os/persistentdata/persistentstorage/sql/SQLite364/mem3.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2007 October 14
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains the C functions that implement a memory
    13 ** allocation subsystem for use by SQLite. 
    14 **
    15 ** This version of the memory allocation subsystem omits all
    16 ** use of malloc(). The SQLite user supplies a block of memory
    17 ** before calling sqlite3_initialize() from which allocations
    18 ** are made and returned by the xMalloc() and xRealloc() 
    19 ** implementations. Once sqlite3_initialize() has been called,
    20 ** the amount of memory available to SQLite is fixed and cannot
    21 ** be changed.
    22 **
    23 ** This version of the memory allocation subsystem is included
    24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
    25 **
    26 ** $Id: mem3.c,v 1.23 2008/09/02 17:52:52 danielk1977 Exp $
    27 */
    28 #include "sqliteInt.h"
    29 
    30 /*
    31 ** This version of the memory allocator is only built into the library
    32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
    33 ** mean that the library will use a memory-pool by default, just that
    34 ** it is available. The mempool allocator is activated by calling
    35 ** sqlite3_config().
    36 */
    37 #ifdef SQLITE_ENABLE_MEMSYS3
    38 
    39 /*
    40 ** Maximum size (in Mem3Blocks) of a "small" chunk.
    41 */
    42 #define MX_SMALL 10
    43 
    44 
    45 /*
    46 ** Number of freelist hash slots
    47 */
    48 #define N_HASH  61
    49 
    50 /*
    51 ** A memory allocation (also called a "chunk") consists of two or 
    52 ** more blocks where each block is 8 bytes.  The first 8 bytes are 
    53 ** a header that is not returned to the user.
    54 **
    55 ** A chunk is two or more blocks that is either checked out or
    56 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
    57 ** size of the allocation in blocks if the allocation is free.
    58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
    59 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
    60 ** is true if the previous chunk is checked out and false if the
    61 ** previous chunk is free.  The u.hdr.prevSize field is the size of
    62 ** the previous chunk in blocks if the previous chunk is on the
    63 ** freelist. If the previous chunk is checked out, then
    64 ** u.hdr.prevSize can be part of the data for that chunk and should
    65 ** not be read or written.
    66 **
    67 ** We often identify a chunk by its index in mem3.aPool[].  When
    68 ** this is done, the chunk index refers to the second block of
    69 ** the chunk.  In this way, the first chunk has an index of 1.
    70 ** A chunk index of 0 means "no such chunk" and is the equivalent
    71 ** of a NULL pointer.
    72 **
    73 ** The second block of free chunks is of the form u.list.  The
    74 ** two fields form a double-linked list of chunks of related sizes.
    75 ** Pointers to the head of the list are stored in mem3.aiSmall[] 
    76 ** for smaller chunks and mem3.aiHash[] for larger chunks.
    77 **
    78 ** The second block of a chunk is user data if the chunk is checked 
    79 ** out.  If a chunk is checked out, the user data may extend into
    80 ** the u.hdr.prevSize value of the following chunk.
    81 */
    82 typedef struct Mem3Block Mem3Block;
    83 struct Mem3Block {
    84   union {
    85     struct {
    86       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
    87       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
    88     } hdr;
    89     struct {
    90       u32 next;       /* Index in mem3.aPool[] of next free chunk */
    91       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
    92     } list;
    93   } u;
    94 };
    95 
    96 /*
    97 ** All of the static variables used by this module are collected
    98 ** into a single structure named "mem3".  This is to keep the
    99 ** static variables organized and to reduce namespace pollution
   100 ** when this module is combined with other in the amalgamation.
   101 */
   102 static SQLITE_WSD struct Mem3Global {
   103   /*
   104   ** Memory available for allocation. nPool is the size of the array
   105   ** (in Mem3Blocks) pointed to by aPool less 2.
   106   */
   107   u32 nPool;
   108   Mem3Block *aPool;
   109 
   110   /*
   111   ** True if we are evaluating an out-of-memory callback.
   112   */
   113   int alarmBusy;
   114   
   115   /*
   116   ** Mutex to control access to the memory allocation subsystem.
   117   */
   118   sqlite3_mutex *mutex;
   119   
   120   /*
   121   ** The minimum amount of free space that we have seen.
   122   */
   123   u32 mnMaster;
   124 
   125   /*
   126   ** iMaster is the index of the master chunk.  Most new allocations
   127   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
   128   ** of the current master.  iMaster is 0 if there is not master chunk.
   129   ** The master chunk is not in either the aiHash[] or aiSmall[].
   130   */
   131   u32 iMaster;
   132   u32 szMaster;
   133 
   134   /*
   135   ** Array of lists of free blocks according to the block size 
   136   ** for smaller chunks, or a hash on the block size for larger
   137   ** chunks.
   138   */
   139   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
   140   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
   141 } mem3 = { 97535575 };
   142 
   143 #define mem3 GLOBAL(struct Mem3Global, mem3)
   144 
   145 /*
   146 ** Unlink the chunk at mem3.aPool[i] from list it is currently
   147 ** on.  *pRoot is the list that i is a member of.
   148 */
   149 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
   150   u32 next = mem3.aPool[i].u.list.next;
   151   u32 prev = mem3.aPool[i].u.list.prev;
   152   assert( sqlite3_mutex_held(mem3.mutex) );
   153   if( prev==0 ){
   154     *pRoot = next;
   155   }else{
   156     mem3.aPool[prev].u.list.next = next;
   157   }
   158   if( next ){
   159     mem3.aPool[next].u.list.prev = prev;
   160   }
   161   mem3.aPool[i].u.list.next = 0;
   162   mem3.aPool[i].u.list.prev = 0;
   163 }
   164 
   165 /*
   166 ** Unlink the chunk at index i from 
   167 ** whatever list is currently a member of.
   168 */
   169 static void memsys3Unlink(u32 i){
   170   u32 size, hash;
   171   assert( sqlite3_mutex_held(mem3.mutex) );
   172   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
   173   assert( i>=1 );
   174   size = mem3.aPool[i-1].u.hdr.size4x/4;
   175   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
   176   assert( size>=2 );
   177   if( size <= MX_SMALL ){
   178     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
   179   }else{
   180     hash = size % N_HASH;
   181     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
   182   }
   183 }
   184 
   185 /*
   186 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
   187 ** at *pRoot.
   188 */
   189 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
   190   assert( sqlite3_mutex_held(mem3.mutex) );
   191   mem3.aPool[i].u.list.next = *pRoot;
   192   mem3.aPool[i].u.list.prev = 0;
   193   if( *pRoot ){
   194     mem3.aPool[*pRoot].u.list.prev = i;
   195   }
   196   *pRoot = i;
   197 }
   198 
   199 /*
   200 ** Link the chunk at index i into either the appropriate
   201 ** small chunk list, or into the large chunk hash table.
   202 */
   203 static void memsys3Link(u32 i){
   204   u32 size, hash;
   205   assert( sqlite3_mutex_held(mem3.mutex) );
   206   assert( i>=1 );
   207   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
   208   size = mem3.aPool[i-1].u.hdr.size4x/4;
   209   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
   210   assert( size>=2 );
   211   if( size <= MX_SMALL ){
   212     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
   213   }else{
   214     hash = size % N_HASH;
   215     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
   216   }
   217 }
   218 
   219 /*
   220 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
   221 ** will already be held (obtained by code in malloc.c) if
   222 ** sqlite3GlobalConfig.bMemStat is true.
   223 */
   224 static void memsys3Enter(void){
   225   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
   226     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   227   }
   228   sqlite3_mutex_enter(mem3.mutex);
   229 }
   230 static void memsys3Leave(void){
   231   sqlite3_mutex_leave(mem3.mutex);
   232 }
   233 
   234 /*
   235 ** Called when we are unable to satisfy an allocation of nBytes.
   236 */
   237 static void memsys3OutOfMemory(int nByte){
   238   if( !mem3.alarmBusy ){
   239     mem3.alarmBusy = 1;
   240     assert( sqlite3_mutex_held(mem3.mutex) );
   241     sqlite3_mutex_leave(mem3.mutex);
   242     sqlite3_release_memory(nByte);
   243     sqlite3_mutex_enter(mem3.mutex);
   244     mem3.alarmBusy = 0;
   245   }
   246 }
   247 
   248 
   249 /*
   250 ** Chunk i is a free chunk that has been unlinked.  Adjust its 
   251 ** size parameters for check-out and return a pointer to the 
   252 ** user portion of the chunk.
   253 */
   254 static void *memsys3Checkout(u32 i, int nBlock){
   255   u32 x;
   256   assert( sqlite3_mutex_held(mem3.mutex) );
   257   assert( i>=1 );
   258   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
   259   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
   260   x = mem3.aPool[i-1].u.hdr.size4x;
   261   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
   262   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
   263   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
   264   return &mem3.aPool[i];
   265 }
   266 
   267 /*
   268 ** Carve a piece off of the end of the mem3.iMaster free chunk.
   269 ** Return a pointer to the new allocation.  Or, if the master chunk
   270 ** is not large enough, return 0.
   271 */
   272 static void *memsys3FromMaster(int nBlock){
   273   assert( sqlite3_mutex_held(mem3.mutex) );
   274   assert( mem3.szMaster>=nBlock );
   275   if( nBlock>=mem3.szMaster-1 ){
   276     /* Use the entire master */
   277     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
   278     mem3.iMaster = 0;
   279     mem3.szMaster = 0;
   280     mem3.mnMaster = 0;
   281     return p;
   282   }else{
   283     /* Split the master block.  Return the tail. */
   284     u32 newi, x;
   285     newi = mem3.iMaster + mem3.szMaster - nBlock;
   286     assert( newi > mem3.iMaster+1 );
   287     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
   288     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
   289     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
   290     mem3.szMaster -= nBlock;
   291     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
   292     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
   293     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
   294     if( mem3.szMaster < mem3.mnMaster ){
   295       mem3.mnMaster = mem3.szMaster;
   296     }
   297     return (void*)&mem3.aPool[newi];
   298   }
   299 }
   300 
   301 /*
   302 ** *pRoot is the head of a list of free chunks of the same size
   303 ** or same size hash.  In other words, *pRoot is an entry in either
   304 ** mem3.aiSmall[] or mem3.aiHash[].  
   305 **
   306 ** This routine examines all entries on the given list and tries
   307 ** to coalesce each entries with adjacent free chunks.  
   308 **
   309 ** If it sees a chunk that is larger than mem3.iMaster, it replaces 
   310 ** the current mem3.iMaster with the new larger chunk.  In order for
   311 ** this mem3.iMaster replacement to work, the master chunk must be
   312 ** linked into the hash tables.  That is not the normal state of
   313 ** affairs, of course.  The calling routine must link the master
   314 ** chunk before invoking this routine, then must unlink the (possibly
   315 ** changed) master chunk once this routine has finished.
   316 */
   317 static void memsys3Merge(u32 *pRoot){
   318   u32 iNext, prev, size, i, x;
   319 
   320   assert( sqlite3_mutex_held(mem3.mutex) );
   321   for(i=*pRoot; i>0; i=iNext){
   322     iNext = mem3.aPool[i].u.list.next;
   323     size = mem3.aPool[i-1].u.hdr.size4x;
   324     assert( (size&1)==0 );
   325     if( (size&2)==0 ){
   326       memsys3UnlinkFromList(i, pRoot);
   327       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
   328       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
   329       if( prev==iNext ){
   330         iNext = mem3.aPool[prev].u.list.next;
   331       }
   332       memsys3Unlink(prev);
   333       size = i + size/4 - prev;
   334       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
   335       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
   336       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
   337       memsys3Link(prev);
   338       i = prev;
   339     }else{
   340       size /= 4;
   341     }
   342     if( size>mem3.szMaster ){
   343       mem3.iMaster = i;
   344       mem3.szMaster = size;
   345     }
   346   }
   347 }
   348 
   349 /*
   350 ** Return a block of memory of at least nBytes in size.
   351 ** Return NULL if unable.
   352 **
   353 ** This function assumes that the necessary mutexes, if any, are
   354 ** already held by the caller. Hence "Unsafe".
   355 */
   356 static void *memsys3MallocUnsafe(int nByte){
   357   u32 i;
   358   int nBlock;
   359   int toFree;
   360 
   361   assert( sqlite3_mutex_held(mem3.mutex) );
   362   assert( sizeof(Mem3Block)==8 );
   363   if( nByte<=12 ){
   364     nBlock = 2;
   365   }else{
   366     nBlock = (nByte + 11)/8;
   367   }
   368   assert( nBlock>=2 );
   369 
   370   /* STEP 1:
   371   ** Look for an entry of the correct size in either the small
   372   ** chunk table or in the large chunk hash table.  This is
   373   ** successful most of the time (about 9 times out of 10).
   374   */
   375   if( nBlock <= MX_SMALL ){
   376     i = mem3.aiSmall[nBlock-2];
   377     if( i>0 ){
   378       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
   379       return memsys3Checkout(i, nBlock);
   380     }
   381   }else{
   382     int hash = nBlock % N_HASH;
   383     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
   384       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
   385         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
   386         return memsys3Checkout(i, nBlock);
   387       }
   388     }
   389   }
   390 
   391   /* STEP 2:
   392   ** Try to satisfy the allocation by carving a piece off of the end
   393   ** of the master chunk.  This step usually works if step 1 fails.
   394   */
   395   if( mem3.szMaster>=nBlock ){
   396     return memsys3FromMaster(nBlock);
   397   }
   398 
   399 
   400   /* STEP 3:  
   401   ** Loop through the entire memory pool.  Coalesce adjacent free
   402   ** chunks.  Recompute the master chunk as the largest free chunk.
   403   ** Then try again to satisfy the allocation by carving a piece off
   404   ** of the end of the master chunk.  This step happens very
   405   ** rarely (we hope!)
   406   */
   407   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
   408     memsys3OutOfMemory(toFree);
   409     if( mem3.iMaster ){
   410       memsys3Link(mem3.iMaster);
   411       mem3.iMaster = 0;
   412       mem3.szMaster = 0;
   413     }
   414     for(i=0; i<N_HASH; i++){
   415       memsys3Merge(&mem3.aiHash[i]);
   416     }
   417     for(i=0; i<MX_SMALL-1; i++){
   418       memsys3Merge(&mem3.aiSmall[i]);
   419     }
   420     if( mem3.szMaster ){
   421       memsys3Unlink(mem3.iMaster);
   422       if( mem3.szMaster>=nBlock ){
   423         return memsys3FromMaster(nBlock);
   424       }
   425     }
   426   }
   427 
   428   /* If none of the above worked, then we fail. */
   429   return 0;
   430 }
   431 
   432 /*
   433 ** Free an outstanding memory allocation.
   434 **
   435 ** This function assumes that the necessary mutexes, if any, are
   436 ** already held by the caller. Hence "Unsafe".
   437 */
   438 void memsys3FreeUnsafe(void *pOld){
   439   Mem3Block *p = (Mem3Block*)pOld;
   440   int i;
   441   u32 size, x;
   442   assert( sqlite3_mutex_held(mem3.mutex) );
   443   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
   444   i = p - mem3.aPool;
   445   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
   446   size = mem3.aPool[i-1].u.hdr.size4x/4;
   447   assert( i+size<=mem3.nPool+1 );
   448   mem3.aPool[i-1].u.hdr.size4x &= ~1;
   449   mem3.aPool[i+size-1].u.hdr.prevSize = size;
   450   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
   451   memsys3Link(i);
   452 
   453   /* Try to expand the master using the newly freed chunk */
   454   if( mem3.iMaster ){
   455     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
   456       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
   457       mem3.iMaster -= size;
   458       mem3.szMaster += size;
   459       memsys3Unlink(mem3.iMaster);
   460       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
   461       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
   462       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
   463     }
   464     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
   465     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
   466       memsys3Unlink(mem3.iMaster+mem3.szMaster);
   467       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
   468       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
   469       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
   470     }
   471   }
   472 }
   473 
   474 /*
   475 ** Return the size of an outstanding allocation, in bytes.  The
   476 ** size returned omits the 8-byte header overhead.  This only
   477 ** works for chunks that are currently checked out.
   478 */
   479 static int memsys3Size(void *p){
   480   Mem3Block *pBlock;
   481   if( p==0 ) return 0;
   482   pBlock = (Mem3Block*)p;
   483   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
   484   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
   485 }
   486 
   487 /*
   488 ** Round up a request size to the next valid allocation size.
   489 */
   490 static int memsys3Roundup(int n){
   491   if( n<=12 ){
   492     return 12;
   493   }else{
   494     return ((n+11)&~7) - 4;
   495   }
   496 }
   497 
   498 /*
   499 ** Allocate nBytes of memory.
   500 */
   501 static void *memsys3Malloc(int nBytes){
   502   sqlite3_int64 *p;
   503   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
   504   memsys3Enter();
   505   p = memsys3MallocUnsafe(nBytes);
   506   memsys3Leave();
   507   return (void*)p; 
   508 }
   509 
   510 /*
   511 ** Free memory.
   512 */
   513 void memsys3Free(void *pPrior){
   514   assert( pPrior );
   515   memsys3Enter();
   516   memsys3FreeUnsafe(pPrior);
   517   memsys3Leave();
   518 }
   519 
   520 /*
   521 ** Change the size of an existing memory allocation
   522 */
   523 void *memsys3Realloc(void *pPrior, int nBytes){
   524   int nOld;
   525   void *p;
   526   if( pPrior==0 ){
   527     return sqlite3_malloc(nBytes);
   528   }
   529   if( nBytes<=0 ){
   530     sqlite3_free(pPrior);
   531     return 0;
   532   }
   533   nOld = memsys3Size(pPrior);
   534   if( nBytes<=nOld && nBytes>=nOld-128 ){
   535     return pPrior;
   536   }
   537   memsys3Enter();
   538   p = memsys3MallocUnsafe(nBytes);
   539   if( p ){
   540     if( nOld<nBytes ){
   541       memcpy(p, pPrior, nOld);
   542     }else{
   543       memcpy(p, pPrior, nBytes);
   544     }
   545     memsys3FreeUnsafe(pPrior);
   546   }
   547   memsys3Leave();
   548   return p;
   549 }
   550 
   551 /*
   552 ** Initialize this module.
   553 */
   554 static int memsys3Init(void *NotUsed){
   555   if( !sqlite3GlobalConfig.pHeap ){
   556     return SQLITE_ERROR;
   557   }
   558 
   559   /* Store a pointer to the memory block in global structure mem3. */
   560   assert( sizeof(Mem3Block)==8 );
   561   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
   562   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
   563 
   564   /* Initialize the master block. */
   565   mem3.szMaster = mem3.nPool;
   566   mem3.mnMaster = mem3.szMaster;
   567   mem3.iMaster = 1;
   568   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
   569   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
   570   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
   571 
   572   return SQLITE_OK;
   573 }
   574 
   575 /*
   576 ** Deinitialize this module.
   577 */
   578 static void memsys3Shutdown(void *NotUsed){
   579   return;
   580 }
   581 
   582 
   583 
   584 /*
   585 ** Open the file indicated and write a log of all unfreed memory 
   586 ** allocations into that log.
   587 */
   588 void sqlite3Memsys3Dump(const char *zFilename){
   589 #ifdef SQLITE_DEBUG
   590   FILE *out;
   591   int i, j;
   592   u32 size;
   593   if( zFilename==0 || zFilename[0]==0 ){
   594     out = stdout;
   595   }else{
   596     out = fopen(zFilename, "w");
   597     if( out==0 ){
   598       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
   599                       zFilename);
   600       return;
   601     }
   602   }
   603   memsys3Enter();
   604   fprintf(out, "CHUNKS:\n");
   605   for(i=1; i<=mem3.nPool; i+=size/4){
   606     size = mem3.aPool[i-1].u.hdr.size4x;
   607     if( size/4<=1 ){
   608       fprintf(out, "%p size error\n", &mem3.aPool[i]);
   609       assert( 0 );
   610       break;
   611     }
   612     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
   613       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
   614       assert( 0 );
   615       break;
   616     }
   617     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
   618       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
   619       assert( 0 );
   620       break;
   621     }
   622     if( size&1 ){
   623       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
   624     }else{
   625       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
   626                   i==mem3.iMaster ? " **master**" : "");
   627     }
   628   }
   629   for(i=0; i<MX_SMALL-1; i++){
   630     if( mem3.aiSmall[i]==0 ) continue;
   631     fprintf(out, "small(%2d):", i);
   632     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
   633       fprintf(out, " %p(%d)", &mem3.aPool[j],
   634               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
   635     }
   636     fprintf(out, "\n"); 
   637   }
   638   for(i=0; i<N_HASH; i++){
   639     if( mem3.aiHash[i]==0 ) continue;
   640     fprintf(out, "hash(%2d):", i);
   641     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
   642       fprintf(out, " %p(%d)", &mem3.aPool[j],
   643               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
   644     }
   645     fprintf(out, "\n"); 
   646   }
   647   fprintf(out, "master=%d\n", mem3.iMaster);
   648   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
   649   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
   650   sqlite3_mutex_leave(mem3.mutex);
   651   if( out==stdout ){
   652     fflush(stdout);
   653   }else{
   654     fclose(out);
   655   }
   656 #endif
   657 }
   658 
   659 /*
   660 ** This routine is the only routine in this file with external 
   661 ** linkage.
   662 **
   663 ** Populate the low-level memory allocation function pointers in
   664 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
   665 ** arguments specify the block of memory to manage.
   666 **
   667 ** This routine is only called by sqlite3_config(), and therefore
   668 ** is not required to be threadsafe (it is not).
   669 */
   670 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
   671   static const sqlite3_mem_methods mempoolMethods = {
   672      memsys3Malloc,
   673      memsys3Free,
   674      memsys3Realloc,
   675      memsys3Size,
   676      memsys3Roundup,
   677      memsys3Init,
   678      memsys3Shutdown,
   679      0
   680   };
   681   return &mempoolMethods;
   682 }
   683 
   684 #endif /* SQLITE_ENABLE_MEMSYS3 */