header of journal is synced */
158 u8 useJournal; /* Use a rollback journal on this file */
159 u8 noReadlock; /* Do not bother to obtain readlocks */
160 u8 stmtOpen; /* True if the statement subjournal is open */
161 u8 stmtInUse; /* True we are in a statement subtransaction */
162 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
163 u8 noSync; /* Do not sync the journal if true */
164 u8 fullSync; /* Do extra syncs of the journal for robustness */
165 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
166 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
167 u8 tempFile; /* zFilename is a temporary file */
168 u8 readOnly; /* True for a read-only database */
169 u8 needSync; /* True if an fsync() is needed on the journal */
170 u8 dirtyCache; /* True if cached pages have changed */
171 u8 alwaysRollback; /* Disable DontRollback() for all pages */
172 u8 memDb; /* True to inhibit all file I/O */
173 u8 setMaster; /* True if a m-j name has been written to jrnl */
174 u8 doNotSync; /* Boolean. While true, do not spill the cache */
175 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
176 u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
177 u8 dbModified; /* True if there are any changes to the Db */
178 u8 changeCountDone; /* Set after incrementing the change-counter */
179 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
180 int errCode; /* One of several kinds of errors */
181 int dbSize; /* Number of pages in the file */
182 int origDbSize; /* dbSize before the current change */
183 int stmtSize; /* Size of database (in pages) at stmt_begin() */
184 int nRec; /* Number of pages written to the journal */
185 u32 cksumInit; /* Quasi-random value added to every checksum */
186 int stmtNRec; /* Number of records in stmt subjournal */
187 int nExtra; /* Add this many bytes to each in-memory page */
188 int pageSize; /* Number of bytes in a page */
189 int nPage; /* Total number of in-memory pages */
190 int mxPage; /* Maximum number of pages to hold in cache */
191 Pgno mxPgno; /* Maximum allowed size of the database */
192 Bitvec *pInJournal; /* One bit for each page in the database file */
193 Bitvec *pInStmt; /* One bit for each page in the database */
194 Bitvec *pAlwaysRollback; /* One bit for each page marked always-rollback */
195 char *zFilename; /* Name of the database file */
196 char *zJournal; /* Name of the journal file */
197 char *zDirectory; /* Directory hold database and journal files */
198 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
199 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
200 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
201 i64 journalOff; /* Current byte offset in the journal file */
202 i64 journalHdr; /* Byte offset to previous journal header */
203 i64 stmtHdrOff; /* First journal header written this statement */
204 i64 stmtCksum; /* cksumInit when statement was started */
205 i64 stmtJSize; /* Size of journal at stmt_begin() */
206 u32 sectorSize; /* Assumed sector size during rollback */
208 int nHit, nMiss; /* Cache hits and missing */
209 int nRead, nWrite; /* Database pages read/written */
211 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
212 #ifdef SQLITE_HAS_CODEC
213 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
214 void *pCodecArg; /* First argument to xCodec() */
216 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
217 char dbFileVers[16]; /* Changes whenever database file changes */
218 i64 journalSizeLimit; /* Size limit for persistent journal files */
219 PCache *pPCache; /* Pointer to page cache object */
223 ** The following global variables hold counters used for
224 ** testing purposes only. These variables do not exist in
225 ** a non-testing build. These variables are not thread-safe.
228 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
229 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
230 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
231 # define PAGER_INCR(v) v++
233 # define PAGER_INCR(v)
239 ** Journal files begin with the following magic string. The data
240 ** was obtained from /dev/random. It is used only as a sanity check.
242 ** Since version 2.8.0, the journal format contains additional sanity
243 ** checking information. If the power fails while the journal is begin
244 ** written, semi-random garbage data might appear in the journal
245 ** file after power is restored. If an attempt is then made
246 ** to roll the journal back, the database could be corrupted. The additional
247 ** sanity checking data is an attempt to discover the garbage in the
248 ** journal and ignore it.
250 ** The sanity checking information for the new journal format consists
251 ** of a 32-bit checksum on each page of data. The checksum covers both
252 ** the page number and the pPager->pageSize bytes of data for the page.
253 ** This cksum is initialized to a 32-bit random value that appears in the
254 ** journal file right after the header. The random initializer is important,
255 ** because garbage data that appears at the end of a journal is likely
256 ** data that was once in other files that have now been deleted. If the
257 ** garbage data came from an obsolete journal file, the checksums might
258 ** be correct. But by initializing the checksum to random value which
259 ** is different for every journal, we minimize that risk.
261 static const unsigned char aJournalMagic[] = {
262 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
266 ** The size of the header and of each page in the journal is determined
267 ** by the following macros.
269 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
272 ** The journal header size for this pager. In the future, this could be
273 ** set to some value read from the disk controller. The important
274 ** characteristic is that it is the same size as a disk sector.
276 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
279 ** The macro MEMDB is true if we are dealing with an in-memory database.
280 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
281 ** the value of MEMDB will be a constant and the compiler will optimize
282 ** out code that would never execute.
284 #ifdef SQLITE_OMIT_MEMORYDB
287 # define MEMDB pPager->memDb
291 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
292 ** reserved for working around a windows/posix incompatibility). It is
293 ** used in the journal to signify that the remainder of the journal file
294 ** is devoted to storing a master journal name - there are no more pages to
295 ** roll back. See comments for function writeMasterJournal() for details.
297 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
298 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
301 ** The maximum legal page number is (2^31 - 1).
303 #define PAGER_MAX_PGNO 2147483647
306 ** Return true if page *pPg has already been written to the statement
307 ** journal (or statement snapshot has been created, if *pPg is part
308 ** of an in-memory database).
310 static int pageInStatement(PgHdr *pPg){
311 Pager *pPager = pPg->pPager;
313 return pPg->apSave[1]!=0;
315 return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
320 ** Read a 32-bit integer from the given file descriptor. Store the integer
321 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an
322 ** error code is something goes wrong.
324 ** All values are stored on disk as big-endian.
326 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
328 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
330 *pRes = sqlite3Get4byte(ac);
336 ** Write a 32-bit integer into a string buffer in big-endian byte order.
338 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
341 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
342 ** on success or an error code is something goes wrong.
344 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
347 return sqlite3OsWrite(fd, ac, 4, offset);
351 ** If file pFd is open, call sqlite3OsUnlock() on it.
353 static int osUnlock(sqlite3_file *pFd, int eLock){
354 if( !pFd->pMethods ){
357 return sqlite3OsUnlock(pFd, eLock);
361 ** This function determines whether or not the atomic-write optimization
362 ** can be used with this pager. The optimization can be used if:
364 ** (a) the value returned by OsDeviceCharacteristics() indicates that
365 ** a database page may be written atomically, and
366 ** (b) the value returned by OsSectorSize() is less than or equal
369 ** If the optimization cannot be used, 0 is returned. If it can be used,
370 ** then the value returned is the size of the journal file when it
371 ** contains rollback data for exactly one page.
373 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
374 static int jrnlBufferSize(Pager *pPager){
375 int dc; /* Device characteristics */
376 int nSector; /* Sector size */
377 int szPage; /* Page size */
378 sqlite3_file *fd = pPager->fd;
381 dc = sqlite3OsDeviceCharacteristics(fd);
382 nSector = sqlite3OsSectorSize(fd);
383 szPage = pPager->pageSize;
386 assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
387 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
390 (dc & (SQLITE_IOCAP_ATOMIC|(szPage>>8)) && nSector<=szPage) ){
391 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
398 ** This function should be called when an error occurs within the pager
399 ** code. The first argument is a pointer to the pager structure, the
400 ** second the error-code about to be returned by a pager API function.
401 ** The value returned is a copy of the second argument to this function.
403 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
404 ** the error becomes persistent. Until the persisten error is cleared,
405 ** subsequent API calls on this Pager will immediately return the same
408 ** A persistent error indicates that the contents of the pager-cache
409 ** cannot be trusted. This state can be cleared by completely discarding
410 ** the contents of the pager-cache. If a transaction was active when
411 ** the persistent error occured, then the rollback journal may need
414 static void pager_unlock(Pager *pPager);
415 static int pager_error(Pager *pPager, int rc){
418 pPager->errCode==SQLITE_FULL ||
419 pPager->errCode==SQLITE_OK ||
420 (pPager->errCode & 0xff)==SQLITE_IOERR
427 pPager->errCode = rc;
428 if( pPager->state==PAGER_UNLOCK
429 && sqlite3PcacheRefCount(pPager->pPCache)==0
431 /* If the pager is already unlocked, call pager_unlock() now to
432 ** clear the error state and ensure that the pager-cache is
435 pager_unlock(pPager);
442 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
443 ** on the cache using a hash function. This is used for testing
444 ** and debugging only.
446 #ifdef SQLITE_CHECK_PAGES
448 ** Return a 32-bit hash of the page data for pPage.
450 static u32 pager_datahash(int nByte, unsigned char *pData){
453 for(i=0; i<nByte; i++){
454 hash = (hash*1039) + pData[i];
458 static u32 pager_pagehash(PgHdr *pPage){
459 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
461 static u32 pager_set_pagehash(PgHdr *pPage){
462 pPage->pageHash = pager_pagehash(pPage);
466 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
467 ** is defined, and NDEBUG is not defined, an assert() statement checks
468 ** that the page is either dirty or still matches the calculated page-hash.
470 #define CHECK_PAGE(x) checkPage(x)
471 static void checkPage(PgHdr *pPg){
472 Pager *pPager = pPg->pPager;
473 assert( !pPg->pageHash || pPager->errCode || MEMDB
474 || (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
478 #define pager_datahash(X,Y) 0
479 #define pager_pagehash(X) 0
480 #define CHECK_PAGE(x)
481 #endif /* SQLITE_CHECK_PAGES */
484 ** When this is called the journal file for pager pPager must be open.
485 ** The master journal file name is read from the end of the file and
486 ** written into memory supplied by the caller.
488 ** zMaster must point to a buffer of at least nMaster bytes allocated by
489 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
490 ** enough space to write the master journal name). If the master journal
491 ** name in the journal is longer than nMaster bytes (including a
492 ** nul-terminator), then this is handled as if no master journal name
493 ** were present in the journal.
495 ** If no master journal file name is present zMaster[0] is set to 0 and
496 ** SQLITE_OK returned.
498 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
503 u32 u; /* Unsigned loop counter */
504 unsigned char aMagic[8]; /* A buffer to hold the magic header */
508 rc = sqlite3OsFileSize(pJrnl, &szJ);
509 if( rc!=SQLITE_OK || szJ<16 ) return rc;
511 rc = read32bits(pJrnl, szJ-16, &len);
512 if( rc!=SQLITE_OK ) return rc;
518 rc = read32bits(pJrnl, szJ-12, &cksum);
519 if( rc!=SQLITE_OK ) return rc;
521 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
522 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
524 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
530 /* See if the checksum matches the master journal name */
531 for(u=0; u<len; u++){
535 /* If the checksum doesn't add up, then one or more of the disk sectors
536 ** containing the master journal filename is corrupted. This means
537 ** definitely roll back, so just return SQLITE_OK and report a (nul)
538 ** master-journal filename.
547 ** Seek the journal file descriptor to the next sector boundary where a
548 ** journal header may be read or written. Pager.journalOff is updated with
549 ** the new seek offset.
551 ** i.e for a sector size of 512:
553 ** Input Offset Output Offset
554 ** ---------------------------------------
561 static i64 journalHdrOffset(Pager *pPager){
563 i64 c = pPager->journalOff;
565 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
567 assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
569 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
572 static void seekJournalHdr(Pager *pPager){
573 pPager->journalOff = journalHdrOffset(pPager);
577 ** Write zeros over the header of the journal file. This has the
578 ** effect of invalidating the journal file and committing the
581 static int zeroJournalHdr(Pager *pPager, int doTruncate){
583 static const char zeroHdr[28] = {0};
585 if( pPager->journalOff ){
586 i64 iLimit = pPager->journalSizeLimit;
588 IOTRACE(("JZEROHDR %p\n", pPager))
589 if( doTruncate || iLimit==0 ){
590 rc = sqlite3OsTruncate(pPager->jfd, 0);
592 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
594 if( rc==SQLITE_OK && !pPager->noSync ){
595 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
598 /* At this point the transaction is committed but the write lock
599 ** is still held on the file. If there is a size limit configured for
600 ** the persistent journal and the journal file currently consumes more
601 ** space than that limit allows for, truncate it now. There is no need
602 ** to sync the file following this operation.
604 if( rc==SQLITE_OK && iLimit>0 ){
606 rc = sqlite3OsFileSize(pPager->jfd, &sz);
607 if( rc==SQLITE_OK && sz>iLimit ){
608 rc = sqlite3OsTruncate(pPager->jfd, iLimit);
616 ** The journal file must be open when this routine is called. A journal
617 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
620 ** The format for the journal header is as follows:
621 ** - 8 bytes: Magic identifying journal format.
622 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
623 ** - 4 bytes: Random number used for page hash.
624 ** - 4 bytes: Initial database page count.
625 ** - 4 bytes: Sector size used by the process that wrote this journal.
626 ** - 4 bytes: Database page size.
628 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
630 static int writeJournalHdr(Pager *pPager){
632 char *zHeader = pPager->pTmpSpace;
633 int nHeader = pPager->pageSize;
636 if( nHeader>JOURNAL_HDR_SZ(pPager) ){
637 nHeader = JOURNAL_HDR_SZ(pPager);
640 if( pPager->stmtHdrOff==0 ){
641 pPager->stmtHdrOff = pPager->journalOff;
644 seekJournalHdr(pPager);
645 pPager->journalHdr = pPager->journalOff;
647 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
650 ** Write the nRec Field - the number of page records that follow this
651 ** journal header. Normally, zero is written to this value at this time.
652 ** After the records are added to the journal (and the journal synced,
653 ** if in full-sync mode), the zero is overwritten with the true number
654 ** of records (see syncJournal()).
656 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
657 ** reading the journal this value tells SQLite to assume that the
658 ** rest of the journal file contains valid page records. This assumption
659 ** is dangerous, as if a failure occured whilst writing to the journal
660 ** file it may contain some garbage data. There are two scenarios
661 ** where this risk can be ignored:
663 ** * When the pager is in no-sync mode. Corruption can follow a
664 ** power failure in this case anyway.
666 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
667 ** that garbage data is never appended to the journal file.
669 assert(pPager->fd->pMethods||pPager->noSync);
671 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
673 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
675 put32bits(&zHeader[sizeof(aJournalMagic)], 0);
678 /* The random check-hash initialiser */
679 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
680 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
681 /* The initial database size */
682 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
683 /* The assumed sector size for this process */
684 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
685 if( pPager->journalHdr==0 ){
687 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
690 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
691 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
692 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
693 pPager->journalOff += nHeader;
700 ** The journal file must be open when this is called. A journal header file
701 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
702 ** file. See comments above function writeJournalHdr() for a description of
703 ** the journal header format.
705 ** If the header is read successfully, *nRec is set to the number of
706 ** page records following this header and *dbSize is set to the size of the
707 ** database before the transaction began, in pages. Also, pPager->cksumInit
708 ** is set to the value read from the journal header. SQLITE_OK is returned
711 ** If the journal header file appears to be corrupted, SQLITE_DONE is
712 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
713 ** cannot be read from the journal file an error code is returned.
715 static int readJournalHdr(
722 unsigned char aMagic[8]; /* A buffer to hold the magic header */
726 seekJournalHdr(pPager);
727 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
730 jrnlOff = pPager->journalOff;
732 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
734 jrnlOff += sizeof(aMagic);
736 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
740 rc = read32bits(pPager->jfd, jrnlOff, pNRec);
743 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
746 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
749 rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize);
752 && iPageSize<=SQLITE_MAX_PAGE_SIZE
753 && ((iPageSize-1)&iPageSize)==0
755 u16 pagesize = iPageSize;
756 rc = sqlite3PagerSetPagesize(pPager, &pagesize);
760 /* Update the assumed sector-size to match the value used by
761 ** the process that created this journal. If this journal was
762 ** created by a process other than this one, then this routine
763 ** is being called from within pager_playback(). The local value
764 ** of Pager.sectorSize is restored at the end of that routine.
766 rc = read32bits(pPager->jfd, jrnlOff+12, &pPager->sectorSize);
768 if( (pPager->sectorSize & (pPager->sectorSize-1))!=0
769 || pPager->sectorSize>0x1000000 ){
773 pPager->journalOff += JOURNAL_HDR_SZ(pPager);
779 ** Write the supplied master journal name into the journal file for pager
780 ** pPager at the current location. The master journal name must be the last
781 ** thing written to a journal file. If the pager is in full-sync mode, the
782 ** journal file descriptor is advanced to the next sector boundary before
783 ** anything is written. The format is:
785 ** + 4 bytes: PAGER_MJ_PGNO.
786 ** + N bytes: length of master journal name.
788 ** + 4 bytes: Master journal name checksum.
789 ** + 8 bytes: aJournalMagic[].
791 ** The master journal page checksum is the sum of the bytes in the master
794 ** If zMaster is a NULL pointer (occurs for a single database transaction),
795 ** this call is a no-op.
797 static int writeMasterJournal(Pager *pPager, const char *zMaster){
804 char zBuf[sizeof(aJournalMagic)+2*4];
806 if( !zMaster || pPager->setMaster) return SQLITE_OK;
807 pPager->setMaster = 1;
809 len = strlen(zMaster);
810 for(i=0; i<len; i++){
814 /* If in full-sync mode, advance to the next disk sector before writing
815 ** the master journal name. This is in case the previous page written to
816 ** the journal has already been synced.
818 if( pPager->fullSync ){
819 seekJournalHdr(pPager);
821 jrnlOff = pPager->journalOff;
822 pPager->journalOff += (len+20);
824 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
825 if( rc!=SQLITE_OK ) return rc;
828 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
829 if( rc!=SQLITE_OK ) return rc;
832 put32bits(zBuf, len);
833 put32bits(&zBuf[4], cksum);
834 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
835 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
836 jrnlOff += 8+sizeof(aJournalMagic);
837 pPager->needSync = !pPager->noSync;
839 /* If the pager is in peristent-journal mode, then the physical
840 ** journal-file may extend past the end of the master-journal name
841 ** and 8 bytes of magic data just written to the file. This is
842 ** dangerous because the code to rollback a hot-journal file
843 ** will not be able to find the master-journal name to determine
844 ** whether or not the journal is hot.
846 ** Easiest thing to do in this scenario is to truncate the journal
847 ** file to the required size.
850 && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK
853 rc = sqlite3OsTruncate(pPager->jfd, jrnlOff);
859 ** Find a page in the hash table given its page number. Return
860 ** a pointer to the page or NULL if not found.
862 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
864 sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p);
869 ** Clear the in-memory cache. This routine
870 ** sets the state of the pager back to what it was when it was first
871 ** opened. Any outstanding pages are invalidated and subsequent attempts
872 ** to access those pages will likely result in a coredump.
874 static void pager_reset(Pager *pPager){
875 if( pPager->errCode ) return;
876 sqlite3PcacheClear(pPager->pPCache);
880 ** Unlock the database file.
882 ** If the pager is currently in error state, discard the contents of
883 ** the cache and reset the Pager structure internal state. If there is
884 ** an open journal-file, then the next time a shared-lock is obtained
885 ** on the pager file (by this or any other process), it will be
886 ** treated as a hot-journal and rolled back.
888 static void pager_unlock(Pager *pPager){
889 if( !pPager->exclusiveMode ){
891 int rc = osUnlock(pPager->fd, NO_LOCK);
892 if( rc ) pPager->errCode = rc;
894 IOTRACE(("UNLOCK %p\n", pPager))
896 /* Always close the journal file when dropping the database lock.
897 ** Otherwise, another connection with journal_mode=delete might
898 ** delete the file out from under us.
900 if( pPager->journalOpen ){
901 sqlite3OsClose(pPager->jfd);
902 pPager->journalOpen = 0;
903 sqlite3BitvecDestroy(pPager->pInJournal);
904 pPager->pInJournal = 0;
905 sqlite3BitvecDestroy(pPager->pAlwaysRollback);
906 pPager->pAlwaysRollback = 0;
909 /* If Pager.errCode is set, the contents of the pager cache cannot be
910 ** trusted. Now that the pager file is unlocked, the contents of the
911 ** cache can be discarded and the error code safely cleared.
913 if( pPager->errCode ){
914 if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK;
916 if( pPager->stmtOpen ){
917 sqlite3OsClose(pPager->stfd);
918 sqlite3BitvecDestroy(pPager->pInStmt);
921 pPager->stmtOpen = 0;
922 pPager->stmtInUse = 0;
923 pPager->journalOff = 0;
924 pPager->journalStarted = 0;
925 pPager->stmtAutoopen = 0;
926 pPager->origDbSize = 0;
930 if( !MEMDB || pPager->errCode==SQLITE_OK ){
931 pPager->state = PAGER_UNLOCK;
932 pPager->changeCountDone = 0;
938 ** Execute a rollback if a transaction is active and unlock the
939 ** database file. If the pager has already entered the error state,
940 ** do not attempt the rollback.
942 static void pagerUnlockAndRollback(Pager *p){
943 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
944 sqlite3BeginBenignMalloc();
945 sqlite3PagerRollback(p);
946 sqlite3EndBenignMalloc();
952 ** This routine ends a transaction. A transaction is ended by either
953 ** a COMMIT or a ROLLBACK.
955 ** When this routine is called, the pager has the journal file open and
956 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release
957 ** the database lock and acquires a SHARED lock in its place if that is
958 ** the appropriate thing to do. Release locks usually is appropriate,
959 ** unless we are in exclusive access mode or unless this is a
960 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
962 ** The journal file is either deleted or truncated.
964 ** TODO: Consider keeping the journal file open for temporary databases.
965 ** This might give a performance improvement on windows where opening
966 ** a file is an expensive operation.
968 static int pager_end_transaction(Pager *pPager, int hasMaster){
972 if( pPager->state<PAGER_RESERVED ){
975 sqlite3PagerStmtCommit(pPager);
976 if( pPager->stmtOpen && !pPager->exclusiveMode ){
977 sqlite3OsClose(pPager->stfd);
978 pPager->stmtOpen = 0;
980 if( pPager->journalOpen ){
981 if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE
982 && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){
983 pPager->journalOff = 0;
984 pPager->journalStarted = 0;
985 }else if( pPager->exclusiveMode
986 || pPager->journalMode==PAGER_JOURNALMODE_PERSIST
988 rc = zeroJournalHdr(pPager, hasMaster);
989 pager_error(pPager, rc);
990 pPager->journalOff = 0;
991 pPager->journalStarted = 0;
993 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || rc );
994 sqlite3OsClose(pPager->jfd);
995 pPager->journalOpen = 0;
996 if( rc==SQLITE_OK && !pPager->tempFile ){
997 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
1000 sqlite3BitvecDestroy(pPager->pInJournal);
1001 pPager->pInJournal = 0;
1002 sqlite3BitvecDestroy(pPager->pAlwaysRollback);
1003 pPager->pAlwaysRollback = 0;
1004 sqlite3PcacheCleanAll(pPager->pPCache);
1005 #ifdef SQLITE_CHECK_PAGES
1006 sqlite3PcacheIterate(pPager->pPCache, pager_set_pagehash);
1008 sqlite3PcacheClearFlags(pPager->pPCache,
1009 PGHDR_IN_JOURNAL | PGHDR_NEED_SYNC
1011 pPager->dirtyCache = 0;
1014 assert( pPager->pInJournal==0 );
1017 if( !pPager->exclusiveMode ){
1018 rc2 = osUnlock(pPager->fd, SHARED_LOCK);
1019 pPager->state = PAGER_SHARED;
1020 }else if( pPager->state==PAGER_SYNCED ){
1021 pPager->state = PAGER_EXCLUSIVE;
1023 pPager->origDbSize = 0;
1024 pPager->setMaster = 0;
1025 pPager->needSync = 0;
1026 /* lruListSetFirstSynced(pPager); */
1027 pPager->dbSize = -1;
1028 pPager->dbModified = 0;
1030 return (rc==SQLITE_OK?rc2:rc);
1034 ** Compute and return a checksum for the page of data.
1036 ** This is not a real checksum. It is really just the sum of the
1037 ** random initial value and the page number. We experimented with
1038 ** a checksum of the entire data, but that was found to be too slow.
1040 ** Note that the page number is stored at the beginning of data and
1041 ** the checksum is stored at the end. This is important. If journal
1042 ** corruption occurs due to a power failure, the most likely scenario
1043 ** is that one end or the other of the record will be changed. It is
1044 ** much less likely that the two ends of the journal record will be
1045 ** correct and the middle be corrupt. Thus, this "checksum" scheme,
1046 ** though fast and simple, catches the mostly likely kind of corruption.
1048 ** FIX ME: Consider adding every 200th (or so) byte of the data to the
1049 ** checksum. That way if a single page spans 3 or more disk sectors and
1050 ** only the middle sector is corrupt, we will still have a reasonable
1051 ** chance of failing the checksum and thus detecting the problem.
1053 static u32 pager_cksum(Pager *pPager, const u8 *aData){
1054 u32 cksum = pPager->cksumInit;
1055 int i = pPager->pageSize-200;
1064 ** Read a single page from the journal file opened on file descriptor
1065 ** jfd. Playback this one page.
1067 ** The isMainJrnl flag is true if this is the main rollback journal and
1068 ** false for the statement journal. The main rollback journal uses
1069 ** checksums - the statement journal does not.
1071 static int pager_playback_one_page(
1072 Pager *pPager, /* The pager being played back */
1073 sqlite3_file *jfd, /* The file that is the journal being rolled back */
1074 i64 offset, /* Offset of the page within the journal */
1075 int isMainJrnl, /* True for main rollback journal. False for Stmt jrnl */
1076 int isUnsync /* True if reading from usynced main journal */
1079 PgHdr *pPg; /* An existing page in the cache */
1080 Pgno pgno; /* The page number of a page in journal */
1081 u32 cksum; /* Checksum used for sanity checking */
1082 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
1084 /* isMainJrnl should be true for the main journal and false for
1085 ** statement journals. Verify that this is always the case
1087 assert( jfd == (isMainJrnl ? pPager->jfd : pPager->stfd) );
1090 rc = read32bits(jfd, offset, &pgno);
1091 if( rc!=SQLITE_OK ) return rc;
1092 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
1093 if( rc!=SQLITE_OK ) return rc;
1094 pPager->journalOff += pPager->pageSize + 4;
1096 /* Sanity checking on the page. This is more important that I originally
1097 ** thought. If a power failure occurs while the journal is being written,
1098 ** it could cause invalid data to be written into the journal. We need to
1099 ** detect this invalid data (with high probability) and ignore it.
1101 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
1104 if( pgno>(unsigned)pPager->dbSize ){
1108 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
1110 pPager->journalOff += 4;
1111 if( pager_cksum(pPager, aData)!=cksum ){
1116 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
1118 /* If the pager is in RESERVED state, then there must be a copy of this
1119 ** page in the pager cache. In this case just update the pager cache,
1120 ** not the database file. The page is left marked dirty in this case.
1122 ** An exception to the above rule: If the database is in no-sync mode
1123 ** and a page is moved during an incremental vacuum then the page may
1124 ** not be in the pager cache. Later: if a malloc() or IO error occurs
1125 ** during a Movepage() call, then the page may not be in the cache
1126 ** either. So the condition described in the above paragraph is not
1129 ** If in EXCLUSIVE state, then we update the pager cache if it exists
1130 ** and the main file. The page is then marked not dirty.
1132 ** Ticket #1171: The statement journal might contain page content that is
1133 ** different from the page content at the start of the transaction.
1134 ** This occurs when a page is changed prior to the start of a statement
1135 ** then changed again within the statement. When rolling back such a
1136 ** statement we must not write to the original database unless we know
1137 ** for certain that original page contents are synced into the main rollback
1138 ** journal. Otherwise, a power loss might leave modified data in the
1139 ** database file without an entry in the rollback journal that can
1140 ** restore the database to its original form. Two conditions must be
1141 ** met before writing to the database files. (1) the database must be
1142 ** locked. (2) we know that the original page content is fully synced
1143 ** in the main journal either because the page is not in cache or else
1144 ** the page is marked as needSync==0.
1146 ** 2008-04-14: When attempting to vacuum a corrupt database file, it
1147 ** is possible to fail a statement on a database that does not yet exist.
1148 ** Do not attempt to write if database file has never been opened.
1150 pPg = pager_lookup(pPager, pgno);
1151 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
1152 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
1153 if( (pPager->state>=PAGER_EXCLUSIVE)
1154 && (pPg==0 || 0==(pPg->flags&PGHDR_NEED_SYNC))
1155 && (pPager->fd->pMethods)
1158 i64 ofst = (pgno-1)*(i64)pPager->pageSize;
1159 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, ofst);
1162 /* No page should ever be explicitly rolled back that is in use, except
1163 ** for page 1 which is held in use in order to keep the lock on the
1164 ** database active. However such a page may be rolled back as a result
1165 ** of an internal error resulting in an automatic call to
1166 ** sqlite3PagerRollback().
1170 memcpy(pData, aData, pPager->pageSize);
1171 if( pPager->xReiniter ){
1172 pPager->xReiniter(pPg);
1174 if( isMainJrnl ) sqlite3PcacheMakeClean(pPg);
1175 #ifdef SQLITE_CHECK_PAGES
1176 pPg->pageHash = pager_pagehash(pPg);
1178 /* If this was page 1, then restore the value of Pager.dbFileVers.
1179 ** Do this before any decoding. */
1181 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
1184 /* Decode the page just read from disk */
1185 CODEC1(pPager, pData, pPg->pgno, 3);
1186 sqlite3PcacheRelease(pPg);
1192 ** Parameter zMaster is the name of a master journal file. A single journal
1193 ** file that referred to the master journal file has just been rolled back.
1194 ** This routine checks if it is possible to delete the master journal file,
1195 ** and does so if it is.
1197 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
1198 ** available for use within this function.
1201 ** The master journal file contains the names of all child journals.
1202 ** To tell if a master journal can be deleted, check to each of the
1203 ** children. If all children are either missing or do not refer to
1204 ** a different master journal, then this master journal can be deleted.
1206 static int pager_delmaster(Pager *pPager, const char *zMaster){
1207 sqlite3_vfs *pVfs = pPager->pVfs;
1209 int master_open = 0;
1210 sqlite3_file *pMaster;
1211 sqlite3_file *pJournal;
1212 char *zMasterJournal = 0; /* Contents of master journal file */
1213 i64 nMasterJournal; /* Size of master journal file */
1215 /* Open the master journal file exclusively in case some other process
1216 ** is running this routine also. Not that it makes too much difference.
1218 pMaster = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile * 2);
1219 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
1223 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
1224 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
1226 if( rc!=SQLITE_OK ) goto delmaster_out;
1229 rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
1230 if( rc!=SQLITE_OK ) goto delmaster_out;
1232 if( nMasterJournal>0 ){
1234 char *zMasterPtr = 0;
1235 int nMasterPtr = pPager->pVfs->mxPathname+1;
1237 /* Load the entire master journal file into space obtained from
1238 ** sqlite3_malloc() and pointed to by zMasterJournal.
1240 zMasterJournal = (char *)sqlite3Malloc(nMasterJournal + nMasterPtr);
1241 if( !zMasterJournal ){
1245 zMasterPtr = &zMasterJournal[nMasterJournal];
1246 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
1247 if( rc!=SQLITE_OK ) goto delmaster_out;
1249 zJournal = zMasterJournal;
1250 while( (zJournal-zMasterJournal)<nMasterJournal ){
1252 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
1253 if( rc!=SQLITE_OK ){
1257 /* One of the journals pointed to by the master journal exists.
1258 ** Open it and check if it points at the master journal. If
1259 ** so, return without deleting the master journal file.
1262 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
1263 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
1264 if( rc!=SQLITE_OK ){
1268 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
1269 sqlite3OsClose(pJournal);
1270 if( rc!=SQLITE_OK ){
1274 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
1276 /* We have a match. Do not delete the master journal file. */
1280 zJournal += (strlen(zJournal)+1);
1284 rc = sqlite3OsDelete(pVfs, zMaster, 0);
1287 if( zMasterJournal ){
1288 sqlite3_free(zMasterJournal);
1291 sqlite3OsClose(pMaster);
1293 sqlite3_free(pMaster);
1298 static void pager_truncate_cache(Pager *pPager);
1301 ** Truncate the main file of the given pager to the number of pages
1302 ** indicated. Also truncate the cached representation of the file.
1304 ** Might might be the case that the file on disk is smaller than nPage.
1305 ** This can happen, for example, if we are in the middle of a transaction
1306 ** which has extended the file size and the new pages are still all held
1307 ** in cache, then an INSERT or UPDATE does a statement rollback. Some
1308 ** operating system implementations can get confused if you try to
1309 ** truncate a file to some size that is larger than it currently is,
1310 ** so detect this case and write a single zero byte to the end of the new
1313 static int pager_truncate(Pager *pPager, int nPage){
1315 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
1316 i64 currentSize, newSize;
1317 rc = sqlite3OsFileSize(pPager->fd, ¤tSize);
1318 newSize = pPager->pageSize*(i64)nPage;
1319 if( rc==SQLITE_OK && currentSize!=newSize ){
1320 if( currentSize>newSize ){
1321 rc = sqlite3OsTruncate(pPager->fd, newSize);
1323 rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1);
1327 if( rc==SQLITE_OK ){
1328 pPager->dbSize = nPage;
1329 pager_truncate_cache(pPager);
1335 ** Set the sectorSize for the given pager.
1337 ** The sector size is at least as big as the sector size reported
1338 ** by sqlite3OsSectorSize(). The minimum sector size is 512.
1340 static void setSectorSize(Pager *pPager){
1341 assert(pPager->fd->pMethods||pPager->tempFile);
1342 if( !pPager->tempFile ){
1343 /* Sector size doesn't matter for temporary files. Also, the file
1344 ** may not have been opened yet, in whcih case the OsSectorSize()
1345 ** call will segfault.
1347 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
1349 if( pPager->sectorSize<512 ){
1350 pPager->sectorSize = 512;
1355 ** Playback the journal and thus restore the database file to
1356 ** the state it was in before we started making changes.
1358 ** The journal file format is as follows:
1360 ** (1) 8 byte prefix. A copy of aJournalMagic[].
1361 ** (2) 4 byte big-endian integer which is the number of valid page records
1362 ** in the journal. If this value is 0xffffffff, then compute the
1363 ** number of page records from the journal size.
1364 ** (3) 4 byte big-endian integer which is the initial value for the
1366 ** (4) 4 byte integer which is the number of pages to truncate the
1367 ** database to during a rollback.
1368 ** (5) 4 byte big-endian integer which is the sector size. The header
1369 ** is this many bytes in size.
1370 ** (6) 4 byte big-endian integer which is the page case.
1371 ** (7) 4 byte integer which is the number of bytes in the master journal
1372 ** name. The value may be zero (indicate that there is no master
1374 ** (8) N bytes of the master journal name. The name will be nul-terminated
1375 ** and might be shorter than the value read from (5). If the first byte
1376 ** of the name is \000 then there is no master journal. The master
1377 ** journal name is stored in UTF-8.
1378 ** (9) Zero or more pages instances, each as follows:
1379 ** + 4 byte page number.
1380 ** + pPager->pageSize bytes of data.
1381 ** + 4 byte checksum
1383 ** When we speak of the journal header, we mean the first 8 items above.
1384 ** Each entry in the journal is an instance of the 9th item.
1386 ** Call the value from the second bullet "nRec". nRec is the number of
1387 ** valid page entries in the journal. In most cases, you can compute the
1388 ** value of nRec from the size of the journal file. But if a power
1389 ** failure occurred while the journal was being written, it could be the
1390 ** case that the size of the journal file had already been increased but
1391 ** the extra entries had not yet made it safely to disk. In such a case,
1392 ** the value of nRec computed from the file size would be too large. For
1393 ** that reason, we always use the nRec value in the header.
1395 ** If the nRec value is 0xffffffff it means that nRec should be computed
1396 ** from the file size. This value is used when the user selects the
1397 ** no-sync option for the journal. A power failure could lead to corruption
1398 ** in this case. But for things like temporary table (which will be
1399 ** deleted when the power is restored) we don't care.
1401 ** If the file opened as the journal file is not a well-formed
1402 ** journal file then all pages up to the first corrupted page are rolled
1403 ** back (or no pages if the journal header is corrupted). The journal file
1404 ** is then deleted and SQLITE_OK returned, just as if no corruption had
1405 ** been encountered.
1407 ** If an I/O or malloc() error occurs, the journal-file is not deleted
1408 ** and an error code is returned.
1410 static int pager_playback(Pager *pPager, int isHot){
1411 sqlite3_vfs *pVfs = pPager->pVfs;
1412 i64 szJ; /* Size of the journal file in bytes */
1413 u32 nRec; /* Number of Records in the journal */
1414 u32 u; /* Unsigned loop counter */
1415 Pgno mxPg = 0; /* Size of the original file in pages */
1416 int rc; /* Result code of a subroutine */
1417 int res = 1; /* Value returned by sqlite3OsAccess() */
1418 char *zMaster = 0; /* Name of master journal file if any */
1420 /* Figure out how many records are in the journal. Abort early if
1421 ** the journal is empty.
1423 assert( pPager->journalOpen );
1424 rc = sqlite3OsFileSize(pPager->jfd, &szJ);
1425 if( rc!=SQLITE_OK || szJ==0 ){
1429 /* Read the master journal name from the journal, if it is present.
1430 ** If a master journal file name is specified, but the file is not
1431 ** present on disk, then the journal is not hot and does not need to be
1434 zMaster = pPager->pTmpSpace;
1435 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
1436 if( rc==SQLITE_OK && zMaster[0] ){
1437 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1440 if( rc!=SQLITE_OK || !res ){
1443 pPager->journalOff = 0;
1445 /* This loop terminates either when the readJournalHdr() call returns
1446 ** SQLITE_DONE or an IO error occurs. */
1450 /* Read the next journal header from the journal file. If there are
1451 ** not enough bytes left in the journal file for a complete header, or
1452 ** it is corrupted, then a process must of failed while writing it.
1453 ** This indicates nothing more needs to be rolled back.
1455 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
1456 if( rc!=SQLITE_OK ){
1457 if( rc==SQLITE_DONE ){
1463 /* If nRec is 0xffffffff, then this journal was created by a process
1464 ** working in no-sync mode. This means that the rest of the journal
1465 ** file consists of pages, there are no more journal headers. Compute
1466 ** the value of nRec based on this assumption.
1468 if( nRec==0xffffffff ){
1469 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
1470 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
1473 /* If nRec is 0 and this rollback is of a transaction created by this
1474 ** process and if this is the final header in the journal, then it means
1475 ** that this part of the journal was being filled but has not yet been
1476 ** synced to disk. Compute the number of pages based on the remaining
1477 ** size of the file.
1479 ** The third term of the test was added to fix ticket #2565.
1481 if( nRec==0 && !isHot &&
1482 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
1483 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
1487 /* If this is the first header read from the journal, truncate the
1488 ** database file back to its original size.
1490 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
1491 rc = pager_truncate(pPager, mxPg);
1492 if( rc!=SQLITE_OK ){
1497 /* Copy original pages out of the journal and back into the database file.
1499 for(u=0; u<nRec; u++){
1500 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1,
1502 if( rc!=SQLITE_OK ){
1503 if( rc==SQLITE_DONE ){
1505 pPager->journalOff = szJ;
1508 /* If we are unable to rollback, then the database is probably
1509 ** going to end up being corrupt. It is corrupt to us, anyhow.
1510 ** Perhaps the next process to come along can fix it....
1512 rc = SQLITE_CORRUPT_BKPT;
1522 /* If this playback is happening automatically as a result of an IO or
1523 ** malloc error that occured after the change-counter was updated but
1524 ** before the transaction was committed, then the change-counter
1525 ** modification may just have been reverted. If this happens in exclusive
1526 ** mode, then subsequent transactions performed by the connection will not
1527 ** update the change-counter at all. This may lead to cache inconsistency
1528 ** problems for other processes at some point in the future. So, just
1529 ** in case this has happened, clear the changeCountDone flag now.
1531 pPager->changeCountDone = 0;
1533 if( rc==SQLITE_OK ){
1534 zMaster = pPager->pTmpSpace;
1535 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
1537 if( rc==SQLITE_OK ){
1538 rc = pager_end_transaction(pPager, zMaster[0]!='\0');
1540 if( rc==SQLITE_OK && zMaster[0] && res ){
1541 /* If there was a master journal and this routine will return success,
1542 ** see if it is possible to delete the master journal.
1544 rc = pager_delmaster(pPager, zMaster);
1547 /* The Pager.sectorSize variable may have been updated while rolling
1548 ** back a journal created by a process with a different sector size
1549 ** value. Reset it to the correct value for this process.
1551 setSectorSize(pPager);
1556 ** Playback the statement journal.
1558 ** This is similar to playing back the transaction journal but with
1559 ** a few extra twists.
1561 ** (1) The number of pages in the database file at the start of
1562 ** the statement is stored in pPager->stmtSize, not in the
1563 ** journal file itself.
1565 ** (2) In addition to playing back the statement journal, also
1566 ** playback all pages of the transaction journal beginning
1567 ** at offset pPager->stmtJSize.
1569 static int pager_stmt_playback(Pager *pPager){
1570 i64 szJ; /* Size of the full journal */
1572 int nRec; /* Number of Records */
1573 int i; /* Loop counter */
1576 szJ = pPager->journalOff;
1578 /* Set hdrOff to be the offset just after the end of the last journal
1579 ** page written before the first journal-header for this statement
1580 ** transaction was written, or the end of the file if no journal
1581 ** header was written.
1583 hdrOff = pPager->stmtHdrOff;
1584 assert( pPager->fullSync || !hdrOff );
1589 /* Truncate the database back to its original size.
1591 rc = pager_truncate(pPager, pPager->stmtSize);
1592 assert( pPager->state>=PAGER_SHARED );
1594 /* Figure out how many records are in the statement journal.
1596 assert( pPager->stmtInUse && pPager->journalOpen );
1597 nRec = pPager->stmtNRec;
1599 /* Copy original pages out of the statement journal and back into the
1600 ** database file. Note that the statement journal omits checksums from
1601 ** each record since power-failure recovery is not important to statement
1604 for(i=0; i<nRec; i++){
1605 i64 offset = i*(4+pPager->pageSize);
1606 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0, 0);
1607 assert( rc!=SQLITE_DONE );
1608 if( rc!=SQLITE_OK ) goto end_stmt_playback;
1611 /* Now roll some pages back from the transaction journal. Pager.stmtJSize
1612 ** was the size of the journal file when this statement was started, so
1613 ** everything after that needs to be rolled back, either into the
1614 ** database, the memory cache, or both.
1616 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
1617 ** of the first journal header written during this statement transaction.
1619 pPager->journalOff = pPager->stmtJSize;
1620 pPager->cksumInit = pPager->stmtCksum;
1621 while( pPager->journalOff < hdrOff ){
1622 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1, 0);
1623 assert( rc!=SQLITE_DONE );
1624 if( rc!=SQLITE_OK ) goto end_stmt_playback;
1627 while( pPager->journalOff < szJ ){
1628 u32 nJRec; /* Number of Journal Records */
1630 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
1631 if( rc!=SQLITE_OK ){
1632 assert( rc!=SQLITE_DONE );
1633 goto end_stmt_playback;
1636 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
1638 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
1639 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff,1,0);
1640 assert( rc!=SQLITE_DONE );
1641 if( rc!=SQLITE_OK ) goto end_stmt_playback;
1645 pPager->journalOff = szJ;
1648 if( rc==SQLITE_OK) {
1649 pPager->journalOff = szJ;
1650 /* pager_reload_cache(pPager); */
1656 ** Change the maximum number of in-memory pages that are allowed.
1658 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
1659 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
1663 ** Adjust the robustness of the database to damage due to OS crashes
1664 ** or power failures by changing the number of syncs()s when writing
1665 ** the rollback journal. There are three levels:
1667 ** OFF sqlite3OsSync() is never called. This is the default
1668 ** for temporary and transient files.
1670 ** NORMAL The journal is synced once before writes begin on the
1671 ** database. This is normally adequate protection, but
1672 ** it is theoretically possible, though very unlikely,
1673 ** that an inopertune power failure could leave the journal
1674 ** in a state which would cause damage to the database
1675 ** when it is rolled back.
1677 ** FULL The journal is synced twice before writes begin on the
1678 ** database (with some additional information - the nRec field
1679 ** of the journal header - being written in between the two
1680 ** syncs). If we assume that writing a
1681 ** single disk sector is atomic, then this mode provides
1682 ** assurance that the journal will not be corrupted to the
1683 ** point of causing damage to the database during rollback.
1685 ** Numeric values associated with these states are OFF==1, NORMAL=2,
1688 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
1689 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int bFullFsync){
1690 pPager->noSync = level==1 || pPager->tempFile || MEMDB;
1691 pPager->fullSync = level==3 && !pPager->tempFile;
1692 pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
1693 if( pPager->noSync ) pPager->needSync = 0;
1698 ** The following global variable is incremented whenever the library
1699 ** attempts to open a temporary file. This information is used for
1700 ** testing and analysis only.
1703 int sqlite3_opentemp_count = 0;
1707 ** Open a temporary file.
1709 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some
1710 ** other error code if we fail. The OS will automatically delete the temporary
1711 ** file when it is closed.
1713 static int sqlite3PagerOpentemp(
1714 Pager *pPager, /* The pager object */
1715 sqlite3_file *pFile, /* Write the file descriptor here */
1716 int vfsFlags /* Flags passed through to the VFS */
1721 sqlite3_opentemp_count++; /* Used for testing and analysis only */
1724 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
1725 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
1726 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
1727 assert( rc!=SQLITE_OK || pFile->pMethods );
1731 static int pagerStress(void *,PgHdr *);
1734 ** Create a new page cache and put a pointer to the page cache in *ppPager.
1735 ** The file to be cached need not exist. The file is not locked until
1736 ** the first call to sqlite3PagerGet() and is only held open until the
1737 ** last page is released using sqlite3PagerUnref().
1739 ** If zFilename is NULL then a randomly-named temporary file is created
1740 ** and used as the file to be cached. The file will be deleted
1741 ** automatically when it is closed.
1743 ** If zFilename is ":memory:" then all information is held in cache.
1744 ** It is never written to disk. This can be used to implement an
1745 ** in-memory database.
1747 int sqlite3PagerOpen(
1748 sqlite3_vfs *pVfs, /* The virtual file system to use */
1749 Pager **ppPager, /* Return the Pager structure here */
1750 const char *zFilename, /* Name of the database file to open */
1751 int nExtra, /* Extra bytes append to each in-memory page */
1752 int flags, /* flags controlling this file */
1753 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
1762 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
1763 int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
1764 int journalFileSize = sqlite3JournalSize(pVfs);
1765 int pcacheSize = sqlite3PcacheSize();
1766 int szPageDflt = SQLITE_DEFAULT_PAGE_SIZE;
1767 char *zPathname = 0;
1770 /* The default return is a NULL pointer */
1773 /* Compute and store the full pathname in an allocated buffer pointed
1774 ** to by zPathname, length nPathname. Or, if this is a temporary file,
1775 ** leave both nPathname and zPathname set to 0.
1777 if( zFilename && zFilename[0] ){
1778 nPathname = pVfs->mxPathname+1;
1779 zPathname = sqlite3Malloc(nPathname*2);
1781 return SQLITE_NOMEM;
1783 #ifndef SQLITE_OMIT_MEMORYDB
1784 if( strcmp(zFilename,":memory:")==0 ){
1791 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
1793 if( rc!=SQLITE_OK ){
1794 sqlite3_free(zPathname);
1797 nPathname = strlen(zPathname);
1800 /* Allocate memory for the pager structure */
1801 pPager = sqlite3MallocZero(
1802 sizeof(*pPager) + /* Pager structure */
1803 pcacheSize + /* PCache object */
1804 journalFileSize + /* The journal file structure */
1805 pVfs->szOsFile * 3 + /* The main db and two journal files */
1806 3*nPathname + 40 /* zFilename, zDirectory, zJournal */
1809 sqlite3_free(zPathname);
1810 return SQLITE_NOMEM;
1812 pPager->pPCache = (PCache *)&pPager[1];
1813 pPtr = ((u8 *)&pPager[1]) + pcacheSize;
1814 pPager->vfsFlags = vfsFlags;
1815 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
1816 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
1817 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
1818 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
1819 pPager->zDirectory = &pPager->zFilename[nPathname+1];
1820 pPager->zJournal = &pPager->zDirectory[nPathname+1];
1821 pPager->pVfs = pVfs;
1823 memcpy(pPager->zFilename, zPathname, nPathname+1);
1824 sqlite3_free(zPathname);
1827 /* Open the pager file.
1829 if( zFilename && zFilename[0] && !memDb ){
1830 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
1831 rc = SQLITE_CANTOPEN;
1834 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
1835 pPager->vfsFlags, &fout);
1836 readOnly = (fout&SQLITE_OPEN_READONLY);
1838 /* If the file was successfully opened for read/write access,
1839 ** choose a default page size in case we have to create the
1840 ** database file. The default page size is the maximum of:
1842 ** + SQLITE_DEFAULT_PAGE_SIZE,
1843 ** + The value returned by sqlite3OsSectorSize()
1844 ** + The largest page size that can be written atomically.
1846 if( rc==SQLITE_OK && !readOnly ){
1847 int iSectorSize = sqlite3OsSectorSize(pPager->fd);
1848 if( szPageDflt<iSectorSize ){
1849 szPageDflt = iSectorSize;
1851 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
1853 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
1855 assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
1856 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
1857 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
1858 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
1859 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) szPageDflt = ii;
1863 if( szPageDflt>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
1864 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
1869 /* If a temporary file is requested, it is not opened immediately.
1870 ** In this case we accept the default page size and delay actually
1871 ** opening the file until the first call to OsWrite().
1874 pPager->state = PAGER_EXCLUSIVE;
1877 if( pPager && rc==SQLITE_OK ){
1878 pPager->pTmpSpace = sqlite3PageMalloc(szPageDflt);
1881 /* If an error occured in either of the blocks above.
1882 ** Free the Pager structure and close the file.
1883 ** Since the pager is not allocated there is no need to set
1884 ** any Pager.errMask variables.
1886 if( !pPager || !pPager->pTmpSpace ){
1887 sqlite3OsClose(pPager->fd);
1888 sqlite3_free(pPager);
1889 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
1891 nExtra = FORCE_ALIGNMENT(nExtra);
1892 sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
1893 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
1895 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
1896 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
1898 /* Fill in Pager.zDirectory[] */
1899 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
1900 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
1901 if( i>0 ) pPager->zDirectory[i-1] = 0;
1903 /* Fill in Pager.zJournal[] */
1905 memcpy(pPager->zJournal, pPager->zFilename, nPathname);
1906 memcpy(&pPager->zJournal[nPathname], "-journal", 9);
1908 pPager->zJournal = 0;
1911 /* pPager->journalOpen = 0; */
1912 pPager->useJournal = useJournal;
1913 pPager->noReadlock = noReadlock && readOnly;
1914 /* pPager->stmtOpen = 0; */
1915 /* pPager->stmtInUse = 0; */
1916 /* pPager->nRef = 0; */
1917 pPager->dbSize = memDb-1;
1918 pPager->pageSize = szPageDflt;
1919 /* pPager->stmtSize = 0; */
1920 /* pPager->stmtJSize = 0; */
1921 /* pPager->nPage = 0; */
1922 pPager->mxPage = 100;
1923 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
1924 /* pPager->state = PAGER_UNLOCK; */
1925 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
1926 /* pPager->errMask = 0; */
1927 pPager->tempFile = tempFile;
1928 assert( tempFile==PAGER_LOCKINGMODE_NORMAL
1929 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
1930 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
1931 pPager->exclusiveMode = tempFile;
1932 pPager->memDb = memDb;
1933 pPager->readOnly = readOnly;
1934 /* pPager->needSync = 0; */
1935 pPager->noSync = pPager->tempFile || !useJournal;
1936 pPager->fullSync = (pPager->noSync?0:1);
1937 pPager->sync_flags = SQLITE_SYNC_NORMAL;
1938 /* pPager->pFirst = 0; */
1939 /* pPager->pFirstSynced = 0; */
1940 /* pPager->pLast = 0; */
1941 pPager->nExtra = nExtra;
1942 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
1943 assert(pPager->fd->pMethods||memDb||tempFile);
1945 setSectorSize(pPager);
1947 /* pPager->pBusyHandler = 0; */
1948 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
1954 ** Set the busy handler function.
1956 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
1957 pPager->pBusyHandler = pBusyHandler;
1961 ** Set the reinitializer for this pager. If not NULL, the reinitializer
1962 ** is called when the content of a page in cache is restored to its original
1963 ** value as a result of a rollback. The callback gives higher-level code
1964 ** an opportunity to restore the EXTRA section to agree with the restored
1967 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*)){
1968 pPager->xReiniter = xReinit;
1972 ** Set the page size to *pPageSize. If the suggest new page size is
1973 ** inappropriate, then an alternative page size is set to that
1974 ** value before returning.
1976 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
1977 int rc = pPager->errCode;
1978 if( rc==SQLITE_OK ){
1979 u16 pageSize = *pPageSize;
1980 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
1981 if( pageSize && pageSize!=pPager->pageSize
1982 && (pPager->memDb==0 || pPager->dbSize==0)
1983 && sqlite3PcacheRefCount(pPager->pPCache)==0
1985 char *pNew = (char *)sqlite3PageMalloc(pageSize);
1989 pager_reset(pPager);
1990 pPager->pageSize = pageSize;
1991 if( !pPager->memDb ) setSectorSize(pPager);
1992 sqlite3PageFree(pPager->pTmpSpace);
1993 pPager->pTmpSpace = pNew;
1994 sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
1997 *pPageSize = pPager->pageSize;
2003 ** Return a pointer to the "temporary page" buffer held internally
2004 ** by the pager. This is a buffer that is big enough to hold the
2005 ** entire content of a database page. This buffer is used internally
2006 ** during rollback and will be overwritten whenever a rollback
2007 ** occurs. But other modules are free to use it too, as long as
2008 ** no rollbacks are happening.
2010 void *sqlite3PagerTempSpace(Pager *pPager){
2011 return pPager->pTmpSpace;
2015 ** Attempt to set the maximum database page count if mxPage is positive.
2016 ** Make no changes if mxPage is zero or negative. And never reduce the
2017 ** maximum page count below the current size of the database.
2019 ** Regardless of mxPage, return the current maximum page count.
2021 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
2023 pPager->mxPgno = mxPage;
2025 sqlite3PagerPagecount(pPager, 0);
2026 return pPager->mxPgno;
2030 ** The following set of routines are used to disable the simulated
2031 ** I/O error mechanism. These routines are used to avoid simulated
2032 ** errors in places where we do not care about errors.
2034 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
2035 ** and generate no code.
2038 extern int sqlite3_io_error_pending;
2039 extern int sqlite3_io_error_hit;
2040 static int saved_cnt;
2041 void disable_simulated_io_errors(void){
2042 saved_cnt = sqlite3_io_error_pending;
2043 sqlite3_io_error_pending = -1;
2045 void enable_simulated_io_errors(void){
2046 sqlite3_io_error_pending = saved_cnt;
2049 # define disable_simulated_io_errors()
2050 # define enable_simulated_io_errors()
2054 ** Read the first N bytes from the beginning of the file into memory
2055 ** that pDest points to.
2057 ** No error checking is done. The rational for this is that this function
2058 ** may be called even if the file does not exist or contain a header. In
2059 ** these cases sqlite3OsRead() will return an error, to which the correct
2060 ** response is to zero the memory at pDest and continue. A real IO error
2061 ** will presumably recur and be picked up later (Todo: Think about this).
2063 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
2065 memset(pDest, 0, N);
2066 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
2067 if( pPager->fd->pMethods ){
2068 IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
2069 rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
2070 if( rc==SQLITE_IOERR_SHORT_READ ){
2078 ** Return the total number of pages in the disk file associated with
2081 ** If the PENDING_BYTE lies on the page directly after the end of the
2082 ** file, then consider this page part of the file too. For example, if
2083 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
2084 ** file is 4096 bytes, 5 is returned instead of 4.
2086 int sqlite3PagerPagecount(Pager *pPager, int *pnPage){
2089 assert( pPager!=0 );
2090 if( pPager->errCode ){
2091 rc = pPager->errCode;
2094 if( pPager->dbSize>=0 ){
2097 assert(pPager->fd->pMethods||pPager->tempFile);
2098 if( (pPager->fd->pMethods)
2099 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
2100 pager_error(pPager, rc);
2103 if( n>0 && n<pPager->pageSize ){
2106 n /= pPager->pageSize;
2108 if( pPager->state!=PAGER_UNLOCK ){
2112 if( n==(PENDING_BYTE/pPager->pageSize) ){
2115 if( n>pPager->mxPgno ){
2125 ** Forward declaration
2127 static int syncJournal(Pager*);
2130 ** This routine is used to truncate the cache when a database
2131 ** is truncated. Drop from the cache all pages whose pgno is
2132 ** larger than pPager->dbSize and is unreferenced.
2134 ** Referenced pages larger than pPager->dbSize are zeroed.
2136 ** Actually, at the point this routine is called, it would be
2137 ** an error to have a referenced page. But rather than delete
2138 ** that page and guarantee a subsequent segfault, it seems better
2139 ** to zero it and hope that we error out sanely.
2141 static void pager_truncate_cache(Pager *pPager){
2142 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
2146 ** Try to obtain a lock on a file. Invoke the busy callback if the lock
2147 ** is currently not available. Repeat until the busy callback returns
2148 ** false or until the lock succeeds.
2150 ** Return SQLITE_OK on success and an error code if we cannot obtain
2153 static int pager_wait_on_lock(Pager *pPager, int locktype){
2156 /* The OS lock values must be the same as the Pager lock values */
2157 assert( PAGER_SHARED==SHARED_LOCK );
2158 assert( PAGER_RESERVED==RESERVED_LOCK );
2159 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
2161 /* If the file is currently unlocked then the size must be unknown */
2162 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
2164 if( pPager->state>=locktype ){
2167 if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0;
2169 rc = sqlite3OsLock(pPager->fd, locktype);
2170 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
2171 if( rc==SQLITE_OK ){
2172 pPager->state = locktype;
2173 IOTRACE(("LOCK %p %d\n", pPager, locktype))
2180 ** Truncate the file to the number of pages specified.
2182 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
2184 assert( pPager->state>=PAGER_SHARED || MEMDB );
2187 sqlite3PagerPagecount(pPager, 0);
2188 if( pPager->errCode ){
2189 rc = pPager->errCode;
2190 }else if( nPage<(unsigned)pPager->dbSize ){
2192 pPager->dbSize = nPage;
2193 pager_truncate_cache(pPager);
2195 rc = syncJournal(pPager);
2196 if( rc==SQLITE_OK ){
2197 /* Get an exclusive lock on the database before truncating. */
2198 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2200 if( rc==SQLITE_OK ){
2201 rc = pager_truncate(pPager, nPage);
2210 ** Shutdown the page cache. Free all memory and close all files.
2212 ** If a transaction was in progress when this routine is called, that
2213 ** transaction is rolled back. All outstanding pages are invalidated
2214 ** and their memory is freed. Any attempt to use a page associated
2215 ** with this page cache after this function returns will likely
2216 ** result in a coredump.
2218 ** This function always succeeds. If a transaction is active an attempt
2219 ** is made to roll it back. If an error occurs during the rollback
2220 ** a hot journal may be left in the filesystem but no error is returned
2223 int sqlite3PagerClose(Pager *pPager){
2225 disable_simulated_io_errors();
2226 sqlite3BeginBenignMalloc();
2227 pPager->errCode = 0;
2228 pPager->exclusiveMode = 0;
2229 pager_reset(pPager);
2230 pagerUnlockAndRollback(pPager);
2231 enable_simulated_io_errors();
2232 sqlite3EndBenignMalloc();
2233 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
2234 IOTRACE(("CLOSE %p\n", pPager))
2235 if( pPager->journalOpen ){
2236 sqlite3OsClose(pPager->jfd);
2238 sqlite3BitvecDestroy(pPager->pInJournal);
2239 sqlite3BitvecDestroy(pPager->pAlwaysRollback);
2240 if( pPager->stmtOpen ){
2241 sqlite3OsClose(pPager->stfd);
2243 sqlite3OsClose(pPager->fd);
2244 /* Temp files are automatically deleted by the OS
2245 ** if( pPager->tempFile ){
2246 ** sqlite3OsDelete(pPager->zFilename);
2250 sqlite3PageFree(pPager->pTmpSpace);
2251 sqlite3PcacheClose(pPager->pPCache);
2252 sqlite3_free(pPager);
2256 #if !defined(NDEBUG) || defined(SQLITE_TEST)
2258 ** Return the page number for the given page data.
2260 Pgno sqlite3PagerPagenumber(DbPage *p){
2266 ** Increment the reference count for a page. The input pointer is
2267 ** a reference to the page data.
2269 int sqlite3PagerRef(DbPage *pPg){
2270 sqlite3PcacheRef(pPg);
2275 ** Sync the journal. In other words, make sure all the pages that have
2276 ** been written to the journal have actually reached the surface of the
2277 ** disk. It is not safe to modify the original database file until after
2278 ** the journal has been synced. If the original database is modified before
2279 ** the journal is synced and a power failure occurs, the unsynced journal
2280 ** data would be lost and we would be unable to completely rollback the
2281 ** database changes. Database corruption would occur.
2283 ** This routine also updates the nRec field in the header of the journal.
2284 ** (See comments on the pager_playback() routine for additional information.)
2285 ** If the sync mode is FULL, two syncs will occur. First the whole journal
2286 ** is synced, then the nRec field is updated, then a second sync occurs.
2288 ** For temporary databases, we do not care if we are able to rollback
2289 ** after a power failure, so no sync occurs.
2291 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
2292 ** the database is stored, then OsSync() is never called on the journal
2293 ** file. In this case all that is required is to update the nRec field in
2294 ** the journal header.
2296 ** This routine clears the needSync field of every page current held in
2299 static int syncJournal(Pager *pPager){
2302 /* Sync the journal before modifying the main database
2303 ** (assuming there is a journal and it needs to be synced.)
2305 if( pPager->needSync ){
2306 if( !pPager->tempFile ){
2307 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
2308 assert( pPager->journalOpen );
2310 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
2311 i64 jrnlOff = journalHdrOffset(pPager);
2314 /* This block deals with an obscure problem. If the last connection
2315 ** that wrote to this database was operating in persistent-journal
2316 ** mode, then the journal file may at this point actually be larger
2317 ** than Pager.journalOff bytes. If the next thing in the journal
2318 ** file happens to be a journal-header (written as part of the
2319 ** previous connections transaction), and a crash or power-failure
2320 ** occurs after nRec is updated but before this connection writes
2321 ** anything else to the journal file (or commits/rolls back its
2322 ** transaction), then SQLite may become confused when doing the
2323 ** hot-journal rollback following recovery. It may roll back all
2324 ** of this connections data, then proceed to rolling back the old,
2325 ** out-of-date data that follows it. Database corruption.
2327 ** To work around this, if the journal file does appear to contain
2328 ** a valid header following Pager.journalOff, then write a 0x00
2329 ** byte to the start of it to prevent it from being recognized.
2331 rc = sqlite3OsRead(pPager->jfd, zMagic, 8, jrnlOff);
2332 if( rc==SQLITE_OK && 0==memcmp(zMagic, aJournalMagic, 8) ){
2333 static const u8 zerobyte = 0;
2334 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, jrnlOff);
2336 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
2340 /* Write the nRec value into the journal file header. If in
2341 ** full-synchronous mode, sync the journal first. This ensures that
2342 ** all data has really hit the disk before nRec is updated to mark
2343 ** it as a candidate for rollback.
2345 ** This is not required if the persistent media supports the
2346 ** SAFE_APPEND property. Because in this case it is not possible
2347 ** for garbage data to be appended to the file, the nRec field
2348 ** is populated with 0xFFFFFFFF when the journal header is written
2349 ** and never needs to be updated.
2351 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
2352 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
2353 IOTRACE(("JSYNC %p\n", pPager))
2354 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
2355 if( rc!=0 ) return rc;
2358 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
2359 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
2360 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
2363 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
2364 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
2365 IOTRACE(("JSYNC %p\n", pPager))
2366 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
2367 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
2369 if( rc!=0 ) return rc;
2371 pPager->journalStarted = 1;
2373 pPager->needSync = 0;
2375 /* Erase the needSync flag from every page.
2377 sqlite3PcacheClearFlags(pPager->pPCache, PGHDR_NEED_SYNC);
2381 /* If the Pager.needSync flag is clear then the PgHdr.needSync
2382 ** flag must also be clear for all pages. Verify that this
2383 ** invariant is true.
2386 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_NEED_SYNC);
2394 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write
2395 ** every one of those pages out to the database file. No calls are made
2396 ** to the page-cache to mark the pages as clean. It is the responsibility
2397 ** of the caller to use PcacheCleanAll() or PcacheMakeClean() to mark
2398 ** the pages as clean.
2400 static int pager_write_pagelist(PgHdr *pList){
2404 if( pList==0 ) return SQLITE_OK;
2405 pPager = pList->pPager;
2407 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
2408 ** database file. If there is already an EXCLUSIVE lock, the following
2409 ** calls to sqlite3OsLock() are no-ops.
2411 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
2412 ** through an intermediate state PENDING. A PENDING lock prevents new
2413 ** readers from attaching to the database but is unsufficient for us to
2414 ** write. The idea of a PENDING lock is to prevent new readers from
2415 ** coming in while we wait for existing readers to clear.
2417 ** While the pager is in the RESERVED state, the original database file
2418 ** is unchanged and we can rollback without having to playback the
2419 ** journal into the original database file. Once we transition to
2420 ** EXCLUSIVE, it means the database file has been changed and any rollback
2421 ** will require a journal playback.
2423 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2424 if( rc!=SQLITE_OK ){
2430 /* If the file has not yet been opened, open it now. */
2431 if( !pPager->fd->pMethods ){
2432 assert(pPager->tempFile);
2433 rc = sqlite3PagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
2437 /* If there are dirty pages in the page cache with page numbers greater
2438 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
2439 ** make the file smaller (presumably by auto-vacuum code). Do not write
2440 ** any such pages to the file.
2442 if( pList->pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
2443 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
2444 char *pData = CODEC2(pPager, pList->pData, pList->pgno, 6);
2445 PAGERTRACE4("STORE %d page %d hash(%08x)\n",
2446 PAGERID(pPager), pList->pgno, pager_pagehash(pList));
2447 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
2448 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
2449 PAGER_INCR(sqlite3_pager_writedb_count);
2450 PAGER_INCR(pPager->nWrite);
2451 if( pList->pgno==1 ){
2452 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
2457 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
2461 #ifdef SQLITE_CHECK_PAGES
2462 pList->pageHash = pager_pagehash(pList);
2464 pList = pList->pDirty;
2471 ** This function is called by the pcache layer when it has reached some
2472 ** soft memory limit. The argument is a pointer to a purgeable Pager
2473 ** object. This function attempts to make a single dirty page that has no
2474 ** outstanding references (if one exists) clean so that it can be recycled
2475 ** by the pcache layer.
2477 static int pagerStress(void *p, PgHdr *pPg){
2478 Pager *pPager = (Pager *)p;
2481 if( pPager->doNotSync ){
2485 assert( pPg->flags&PGHDR_DIRTY );
2486 if( pPager->errCode==SQLITE_OK ){
2487 if( pPg->flags&PGHDR_NEED_SYNC ){
2488 rc = syncJournal(pPager);
2489 if( rc==SQLITE_OK && pPager->fullSync &&
2490 !(sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
2493 rc = writeJournalHdr(pPager);
2496 if( rc==SQLITE_OK ){
2498 rc = pager_write_pagelist(pPg);
2500 if( rc!=SQLITE_OK ){
2501 pager_error(pPager, rc);
2505 if( rc==SQLITE_OK ){
2506 sqlite3PcacheMakeClean(pPg);
2513 ** Return 1 if there is a hot journal on the given pager.
2514 ** A hot journal is one that needs to be played back.
2516 ** If the current size of the database file is 0 but a journal file
2517 ** exists, that is probably an old journal left over from a prior
2518 ** database with the same name. Just delete the journal.
2520 ** Return negative if unable to determine the status of the journal.
2522 ** This routine does not open the journal file to examine its
2523 ** content. Hence, the journal might contain the name of a master
2524 ** journal file that has been deleted, and hence not be hot. Or
2525 ** the header of the journal might be zeroed out. This routine
2526 ** does not discover these cases of a non-hot journal - if the
2527 ** journal file exists and is not empty this routine assumes it
2528 ** is hot. The pager_playback() routine will discover that the
2529 ** journal file is not really hot and will no-op.
2531 static int hasHotJournal(Pager *pPager, int *pExists){
2532 sqlite3_vfs *pVfs = pPager->pVfs;
2536 assert( pPager!=0 );
2537 assert( pPager->useJournal );
2538 assert( pPager->fd->pMethods );
2540 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
2541 if( rc==SQLITE_OK && exists ){
2542 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
2544 if( rc==SQLITE_OK && exists && !locked ){
2546 rc = sqlite3PagerPagecount(pPager, &nPage);
2547 if( rc==SQLITE_OK ){
2549 sqlite3OsDelete(pVfs, pPager->zJournal, 0);
2559 ** Read the content of page pPg out of the database file.
2561 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
2565 assert(pPager->fd->pMethods||pPager->tempFile);
2566 if( !pPager->fd->pMethods ){
2567 return SQLITE_IOERR_SHORT_READ;
2569 offset = (pgno-1)*(i64)pPager->pageSize;
2570 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, offset);
2571 PAGER_INCR(sqlite3_pager_readdb_count);
2572 PAGER_INCR(pPager->nRead);
2573 IOTRACE(("PGIN %p %d\n", pPager, pgno));
2575 memcpy(&pPager->dbFileVers, &((u8*)pPg->pData)[24],
2576 sizeof(pPager->dbFileVers));
2578 CODEC1(pPager, pPg->pData, pPg->pgno, 3);
2579 PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
2580 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
2586 ** This function is called to obtain the shared lock required before
2587 ** data may be read from the pager cache. If the shared lock has already
2588 ** been obtained, this function is a no-op.
2590 ** Immediately after obtaining the shared lock (if required), this function
2591 ** checks for a hot-journal file. If one is found, an emergency rollback
2592 ** is performed immediately.
2594 static int pagerSharedLock(Pager *pPager){
2596 int isErrorReset = 0;
2598 /* If this database is opened for exclusive access, has no outstanding
2599 ** page references and is in an error-state, now is the chance to clear
2600 ** the error. Discard the contents of the pager-cache and treat any
2601 ** open journal file as a hot-journal.
2603 if( !MEMDB && pPager->exclusiveMode
2604 && sqlite3PcacheRefCount(pPager->pPCache)==0 && pPager->errCode
2606 if( pPager->journalOpen ){
2609 pPager->errCode = SQLITE_OK;
2610 pager_reset(pPager);
2613 /* If the pager is still in an error state, do not proceed. The error
2614 ** state will be cleared at some point in the future when all page
2615 ** references are dropped and the cache can be discarded.
2617 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
2618 return pPager->errCode;
2621 if( pPager->state==PAGER_UNLOCK || isErrorReset ){
2622 sqlite3_vfs *pVfs = pPager->pVfs;
2625 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
2626 if( !pPager->noReadlock ){
2627 rc = pager_wait_on_lock(pPager, SHARED_LOCK);
2628 if( rc!=SQLITE_OK ){
2629 assert( pPager->state==PAGER_UNLOCK );
2630 return pager_error(pPager, rc);
2632 assert( pPager->state>=SHARED_LOCK );
2635 /* If a journal file exists, and there is no RESERVED lock on the
2636 ** database file, then it either needs to be played back or deleted.
2638 if( !isErrorReset ){
2639 rc = hasHotJournal(pPager, &isHotJournal);
2640 if( rc!=SQLITE_OK ){
2644 if( isErrorReset || isHotJournal ){
2645 /* Get an EXCLUSIVE lock on the database file. At this point it is
2646 ** important that a RESERVED lock is not obtained on the way to the
2647 ** EXCLUSIVE lock. If it were, another process might open the
2648 ** database file, detect the RESERVED lock, and conclude that the
2649 ** database is safe to read while this process is still rolling it
2652 ** Because the intermediate RESERVED lock is not requested, the
2653 ** second process will get to this point in the code and fail to
2654 ** obtain its own EXCLUSIVE lock on the database file.
2656 if( pPager->state<EXCLUSIVE_LOCK ){
2657 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
2658 if( rc!=SQLITE_OK ){
2659 rc = pager_error(pPager, rc);
2662 pPager->state = PAGER_EXCLUSIVE;
2665 /* Open the journal for read/write access. This is because in
2666 ** exclusive-access mode the file descriptor will be kept open and
2667 ** possibly used for a transaction later on. On some systems, the
2668 ** OsTruncate() call used in exclusive-access mode also requires
2669 ** a read/write file handle.
2671 if( !isErrorReset && pPager->journalOpen==0 ){
2673 rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res);
2674 if( rc==SQLITE_OK ){
2677 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
2678 assert( !pPager->tempFile );
2679 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
2680 assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
2681 if( fout&SQLITE_OPEN_READONLY ){
2683 sqlite3OsClose(pPager->jfd);
2686 /* If the journal does not exist, that means some other process
2687 ** has already rolled it back */
2692 if( rc!=SQLITE_OK ){
2693 if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK
2694 && rc!=SQLITE_IOERR_NOMEM
2700 pPager->journalOpen = 1;
2701 pPager->journalStarted = 0;
2702 pPager->journalOff = 0;
2703 pPager->setMaster = 0;
2704 pPager->journalHdr = 0;
2706 /* Playback and delete the journal. Drop the database write
2707 ** lock and reacquire the read lock. Purge the cache before
2708 ** playing back the hot-journal so that we don't end up with
2710 sqlite3PcacheClear(pPager->pPCache);
2711 rc = pager_playback(pPager, 1);
2712 if( rc!=SQLITE_OK ){
2713 rc = pager_error(pPager, rc);
2716 assert(pPager->state==PAGER_SHARED ||
2717 (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
2721 if( sqlite3PcachePagecount(pPager->pPCache)>0 ){
2722 /* The shared-lock has just been acquired on the database file
2723 ** and there are already pages in the cache (from a previous
2724 ** read or write transaction). Check to see if the database
2725 ** has been modified. If the database has changed, flush the
2728 ** Database changes is detected by looking at 15 bytes beginning
2729 ** at offset 24 into the file. The first 4 of these 16 bytes are
2730 ** a 32-bit counter that is incremented with each change. The
2731 ** other bytes change randomly with each file change when
2732 ** a codec is in use.
2734 ** There is a vanishingly small chance that a change will not be
2735 ** detected. The chance of an undetected change is so small that
2736 ** it can be neglected.
2738 char dbFileVers[sizeof(pPager->dbFileVers)];
2739 sqlite3PagerPagecount(pPager, 0);
2741 if( pPager->errCode ){
2742 rc = pPager->errCode;
2746 if( pPager->dbSize>0 ){
2747 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
2748 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
2749 if( rc!=SQLITE_OK ){
2753 memset(dbFileVers, 0, sizeof(dbFileVers));
2756 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
2757 pager_reset(pPager);
2761 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
2762 if( pPager->state==PAGER_UNLOCK ){
2763 pPager->state = PAGER_SHARED;
2768 if( rc!=SQLITE_OK ){
2769 /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
2770 pager_unlock(pPager);
2776 ** Make sure we have the content for a page. If the page was
2777 ** previously acquired with noContent==1, then the content was
2778 ** just initialized to zeros instead of being read from disk.
2779 ** But now we need the real data off of disk. So make sure we
2780 ** have it. Read it in if we do not have it already.
2782 static int pager_get_content(PgHdr *pPg){
2783 if( pPg->flags&PGHDR_NEED_READ ){
2784 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
2785 if( rc==SQLITE_OK ){
2786 pPg->flags &= ~PGHDR_NEED_READ;
2795 ** If the reference count has reached zero, and the pager is not in the
2796 ** middle of a write transaction or opened in exclusive mode, unlock it.
2798 static void pagerUnlockIfUnused(Pager *pPager){
2799 if( (sqlite3PcacheRefCount(pPager->pPCache)==0)
2800 && (!pPager->exclusiveMode || pPager->journalOff>0)
2802 pagerUnlockAndRollback(pPager);
2807 ** Drop a page from the cache using sqlite3PcacheDrop().
2809 ** If this means there are now no pages with references to them, a rollback
2810 ** occurs and the lock on the database is removed.
2812 static void pagerDropPage(DbPage *pPg){
2813 Pager *pPager = pPg->pPager;
2814 sqlite3PcacheDrop(pPg);
2815 pagerUnlockIfUnused(pPager);
2821 ** A read lock on the disk file is obtained when the first page is acquired.
2822 ** This read lock is dropped when the last page is released.
2824 ** This routine works for any page number greater than 0. If the database
2825 ** file is smaller than the requested page, then no actual disk
2826 ** read occurs and the memory image of the page is initialized to
2827 ** all zeros. The extra data appended to a page is always initialized
2828 ** to zeros the first time a page is loaded into memory.
2830 ** The acquisition might fail for several reasons. In all cases,
2831 ** an appropriate error code is returned and *ppPage is set to NULL.
2833 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
2834 ** to find a page in the in-memory cache first. If the page is not already
2835 ** in memory, this routine goes to disk to read it in whereas Lookup()
2836 ** just returns 0. This routine acquires a read-lock the first time it
2837 ** has to go to disk, and could also playback an old journal if necessary.
2838 ** Since Lookup() never goes to disk, it never has to deal with locks
2839 ** or journal files.
2841 ** If noContent is false, the page contents are actually read from disk.
2842 ** If noContent is true, it means that we do not care about the contents
2843 ** of the page at this time, so do not do a disk read. Just fill in the
2844 ** page content with zeros. But mark the fact that we have not read the
2845 ** content by setting the PgHdr.needRead flag. Later on, if
2846 ** sqlite3PagerWrite() is called on this page or if this routine is
2847 ** called again with noContent==0, that means that the content is needed
2848 ** and the disk read should occur at that point.
2850 int sqlite3PagerAcquire(
2851 Pager *pPager, /* The pager open on the database file */
2852 Pgno pgno, /* Page number to fetch */
2853 DbPage **ppPage, /* Write a pointer to the page here */
2854 int noContent /* Do not bother reading content from disk if true */
2859 assert( pPager->state==PAGER_UNLOCK
2860 || sqlite3PcacheRefCount(pPager->pPCache)>0
2864 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
2865 ** number greater than this, or zero, is requested.
2867 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
2868 return SQLITE_CORRUPT_BKPT;
2871 /* Make sure we have not hit any critical errors.
2873 assert( pPager!=0 );
2876 /* If this is the first page accessed, then get a SHARED lock
2877 ** on the database file. pagerSharedLock() is a no-op if
2878 ** a database lock is already held.
2880 rc = pagerSharedLock(pPager);
2881 if( rc!=SQLITE_OK ){
2884 assert( pPager->state!=PAGER_UNLOCK );
2886 rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, &pPg);
2887 if( rc!=SQLITE_OK ){
2890 if( pPg->pPager==0 ){
2891 /* The pager cache has created a new page. Its content needs to
2895 PAGER_INCR(pPager->nMiss);
2896 pPg->pPager = pPager;
2897 if( sqlite3BitvecTest(pPager->pInJournal, pgno) ){
2899 pPg->flags |= PGHDR_IN_JOURNAL;
2901 memset(pPg->pExtra, 0, pPager->nExtra);
2903 rc = sqlite3PagerPagecount(pPager, &nMax);
2904 if( rc!=SQLITE_OK ){
2905 sqlite3PagerUnref(pPg);
2909 if( nMax<(int)pgno || MEMDB || noContent ){
2910 if( pgno>pPager->mxPgno ){
2911 sqlite3PagerUnref(pPg);
2914 memset(pPg->pData, 0, pPager->pageSize);
2916 pPg->flags |= PGHDR_NEED_READ;
2918 IOTRACE(("ZERO %p %d\n", pPager, pgno));
2920 rc = readDbPage(pPager, pPg, pgno);
2921 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
2922 /* sqlite3PagerUnref(pPg); */
2927 #ifdef SQLITE_CHECK_PAGES
2928 pPg->pageHash = pager_pagehash(pPg);
2931 /* The requested page is in the page cache. */
2932 assert(sqlite3PcacheRefCount(pPager->pPCache)>0 || pgno==1);
2933 PAGER_INCR(pPager->nHit);
2935 rc = pager_get_content(pPg);
2937 sqlite3PagerUnref(pPg);
2948 ** Acquire a page if it is already in the in-memory cache. Do
2949 ** not read the page from disk. Return a pointer to the page,
2950 ** or 0 if the page is not in cache.
2952 ** See also sqlite3PagerGet(). The difference between this routine
2953 ** and sqlite3PagerGet() is that _get() will go to the disk and read
2954 ** in the page if the page is not already in cache. This routine
2955 ** returns NULL if the page is not in cache or if a disk I/O error
2956 ** has ever happened.
2958 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
2960 assert( pPager!=0 );
2963 if( (pPager->state!=PAGER_UNLOCK)
2964 && (pPager->errCode==SQLITE_OK || pPager->errCode==SQLITE_FULL)
2966 sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg);
2975 ** If the number of references to the page drop to zero, then the
2976 ** page is added to the LRU list. When all references to all pages
2977 ** are released, a rollback occurs and the lock on the database is
2980 int sqlite3PagerUnref(DbPage *pPg){
2982 Pager *pPager = pPg->pPager;
2983 sqlite3PcacheRelease(pPg);
2984 pagerUnlockIfUnused(pPager);
2990 ** Create a journal file for pPager. There should already be a RESERVED
2991 ** or EXCLUSIVE lock on the database file when this routine is called.
2993 ** Return SQLITE_OK if everything. Return an error code and release the
2994 ** write lock if anything goes wrong.
2996 static int pager_open_journal(Pager *pPager){
2997 sqlite3_vfs *pVfs = pPager->pVfs;
2998 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
3002 assert( pPager->state>=PAGER_RESERVED );
3003 assert( pPager->useJournal );
3004 assert( pPager->pInJournal==0 );
3005 sqlite3PagerPagecount(pPager, 0);
3006 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
3007 if( pPager->pInJournal==0 ){
3009 goto failed_to_open_journal;
3012 if( pPager->journalOpen==0 ){
3013 if( pPager->tempFile ){
3014 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
3016 flags |= (SQLITE_OPEN_MAIN_JOURNAL);
3018 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3019 rc = sqlite3JournalOpen(
3020 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
3023 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
3025 assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
3026 pPager->journalOff = 0;
3027 pPager->setMaster = 0;
3028 pPager->journalHdr = 0;
3029 if( rc!=SQLITE_OK ){
3030 if( rc==SQLITE_NOMEM ){
3031 sqlite3OsDelete(pVfs, pPager->zJournal, 0);
3033 goto failed_to_open_journal;
3036 pPager->journalOpen = 1;
3037 pPager->journalStarted = 0;
3038 pPager->needSync = 0;
3040 if( pPager->errCode ){
3041 rc = pPager->errCode;
3042 goto failed_to_open_journal;
3044 pPager->origDbSize = pPager->dbSize;
3046 rc = writeJournalHdr(pPager);
3048 if( pPager->stmtAutoopen && rc==SQLITE_OK ){
3049 rc = sqlite3PagerStmtBegin(pPager);
3051 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
3052 rc = pager_end_transaction(pPager, 0);
3053 if( rc==SQLITE_OK ){
3059 failed_to_open_journal:
3060 sqlite3BitvecDestroy(pPager->pInJournal);
3061 pPager->pInJournal = 0;
3066 ** Acquire a write-lock on the database. The lock is removed when
3067 ** the any of the following happen:
3069 ** * sqlite3PagerCommitPhaseTwo() is called.
3070 ** * sqlite3PagerRollback() is called.
3071 ** * sqlite3PagerClose() is called.
3072 ** * sqlite3PagerUnref() is called to on every outstanding page.
3074 ** The first parameter to this routine is a pointer to any open page of the
3075 ** database file. Nothing changes about the page - it is used merely to
3076 ** acquire a pointer to the Pager structure and as proof that there is
3077 ** already a read-lock on the database.
3079 ** The second parameter indicates how much space in bytes to reserve for a
3080 ** master journal file-name at the start of the journal when it is created.
3082 ** A journal file is opened if this is not a temporary file. For temporary
3083 ** files, the opening of the journal file is deferred until there is an
3084 ** actual need to write to the journal.
3086 ** If the database is already reserved for writing, this routine is a no-op.
3088 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
3089 ** immediately instead of waiting until we try to flush the cache. The
3090 ** exFlag is ignored if a transaction is already active.
3092 int sqlite3PagerBegin(DbPage *pPg, int exFlag){
3093 Pager *pPager = pPg->pPager;
3095 assert( pPg->nRef>0 );
3096 assert( pPager->state!=PAGER_UNLOCK );
3097 if( pPager->state==PAGER_SHARED ){
3098 assert( pPager->pInJournal==0 );
3099 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL);
3101 pPager->state = PAGER_EXCLUSIVE;
3102 pPager->origDbSize = pPager->dbSize;
3104 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
3105 if( rc==SQLITE_OK ){
3106 pPager->state = PAGER_RESERVED;
3108 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
3111 if( rc!=SQLITE_OK ){
3114 pPager->dirtyCache = 0;
3115 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
3116 if( pPager->useJournal && !pPager->tempFile
3117 && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
3118 rc = pager_open_journal(pPager);
3121 }else if( pPager->journalOpen && pPager->journalOff==0 ){
3122 /* This happens when the pager was in exclusive-access mode the last
3123 ** time a (read or write) transaction was successfully concluded
3124 ** by this connection. Instead of deleting the journal file it was
3125 ** kept open and either was truncated to 0 bytes or its header was
3126 ** overwritten with zeros.
3128 assert( pPager->nRec==0 );
3129 assert( pPager->origDbSize==0 );
3130 assert( pPager->pInJournal==0 );
3131 sqlite3PagerPagecount(pPager, 0);
3132 pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
3133 if( !pPager->pInJournal ){
3136 pPager->origDbSize = pPager->dbSize;
3137 rc = writeJournalHdr(pPager);
3140 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
3146 ** Mark a data page as writeable. The page is written into the journal
3147 ** if it is not there already. This routine must be called before making
3148 ** changes to a page.
3150 ** The first time this routine is called, the pager creates a new
3151 ** journal and acquires a RESERVED lock on the database. If the RESERVED
3152 ** lock could not be acquired, this routine returns SQLITE_BUSY. The
3153 ** calling routine must check for that return value and be careful not to
3154 ** change any page data until this routine returns SQLITE_OK.
3156 ** If the journal file could not be written because the disk is full,
3157 ** then this routine returns SQLITE_FULL and does an immediate rollback.
3158 ** All subsequent write attempts also return SQLITE_FULL until there
3159 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
3162 static int pager_write(PgHdr *pPg){
3163 void *pData = pPg->pData;
3164 Pager *pPager = pPg->pPager;
3169 if( pPager->errCode ){
3170 return pPager->errCode;
3172 if( pPager->readOnly ){
3176 assert( !pPager->setMaster );
3180 /* If this page was previously acquired with noContent==1, that means
3181 ** we didn't really read in the content of the page. This can happen
3182 ** (for example) when the page is being moved to the freelist. But
3183 ** now we are (perhaps) moving the page off of the freelist for
3184 ** reuse and we need to know its original content so that content
3185 ** can be stored in the rollback journal. So do the read at this
3188 rc = pager_get_content(pPg);
3193 /* Mark the page as dirty. If the page has already been written
3194 ** to the journal then we can return right away.
3196 sqlite3PcacheMakeDirty(pPg);
3197 if( (pPg->flags&PGHDR_IN_JOURNAL)
3198 && (pageInStatement(pPg) || pPager->stmtInUse==0)
3200 pPager->dirtyCache = 1;
3201 pPager->dbModified = 1;
3204 /* If we get this far, it means that the page needs to be
3205 ** written to the transaction journal or the ckeckpoint journal
3208 ** First check to see that the transaction journal exists and
3209 ** create it if it does not.
3211 assert( pPager->state!=PAGER_UNLOCK );
3212 rc = sqlite3PagerBegin(pPg, 0);
3213 if( rc!=SQLITE_OK ){
3216 assert( pPager->state>=PAGER_RESERVED );
3217 if( !pPager->journalOpen && pPager->useJournal
3218 && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
3219 rc = pager_open_journal(pPager);
3220 if( rc!=SQLITE_OK ) return rc;
3222 pPager->dirtyCache = 1;
3223 pPager->dbModified = 1;
3225 /* The transaction journal now exists and we have a RESERVED or an
3226 ** EXCLUSIVE lock on the main database file. Write the current page to
3227 ** the transaction journal if it is not there already.
3229 if( !(pPg->flags&PGHDR_IN_JOURNAL) && (pPager->journalOpen || MEMDB) ){
3230 if( (int)pPg->pgno <= pPager->origDbSize ){
3232 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
3233 rc = sqlite3PcachePreserve(pPg, 0);
3234 if( rc!=SQLITE_OK ){
3241 /* We should never write to the journal file the page that
3242 ** contains the database locks. The following assert verifies
3243 ** that we do not. */
3244 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
3245 pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
3246 cksum = pager_cksum(pPager, (u8*)pData2);
3247 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
3248 if( rc==SQLITE_OK ){
3249 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
3250 pPager->journalOff + 4);
3251 pPager->journalOff += pPager->pageSize+4;
3253 if( rc==SQLITE_OK ){
3254 rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
3255 pPager->journalOff += 4;
3257 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
3258 pPager->journalOff, pPager->pageSize));
3259 PAGER_INCR(sqlite3_pager_writej_count);
3260 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
3261 PAGERID(pPager), pPg->pgno,
3262 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg));
3264 /* An error has occured writing to the journal file. The
3265 ** transaction will be rolled back by the layer above.
3267 if( rc!=SQLITE_OK ){
3272 assert( pPager->pInJournal!=0 );
3273 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
3274 if( !pPager->noSync ){
3275 pPg->flags |= PGHDR_NEED_SYNC;
3277 if( pPager->stmtInUse ){
3278 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
3282 if( !pPager->journalStarted && !pPager->noSync ){
3283 pPg->flags |= PGHDR_NEED_SYNC;
3285 PAGERTRACE4("APPEND %d page %d needSync=%d\n",
3286 PAGERID(pPager), pPg->pgno,
3287 ((pPg->flags&PGHDR_NEED_SYNC)?1:0));
3289 if( pPg->flags&PGHDR_NEED_SYNC ){
3290 pPager->needSync = 1;
3292 pPg->flags |= PGHDR_IN_JOURNAL;
3295 /* If the statement journal is open and the page is not in it,
3296 ** then write the current page to the statement journal. Note that
3297 ** the statement journal format differs from the standard journal format
3298 ** in that it omits the checksums and the header.
3300 if( pPager->stmtInUse
3301 && !pageInStatement(pPg)
3302 && (int)pPg->pgno<=pPager->stmtSize
3304 assert( (pPg->flags&PGHDR_IN_JOURNAL)
3305 || (int)pPg->pgno>pPager->origDbSize );
3307 rc = sqlite3PcachePreserve(pPg, 1);
3308 if( rc!=SQLITE_OK ){
3311 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
3313 i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
3314 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
3315 rc = write32bits(pPager->stfd, offset, pPg->pgno);
3316 if( rc==SQLITE_OK ){
3317 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
3319 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
3320 if( rc!=SQLITE_OK ){
3324 assert( pPager->pInStmt!=0 );
3325 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
3330 /* Update the database size and return.
3332 assert( pPager->state>=PAGER_SHARED );
3333 if( pPager->dbSize<(int)pPg->pgno ){
3334 pPager->dbSize = pPg->pgno;
3335 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
3343 ** This function is used to mark a data-page as writable. It uses
3344 ** pager_write() to open a journal file (if it is not already open)
3345 ** and write the page *pData to the journal.
3347 ** The difference between this function and pager_write() is that this
3348 ** function also deals with the special case where 2 or more pages
3349 ** fit on a single disk sector. In this case all co-resident pages
3350 ** must have been written to the journal file before returning.
3352 int sqlite3PagerWrite(DbPage *pDbPage){
3355 PgHdr *pPg = pDbPage;
3356 Pager *pPager = pPg->pPager;
3357 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
3359 if( !MEMDB && nPagePerSector>1 ){
3360 Pgno nPageCount; /* Total number of pages in database file */
3361 Pgno pg1; /* First page of the sector pPg is located on. */
3362 int nPage; /* Number of pages starting at pg1 to journal */
3366 /* Set the doNotSync flag to 1. This is because we cannot allow a journal
3367 ** header to be written between the pages journaled by this function.
3369 assert( pPager->doNotSync==0 );
3370 pPager->doNotSync = 1;
3372 /* This trick assumes that both the page-size and sector-size are
3373 ** an integer power of 2. It sets variable pg1 to the identifier
3374 ** of the first page of the sector pPg is located on.
3376 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
3378 sqlite3PagerPagecount(pPager, (int *)&nPageCount);
3379 if( pPg->pgno>nPageCount ){
3380 nPage = (pPg->pgno - pg1)+1;
3381 }else if( (pg1+nPagePerSector-1)>nPageCount ){
3382 nPage = nPageCount+1-pg1;
3384 nPage = nPagePerSector;
3387 assert(pg1<=pPg->pgno);
3388 assert((pg1+nPage)>pPg->pgno);
3390 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
3393 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
3394 if( pg!=PAGER_MJ_PGNO(pPager) ){
3395 rc = sqlite3PagerGet(pPager, pg, &pPage);
3396 if( rc==SQLITE_OK ){
3397 rc = pager_write(pPage);
3398 if( pPage->flags&PGHDR_NEED_SYNC ){
3401 sqlite3PagerUnref(pPage);
3404 }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
3405 if( pPage->flags&PGHDR_NEED_SYNC ){
3408 sqlite3PagerUnref(pPage);
3412 /* If the PgHdr.needSync flag is set for any of the nPage pages
3413 ** starting at pg1, then it needs to be set for all of them. Because
3414 ** writing to any of these nPage pages may damage the others, the
3415 ** journal file must contain sync()ed copies of all of them
3416 ** before any of them can be written out to the database file.
3419 assert( !MEMDB && pPager->noSync==0 );
3420 for(ii=0; ii<nPage && needSync; ii++){
3421 PgHdr *pPage = pager_lookup(pPager, pg1+ii);
3422 if( pPage ) pPage->flags |= PGHDR_NEED_SYNC;
3423 sqlite3PagerUnref(pPage);
3425 assert(pPager->needSync);
3428 assert( pPager->doNotSync==1 );
3429 pPager->doNotSync = 0;
3431 rc = pager_write(pDbPage);
3437 ** Return TRUE if the page given in the argument was previously passed
3438 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
3439 ** to change the content of the page.
3442 int sqlite3PagerIswriteable(DbPage *pPg){
3443 return pPg->flags&PGHDR_DIRTY;
3448 ** A call to this routine tells the pager that it is not necessary to
3449 ** write the information on page pPg back to the disk, even though
3450 ** that page might be marked as dirty.
3452 ** The overlying software layer calls this routine when all of the data
3453 ** on the given page is unused. The pager marks the page as clean so
3454 ** that it does not get written to disk.
3456 ** Tests show that this optimization, together with the
3457 ** sqlite3PagerDontRollback() below, more than double the speed
3458 ** of large INSERT operations and quadruple the speed of large DELETEs.
3460 ** When this routine is called, set the alwaysRollback flag to true.
3461 ** Subsequent calls to sqlite3PagerDontRollback() for the same page
3462 ** will thereafter be ignored. This is necessary to avoid a problem
3463 ** where a page with data is added to the freelist during one part of
3464 ** a transaction then removed from the freelist during a later part
3465 ** of the same transaction and reused for some other purpose. When it
3466 ** is first added to the freelist, this routine is called. When reused,
3467 ** the sqlite3PagerDontRollback() routine is called. But because the
3468 ** page contains critical data, we still need to be sure it gets
3469 ** rolled back in spite of the sqlite3PagerDontRollback() call.
3471 int sqlite3PagerDontWrite(DbPage *pDbPage){
3472 PgHdr *pPg = pDbPage;
3473 Pager *pPager = pPg->pPager;
3476 if( MEMDB || pPg->pgno>pPager->origDbSize ){
3479 if( pPager->pAlwaysRollback==0 ){
3480 assert( pPager->pInJournal );
3481 pPager->pAlwaysRollback = sqlite3BitvecCreate(pPager->origDbSize);
3482 if( !pPager->pAlwaysRollback ){
3483 return SQLITE_NOMEM;
3486 rc = sqlite3BitvecSet(pPager->pAlwaysRollback, pPg->pgno);
3488 if( rc==SQLITE_OK && (pPg->flags&PGHDR_DIRTY) && !pPager->stmtInUse ){
3489 assert( pPager->state>=PAGER_SHARED );
3490 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
3491 /* If this pages is the last page in the file and the file has grown
3492 ** during the current transaction, then do NOT mark the page as clean.
3493 ** When the database file grows, we must make sure that the last page
3494 ** gets written at least once so that the disk file will be the correct
3495 ** size. If you do not write this page and the size of the file
3496 ** on the disk ends up being too small, that can lead to database
3497 ** corruption during the next transaction.
3500 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
3501 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
3502 pPg->flags |= PGHDR_DONT_WRITE;
3503 #ifdef SQLITE_CHECK_PAGES
3504 pPg->pageHash = pager_pagehash(pPg);
3512 ** A call to this routine tells the pager that if a rollback occurs,
3513 ** it is not necessary to restore the data on the given page. This
3514 ** means that the pager does not have to record the given page in the
3515 ** rollback journal.
3517 ** If we have not yet actually read the content of this page (if
3518 ** the PgHdr.needRead flag is set) then this routine acts as a promise
3519 ** that we will never need to read the page content in the future.
3520 ** so the needRead flag can be cleared at this point.
3522 void sqlite3PagerDontRollback(DbPage *pPg){
3523 Pager *pPager = pPg->pPager;
3525 assert( pPager->state>=PAGER_RESERVED );
3527 /* If the journal file is not open, or DontWrite() has been called on
3528 ** this page (DontWrite() sets the alwaysRollback flag), then this
3529 ** function is a no-op.
3531 if( pPager->journalOpen==0
3532 || sqlite3BitvecTest(pPager->pAlwaysRollback, pPg->pgno)
3533 || pPg->pgno>pPager->origDbSize
3537 assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */
3539 #ifdef SQLITE_SECURE_DELETE
3540 if( (pPg->flags & PGHDR_IN_JOURNAL)!=0 || (int)pPg->pgno>pPager->origDbSize ){
3545 /* If SECURE_DELETE is disabled, then there is no way that this
3546 ** routine can be called on a page for which sqlite3PagerDontWrite()
3547 ** has not been previously called during the same transaction.
3548 ** And if DontWrite() has previously been called, the following
3549 ** conditions must be met.
3551 ** (Later:) Not true. If the database is corrupted by having duplicate
3552 ** pages on the freelist (ex: corrupt9.test) then the following is not
3553 ** necessarily true:
3555 /* assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); */
3557 assert( pPager->pInJournal!=0 );
3558 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
3559 pPg->flags |= PGHDR_IN_JOURNAL;
3560 pPg->flags &= ~PGHDR_NEED_READ;
3561 if( pPager->stmtInUse ){
3562 assert( pPager->stmtSize >= pPager->origDbSize );
3563 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
3565 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
3566 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
3571 ** This routine is called to increment the database file change-counter,
3572 ** stored at byte 24 of the pager file.
3574 static int pager_incr_changecounter(Pager *pPager, int isDirect){
3579 #ifndef SQLITE_ENABLE_ATOMIC_WRITE
3580 assert( isDirect==0 ); /* isDirect is only true for atomic writes */
3582 if( !pPager->changeCountDone ){
3583 /* Open page 1 of the file for writing. */
3584 rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
3585 if( rc!=SQLITE_OK ) return rc;
3588 rc = sqlite3PagerWrite(pPgHdr);
3589 if( rc!=SQLITE_OK ){
3590 sqlite3PagerUnref(pPgHdr);
3595 /* Increment the value just read and write it back to byte 24. */
3596 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
3598 put32bits(((char*)pPgHdr->pData)+24, change_counter);
3600 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3601 if( isDirect && pPager->fd->pMethods ){
3602 const void *zBuf = pPgHdr->pData;
3603 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
3607 /* Release the page reference. */
3608 sqlite3PagerUnref(pPgHdr);
3609 pPager->changeCountDone = 1;
3615 ** Sync the pager file to disk.
3617 int sqlite3PagerSync(Pager *pPager){
3622 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
3628 ** Sync the database file for the pager pPager. zMaster points to the name
3629 ** of a master journal file that should be written into the individual
3630 ** journal file. zMaster may be NULL, which is interpreted as no master
3631 ** journal (a single database transaction).
3633 ** This routine ensures that the journal is synced, all dirty pages written
3634 ** to the database file and the database file synced. The only thing that
3635 ** remains to commit the transaction is to delete the journal file (or
3636 ** master journal file if specified).
3638 ** Note that if zMaster==NULL, this does not overwrite a previous value
3639 ** passed to an sqlite3PagerCommitPhaseOne() call.
3641 ** If parameter nTrunc is non-zero, then the pager file is truncated to
3642 ** nTrunc pages (this is used by auto-vacuum databases).
3644 ** If the final parameter - noSync - is true, then the database file itself
3645 ** is not synced. The caller must call sqlite3PagerSync() directly to
3646 ** sync the database file before calling CommitPhaseTwo() to delete the
3647 ** journal file in this case.
3649 int sqlite3PagerCommitPhaseOne(
3651 const char *zMaster,
3657 if( pPager->errCode ){
3658 return pPager->errCode;
3661 /* If no changes have been made, we can leave the transaction early.
3663 if( pPager->dbModified==0 &&
3664 (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
3665 pPager->exclusiveMode!=0) ){
3666 assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
3670 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
3671 pPager->zFilename, zMaster, nTrunc);
3673 /* If this is an in-memory db, or no pages have been written to, or this
3674 ** function has already been called, it is a no-op.
3676 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
3679 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3680 /* The atomic-write optimization can be used if all of the
3681 ** following are true:
3683 ** + The file-system supports the atomic-write property for
3684 ** blocks of size page-size, and
3685 ** + This commit is not part of a multi-file transaction, and
3686 ** + Exactly one page has been modified and store in the journal file.
3688 ** If the optimization can be used, then the journal file will never
3689 ** be created for this transaction.
3692 pPg = sqlite3PcacheDirtyList(pPager->pPCache);
3695 pPager->journalOpen &&
3696 pPager->journalOff==jrnlBufferSize(pPager) &&
3698 (pPg==0 || pPg->pDirty==0)
3700 assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF );
3701 if( useAtomicWrite ){
3702 /* Update the nRec field in the journal file. */
3703 int offset = pPager->journalHdr + sizeof(aJournalMagic);
3704 assert(pPager->nRec==1);
3705 rc = write32bits(pPager->jfd, offset, pPager->nRec);
3707 /* Update the db file change counter. The following call will modify
3708 ** the in-memory representation of page 1 to include the updated
3709 ** change counter and then write page 1 directly to the database
3710 ** file. Because of the atomic-write property of the host file-system,
3713 if( rc==SQLITE_OK ){
3714 rc = pager_incr_changecounter(pPager, 1);
3717 rc = sqlite3JournalCreate(pPager->jfd);
3720 if( !useAtomicWrite && rc==SQLITE_OK )
3723 /* If a master journal file name has already been written to the
3724 ** journal file, then no sync is required. This happens when it is
3725 ** written, then the process fails to upgrade from a RESERVED to an
3726 ** EXCLUSIVE lock. The next time the process tries to commit the
3727 ** transaction the m-j name will have already been written.
3729 if( !pPager->setMaster ){
3730 rc = pager_incr_changecounter(pPager, 0);
3731 if( rc!=SQLITE_OK ) goto sync_exit;
3732 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
3733 #ifndef SQLITE_OMIT_AUTOVACUUM
3735 /* If this transaction has made the database smaller, then all pages
3736 ** being discarded by the truncation must be written to the journal
3740 int iSkip = PAGER_MJ_PGNO(pPager);
3741 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
3742 if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
3743 rc = sqlite3PagerGet(pPager, i, &pPg);
3744 if( rc!=SQLITE_OK ) goto sync_exit;
3745 rc = sqlite3PagerWrite(pPg);
3746 sqlite3PagerUnref(pPg);
3747 if( rc!=SQLITE_OK ) goto sync_exit;
3752 rc = writeMasterJournal(pPager, zMaster);
3753 if( rc!=SQLITE_OK ) goto sync_exit;
3754 rc = syncJournal(pPager);
3757 if( rc!=SQLITE_OK ) goto sync_exit;
3759 #ifndef SQLITE_OMIT_AUTOVACUUM
3761 rc = sqlite3PagerTruncate(pPager, nTrunc);
3762 if( rc!=SQLITE_OK ) goto sync_exit;
3766 /* Write all dirty pages to the database file */
3767 pPg = sqlite3PcacheDirtyList(pPager->pPCache);
3768 rc = pager_write_pagelist(pPg);
3769 if( rc!=SQLITE_OK ){
3770 assert( rc!=SQLITE_IOERR_BLOCKED );
3771 /* The error might have left the dirty list all fouled up here,
3772 ** but that does not matter because if the if the dirty list did
3773 ** get corrupted, then the transaction will roll back and
3774 ** discard the dirty list. There is an assert in
3775 ** pager_get_all_dirty_pages() that verifies that no attempt
3776 ** is made to use an invalid dirty list.
3780 sqlite3PcacheCleanAll(pPager->pPCache);
3782 /* Sync the database file. */
3783 if( !pPager->noSync && !noSync ){
3784 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
3786 IOTRACE(("DBSYNC %p\n", pPager))
3788 pPager->state = PAGER_SYNCED;
3789 }else if( MEMDB && nTrunc!=0 ){
3790 rc = sqlite3PagerTruncate(pPager, nTrunc);
3794 if( rc==SQLITE_IOERR_BLOCKED ){
3795 /* pager_incr_changecounter() may attempt to obtain an exclusive
3796 * lock to spill the cache and return IOERR_BLOCKED. But since
3797 * there is no chance the cache is inconsistent, it is
3798 * better to return SQLITE_BUSY.
3807 ** Commit all changes to the database and release the write lock.
3809 ** If the commit fails for any reason, a rollback attempt is made
3810 ** and an error code is returned. If the commit worked, SQLITE_OK
3813 int sqlite3PagerCommitPhaseTwo(Pager *pPager){
3816 if( pPager->errCode ){
3817 return pPager->errCode;
3819 if( pPager->state<PAGER_RESERVED ){
3820 return SQLITE_ERROR;
3822 if( pPager->dbModified==0 &&
3823 (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
3824 pPager->exclusiveMode!=0) ){
3825 assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
3828 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
3830 sqlite3PcacheCommit(pPager->pPCache, 0);
3831 sqlite3PcacheCleanAll(pPager->pPCache);
3832 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL);
3833 pPager->state = PAGER_SHARED;
3835 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
3836 rc = pager_end_transaction(pPager, pPager->setMaster);
3837 rc = pager_error(pPager, rc);
3843 ** Rollback all changes. The database falls back to PAGER_SHARED mode.
3844 ** All in-memory cache pages revert to their original data contents.
3845 ** The journal is deleted.
3847 ** This routine cannot fail unless some other process is not following
3848 ** the correct locking protocol or unless some other
3849 ** process is writing trash into the journal file (SQLITE_CORRUPT) or
3850 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
3851 ** codes are returned for all these occasions. Otherwise,
3852 ** SQLITE_OK is returned.
3854 int sqlite3PagerRollback(Pager *pPager){
3856 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
3858 sqlite3PcacheRollback(pPager->pPCache, 1, pPager->xReiniter);
3859 sqlite3PcacheRollback(pPager->pPCache, 0, pPager->xReiniter);
3860 sqlite3PcacheCleanAll(pPager->pPCache);
3861 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL);
3862 pPager->dbSize = pPager->origDbSize;
3863 pager_truncate_cache(pPager);
3864 pPager->stmtInUse = 0;
3865 pPager->state = PAGER_SHARED;
3866 }else if( !pPager->dirtyCache || !pPager->journalOpen ){
3867 rc = pager_end_transaction(pPager, pPager->setMaster);
3868 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
3869 if( pPager->state>=PAGER_EXCLUSIVE ){
3870 pager_playback(pPager, 0);
3872 rc = pPager->errCode;
3874 if( pPager->state==PAGER_RESERVED ){
3876 rc = pager_playback(pPager, 0);
3877 rc2 = pager_end_transaction(pPager, pPager->setMaster);
3878 if( rc==SQLITE_OK ){
3882 rc = pager_playback(pPager, 0);
3885 pPager->dbSize = -1;
3887 /* If an error occurs during a ROLLBACK, we can no longer trust the pager
3888 ** cache. So call pager_error() on the way out to make any error
3891 rc = pager_error(pPager, rc);
3897 ** Return TRUE if the database file is opened read-only. Return FALSE
3898 ** if the database is (in theory) writable.
3900 int sqlite3PagerIsreadonly(Pager *pPager){
3901 return pPager->readOnly;
3905 ** Return the number of references to the pager.
3907 int sqlite3PagerRefcount(Pager *pPager){
3908 return sqlite3PcacheRefCount(pPager->pPCache);
3912 ** Return the number of references to the specified page.
3914 int sqlite3PagerPageRefcount(DbPage *pPage){
3915 return sqlite3PcachePageRefcount(pPage);
3920 ** This routine is used for testing and analysis only.
3922 int *sqlite3PagerStats(Pager *pPager){
3924 a[0] = sqlite3PcacheRefCount(pPager->pPCache);
3925 a[1] = sqlite3PcachePagecount(pPager->pPCache);
3926 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
3927 a[3] = pPager->dbSize;
3928 a[4] = pPager->state;
3929 a[5] = pPager->errCode;
3930 a[6] = pPager->nHit;
3931 a[7] = pPager->nMiss;
3932 a[8] = 0; /* Used to be pPager->nOvfl */
3933 a[9] = pPager->nRead;
3934 a[10] = pPager->nWrite;
3937 int sqlite3PagerIsMemdb(Pager *pPager){
3943 ** Set the statement rollback point.
3945 ** This routine should be called with the transaction journal already
3946 ** open. A new statement journal is created that can be used to rollback
3947 ** changes of a single SQL command within a larger transaction.
3949 static int pagerStmtBegin(Pager *pPager){
3951 assert( !pPager->stmtInUse );
3952 assert( pPager->state>=PAGER_SHARED );
3953 assert( pPager->dbSize>=0 );
3954 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
3956 pPager->stmtInUse = 1;
3957 pPager->stmtSize = pPager->dbSize;
3960 if( !pPager->journalOpen ){
3961 pPager->stmtAutoopen = 1;
3964 assert( pPager->journalOpen );
3965 assert( pPager->pInStmt==0 );
3966 pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
3967 if( pPager->pInStmt==0 ){
3968 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
3969 return SQLITE_NOMEM;
3971 pPager->stmtJSize = pPager->journalOff;
3972 pPager->stmtSize = pPager->dbSize;
3973 pPager->stmtHdrOff = 0;
3974 pPager->stmtCksum = pPager->cksumInit;
3975 if( !pPager->stmtOpen ){
3976 rc = sqlite3PagerOpentemp(pPager, pPager->stfd, SQLITE_OPEN_SUBJOURNAL);
3978 goto stmt_begin_failed;
3980 pPager->stmtOpen = 1;
3981 pPager->stmtNRec = 0;
3983 pPager->stmtInUse = 1;
3987 if( pPager->pInStmt ){
3988 sqlite3BitvecDestroy(pPager->pInStmt);
3989 pPager->pInStmt = 0;
3993 int sqlite3PagerStmtBegin(Pager *pPager){
3995 rc = pagerStmtBegin(pPager);
4000 ** Commit a statement.
4002 int sqlite3PagerStmtCommit(Pager *pPager){
4003 if( pPager->stmtInUse ){
4004 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
4006 sqlite3BitvecDestroy(pPager->pInStmt);
4007 pPager->pInStmt = 0;
4009 sqlite3PcacheCommit(pPager->pPCache, 1);
4011 pPager->stmtNRec = 0;
4012 pPager->stmtInUse = 0;
4014 pPager->stmtAutoopen = 0;
4019 ** Rollback a statement.
4021 int sqlite3PagerStmtRollback(Pager *pPager){
4023 if( pPager->stmtInUse ){
4024 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
4026 sqlite3PcacheRollback(pPager->pPCache, 1, pPager->xReiniter);
4027 pPager->dbSize = pPager->stmtSize;
4028 pager_truncate_cache(pPager);
4031 rc = pager_stmt_playback(pPager);
4033 sqlite3PagerStmtCommit(pPager);
4037 pPager->stmtAutoopen = 0;
4042 ** Return the full pathname of the database file.
4044 const char *sqlite3PagerFilename(Pager *pPager){
4045 return pPager->zFilename;
4049 ** Return the VFS structure for the pager.
4051 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
4052 return pPager->pVfs;
4056 ** Return the file handle for the database file associated
4057 ** with the pager. This might return NULL if the file has
4058 ** not yet been opened.
4060 sqlite3_file *sqlite3PagerFile(Pager *pPager){
4065 ** Return the directory of the database file.
4067 const char *sqlite3PagerDirname(Pager *pPager){
4068 return pPager->zDirectory;
4072 ** Return the full pathname of the journal file.
4074 const char *sqlite3PagerJournalname(Pager *pPager){
4075 return pPager->zJournal;
4079 ** Return true if fsync() calls are disabled for this pager. Return FALSE
4080 ** if fsync()s are executed normally.
4082 int sqlite3PagerNosync(Pager *pPager){
4083 return pPager->noSync;
4086 #ifdef SQLITE_HAS_CODEC
4088 ** Set the codec for this pager
4090 void sqlite3PagerSetCodec(
4092 void *(*xCodec)(void*,void*,Pgno,int),
4095 pPager->xCodec = xCodec;
4096 pPager->pCodecArg = pCodecArg;
4100 #ifndef SQLITE_OMIT_AUTOVACUUM
4102 ** Move the page pPg to location pgno in the file.
4104 ** There must be no references to the page previously located at
4105 ** pgno (which we call pPgOld) though that page is allowed to be
4106 ** in cache. If the page previously located at pgno is not already
4107 ** in the rollback journal, it is not put there by by this routine.
4109 ** References to the page pPg remain valid. Updating any
4110 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes
4111 ** allocated along with the page) is the responsibility of the caller.
4113 ** A transaction must be active when this routine is called. It used to be
4114 ** required that a statement transaction was not active, but this restriction
4115 ** has been removed (CREATE INDEX needs to move a page when a statement
4116 ** transaction is active).
4118 ** If the fourth argument, isCommit, is non-zero, then this page is being
4119 ** moved as part of a database reorganization just before the transaction
4120 ** is being committed. In this case, it is guaranteed that the database page
4121 ** pPg refers to will not be written to again within this transaction.
4123 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
4124 PgHdr *pPgOld; /* The page being overwritten. */
4125 Pgno needSyncPgno = 0;
4127 assert( pPg->nRef>0 );
4129 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
4130 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno);
4131 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
4133 pager_get_content(pPg);
4135 /* If the journal needs to be sync()ed before page pPg->pgno can
4136 ** be written to, store pPg->pgno in local variable needSyncPgno.
4138 ** If the isCommit flag is set, there is no need to remember that
4139 ** the journal needs to be sync()ed before database page pPg->pgno
4140 ** can be written to. The caller has already promised not to write to it.
4142 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
4143 needSyncPgno = pPg->pgno;
4144 assert( (pPg->flags&PGHDR_IN_JOURNAL) || (int)pgno>pPager->origDbSize );
4145 assert( pPg->flags&PGHDR_DIRTY );
4146 assert( pPager->needSync );
4149 /* If the cache contains a page with page-number pgno, remove it
4150 ** from its hash chain. Also, if the PgHdr.needSync was set for
4151 ** page pgno before the 'move' operation, it needs to be retained
4152 ** for the page moved there.
4154 pPg->flags &= ~(PGHDR_NEED_SYNC|PGHDR_IN_JOURNAL);
4155 pPgOld = pager_lookup(pPager, pgno);
4156 assert( !pPgOld || pPgOld->nRef==1 );
4158 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
4160 if( sqlite3BitvecTest(pPager->pInJournal, pgno) ){
4162 pPg->flags |= PGHDR_IN_JOURNAL;
4165 sqlite3PcacheMove(pPg, pgno);
4167 sqlite3PcacheMove(pPgOld, 0);
4168 sqlite3PcacheRelease(pPgOld);
4171 sqlite3PcacheMakeDirty(pPg);
4172 pPager->dirtyCache = 1;
4173 pPager->dbModified = 1;
4176 /* If needSyncPgno is non-zero, then the journal file needs to be
4177 ** sync()ed before any data is written to database file page needSyncPgno.
4178 ** Currently, no such page exists in the page-cache and the
4179 ** "is journaled" bitvec flag has been set. This needs to be remedied by
4180 ** loading the page into the pager-cache and setting the PgHdr.needSync
4183 ** If the attempt to load the page into the page-cache fails, (due
4184 ** to a malloc() or IO failure), clear the bit in the pInJournal[]
4185 ** array. Otherwise, if the page is loaded and written again in
4186 ** this transaction, it may be written to the database file before
4187 ** it is synced into the journal file. This way, it may end up in
4188 ** the journal file twice, but that is not a problem.
4190 ** The sqlite3PagerGet() call may cause the journal to sync. So make
4191 ** sure the Pager.needSync flag is set too.
4195 assert( pPager->needSync );
4196 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
4197 if( rc!=SQLITE_OK ){
4198 if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){
4199 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
4203 pPager->needSync = 1;
4204 assert( pPager->noSync==0 && !MEMDB );
4205 pPgHdr->flags |= PGHDR_NEED_SYNC;
4206 pPgHdr->flags |= PGHDR_IN_JOURNAL;
4207 sqlite3PcacheMakeDirty(pPgHdr);
4208 sqlite3PagerUnref(pPgHdr);
4216 ** Return a pointer to the data for the specified page.
4218 void *sqlite3PagerGetData(DbPage *pPg){
4219 assert( pPg->nRef>0 || pPg->pPager->memDb );
4224 ** Return a pointer to the Pager.nExtra bytes of "extra" space
4225 ** allocated along with the specified page.
4227 void *sqlite3PagerGetExtra(DbPage *pPg){
4228 Pager *pPager = pPg->pPager;
4229 return (pPager?pPg->pExtra:0);
4233 ** Get/set the locking-mode for this pager. Parameter eMode must be one
4234 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
4235 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
4236 ** the locking-mode is set to the value specified.
4238 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or
4239 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
4242 int sqlite3PagerLockingMode(Pager *pPager, int eMode){
4243 assert( eMode==PAGER_LOCKINGMODE_QUERY
4244 || eMode==PAGER_LOCKINGMODE_NORMAL
4245 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
4246 assert( PAGER_LOCKINGMODE_QUERY<0 );
4247 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
4248 if( eMode>=0 && !pPager->tempFile ){
4249 pPager->exclusiveMode = eMode;
4251 return (int)pPager->exclusiveMode;
4255 ** Get/set the journal-mode for this pager. Parameter eMode must be one of:
4257 ** PAGER_JOURNALMODE_QUERY
4258 ** PAGER_JOURNALMODE_DELETE
4259 ** PAGER_JOURNALMODE_TRUNCATE
4260 ** PAGER_JOURNALMODE_PERSIST
4261 ** PAGER_JOURNALMODE_OFF
4263 ** If the parameter is not _QUERY, then the journal-mode is set to the
4266 ** The returned indicate the current (possibly updated)
4269 int sqlite3PagerJournalMode(Pager *pPager, int eMode){
4270 assert( eMode==PAGER_JOURNALMODE_QUERY
4271 || eMode==PAGER_JOURNALMODE_DELETE
4272 || eMode==PAGER_JOURNALMODE_TRUNCATE
4273 || eMode==PAGER_JOURNALMODE_PERSIST
4274 || eMode==PAGER_JOURNALMODE_OFF );
4275 assert( PAGER_JOURNALMODE_QUERY<0 );
4277 pPager->journalMode = eMode;
4279 assert( eMode==PAGER_JOURNALMODE_QUERY );
4281 return (int)pPager->journalMode;
4285 ** Get/set the size-limit used for persistent journal files.
4287 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
4289 pPager->journalSizeLimit = iLimit;
4291 return pPager->journalSizeLimit;
4294 #endif /* SQLITE_OMIT_DISKIO */