os/persistentdata/persistentstorage/sql/SQLite364/expr.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2001 September 15
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains routines used for analyzing expressions and
    13 ** for generating VDBE code that evaluates expressions in SQLite.
    14 **
    15 ** $Id: expr.c,v 1.399 2008/10/11 16:47:36 drh Exp $
    16 */
    17 #include "sqliteInt.h"
    18 #include <ctype.h>
    19 
    20 /*
    21 ** Return the 'affinity' of the expression pExpr if any.
    22 **
    23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
    24 ** or a sub-select with a column as the return value, then the 
    25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
    26 ** indicating no affinity for the expression.
    27 **
    28 ** i.e. the WHERE clause expresssions in the following statements all
    29 ** have an affinity:
    30 **
    31 ** CREATE TABLE t1(a);
    32 ** SELECT * FROM t1 WHERE a;
    33 ** SELECT a AS b FROM t1 WHERE b;
    34 ** SELECT * FROM t1 WHERE (select a from t1);
    35 */
    36 char sqlite3ExprAffinity(Expr *pExpr){
    37   int op = pExpr->op;
    38   if( op==TK_SELECT ){
    39     return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
    40   }
    41 #ifndef SQLITE_OMIT_CAST
    42   if( op==TK_CAST ){
    43     return sqlite3AffinityType(&pExpr->token);
    44   }
    45 #endif
    46   if( (op==TK_COLUMN || op==TK_REGISTER) && pExpr->pTab!=0 ){
    47     /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
    48     ** a TK_COLUMN but was previously evaluated and cached in a register */
    49     int j = pExpr->iColumn;
    50     if( j<0 ) return SQLITE_AFF_INTEGER;
    51     assert( pExpr->pTab && j<pExpr->pTab->nCol );
    52     return pExpr->pTab->aCol[j].affinity;
    53   }
    54   return pExpr->affinity;
    55 }
    56 
    57 /*
    58 ** Set the collating sequence for expression pExpr to be the collating
    59 ** sequence named by pToken.   Return a pointer to the revised expression.
    60 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
    61 ** flag.  An explicit collating sequence will override implicit
    62 ** collating sequences.
    63 */
    64 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pCollName){
    65   char *zColl = 0;            /* Dequoted name of collation sequence */
    66   CollSeq *pColl;
    67   sqlite3 *db = pParse->db;
    68   zColl = sqlite3NameFromToken(db, pCollName);
    69   if( pExpr && zColl ){
    70     pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
    71     if( pColl ){
    72       pExpr->pColl = pColl;
    73       pExpr->flags |= EP_ExpCollate;
    74     }
    75   }
    76   sqlite3DbFree(db, zColl);
    77   return pExpr;
    78 }
    79 
    80 /*
    81 ** Return the default collation sequence for the expression pExpr. If
    82 ** there is no default collation type, return 0.
    83 */
    84 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
    85   CollSeq *pColl = 0;
    86   Expr *p = pExpr;
    87   while( p ){
    88     int op;
    89     pColl = p->pColl;
    90     if( pColl ) break;
    91     op = p->op;
    92     if( (op==TK_COLUMN || op==TK_REGISTER) && p->pTab!=0 ){
    93       /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
    94       ** a TK_COLUMN but was previously evaluated and cached in a register */
    95       const char *zColl;
    96       int j = p->iColumn;
    97       if( j>=0 ){
    98         sqlite3 *db = pParse->db;
    99         zColl = p->pTab->aCol[j].zColl;
   100         pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
   101         pExpr->pColl = pColl;
   102       }
   103       break;
   104     }
   105     if( op!=TK_CAST && op!=TK_UPLUS ){
   106       break;
   107     }
   108     p = p->pLeft;
   109   }
   110   if( sqlite3CheckCollSeq(pParse, pColl) ){ 
   111     pColl = 0;
   112   }
   113   return pColl;
   114 }
   115 
   116 /*
   117 ** pExpr is an operand of a comparison operator.  aff2 is the
   118 ** type affinity of the other operand.  This routine returns the
   119 ** type affinity that should be used for the comparison operator.
   120 */
   121 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
   122   char aff1 = sqlite3ExprAffinity(pExpr);
   123   if( aff1 && aff2 ){
   124     /* Both sides of the comparison are columns. If one has numeric
   125     ** affinity, use that. Otherwise use no affinity.
   126     */
   127     if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
   128       return SQLITE_AFF_NUMERIC;
   129     }else{
   130       return SQLITE_AFF_NONE;
   131     }
   132   }else if( !aff1 && !aff2 ){
   133     /* Neither side of the comparison is a column.  Compare the
   134     ** results directly.
   135     */
   136     return SQLITE_AFF_NONE;
   137   }else{
   138     /* One side is a column, the other is not. Use the columns affinity. */
   139     assert( aff1==0 || aff2==0 );
   140     return (aff1 + aff2);
   141   }
   142 }
   143 
   144 /*
   145 ** pExpr is a comparison operator.  Return the type affinity that should
   146 ** be applied to both operands prior to doing the comparison.
   147 */
   148 static char comparisonAffinity(Expr *pExpr){
   149   char aff;
   150   assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
   151           pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
   152           pExpr->op==TK_NE );
   153   assert( pExpr->pLeft );
   154   aff = sqlite3ExprAffinity(pExpr->pLeft);
   155   if( pExpr->pRight ){
   156     aff = sqlite3CompareAffinity(pExpr->pRight, aff);
   157   }
   158   else if( pExpr->pSelect ){
   159     aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
   160   }
   161   else if( !aff ){
   162     aff = SQLITE_AFF_NONE;
   163   }
   164   return aff;
   165 }
   166 
   167 /*
   168 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
   169 ** idx_affinity is the affinity of an indexed column. Return true
   170 ** if the index with affinity idx_affinity may be used to implement
   171 ** the comparison in pExpr.
   172 */
   173 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
   174   char aff = comparisonAffinity(pExpr);
   175   switch( aff ){
   176     case SQLITE_AFF_NONE:
   177       return 1;
   178     case SQLITE_AFF_TEXT:
   179       return idx_affinity==SQLITE_AFF_TEXT;
   180     default:
   181       return sqlite3IsNumericAffinity(idx_affinity);
   182   }
   183 }
   184 
   185 /*
   186 ** Return the P5 value that should be used for a binary comparison
   187 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
   188 */
   189 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
   190   u8 aff = (char)sqlite3ExprAffinity(pExpr2);
   191   aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
   192   return aff;
   193 }
   194 
   195 /*
   196 ** Return a pointer to the collation sequence that should be used by
   197 ** a binary comparison operator comparing pLeft and pRight.
   198 **
   199 ** If the left hand expression has a collating sequence type, then it is
   200 ** used. Otherwise the collation sequence for the right hand expression
   201 ** is used, or the default (BINARY) if neither expression has a collating
   202 ** type.
   203 **
   204 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
   205 ** it is not considered.
   206 */
   207 CollSeq *sqlite3BinaryCompareCollSeq(
   208   Parse *pParse, 
   209   Expr *pLeft, 
   210   Expr *pRight
   211 ){
   212   CollSeq *pColl;
   213   assert( pLeft );
   214   if( pLeft->flags & EP_ExpCollate ){
   215     assert( pLeft->pColl );
   216     pColl = pLeft->pColl;
   217   }else if( pRight && pRight->flags & EP_ExpCollate ){
   218     assert( pRight->pColl );
   219     pColl = pRight->pColl;
   220   }else{
   221     pColl = sqlite3ExprCollSeq(pParse, pLeft);
   222     if( !pColl ){
   223       pColl = sqlite3ExprCollSeq(pParse, pRight);
   224     }
   225   }
   226   return pColl;
   227 }
   228 
   229 /*
   230 ** Generate the operands for a comparison operation.  Before
   231 ** generating the code for each operand, set the EP_AnyAff
   232 ** flag on the expression so that it will be able to used a
   233 ** cached column value that has previously undergone an
   234 ** affinity change.
   235 */
   236 static void codeCompareOperands(
   237   Parse *pParse,    /* Parsing and code generating context */
   238   Expr *pLeft,      /* The left operand */
   239   int *pRegLeft,    /* Register where left operand is stored */
   240   int *pFreeLeft,   /* Free this register when done */
   241   Expr *pRight,     /* The right operand */
   242   int *pRegRight,   /* Register where right operand is stored */
   243   int *pFreeRight   /* Write temp register for right operand there */
   244 ){
   245   while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
   246   pLeft->flags |= EP_AnyAff;
   247   *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
   248   while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
   249   pRight->flags |= EP_AnyAff;
   250   *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
   251 }
   252 
   253 /*
   254 ** Generate code for a comparison operator.
   255 */
   256 static int codeCompare(
   257   Parse *pParse,    /* The parsing (and code generating) context */
   258   Expr *pLeft,      /* The left operand */
   259   Expr *pRight,     /* The right operand */
   260   int opcode,       /* The comparison opcode */
   261   int in1, int in2, /* Register holding operands */
   262   int dest,         /* Jump here if true.  */
   263   int jumpIfNull    /* If true, jump if either operand is NULL */
   264 ){
   265   int p5;
   266   int addr;
   267   CollSeq *p4;
   268 
   269   p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
   270   p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
   271   addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
   272                            (void*)p4, P4_COLLSEQ);
   273   sqlite3VdbeChangeP5(pParse->pVdbe, p5);
   274   if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
   275     sqlite3ExprCacheAffinityChange(pParse, in1, 1);
   276     sqlite3ExprCacheAffinityChange(pParse, in2, 1);
   277   }
   278   return addr;
   279 }
   280 
   281 #if SQLITE_MAX_EXPR_DEPTH>0
   282 /*
   283 ** Check that argument nHeight is less than or equal to the maximum
   284 ** expression depth allowed. If it is not, leave an error message in
   285 ** pParse.
   286 */
   287 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
   288   int rc = SQLITE_OK;
   289   int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
   290   if( nHeight>mxHeight ){
   291     sqlite3ErrorMsg(pParse, 
   292        "Expression tree is too large (maximum depth %d)", mxHeight
   293     );
   294     rc = SQLITE_ERROR;
   295   }
   296   return rc;
   297 }
   298 
   299 /* The following three functions, heightOfExpr(), heightOfExprList()
   300 ** and heightOfSelect(), are used to determine the maximum height
   301 ** of any expression tree referenced by the structure passed as the
   302 ** first argument.
   303 **
   304 ** If this maximum height is greater than the current value pointed
   305 ** to by pnHeight, the second parameter, then set *pnHeight to that
   306 ** value.
   307 */
   308 static void heightOfExpr(Expr *p, int *pnHeight){
   309   if( p ){
   310     if( p->nHeight>*pnHeight ){
   311       *pnHeight = p->nHeight;
   312     }
   313   }
   314 }
   315 static void heightOfExprList(ExprList *p, int *pnHeight){
   316   if( p ){
   317     int i;
   318     for(i=0; i<p->nExpr; i++){
   319       heightOfExpr(p->a[i].pExpr, pnHeight);
   320     }
   321   }
   322 }
   323 static void heightOfSelect(Select *p, int *pnHeight){
   324   if( p ){
   325     heightOfExpr(p->pWhere, pnHeight);
   326     heightOfExpr(p->pHaving, pnHeight);
   327     heightOfExpr(p->pLimit, pnHeight);
   328     heightOfExpr(p->pOffset, pnHeight);
   329     heightOfExprList(p->pEList, pnHeight);
   330     heightOfExprList(p->pGroupBy, pnHeight);
   331     heightOfExprList(p->pOrderBy, pnHeight);
   332     heightOfSelect(p->pPrior, pnHeight);
   333   }
   334 }
   335 
   336 /*
   337 ** Set the Expr.nHeight variable in the structure passed as an 
   338 ** argument. An expression with no children, Expr.pList or 
   339 ** Expr.pSelect member has a height of 1. Any other expression
   340 ** has a height equal to the maximum height of any other 
   341 ** referenced Expr plus one.
   342 */
   343 static void exprSetHeight(Expr *p){
   344   int nHeight = 0;
   345   heightOfExpr(p->pLeft, &nHeight);
   346   heightOfExpr(p->pRight, &nHeight);
   347   heightOfExprList(p->pList, &nHeight);
   348   heightOfSelect(p->pSelect, &nHeight);
   349   p->nHeight = nHeight + 1;
   350 }
   351 
   352 /*
   353 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
   354 ** the height is greater than the maximum allowed expression depth,
   355 ** leave an error in pParse.
   356 */
   357 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
   358   exprSetHeight(p);
   359   sqlite3ExprCheckHeight(pParse, p->nHeight);
   360 }
   361 
   362 /*
   363 ** Return the maximum height of any expression tree referenced
   364 ** by the select statement passed as an argument.
   365 */
   366 int sqlite3SelectExprHeight(Select *p){
   367   int nHeight = 0;
   368   heightOfSelect(p, &nHeight);
   369   return nHeight;
   370 }
   371 #else
   372   #define exprSetHeight(y)
   373 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
   374 
   375 /*
   376 ** Construct a new expression node and return a pointer to it.  Memory
   377 ** for this node is obtained from sqlite3_malloc().  The calling function
   378 ** is responsible for making sure the node eventually gets freed.
   379 */
   380 Expr *sqlite3Expr(
   381   sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
   382   int op,                 /* Expression opcode */
   383   Expr *pLeft,            /* Left operand */
   384   Expr *pRight,           /* Right operand */
   385   const Token *pToken     /* Argument token */
   386 ){
   387   Expr *pNew;
   388   pNew = sqlite3DbMallocZero(db, sizeof(Expr));
   389   if( pNew==0 ){
   390     /* When malloc fails, delete pLeft and pRight. Expressions passed to 
   391     ** this function must always be allocated with sqlite3Expr() for this 
   392     ** reason. 
   393     */
   394     sqlite3ExprDelete(db, pLeft);
   395     sqlite3ExprDelete(db, pRight);
   396     return 0;
   397   }
   398   pNew->op = op;
   399   pNew->pLeft = pLeft;
   400   pNew->pRight = pRight;
   401   pNew->iAgg = -1;
   402   pNew->span.z = (u8*)"";
   403   if( pToken ){
   404     assert( pToken->dyn==0 );
   405     pNew->span = pNew->token = *pToken;
   406   }else if( pLeft ){
   407     if( pRight ){
   408       if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
   409         sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
   410       }
   411       if( pRight->flags & EP_ExpCollate ){
   412         pNew->flags |= EP_ExpCollate;
   413         pNew->pColl = pRight->pColl;
   414       }
   415     }
   416     if( pLeft->flags & EP_ExpCollate ){
   417       pNew->flags |= EP_ExpCollate;
   418       pNew->pColl = pLeft->pColl;
   419     }
   420   }
   421 
   422   exprSetHeight(pNew);
   423   return pNew;
   424 }
   425 
   426 /*
   427 ** Works like sqlite3Expr() except that it takes an extra Parse*
   428 ** argument and notifies the associated connection object if malloc fails.
   429 */
   430 Expr *sqlite3PExpr(
   431   Parse *pParse,          /* Parsing context */
   432   int op,                 /* Expression opcode */
   433   Expr *pLeft,            /* Left operand */
   434   Expr *pRight,           /* Right operand */
   435   const Token *pToken     /* Argument token */
   436 ){
   437   Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
   438   if( p ){
   439     sqlite3ExprCheckHeight(pParse, p->nHeight);
   440   }
   441   return p;
   442 }
   443 
   444 /*
   445 ** When doing a nested parse, you can include terms in an expression
   446 ** that look like this:   #1 #2 ...  These terms refer to registers
   447 ** in the virtual machine.  #N is the N-th register.
   448 **
   449 ** This routine is called by the parser to deal with on of those terms.
   450 ** It immediately generates code to store the value in a memory location.
   451 ** The returns an expression that will code to extract the value from
   452 ** that memory location as needed.
   453 */
   454 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
   455   Vdbe *v = pParse->pVdbe;
   456   Expr *p;
   457   if( pParse->nested==0 ){
   458     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
   459     return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
   460   }
   461   if( v==0 ) return 0;
   462   p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
   463   if( p==0 ){
   464     return 0;  /* Malloc failed */
   465   }
   466   p->iTable = atoi((char*)&pToken->z[1]);
   467   return p;
   468 }
   469 
   470 /*
   471 ** Join two expressions using an AND operator.  If either expression is
   472 ** NULL, then just return the other expression.
   473 */
   474 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
   475   if( pLeft==0 ){
   476     return pRight;
   477   }else if( pRight==0 ){
   478     return pLeft;
   479   }else{
   480     return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
   481   }
   482 }
   483 
   484 /*
   485 ** Set the Expr.span field of the given expression to span all
   486 ** text between the two given tokens.  Both tokens must be pointing
   487 ** at the same string.
   488 */
   489 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
   490   assert( pRight!=0 );
   491   assert( pLeft!=0 );
   492   if( pExpr ){
   493     pExpr->span.z = pLeft->z;
   494     pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
   495   }
   496 }
   497 
   498 /*
   499 ** Construct a new expression node for a function with multiple
   500 ** arguments.
   501 */
   502 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
   503   Expr *pNew;
   504   sqlite3 *db = pParse->db;
   505   assert( pToken );
   506   pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
   507   if( pNew==0 ){
   508     sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
   509     return 0;
   510   }
   511   pNew->op = TK_FUNCTION;
   512   pNew->pList = pList;
   513   assert( pToken->dyn==0 );
   514   pNew->token = *pToken;
   515   pNew->span = pNew->token;
   516 
   517   sqlite3ExprSetHeight(pParse, pNew);
   518   return pNew;
   519 }
   520 
   521 /*
   522 ** Assign a variable number to an expression that encodes a wildcard
   523 ** in the original SQL statement.  
   524 **
   525 ** Wildcards consisting of a single "?" are assigned the next sequential
   526 ** variable number.
   527 **
   528 ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
   529 ** sure "nnn" is not too be to avoid a denial of service attack when
   530 ** the SQL statement comes from an external source.
   531 **
   532 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
   533 ** as the previous instance of the same wildcard.  Or if this is the first
   534 ** instance of the wildcard, the next sequenial variable number is
   535 ** assigned.
   536 */
   537 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
   538   Token *pToken;
   539   sqlite3 *db = pParse->db;
   540 
   541   if( pExpr==0 ) return;
   542   pToken = &pExpr->token;
   543   assert( pToken->n>=1 );
   544   assert( pToken->z!=0 );
   545   assert( pToken->z[0]!=0 );
   546   if( pToken->n==1 ){
   547     /* Wildcard of the form "?".  Assign the next variable number */
   548     pExpr->iTable = ++pParse->nVar;
   549   }else if( pToken->z[0]=='?' ){
   550     /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
   551     ** use it as the variable number */
   552     int i;
   553     pExpr->iTable = i = atoi((char*)&pToken->z[1]);
   554     testcase( i==0 );
   555     testcase( i==1 );
   556     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
   557     testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
   558     if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
   559       sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
   560           db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
   561     }
   562     if( i>pParse->nVar ){
   563       pParse->nVar = i;
   564     }
   565   }else{
   566     /* Wildcards of the form ":aaa" or "$aaa".  Reuse the same variable
   567     ** number as the prior appearance of the same name, or if the name
   568     ** has never appeared before, reuse the same variable number
   569     */
   570     int i, n;
   571     n = pToken->n;
   572     for(i=0; i<pParse->nVarExpr; i++){
   573       Expr *pE;
   574       if( (pE = pParse->apVarExpr[i])!=0
   575           && pE->token.n==n
   576           && memcmp(pE->token.z, pToken->z, n)==0 ){
   577         pExpr->iTable = pE->iTable;
   578         break;
   579       }
   580     }
   581     if( i>=pParse->nVarExpr ){
   582       pExpr->iTable = ++pParse->nVar;
   583       if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
   584         pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
   585         pParse->apVarExpr =
   586             sqlite3DbReallocOrFree(
   587               db,
   588               pParse->apVarExpr,
   589               pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
   590             );
   591       }
   592       if( !db->mallocFailed ){
   593         assert( pParse->apVarExpr!=0 );
   594         pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
   595       }
   596     }
   597   } 
   598   if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
   599     sqlite3ErrorMsg(pParse, "too many SQL variables");
   600   }
   601 }
   602 
   603 /*
   604 ** Clear an expression structure without deleting the structure itself.
   605 ** Substructure is deleted.
   606 */
   607 void sqlite3ExprClear(sqlite3 *db, Expr *p){
   608   if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
   609   if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
   610   sqlite3ExprDelete(db, p->pLeft);
   611   sqlite3ExprDelete(db, p->pRight);
   612   sqlite3ExprListDelete(db, p->pList);
   613   sqlite3SelectDelete(db, p->pSelect);
   614 }
   615 
   616 /*
   617 ** Recursively delete an expression tree.
   618 */
   619 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
   620   if( p==0 ) return;
   621   sqlite3ExprClear(db, p);
   622   sqlite3DbFree(db, p);
   623 }
   624 
   625 /*
   626 ** The Expr.token field might be a string literal that is quoted.
   627 ** If so, remove the quotation marks.
   628 */
   629 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
   630   if( ExprHasAnyProperty(p, EP_Dequoted) ){
   631     return;
   632   }
   633   ExprSetProperty(p, EP_Dequoted);
   634   if( p->token.dyn==0 ){
   635     sqlite3TokenCopy(db, &p->token, &p->token);
   636   }
   637   sqlite3Dequote((char*)p->token.z);
   638 }
   639 
   640 /*
   641 ** The following group of routines make deep copies of expressions,
   642 ** expression lists, ID lists, and select statements.  The copies can
   643 ** be deleted (by being passed to their respective ...Delete() routines)
   644 ** without effecting the originals.
   645 **
   646 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
   647 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded 
   648 ** by subsequent calls to sqlite*ListAppend() routines.
   649 **
   650 ** Any tables that the SrcList might point to are not duplicated.
   651 */
   652 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
   653   Expr *pNew;
   654   if( p==0 ) return 0;
   655   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
   656   if( pNew==0 ) return 0;
   657   memcpy(pNew, p, sizeof(*pNew));
   658   if( p->token.z!=0 ){
   659     pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
   660     pNew->token.dyn = 1;
   661   }else{
   662     assert( pNew->token.z==0 );
   663   }
   664   pNew->span.z = 0;
   665   pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
   666   pNew->pRight = sqlite3ExprDup(db, p->pRight);
   667   pNew->pList = sqlite3ExprListDup(db, p->pList);
   668   pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
   669   return pNew;
   670 }
   671 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
   672   if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
   673   if( pFrom->z ){
   674     pTo->n = pFrom->n;
   675     pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
   676     pTo->dyn = 1;
   677   }else{
   678     pTo->z = 0;
   679   }
   680 }
   681 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
   682   ExprList *pNew;
   683   struct ExprList_item *pItem, *pOldItem;
   684   int i;
   685   if( p==0 ) return 0;
   686   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
   687   if( pNew==0 ) return 0;
   688   pNew->iECursor = 0;
   689   pNew->nExpr = pNew->nAlloc = p->nExpr;
   690   pNew->a = pItem = sqlite3DbMallocRaw(db,  p->nExpr*sizeof(p->a[0]) );
   691   if( pItem==0 ){
   692     sqlite3DbFree(db, pNew);
   693     return 0;
   694   } 
   695   pOldItem = p->a;
   696   for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
   697     Expr *pNewExpr, *pOldExpr;
   698     pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
   699     if( pOldExpr->span.z!=0 && pNewExpr ){
   700       /* Always make a copy of the span for top-level expressions in the
   701       ** expression list.  The logic in SELECT processing that determines
   702       ** the names of columns in the result set needs this information */
   703       sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
   704     }
   705     assert( pNewExpr==0 || pNewExpr->span.z!=0 
   706             || pOldExpr->span.z==0
   707             || db->mallocFailed );
   708     pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   709     pItem->sortOrder = pOldItem->sortOrder;
   710     pItem->done = 0;
   711     pItem->iCol = pOldItem->iCol;
   712     pItem->iAlias = pOldItem->iAlias;
   713   }
   714   return pNew;
   715 }
   716 
   717 /*
   718 ** If cursors, triggers, views and subqueries are all omitted from
   719 ** the build, then none of the following routines, except for 
   720 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
   721 ** called with a NULL argument.
   722 */
   723 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
   724  || !defined(SQLITE_OMIT_SUBQUERY)
   725 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
   726   SrcList *pNew;
   727   int i;
   728   int nByte;
   729   if( p==0 ) return 0;
   730   nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
   731   pNew = sqlite3DbMallocRaw(db, nByte );
   732   if( pNew==0 ) return 0;
   733   pNew->nSrc = pNew->nAlloc = p->nSrc;
   734   for(i=0; i<p->nSrc; i++){
   735     struct SrcList_item *pNewItem = &pNew->a[i];
   736     struct SrcList_item *pOldItem = &p->a[i];
   737     Table *pTab;
   738     pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
   739     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   740     pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
   741     pNewItem->jointype = pOldItem->jointype;
   742     pNewItem->iCursor = pOldItem->iCursor;
   743     pNewItem->isPopulated = pOldItem->isPopulated;
   744     pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
   745     pNewItem->notIndexed = pOldItem->notIndexed;
   746     pNewItem->pIndex = pOldItem->pIndex;
   747     pTab = pNewItem->pTab = pOldItem->pTab;
   748     if( pTab ){
   749       pTab->nRef++;
   750     }
   751     pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
   752     pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
   753     pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
   754     pNewItem->colUsed = pOldItem->colUsed;
   755   }
   756   return pNew;
   757 }
   758 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
   759   IdList *pNew;
   760   int i;
   761   if( p==0 ) return 0;
   762   pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
   763   if( pNew==0 ) return 0;
   764   pNew->nId = pNew->nAlloc = p->nId;
   765   pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
   766   if( pNew->a==0 ){
   767     sqlite3DbFree(db, pNew);
   768     return 0;
   769   }
   770   for(i=0; i<p->nId; i++){
   771     struct IdList_item *pNewItem = &pNew->a[i];
   772     struct IdList_item *pOldItem = &p->a[i];
   773     pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
   774     pNewItem->idx = pOldItem->idx;
   775   }
   776   return pNew;
   777 }
   778 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
   779   Select *pNew;
   780   if( p==0 ) return 0;
   781   pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
   782   if( pNew==0 ) return 0;
   783   pNew->pEList = sqlite3ExprListDup(db, p->pEList);
   784   pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
   785   pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
   786   pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
   787   pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
   788   pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
   789   pNew->op = p->op;
   790   pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
   791   pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
   792   pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
   793   pNew->iLimit = 0;
   794   pNew->iOffset = 0;
   795   pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
   796   pNew->pRightmost = 0;
   797   pNew->addrOpenEphm[0] = -1;
   798   pNew->addrOpenEphm[1] = -1;
   799   pNew->addrOpenEphm[2] = -1;
   800   return pNew;
   801 }
   802 #else
   803 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
   804   assert( p==0 );
   805   return 0;
   806 }
   807 #endif
   808 
   809 
   810 /*
   811 ** Add a new element to the end of an expression list.  If pList is
   812 ** initially NULL, then create a new expression list.
   813 */
   814 ExprList *sqlite3ExprListAppend(
   815   Parse *pParse,          /* Parsing context */
   816   ExprList *pList,        /* List to which to append. Might be NULL */
   817   Expr *pExpr,            /* Expression to be appended */
   818   Token *pName            /* AS keyword for the expression */
   819 ){
   820   sqlite3 *db = pParse->db;
   821   if( pList==0 ){
   822     pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
   823     if( pList==0 ){
   824       goto no_mem;
   825     }
   826     assert( pList->nAlloc==0 );
   827   }
   828   if( pList->nAlloc<=pList->nExpr ){
   829     struct ExprList_item *a;
   830     int n = pList->nAlloc*2 + 4;
   831     a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
   832     if( a==0 ){
   833       goto no_mem;
   834     }
   835     pList->a = a;
   836     pList->nAlloc = n;
   837   }
   838   assert( pList->a!=0 );
   839   if( pExpr || pName ){
   840     struct ExprList_item *pItem = &pList->a[pList->nExpr++];
   841     memset(pItem, 0, sizeof(*pItem));
   842     pItem->zName = sqlite3NameFromToken(db, pName);
   843     pItem->pExpr = pExpr;
   844     pItem->iAlias = 0;
   845   }
   846   return pList;
   847 
   848 no_mem:     
   849   /* Avoid leaking memory if malloc has failed. */
   850   sqlite3ExprDelete(db, pExpr);
   851   sqlite3ExprListDelete(db, pList);
   852   return 0;
   853 }
   854 
   855 /*
   856 ** If the expression list pEList contains more than iLimit elements,
   857 ** leave an error message in pParse.
   858 */
   859 void sqlite3ExprListCheckLength(
   860   Parse *pParse,
   861   ExprList *pEList,
   862   const char *zObject
   863 ){
   864   int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
   865   testcase( pEList && pEList->nExpr==mx );
   866   testcase( pEList && pEList->nExpr==mx+1 );
   867   if( pEList && pEList->nExpr>mx ){
   868     sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
   869   }
   870 }
   871 
   872 /*
   873 ** Delete an entire expression list.
   874 */
   875 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
   876   int i;
   877   struct ExprList_item *pItem;
   878   if( pList==0 ) return;
   879   assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
   880   assert( pList->nExpr<=pList->nAlloc );
   881   for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
   882     sqlite3ExprDelete(db, pItem->pExpr);
   883     sqlite3DbFree(db, pItem->zName);
   884   }
   885   sqlite3DbFree(db, pList->a);
   886   sqlite3DbFree(db, pList);
   887 }
   888 
   889 /*
   890 ** These routines are Walker callbacks.  Walker.u.pi is a pointer
   891 ** to an integer.  These routines are checking an expression to see
   892 ** if it is a constant.  Set *Walker.u.pi to 0 if the expression is
   893 ** not constant.
   894 **
   895 ** These callback routines are used to implement the following:
   896 **
   897 **     sqlite3ExprIsConstant()
   898 **     sqlite3ExprIsConstantNotJoin()
   899 **     sqlite3ExprIsConstantOrFunction()
   900 **
   901 */
   902 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
   903 
   904   /* If pWalker->u.i is 3 then any term of the expression that comes from
   905   ** the ON or USING clauses of a join disqualifies the expression
   906   ** from being considered constant. */
   907   if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
   908     pWalker->u.i = 0;
   909     return WRC_Abort;
   910   }
   911 
   912   switch( pExpr->op ){
   913     /* Consider functions to be constant if all their arguments are constant
   914     ** and pWalker->u.i==2 */
   915     case TK_FUNCTION:
   916       if( pWalker->u.i==2 ) return 0;
   917       /* Fall through */
   918     case TK_ID:
   919     case TK_COLUMN:
   920     case TK_DOT:
   921     case TK_AGG_FUNCTION:
   922     case TK_AGG_COLUMN:
   923 #ifndef SQLITE_OMIT_SUBQUERY
   924     case TK_SELECT:
   925     case TK_EXISTS:
   926       testcase( pExpr->op==TK_SELECT );
   927       testcase( pExpr->op==TK_EXISTS );
   928 #endif
   929       testcase( pExpr->op==TK_ID );
   930       testcase( pExpr->op==TK_COLUMN );
   931       testcase( pExpr->op==TK_DOT );
   932       testcase( pExpr->op==TK_AGG_FUNCTION );
   933       testcase( pExpr->op==TK_AGG_COLUMN );
   934       pWalker->u.i = 0;
   935       return WRC_Abort;
   936     default:
   937       return WRC_Continue;
   938   }
   939 }
   940 static int selectNodeIsConstant(Walker *pWalker, Select *pSelect){
   941   pWalker->u.i = 0;
   942   return WRC_Abort;
   943 }
   944 static int exprIsConst(Expr *p, int initFlag){
   945   Walker w;
   946   w.u.i = initFlag;
   947   w.xExprCallback = exprNodeIsConstant;
   948   w.xSelectCallback = selectNodeIsConstant;
   949   sqlite3WalkExpr(&w, p);
   950   return w.u.i;
   951 }
   952 
   953 /*
   954 ** Walk an expression tree.  Return 1 if the expression is constant
   955 ** and 0 if it involves variables or function calls.
   956 **
   957 ** For the purposes of this function, a double-quoted string (ex: "abc")
   958 ** is considered a variable but a single-quoted string (ex: 'abc') is
   959 ** a constant.
   960 */
   961 int sqlite3ExprIsConstant(Expr *p){
   962   return exprIsConst(p, 1);
   963 }
   964 
   965 /*
   966 ** Walk an expression tree.  Return 1 if the expression is constant
   967 ** that does no originate from the ON or USING clauses of a join.
   968 ** Return 0 if it involves variables or function calls or terms from
   969 ** an ON or USING clause.
   970 */
   971 int sqlite3ExprIsConstantNotJoin(Expr *p){
   972   return exprIsConst(p, 3);
   973 }
   974 
   975 /*
   976 ** Walk an expression tree.  Return 1 if the expression is constant
   977 ** or a function call with constant arguments.  Return and 0 if there
   978 ** are any variables.
   979 **
   980 ** For the purposes of this function, a double-quoted string (ex: "abc")
   981 ** is considered a variable but a single-quoted string (ex: 'abc') is
   982 ** a constant.
   983 */
   984 int sqlite3ExprIsConstantOrFunction(Expr *p){
   985   return exprIsConst(p, 2);
   986 }
   987 
   988 /*
   989 ** If the expression p codes a constant integer that is small enough
   990 ** to fit in a 32-bit integer, return 1 and put the value of the integer
   991 ** in *pValue.  If the expression is not an integer or if it is too big
   992 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
   993 */
   994 int sqlite3ExprIsInteger(Expr *p, int *pValue){
   995   int rc = 0;
   996   if( p->flags & EP_IntValue ){
   997     *pValue = p->iTable;
   998     return 1;
   999   }
  1000   switch( p->op ){
  1001     case TK_INTEGER: {
  1002       rc = sqlite3GetInt32((char*)p->token.z, pValue);
  1003       break;
  1004     }
  1005     case TK_UPLUS: {
  1006       rc = sqlite3ExprIsInteger(p->pLeft, pValue);
  1007       break;
  1008     }
  1009     case TK_UMINUS: {
  1010       int v;
  1011       if( sqlite3ExprIsInteger(p->pLeft, &v) ){
  1012         *pValue = -v;
  1013         rc = 1;
  1014       }
  1015       break;
  1016     }
  1017     default: break;
  1018   }
  1019   if( rc ){
  1020     p->op = TK_INTEGER;
  1021     p->flags |= EP_IntValue;
  1022     p->iTable = *pValue;
  1023   }
  1024   return rc;
  1025 }
  1026 
  1027 /*
  1028 ** Return TRUE if the given string is a row-id column name.
  1029 */
  1030 int sqlite3IsRowid(const char *z){
  1031   if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  1032   if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  1033   if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  1034   return 0;
  1035 }
  1036 
  1037 #ifdef SQLITE_TEST
  1038   int sqlite3_enable_in_opt = 1;
  1039 #else
  1040   #define sqlite3_enable_in_opt 1
  1041 #endif
  1042 
  1043 /*
  1044 ** Return true if the IN operator optimization is enabled and
  1045 ** the SELECT statement p exists and is of the
  1046 ** simple form:
  1047 **
  1048 **     SELECT <column> FROM <table>
  1049 **
  1050 ** If this is the case, it may be possible to use an existing table
  1051 ** or index instead of generating an epheremal table.
  1052 */
  1053 #ifndef SQLITE_OMIT_SUBQUERY
  1054 static int isCandidateForInOpt(Select *p){
  1055   SrcList *pSrc;
  1056   ExprList *pEList;
  1057   Table *pTab;
  1058   if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
  1059   if( p==0 ) return 0;                   /* right-hand side of IN is SELECT */
  1060   if( p->pPrior ) return 0;              /* Not a compound SELECT */
  1061   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
  1062       return 0; /* No DISTINCT keyword and no aggregate functions */
  1063   }
  1064   if( p->pGroupBy ) return 0;            /* Has no GROUP BY clause */
  1065   if( p->pLimit ) return 0;              /* Has no LIMIT clause */
  1066   if( p->pOffset ) return 0;
  1067   if( p->pWhere ) return 0;              /* Has no WHERE clause */
  1068   pSrc = p->pSrc;
  1069   if( pSrc==0 ) return 0;                /* A single table in the FROM clause */
  1070   if( pSrc->nSrc!=1 ) return 0;
  1071   if( pSrc->a[0].pSelect ) return 0;     /* FROM clause is not a subquery */
  1072   pTab = pSrc->a[0].pTab;
  1073   if( pTab==0 ) return 0;
  1074   if( pTab->pSelect ) return 0;          /* FROM clause is not a view */
  1075   if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
  1076   pEList = p->pEList;
  1077   if( pEList->nExpr!=1 ) return 0;       /* One column in the result set */
  1078   if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
  1079   return 1;
  1080 }
  1081 #endif /* SQLITE_OMIT_SUBQUERY */
  1082 
  1083 /*
  1084 ** This function is used by the implementation of the IN (...) operator.
  1085 ** It's job is to find or create a b-tree structure that may be used
  1086 ** either to test for membership of the (...) set or to iterate through
  1087 ** its members, skipping duplicates.
  1088 **
  1089 ** The cursor opened on the structure (database table, database index 
  1090 ** or ephermal table) is stored in pX->iTable before this function returns.
  1091 ** The returned value indicates the structure type, as follows:
  1092 **
  1093 **   IN_INDEX_ROWID - The cursor was opened on a database table.
  1094 **   IN_INDEX_INDEX - The cursor was opened on a database index.
  1095 **   IN_INDEX_EPH -   The cursor was opened on a specially created and
  1096 **                    populated epheremal table.
  1097 **
  1098 ** An existing structure may only be used if the SELECT is of the simple
  1099 ** form:
  1100 **
  1101 **     SELECT <column> FROM <table>
  1102 **
  1103 ** If prNotFound parameter is 0, then the structure will be used to iterate
  1104 ** through the set members, skipping any duplicates. In this case an
  1105 ** epheremal table must be used unless the selected <column> is guaranteed
  1106 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
  1107 ** is unique by virtue of a constraint or implicit index.
  1108 **
  1109 ** If the prNotFound parameter is not 0, then the structure will be used 
  1110 ** for fast set membership tests. In this case an epheremal table must 
  1111 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can 
  1112 ** be found with <column> as its left-most column.
  1113 **
  1114 ** When the structure is being used for set membership tests, the user
  1115 ** needs to know whether or not the structure contains an SQL NULL 
  1116 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
  1117 ** If there is a chance that the structure may contain a NULL value at
  1118 ** runtime, then a register is allocated and the register number written
  1119 ** to *prNotFound. If there is no chance that the structure contains a
  1120 ** NULL value, then *prNotFound is left unchanged.
  1121 **
  1122 ** If a register is allocated and its location stored in *prNotFound, then
  1123 ** its initial value is NULL. If the structure does not remain constant
  1124 ** for the duration of the query (i.e. the set is a correlated sub-select), 
  1125 ** the value of the allocated register is reset to NULL each time the 
  1126 ** structure is repopulated. This allows the caller to use vdbe code 
  1127 ** equivalent to the following:
  1128 **
  1129 **   if( register==NULL ){
  1130 **     has_null = <test if data structure contains null>
  1131 **     register = 1
  1132 **   }
  1133 **
  1134 ** in order to avoid running the <test if data structure contains null>
  1135 ** test more often than is necessary.
  1136 */
  1137 #ifndef SQLITE_OMIT_SUBQUERY
  1138 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
  1139   Select *p;
  1140   int eType = 0;
  1141   int iTab = pParse->nTab++;
  1142   int mustBeUnique = !prNotFound;
  1143 
  1144   /* The follwing if(...) expression is true if the SELECT is of the 
  1145   ** simple form:
  1146   **
  1147   **     SELECT <column> FROM <table>
  1148   **
  1149   ** If this is the case, it may be possible to use an existing table
  1150   ** or index instead of generating an epheremal table.
  1151   */
  1152   p = pX->pSelect;
  1153   if( isCandidateForInOpt(p) ){
  1154     sqlite3 *db = pParse->db;
  1155     Index *pIdx;
  1156     Expr *pExpr = p->pEList->a[0].pExpr;
  1157     int iCol = pExpr->iColumn;
  1158     Vdbe *v = sqlite3GetVdbe(pParse);
  1159 
  1160     /* This function is only called from two places. In both cases the vdbe
  1161     ** has already been allocated. So assume sqlite3GetVdbe() is always
  1162     ** successful here.
  1163     */
  1164     assert(v);
  1165     if( iCol<0 ){
  1166       int iMem = ++pParse->nMem;
  1167       int iAddr;
  1168       Table *pTab = p->pSrc->a[0].pTab;
  1169       int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  1170       sqlite3VdbeUsesBtree(v, iDb);
  1171 
  1172       iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
  1173       sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  1174 
  1175       sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
  1176       eType = IN_INDEX_ROWID;
  1177 
  1178       sqlite3VdbeJumpHere(v, iAddr);
  1179     }else{
  1180       /* The collation sequence used by the comparison. If an index is to 
  1181       ** be used in place of a temp-table, it must be ordered according
  1182       ** to this collation sequence.
  1183       */
  1184       CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
  1185 
  1186       /* Check that the affinity that will be used to perform the 
  1187       ** comparison is the same as the affinity of the column. If
  1188       ** it is not, it is not possible to use any index.
  1189       */
  1190       Table *pTab = p->pSrc->a[0].pTab;
  1191       char aff = comparisonAffinity(pX);
  1192       int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
  1193 
  1194       for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
  1195         if( (pIdx->aiColumn[0]==iCol)
  1196          && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
  1197          && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
  1198         ){
  1199           int iDb;
  1200           int iMem = ++pParse->nMem;
  1201           int iAddr;
  1202           char *pKey;
  1203   
  1204           pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
  1205           iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
  1206           sqlite3VdbeUsesBtree(v, iDb);
  1207 
  1208           iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
  1209           sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
  1210   
  1211           sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
  1212           sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
  1213                                pKey,P4_KEYINFO_HANDOFF);
  1214           VdbeComment((v, "%s", pIdx->zName));
  1215           eType = IN_INDEX_INDEX;
  1216 
  1217           sqlite3VdbeJumpHere(v, iAddr);
  1218           if( prNotFound && !pTab->aCol[iCol].notNull ){
  1219             *prNotFound = ++pParse->nMem;
  1220           }
  1221         }
  1222       }
  1223     }
  1224   }
  1225 
  1226   if( eType==0 ){
  1227     int rMayHaveNull = 0;
  1228     eType = IN_INDEX_EPH;
  1229     if( prNotFound ){
  1230       *prNotFound = rMayHaveNull = ++pParse->nMem;
  1231     }else if( pX->pLeft->iColumn<0 && pX->pSelect==0 ){
  1232       eType = IN_INDEX_ROWID;
  1233     }
  1234     sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
  1235   }else{
  1236     pX->iTable = iTab;
  1237   }
  1238   return eType;
  1239 }
  1240 #endif
  1241 
  1242 /*
  1243 ** Generate code for scalar subqueries used as an expression
  1244 ** and IN operators.  Examples:
  1245 **
  1246 **     (SELECT a FROM b)          -- subquery
  1247 **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
  1248 **     x IN (4,5,11)              -- IN operator with list on right-hand side
  1249 **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
  1250 **
  1251 ** The pExpr parameter describes the expression that contains the IN
  1252 ** operator or subquery.
  1253 **
  1254 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
  1255 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
  1256 ** to some integer key column of a table B-Tree. In this case, use an
  1257 ** intkey B-Tree to store the set of IN(...) values instead of the usual
  1258 ** (slower) variable length keys B-Tree.
  1259 */
  1260 #ifndef SQLITE_OMIT_SUBQUERY
  1261 void sqlite3CodeSubselect(
  1262   Parse *pParse, 
  1263   Expr *pExpr, 
  1264   int rMayHaveNull,
  1265   int isRowid
  1266 ){
  1267   int testAddr = 0;                       /* One-time test address */
  1268   Vdbe *v = sqlite3GetVdbe(pParse);
  1269   if( v==0 ) return;
  1270 
  1271 
  1272   /* This code must be run in its entirety every time it is encountered
  1273   ** if any of the following is true:
  1274   **
  1275   **    *  The right-hand side is a correlated subquery
  1276   **    *  The right-hand side is an expression list containing variables
  1277   **    *  We are inside a trigger
  1278   **
  1279   ** If all of the above are false, then we can run this code just once
  1280   ** save the results, and reuse the same result on subsequent invocations.
  1281   */
  1282   if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
  1283     int mem = ++pParse->nMem;
  1284     sqlite3VdbeAddOp1(v, OP_If, mem);
  1285     testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
  1286     assert( testAddr>0 || pParse->db->mallocFailed );
  1287   }
  1288 
  1289   switch( pExpr->op ){
  1290     case TK_IN: {
  1291       char affinity;
  1292       KeyInfo keyInfo;
  1293       int addr;        /* Address of OP_OpenEphemeral instruction */
  1294       Expr *pLeft = pExpr->pLeft;
  1295 
  1296       if( rMayHaveNull ){
  1297         sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
  1298       }
  1299 
  1300       affinity = sqlite3ExprAffinity(pLeft);
  1301 
  1302       /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
  1303       ** expression it is handled the same way. A virtual table is 
  1304       ** filled with single-field index keys representing the results
  1305       ** from the SELECT or the <exprlist>.
  1306       **
  1307       ** If the 'x' expression is a column value, or the SELECT...
  1308       ** statement returns a column value, then the affinity of that
  1309       ** column is used to build the index keys. If both 'x' and the
  1310       ** SELECT... statement are columns, then numeric affinity is used
  1311       ** if either column has NUMERIC or INTEGER affinity. If neither
  1312       ** 'x' nor the SELECT... statement are columns, then numeric affinity
  1313       ** is used.
  1314       */
  1315       pExpr->iTable = pParse->nTab++;
  1316       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
  1317       memset(&keyInfo, 0, sizeof(keyInfo));
  1318       keyInfo.nField = 1;
  1319 
  1320       if( pExpr->pSelect ){
  1321         /* Case 1:     expr IN (SELECT ...)
  1322         **
  1323         ** Generate code to write the results of the select into the temporary
  1324         ** table allocated and opened above.
  1325         */
  1326         SelectDest dest;
  1327         ExprList *pEList;
  1328 
  1329         assert( !isRowid );
  1330         sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
  1331         dest.affinity = (int)affinity;
  1332         assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
  1333         if( sqlite3Select(pParse, pExpr->pSelect, &dest) ){
  1334           return;
  1335         }
  1336         pEList = pExpr->pSelect->pEList;
  1337         if( pEList && pEList->nExpr>0 ){ 
  1338           keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
  1339               pEList->a[0].pExpr);
  1340         }
  1341       }else if( pExpr->pList ){
  1342         /* Case 2:     expr IN (exprlist)
  1343         **
  1344         ** For each expression, build an index key from the evaluation and
  1345         ** store it in the temporary table. If <expr> is a column, then use
  1346         ** that columns affinity when building index keys. If <expr> is not
  1347         ** a column, use numeric affinity.
  1348         */
  1349         int i;
  1350         ExprList *pList = pExpr->pList;
  1351         struct ExprList_item *pItem;
  1352         int r1, r2, r3;
  1353 
  1354         if( !affinity ){
  1355           affinity = SQLITE_AFF_NONE;
  1356         }
  1357         keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
  1358 
  1359         /* Loop through each expression in <exprlist>. */
  1360         r1 = sqlite3GetTempReg(pParse);
  1361         r2 = sqlite3GetTempReg(pParse);
  1362         sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
  1363         for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
  1364           Expr *pE2 = pItem->pExpr;
  1365 
  1366           /* If the expression is not constant then we will need to
  1367           ** disable the test that was generated above that makes sure
  1368           ** this code only executes once.  Because for a non-constant
  1369           ** expression we need to rerun this code each time.
  1370           */
  1371           if( testAddr && !sqlite3ExprIsConstant(pE2) ){
  1372             sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
  1373             testAddr = 0;
  1374           }
  1375 
  1376           /* Evaluate the expression and insert it into the temp table */
  1377           pParse->disableColCache++;
  1378           r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
  1379           assert( pParse->disableColCache>0 );
  1380           pParse->disableColCache--;
  1381 
  1382           if( isRowid ){
  1383             sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, sqlite3VdbeCurrentAddr(v)+2);
  1384             sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
  1385           }else{
  1386             sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
  1387             sqlite3ExprCacheAffinityChange(pParse, r3, 1);
  1388             sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
  1389           }
  1390         }
  1391         sqlite3ReleaseTempReg(pParse, r1);
  1392         sqlite3ReleaseTempReg(pParse, r2);
  1393       }
  1394       if( !isRowid ){
  1395         sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
  1396       }
  1397       break;
  1398     }
  1399 
  1400     case TK_EXISTS:
  1401     case TK_SELECT: {
  1402       /* This has to be a scalar SELECT.  Generate code to put the
  1403       ** value of this select in a memory cell and record the number
  1404       ** of the memory cell in iColumn.
  1405       */
  1406       static const Token one = { (u8*)"1", 0, 1 };
  1407       Select *pSel;
  1408       SelectDest dest;
  1409 
  1410       pSel = pExpr->pSelect;
  1411       sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
  1412       if( pExpr->op==TK_SELECT ){
  1413         dest.eDest = SRT_Mem;
  1414         sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
  1415         VdbeComment((v, "Init subquery result"));
  1416       }else{
  1417         dest.eDest = SRT_Exists;
  1418         sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
  1419         VdbeComment((v, "Init EXISTS result"));
  1420       }
  1421       sqlite3ExprDelete(pParse->db, pSel->pLimit);
  1422       pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
  1423       if( sqlite3Select(pParse, pSel, &dest) ){
  1424         return;
  1425       }
  1426       pExpr->iColumn = dest.iParm;
  1427       break;
  1428     }
  1429   }
  1430 
  1431   if( testAddr ){
  1432     sqlite3VdbeJumpHere(v, testAddr-1);
  1433   }
  1434 
  1435   return;
  1436 }
  1437 #endif /* SQLITE_OMIT_SUBQUERY */
  1438 
  1439 /*
  1440 ** Duplicate an 8-byte value
  1441 */
  1442 static char *dup8bytes(Vdbe *v, const char *in){
  1443   char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
  1444   if( out ){
  1445     memcpy(out, in, 8);
  1446   }
  1447   return out;
  1448 }
  1449 
  1450 /*
  1451 ** Generate an instruction that will put the floating point
  1452 ** value described by z[0..n-1] into register iMem.
  1453 **
  1454 ** The z[] string will probably not be zero-terminated.  But the 
  1455 ** z[n] character is guaranteed to be something that does not look
  1456 ** like the continuation of the number.
  1457 */
  1458 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
  1459   assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
  1460   if( z ){
  1461     double value;
  1462     char *zV;
  1463     assert( !isdigit(z[n]) );
  1464     sqlite3AtoF(z, &value);
  1465     if( sqlite3IsNaN(value) ){
  1466       sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
  1467     }else{
  1468       if( negateFlag ) value = -value;
  1469       zV = dup8bytes(v, (char*)&value);
  1470       sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
  1471     }
  1472   }
  1473 }
  1474 
  1475 
  1476 /*
  1477 ** Generate an instruction that will put the integer describe by
  1478 ** text z[0..n-1] into register iMem.
  1479 **
  1480 ** The z[] string will probably not be zero-terminated.  But the 
  1481 ** z[n] character is guaranteed to be something that does not look
  1482 ** like the continuation of the number.
  1483 */
  1484 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
  1485   const char *z;
  1486   if( pExpr->flags & EP_IntValue ){
  1487     int i = pExpr->iTable;
  1488     if( negFlag ) i = -i;
  1489     sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  1490   }else if( (z = (char*)pExpr->token.z)!=0 ){
  1491     int i;
  1492     int n = pExpr->token.n;
  1493     assert( !isdigit(z[n]) );
  1494     if( sqlite3GetInt32(z, &i) ){
  1495       if( negFlag ) i = -i;
  1496       sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
  1497     }else if( sqlite3FitsIn64Bits(z, negFlag) ){
  1498       i64 value;
  1499       char *zV;
  1500       sqlite3Atoi64(z, &value);
  1501       if( negFlag ) value = -value;
  1502       zV = dup8bytes(v, (char*)&value);
  1503       sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
  1504     }else{
  1505       codeReal(v, z, n, negFlag, iMem);
  1506     }
  1507   }
  1508 }
  1509 
  1510 
  1511 /*
  1512 ** Generate code that will extract the iColumn-th column from
  1513 ** table pTab and store the column value in a register.  An effort
  1514 ** is made to store the column value in register iReg, but this is
  1515 ** not guaranteed.  The location of the column value is returned.
  1516 **
  1517 ** There must be an open cursor to pTab in iTable when this routine
  1518 ** is called.  If iColumn<0 then code is generated that extracts the rowid.
  1519 **
  1520 ** This routine might attempt to reuse the value of the column that
  1521 ** has already been loaded into a register.  The value will always
  1522 ** be used if it has not undergone any affinity changes.  But if
  1523 ** an affinity change has occurred, then the cached value will only be
  1524 ** used if allowAffChng is true.
  1525 */
  1526 int sqlite3ExprCodeGetColumn(
  1527   Parse *pParse,   /* Parsing and code generating context */
  1528   Table *pTab,     /* Description of the table we are reading from */
  1529   int iColumn,     /* Index of the table column */
  1530   int iTable,      /* The cursor pointing to the table */
  1531   int iReg,        /* Store results here */
  1532   int allowAffChng /* True if prior affinity changes are OK */
  1533 ){
  1534   Vdbe *v = pParse->pVdbe;
  1535   int i;
  1536   struct yColCache *p;
  1537 
  1538   for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
  1539     if( p->iTable==iTable && p->iColumn==iColumn
  1540            && (!p->affChange || allowAffChng) ){
  1541 #if 0
  1542       sqlite3VdbeAddOp0(v, OP_Noop);
  1543       VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
  1544 #endif
  1545       return p->iReg;
  1546     }
  1547   }  
  1548   assert( v!=0 );
  1549   if( iColumn<0 ){
  1550     int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
  1551     sqlite3VdbeAddOp2(v, op, iTable, iReg);
  1552   }else if( pTab==0 ){
  1553     sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
  1554   }else{
  1555     int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
  1556     sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
  1557     sqlite3ColumnDefault(v, pTab, iColumn);
  1558 #ifndef SQLITE_OMIT_FLOATING_POINT
  1559     if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
  1560       sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
  1561     }
  1562 #endif
  1563   }
  1564   if( pParse->disableColCache==0 ){
  1565     i = pParse->iColCache;
  1566     p = &pParse->aColCache[i];
  1567     p->iTable = iTable;
  1568     p->iColumn = iColumn;
  1569     p->iReg = iReg;
  1570     p->affChange = 0;
  1571     i++;
  1572     if( i>=ArraySize(pParse->aColCache) ) i = 0;
  1573     if( i>pParse->nColCache ) pParse->nColCache = i;
  1574     pParse->iColCache = i;
  1575   }
  1576   return iReg;
  1577 }
  1578 
  1579 /*
  1580 ** Clear all column cache entries associated with the vdbe
  1581 ** cursor with cursor number iTable.
  1582 */
  1583 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
  1584   if( iTable<0 ){
  1585     pParse->nColCache = 0;
  1586     pParse->iColCache = 0;
  1587   }else{
  1588     int i;
  1589     for(i=0; i<pParse->nColCache; i++){
  1590       if( pParse->aColCache[i].iTable==iTable ){
  1591         testcase( i==pParse->nColCache-1 );
  1592         pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
  1593         pParse->iColCache = pParse->nColCache;
  1594       }
  1595     }
  1596   }
  1597 }
  1598 
  1599 /*
  1600 ** Record the fact that an affinity change has occurred on iCount
  1601 ** registers starting with iStart.
  1602 */
  1603 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
  1604   int iEnd = iStart + iCount - 1;
  1605   int i;
  1606   for(i=0; i<pParse->nColCache; i++){
  1607     int r = pParse->aColCache[i].iReg;
  1608     if( r>=iStart && r<=iEnd ){
  1609       pParse->aColCache[i].affChange = 1;
  1610     }
  1611   }
  1612 }
  1613 
  1614 /*
  1615 ** Generate code to move content from registers iFrom...iFrom+nReg-1
  1616 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
  1617 */
  1618 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
  1619   int i;
  1620   if( iFrom==iTo ) return;
  1621   sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
  1622   for(i=0; i<pParse->nColCache; i++){
  1623     int x = pParse->aColCache[i].iReg;
  1624     if( x>=iFrom && x<iFrom+nReg ){
  1625       pParse->aColCache[i].iReg += iTo-iFrom;
  1626     }
  1627   }
  1628 }
  1629 
  1630 /*
  1631 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
  1632 ** over to iTo..iTo+nReg-1.
  1633 */
  1634 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
  1635   int i;
  1636   if( iFrom==iTo ) return;
  1637   for(i=0; i<nReg; i++){
  1638     sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
  1639   }
  1640 }
  1641 
  1642 /*
  1643 ** Return true if any register in the range iFrom..iTo (inclusive)
  1644 ** is used as part of the column cache.
  1645 */
  1646 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
  1647   int i;
  1648   for(i=0; i<pParse->nColCache; i++){
  1649     int r = pParse->aColCache[i].iReg;
  1650     if( r>=iFrom && r<=iTo ) return 1;
  1651   }
  1652   return 0;
  1653 }
  1654 
  1655 /*
  1656 ** Theres is a value in register iCurrent.  We ultimately want
  1657 ** the value to be in register iTarget.  It might be that
  1658 ** iCurrent and iTarget are the same register.
  1659 **
  1660 ** We are going to modify the value, so we need to make sure it
  1661 ** is not a cached register.  If iCurrent is a cached register,
  1662 ** then try to move the value over to iTarget.  If iTarget is a
  1663 ** cached register, then clear the corresponding cache line.
  1664 **
  1665 ** Return the register that the value ends up in.
  1666 */
  1667 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
  1668   int i;
  1669   assert( pParse->pVdbe!=0 );
  1670   if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
  1671     return iCurrent;
  1672   }
  1673   if( iCurrent!=iTarget ){
  1674     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
  1675   }
  1676   for(i=0; i<pParse->nColCache; i++){
  1677     if( pParse->aColCache[i].iReg==iTarget ){
  1678       pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
  1679       pParse->iColCache = pParse->nColCache;
  1680     }
  1681   }
  1682   return iTarget;
  1683 }
  1684 
  1685 /*
  1686 ** If the last instruction coded is an ephemeral copy of any of
  1687 ** the registers in the nReg registers beginning with iReg, then
  1688 ** convert the last instruction from OP_SCopy to OP_Copy.
  1689 */
  1690 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
  1691   int addr;
  1692   VdbeOp *pOp;
  1693   Vdbe *v;
  1694 
  1695   v = pParse->pVdbe;
  1696   addr = sqlite3VdbeCurrentAddr(v);
  1697   pOp = sqlite3VdbeGetOp(v, addr-1);
  1698   assert( pOp || pParse->db->mallocFailed );
  1699   if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
  1700     pOp->opcode = OP_Copy;
  1701   }
  1702 }
  1703 
  1704 /*
  1705 ** Generate code to store the value of the iAlias-th alias in register
  1706 ** target.  The first time this is called, pExpr is evaluated to compute
  1707 ** the value of the alias.  The value is stored in an auxiliary register
  1708 ** and the number of that register is returned.  On subsequent calls,
  1709 ** the register number is returned without generating any code.
  1710 **
  1711 ** Note that in order for this to work, code must be generated in the
  1712 ** same order that it is executed.
  1713 **
  1714 ** Aliases are numbered starting with 1.  So iAlias is in the range
  1715 ** of 1 to pParse->nAlias inclusive.  
  1716 **
  1717 ** pParse->aAlias[iAlias-1] records the register number where the value
  1718 ** of the iAlias-th alias is stored.  If zero, that means that the
  1719 ** alias has not yet been computed.
  1720 */
  1721 static int codeAlias(Parse *pParse, int iAlias, Expr *pExpr, int target){
  1722   sqlite3 *db = pParse->db;
  1723   int iReg;
  1724   if( pParse->nAliasAlloc<pParse->nAlias ){
  1725     pParse->aAlias = sqlite3DbReallocOrFree(db, pParse->aAlias,
  1726                                   sizeof(pParse->aAlias[0])*pParse->nAlias );
  1727     testcase( db->mallocFailed && pParse->nAliasAlloc>0 );
  1728     if( db->mallocFailed ) return 0;
  1729     memset(&pParse->aAlias[pParse->nAliasAlloc], 0,
  1730            (pParse->nAlias-pParse->nAliasAlloc)*sizeof(pParse->aAlias[0]));
  1731     pParse->nAliasAlloc = pParse->nAlias;
  1732   }
  1733   assert( iAlias>0 && iAlias<=pParse->nAlias );
  1734   iReg = pParse->aAlias[iAlias-1];
  1735   if( iReg==0 ){
  1736     if( pParse->disableColCache ){
  1737       iReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
  1738     }else{
  1739       iReg = ++pParse->nMem;
  1740       sqlite3ExprCode(pParse, pExpr, iReg);
  1741       pParse->aAlias[iAlias-1] = iReg;
  1742     }
  1743   }
  1744   return iReg;
  1745 }
  1746 
  1747 /*
  1748 ** Generate code into the current Vdbe to evaluate the given
  1749 ** expression.  Attempt to store the results in register "target".
  1750 ** Return the register where results are stored.
  1751 **
  1752 ** With this routine, there is no guarantee that results will
  1753 ** be stored in target.  The result might be stored in some other
  1754 ** register if it is convenient to do so.  The calling function
  1755 ** must check the return code and move the results to the desired
  1756 ** register.
  1757 */
  1758 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
  1759   Vdbe *v = pParse->pVdbe;  /* The VM under construction */
  1760   int op;                   /* The opcode being coded */
  1761   int inReg = target;       /* Results stored in register inReg */
  1762   int regFree1 = 0;         /* If non-zero free this temporary register */
  1763   int regFree2 = 0;         /* If non-zero free this temporary register */
  1764   int r1, r2, r3, r4;       /* Various register numbers */
  1765   sqlite3 *db;
  1766 
  1767   db = pParse->db;
  1768   assert( v!=0 || db->mallocFailed );
  1769   assert( target>0 && target<=pParse->nMem );
  1770   if( v==0 ) return 0;
  1771 
  1772   if( pExpr==0 ){
  1773     op = TK_NULL;
  1774   }else{
  1775     op = pExpr->op;
  1776   }
  1777   switch( op ){
  1778     case TK_AGG_COLUMN: {
  1779       AggInfo *pAggInfo = pExpr->pAggInfo;
  1780       struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
  1781       if( !pAggInfo->directMode ){
  1782         assert( pCol->iMem>0 );
  1783         inReg = pCol->iMem;
  1784         break;
  1785       }else if( pAggInfo->useSortingIdx ){
  1786         sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
  1787                               pCol->iSorterColumn, target);
  1788         break;
  1789       }
  1790       /* Otherwise, fall thru into the TK_COLUMN case */
  1791     }
  1792     case TK_COLUMN: {
  1793       if( pExpr->iTable<0 ){
  1794         /* This only happens when coding check constraints */
  1795         assert( pParse->ckBase>0 );
  1796         inReg = pExpr->iColumn + pParse->ckBase;
  1797       }else{
  1798         testcase( (pExpr->flags & EP_AnyAff)!=0 );
  1799         inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
  1800                                  pExpr->iColumn, pExpr->iTable, target,
  1801                                  pExpr->flags & EP_AnyAff);
  1802       }
  1803       break;
  1804     }
  1805     case TK_INTEGER: {
  1806       codeInteger(v, pExpr, 0, target);
  1807       break;
  1808     }
  1809     case TK_FLOAT: {
  1810       codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
  1811       break;
  1812     }
  1813     case TK_STRING: {
  1814       sqlite3DequoteExpr(db, pExpr);
  1815       sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
  1816                         (char*)pExpr->token.z, pExpr->token.n);
  1817       break;
  1818     }
  1819     case TK_NULL: {
  1820       sqlite3VdbeAddOp2(v, OP_Null, 0, target);
  1821       break;
  1822     }
  1823 #ifndef SQLITE_OMIT_BLOB_LITERAL
  1824     case TK_BLOB: {
  1825       int n;
  1826       const char *z;
  1827       char *zBlob;
  1828       assert( pExpr->token.n>=3 );
  1829       assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
  1830       assert( pExpr->token.z[1]=='\'' );
  1831       assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
  1832       n = pExpr->token.n - 3;
  1833       z = (char*)pExpr->token.z + 2;
  1834       zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
  1835       sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
  1836       break;
  1837     }
  1838 #endif
  1839     case TK_VARIABLE: {
  1840       sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
  1841       if( pExpr->token.n>1 ){
  1842         sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
  1843       }
  1844       break;
  1845     }
  1846     case TK_REGISTER: {
  1847       inReg = pExpr->iTable;
  1848       break;
  1849     }
  1850     case TK_AS: {
  1851       inReg = codeAlias(pParse, pExpr->iTable, pExpr->pLeft, target);
  1852       break;
  1853     }
  1854 #ifndef SQLITE_OMIT_CAST
  1855     case TK_CAST: {
  1856       /* Expressions of the form:   CAST(pLeft AS token) */
  1857       int aff, to_op;
  1858       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  1859       aff = sqlite3AffinityType(&pExpr->token);
  1860       to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
  1861       assert( to_op==OP_ToText    || aff!=SQLITE_AFF_TEXT    );
  1862       assert( to_op==OP_ToBlob    || aff!=SQLITE_AFF_NONE    );
  1863       assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
  1864       assert( to_op==OP_ToInt     || aff!=SQLITE_AFF_INTEGER );
  1865       assert( to_op==OP_ToReal    || aff!=SQLITE_AFF_REAL    );
  1866       testcase( to_op==OP_ToText );
  1867       testcase( to_op==OP_ToBlob );
  1868       testcase( to_op==OP_ToNumeric );
  1869       testcase( to_op==OP_ToInt );
  1870       testcase( to_op==OP_ToReal );
  1871       if( inReg!=target ){
  1872         sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
  1873         inReg = target;
  1874       }
  1875       sqlite3VdbeAddOp1(v, to_op, inReg);
  1876       testcase( usedAsColumnCache(pParse, inReg, inReg) );
  1877       sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
  1878       break;
  1879     }
  1880 #endif /* SQLITE_OMIT_CAST */
  1881     case TK_LT:
  1882     case TK_LE:
  1883     case TK_GT:
  1884     case TK_GE:
  1885     case TK_NE:
  1886     case TK_EQ: {
  1887       assert( TK_LT==OP_Lt );
  1888       assert( TK_LE==OP_Le );
  1889       assert( TK_GT==OP_Gt );
  1890       assert( TK_GE==OP_Ge );
  1891       assert( TK_EQ==OP_Eq );
  1892       assert( TK_NE==OP_Ne );
  1893       testcase( op==TK_LT );
  1894       testcase( op==TK_LE );
  1895       testcase( op==TK_GT );
  1896       testcase( op==TK_GE );
  1897       testcase( op==TK_EQ );
  1898       testcase( op==TK_NE );
  1899       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  1900                                   pExpr->pRight, &r2, &regFree2);
  1901       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  1902                   r1, r2, inReg, SQLITE_STOREP2);
  1903       testcase( regFree1==0 );
  1904       testcase( regFree2==0 );
  1905       break;
  1906     }
  1907     case TK_AND:
  1908     case TK_OR:
  1909     case TK_PLUS:
  1910     case TK_STAR:
  1911     case TK_MINUS:
  1912     case TK_REM:
  1913     case TK_BITAND:
  1914     case TK_BITOR:
  1915     case TK_SLASH:
  1916     case TK_LSHIFT:
  1917     case TK_RSHIFT: 
  1918     case TK_CONCAT: {
  1919       assert( TK_AND==OP_And );
  1920       assert( TK_OR==OP_Or );
  1921       assert( TK_PLUS==OP_Add );
  1922       assert( TK_MINUS==OP_Subtract );
  1923       assert( TK_REM==OP_Remainder );
  1924       assert( TK_BITAND==OP_BitAnd );
  1925       assert( TK_BITOR==OP_BitOr );
  1926       assert( TK_SLASH==OP_Divide );
  1927       assert( TK_LSHIFT==OP_ShiftLeft );
  1928       assert( TK_RSHIFT==OP_ShiftRight );
  1929       assert( TK_CONCAT==OP_Concat );
  1930       testcase( op==TK_AND );
  1931       testcase( op==TK_OR );
  1932       testcase( op==TK_PLUS );
  1933       testcase( op==TK_MINUS );
  1934       testcase( op==TK_REM );
  1935       testcase( op==TK_BITAND );
  1936       testcase( op==TK_BITOR );
  1937       testcase( op==TK_SLASH );
  1938       testcase( op==TK_LSHIFT );
  1939       testcase( op==TK_RSHIFT );
  1940       testcase( op==TK_CONCAT );
  1941       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  1942       r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
  1943       sqlite3VdbeAddOp3(v, op, r2, r1, target);
  1944       testcase( regFree1==0 );
  1945       testcase( regFree2==0 );
  1946       break;
  1947     }
  1948     case TK_UMINUS: {
  1949       Expr *pLeft = pExpr->pLeft;
  1950       assert( pLeft );
  1951       if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
  1952         if( pLeft->op==TK_FLOAT ){
  1953           codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
  1954         }else{
  1955           codeInteger(v, pLeft, 1, target);
  1956         }
  1957       }else{
  1958         regFree1 = r1 = sqlite3GetTempReg(pParse);
  1959         sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
  1960         r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
  1961         sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
  1962         testcase( regFree2==0 );
  1963       }
  1964       inReg = target;
  1965       break;
  1966     }
  1967     case TK_BITNOT:
  1968     case TK_NOT: {
  1969       assert( TK_BITNOT==OP_BitNot );
  1970       assert( TK_NOT==OP_Not );
  1971       testcase( op==TK_BITNOT );
  1972       testcase( op==TK_NOT );
  1973       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  1974       testcase( regFree1==0 );
  1975       inReg = target;
  1976       sqlite3VdbeAddOp2(v, op, r1, inReg);
  1977       break;
  1978     }
  1979     case TK_ISNULL:
  1980     case TK_NOTNULL: {
  1981       int addr;
  1982       assert( TK_ISNULL==OP_IsNull );
  1983       assert( TK_NOTNULL==OP_NotNull );
  1984       testcase( op==TK_ISNULL );
  1985       testcase( op==TK_NOTNULL );
  1986       sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  1987       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  1988       testcase( regFree1==0 );
  1989       addr = sqlite3VdbeAddOp1(v, op, r1);
  1990       sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
  1991       sqlite3VdbeJumpHere(v, addr);
  1992       break;
  1993     }
  1994     case TK_AGG_FUNCTION: {
  1995       AggInfo *pInfo = pExpr->pAggInfo;
  1996       if( pInfo==0 ){
  1997         sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
  1998             &pExpr->span);
  1999       }else{
  2000         inReg = pInfo->aFunc[pExpr->iAgg].iMem;
  2001       }
  2002       break;
  2003     }
  2004     case TK_CONST_FUNC:
  2005     case TK_FUNCTION: {
  2006       ExprList *pList = pExpr->pList;
  2007       int nExpr = pList ? pList->nExpr : 0;
  2008       FuncDef *pDef;
  2009       int nId;
  2010       const char *zId;
  2011       int constMask = 0;
  2012       int i;
  2013       u8 enc = ENC(db);
  2014       CollSeq *pColl = 0;
  2015 
  2016       testcase( op==TK_CONST_FUNC );
  2017       testcase( op==TK_FUNCTION );
  2018       zId = (char*)pExpr->token.z;
  2019       nId = pExpr->token.n;
  2020       pDef = sqlite3FindFunction(db, zId, nId, nExpr, enc, 0);
  2021       assert( pDef!=0 );
  2022       if( pList ){
  2023         nExpr = pList->nExpr;
  2024         r1 = sqlite3GetTempRange(pParse, nExpr);
  2025         sqlite3ExprCodeExprList(pParse, pList, r1, 1);
  2026       }else{
  2027         nExpr = r1 = 0;
  2028       }
  2029 #ifndef SQLITE_OMIT_VIRTUALTABLE
  2030       /* Possibly overload the function if the first argument is
  2031       ** a virtual table column.
  2032       **
  2033       ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
  2034       ** second argument, not the first, as the argument to test to
  2035       ** see if it is a column in a virtual table.  This is done because
  2036       ** the left operand of infix functions (the operand we want to
  2037       ** control overloading) ends up as the second argument to the
  2038       ** function.  The expression "A glob B" is equivalent to 
  2039       ** "glob(B,A).  We want to use the A in "A glob B" to test
  2040       ** for function overloading.  But we use the B term in "glob(B,A)".
  2041       */
  2042       if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
  2043         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
  2044       }else if( nExpr>0 ){
  2045         pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
  2046       }
  2047 #endif
  2048       for(i=0; i<nExpr && i<32; i++){
  2049         if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
  2050           constMask |= (1<<i);
  2051         }
  2052         if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
  2053           pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
  2054         }
  2055       }
  2056       if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
  2057         if( !pColl ) pColl = db->pDfltColl; 
  2058         sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
  2059       }
  2060       sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
  2061                         (char*)pDef, P4_FUNCDEF);
  2062       sqlite3VdbeChangeP5(v, nExpr);
  2063       if( nExpr ){
  2064         sqlite3ReleaseTempRange(pParse, r1, nExpr);
  2065       }
  2066       sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
  2067       break;
  2068     }
  2069 #ifndef SQLITE_OMIT_SUBQUERY
  2070     case TK_EXISTS:
  2071     case TK_SELECT: {
  2072       testcase( op==TK_EXISTS );
  2073       testcase( op==TK_SELECT );
  2074       if( pExpr->iColumn==0 ){
  2075         sqlite3CodeSubselect(pParse, pExpr, 0, 0);
  2076       }
  2077       inReg = pExpr->iColumn;
  2078       break;
  2079     }
  2080     case TK_IN: {
  2081       int rNotFound = 0;
  2082       int rMayHaveNull = 0;
  2083       int j2, j3, j4, j5;
  2084       char affinity;
  2085       int eType;
  2086 
  2087       VdbeNoopComment((v, "begin IN expr r%d", target));
  2088       eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
  2089       if( rMayHaveNull ){
  2090         rNotFound = ++pParse->nMem;
  2091       }
  2092 
  2093       /* Figure out the affinity to use to create a key from the results
  2094       ** of the expression. affinityStr stores a static string suitable for
  2095       ** P4 of OP_MakeRecord.
  2096       */
  2097       affinity = comparisonAffinity(pExpr);
  2098 
  2099 
  2100       /* Code the <expr> from "<expr> IN (...)". The temporary table
  2101       ** pExpr->iTable contains the values that make up the (...) set.
  2102       */
  2103       pParse->disableColCache++;
  2104       sqlite3ExprCode(pParse, pExpr->pLeft, target);
  2105       pParse->disableColCache--;
  2106       j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
  2107       if( eType==IN_INDEX_ROWID ){
  2108         j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
  2109         j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
  2110         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2111         j5 = sqlite3VdbeAddOp0(v, OP_Goto);
  2112         sqlite3VdbeJumpHere(v, j3);
  2113         sqlite3VdbeJumpHere(v, j4);
  2114         sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
  2115       }else{
  2116         r2 = regFree2 = sqlite3GetTempReg(pParse);
  2117 
  2118         /* Create a record and test for set membership. If the set contains
  2119         ** the value, then jump to the end of the test code. The target
  2120         ** register still contains the true (1) value written to it earlier.
  2121         */
  2122         sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
  2123         sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
  2124         j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
  2125 
  2126         /* If the set membership test fails, then the result of the 
  2127         ** "x IN (...)" expression must be either 0 or NULL. If the set
  2128         ** contains no NULL values, then the result is 0. If the set 
  2129         ** contains one or more NULL values, then the result of the
  2130         ** expression is also NULL.
  2131         */
  2132         if( rNotFound==0 ){
  2133           /* This branch runs if it is known at compile time (now) that 
  2134           ** the set contains no NULL values. This happens as the result
  2135           ** of a "NOT NULL" constraint in the database schema. No need
  2136           ** to test the data structure at runtime in this case.
  2137           */
  2138           sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
  2139         }else{
  2140           /* This block populates the rNotFound register with either NULL
  2141           ** or 0 (an integer value). If the data structure contains one
  2142           ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
  2143           ** to 0. If register rMayHaveNull is already set to some value
  2144           ** other than NULL, then the test has already been run and 
  2145           ** rNotFound is already populated.
  2146           */
  2147           static const char nullRecord[] = { 0x02, 0x00 };
  2148           j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
  2149           sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
  2150           sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0, 
  2151                              nullRecord, P4_STATIC);
  2152           j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
  2153           sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
  2154           sqlite3VdbeJumpHere(v, j4);
  2155           sqlite3VdbeJumpHere(v, j3);
  2156 
  2157           /* Copy the value of register rNotFound (which is either NULL or 0)
  2158           ** into the target register. This will be the result of the
  2159           ** expression.
  2160           */
  2161           sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
  2162         }
  2163       }
  2164       sqlite3VdbeJumpHere(v, j2);
  2165       sqlite3VdbeJumpHere(v, j5);
  2166       VdbeComment((v, "end IN expr r%d", target));
  2167       break;
  2168     }
  2169 #endif
  2170     /*
  2171     **    x BETWEEN y AND z
  2172     **
  2173     ** This is equivalent to
  2174     **
  2175     **    x>=y AND x<=z
  2176     **
  2177     ** X is stored in pExpr->pLeft.
  2178     ** Y is stored in pExpr->pList->a[0].pExpr.
  2179     ** Z is stored in pExpr->pList->a[1].pExpr.
  2180     */
  2181     case TK_BETWEEN: {
  2182       Expr *pLeft = pExpr->pLeft;
  2183       struct ExprList_item *pLItem = pExpr->pList->a;
  2184       Expr *pRight = pLItem->pExpr;
  2185 
  2186       codeCompareOperands(pParse, pLeft, &r1, &regFree1,
  2187                                   pRight, &r2, &regFree2);
  2188       testcase( regFree1==0 );
  2189       testcase( regFree2==0 );
  2190       r3 = sqlite3GetTempReg(pParse);
  2191       r4 = sqlite3GetTempReg(pParse);
  2192       codeCompare(pParse, pLeft, pRight, OP_Ge,
  2193                   r1, r2, r3, SQLITE_STOREP2);
  2194       pLItem++;
  2195       pRight = pLItem->pExpr;
  2196       sqlite3ReleaseTempReg(pParse, regFree2);
  2197       r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
  2198       testcase( regFree2==0 );
  2199       codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
  2200       sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
  2201       sqlite3ReleaseTempReg(pParse, r3);
  2202       sqlite3ReleaseTempReg(pParse, r4);
  2203       break;
  2204     }
  2205     case TK_UPLUS: {
  2206       inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
  2207       break;
  2208     }
  2209 
  2210     /*
  2211     ** Form A:
  2212     **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
  2213     **
  2214     ** Form B:
  2215     **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
  2216     **
  2217     ** Form A is can be transformed into the equivalent form B as follows:
  2218     **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
  2219     **        WHEN x=eN THEN rN ELSE y END
  2220     **
  2221     ** X (if it exists) is in pExpr->pLeft.
  2222     ** Y is in pExpr->pRight.  The Y is also optional.  If there is no
  2223     ** ELSE clause and no other term matches, then the result of the
  2224     ** exprssion is NULL.
  2225     ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
  2226     **
  2227     ** The result of the expression is the Ri for the first matching Ei,
  2228     ** or if there is no matching Ei, the ELSE term Y, or if there is
  2229     ** no ELSE term, NULL.
  2230     */
  2231     case TK_CASE: {
  2232       int endLabel;                     /* GOTO label for end of CASE stmt */
  2233       int nextCase;                     /* GOTO label for next WHEN clause */
  2234       int nExpr;                        /* 2x number of WHEN terms */
  2235       int i;                            /* Loop counter */
  2236       ExprList *pEList;                 /* List of WHEN terms */
  2237       struct ExprList_item *aListelem;  /* Array of WHEN terms */
  2238       Expr opCompare;                   /* The X==Ei expression */
  2239       Expr cacheX;                      /* Cached expression X */
  2240       Expr *pX;                         /* The X expression */
  2241       Expr *pTest;                      /* X==Ei (form A) or just Ei (form B) */
  2242 
  2243       assert(pExpr->pList);
  2244       assert((pExpr->pList->nExpr % 2) == 0);
  2245       assert(pExpr->pList->nExpr > 0);
  2246       pEList = pExpr->pList;
  2247       aListelem = pEList->a;
  2248       nExpr = pEList->nExpr;
  2249       endLabel = sqlite3VdbeMakeLabel(v);
  2250       if( (pX = pExpr->pLeft)!=0 ){
  2251         cacheX = *pX;
  2252         testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
  2253         cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
  2254         testcase( regFree1==0 );
  2255         cacheX.op = TK_REGISTER;
  2256         opCompare.op = TK_EQ;
  2257         opCompare.pLeft = &cacheX;
  2258         pTest = &opCompare;
  2259       }
  2260       pParse->disableColCache++;
  2261       for(i=0; i<nExpr; i=i+2){
  2262         if( pX ){
  2263           opCompare.pRight = aListelem[i].pExpr;
  2264         }else{
  2265           pTest = aListelem[i].pExpr;
  2266         }
  2267         nextCase = sqlite3VdbeMakeLabel(v);
  2268         testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
  2269         sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
  2270         testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
  2271         testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
  2272         sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
  2273         sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
  2274         sqlite3VdbeResolveLabel(v, nextCase);
  2275       }
  2276       if( pExpr->pRight ){
  2277         sqlite3ExprCode(pParse, pExpr->pRight, target);
  2278       }else{
  2279         sqlite3VdbeAddOp2(v, OP_Null, 0, target);
  2280       }
  2281       sqlite3VdbeResolveLabel(v, endLabel);
  2282       assert( pParse->disableColCache>0 );
  2283       pParse->disableColCache--;
  2284       break;
  2285     }
  2286 #ifndef SQLITE_OMIT_TRIGGER
  2287     case TK_RAISE: {
  2288       if( !pParse->trigStack ){
  2289         sqlite3ErrorMsg(pParse,
  2290                        "RAISE() may only be used within a trigger-program");
  2291         return 0;
  2292       }
  2293       if( pExpr->iColumn!=OE_Ignore ){
  2294          assert( pExpr->iColumn==OE_Rollback ||
  2295                  pExpr->iColumn == OE_Abort ||
  2296                  pExpr->iColumn == OE_Fail );
  2297          sqlite3DequoteExpr(db, pExpr);
  2298          sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
  2299                         (char*)pExpr->token.z, pExpr->token.n);
  2300       } else {
  2301          assert( pExpr->iColumn == OE_Ignore );
  2302          sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
  2303          sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
  2304          VdbeComment((v, "raise(IGNORE)"));
  2305       }
  2306       break;
  2307     }
  2308 #endif
  2309   }
  2310   sqlite3ReleaseTempReg(pParse, regFree1);
  2311   sqlite3ReleaseTempReg(pParse, regFree2);
  2312   return inReg;
  2313 }
  2314 
  2315 /*
  2316 ** Generate code to evaluate an expression and store the results
  2317 ** into a register.  Return the register number where the results
  2318 ** are stored.
  2319 **
  2320 ** If the register is a temporary register that can be deallocated,
  2321 ** then write its number into *pReg.  If the result register is not
  2322 ** a temporary, then set *pReg to zero.
  2323 */
  2324 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
  2325   int r1 = sqlite3GetTempReg(pParse);
  2326   int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
  2327   if( r2==r1 ){
  2328     *pReg = r1;
  2329   }else{
  2330     sqlite3ReleaseTempReg(pParse, r1);
  2331     *pReg = 0;
  2332   }
  2333   return r2;
  2334 }
  2335 
  2336 /*
  2337 ** Generate code that will evaluate expression pExpr and store the
  2338 ** results in register target.  The results are guaranteed to appear
  2339 ** in register target.
  2340 */
  2341 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
  2342   int inReg;
  2343 
  2344   assert( target>0 && target<=pParse->nMem );
  2345   inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
  2346   assert( pParse->pVdbe || pParse->db->mallocFailed );
  2347   if( inReg!=target && pParse->pVdbe ){
  2348     sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
  2349   }
  2350   return target;
  2351 }
  2352 
  2353 /*
  2354 ** Generate code that evalutes the given expression and puts the result
  2355 ** in register target.
  2356 **
  2357 ** Also make a copy of the expression results into another "cache" register
  2358 ** and modify the expression so that the next time it is evaluated,
  2359 ** the result is a copy of the cache register.
  2360 **
  2361 ** This routine is used for expressions that are used multiple 
  2362 ** times.  They are evaluated once and the results of the expression
  2363 ** are reused.
  2364 */
  2365 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
  2366   Vdbe *v = pParse->pVdbe;
  2367   int inReg;
  2368   inReg = sqlite3ExprCode(pParse, pExpr, target);
  2369   assert( target>0 );
  2370   if( pExpr->op!=TK_REGISTER ){  
  2371     int iMem;
  2372     iMem = ++pParse->nMem;
  2373     sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
  2374     pExpr->iTable = iMem;
  2375     pExpr->op = TK_REGISTER;
  2376   }
  2377   return inReg;
  2378 }
  2379 
  2380 /*
  2381 ** Return TRUE if pExpr is an constant expression that is appropriate
  2382 ** for factoring out of a loop.  Appropriate expressions are:
  2383 **
  2384 **    *  Any expression that evaluates to two or more opcodes.
  2385 **
  2386 **    *  Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null, 
  2387 **       or OP_Variable that does not need to be placed in a 
  2388 **       specific register.
  2389 **
  2390 ** There is no point in factoring out single-instruction constant
  2391 ** expressions that need to be placed in a particular register.  
  2392 ** We could factor them out, but then we would end up adding an
  2393 ** OP_SCopy instruction to move the value into the correct register
  2394 ** later.  We might as well just use the original instruction and
  2395 ** avoid the OP_SCopy.
  2396 */
  2397 static int isAppropriateForFactoring(Expr *p){
  2398   if( !sqlite3ExprIsConstantNotJoin(p) ){
  2399     return 0;  /* Only constant expressions are appropriate for factoring */
  2400   }
  2401   if( (p->flags & EP_FixedDest)==0 ){
  2402     return 1;  /* Any constant without a fixed destination is appropriate */
  2403   }
  2404   while( p->op==TK_UPLUS ) p = p->pLeft;
  2405   switch( p->op ){
  2406 #ifndef SQLITE_OMIT_BLOB_LITERAL
  2407     case TK_BLOB:
  2408 #endif
  2409     case TK_VARIABLE:
  2410     case TK_INTEGER:
  2411     case TK_FLOAT:
  2412     case TK_NULL:
  2413     case TK_STRING: {
  2414       testcase( p->op==TK_BLOB );
  2415       testcase( p->op==TK_VARIABLE );
  2416       testcase( p->op==TK_INTEGER );
  2417       testcase( p->op==TK_FLOAT );
  2418       testcase( p->op==TK_NULL );
  2419       testcase( p->op==TK_STRING );
  2420       /* Single-instruction constants with a fixed destination are
  2421       ** better done in-line.  If we factor them, they will just end
  2422       ** up generating an OP_SCopy to move the value to the destination
  2423       ** register. */
  2424       return 0;
  2425     }
  2426     case TK_UMINUS: {
  2427        if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
  2428          return 0;
  2429        }
  2430        break;
  2431     }
  2432     default: {
  2433       break;
  2434     }
  2435   }
  2436   return 1;
  2437 }
  2438 
  2439 /*
  2440 ** If pExpr is a constant expression that is appropriate for
  2441 ** factoring out of a loop, then evaluate the expression
  2442 ** into a register and convert the expression into a TK_REGISTER
  2443 ** expression.
  2444 */
  2445 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
  2446   Parse *pParse = pWalker->pParse;
  2447   switch( pExpr->op ){
  2448     case TK_REGISTER: {
  2449       return 1;
  2450     }
  2451     case TK_FUNCTION:
  2452     case TK_AGG_FUNCTION:
  2453     case TK_CONST_FUNC: {
  2454       /* The arguments to a function have a fixed destination.
  2455       ** Mark them this way to avoid generated unneeded OP_SCopy
  2456       ** instructions. 
  2457       */
  2458       ExprList *pList = pExpr->pList;
  2459       if( pList ){
  2460         int i = pList->nExpr;
  2461         struct ExprList_item *pItem = pList->a;
  2462         for(; i>0; i--, pItem++){
  2463           if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
  2464         }
  2465       }
  2466       break;
  2467     }
  2468   }
  2469   if( isAppropriateForFactoring(pExpr) ){
  2470     int r1 = ++pParse->nMem;
  2471     int r2;
  2472     r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
  2473     if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
  2474     pExpr->op = TK_REGISTER;
  2475     pExpr->iTable = r2;
  2476     return WRC_Prune;
  2477   }
  2478   return WRC_Continue;
  2479 }
  2480 
  2481 /*
  2482 ** Preevaluate constant subexpressions within pExpr and store the
  2483 ** results in registers.  Modify pExpr so that the constant subexpresions
  2484 ** are TK_REGISTER opcodes that refer to the precomputed values.
  2485 */
  2486 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
  2487   Walker w;
  2488   w.xExprCallback = evalConstExpr;
  2489   w.xSelectCallback = 0;
  2490   w.pParse = pParse;
  2491   sqlite3WalkExpr(&w, pExpr);
  2492 }
  2493 
  2494 
  2495 /*
  2496 ** Generate code that pushes the value of every element of the given
  2497 ** expression list into a sequence of registers beginning at target.
  2498 **
  2499 ** Return the number of elements evaluated.
  2500 */
  2501 int sqlite3ExprCodeExprList(
  2502   Parse *pParse,     /* Parsing context */
  2503   ExprList *pList,   /* The expression list to be coded */
  2504   int target,        /* Where to write results */
  2505   int doHardCopy     /* Make a hard copy of every element */
  2506 ){
  2507   struct ExprList_item *pItem;
  2508   int i, n;
  2509   assert( pList!=0 );
  2510   assert( target>0 );
  2511   n = pList->nExpr;
  2512   for(pItem=pList->a, i=0; i<n; i++, pItem++){
  2513     if( pItem->iAlias ){
  2514       int iReg = codeAlias(pParse, pItem->iAlias, pItem->pExpr, target);
  2515       Vdbe *v = sqlite3GetVdbe(pParse);
  2516       if( iReg!=target+i ){
  2517         sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target+i);
  2518       }
  2519     }else{
  2520       sqlite3ExprCode(pParse, pItem->pExpr, target+i);
  2521     }
  2522     if( doHardCopy ){
  2523       sqlite3ExprHardCopy(pParse, target, n);
  2524     }
  2525   }
  2526   return n;
  2527 }
  2528 
  2529 /*
  2530 ** Generate code for a boolean expression such that a jump is made
  2531 ** to the label "dest" if the expression is true but execution
  2532 ** continues straight thru if the expression is false.
  2533 **
  2534 ** If the expression evaluates to NULL (neither true nor false), then
  2535 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
  2536 **
  2537 ** This code depends on the fact that certain token values (ex: TK_EQ)
  2538 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
  2539 ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
  2540 ** the make process cause these values to align.  Assert()s in the code
  2541 ** below verify that the numbers are aligned correctly.
  2542 */
  2543 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  2544   Vdbe *v = pParse->pVdbe;
  2545   int op = 0;
  2546   int regFree1 = 0;
  2547   int regFree2 = 0;
  2548   int r1, r2;
  2549 
  2550   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  2551   if( v==0 || pExpr==0 ) return;
  2552   op = pExpr->op;
  2553   switch( op ){
  2554     case TK_AND: {
  2555       int d2 = sqlite3VdbeMakeLabel(v);
  2556       testcase( jumpIfNull==0 );
  2557       testcase( pParse->disableColCache==0 );
  2558       sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
  2559       pParse->disableColCache++;
  2560       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
  2561       assert( pParse->disableColCache>0 );
  2562       pParse->disableColCache--;
  2563       sqlite3VdbeResolveLabel(v, d2);
  2564       break;
  2565     }
  2566     case TK_OR: {
  2567       testcase( jumpIfNull==0 );
  2568       testcase( pParse->disableColCache==0 );
  2569       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
  2570       pParse->disableColCache++;
  2571       sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
  2572       assert( pParse->disableColCache>0 );
  2573       pParse->disableColCache--;
  2574       break;
  2575     }
  2576     case TK_NOT: {
  2577       testcase( jumpIfNull==0 );
  2578       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
  2579       break;
  2580     }
  2581     case TK_LT:
  2582     case TK_LE:
  2583     case TK_GT:
  2584     case TK_GE:
  2585     case TK_NE:
  2586     case TK_EQ: {
  2587       assert( TK_LT==OP_Lt );
  2588       assert( TK_LE==OP_Le );
  2589       assert( TK_GT==OP_Gt );
  2590       assert( TK_GE==OP_Ge );
  2591       assert( TK_EQ==OP_Eq );
  2592       assert( TK_NE==OP_Ne );
  2593       testcase( op==TK_LT );
  2594       testcase( op==TK_LE );
  2595       testcase( op==TK_GT );
  2596       testcase( op==TK_GE );
  2597       testcase( op==TK_EQ );
  2598       testcase( op==TK_NE );
  2599       testcase( jumpIfNull==0 );
  2600       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  2601                                   pExpr->pRight, &r2, &regFree2);
  2602       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  2603                   r1, r2, dest, jumpIfNull);
  2604       testcase( regFree1==0 );
  2605       testcase( regFree2==0 );
  2606       break;
  2607     }
  2608     case TK_ISNULL:
  2609     case TK_NOTNULL: {
  2610       assert( TK_ISNULL==OP_IsNull );
  2611       assert( TK_NOTNULL==OP_NotNull );
  2612       testcase( op==TK_ISNULL );
  2613       testcase( op==TK_NOTNULL );
  2614       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  2615       sqlite3VdbeAddOp2(v, op, r1, dest);
  2616       testcase( regFree1==0 );
  2617       break;
  2618     }
  2619     case TK_BETWEEN: {
  2620       /*    x BETWEEN y AND z
  2621       **
  2622       ** Is equivalent to 
  2623       **
  2624       **    x>=y AND x<=z
  2625       **
  2626       ** Code it as such, taking care to do the common subexpression
  2627       ** elementation of x.
  2628       */
  2629       Expr exprAnd;
  2630       Expr compLeft;
  2631       Expr compRight;
  2632       Expr exprX;
  2633 
  2634       exprX = *pExpr->pLeft;
  2635       exprAnd.op = TK_AND;
  2636       exprAnd.pLeft = &compLeft;
  2637       exprAnd.pRight = &compRight;
  2638       compLeft.op = TK_GE;
  2639       compLeft.pLeft = &exprX;
  2640       compLeft.pRight = pExpr->pList->a[0].pExpr;
  2641       compRight.op = TK_LE;
  2642       compRight.pLeft = &exprX;
  2643       compRight.pRight = pExpr->pList->a[1].pExpr;
  2644       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  2645       testcase( regFree1==0 );
  2646       exprX.op = TK_REGISTER;
  2647       testcase( jumpIfNull==0 );
  2648       sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
  2649       break;
  2650     }
  2651     default: {
  2652       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
  2653       sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
  2654       testcase( regFree1==0 );
  2655       testcase( jumpIfNull==0 );
  2656       break;
  2657     }
  2658   }
  2659   sqlite3ReleaseTempReg(pParse, regFree1);
  2660   sqlite3ReleaseTempReg(pParse, regFree2);  
  2661 }
  2662 
  2663 /*
  2664 ** Generate code for a boolean expression such that a jump is made
  2665 ** to the label "dest" if the expression is false but execution
  2666 ** continues straight thru if the expression is true.
  2667 **
  2668 ** If the expression evaluates to NULL (neither true nor false) then
  2669 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
  2670 ** is 0.
  2671 */
  2672 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
  2673   Vdbe *v = pParse->pVdbe;
  2674   int op = 0;
  2675   int regFree1 = 0;
  2676   int regFree2 = 0;
  2677   int r1, r2;
  2678 
  2679   assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
  2680   if( v==0 || pExpr==0 ) return;
  2681 
  2682   /* The value of pExpr->op and op are related as follows:
  2683   **
  2684   **       pExpr->op            op
  2685   **       ---------          ----------
  2686   **       TK_ISNULL          OP_NotNull
  2687   **       TK_NOTNULL         OP_IsNull
  2688   **       TK_NE              OP_Eq
  2689   **       TK_EQ              OP_Ne
  2690   **       TK_GT              OP_Le
  2691   **       TK_LE              OP_Gt
  2692   **       TK_GE              OP_Lt
  2693   **       TK_LT              OP_Ge
  2694   **
  2695   ** For other values of pExpr->op, op is undefined and unused.
  2696   ** The value of TK_ and OP_ constants are arranged such that we
  2697   ** can compute the mapping above using the following expression.
  2698   ** Assert()s verify that the computation is correct.
  2699   */
  2700   op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
  2701 
  2702   /* Verify correct alignment of TK_ and OP_ constants
  2703   */
  2704   assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
  2705   assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
  2706   assert( pExpr->op!=TK_NE || op==OP_Eq );
  2707   assert( pExpr->op!=TK_EQ || op==OP_Ne );
  2708   assert( pExpr->op!=TK_LT || op==OP_Ge );
  2709   assert( pExpr->op!=TK_LE || op==OP_Gt );
  2710   assert( pExpr->op!=TK_GT || op==OP_Le );
  2711   assert( pExpr->op!=TK_GE || op==OP_Lt );
  2712 
  2713   switch( pExpr->op ){
  2714     case TK_AND: {
  2715       testcase( jumpIfNull==0 );
  2716       testcase( pParse->disableColCache==0 );
  2717       sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
  2718       pParse->disableColCache++;
  2719       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
  2720       assert( pParse->disableColCache>0 );
  2721       pParse->disableColCache--;
  2722       break;
  2723     }
  2724     case TK_OR: {
  2725       int d2 = sqlite3VdbeMakeLabel(v);
  2726       testcase( jumpIfNull==0 );
  2727       testcase( pParse->disableColCache==0 );
  2728       sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
  2729       pParse->disableColCache++;
  2730       sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
  2731       assert( pParse->disableColCache>0 );
  2732       pParse->disableColCache--;
  2733       sqlite3VdbeResolveLabel(v, d2);
  2734       break;
  2735     }
  2736     case TK_NOT: {
  2737       sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
  2738       break;
  2739     }
  2740     case TK_LT:
  2741     case TK_LE:
  2742     case TK_GT:
  2743     case TK_GE:
  2744     case TK_NE:
  2745     case TK_EQ: {
  2746       testcase( op==TK_LT );
  2747       testcase( op==TK_LE );
  2748       testcase( op==TK_GT );
  2749       testcase( op==TK_GE );
  2750       testcase( op==TK_EQ );
  2751       testcase( op==TK_NE );
  2752       testcase( jumpIfNull==0 );
  2753       codeCompareOperands(pParse, pExpr->pLeft, &r1, &regFree1,
  2754                                   pExpr->pRight, &r2, &regFree2);
  2755       codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
  2756                   r1, r2, dest, jumpIfNull);
  2757       testcase( regFree1==0 );
  2758       testcase( regFree2==0 );
  2759       break;
  2760     }
  2761     case TK_ISNULL:
  2762     case TK_NOTNULL: {
  2763       testcase( op==TK_ISNULL );
  2764       testcase( op==TK_NOTNULL );
  2765       r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
  2766       sqlite3VdbeAddOp2(v, op, r1, dest);
  2767       testcase( regFree1==0 );
  2768       break;
  2769     }
  2770     case TK_BETWEEN: {
  2771       /*    x BETWEEN y AND z
  2772       **
  2773       ** Is equivalent to 
  2774       **
  2775       **    x>=y AND x<=z
  2776       **
  2777       ** Code it as such, taking care to do the common subexpression
  2778       ** elementation of x.
  2779       */
  2780       Expr exprAnd;
  2781       Expr compLeft;
  2782       Expr compRight;
  2783       Expr exprX;
  2784 
  2785       exprX = *pExpr->pLeft;
  2786       exprAnd.op = TK_AND;
  2787       exprAnd.pLeft = &compLeft;
  2788       exprAnd.pRight = &compRight;
  2789       compLeft.op = TK_GE;
  2790       compLeft.pLeft = &exprX;
  2791       compLeft.pRight = pExpr->pList->a[0].pExpr;
  2792       compRight.op = TK_LE;
  2793       compRight.pLeft = &exprX;
  2794       compRight.pRight = pExpr->pList->a[1].pExpr;
  2795       exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
  2796       testcase( regFree1==0 );
  2797       exprX.op = TK_REGISTER;
  2798       testcase( jumpIfNull==0 );
  2799       sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
  2800       break;
  2801     }
  2802     default: {
  2803       r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
  2804       sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
  2805       testcase( regFree1==0 );
  2806       testcase( jumpIfNull==0 );
  2807       break;
  2808     }
  2809   }
  2810   sqlite3ReleaseTempReg(pParse, regFree1);
  2811   sqlite3ReleaseTempReg(pParse, regFree2);
  2812 }
  2813 
  2814 /*
  2815 ** Do a deep comparison of two expression trees.  Return TRUE (non-zero)
  2816 ** if they are identical and return FALSE if they differ in any way.
  2817 **
  2818 ** Sometimes this routine will return FALSE even if the two expressions
  2819 ** really are equivalent.  If we cannot prove that the expressions are
  2820 ** identical, we return FALSE just to be safe.  So if this routine
  2821 ** returns false, then you do not really know for certain if the two
  2822 ** expressions are the same.  But if you get a TRUE return, then you
  2823 ** can be sure the expressions are the same.  In the places where
  2824 ** this routine is used, it does not hurt to get an extra FALSE - that
  2825 ** just might result in some slightly slower code.  But returning
  2826 ** an incorrect TRUE could lead to a malfunction.
  2827 */
  2828 int sqlite3ExprCompare(Expr *pA, Expr *pB){
  2829   int i;
  2830   if( pA==0||pB==0 ){
  2831     return pB==pA;
  2832   }
  2833   if( pA->op!=pB->op ) return 0;
  2834   if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
  2835   if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
  2836   if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
  2837   if( pA->pList ){
  2838     if( pB->pList==0 ) return 0;
  2839     if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
  2840     for(i=0; i<pA->pList->nExpr; i++){
  2841       if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
  2842         return 0;
  2843       }
  2844     }
  2845   }else if( pB->pList ){
  2846     return 0;
  2847   }
  2848   if( pA->pSelect || pB->pSelect ) return 0;
  2849   if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
  2850   if( pA->op!=TK_COLUMN && pA->token.z ){
  2851     if( pB->token.z==0 ) return 0;
  2852     if( pB->token.n!=pA->token.n ) return 0;
  2853     if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
  2854       return 0;
  2855     }
  2856   }
  2857   return 1;
  2858 }
  2859 
  2860 
  2861 /*
  2862 ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
  2863 ** the new element.  Return a negative number if malloc fails.
  2864 */
  2865 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
  2866   int i;
  2867   pInfo->aCol = sqlite3ArrayAllocate(
  2868        db,
  2869        pInfo->aCol,
  2870        sizeof(pInfo->aCol[0]),
  2871        3,
  2872        &pInfo->nColumn,
  2873        &pInfo->nColumnAlloc,
  2874        &i
  2875   );
  2876   return i;
  2877 }    
  2878 
  2879 /*
  2880 ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
  2881 ** the new element.  Return a negative number if malloc fails.
  2882 */
  2883 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
  2884   int i;
  2885   pInfo->aFunc = sqlite3ArrayAllocate(
  2886        db, 
  2887        pInfo->aFunc,
  2888        sizeof(pInfo->aFunc[0]),
  2889        3,
  2890        &pInfo->nFunc,
  2891        &pInfo->nFuncAlloc,
  2892        &i
  2893   );
  2894   return i;
  2895 }    
  2896 
  2897 /*
  2898 ** This is the xExprCallback for a tree walker.  It is used to
  2899 ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
  2900 ** for additional information.
  2901 */
  2902 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
  2903   int i;
  2904   NameContext *pNC = pWalker->u.pNC;
  2905   Parse *pParse = pNC->pParse;
  2906   SrcList *pSrcList = pNC->pSrcList;
  2907   AggInfo *pAggInfo = pNC->pAggInfo;
  2908 
  2909   switch( pExpr->op ){
  2910     case TK_AGG_COLUMN:
  2911     case TK_COLUMN: {
  2912       testcase( pExpr->op==TK_AGG_COLUMN );
  2913       testcase( pExpr->op==TK_COLUMN );
  2914       /* Check to see if the column is in one of the tables in the FROM
  2915       ** clause of the aggregate query */
  2916       if( pSrcList ){
  2917         struct SrcList_item *pItem = pSrcList->a;
  2918         for(i=0; i<pSrcList->nSrc; i++, pItem++){
  2919           struct AggInfo_col *pCol;
  2920           if( pExpr->iTable==pItem->iCursor ){
  2921             /* If we reach this point, it means that pExpr refers to a table
  2922             ** that is in the FROM clause of the aggregate query.  
  2923             **
  2924             ** Make an entry for the column in pAggInfo->aCol[] if there
  2925             ** is not an entry there already.
  2926             */
  2927             int k;
  2928             pCol = pAggInfo->aCol;
  2929             for(k=0; k<pAggInfo->nColumn; k++, pCol++){
  2930               if( pCol->iTable==pExpr->iTable &&
  2931                   pCol->iColumn==pExpr->iColumn ){
  2932                 break;
  2933               }
  2934             }
  2935             if( (k>=pAggInfo->nColumn)
  2936              && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
  2937             ){
  2938               pCol = &pAggInfo->aCol[k];
  2939               pCol->pTab = pExpr->pTab;
  2940               pCol->iTable = pExpr->iTable;
  2941               pCol->iColumn = pExpr->iColumn;
  2942               pCol->iMem = ++pParse->nMem;
  2943               pCol->iSorterColumn = -1;
  2944               pCol->pExpr = pExpr;
  2945               if( pAggInfo->pGroupBy ){
  2946                 int j, n;
  2947                 ExprList *pGB = pAggInfo->pGroupBy;
  2948                 struct ExprList_item *pTerm = pGB->a;
  2949                 n = pGB->nExpr;
  2950                 for(j=0; j<n; j++, pTerm++){
  2951                   Expr *pE = pTerm->pExpr;
  2952                   if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
  2953                       pE->iColumn==pExpr->iColumn ){
  2954                     pCol->iSorterColumn = j;
  2955                     break;
  2956                   }
  2957                 }
  2958               }
  2959               if( pCol->iSorterColumn<0 ){
  2960                 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
  2961               }
  2962             }
  2963             /* There is now an entry for pExpr in pAggInfo->aCol[] (either
  2964             ** because it was there before or because we just created it).
  2965             ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
  2966             ** pAggInfo->aCol[] entry.
  2967             */
  2968             pExpr->pAggInfo = pAggInfo;
  2969             pExpr->op = TK_AGG_COLUMN;
  2970             pExpr->iAgg = k;
  2971             break;
  2972           } /* endif pExpr->iTable==pItem->iCursor */
  2973         } /* end loop over pSrcList */
  2974       }
  2975       return WRC_Prune;
  2976     }
  2977     case TK_AGG_FUNCTION: {
  2978       /* The pNC->nDepth==0 test causes aggregate functions in subqueries
  2979       ** to be ignored */
  2980       if( pNC->nDepth==0 ){
  2981         /* Check to see if pExpr is a duplicate of another aggregate 
  2982         ** function that is already in the pAggInfo structure
  2983         */
  2984         struct AggInfo_func *pItem = pAggInfo->aFunc;
  2985         for(i=0; i<pAggInfo->nFunc; i++, pItem++){
  2986           if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
  2987             break;
  2988           }
  2989         }
  2990         if( i>=pAggInfo->nFunc ){
  2991           /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
  2992           */
  2993           u8 enc = ENC(pParse->db);
  2994           i = addAggInfoFunc(pParse->db, pAggInfo);
  2995           if( i>=0 ){
  2996             pItem = &pAggInfo->aFunc[i];
  2997             pItem->pExpr = pExpr;
  2998             pItem->iMem = ++pParse->nMem;
  2999             pItem->pFunc = sqlite3FindFunction(pParse->db,
  3000                    (char*)pExpr->token.z, pExpr->token.n,
  3001                    pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
  3002             if( pExpr->flags & EP_Distinct ){
  3003               pItem->iDistinct = pParse->nTab++;
  3004             }else{
  3005               pItem->iDistinct = -1;
  3006             }
  3007           }
  3008         }
  3009         /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
  3010         */
  3011         pExpr->iAgg = i;
  3012         pExpr->pAggInfo = pAggInfo;
  3013         return WRC_Prune;
  3014       }
  3015     }
  3016   }
  3017   return WRC_Continue;
  3018 }
  3019 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
  3020   NameContext *pNC = pWalker->u.pNC;
  3021   if( pNC->nDepth==0 ){
  3022     pNC->nDepth++;
  3023     sqlite3WalkSelect(pWalker, pSelect);
  3024     pNC->nDepth--;
  3025     return WRC_Prune;
  3026   }else{
  3027     return WRC_Continue;
  3028   }
  3029 }
  3030 
  3031 /*
  3032 ** Analyze the given expression looking for aggregate functions and
  3033 ** for variables that need to be added to the pParse->aAgg[] array.
  3034 ** Make additional entries to the pParse->aAgg[] array as necessary.
  3035 **
  3036 ** This routine should only be called after the expression has been
  3037 ** analyzed by sqlite3ResolveExprNames().
  3038 */
  3039 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
  3040   Walker w;
  3041   w.xExprCallback = analyzeAggregate;
  3042   w.xSelectCallback = analyzeAggregatesInSelect;
  3043   w.u.pNC = pNC;
  3044   sqlite3WalkExpr(&w, pExpr);
  3045 }
  3046 
  3047 /*
  3048 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
  3049 ** expression list.  Return the number of errors.
  3050 **
  3051 ** If an error is found, the analysis is cut short.
  3052 */
  3053 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
  3054   struct ExprList_item *pItem;
  3055   int i;
  3056   if( pList ){
  3057     for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
  3058       sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
  3059     }
  3060   }
  3061 }
  3062 
  3063 /*
  3064 ** Allocate or deallocate temporary use registers during code generation.
  3065 */
  3066 int sqlite3GetTempReg(Parse *pParse){
  3067   if( pParse->nTempReg==0 ){
  3068     return ++pParse->nMem;
  3069   }
  3070   return pParse->aTempReg[--pParse->nTempReg];
  3071 }
  3072 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
  3073   if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
  3074     sqlite3ExprWritableRegister(pParse, iReg, iReg);
  3075     pParse->aTempReg[pParse->nTempReg++] = iReg;
  3076   }
  3077 }
  3078 
  3079 /*
  3080 ** Allocate or deallocate a block of nReg consecutive registers
  3081 */
  3082 int sqlite3GetTempRange(Parse *pParse, int nReg){
  3083   int i, n;
  3084   i = pParse->iRangeReg;
  3085   n = pParse->nRangeReg;
  3086   if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
  3087     pParse->iRangeReg += nReg;
  3088     pParse->nRangeReg -= nReg;
  3089   }else{
  3090     i = pParse->nMem+1;
  3091     pParse->nMem += nReg;
  3092   }
  3093   return i;
  3094 }
  3095 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
  3096   if( nReg>pParse->nRangeReg ){
  3097     pParse->nRangeReg = nReg;
  3098     pParse->iRangeReg = iReg;
  3099   }
  3100 }