Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 ** $Id: expr.c,v 1.399 2008/10/11 16:47:36 drh Exp $
17 #include "sqliteInt.h"
21 ** Return the 'affinity' of the expression pExpr if any.
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
28 ** i.e. the WHERE clause expresssions in the following statements all
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
36 char sqlite3ExprAffinity(Expr *pExpr){
39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
41 #ifndef SQLITE_OMIT_CAST
43 return sqlite3AffinityType(&pExpr->token);
46 if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
47 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
48 ** a TK_COLUMN but was previously evaluated and cached in a register */
49 int j = pExpr->iColumn;
50 if( j<0 ) return SQLITE_AFF_INTEGER;
51 assert( pExpr->pTab && j<pExpr->pTab->nCol );
52 return pExpr->pTab->aCol[j].affinity;
54 return pExpr->affinity;
58 ** Set the collating sequence for expression pExpr to be the collating
59 ** sequence named by pToken. Return a pointer to the revised expression.
60 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
61 ** flag. An explicit collating sequence will override implicit
62 ** collating sequences.
64 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
65 char *zColl = 0; /* Dequoted name of collation sequence */
67 sqlite3 *db = pParse->db;
68 zColl = sqlite3NameFromToken(db, pCollName);
70 pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
73 pExpr->flags |= EP_ExpCollate;
76 sqlite3DbFree(db, zColl);
81 ** Return the default collation sequence for the expression pExpr. If
82 ** there is no default collation type, return 0.
84 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
92 if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
93 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
94 ** a TK_COLUMN but was previously evaluated and cached in a register */
98 sqlite3 *db = pParse->db;
99 zColl = p->pTab->aCol[j].zColl;
100 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
101 pExpr->pColl = pColl;
105 if( op!=TK_CAST && op!=TK_UPLUS ){
110 if( sqlite3CheckCollSeq(pParse, pColl) ){
117 ** pExpr is an operand of a comparison operator. aff2 is the
118 ** type affinity of the other operand. This routine returns the
119 ** type affinity that should be used for the comparison operator.
121 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
122 char aff1 = sqlite3ExprAffinity(pExpr);
124 /* Both sides of the comparison are columns. If one has numeric
125 ** affinity, use that. Otherwise use no affinity.
127 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
128 return SQLITE_AFF_NUMERIC;
130 return SQLITE_AFF_NONE;
132 }else if( !aff1 && !aff2 ){
133 /* Neither side of the comparison is a column. Compare the
136 return SQLITE_AFF_NONE;
138 /* One side is a column, the other is not. Use the columns affinity. */
139 assert( aff1==0 || aff2==0 );
140 return (aff1 + aff2);
145 ** pExpr is a comparison operator. Return the type affinity that should
146 ** be applied to both operands prior to doing the comparison.
148 static char comparisonAffinity(Expr *pExpr){
150 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
151 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
153 assert( pExpr->pLeft );
154 aff = sqlite3ExprAffinity(pExpr->pLeft);
156 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
158 else if( pExpr->pSelect ){
159 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
162 aff = SQLITE_AFF_NONE;
168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
169 ** idx_affinity is the affinity of an indexed column. Return true
170 ** if the index with affinity idx_affinity may be used to implement
171 ** the comparison in pExpr.
173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
174 char aff = comparisonAffinity(pExpr);
176 case SQLITE_AFF_NONE:
178 case SQLITE_AFF_TEXT:
179 return idx_affinity==SQLITE_AFF_TEXT;
181 return sqlite3IsNumericAffinity(idx_affinity);
186 ** Return the P5 value that should be used for a binary comparison
187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
190 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
191 aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
196 ** Return a pointer to the collation sequence that should be used by
197 ** a binary comparison operator comparing pLeft and pRight.
199 ** If the left hand expression has a collating sequence type, then it is
200 ** used. Otherwise the collation sequence for the right hand expression
201 ** is used, or the default (BINARY) if neither expression has a collating
204 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
205 ** it is not considered.
207 CollSeq *sqlite3BinaryCompareCollSeq(
214 if( pLeft->flags & EP_ExpCollate ){
215 assert( pLeft->pColl );
216 pColl = pLeft->pColl;
217 }else if( pRight && pRight->flags & EP_ExpCollate ){
218 assert( pRight->pColl );
219 pColl = pRight->pColl;
221 pColl = sqlite3ExprCollSeq(pParse, pLeft);
223 pColl = sqlite3ExprCollSeq(pParse, pRight);
230 ** Generate the operands for a comparison operation. Before
231 ** generating the code for each operand, set the EP_AnyAff
232 ** flag on the expression so that it will be able to used a
233 ** cached column value that has previously undergone an
236 static void codeCompareOperands(
237 Parse *pParse, /* Parsing and code generating context */
238 Expr *pLeft, /* The left operand */
239 int *pRegLeft, /* Register where left operand is stored */
240 int *pFreeLeft, /* Free this register when done */
241 Expr *pRight, /* The right operand */
242 int *pRegRight, /* Register where right operand is stored */
243 int *pFreeRight /* Write temp register for right operand there */
245 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
246 pLeft->flags |= EP_AnyAff;
247 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
248 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
249 pRight->flags |= EP_AnyAff;
250 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
254 ** Generate code for a comparison operator.
256 static int codeCompare(
257 Parse *pParse, /* The parsing (and code generating) context */
258 Expr *pLeft, /* The left operand */
259 Expr *pRight, /* The right operand */
260 int opcode, /* The comparison opcode */
261 int in1, int in2, /* Register holding operands */
262 int dest, /* Jump here if true. */
263 int jumpIfNull /* If true, jump if either operand is NULL */
269 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
270 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
271 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
272 (void*)p4, P4_COLLSEQ);
273 sqlite3VdbeChangeP5(pParse->pVdbe, p5);
274 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
275 sqlite3ExprCacheAffinityChange(pParse, in1, 1);
276 sqlite3ExprCacheAffinityChange(pParse, in2, 1);
281 #if SQLITE_MAX_EXPR_DEPTH>0
283 ** Check that argument nHeight is less than or equal to the maximum
284 ** expression depth allowed. If it is not, leave an error message in
287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
289 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
290 if( nHeight>mxHeight ){
291 sqlite3ErrorMsg(pParse,
292 "Expression tree is too large (maximum depth %d)", mxHeight
299 /* The following three functions, heightOfExpr(), heightOfExprList()
300 ** and heightOfSelect(), are used to determine the maximum height
301 ** of any expression tree referenced by the structure passed as the
304 ** If this maximum height is greater than the current value pointed
305 ** to by pnHeight, the second parameter, then set *pnHeight to that
308 static void heightOfExpr(Expr *p, int *pnHeight){
310 if( p->nHeight>*pnHeight ){
311 *pnHeight = p->nHeight;
315 static void heightOfExprList(ExprList *p, int *pnHeight){
318 for(i=0; i<p->nExpr; i++){
319 heightOfExpr(p->a[i].pExpr, pnHeight);
323 static void heightOfSelect(Select *p, int *pnHeight){
325 heightOfExpr(p->pWhere, pnHeight);
326 heightOfExpr(p->pHaving, pnHeight);
327 heightOfExpr(p->pLimit, pnHeight);
328 heightOfExpr(p->pOffset, pnHeight);
329 heightOfExprList(p->pEList, pnHeight);
330 heightOfExprList(p->pGroupBy, pnHeight);
331 heightOfExprList(p->pOrderBy, pnHeight);
332 heightOfSelect(p->pPrior, pnHeight);
337 ** Set the Expr.nHeight variable in the structure passed as an
338 ** argument. An expression with no children, Expr.pList or
339 ** Expr.pSelect member has a height of 1. Any other expression
340 ** has a height equal to the maximum height of any other
341 ** referenced Expr plus one.
343 static void exprSetHeight(Expr *p){
345 heightOfExpr(p->pLeft, &nHeight);
346 heightOfExpr(p->pRight, &nHeight);
347 heightOfExprList(p->pList, &nHeight);
348 heightOfSelect(p->pSelect, &nHeight);
349 p->nHeight = nHeight + 1;
353 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
354 ** the height is greater than the maximum allowed expression depth,
355 ** leave an error in pParse.
357 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
359 sqlite3ExprCheckHeight(pParse, p->nHeight);
363 ** Return the maximum height of any expression tree referenced
364 ** by the select statement passed as an argument.
366 int sqlite3SelectExprHeight(Select *p){
368 heightOfSelect(p, &nHeight);
372 #define exprSetHeight(y)
373 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
376 ** Construct a new expression node and return a pointer to it. Memory
377 ** for this node is obtained from sqlite3_malloc(). The calling function
378 ** is responsible for making sure the node eventually gets freed.
381 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
382 int op, /* Expression opcode */
383 Expr *pLeft, /* Left operand */
384 Expr *pRight, /* Right operand */
385 const Token *pToken /* Argument token */
388 pNew = sqlite3DbMallocZero(db, sizeof(Expr));
390 /* When malloc fails, delete pLeft and pRight. Expressions passed to
391 ** this function must always be allocated with sqlite3Expr() for this
394 sqlite3ExprDelete(db, pLeft);
395 sqlite3ExprDelete(db, pRight);
400 pNew->pRight = pRight;
402 pNew->span.z = (u8*)"";
404 assert( pToken->dyn==0 );
405 pNew->span = pNew->token = *pToken;
408 if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
409 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
411 if( pRight->flags & EP_ExpCollate ){
412 pNew->flags |= EP_ExpCollate;
413 pNew->pColl = pRight->pColl;
416 if( pLeft->flags & EP_ExpCollate ){
417 pNew->flags |= EP_ExpCollate;
418 pNew->pColl = pLeft->pColl;
427 ** Works like sqlite3Expr() except that it takes an extra Parse*
428 ** argument and notifies the associated connection object if malloc fails.
431 Parse *pParse, /* Parsing context */
432 int op, /* Expression opcode */
433 Expr *pLeft, /* Left operand */
434 Expr *pRight, /* Right operand */
435 const Token *pToken /* Argument token */
437 Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
439 sqlite3ExprCheckHeight(pParse, p->nHeight);
445 ** When doing a nested parse, you can include terms in an expression
446 ** that look like this: #1 #2 ... These terms refer to registers
447 ** in the virtual machine. #N is the N-th register.
449 ** This routine is called by the parser to deal with on of those terms.
450 ** It immediately generates code to store the value in a memory location.
451 ** The returns an expression that will code to extract the value from
452 ** that memory location as needed.
454 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
455 Vdbe *v = pParse->pVdbe;
457 if( pParse->nested==0 ){
458 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
459 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
462 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
464 return 0; /* Malloc failed */
466 p->iTable = atoi((char*)&pToken->z[1]);
471 ** Join two expressions using an AND operator. If either expression is
472 ** NULL, then just return the other expression.
474 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
477 }else if( pRight==0 ){
480 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
485 ** Set the Expr.span field of the given expression to span all
486 ** text between the two given tokens. Both tokens must be pointing
487 ** at the same string.
489 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
493 pExpr->span.z = pLeft->z;
494 pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
499 ** Construct a new expression node for a function with multiple
502 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
504 sqlite3 *db = pParse->db;
506 pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
508 sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
511 pNew->op = TK_FUNCTION;
513 assert( pToken->dyn==0 );
514 pNew->token = *pToken;
515 pNew->span = pNew->token;
517 sqlite3ExprSetHeight(pParse, pNew);
522 ** Assign a variable number to an expression that encodes a wildcard
523 ** in the original SQL statement.
525 ** Wildcards consisting of a single "?" are assigned the next sequential
528 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
529 ** sure "nnn" is not too be to avoid a denial of service attack when
530 ** the SQL statement comes from an external source.
532 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
533 ** as the previous instance of the same wildcard. Or if this is the first
534 ** instance of the wildcard, the next sequenial variable number is
537 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
539 sqlite3 *db = pParse->db;
541 if( pExpr==0 ) return;
542 pToken = &pExpr->token;
543 assert( pToken->n>=1 );
544 assert( pToken->z!=0 );
545 assert( pToken->z[0]!=0 );
547 /* Wildcard of the form "?". Assign the next variable number */
548 pExpr->iTable = ++pParse->nVar;
549 }else if( pToken->z[0]=='?' ){
550 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
551 ** use it as the variable number */
553 pExpr->iTable = i = atoi((char*)&pToken->z[1]);
556 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
557 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
558 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
559 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
560 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
562 if( i>pParse->nVar ){
566 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
567 ** number as the prior appearance of the same name, or if the name
568 ** has never appeared before, reuse the same variable number
572 for(i=0; i<pParse->nVarExpr; i++){
574 if( (pE = pParse->apVarExpr[i])!=0
576 && memcmp(pE->token.z, pToken->z, n)==0 ){
577 pExpr->iTable = pE->iTable;
581 if( i>=pParse->nVarExpr ){
582 pExpr->iTable = ++pParse->nVar;
583 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
584 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
586 sqlite3DbReallocOrFree(
589 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
592 if( !db->mallocFailed ){
593 assert( pParse->apVarExpr!=0 );
594 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
598 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
599 sqlite3ErrorMsg(pParse, "too many SQL variables");
604 ** Clear an expression structure without deleting the structure itself.
605 ** Substructure is deleted.
607 void sqlite3ExprClear(sqlite3 *db, Expr *p){
608 if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
609 if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
610 sqlite3ExprDelete(db, p->pLeft);
611 sqlite3ExprDelete(db, p->pRight);
612 sqlite3ExprListDelete(db, p->pList);
613 sqlite3SelectDelete(db, p->pSelect);
617 ** Recursively delete an expression tree.
619 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
621 sqlite3ExprClear(db, p);
622 sqlite3DbFree(db, p);
626 ** The Expr.token field might be a string literal that is quoted.
627 ** If so, remove the quotation marks.
629 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
630 if( ExprHasAnyProperty(p, EP_Dequoted) ){
633 ExprSetProperty(p, EP_Dequoted);
634 if( p->token.dyn==0 ){
635 sqlite3TokenCopy(db, &p->token, &p->token);
637 sqlite3Dequote((char*)p->token.z);
641 ** The following group of routines make deep copies of expressions,
642 ** expression lists, ID lists, and select statements. The copies can
643 ** be deleted (by being passed to their respective ...Delete() routines)
644 ** without effecting the originals.
646 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
647 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
648 ** by subsequent calls to sqlite*ListAppend() routines.
650 ** Any tables that the SrcList might point to are not duplicated.
652 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
655 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
656 if( pNew==0 ) return 0;
657 memcpy(pNew, p, sizeof(*pNew));
659 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
662 assert( pNew->token.z==0 );
665 pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
666 pNew->pRight = sqlite3ExprDup(db, p->pRight);
667 pNew->pList = sqlite3ExprListDup(db, p->pList);
668 pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
671 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
672 if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
675 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
681 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
683 struct ExprList_item *pItem, *pOldItem;
686 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
687 if( pNew==0 ) return 0;
689 pNew->nExpr = pNew->nAlloc = p->nExpr;
690 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
692 sqlite3DbFree(db, pNew);
696 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
697 Expr *pNewExpr, *pOldExpr;
698 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
699 if( pOldExpr->span.z!=0 && pNewExpr ){
700 /* Always make a copy of the span for top-level expressions in the
701 ** expression list. The logic in SELECT processing that determines
702 ** the names of columns in the result set needs this information */
703 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
705 assert( pNewExpr==0 || pNewExpr->span.z!=0
706 || pOldExpr->span.z==0
707 || db->mallocFailed );
708 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
709 pItem->sortOrder = pOldItem->sortOrder;
711 pItem->iCol = pOldItem->iCol;
712 pItem->iAlias = pOldItem->iAlias;
718 ** If cursors, triggers, views and subqueries are all omitted from
719 ** the build, then none of the following routines, except for
720 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
721 ** called with a NULL argument.
723 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
724 || !defined(SQLITE_OMIT_SUBQUERY)
725 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
730 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
731 pNew = sqlite3DbMallocRaw(db, nByte );
732 if( pNew==0 ) return 0;
733 pNew->nSrc = pNew->nAlloc = p->nSrc;
734 for(i=0; i<p->nSrc; i++){
735 struct SrcList_item *pNewItem = &pNew->a[i];
736 struct SrcList_item *pOldItem = &p->a[i];
738 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
739 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
740 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
741 pNewItem->jointype = pOldItem->jointype;
742 pNewItem->iCursor = pOldItem->iCursor;
743 pNewItem->isPopulated = pOldItem->isPopulated;
744 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
745 pNewItem->notIndexed = pOldItem->notIndexed;
746 pNewItem->pIndex = pOldItem->pIndex;
747 pTab = pNewItem->pTab = pOldItem->pTab;
751 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
752 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
753 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
754 pNewItem->colUsed = pOldItem->colUsed;
758 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
762 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
763 if( pNew==0 ) return 0;
764 pNew->nId = pNew->nAlloc = p->nId;
765 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
767 sqlite3DbFree(db, pNew);
770 for(i=0; i<p->nId; i++){
771 struct IdList_item *pNewItem = &pNew->a[i];
772 struct IdList_item *pOldItem = &p->a[i];
773 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
774 pNewItem->idx = pOldItem->idx;
778 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
781 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
782 if( pNew==0 ) return 0;
783 pNew->pEList = sqlite3ExprListDup(db, p->pEList);
784 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
785 pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
786 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
787 pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
788 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
790 pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
791 pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
792 pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
795 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
796 pNew->pRightmost = 0;
797 pNew->addrOpenEphm[0] = -1;
798 pNew->addrOpenEphm[1] = -1;
799 pNew->addrOpenEphm[2] = -1;
803 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
811 ** Add a new element to the end of an expression list. If pList is
812 ** initially NULL, then create a new expression list.
814 ExprList *sqlite3ExprListAppend(
815 Parse *pParse, /* Parsing context */
816 ExprList *pList, /* List to which to append. Might be NULL */
817 Expr *pExpr, /* Expression to be appended */
818 Token *pName /* AS keyword for the expression */
820 sqlite3 *db = pParse->db;
822 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
826 assert( pList->nAlloc==0 );
828 if( pList->nAlloc<=pList->nExpr ){
829 struct ExprList_item *a;
830 int n = pList->nAlloc*2 + 4;
831 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
838 assert( pList->a!=0 );
839 if( pExpr || pName ){
840 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
841 memset(pItem, 0, sizeof(*pItem));
842 pItem->zName = sqlite3NameFromToken(db, pName);
843 pItem->pExpr = pExpr;
849 /* Avoid leaking memory if malloc has failed. */
850 sqlite3ExprDelete(db, pExpr);
851 sqlite3ExprListDelete(db, pList);
856 ** If the expression list pEList contains more than iLimit elements,
857 ** leave an error message in pParse.
859 void sqlite3ExprListCheckLength(
864 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
865 testcase( pEList && pEList->nExpr==mx );
866 testcase( pEList && pEList->nExpr==mx+1 );
867 if( pEList && pEList->nExpr>mx ){
868 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
873 ** Delete an entire expression list.
875 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
877 struct ExprList_item *pItem;
878 if( pList==0 ) return;
879 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
880 assert( pList->nExpr<=pList->nAlloc );
881 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
882 sqlite3ExprDelete(db, pItem->pExpr);
883 sqlite3DbFree(db, pItem->zName);
885 sqlite3DbFree(db, pList->a);
886 sqlite3DbFree(db, pList);
890 ** These routines are Walker callbacks. Walker.u.pi is a pointer
891 ** to an integer. These routines are checking an expression to see
892 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
895 ** These callback routines are used to implement the following:
897 ** sqlite3ExprIsConstant()
898 ** sqlite3ExprIsConstantNotJoin()
899 ** sqlite3ExprIsConstantOrFunction()
902 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
904 /* If pWalker->u.i is 3 then any term of the expression that comes from
905 ** the ON or USING clauses of a join disqualifies the expression
906 ** from being considered constant. */
907 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
913 /* Consider functions to be constant if all their arguments are constant
914 ** and pWalker->u.i==2 */
916 if( pWalker->u.i==2 ) return 0;
921 case TK_AGG_FUNCTION:
923 #ifndef SQLITE_OMIT_SUBQUERY
926 testcase( pExpr->op==TK_SELECT );
927 testcase( pExpr->op==TK_EXISTS );
929 testcase( pExpr->op==TK_ID );
930 testcase( pExpr->op==TK_COLUMN );
931 testcase( pExpr->op==TK_DOT );
932 testcase( pExpr->op==TK_AGG_FUNCTION );
933 testcase( pExpr->op==TK_AGG_COLUMN );
940 static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
944 static int exprIsConst(Expr *p, int initFlag){
947 w.xExprCallback = exprNodeIsConstant;
948 w.xSelectCallback = selectNodeIsConstant;
949 sqlite3WalkExpr(&w, p);
954 ** Walk an expression tree. Return 1 if the expression is constant
955 ** and 0 if it involves variables or function calls.
957 ** For the purposes of this function, a double-quoted string (ex: "abc")
958 ** is considered a variable but a single-quoted string (ex: 'abc') is
961 int sqlite3ExprIsConstant(Expr *p){
962 return exprIsConst(p, 1);
966 ** Walk an expression tree. Return 1 if the expression is constant
967 ** that does no originate from the ON or USING clauses of a join.
968 ** Return 0 if it involves variables or function calls or terms from
969 ** an ON or USING clause.
971 int sqlite3ExprIsConstantNotJoin(Expr *p){
972 return exprIsConst(p, 3);
976 ** Walk an expression tree. Return 1 if the expression is constant
977 ** or a function call with constant arguments. Return and 0 if there
978 ** are any variables.
980 ** For the purposes of this function, a double-quoted string (ex: "abc")
981 ** is considered a variable but a single-quoted string (ex: 'abc') is
984 int sqlite3ExprIsConstantOrFunction(Expr *p){
985 return exprIsConst(p, 2);
989 ** If the expression p codes a constant integer that is small enough
990 ** to fit in a 32-bit integer, return 1 and put the value of the integer
991 ** in *pValue. If the expression is not an integer or if it is too big
992 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
994 int sqlite3ExprIsInteger(Expr *p, int *pValue){
996 if( p->flags & EP_IntValue ){
1002 rc = sqlite3GetInt32((char*)p->token.z, pValue);
1006 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1011 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1021 p->flags |= EP_IntValue;
1022 p->iTable = *pValue;
1028 ** Return TRUE if the given string is a row-id column name.
1030 int sqlite3IsRowid(const char *z){
1031 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1032 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1033 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1038 int sqlite3_enable_in_opt = 1;
1040 #define sqlite3_enable_in_opt 1
1044 ** Return true if the IN operator optimization is enabled and
1045 ** the SELECT statement p exists and is of the
1048 ** SELECT <column> FROM <table>
1050 ** If this is the case, it may be possible to use an existing table
1051 ** or index instead of generating an epheremal table.
1053 #ifndef SQLITE_OMIT_SUBQUERY
1054 static int isCandidateForInOpt(Select *p){
1058 if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
1059 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1060 if( p->pPrior ) return 0; /* Not a compound SELECT */
1061 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1062 return 0; /* No DISTINCT keyword and no aggregate functions */
1064 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */
1065 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1066 if( p->pOffset ) return 0;
1067 if( p->pWhere ) return 0; /* Has no WHERE clause */
1069 if( pSrc==0 ) return 0; /* A single table in the FROM clause */
1070 if( pSrc->nSrc!=1 ) return 0;
1071 if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */
1072 pTab = pSrc->a[0].pTab;
1073 if( pTab==0 ) return 0;
1074 if( pTab->pSelect ) return 0; /* FROM clause is not a view */
1075 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1077 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1078 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1081 #endif /* SQLITE_OMIT_SUBQUERY */
1084 ** This function is used by the implementation of the IN (...) operator.
1085 ** It's job is to find or create a b-tree structure that may be used
1086 ** either to test for membership of the (...) set or to iterate through
1087 ** its members, skipping duplicates.
1089 ** The cursor opened on the structure (database table, database index
1090 ** or ephermal table) is stored in pX->iTable before this function returns.
1091 ** The returned value indicates the structure type, as follows:
1093 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1094 ** IN_INDEX_INDEX - The cursor was opened on a database index.
1095 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1096 ** populated epheremal table.
1098 ** An existing structure may only be used if the SELECT is of the simple
1101 ** SELECT <column> FROM <table>
1103 ** If prNotFound parameter is 0, then the structure will be used to iterate
1104 ** through the set members, skipping any duplicates. In this case an
1105 ** epheremal table must be used unless the selected <column> is guaranteed
1106 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1107 ** is unique by virtue of a constraint or implicit index.
1109 ** If the prNotFound parameter is not 0, then the structure will be used
1110 ** for fast set membership tests. In this case an epheremal table must
1111 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1112 ** be found with <column> as its left-most column.
1114 ** When the structure is being used for set membership tests, the user
1115 ** needs to know whether or not the structure contains an SQL NULL
1116 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1117 ** If there is a chance that the structure may contain a NULL value at
1118 ** runtime, then a register is allocated and the register number written
1119 ** to *prNotFound. If there is no chance that the structure contains a
1120 ** NULL value, then *prNotFound is left unchanged.
1122 ** If a register is allocated and its location stored in *prNotFound, then
1123 ** its initial value is NULL. If the structure does not remain constant
1124 ** for the duration of the query (i.e. the set is a correlated sub-select),
1125 ** the value of the allocated register is reset to NULL each time the
1126 ** structure is repopulated. This allows the caller to use vdbe code
1127 ** equivalent to the following:
1129 ** if( register==NULL ){
1130 ** has_null = <test if data structure contains null>
1134 ** in order to avoid running the <test if data structure contains null>
1135 ** test more often than is necessary.
1137 #ifndef SQLITE_OMIT_SUBQUERY
1138 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1141 int iTab = pParse->nTab++;
1142 int mustBeUnique = !prNotFound;
1144 /* The follwing if(...) expression is true if the SELECT is of the
1147 ** SELECT <column> FROM <table>
1149 ** If this is the case, it may be possible to use an existing table
1150 ** or index instead of generating an epheremal table.
1153 if( isCandidateForInOpt(p) ){
1154 sqlite3 *db = pParse->db;
1156 Expr *pExpr = p->pEList->a[0].pExpr;
1157 int iCol = pExpr->iColumn;
1158 Vdbe *v = sqlite3GetVdbe(pParse);
1160 /* This function is only called from two places. In both cases the vdbe
1161 ** has already been allocated. So assume sqlite3GetVdbe() is always
1166 int iMem = ++pParse->nMem;
1168 Table *pTab = p->pSrc->a[0].pTab;
1169 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1170 sqlite3VdbeUsesBtree(v, iDb);
1172 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1173 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1175 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1176 eType = IN_INDEX_ROWID;
1178 sqlite3VdbeJumpHere(v, iAddr);
1180 /* The collation sequence used by the comparison. If an index is to
1181 ** be used in place of a temp-table, it must be ordered according
1182 ** to this collation sequence.
1184 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1186 /* Check that the affinity that will be used to perform the
1187 ** comparison is the same as the affinity of the column. If
1188 ** it is not, it is not possible to use any index.
1190 Table *pTab = p->pSrc->a[0].pTab;
1191 char aff = comparisonAffinity(pX);
1192 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1194 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1195 if( (pIdx->aiColumn[0]==iCol)
1196 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1197 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1200 int iMem = ++pParse->nMem;
1204 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1205 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1206 sqlite3VdbeUsesBtree(v, iDb);
1208 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1209 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1211 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
1212 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1213 pKey,P4_KEYINFO_HANDOFF);
1214 VdbeComment((v, "%s", pIdx->zName));
1215 eType = IN_INDEX_INDEX;
1217 sqlite3VdbeJumpHere(v, iAddr);
1218 if( prNotFound && !pTab->aCol[iCol].notNull ){
1219 *prNotFound = ++pParse->nMem;
1227 int rMayHaveNull = 0;
1228 eType = IN_INDEX_EPH;
1230 *prNotFound = rMayHaveNull = ++pParse->nMem;
1231 }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){
1232 eType = IN_INDEX_ROWID;
1234 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1243 ** Generate code for scalar subqueries used as an expression
1244 ** and IN operators. Examples:
1246 ** (SELECT a FROM b) -- subquery
1247 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1248 ** x IN (4,5,11) -- IN operator with list on right-hand side
1249 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1251 ** The pExpr parameter describes the expression that contains the IN
1252 ** operator or subquery.
1254 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1255 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1256 ** to some integer key column of a table B-Tree. In this case, use an
1257 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1258 ** (slower) variable length keys B-Tree.
1260 #ifndef SQLITE_OMIT_SUBQUERY
1261 void sqlite3CodeSubselect(
1267 int testAddr = 0; /* One-time test address */
1268 Vdbe *v = sqlite3GetVdbe(pParse);
1272 /* This code must be run in its entirety every time it is encountered
1273 ** if any of the following is true:
1275 ** * The right-hand side is a correlated subquery
1276 ** * The right-hand side is an expression list containing variables
1277 ** * We are inside a trigger
1279 ** If all of the above are false, then we can run this code just once
1280 ** save the results, and reuse the same result on subsequent invocations.
1282 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1283 int mem = ++pParse->nMem;
1284 sqlite3VdbeAddOp1(v, OP_If, mem);
1285 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1286 assert( testAddr>0 || pParse->db->mallocFailed );
1289 switch( pExpr->op ){
1293 int addr; /* Address of OP_OpenEphemeral instruction */
1294 Expr *pLeft = pExpr->pLeft;
1297 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1300 affinity = sqlite3ExprAffinity(pLeft);
1302 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1303 ** expression it is handled the same way. A virtual table is
1304 ** filled with single-field index keys representing the results
1305 ** from the SELECT or the <exprlist>.
1307 ** If the 'x' expression is a column value, or the SELECT...
1308 ** statement returns a column value, then the affinity of that
1309 ** column is used to build the index keys. If both 'x' and the
1310 ** SELECT... statement are columns, then numeric affinity is used
1311 ** if either column has NUMERIC or INTEGER affinity. If neither
1312 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1315 pExpr->iTable = pParse->nTab++;
1316 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1317 memset(&keyInfo, 0, sizeof(keyInfo));
1320 if( pExpr->pSelect ){
1321 /* Case 1: expr IN (SELECT ...)
1323 ** Generate code to write the results of the select into the temporary
1324 ** table allocated and opened above.
1330 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1331 dest.affinity = (int)affinity;
1332 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1333 if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
1336 pEList = pExpr->pSelect->pEList;
1337 if( pEList && pEList->nExpr>0 ){
1338 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1339 pEList->a[0].pExpr);
1341 }else if( pExpr->pList ){
1342 /* Case 2: expr IN (exprlist)
1344 ** For each expression, build an index key from the evaluation and
1345 ** store it in the temporary table. If <expr> is a column, then use
1346 ** that columns affinity when building index keys. If <expr> is not
1347 ** a column, use numeric affinity.
1350 ExprList *pList = pExpr->pList;
1351 struct ExprList_item *pItem;
1355 affinity = SQLITE_AFF_NONE;
1357 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1359 /* Loop through each expression in <exprlist>. */
1360 r1 = sqlite3GetTempReg(pParse);
1361 r2 = sqlite3GetTempReg(pParse);
1362 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1363 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1364 Expr *pE2 = pItem->pExpr;
1366 /* If the expression is not constant then we will need to
1367 ** disable the test that was generated above that makes sure
1368 ** this code only executes once. Because for a non-constant
1369 ** expression we need to rerun this code each time.
1371 if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1372 sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1376 /* Evaluate the expression and insert it into the temp table */
1377 pParse->disableColCache++;
1378 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1379 assert( pParse->disableColCache>0 );
1380 pParse->disableColCache--;
1383 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
1384 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1386 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1387 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1388 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1391 sqlite3ReleaseTempReg(pParse, r1);
1392 sqlite3ReleaseTempReg(pParse, r2);
1395 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1402 /* This has to be a scalar SELECT. Generate code to put the
1403 ** value of this select in a memory cell and record the number
1404 ** of the memory cell in iColumn.
1406 static const Token one = { (u8*)"1", 0, 1 };
1410 pSel = pExpr->pSelect;
1411 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1412 if( pExpr->op==TK_SELECT ){
1413 dest.eDest = SRT_Mem;
1414 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1415 VdbeComment((v, "Init subquery result"));
1417 dest.eDest = SRT_Exists;
1418 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1419 VdbeComment((v, "Init EXISTS result"));
1421 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1422 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1423 if( sqlite3Select(pParse, pSel, &dest) ){
1426 pExpr->iColumn = dest.iParm;
1432 sqlite3VdbeJumpHere(v, testAddr-1);
1437 #endif /* SQLITE_OMIT_SUBQUERY */
1440 ** Duplicate an 8-byte value
1442 static char *dup8bytes(Vdbe *v, const char *in){
1443 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1451 ** Generate an instruction that will put the floating point
1452 ** value described by z[0..n-1] into register iMem.
1454 ** The z[] string will probably not be zero-terminated. But the
1455 ** z[n] character is guaranteed to be something that does not look
1456 ** like the continuation of the number.
1458 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
1459 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
1463 assert( !isdigit(z[n]) );
1464 sqlite3AtoF(z, &value);
1465 if( sqlite3IsNaN(value) ){
1466 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
1468 if( negateFlag ) value = -value;
1469 zV = dup8bytes(v, (char*)&value);
1470 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1477 ** Generate an instruction that will put the integer describe by
1478 ** text z[0..n-1] into register iMem.
1480 ** The z[] string will probably not be zero-terminated. But the
1481 ** z[n] character is guaranteed to be something that does not look
1482 ** like the continuation of the number.
1484 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
1486 if( pExpr->flags & EP_IntValue ){
1487 int i = pExpr->iTable;
1488 if( negFlag ) i = -i;
1489 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1490 }else if( (z = (char*)pExpr->token.z)!=0 ){
1492 int n = pExpr->token.n;
1493 assert( !isdigit(z[n]) );
1494 if( sqlite3GetInt32(z, &i) ){
1495 if( negFlag ) i = -i;
1496 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1497 }else if( sqlite3FitsIn64Bits(z, negFlag) ){
1500 sqlite3Atoi64(z, &value);
1501 if( negFlag ) value = -value;
1502 zV = dup8bytes(v, (char*)&value);
1503 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1505 codeReal(v, z, n, negFlag, iMem);
1512 ** Generate code that will extract the iColumn-th column from
1513 ** table pTab and store the column value in a register. An effort
1514 ** is made to store the column value in register iReg, but this is
1515 ** not guaranteed. The location of the column value is returned.
1517 ** There must be an open cursor to pTab in iTable when this routine
1518 ** is called. If iColumn<0 then code is generated that extracts the rowid.
1520 ** This routine might attempt to reuse the value of the column that
1521 ** has already been loaded into a register. The value will always
1522 ** be used if it has not undergone any affinity changes. But if
1523 ** an affinity change has occurred, then the cached value will only be
1524 ** used if allowAffChng is true.
1526 int sqlite3ExprCodeGetColumn(
1527 Parse *pParse, /* Parsing and code generating context */
1528 Table *pTab, /* Description of the table we are reading from */
1529 int iColumn, /* Index of the table column */
1530 int iTable, /* The cursor pointing to the table */
1531 int iReg, /* Store results here */
1532 int allowAffChng /* True if prior affinity changes are OK */
1534 Vdbe *v = pParse->pVdbe;
1536 struct yColCache *p;
1538 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
1539 if( p->iTable==iTable && p->iColumn==iColumn
1540 && (!p->affChange || allowAffChng) ){
1542 sqlite3VdbeAddOp0(v, OP_Noop);
1543 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
1550 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
1551 sqlite3VdbeAddOp2(v, op, iTable, iReg);
1552 }else if( pTab==0 ){
1553 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
1555 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
1556 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
1557 sqlite3ColumnDefault(v, pTab, iColumn);
1558 #ifndef SQLITE_OMIT_FLOATING_POINT
1559 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
1560 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
1564 if( pParse->disableColCache==0 ){
1565 i = pParse->iColCache;
1566 p = &pParse->aColCache[i];
1568 p->iColumn = iColumn;
1572 if( i>=ArraySize(pParse->aColCache) ) i = 0;
1573 if( i>pParse->nColCache ) pParse->nColCache = i;
1574 pParse->iColCache = i;
1580 ** Clear all column cache entries associated with the vdbe
1581 ** cursor with cursor number iTable.
1583 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
1585 pParse->nColCache = 0;
1586 pParse->iColCache = 0;
1589 for(i=0; i<pParse->nColCache; i++){
1590 if( pParse->aColCache[i].iTable==iTable ){
1591 testcase( i==pParse->nColCache-1 );
1592 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
1593 pParse->iColCache = pParse->nColCache;
1600 ** Record the fact that an affinity change has occurred on iCount
1601 ** registers starting with iStart.
1603 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
1604 int iEnd = iStart + iCount - 1;
1606 for(i=0; i<pParse->nColCache; i++){
1607 int r = pParse->aColCache[i].iReg;
1608 if( r>=iStart && r<=iEnd ){
1609 pParse->aColCache[i].affChange = 1;
1615 ** Generate code to move content from registers iFrom...iFrom+nReg-1
1616 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
1618 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
1620 if( iFrom==iTo ) return;
1621 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
1622 for(i=0; i<pParse->nColCache; i++){
1623 int x = pParse->aColCache[i].iReg;
1624 if( x>=iFrom && x<iFrom+nReg ){
1625 pParse->aColCache[i].iReg += iTo-iFrom;
1631 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
1632 ** over to iTo..iTo+nReg-1.
1634 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
1636 if( iFrom==iTo ) return;
1637 for(i=0; i<nReg; i++){
1638 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
1643 ** Return true if any register in the range iFrom..iTo (inclusive)
1644 ** is used as part of the column cache.
1646 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
1648 for(i=0; i<pParse->nColCache; i++){
1649 int r = pParse->aColCache[i].iReg;
1650 if( r>=iFrom && r<=iTo ) return 1;
1656 ** Theres is a value in register iCurrent. We ultimately want
1657 ** the value to be in register iTarget. It might be that
1658 ** iCurrent and iTarget are the same register.
1660 ** We are going to modify the value, so we need to make sure it
1661 ** is not a cached register. If iCurrent is a cached register,
1662 ** then try to move the value over to iTarget. If iTarget is a
1663 ** cached register, then clear the corresponding cache line.
1665 ** Return the register that the value ends up in.
1667 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
1669 assert( pParse->pVdbe!=0 );
1670 if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
1673 if( iCurrent!=iTarget ){
1674 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
1676 for(i=0; i<pParse->nColCache; i++){
1677 if( pParse->aColCache[i].iReg==iTarget ){
1678 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
1679 pParse->iColCache = pParse->nColCache;
1686 ** If the last instruction coded is an ephemeral copy of any of
1687 ** the registers in the nReg registers beginning with iReg, then
1688 ** convert the last instruction from OP_SCopy to OP_Copy.
1690 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
1696 addr = sqlite3VdbeCurrentAddr(v);
1697 pOp = sqlite3VdbeGetOp(v, addr-1);
1698 assert( pOp || pParse->db->mallocFailed );
1699 if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
1700 pOp->opcode = OP_Copy;
1705 ** Generate code to store the value of the iAlias-th alias in register
1706 ** target. The first time this is called, pExpr is evaluated to compute
1707 ** the value of the alias. The value is stored in an auxiliary register
1708 ** and the number of that register is returned. On subsequent calls,
1709 ** the register number is returned without generating any code.
1711 ** Note that in order for this to work, code must be generated in the
1712 ** same order that it is executed.
1714 ** Aliases are numbered starting with 1. So iAlias is in the range
1715 ** of 1 to pParse->nAlias inclusive.
1717 ** pParse->aAlias[iAlias-1] records the register number where the value
1718 ** of the iAlias-th alias is stored. If zero, that means that the
1719 ** alias has not yet been computed.
1721 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
1722 sqlite3 *db = pParse->db;
1724 if( pParse->nAliasAlloc<pParse->nAlias ){
1725 pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
1726 sizeof(pParse->aAlias[0])*pParse->nAlias );
1727 testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
1728 if( db->mallocFailed ) return 0;
1729 memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
1730 (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
1731 pParse->nAliasAlloc = pParse->nAlias;
1733 assert( iAlias>0 && iAlias<=pParse->nAlias );
1734 iReg = pParse->aAlias[iAlias-1];
1736 if( pParse->disableColCache ){
1737 iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
1739 iReg = ++pParse->nMem;
1740 sqlite3ExprCode(pParse, pExpr, iReg);
1741 pParse->aAlias[iAlias-1] = iReg;
1748 ** Generate code into the current Vdbe to evaluate the given
1749 ** expression. Attempt to store the results in register "target".
1750 ** Return the register where results are stored.
1752 ** With this routine, there is no guarantee that results will
1753 ** be stored in target. The result might be stored in some other
1754 ** register if it is convenient to do so. The calling function
1755 ** must check the return code and move the results to the desired
1758 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
1759 Vdbe *v = pParse->pVdbe; /* The VM under construction */
1760 int op; /* The opcode being coded */
1761 int inReg = target; /* Results stored in register inReg */
1762 int regFree1 = 0; /* If non-zero free this temporary register */
1763 int regFree2 = 0; /* If non-zero free this temporary register */
1764 int r1, r2, r3, r4; /* Various register numbers */
1768 assert( v!=0 || db->mallocFailed );
1769 assert( target>0 && target<=pParse->nMem );
1770 if( v==0 ) return 0;
1778 case TK_AGG_COLUMN: {
1779 AggInfo *pAggInfo = pExpr->pAggInfo;
1780 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
1781 if( !pAggInfo->directMode ){
1782 assert( pCol->iMem>0 );
1785 }else if( pAggInfo->useSortingIdx ){
1786 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
1787 pCol->iSorterColumn, target);
1790 /* Otherwise, fall thru into the TK_COLUMN case */
1793 if( pExpr->iTable<0 ){
1794 /* This only happens when coding check constraints */
1795 assert( pParse->ckBase>0 );
1796 inReg = pExpr->iColumn + pParse->ckBase;
1798 testcase( (pExpr->flags & EP_AnyAff)!=0 );
1799 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
1800 pExpr->iColumn, pExpr->iTable, target,
1801 pExpr->flags & EP_AnyAff);
1806 codeInteger(v, pExpr, 0, target);
1810 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
1814 sqlite3DequoteExpr(db, pExpr);
1815 sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
1816 (char*)pExpr->token.z, pExpr->token.n);
1820 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
1823 #ifndef SQLITE_OMIT_BLOB_LITERAL
1828 assert( pExpr->token.n>=3 );
1829 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
1830 assert( pExpr->token.z[1]=='\'' );
1831 assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
1832 n = pExpr->token.n - 3;
1833 z = (char*)pExpr->token.z + 2;
1834 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
1835 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
1840 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
1841 if( pExpr->token.n>1 ){
1842 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
1847 inReg = pExpr->iTable;
1851 inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
1854 #ifndef SQLITE_OMIT_CAST
1856 /* Expressions of the form: CAST(pLeft AS token) */
1858 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
1859 aff = sqlite3AffinityType(&pExpr->token);
1860 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
1861 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
1862 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
1863 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
1864 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
1865 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
1866 testcase( to_op==OP_ToText );
1867 testcase( to_op==OP_ToBlob );
1868 testcase( to_op==OP_ToNumeric );
1869 testcase( to_op==OP_ToInt );
1870 testcase( to_op==OP_ToReal );
1871 if( inReg!=target ){
1872 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
1875 sqlite3VdbeAddOp1(v, to_op, inReg);
1876 testcase( usedAsColumnCache(pParse, inReg, inReg) );
1877 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
1880 #endif /* SQLITE_OMIT_CAST */
1887 assert( TK_LT==OP_Lt );
1888 assert( TK_LE==OP_Le );
1889 assert( TK_GT==OP_Gt );
1890 assert( TK_GE==OP_Ge );
1891 assert( TK_EQ==OP_Eq );
1892 assert( TK_NE==OP_Ne );
1893 testcase( op==TK_LT );
1894 testcase( op==TK_LE );
1895 testcase( op==TK_GT );
1896 testcase( op==TK_GE );
1897 testcase( op==TK_EQ );
1898 testcase( op==TK_NE );
1899 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
1900 pExpr->pRight, &r2, ®Free2);
1901 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
1902 r1, r2, inReg, SQLITE_STOREP2);
1903 testcase( regFree1==0 );
1904 testcase( regFree2==0 );
1919 assert( TK_AND==OP_And );
1920 assert( TK_OR==OP_Or );
1921 assert( TK_PLUS==OP_Add );
1922 assert( TK_MINUS==OP_Subtract );
1923 assert( TK_REM==OP_Remainder );
1924 assert( TK_BITAND==OP_BitAnd );
1925 assert( TK_BITOR==OP_BitOr );
1926 assert( TK_SLASH==OP_Divide );
1927 assert( TK_LSHIFT==OP_ShiftLeft );
1928 assert( TK_RSHIFT==OP_ShiftRight );
1929 assert( TK_CONCAT==OP_Concat );
1930 testcase( op==TK_AND );
1931 testcase( op==TK_OR );
1932 testcase( op==TK_PLUS );
1933 testcase( op==TK_MINUS );
1934 testcase( op==TK_REM );
1935 testcase( op==TK_BITAND );
1936 testcase( op==TK_BITOR );
1937 testcase( op==TK_SLASH );
1938 testcase( op==TK_LSHIFT );
1939 testcase( op==TK_RSHIFT );
1940 testcase( op==TK_CONCAT );
1941 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
1942 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
1943 sqlite3VdbeAddOp3(v, op, r2, r1, target);
1944 testcase( regFree1==0 );
1945 testcase( regFree2==0 );
1949 Expr *pLeft = pExpr->pLeft;
1951 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
1952 if( pLeft->op==TK_FLOAT ){
1953 codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
1955 codeInteger(v, pLeft, 1, target);
1958 regFree1 = r1 = sqlite3GetTempReg(pParse);
1959 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
1960 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
1961 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
1962 testcase( regFree2==0 );
1969 assert( TK_BITNOT==OP_BitNot );
1970 assert( TK_NOT==OP_Not );
1971 testcase( op==TK_BITNOT );
1972 testcase( op==TK_NOT );
1973 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
1974 testcase( regFree1==0 );
1976 sqlite3VdbeAddOp2(v, op, r1, inReg);
1982 assert( TK_ISNULL==OP_IsNull );
1983 assert( TK_NOTNULL==OP_NotNull );
1984 testcase( op==TK_ISNULL );
1985 testcase( op==TK_NOTNULL );
1986 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
1987 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
1988 testcase( regFree1==0 );
1989 addr = sqlite3VdbeAddOp1(v, op, r1);
1990 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
1991 sqlite3VdbeJumpHere(v, addr);
1994 case TK_AGG_FUNCTION: {
1995 AggInfo *pInfo = pExpr->pAggInfo;
1997 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
2000 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2006 ExprList *pList = pExpr->pList;
2007 int nExpr = pList ? pList->nExpr : 0;
2016 testcase( op==TK_CONST_FUNC );
2017 testcase( op==TK_FUNCTION );
2018 zId = (char*)pExpr->token.z;
2019 nId = pExpr->token.n;
2020 pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
2023 nExpr = pList->nExpr;
2024 r1 = sqlite3GetTempRange(pParse, nExpr);
2025 sqlite3ExprCodeExprList(pParse, pList, r1, 1);
2029 #ifndef SQLITE_OMIT_VIRTUALTABLE
2030 /* Possibly overload the function if the first argument is
2031 ** a virtual table column.
2033 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2034 ** second argument, not the first, as the argument to test to
2035 ** see if it is a column in a virtual table. This is done because
2036 ** the left operand of infix functions (the operand we want to
2037 ** control overloading) ends up as the second argument to the
2038 ** function. The expression "A glob B" is equivalent to
2039 ** "glob(B,A). We want to use the A in "A glob B" to test
2040 ** for function overloading. But we use the B term in "glob(B,A)".
2042 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2043 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2044 }else if( nExpr>0 ){
2045 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2048 for(i=0; i<nExpr && i<32; i++){
2049 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2050 constMask |= (1<<i);
2052 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2053 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2056 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2057 if( !pColl ) pColl = db->pDfltColl;
2058 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2060 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2061 (char*)pDef, P4_FUNCDEF);
2062 sqlite3VdbeChangeP5(v, nExpr);
2064 sqlite3ReleaseTempRange(pParse, r1, nExpr);
2066 sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
2069 #ifndef SQLITE_OMIT_SUBQUERY
2072 testcase( op==TK_EXISTS );
2073 testcase( op==TK_SELECT );
2074 if( pExpr->iColumn==0 ){
2075 sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2077 inReg = pExpr->iColumn;
2082 int rMayHaveNull = 0;
2087 VdbeNoopComment((v, "begin IN expr r%d", target));
2088 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2090 rNotFound = ++pParse->nMem;
2093 /* Figure out the affinity to use to create a key from the results
2094 ** of the expression. affinityStr stores a static string suitable for
2095 ** P4 of OP_MakeRecord.
2097 affinity = comparisonAffinity(pExpr);
2100 /* Code the <expr> from "<expr> IN (...)". The temporary table
2101 ** pExpr->iTable contains the values that make up the (...) set.
2103 pParse->disableColCache++;
2104 sqlite3ExprCode(pParse, pExpr->pLeft, target);
2105 pParse->disableColCache--;
2106 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2107 if( eType==IN_INDEX_ROWID ){
2108 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2109 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2110 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2111 j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2112 sqlite3VdbeJumpHere(v, j3);
2113 sqlite3VdbeJumpHere(v, j4);
2114 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2116 r2 = regFree2 = sqlite3GetTempReg(pParse);
2118 /* Create a record and test for set membership. If the set contains
2119 ** the value, then jump to the end of the test code. The target
2120 ** register still contains the true (1) value written to it earlier.
2122 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2123 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2124 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2126 /* If the set membership test fails, then the result of the
2127 ** "x IN (...)" expression must be either 0 or NULL. If the set
2128 ** contains no NULL values, then the result is 0. If the set
2129 ** contains one or more NULL values, then the result of the
2130 ** expression is also NULL.
2133 /* This branch runs if it is known at compile time (now) that
2134 ** the set contains no NULL values. This happens as the result
2135 ** of a "NOT NULL" constraint in the database schema. No need
2136 ** to test the data structure at runtime in this case.
2138 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2140 /* This block populates the rNotFound register with either NULL
2141 ** or 0 (an integer value). If the data structure contains one
2142 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2143 ** to 0. If register rMayHaveNull is already set to some value
2144 ** other than NULL, then the test has already been run and
2145 ** rNotFound is already populated.
2147 static const char nullRecord[] = { 0x02, 0x00 };
2148 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2149 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2150 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2151 nullRecord, P4_STATIC);
2152 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2153 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2154 sqlite3VdbeJumpHere(v, j4);
2155 sqlite3VdbeJumpHere(v, j3);
2157 /* Copy the value of register rNotFound (which is either NULL or 0)
2158 ** into the target register. This will be the result of the
2161 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2164 sqlite3VdbeJumpHere(v, j2);
2165 sqlite3VdbeJumpHere(v, j5);
2166 VdbeComment((v, "end IN expr r%d", target));
2171 ** x BETWEEN y AND z
2173 ** This is equivalent to
2177 ** X is stored in pExpr->pLeft.
2178 ** Y is stored in pExpr->pList->a[0].pExpr.
2179 ** Z is stored in pExpr->pList->a[1].pExpr.
2182 Expr *pLeft = pExpr->pLeft;
2183 struct ExprList_item *pLItem = pExpr->pList->a;
2184 Expr *pRight = pLItem->pExpr;
2186 codeCompareOperands(pParse, pLeft, &r1, ®Free1,
2187 pRight, &r2, ®Free2);
2188 testcase( regFree1==0 );
2189 testcase( regFree2==0 );
2190 r3 = sqlite3GetTempReg(pParse);
2191 r4 = sqlite3GetTempReg(pParse);
2192 codeCompare(pParse, pLeft, pRight, OP_Ge,
2193 r1, r2, r3, SQLITE_STOREP2);
2195 pRight = pLItem->pExpr;
2196 sqlite3ReleaseTempReg(pParse, regFree2);
2197 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
2198 testcase( regFree2==0 );
2199 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2200 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2201 sqlite3ReleaseTempReg(pParse, r3);
2202 sqlite3ReleaseTempReg(pParse, r4);
2206 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2212 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2215 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2217 ** Form A is can be transformed into the equivalent form B as follows:
2218 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2219 ** WHEN x=eN THEN rN ELSE y END
2221 ** X (if it exists) is in pExpr->pLeft.
2222 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2223 ** ELSE clause and no other term matches, then the result of the
2224 ** exprssion is NULL.
2225 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2227 ** The result of the expression is the Ri for the first matching Ei,
2228 ** or if there is no matching Ei, the ELSE term Y, or if there is
2229 ** no ELSE term, NULL.
2232 int endLabel; /* GOTO label for end of CASE stmt */
2233 int nextCase; /* GOTO label for next WHEN clause */
2234 int nExpr; /* 2x number of WHEN terms */
2235 int i; /* Loop counter */
2236 ExprList *pEList; /* List of WHEN terms */
2237 struct ExprList_item *aListelem; /* Array of WHEN terms */
2238 Expr opCompare; /* The X==Ei expression */
2239 Expr cacheX; /* Cached expression X */
2240 Expr *pX; /* The X expression */
2241 Expr *pTest; /* X==Ei (form A) or just Ei (form B) */
2243 assert(pExpr->pList);
2244 assert((pExpr->pList->nExpr % 2) == 0);
2245 assert(pExpr->pList->nExpr > 0);
2246 pEList = pExpr->pList;
2247 aListelem = pEList->a;
2248 nExpr = pEList->nExpr;
2249 endLabel = sqlite3VdbeMakeLabel(v);
2250 if( (pX = pExpr->pLeft)!=0 ){
2252 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
2253 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
2254 testcase( regFree1==0 );
2255 cacheX.op = TK_REGISTER;
2256 opCompare.op = TK_EQ;
2257 opCompare.pLeft = &cacheX;
2260 pParse->disableColCache++;
2261 for(i=0; i<nExpr; i=i+2){
2263 opCompare.pRight = aListelem[i].pExpr;
2265 pTest = aListelem[i].pExpr;
2267 nextCase = sqlite3VdbeMakeLabel(v);
2268 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
2269 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2270 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2271 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2272 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2273 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2274 sqlite3VdbeResolveLabel(v, nextCase);
2276 if( pExpr->pRight ){
2277 sqlite3ExprCode(pParse, pExpr->pRight, target);
2279 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2281 sqlite3VdbeResolveLabel(v, endLabel);
2282 assert( pParse->disableColCache>0 );
2283 pParse->disableColCache--;
2286 #ifndef SQLITE_OMIT_TRIGGER
2288 if( !pParse->trigStack ){
2289 sqlite3ErrorMsg(pParse,
2290 "RAISE() may only be used within a trigger-program");
2293 if( pExpr->iColumn!=OE_Ignore ){
2294 assert( pExpr->iColumn==OE_Rollback ||
2295 pExpr->iColumn == OE_Abort ||
2296 pExpr->iColumn == OE_Fail );
2297 sqlite3DequoteExpr(db, pExpr);
2298 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
2299 (char*)pExpr->token.z, pExpr->token.n);
2301 assert( pExpr->iColumn == OE_Ignore );
2302 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2303 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2304 VdbeComment((v, "raise(IGNORE)"));
2310 sqlite3ReleaseTempReg(pParse, regFree1);
2311 sqlite3ReleaseTempReg(pParse, regFree2);
2316 ** Generate code to evaluate an expression and store the results
2317 ** into a register. Return the register number where the results
2320 ** If the register is a temporary register that can be deallocated,
2321 ** then write its number into *pReg. If the result register is not
2322 ** a temporary, then set *pReg to zero.
2324 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2325 int r1 = sqlite3GetTempReg(pParse);
2326 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2330 sqlite3ReleaseTempReg(pParse, r1);
2337 ** Generate code that will evaluate expression pExpr and store the
2338 ** results in register target. The results are guaranteed to appear
2339 ** in register target.
2341 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2344 assert( target>0 && target<=pParse->nMem );
2345 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2346 assert( pParse->pVdbe || pParse->db->mallocFailed );
2347 if( inReg!=target && pParse->pVdbe ){
2348 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2354 ** Generate code that evalutes the given expression and puts the result
2355 ** in register target.
2357 ** Also make a copy of the expression results into another "cache" register
2358 ** and modify the expression so that the next time it is evaluated,
2359 ** the result is a copy of the cache register.
2361 ** This routine is used for expressions that are used multiple
2362 ** times. They are evaluated once and the results of the expression
2365 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2366 Vdbe *v = pParse->pVdbe;
2368 inReg = sqlite3ExprCode(pParse, pExpr, target);
2370 if( pExpr->op!=TK_REGISTER ){
2372 iMem = ++pParse->nMem;
2373 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2374 pExpr->iTable = iMem;
2375 pExpr->op = TK_REGISTER;
2381 ** Return TRUE if pExpr is an constant expression that is appropriate
2382 ** for factoring out of a loop. Appropriate expressions are:
2384 ** * Any expression that evaluates to two or more opcodes.
2386 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2387 ** or OP_Variable that does not need to be placed in a
2388 ** specific register.
2390 ** There is no point in factoring out single-instruction constant
2391 ** expressions that need to be placed in a particular register.
2392 ** We could factor them out, but then we would end up adding an
2393 ** OP_SCopy instruction to move the value into the correct register
2394 ** later. We might as well just use the original instruction and
2395 ** avoid the OP_SCopy.
2397 static int isAppropriateForFactoring(Expr *p){
2398 if( !sqlite3ExprIsConstantNotJoin(p) ){
2399 return 0; /* Only constant expressions are appropriate for factoring */
2401 if( (p->flags & EP_FixedDest)==0 ){
2402 return 1; /* Any constant without a fixed destination is appropriate */
2404 while( p->op==TK_UPLUS ) p = p->pLeft;
2406 #ifndef SQLITE_OMIT_BLOB_LITERAL
2414 testcase( p->op==TK_BLOB );
2415 testcase( p->op==TK_VARIABLE );
2416 testcase( p->op==TK_INTEGER );
2417 testcase( p->op==TK_FLOAT );
2418 testcase( p->op==TK_NULL );
2419 testcase( p->op==TK_STRING );
2420 /* Single-instruction constants with a fixed destination are
2421 ** better done in-line. If we factor them, they will just end
2422 ** up generating an OP_SCopy to move the value to the destination
2427 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2440 ** If pExpr is a constant expression that is appropriate for
2441 ** factoring out of a loop, then evaluate the expression
2442 ** into a register and convert the expression into a TK_REGISTER
2445 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2446 Parse *pParse = pWalker->pParse;
2447 switch( pExpr->op ){
2452 case TK_AGG_FUNCTION:
2453 case TK_CONST_FUNC: {
2454 /* The arguments to a function have a fixed destination.
2455 ** Mark them this way to avoid generated unneeded OP_SCopy
2458 ExprList *pList = pExpr->pList;
2460 int i = pList->nExpr;
2461 struct ExprList_item *pItem = pList->a;
2462 for(; i>0; i--, pItem++){
2463 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
2469 if( isAppropriateForFactoring(pExpr) ){
2470 int r1 = ++pParse->nMem;
2472 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2473 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
2474 pExpr->op = TK_REGISTER;
2478 return WRC_Continue;
2482 ** Preevaluate constant subexpressions within pExpr and store the
2483 ** results in registers. Modify pExpr so that the constant subexpresions
2484 ** are TK_REGISTER opcodes that refer to the precomputed values.
2486 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2488 w.xExprCallback = evalConstExpr;
2489 w.xSelectCallback = 0;
2491 sqlite3WalkExpr(&w, pExpr);
2496 ** Generate code that pushes the value of every element of the given
2497 ** expression list into a sequence of registers beginning at target.
2499 ** Return the number of elements evaluated.
2501 int sqlite3ExprCodeExprList(
2502 Parse *pParse, /* Parsing context */
2503 ExprList *pList, /* The expression list to be coded */
2504 int target, /* Where to write results */
2505 int doHardCopy /* Make a hard copy of every element */
2507 struct ExprList_item *pItem;
2512 for(pItem=pList->a, i=0; i<n; i++, pItem++){
2513 if( pItem->iAlias ){
2514 int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target);
2515 Vdbe *v = sqlite3GetVdbe(pParse);
2516 if( iReg!=target+i ){
2517 sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
2520 sqlite3ExprCode(pParse, pItem->pExpr, target+i);
2523 sqlite3ExprHardCopy(pParse, target, n);
2530 ** Generate code for a boolean expression such that a jump is made
2531 ** to the label "dest" if the expression is true but execution
2532 ** continues straight thru if the expression is false.
2534 ** If the expression evaluates to NULL (neither true nor false), then
2535 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
2537 ** This code depends on the fact that certain token values (ex: TK_EQ)
2538 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
2539 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
2540 ** the make process cause these values to align. Assert()s in the code
2541 ** below verify that the numbers are aligned correctly.
2543 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2544 Vdbe *v = pParse->pVdbe;
2550 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2551 if( v==0 || pExpr==0 ) return;
2555 int d2 = sqlite3VdbeMakeLabel(v);
2556 testcase( jumpIfNull==0 );
2557 testcase( pParse->disableColCache==0 );
2558 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
2559 pParse->disableColCache++;
2560 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2561 assert( pParse->disableColCache>0 );
2562 pParse->disableColCache--;
2563 sqlite3VdbeResolveLabel(v, d2);
2567 testcase( jumpIfNull==0 );
2568 testcase( pParse->disableColCache==0 );
2569 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2570 pParse->disableColCache++;
2571 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
2572 assert( pParse->disableColCache>0 );
2573 pParse->disableColCache--;
2577 testcase( jumpIfNull==0 );
2578 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2587 assert( TK_LT==OP_Lt );
2588 assert( TK_LE==OP_Le );
2589 assert( TK_GT==OP_Gt );
2590 assert( TK_GE==OP_Ge );
2591 assert( TK_EQ==OP_Eq );
2592 assert( TK_NE==OP_Ne );
2593 testcase( op==TK_LT );
2594 testcase( op==TK_LE );
2595 testcase( op==TK_GT );
2596 testcase( op==TK_GE );
2597 testcase( op==TK_EQ );
2598 testcase( op==TK_NE );
2599 testcase( jumpIfNull==0 );
2600 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
2601 pExpr->pRight, &r2, ®Free2);
2602 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2603 r1, r2, dest, jumpIfNull);
2604 testcase( regFree1==0 );
2605 testcase( regFree2==0 );
2610 assert( TK_ISNULL==OP_IsNull );
2611 assert( TK_NOTNULL==OP_NotNull );
2612 testcase( op==TK_ISNULL );
2613 testcase( op==TK_NOTNULL );
2614 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2615 sqlite3VdbeAddOp2(v, op, r1, dest);
2616 testcase( regFree1==0 );
2620 /* x BETWEEN y AND z
2626 ** Code it as such, taking care to do the common subexpression
2627 ** elementation of x.
2634 exprX = *pExpr->pLeft;
2635 exprAnd.op = TK_AND;
2636 exprAnd.pLeft = &compLeft;
2637 exprAnd.pRight = &compRight;
2638 compLeft.op = TK_GE;
2639 compLeft.pLeft = &exprX;
2640 compLeft.pRight = pExpr->pList->a[0].pExpr;
2641 compRight.op = TK_LE;
2642 compRight.pLeft = &exprX;
2643 compRight.pRight = pExpr->pList->a[1].pExpr;
2644 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
2645 testcase( regFree1==0 );
2646 exprX.op = TK_REGISTER;
2647 testcase( jumpIfNull==0 );
2648 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
2652 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
2653 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
2654 testcase( regFree1==0 );
2655 testcase( jumpIfNull==0 );
2659 sqlite3ReleaseTempReg(pParse, regFree1);
2660 sqlite3ReleaseTempReg(pParse, regFree2);
2664 ** Generate code for a boolean expression such that a jump is made
2665 ** to the label "dest" if the expression is false but execution
2666 ** continues straight thru if the expression is true.
2668 ** If the expression evaluates to NULL (neither true nor false) then
2669 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
2672 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
2673 Vdbe *v = pParse->pVdbe;
2679 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
2680 if( v==0 || pExpr==0 ) return;
2682 /* The value of pExpr->op and op are related as follows:
2685 ** --------- ----------
2686 ** TK_ISNULL OP_NotNull
2687 ** TK_NOTNULL OP_IsNull
2695 ** For other values of pExpr->op, op is undefined and unused.
2696 ** The value of TK_ and OP_ constants are arranged such that we
2697 ** can compute the mapping above using the following expression.
2698 ** Assert()s verify that the computation is correct.
2700 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
2702 /* Verify correct alignment of TK_ and OP_ constants
2704 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
2705 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
2706 assert( pExpr->op!=TK_NE || op==OP_Eq );
2707 assert( pExpr->op!=TK_EQ || op==OP_Ne );
2708 assert( pExpr->op!=TK_LT || op==OP_Ge );
2709 assert( pExpr->op!=TK_LE || op==OP_Gt );
2710 assert( pExpr->op!=TK_GT || op==OP_Le );
2711 assert( pExpr->op!=TK_GE || op==OP_Lt );
2713 switch( pExpr->op ){
2715 testcase( jumpIfNull==0 );
2716 testcase( pParse->disableColCache==0 );
2717 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
2718 pParse->disableColCache++;
2719 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2720 assert( pParse->disableColCache>0 );
2721 pParse->disableColCache--;
2725 int d2 = sqlite3VdbeMakeLabel(v);
2726 testcase( jumpIfNull==0 );
2727 testcase( pParse->disableColCache==0 );
2728 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
2729 pParse->disableColCache++;
2730 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
2731 assert( pParse->disableColCache>0 );
2732 pParse->disableColCache--;
2733 sqlite3VdbeResolveLabel(v, d2);
2737 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
2746 testcase( op==TK_LT );
2747 testcase( op==TK_LE );
2748 testcase( op==TK_GT );
2749 testcase( op==TK_GE );
2750 testcase( op==TK_EQ );
2751 testcase( op==TK_NE );
2752 testcase( jumpIfNull==0 );
2753 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
2754 pExpr->pRight, &r2, ®Free2);
2755 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2756 r1, r2, dest, jumpIfNull);
2757 testcase( regFree1==0 );
2758 testcase( regFree2==0 );
2763 testcase( op==TK_ISNULL );
2764 testcase( op==TK_NOTNULL );
2765 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2766 sqlite3VdbeAddOp2(v, op, r1, dest);
2767 testcase( regFree1==0 );
2771 /* x BETWEEN y AND z
2777 ** Code it as such, taking care to do the common subexpression
2778 ** elementation of x.
2785 exprX = *pExpr->pLeft;
2786 exprAnd.op = TK_AND;
2787 exprAnd.pLeft = &compLeft;
2788 exprAnd.pRight = &compRight;
2789 compLeft.op = TK_GE;
2790 compLeft.pLeft = &exprX;
2791 compLeft.pRight = pExpr->pList->a[0].pExpr;
2792 compRight.op = TK_LE;
2793 compRight.pLeft = &exprX;
2794 compRight.pRight = pExpr->pList->a[1].pExpr;
2795 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
2796 testcase( regFree1==0 );
2797 exprX.op = TK_REGISTER;
2798 testcase( jumpIfNull==0 );
2799 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
2803 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
2804 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
2805 testcase( regFree1==0 );
2806 testcase( jumpIfNull==0 );
2810 sqlite3ReleaseTempReg(pParse, regFree1);
2811 sqlite3ReleaseTempReg(pParse, regFree2);
2815 ** Do a deep comparison of two expression trees. Return TRUE (non-zero)
2816 ** if they are identical and return FALSE if they differ in any way.
2818 ** Sometimes this routine will return FALSE even if the two expressions
2819 ** really are equivalent. If we cannot prove that the expressions are
2820 ** identical, we return FALSE just to be safe. So if this routine
2821 ** returns false, then you do not really know for certain if the two
2822 ** expressions are the same. But if you get a TRUE return, then you
2823 ** can be sure the expressions are the same. In the places where
2824 ** this routine is used, it does not hurt to get an extra FALSE - that
2825 ** just might result in some slightly slower code. But returning
2826 ** an incorrect TRUE could lead to a malfunction.
2828 int sqlite3ExprCompare(Expr *pA, Expr *pB){
2833 if( pA->op!=pB->op ) return 0;
2834 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
2835 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
2836 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
2838 if( pB->pList==0 ) return 0;
2839 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
2840 for(i=0; i<pA->pList->nExpr; i++){
2841 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
2845 }else if( pB->pList ){
2848 if( pA->pSelect || pB->pSelect ) return 0;
2849 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
2850 if( pA->op!=TK_COLUMN && pA->token.z ){
2851 if( pB->token.z==0 ) return 0;
2852 if( pB->token.n!=pA->token.n ) return 0;
2853 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
2862 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
2863 ** the new element. Return a negative number if malloc fails.
2865 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
2867 pInfo->aCol = sqlite3ArrayAllocate(
2870 sizeof(pInfo->aCol[0]),
2873 &pInfo->nColumnAlloc,
2880 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
2881 ** the new element. Return a negative number if malloc fails.
2883 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
2885 pInfo->aFunc = sqlite3ArrayAllocate(
2888 sizeof(pInfo->aFunc[0]),
2898 ** This is the xExprCallback for a tree walker. It is used to
2899 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
2900 ** for additional information.
2902 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
2904 NameContext *pNC = pWalker->u.pNC;
2905 Parse *pParse = pNC->pParse;
2906 SrcList *pSrcList = pNC->pSrcList;
2907 AggInfo *pAggInfo = pNC->pAggInfo;
2909 switch( pExpr->op ){
2912 testcase( pExpr->op==TK_AGG_COLUMN );
2913 testcase( pExpr->op==TK_COLUMN );
2914 /* Check to see if the column is in one of the tables in the FROM
2915 ** clause of the aggregate query */
2917 struct SrcList_item *pItem = pSrcList->a;
2918 for(i=0; i<pSrcList->nSrc; i++, pItem++){
2919 struct AggInfo_col *pCol;
2920 if( pExpr->iTable==pItem->iCursor ){
2921 /* If we reach this point, it means that pExpr refers to a table
2922 ** that is in the FROM clause of the aggregate query.
2924 ** Make an entry for the column in pAggInfo->aCol[] if there
2925 ** is not an entry there already.
2928 pCol = pAggInfo->aCol;
2929 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
2930 if( pCol->iTable==pExpr->iTable &&
2931 pCol->iColumn==pExpr->iColumn ){
2935 if( (k>=pAggInfo->nColumn)
2936 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
2938 pCol = &pAggInfo->aCol[k];
2939 pCol->pTab = pExpr->pTab;
2940 pCol->iTable = pExpr->iTable;
2941 pCol->iColumn = pExpr->iColumn;
2942 pCol->iMem = ++pParse->nMem;
2943 pCol->iSorterColumn = -1;
2944 pCol->pExpr = pExpr;
2945 if( pAggInfo->pGroupBy ){
2947 ExprList *pGB = pAggInfo->pGroupBy;
2948 struct ExprList_item *pTerm = pGB->a;
2950 for(j=0; j<n; j++, pTerm++){
2951 Expr *pE = pTerm->pExpr;
2952 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
2953 pE->iColumn==pExpr->iColumn ){
2954 pCol->iSorterColumn = j;
2959 if( pCol->iSorterColumn<0 ){
2960 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
2963 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
2964 ** because it was there before or because we just created it).
2965 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
2966 ** pAggInfo->aCol[] entry.
2968 pExpr->pAggInfo = pAggInfo;
2969 pExpr->op = TK_AGG_COLUMN;
2972 } /* endif pExpr->iTable==pItem->iCursor */
2973 } /* end loop over pSrcList */
2977 case TK_AGG_FUNCTION: {
2978 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
2980 if( pNC->nDepth==0 ){
2981 /* Check to see if pExpr is a duplicate of another aggregate
2982 ** function that is already in the pAggInfo structure
2984 struct AggInfo_func *pItem = pAggInfo->aFunc;
2985 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
2986 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
2990 if( i>=pAggInfo->nFunc ){
2991 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
2993 u8 enc = ENC(pParse->db);
2994 i = addAggInfoFunc(pParse->db, pAggInfo);
2996 pItem = &pAggInfo->aFunc[i];
2997 pItem->pExpr = pExpr;
2998 pItem->iMem = ++pParse->nMem;
2999 pItem->pFunc = sqlite3FindFunction(pParse->db,
3000 (char*)pExpr->token.z, pExpr->token.n,
3001 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
3002 if( pExpr->flags & EP_Distinct ){
3003 pItem->iDistinct = pParse->nTab++;
3005 pItem->iDistinct = -1;
3009 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3012 pExpr->pAggInfo = pAggInfo;
3017 return WRC_Continue;
3019 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3020 NameContext *pNC = pWalker->u.pNC;
3021 if( pNC->nDepth==0 ){
3023 sqlite3WalkSelect(pWalker, pSelect);
3027 return WRC_Continue;
3032 ** Analyze the given expression looking for aggregate functions and
3033 ** for variables that need to be added to the pParse->aAgg[] array.
3034 ** Make additional entries to the pParse->aAgg[] array as necessary.
3036 ** This routine should only be called after the expression has been
3037 ** analyzed by sqlite3ResolveExprNames().
3039 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3041 w.xExprCallback = analyzeAggregate;
3042 w.xSelectCallback = analyzeAggregatesInSelect;
3044 sqlite3WalkExpr(&w, pExpr);
3048 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3049 ** expression list. Return the number of errors.
3051 ** If an error is found, the analysis is cut short.
3053 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3054 struct ExprList_item *pItem;
3057 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3058 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3064 ** Allocate or deallocate temporary use registers during code generation.
3066 int sqlite3GetTempReg(Parse *pParse){
3067 if( pParse->nTempReg==0 ){
3068 return ++pParse->nMem;
3070 return pParse->aTempReg[--pParse->nTempReg];
3072 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3073 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3074 sqlite3ExprWritableRegister(pParse, iReg, iReg);
3075 pParse->aTempReg[pParse->nTempReg++] = iReg;
3080 ** Allocate or deallocate a block of nReg consecutive registers
3082 int sqlite3GetTempRange(Parse *pParse, int nReg){
3084 i = pParse->iRangeReg;
3085 n = pParse->nRangeReg;
3086 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3087 pParse->iRangeReg += nReg;
3088 pParse->nRangeReg -= nReg;
3091 pParse->nMem += nReg;
3095 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3096 if( nReg>pParse->nRangeReg ){
3097 pParse->nRangeReg = nReg;
3098 pParse->iRangeReg = iReg;