Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 ** $Id: build.c,v 1.498 2008/10/06 16:18:40 danielk1977 Exp $
27 #include "sqliteInt.h"
31 ** This routine is called when a new SQL statement is beginning to
32 ** be parsed. Initialize the pParse structure as needed.
34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
35 pParse->explain = explainFlag;
39 #ifndef SQLITE_OMIT_SHARED_CACHE
41 ** The TableLock structure is only used by the sqlite3TableLock() and
42 ** codeTableLocks() functions.
45 int iDb; /* The database containing the table to be locked */
46 int iTab; /* The root page of the table to be locked */
47 u8 isWriteLock; /* True for write lock. False for a read lock */
48 const char *zName; /* Name of the table */
52 ** Record the fact that we want to lock a table at run-time.
54 ** The table to be locked has root page iTab and is found in database iDb.
55 ** A read or a write lock can be taken depending on isWritelock.
57 ** This routine just records the fact that the lock is desired. The
58 ** code to make the lock occur is generated by a later call to
59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
61 void sqlite3TableLock(
62 Parse *pParse, /* Parsing context */
63 int iDb, /* Index of the database containing the table to lock */
64 int iTab, /* Root page number of the table to be locked */
65 u8 isWriteLock, /* True for a write lock */
66 const char *zName /* Name of the table to be locked */
76 for(i=0; i<pParse->nTableLock; i++){
77 p = &pParse->aTableLock[i];
78 if( p->iDb==iDb && p->iTab==iTab ){
79 p->isWriteLock = (p->isWriteLock || isWriteLock);
84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
86 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
87 if( pParse->aTableLock ){
88 p = &pParse->aTableLock[pParse->nTableLock++];
91 p->isWriteLock = isWriteLock;
94 pParse->nTableLock = 0;
95 pParse->db->mallocFailed = 1;
100 ** Code an OP_TableLock instruction for each table locked by the
101 ** statement (configured by calls to sqlite3TableLock()).
103 static void codeTableLocks(Parse *pParse){
107 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
111 for(i=0; i<pParse->nTableLock; i++){
112 TableLock *p = &pParse->aTableLock[i];
114 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
115 p->zName, P4_STATIC);
119 #define codeTableLocks(x)
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
137 if( db->mallocFailed ) return;
138 if( pParse->nested ) return;
139 if( pParse->nErr ) return;
141 /* Begin by generating some termination code at the end of the
144 v = sqlite3GetVdbe(pParse);
146 sqlite3VdbeAddOp0(v, OP_Halt);
148 /* The cookie mask contains one bit for each database file open.
149 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
150 ** set for each database that is used. Generate code to start a
151 ** transaction on each used database and to verify the schema cookie
152 ** on each used database.
154 if( pParse->cookieGoto>0 ){
157 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
158 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
159 if( (mask & pParse->cookieMask)==0 ) continue;
160 sqlite3VdbeUsesBtree(v, iDb);
161 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
162 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
164 #ifndef SQLITE_OMIT_VIRTUALTABLE
167 for(i=0; i<pParse->nVtabLock; i++){
168 char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
169 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171 pParse->nVtabLock = 0;
175 /* Once all the cookies have been verified and transactions opened,
176 ** obtain the required table-locks. This is a no-op unless the
177 ** shared-cache feature is enabled.
179 codeTableLocks(pParse);
180 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
183 #ifndef SQLITE_OMIT_TRACE
184 if( !db->init.busy ){
185 /* Change the P4 argument of the first opcode (which will always be
186 ** an OP_Trace) to be the complete text of the current SQL statement.
188 VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
189 if( pOp && pOp->opcode==OP_Trace ){
190 sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
193 #endif /* SQLITE_OMIT_TRACE */
197 /* Get the VDBE program ready for execution
199 if( v && pParse->nErr==0 && !db->mallocFailed ){
201 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
202 sqlite3VdbeTrace(v, trace);
204 assert( pParse->disableColCache==0 ); /* Disables and re-enables match */
205 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
206 pParse->nTab+3, pParse->explain);
207 pParse->rc = SQLITE_DONE;
208 pParse->colNamesSet = 0;
209 }else if( pParse->rc==SQLITE_OK ){
210 pParse->rc = SQLITE_ERROR;
216 pParse->cookieMask = 0;
217 pParse->cookieGoto = 0;
221 ** Run the parser and code generator recursively in order to generate
222 ** code for the SQL statement given onto the end of the pParse context
223 ** currently under construction. When the parser is run recursively
224 ** this way, the final OP_Halt is not appended and other initialization
225 ** and finalization steps are omitted because those are handling by the
228 ** Not everything is nestable. This facility is designed to permit
229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
230 ** care if you decide to try to use this routine for some other purposes.
232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
236 sqlite3 *db = pParse->db;
237 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
238 char saveBuf[SAVE_SZ];
240 if( pParse->nErr ) return;
241 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
242 va_start(ap, zFormat);
243 zSql = sqlite3VMPrintf(db, zFormat, ap);
246 return; /* A malloc must have failed */
249 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
250 memset(&pParse->nVar, 0, SAVE_SZ);
251 sqlite3RunParser(pParse, zSql, &zErrMsg);
252 sqlite3DbFree(db, zErrMsg);
253 sqlite3DbFree(db, zSql);
254 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
259 ** Locate the in-memory structure that describes a particular database
260 ** table given the name of that table and (optionally) the name of the
261 ** database containing the table. Return NULL if not found.
263 ** If zDatabase is 0, all databases are searched for the table and the
264 ** first matching table is returned. (No checking for duplicate table
265 ** names is done.) The search order is TEMP first, then MAIN, then any
266 ** auxiliary databases added using the ATTACH command.
268 ** See also sqlite3LocateTable().
270 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
275 nName = sqlite3Strlen(db, zName) + 1;
276 for(i=OMIT_TEMPDB; i<db->nDb; i++){
277 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
278 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
279 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table. Return NULL if not found. Also leave an
289 ** error message in pParse->zErrMsg.
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
295 Table *sqlite3LocateTable(
296 Parse *pParse, /* context in which to report errors */
297 int isView, /* True if looking for a VIEW rather than a TABLE */
298 const char *zName, /* Name of the table we are looking for */
299 const char *zDbase /* Name of the database. Might be NULL */
303 /* Read the database schema. If an error occurs, leave an error message
304 ** and code in pParse and return NULL. */
305 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
309 p = sqlite3FindTable(pParse->db, zName, zDbase);
311 const char *zMsg = isView ? "no such view" : "no such table";
313 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
315 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
317 pParse->checkSchema = 1;
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned. (No checking
330 ** for duplicate index names is done.) The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
337 int nName = sqlite3Strlen(db, zName)+1;
338 for(i=OMIT_TEMPDB; i<db->nDb; i++){
339 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
340 Schema *pSchema = db->aDb[j].pSchema;
341 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
342 assert( pSchema || (j==1 && !db->aDb[1].pBt) );
344 p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
352 ** Reclaim the memory used by an index
354 static void freeIndex(Index *p){
355 sqlite3 *db = p->pTable->db;
356 sqlite3DbFree(db, p->zColAff);
357 sqlite3DbFree(db, p);
361 ** Remove the given index from the index hash table, and free
362 ** its memory structures.
364 ** The index is removed from the database hash tables but
365 ** it is not unlinked from the Table that it indexes.
366 ** Unlinking from the Table must be done by the calling function.
368 static void sqliteDeleteIndex(Index *p){
370 const char *zName = p->zName;
372 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
373 assert( pOld==0 || pOld==p );
378 ** For the index called zIdxName which is found in the database iDb,
379 ** unlike that index from its Table then remove the index from
380 ** the index hash table and free all memory structures associated
383 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
386 Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
388 len = sqlite3Strlen(db, zIdxName);
389 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
391 if( pIndex->pTable->pIndex==pIndex ){
392 pIndex->pTable->pIndex = pIndex->pNext;
395 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
396 if( p && p->pNext==pIndex ){
397 p->pNext = pIndex->pNext;
402 db->flags |= SQLITE_InternChanges;
406 ** Erase all schema information from the in-memory hash tables of
407 ** a single database. This routine is called to reclaim memory
408 ** before the database closes. It is also called during a rollback
409 ** if there were schema changes during the transaction or if a
410 ** schema-cookie mismatch occurs.
412 ** If iDb<=0 then reset the internal schema tables for all database
413 ** files. If iDb>=2 then reset the internal schema for only the
414 ** single file indicated.
416 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
418 assert( iDb>=0 && iDb<db->nDb );
421 sqlite3BtreeEnterAll(db);
423 for(i=iDb; i<db->nDb; i++){
424 Db *pDb = &db->aDb[i];
426 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
427 sqlite3SchemaFree(pDb->pSchema);
432 db->flags &= ~SQLITE_InternChanges;
433 sqlite3BtreeLeaveAll(db);
435 /* If one or more of the auxiliary database files has been closed,
436 ** then remove them from the auxiliary database list. We take the
437 ** opportunity to do this here since we have just deleted all of the
438 ** schema hash tables and therefore do not have to make any changes
439 ** to any of those tables.
441 for(i=0; i<db->nDb; i++){
442 struct Db *pDb = &db->aDb[i];
444 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
448 for(i=j=2; i<db->nDb; i++){
449 struct Db *pDb = &db->aDb[i];
451 sqlite3DbFree(db, pDb->zName);
456 db->aDb[j] = db->aDb[i];
460 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
462 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
463 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
464 sqlite3DbFree(db, db->aDb);
465 db->aDb = db->aDbStatic;
470 ** This routine is called when a commit occurs.
472 void sqlite3CommitInternalChanges(sqlite3 *db){
473 db->flags &= ~SQLITE_InternChanges;
477 ** Clear the column names from a table or view.
479 static void sqliteResetColumnNames(Table *pTable){
482 sqlite3 *db = pTable->db;
484 if( (pCol = pTable->aCol)!=0 ){
485 for(i=0; i<pTable->nCol; i++, pCol++){
486 sqlite3DbFree(db, pCol->zName);
487 sqlite3ExprDelete(db, pCol->pDflt);
488 sqlite3DbFree(db, pCol->zType);
489 sqlite3DbFree(db, pCol->zColl);
491 sqlite3DbFree(db, pTable->aCol);
498 ** Remove the memory data structures associated with the given
499 ** Table. No changes are made to disk by this routine.
501 ** This routine just deletes the data structure. It does not unlink
502 ** the table data structure from the hash table. Nor does it remove
503 ** foreign keys from the sqlite.aFKey hash table. But it does destroy
504 ** memory structures of the indices and foreign keys associated with
507 void sqlite3DeleteTable(Table *pTable){
508 Index *pIndex, *pNext;
509 FKey *pFKey, *pNextFKey;
512 if( pTable==0 ) return;
515 /* Do not delete the table until the reference count reaches zero. */
517 if( pTable->nRef>0 ){
520 assert( pTable->nRef==0 );
522 /* Delete all indices associated with this table
524 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
525 pNext = pIndex->pNext;
526 assert( pIndex->pSchema==pTable->pSchema );
527 sqliteDeleteIndex(pIndex);
530 #ifndef SQLITE_OMIT_FOREIGN_KEY
531 /* Delete all foreign keys associated with this table. The keys
532 ** should have already been unlinked from the pSchema->aFKey hash table
534 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
535 pNextFKey = pFKey->pNextFrom;
536 assert( sqlite3HashFind(&pTable->pSchema->aFKey,
537 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
538 sqlite3DbFree(db, pFKey);
542 /* Delete the Table structure itself.
544 sqliteResetColumnNames(pTable);
545 sqlite3DbFree(db, pTable->zName);
546 sqlite3DbFree(db, pTable->zColAff);
547 sqlite3SelectDelete(db, pTable->pSelect);
548 #ifndef SQLITE_OMIT_CHECK
549 sqlite3ExprDelete(db, pTable->pCheck);
551 sqlite3VtabClear(pTable);
552 sqlite3DbFree(db, pTable);
556 ** Unlink the given table from the hash tables and the delete the
557 ** table structure with all its indices and foreign keys.
559 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
565 assert( iDb>=0 && iDb<db->nDb );
566 assert( zTabName && zTabName[0] );
568 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
570 #ifndef SQLITE_OMIT_FOREIGN_KEY
571 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
572 int nTo = strlen(pF1->zTo) + 1;
573 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
575 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
577 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
579 pF2->pNextTo = pF1->pNextTo;
584 sqlite3DeleteTable(p);
586 db->flags |= SQLITE_InternChanges;
590 ** Given a token, return a string that consists of the text of that
591 ** token with any quotations removed. Space to hold the returned string
592 ** is obtained from sqliteMalloc() and must be freed by the calling
595 ** Tokens are often just pointers into the original SQL text and so
596 ** are not \000 terminated and are not persistent. The returned string
597 ** is \000 terminated and is persistent.
599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
602 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
603 sqlite3Dequote(zName);
611 ** Open the sqlite_master table stored in database number iDb for
612 ** writing. The table is opened using cursor 0.
614 void sqlite3OpenMasterTable(Parse *p, int iDb){
615 Vdbe *v = sqlite3GetVdbe(p);
616 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
617 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
618 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
622 ** The token *pName contains the name of a database (either "main" or
623 ** "temp" or the name of an attached db). This routine returns the
624 ** index of the named database in db->aDb[], or -1 if the named db
627 int sqlite3FindDb(sqlite3 *db, Token *pName){
628 int i = -1; /* Database number */
629 int n; /* Number of characters in the name */
630 Db *pDb; /* A database whose name space is being searched */
631 char *zName; /* Name we are searching for */
633 zName = sqlite3NameFromToken(db, pName);
636 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
637 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
638 0==sqlite3StrICmp(pDb->zName, zName) ){
642 sqlite3DbFree(db, zName);
647 /* The table or view or trigger name is passed to this routine via tokens
648 ** pName1 and pName2. If the table name was fully qualified, for example:
650 ** CREATE TABLE xxx.yyy (...);
652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
653 ** the table name is not fully qualified, i.e.:
655 ** CREATE TABLE yyy(...);
657 ** Then pName1 is set to "yyy" and pName2 is "".
659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
660 ** pName2) that stores the unqualified table name. The index of the
661 ** database "xxx" is returned.
663 int sqlite3TwoPartName(
664 Parse *pParse, /* Parsing and code generating context */
665 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
666 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
667 Token **pUnqual /* Write the unqualified object name here */
669 int iDb; /* Database holding the object */
670 sqlite3 *db = pParse->db;
672 if( pName2 && pName2->n>0 ){
673 if( db->init.busy ) {
674 sqlite3ErrorMsg(pParse, "corrupt database");
679 iDb = sqlite3FindDb(db, pName1);
681 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
686 assert( db->init.iDb==0 || db->init.busy );
694 ** This routine is used to check if the UTF-8 string zName is a legal
695 ** unqualified name for a new schema object (table, index, view or
696 ** trigger). All names are legal except those that begin with the string
697 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
698 ** is reserved for internal use.
700 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
701 if( !pParse->db->init.busy && pParse->nested==0
702 && (pParse->db->flags & SQLITE_WriteSchema)==0
703 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
704 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
711 ** Begin constructing a new table representation in memory. This is
712 ** the first of several action routines that get called in response
713 ** to a CREATE TABLE statement. In particular, this routine is called
714 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
715 ** flag is true if the table should be stored in the auxiliary database
716 ** file instead of in the main database file. This is normally the case
717 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
720 ** The new table record is initialized and put in pParse->pNewTable.
721 ** As more of the CREATE TABLE statement is parsed, additional action
722 ** routines will be called to add more information to this record.
723 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
724 ** is called to complete the construction of the new table record.
726 void sqlite3StartTable(
727 Parse *pParse, /* Parser context */
728 Token *pName1, /* First part of the name of the table or view */
729 Token *pName2, /* Second part of the name of the table or view */
730 int isTemp, /* True if this is a TEMP table */
731 int isView, /* True if this is a VIEW */
732 int isVirtual, /* True if this is a VIRTUAL table */
733 int noErr /* Do nothing if table already exists */
736 char *zName = 0; /* The name of the new table */
737 sqlite3 *db = pParse->db;
739 int iDb; /* Database number to create the table in */
740 Token *pName; /* Unqualified name of the table to create */
742 /* The table or view name to create is passed to this routine via tokens
743 ** pName1 and pName2. If the table name was fully qualified, for example:
745 ** CREATE TABLE xxx.yyy (...);
747 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
748 ** the table name is not fully qualified, i.e.:
750 ** CREATE TABLE yyy(...);
752 ** Then pName1 is set to "yyy" and pName2 is "".
754 ** The call below sets the pName pointer to point at the token (pName1 or
755 ** pName2) that stores the unqualified table name. The variable iDb is
756 ** set to the index of the database that the table or view is to be
759 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
761 if( !OMIT_TEMPDB && isTemp && iDb>1 ){
762 /* If creating a temp table, the name may not be qualified */
763 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
766 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
768 pParse->sNameToken = *pName;
769 zName = sqlite3NameFromToken(db, pName);
770 if( zName==0 ) return;
771 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
772 goto begin_table_error;
774 if( db->init.iDb==1 ) isTemp = 1;
775 #ifndef SQLITE_OMIT_AUTHORIZATION
776 assert( (isTemp & 1)==isTemp );
779 char *zDb = db->aDb[iDb].zName;
780 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
781 goto begin_table_error;
784 if( !OMIT_TEMPDB && isTemp ){
785 code = SQLITE_CREATE_TEMP_VIEW;
787 code = SQLITE_CREATE_VIEW;
790 if( !OMIT_TEMPDB && isTemp ){
791 code = SQLITE_CREATE_TEMP_TABLE;
793 code = SQLITE_CREATE_TABLE;
796 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
797 goto begin_table_error;
802 /* Make sure the new table name does not collide with an existing
803 ** index or table name in the same database. Issue an error message if
804 ** it does. The exception is if the statement being parsed was passed
805 ** to an sqlite3_declare_vtab() call. In that case only the column names
806 ** and types will be used, so there is no need to test for namespace
809 if( !IN_DECLARE_VTAB ){
810 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
811 goto begin_table_error;
813 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
816 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
818 goto begin_table_error;
820 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
821 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
822 goto begin_table_error;
826 pTable = sqlite3DbMallocZero(db, sizeof(Table));
828 db->mallocFailed = 1;
829 pParse->rc = SQLITE_NOMEM;
831 goto begin_table_error;
833 pTable->zName = zName;
835 pTable->pSchema = db->aDb[iDb].pSchema;
838 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
839 pParse->pNewTable = pTable;
841 /* If this is the magic sqlite_sequence table used by autoincrement,
842 ** then record a pointer to this table in the main database structure
843 ** so that INSERT can find the table easily.
845 #ifndef SQLITE_OMIT_AUTOINCREMENT
846 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
847 pTable->pSchema->pSeqTab = pTable;
851 /* Begin generating the code that will insert the table record into
852 ** the SQLITE_MASTER table. Note in particular that we must go ahead
853 ** and allocate the record number for the table entry now. Before any
854 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
855 ** indices to be created and the table record must come before the
856 ** indices. Hence, the record number for the table must be allocated
859 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
862 int reg1, reg2, reg3;
863 sqlite3BeginWriteOperation(pParse, 0, iDb);
865 #ifndef SQLITE_OMIT_VIRTUALTABLE
867 sqlite3VdbeAddOp0(v, OP_VBegin);
871 /* If the file format and encoding in the database have not been set,
874 reg1 = pParse->regRowid = ++pParse->nMem;
875 reg2 = pParse->regRoot = ++pParse->nMem;
876 reg3 = ++pParse->nMem;
877 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */
878 sqlite3VdbeUsesBtree(v, iDb);
879 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
880 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
881 1 : SQLITE_MAX_FILE_FORMAT;
882 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
883 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
884 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
885 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
886 sqlite3VdbeJumpHere(v, j1);
888 /* This just creates a place-holder record in the sqlite_master table.
889 ** The record created does not contain anything yet. It will be replaced
890 ** by the real entry in code generated at sqlite3EndTable().
892 ** The rowid for the new entry is left on the top of the stack.
893 ** The rowid value is needed by the code that sqlite3EndTable will
896 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
897 if( isView || isVirtual ){
898 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
902 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
904 sqlite3OpenMasterTable(pParse, iDb);
905 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
906 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
907 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
908 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
909 sqlite3VdbeAddOp0(v, OP_Close);
912 /* Normal (non-error) return. */
915 /* If an error occurs, we jump here */
917 sqlite3DbFree(db, zName);
922 ** This macro is used to compare two strings in a case-insensitive manner.
923 ** It is slightly faster than calling sqlite3StrICmp() directly, but
924 ** produces larger code.
926 ** WARNING: This macro is not compatible with the strcmp() family. It
927 ** returns true if the two strings are equal, otherwise false.
929 #define STRICMP(x, y) (\
930 sqlite3UpperToLower[*(unsigned char *)(x)]== \
931 sqlite3UpperToLower[*(unsigned char *)(y)] \
932 && sqlite3StrICmp((x)+1,(y)+1)==0 )
935 ** Add a new column to the table currently being constructed.
937 ** The parser calls this routine once for each column declaration
938 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
939 ** first to get things going. Then this routine is called for each
942 void sqlite3AddColumn(Parse *pParse, Token *pName){
947 sqlite3 *db = pParse->db;
948 if( (p = pParse->pNewTable)==0 ) return;
949 #if SQLITE_MAX_COLUMN
950 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
951 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
955 z = sqlite3NameFromToken(pParse->db, pName);
957 for(i=0; i<p->nCol; i++){
958 if( STRICMP(z, p->aCol[i].zName) ){
959 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
960 sqlite3DbFree(db, z);
964 if( (p->nCol & 0x7)==0 ){
966 aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
968 sqlite3DbFree(db, z);
973 pCol = &p->aCol[p->nCol];
974 memset(pCol, 0, sizeof(p->aCol[0]));
977 /* If there is no type specified, columns have the default affinity
978 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
979 ** be called next to set pCol->affinity correctly.
981 pCol->affinity = SQLITE_AFF_NONE;
986 ** This routine is called by the parser while in the middle of
987 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
988 ** been seen on a column. This routine sets the notNull flag on
989 ** the column currently under construction.
991 void sqlite3AddNotNull(Parse *pParse, int onError){
994 if( (p = pParse->pNewTable)==0 ) return;
996 if( i>=0 ) p->aCol[i].notNull = onError;
1000 ** Scan the column type name zType (length nType) and return the
1001 ** associated affinity type.
1003 ** This routine does a case-independent search of zType for the
1004 ** substrings in the following table. If one of the substrings is
1005 ** found, the corresponding affinity is returned. If zType contains
1006 ** more than one of the substrings, entries toward the top of
1007 ** the table take priority. For example, if zType is 'BLOBINT',
1008 ** SQLITE_AFF_INTEGER is returned.
1010 ** Substring | Affinity
1011 ** --------------------------------
1012 ** 'INT' | SQLITE_AFF_INTEGER
1013 ** 'CHAR' | SQLITE_AFF_TEXT
1014 ** 'CLOB' | SQLITE_AFF_TEXT
1015 ** 'TEXT' | SQLITE_AFF_TEXT
1016 ** 'BLOB' | SQLITE_AFF_NONE
1017 ** 'REAL' | SQLITE_AFF_REAL
1018 ** 'FLOA' | SQLITE_AFF_REAL
1019 ** 'DOUB' | SQLITE_AFF_REAL
1021 ** If none of the substrings in the above table are found,
1022 ** SQLITE_AFF_NUMERIC is returned.
1024 char sqlite3AffinityType(const Token *pType){
1026 char aff = SQLITE_AFF_NUMERIC;
1027 const unsigned char *zIn = pType->z;
1028 const unsigned char *zEnd = &pType->z[pType->n];
1031 h = (h<<8) + sqlite3UpperToLower[*zIn];
1033 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1034 aff = SQLITE_AFF_TEXT;
1035 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1036 aff = SQLITE_AFF_TEXT;
1037 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1038 aff = SQLITE_AFF_TEXT;
1039 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1040 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1041 aff = SQLITE_AFF_NONE;
1042 #ifndef SQLITE_OMIT_FLOATING_POINT
1043 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1044 && aff==SQLITE_AFF_NUMERIC ){
1045 aff = SQLITE_AFF_REAL;
1046 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1047 && aff==SQLITE_AFF_NUMERIC ){
1048 aff = SQLITE_AFF_REAL;
1049 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1050 && aff==SQLITE_AFF_NUMERIC ){
1051 aff = SQLITE_AFF_REAL;
1053 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1054 aff = SQLITE_AFF_INTEGER;
1063 ** This routine is called by the parser while in the middle of
1064 ** parsing a CREATE TABLE statement. The pFirst token is the first
1065 ** token in the sequence of tokens that describe the type of the
1066 ** column currently under construction. pLast is the last token
1067 ** in the sequence. Use this information to construct a string
1068 ** that contains the typename of the column and store that string
1071 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1077 if( (p = pParse->pNewTable)==0 ) return;
1082 sqlite3DbFree(db, pCol->zType);
1083 pCol->zType = sqlite3NameFromToken(db, pType);
1084 pCol->affinity = sqlite3AffinityType(pType);
1088 ** The expression is the default value for the most recently added column
1089 ** of the table currently under construction.
1091 ** Default value expressions must be constant. Raise an exception if this
1094 ** This routine is called by the parser while in the middle of
1095 ** parsing a CREATE TABLE statement.
1097 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
1100 sqlite3 *db = pParse->db;
1101 if( (p = pParse->pNewTable)!=0 ){
1102 pCol = &(p->aCol[p->nCol-1]);
1103 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
1104 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1108 sqlite3ExprDelete(db, pCol->pDflt);
1109 pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
1111 sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
1115 sqlite3ExprDelete(db, pExpr);
1119 ** Designate the PRIMARY KEY for the table. pList is a list of names
1120 ** of columns that form the primary key. If pList is NULL, then the
1121 ** most recently added column of the table is the primary key.
1123 ** A table can have at most one primary key. If the table already has
1124 ** a primary key (and this is the second primary key) then create an
1127 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1128 ** then we will try to use that column as the rowid. Set the Table.iPKey
1129 ** field of the table under construction to be the index of the
1130 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1131 ** no INTEGER PRIMARY KEY.
1133 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1134 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1136 void sqlite3AddPrimaryKey(
1137 Parse *pParse, /* Parsing context */
1138 ExprList *pList, /* List of field names to be indexed */
1139 int onError, /* What to do with a uniqueness conflict */
1140 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1141 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1143 Table *pTab = pParse->pNewTable;
1146 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1147 if( pTab->tabFlags & TF_HasPrimaryKey ){
1148 sqlite3ErrorMsg(pParse,
1149 "table \"%s\" has more than one primary key", pTab->zName);
1150 goto primary_key_exit;
1152 pTab->tabFlags |= TF_HasPrimaryKey;
1154 iCol = pTab->nCol - 1;
1155 pTab->aCol[iCol].isPrimKey = 1;
1157 for(i=0; i<pList->nExpr; i++){
1158 for(iCol=0; iCol<pTab->nCol; iCol++){
1159 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1163 if( iCol<pTab->nCol ){
1164 pTab->aCol[iCol].isPrimKey = 1;
1167 if( pList->nExpr>1 ) iCol = -1;
1169 if( iCol>=0 && iCol<pTab->nCol ){
1170 zType = pTab->aCol[iCol].zType;
1172 if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1173 && sortOrder==SQLITE_SO_ASC ){
1175 pTab->keyConf = onError;
1176 assert( autoInc==0 || autoInc==1 );
1177 pTab->tabFlags |= autoInc*TF_Autoincrement;
1178 }else if( autoInc ){
1179 #ifndef SQLITE_OMIT_AUTOINCREMENT
1180 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1181 "INTEGER PRIMARY KEY");
1184 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1189 sqlite3ExprListDelete(pParse->db, pList);
1194 ** Add a new CHECK constraint to the table currently under construction.
1196 void sqlite3AddCheckConstraint(
1197 Parse *pParse, /* Parsing context */
1198 Expr *pCheckExpr /* The check expression */
1200 sqlite3 *db = pParse->db;
1201 #ifndef SQLITE_OMIT_CHECK
1202 Table *pTab = pParse->pNewTable;
1203 if( pTab && !IN_DECLARE_VTAB ){
1204 /* The CHECK expression must be duplicated so that tokens refer
1205 ** to malloced space and not the (ephemeral) text of the CREATE TABLE
1207 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
1208 sqlite3ExprDup(db, pCheckExpr));
1211 sqlite3ExprDelete(db, pCheckExpr);
1215 ** Set the collation function of the most recently parsed table column
1216 ** to the CollSeq given.
1218 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1221 char *zColl; /* Dequoted name of collation sequence */
1224 if( (p = pParse->pNewTable)==0 ) return;
1227 zColl = sqlite3NameFromToken(db, pToken);
1228 if( !zColl ) return;
1230 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
1232 p->aCol[i].zColl = zColl;
1234 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1235 ** then an index may have been created on this column before the
1236 ** collation type was added. Correct this if it is the case.
1238 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1239 assert( pIdx->nColumn==1 );
1240 if( pIdx->aiColumn[0]==i ){
1241 pIdx->azColl[0] = p->aCol[i].zColl;
1245 sqlite3DbFree(db, zColl);
1250 ** This function returns the collation sequence for database native text
1251 ** encoding identified by the string zName, length nName.
1253 ** If the requested collation sequence is not available, or not available
1254 ** in the database native encoding, the collation factory is invoked to
1255 ** request it. If the collation factory does not supply such a sequence,
1256 ** and the sequence is available in another text encoding, then that is
1257 ** returned instead.
1259 ** If no versions of the requested collations sequence are available, or
1260 ** another error occurs, NULL is returned and an error message written into
1263 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1264 ** invokes the collation factory if the named collation cannot be found
1265 ** and generates an error message.
1267 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
1268 sqlite3 *db = pParse->db;
1270 u8 initbusy = db->init.busy;
1273 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
1274 if( !initbusy && (!pColl || !pColl->xCmp) ){
1275 pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
1278 nName = sqlite3Strlen(db, zName);
1280 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
1290 ** Generate code that will increment the schema cookie.
1292 ** The schema cookie is used to determine when the schema for the
1293 ** database changes. After each schema change, the cookie value
1294 ** changes. When a process first reads the schema it records the
1295 ** cookie. Thereafter, whenever it goes to access the database,
1296 ** it checks the cookie to make sure the schema has not changed
1297 ** since it was last read.
1299 ** This plan is not completely bullet-proof. It is possible for
1300 ** the schema to change multiple times and for the cookie to be
1301 ** set back to prior value. But schema changes are infrequent
1302 ** and the probability of hitting the same cookie value is only
1303 ** 1 chance in 2^32. So we're safe enough.
1305 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1306 int r1 = sqlite3GetTempReg(pParse);
1307 sqlite3 *db = pParse->db;
1308 Vdbe *v = pParse->pVdbe;
1309 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1310 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
1311 sqlite3ReleaseTempReg(pParse, r1);
1315 ** Measure the number of characters needed to output the given
1316 ** identifier. The number returned includes any quotes used
1317 ** but does not include the null terminator.
1319 ** The estimate is conservative. It might be larger that what is
1322 static int identLength(const char *z){
1324 for(n=0; *z; n++, z++){
1325 if( *z=='"' ){ n++; }
1331 ** Write an identifier onto the end of the given string. Add
1332 ** quote characters as needed.
1334 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1335 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1336 int i, j, needQuote;
1338 for(j=0; zIdent[j]; j++){
1339 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1341 needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
1342 || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1343 if( needQuote ) z[i++] = '"';
1344 for(j=0; zIdent[j]; j++){
1346 if( zIdent[j]=='"' ) z[i++] = '"';
1348 if( needQuote ) z[i++] = '"';
1354 ** Generate a CREATE TABLE statement appropriate for the given
1355 ** table. Memory to hold the text of the statement is obtained
1356 ** from sqliteMalloc() and must be freed by the calling function.
1358 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
1361 char *zSep, *zSep2, *zEnd, *z;
1364 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1365 n += identLength(pCol->zName);
1368 n += (strlen(z) + 1);
1371 n += identLength(p->zName);
1381 n += 35 + 6*p->nCol;
1382 zStmt = sqlite3Malloc( n );
1384 db->mallocFailed = 1;
1387 sqlite3_snprintf(n, zStmt,
1388 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
1390 identPut(zStmt, &k, p->zName);
1392 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1393 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1394 k += strlen(&zStmt[k]);
1396 identPut(zStmt, &k, pCol->zName);
1397 if( (z = pCol->zType)!=0 ){
1399 assert( strlen(z)+k+1<=n );
1400 sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
1404 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1409 ** This routine is called to report the final ")" that terminates
1410 ** a CREATE TABLE statement.
1412 ** The table structure that other action routines have been building
1413 ** is added to the internal hash tables, assuming no errors have
1416 ** An entry for the table is made in the master table on disk, unless
1417 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1418 ** it means we are reading the sqlite_master table because we just
1419 ** connected to the database or because the sqlite_master table has
1420 ** recently changed, so the entry for this table already exists in
1421 ** the sqlite_master table. We do not want to create it again.
1423 ** If the pSelect argument is not NULL, it means that this routine
1424 ** was called to create a table generated from a
1425 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1426 ** the new table will match the result set of the SELECT.
1428 void sqlite3EndTable(
1429 Parse *pParse, /* Parse context */
1430 Token *pCons, /* The ',' token after the last column defn. */
1431 Token *pEnd, /* The final ')' token in the CREATE TABLE */
1432 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1435 sqlite3 *db = pParse->db;
1438 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
1441 p = pParse->pNewTable;
1444 assert( !db->init.busy || !pSelect );
1446 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1448 #ifndef SQLITE_OMIT_CHECK
1449 /* Resolve names in all CHECK constraint expressions.
1452 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
1453 NameContext sNC; /* Name context for pParse->pNewTable */
1455 memset(&sNC, 0, sizeof(sNC));
1456 memset(&sSrc, 0, sizeof(sSrc));
1458 sSrc.a[0].zName = p->zName;
1460 sSrc.a[0].iCursor = -1;
1461 sNC.pParse = pParse;
1462 sNC.pSrcList = &sSrc;
1464 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1468 #endif /* !defined(SQLITE_OMIT_CHECK) */
1470 /* If the db->init.busy is 1 it means we are reading the SQL off the
1471 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1472 ** So do not write to the disk again. Extract the root page number
1473 ** for the table from the db->init.newTnum field. (The page number
1474 ** should have been put there by the sqliteOpenCb routine.)
1476 if( db->init.busy ){
1477 p->tnum = db->init.newTnum;
1480 /* If not initializing, then create a record for the new table
1481 ** in the SQLITE_MASTER table of the database. The record number
1482 ** for the new table entry should already be on the stack.
1484 ** If this is a TEMPORARY table, write the entry into the auxiliary
1485 ** file instead of into the main database file.
1487 if( !db->init.busy ){
1490 char *zType; /* "view" or "table" */
1491 char *zType2; /* "VIEW" or "TABLE" */
1492 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1494 v = sqlite3GetVdbe(pParse);
1497 sqlite3VdbeAddOp1(v, OP_Close, 0);
1499 /* Create the rootpage for the new table and push it onto the stack.
1500 ** A view has no rootpage, so just push a zero onto the stack for
1501 ** views. Initialize zType at the same time.
1503 if( p->pSelect==0 ){
1504 /* A regular table */
1507 #ifndef SQLITE_OMIT_VIEW
1515 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1516 ** statement to populate the new table. The root-page number for the
1517 ** new table is on the top of the vdbe stack.
1519 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1520 ** suitable state to query for the column names and types to be used
1521 ** by the new table.
1523 ** A shared-cache write-lock is not required to write to the new table,
1524 ** as a schema-lock must have already been obtained to create it. Since
1525 ** a schema-lock excludes all other database users, the write-lock would
1532 assert(pParse->nTab==0);
1533 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1534 sqlite3VdbeChangeP5(v, 1);
1536 sqlite3SelectDestInit(&dest, SRT_Table, 1);
1537 sqlite3Select(pParse, pSelect, &dest);
1538 sqlite3VdbeAddOp1(v, OP_Close, 1);
1539 if( pParse->nErr==0 ){
1540 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1541 if( pSelTab==0 ) return;
1542 assert( p->aCol==0 );
1543 p->nCol = pSelTab->nCol;
1544 p->aCol = pSelTab->aCol;
1547 sqlite3DeleteTable(pSelTab);
1551 /* Compute the complete text of the CREATE statement */
1553 zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
1555 n = pEnd->z - pParse->sNameToken.z + 1;
1556 zStmt = sqlite3MPrintf(db,
1557 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1561 /* A slot for the record has already been allocated in the
1562 ** SQLITE_MASTER table. We just need to update that slot with all
1563 ** the information we've collected. The rowid for the preallocated
1564 ** slot is the 2nd item on the stack. The top of the stack is the
1565 ** root page for the new table (or a 0 if this is a view).
1567 sqlite3NestedParse(pParse,
1569 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1571 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1579 sqlite3DbFree(db, zStmt);
1580 sqlite3ChangeCookie(pParse, iDb);
1582 #ifndef SQLITE_OMIT_AUTOINCREMENT
1583 /* Check to see if we need to create an sqlite_sequence table for
1584 ** keeping track of autoincrement keys.
1586 if( p->tabFlags & TF_Autoincrement ){
1587 Db *pDb = &db->aDb[iDb];
1588 if( pDb->pSchema->pSeqTab==0 ){
1589 sqlite3NestedParse(pParse,
1590 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1597 /* Reparse everything to update our internal data structures */
1598 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1599 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1603 /* Add the table to the in-memory representation of the database.
1605 if( db->init.busy && pParse->nErr==0 ){
1608 Schema *pSchema = p->pSchema;
1609 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
1611 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
1612 db->mallocFailed = 1;
1615 #ifndef SQLITE_OMIT_FOREIGN_KEY
1616 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
1618 int nTo = strlen(pFKey->zTo) + 1;
1619 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
1620 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
1621 if( data==(void *)pFKey ){
1622 db->mallocFailed = 1;
1626 pParse->pNewTable = 0;
1628 db->flags |= SQLITE_InternChanges;
1630 #ifndef SQLITE_OMIT_ALTERTABLE
1632 const char *zName = (const char *)pParse->sNameToken.z;
1634 assert( !pSelect && pCons && pEnd );
1638 nName = (const char *)pCons->z - zName;
1639 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1645 #ifndef SQLITE_OMIT_VIEW
1647 ** The parser calls this routine in order to create a new VIEW
1649 void sqlite3CreateView(
1650 Parse *pParse, /* The parsing context */
1651 Token *pBegin, /* The CREATE token that begins the statement */
1652 Token *pName1, /* The token that holds the name of the view */
1653 Token *pName2, /* The token that holds the name of the view */
1654 Select *pSelect, /* A SELECT statement that will become the new view */
1655 int isTemp, /* TRUE for a TEMPORARY view */
1656 int noErr /* Suppress error messages if VIEW already exists */
1660 const unsigned char *z;
1665 sqlite3 *db = pParse->db;
1667 if( pParse->nVar>0 ){
1668 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1669 sqlite3SelectDelete(db, pSelect);
1672 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1673 p = pParse->pNewTable;
1674 if( p==0 || pParse->nErr ){
1675 sqlite3SelectDelete(db, pSelect);
1678 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1679 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1680 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1681 && sqlite3FixSelect(&sFix, pSelect)
1683 sqlite3SelectDelete(db, pSelect);
1687 /* Make a copy of the entire SELECT statement that defines the view.
1688 ** This will force all the Expr.token.z values to be dynamically
1689 ** allocated rather than point to the input string - which means that
1690 ** they will persist after the current sqlite3_exec() call returns.
1692 p->pSelect = sqlite3SelectDup(db, pSelect);
1693 sqlite3SelectDelete(db, pSelect);
1694 if( db->mallocFailed ){
1697 if( !db->init.busy ){
1698 sqlite3ViewGetColumnNames(pParse, p);
1701 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1704 sEnd = pParse->sLastToken;
1705 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
1709 n = sEnd.z - pBegin->z;
1710 z = (const unsigned char*)pBegin->z;
1711 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
1715 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1716 sqlite3EndTable(pParse, 0, &sEnd, 0);
1719 #endif /* SQLITE_OMIT_VIEW */
1721 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1723 ** The Table structure pTable is really a VIEW. Fill in the names of
1724 ** the columns of the view in the pTable structure. Return the number
1725 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1727 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1728 Table *pSelTab; /* A fake table from which we get the result set */
1729 Select *pSel; /* Copy of the SELECT that implements the view */
1730 int nErr = 0; /* Number of errors encountered */
1731 int n; /* Temporarily holds the number of cursors assigned */
1732 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
1733 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1737 #ifndef SQLITE_OMIT_VIRTUALTABLE
1738 if( sqlite3VtabCallConnect(pParse, pTable) ){
1739 return SQLITE_ERROR;
1741 if( IsVirtual(pTable) ) return 0;
1744 #ifndef SQLITE_OMIT_VIEW
1745 /* A positive nCol means the columns names for this view are
1748 if( pTable->nCol>0 ) return 0;
1750 /* A negative nCol is a special marker meaning that we are currently
1751 ** trying to compute the column names. If we enter this routine with
1752 ** a negative nCol, it means two or more views form a loop, like this:
1754 ** CREATE VIEW one AS SELECT * FROM two;
1755 ** CREATE VIEW two AS SELECT * FROM one;
1757 ** Actually, this error is caught previously and so the following test
1758 ** should always fail. But we will leave it in place just to be safe.
1760 if( pTable->nCol<0 ){
1761 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1764 assert( pTable->nCol>=0 );
1766 /* If we get this far, it means we need to compute the table names.
1767 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1768 ** "*" elements in the results set of the view and will assign cursors
1769 ** to the elements of the FROM clause. But we do not want these changes
1770 ** to be permanent. So the computation is done on a copy of the SELECT
1771 ** statement that defines the view.
1773 assert( pTable->pSelect );
1774 pSel = sqlite3SelectDup(db, pTable->pSelect);
1777 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1779 #ifndef SQLITE_OMIT_AUTHORIZATION
1782 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1785 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1789 assert( pTable->aCol==0 );
1790 pTable->nCol = pSelTab->nCol;
1791 pTable->aCol = pSelTab->aCol;
1794 sqlite3DeleteTable(pSelTab);
1795 pTable->pSchema->flags |= DB_UnresetViews;
1800 sqlite3SelectDelete(db, pSel);
1804 #endif /* SQLITE_OMIT_VIEW */
1807 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1809 #ifndef SQLITE_OMIT_VIEW
1811 ** Clear the column names from every VIEW in database idx.
1813 static void sqliteViewResetAll(sqlite3 *db, int idx){
1815 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1816 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1817 Table *pTab = sqliteHashData(i);
1818 if( pTab->pSelect ){
1819 sqliteResetColumnNames(pTab);
1822 DbClearProperty(db, idx, DB_UnresetViews);
1825 # define sqliteViewResetAll(A,B)
1826 #endif /* SQLITE_OMIT_VIEW */
1829 ** This function is called by the VDBE to adjust the internal schema
1830 ** used by SQLite when the btree layer moves a table root page. The
1831 ** root-page of a table or index in database iDb has changed from iFrom
1834 ** Ticket #1728: The symbol table might still contain information
1835 ** on tables and/or indices that are the process of being deleted.
1836 ** If you are unlucky, one of those deleted indices or tables might
1837 ** have the same rootpage number as the real table or index that is
1838 ** being moved. So we cannot stop searching after the first match
1839 ** because the first match might be for one of the deleted indices
1840 ** or tables and not the table/index that is actually being moved.
1841 ** We must continue looping until all tables and indices with
1842 ** rootpage==iFrom have been converted to have a rootpage of iTo
1843 ** in order to be certain that we got the right one.
1845 #ifndef SQLITE_OMIT_AUTOVACUUM
1846 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
1850 pHash = &pDb->pSchema->tblHash;
1851 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1852 Table *pTab = sqliteHashData(pElem);
1853 if( pTab->tnum==iFrom ){
1857 pHash = &pDb->pSchema->idxHash;
1858 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1859 Index *pIdx = sqliteHashData(pElem);
1860 if( pIdx->tnum==iFrom ){
1868 ** Write code to erase the table with root-page iTable from database iDb.
1869 ** Also write code to modify the sqlite_master table and internal schema
1870 ** if a root-page of another table is moved by the btree-layer whilst
1871 ** erasing iTable (this can happen with an auto-vacuum database).
1873 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1874 Vdbe *v = sqlite3GetVdbe(pParse);
1875 int r1 = sqlite3GetTempReg(pParse);
1876 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1877 #ifndef SQLITE_OMIT_AUTOVACUUM
1878 /* OP_Destroy stores an in integer r1. If this integer
1879 ** is non-zero, then it is the root page number of a table moved to
1880 ** location iTable. The following code modifies the sqlite_master table to
1883 ** The "#%d" in the SQL is a special constant that means whatever value
1884 ** is on the top of the stack. See sqlite3RegisterExpr().
1886 sqlite3NestedParse(pParse,
1887 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1888 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1890 sqlite3ReleaseTempReg(pParse, r1);
1894 ** Write VDBE code to erase table pTab and all associated indices on disk.
1895 ** Code to update the sqlite_master tables and internal schema definitions
1896 ** in case a root-page belonging to another table is moved by the btree layer
1897 ** is also added (this can happen with an auto-vacuum database).
1899 static void destroyTable(Parse *pParse, Table *pTab){
1900 #ifdef SQLITE_OMIT_AUTOVACUUM
1902 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1903 destroyRootPage(pParse, pTab->tnum, iDb);
1904 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1905 destroyRootPage(pParse, pIdx->tnum, iDb);
1908 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1909 ** is not defined), then it is important to call OP_Destroy on the
1910 ** table and index root-pages in order, starting with the numerically
1911 ** largest root-page number. This guarantees that none of the root-pages
1912 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1913 ** following were coded:
1919 ** and root page 5 happened to be the largest root-page number in the
1920 ** database, then root page 5 would be moved to page 4 by the
1921 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1922 ** a free-list page.
1924 int iTab = pTab->tnum;
1931 if( iDestroyed==0 || iTab<iDestroyed ){
1934 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1935 int iIdx = pIdx->tnum;
1936 assert( pIdx->pSchema==pTab->pSchema );
1937 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1944 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1945 destroyRootPage(pParse, iLargest, iDb);
1946 iDestroyed = iLargest;
1953 ** This routine is called to do the work of a DROP TABLE statement.
1954 ** pName is the name of the table to be dropped.
1956 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1959 sqlite3 *db = pParse->db;
1962 if( pParse->nErr || db->mallocFailed ){
1963 goto exit_drop_table;
1965 assert( pName->nSrc==1 );
1966 pTab = sqlite3LocateTable(pParse, isView,
1967 pName->a[0].zName, pName->a[0].zDatabase);
1971 sqlite3ErrorClear(pParse);
1973 goto exit_drop_table;
1975 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1976 assert( iDb>=0 && iDb<db->nDb );
1978 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
1979 ** it is initialized.
1981 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
1982 goto exit_drop_table;
1984 #ifndef SQLITE_OMIT_AUTHORIZATION
1987 const char *zTab = SCHEMA_TABLE(iDb);
1988 const char *zDb = db->aDb[iDb].zName;
1989 const char *zArg2 = 0;
1990 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1991 goto exit_drop_table;
1994 if( !OMIT_TEMPDB && iDb==1 ){
1995 code = SQLITE_DROP_TEMP_VIEW;
1997 code = SQLITE_DROP_VIEW;
1999 #ifndef SQLITE_OMIT_VIRTUALTABLE
2000 }else if( IsVirtual(pTab) ){
2001 code = SQLITE_DROP_VTABLE;
2002 zArg2 = pTab->pMod->zName;
2005 if( !OMIT_TEMPDB && iDb==1 ){
2006 code = SQLITE_DROP_TEMP_TABLE;
2008 code = SQLITE_DROP_TABLE;
2011 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2012 goto exit_drop_table;
2014 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2015 goto exit_drop_table;
2019 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2020 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2021 goto exit_drop_table;
2024 #ifndef SQLITE_OMIT_VIEW
2025 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2028 if( isView && pTab->pSelect==0 ){
2029 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2030 goto exit_drop_table;
2032 if( !isView && pTab->pSelect ){
2033 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2034 goto exit_drop_table;
2038 /* Generate code to remove the table from the master table
2041 v = sqlite3GetVdbe(pParse);
2044 Db *pDb = &db->aDb[iDb];
2045 sqlite3BeginWriteOperation(pParse, 1, iDb);
2047 #ifndef SQLITE_OMIT_VIRTUALTABLE
2048 if( IsVirtual(pTab) ){
2049 Vdbe *v = sqlite3GetVdbe(pParse);
2051 sqlite3VdbeAddOp0(v, OP_VBegin);
2056 /* Drop all triggers associated with the table being dropped. Code
2057 ** is generated to remove entries from sqlite_master and/or
2058 ** sqlite_temp_master if required.
2060 pTrigger = pTab->pTrigger;
2062 assert( pTrigger->pSchema==pTab->pSchema ||
2063 pTrigger->pSchema==db->aDb[1].pSchema );
2064 sqlite3DropTriggerPtr(pParse, pTrigger);
2065 pTrigger = pTrigger->pNext;
2068 #ifndef SQLITE_OMIT_AUTOINCREMENT
2069 /* Remove any entries of the sqlite_sequence table associated with
2070 ** the table being dropped. This is done before the table is dropped
2071 ** at the btree level, in case the sqlite_sequence table needs to
2072 ** move as a result of the drop (can happen in auto-vacuum mode).
2074 if( pTab->tabFlags & TF_Autoincrement ){
2075 sqlite3NestedParse(pParse,
2076 "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2077 pDb->zName, pTab->zName
2082 /* Drop all SQLITE_MASTER table and index entries that refer to the
2083 ** table. The program name loops through the master table and deletes
2084 ** every row that refers to a table of the same name as the one being
2085 ** dropped. Triggers are handled seperately because a trigger can be
2086 ** created in the temp database that refers to a table in another
2089 sqlite3NestedParse(pParse,
2090 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2091 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2093 /* Drop any statistics from the sqlite_stat1 table, if it exists */
2094 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2095 sqlite3NestedParse(pParse,
2096 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2100 if( !isView && !IsVirtual(pTab) ){
2101 destroyTable(pParse, pTab);
2104 /* Remove the table entry from SQLite's internal schema and modify
2105 ** the schema cookie.
2107 if( IsVirtual(pTab) ){
2108 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2110 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2111 sqlite3ChangeCookie(pParse, iDb);
2113 sqliteViewResetAll(db, iDb);
2116 sqlite3SrcListDelete(db, pName);
2120 ** This routine is called to create a new foreign key on the table
2121 ** currently under construction. pFromCol determines which columns
2122 ** in the current table point to the foreign key. If pFromCol==0 then
2123 ** connect the key to the last column inserted. pTo is the name of
2124 ** the table referred to. pToCol is a list of tables in the other
2125 ** pTo table that the foreign key points to. flags contains all
2126 ** information about the conflict resolution algorithms specified
2127 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2129 ** An FKey structure is created and added to the table currently
2130 ** under construction in the pParse->pNewTable field. The new FKey
2131 ** is not linked into db->aFKey at this point - that does not happen
2132 ** until sqlite3EndTable().
2134 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2135 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2137 void sqlite3CreateForeignKey(
2138 Parse *pParse, /* Parsing context */
2139 ExprList *pFromCol, /* Columns in this table that point to other table */
2140 Token *pTo, /* Name of the other table */
2141 ExprList *pToCol, /* Columns in the other table */
2142 int flags /* Conflict resolution algorithms. */
2144 sqlite3 *db = pParse->db;
2145 #ifndef SQLITE_OMIT_FOREIGN_KEY
2147 Table *p = pParse->pNewTable;
2154 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
2156 int iCol = p->nCol-1;
2157 if( iCol<0 ) goto fk_end;
2158 if( pToCol && pToCol->nExpr!=1 ){
2159 sqlite3ErrorMsg(pParse, "foreign key on %s"
2160 " should reference only one column of table %T",
2161 p->aCol[iCol].zName, pTo);
2165 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2166 sqlite3ErrorMsg(pParse,
2167 "number of columns in foreign key does not match the number of "
2168 "columns in the referenced table");
2171 nCol = pFromCol->nExpr;
2173 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2175 for(i=0; i<pToCol->nExpr; i++){
2176 nByte += strlen(pToCol->a[i].zName) + 1;
2179 pFKey = sqlite3DbMallocZero(db, nByte );
2184 pFKey->pNextFrom = p->pFKey;
2185 z = (char*)&pFKey[1];
2186 pFKey->aCol = (struct sColMap*)z;
2187 z += sizeof(struct sColMap)*nCol;
2189 memcpy(z, pTo->z, pTo->n);
2195 pFKey->aCol[0].iFrom = p->nCol-1;
2197 for(i=0; i<nCol; i++){
2199 for(j=0; j<p->nCol; j++){
2200 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2201 pFKey->aCol[i].iFrom = j;
2206 sqlite3ErrorMsg(pParse,
2207 "unknown column \"%s\" in foreign key definition",
2208 pFromCol->a[i].zName);
2214 for(i=0; i<nCol; i++){
2215 int n = strlen(pToCol->a[i].zName);
2216 pFKey->aCol[i].zCol = z;
2217 memcpy(z, pToCol->a[i].zName, n);
2222 pFKey->isDeferred = 0;
2223 pFKey->deleteConf = flags & 0xff;
2224 pFKey->updateConf = (flags >> 8 ) & 0xff;
2225 pFKey->insertConf = (flags >> 16 ) & 0xff;
2227 /* Link the foreign key to the table as the last step.
2233 sqlite3DbFree(db, pFKey);
2234 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2235 sqlite3ExprListDelete(db, pFromCol);
2236 sqlite3ExprListDelete(db, pToCol);
2240 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2241 ** clause is seen as part of a foreign key definition. The isDeferred
2242 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2243 ** The behavior of the most recently created foreign key is adjusted
2246 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2247 #ifndef SQLITE_OMIT_FOREIGN_KEY
2250 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2251 pFKey->isDeferred = isDeferred;
2256 ** Generate code that will erase and refill index *pIdx. This is
2257 ** used to initialize a newly created index or to recompute the
2258 ** content of an index in response to a REINDEX command.
2260 ** if memRootPage is not negative, it means that the index is newly
2261 ** created. The register specified by memRootPage contains the
2262 ** root page number of the index. If memRootPage is negative, then
2263 ** the index already exists and must be cleared before being refilled and
2264 ** the root page number of the index is taken from pIndex->tnum.
2266 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2267 Table *pTab = pIndex->pTable; /* The table that is indexed */
2268 int iTab = pParse->nTab; /* Btree cursor used for pTab */
2269 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
2270 int addr1; /* Address of top of loop */
2271 int tnum; /* Root page of index */
2272 Vdbe *v; /* Generate code into this virtual machine */
2273 KeyInfo *pKey; /* KeyInfo for index */
2274 int regIdxKey; /* Registers containing the index key */
2275 int regRecord; /* Register holding assemblied index record */
2276 sqlite3 *db = pParse->db; /* The database connection */
2277 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2279 #ifndef SQLITE_OMIT_AUTHORIZATION
2280 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2281 db->aDb[iDb].zName ) ){
2286 /* Require a write-lock on the table to perform this operation */
2287 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2289 v = sqlite3GetVdbe(pParse);
2291 if( memRootPage>=0 ){
2294 tnum = pIndex->tnum;
2295 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2297 pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2298 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2299 (char *)pKey, P4_KEYINFO_HANDOFF);
2300 if( memRootPage>=0 ){
2301 sqlite3VdbeChangeP5(v, 1);
2303 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2304 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2305 regRecord = sqlite3GetTempReg(pParse);
2306 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2307 if( pIndex->onError!=OE_None ){
2311 regRowid = regIdxKey + pIndex->nColumn;
2312 j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
2313 j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
2314 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
2315 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
2316 "indexed columns are not unique", P4_STATIC);
2317 sqlite3VdbeJumpHere(v, j1);
2318 sqlite3VdbeJumpHere(v, j2);
2320 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2321 sqlite3ReleaseTempReg(pParse, regRecord);
2322 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2323 sqlite3VdbeJumpHere(v, addr1);
2324 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2325 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2329 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2330 ** and pTblList is the name of the table that is to be indexed. Both will
2331 ** be NULL for a primary key or an index that is created to satisfy a
2332 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2333 ** as the table to be indexed. pParse->pNewTable is a table that is
2334 ** currently being constructed by a CREATE TABLE statement.
2336 ** pList is a list of columns to be indexed. pList will be NULL if this
2337 ** is a primary key or unique-constraint on the most recent column added
2338 ** to the table currently under construction.
2340 void sqlite3CreateIndex(
2341 Parse *pParse, /* All information about this parse */
2342 Token *pName1, /* First part of index name. May be NULL */
2343 Token *pName2, /* Second part of index name. May be NULL */
2344 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2345 ExprList *pList, /* A list of columns to be indexed */
2346 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2347 Token *pStart, /* The CREATE token that begins this statement */
2348 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
2349 int sortOrder, /* Sort order of primary key when pList==NULL */
2350 int ifNotExist /* Omit error if index already exists */
2352 Table *pTab = 0; /* Table to be indexed */
2353 Index *pIndex = 0; /* The index to be created */
2354 char *zName = 0; /* Name of the index */
2355 int nName; /* Number of characters in zName */
2357 Token nullId; /* Fake token for an empty ID list */
2358 DbFixer sFix; /* For assigning database names to pTable */
2359 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2360 sqlite3 *db = pParse->db;
2361 Db *pDb; /* The specific table containing the indexed database */
2362 int iDb; /* Index of the database that is being written */
2363 Token *pName = 0; /* Unqualified name of the index to create */
2364 struct ExprList_item *pListItem; /* For looping over pList */
2369 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
2370 goto exit_create_index;
2374 ** Find the table that is to be indexed. Return early if not found.
2378 /* Use the two-part index name to determine the database
2379 ** to search for the table. 'Fix' the table name to this db
2380 ** before looking up the table.
2382 assert( pName1 && pName2 );
2383 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2384 if( iDb<0 ) goto exit_create_index;
2386 #ifndef SQLITE_OMIT_TEMPDB
2387 /* If the index name was unqualified, check if the the table
2388 ** is a temp table. If so, set the database to 1. Do not do this
2389 ** if initialising a database schema.
2391 if( !db->init.busy ){
2392 pTab = sqlite3SrcListLookup(pParse, pTblName);
2393 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2399 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2400 sqlite3FixSrcList(&sFix, pTblName)
2402 /* Because the parser constructs pTblName from a single identifier,
2403 ** sqlite3FixSrcList can never fail. */
2406 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2407 pTblName->a[0].zDatabase);
2408 if( !pTab || db->mallocFailed ) goto exit_create_index;
2409 assert( db->aDb[iDb].pSchema==pTab->pSchema );
2412 pTab = pParse->pNewTable;
2413 if( !pTab ) goto exit_create_index;
2414 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2416 pDb = &db->aDb[iDb];
2418 if( pTab==0 || pParse->nErr ) goto exit_create_index;
2419 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2420 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2421 goto exit_create_index;
2423 #ifndef SQLITE_OMIT_VIEW
2424 if( pTab->pSelect ){
2425 sqlite3ErrorMsg(pParse, "views may not be indexed");
2426 goto exit_create_index;
2429 #ifndef SQLITE_OMIT_VIRTUALTABLE
2430 if( IsVirtual(pTab) ){
2431 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2432 goto exit_create_index;
2437 ** Find the name of the index. Make sure there is not already another
2438 ** index or table with the same name.
2440 ** Exception: If we are reading the names of permanent indices from the
2441 ** sqlite_master table (because some other process changed the schema) and
2442 ** one of the index names collides with the name of a temporary table or
2443 ** index, then we will continue to process this index.
2445 ** If pName==0 it means that we are
2446 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2450 zName = sqlite3NameFromToken(db, pName);
2451 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2452 if( zName==0 ) goto exit_create_index;
2453 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2454 goto exit_create_index;
2456 if( !db->init.busy ){
2457 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2458 if( sqlite3FindTable(db, zName, 0)!=0 ){
2459 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2460 goto exit_create_index;
2463 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2465 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2467 goto exit_create_index;
2472 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2473 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2475 goto exit_create_index;
2479 /* Check for authorization to create an index.
2481 #ifndef SQLITE_OMIT_AUTHORIZATION
2483 const char *zDb = pDb->zName;
2484 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2485 goto exit_create_index;
2487 i = SQLITE_CREATE_INDEX;
2488 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2489 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2490 goto exit_create_index;
2495 /* If pList==0, it means this routine was called to make a primary
2496 ** key out of the last column added to the table under construction.
2497 ** So create a fake list to simulate this.
2500 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
2501 nullId.n = strlen((char*)nullId.z);
2502 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
2503 if( pList==0 ) goto exit_create_index;
2504 pList->a[0].sortOrder = sortOrder;
2507 /* Figure out how many bytes of space are required to store explicitly
2508 ** specified collation sequence names.
2510 for(i=0; i<pList->nExpr; i++){
2513 if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){
2514 nExtra += (1 + strlen(pColl->zName));
2519 ** Allocate the index structure.
2521 nName = strlen(zName);
2522 nCol = pList->nExpr;
2523 pIndex = sqlite3DbMallocZero(db,
2524 sizeof(Index) + /* Index structure */
2525 sizeof(int)*nCol + /* Index.aiColumn */
2526 sizeof(int)*(nCol+1) + /* Index.aiRowEst */
2527 sizeof(char *)*nCol + /* Index.azColl */
2528 sizeof(u8)*nCol + /* Index.aSortOrder */
2529 nName + 1 + /* Index.zName */
2530 nExtra /* Collation sequence names */
2532 if( db->mallocFailed ){
2533 goto exit_create_index;
2535 pIndex->azColl = (char**)(&pIndex[1]);
2536 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2537 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2538 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2539 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2540 zExtra = (char *)(&pIndex->zName[nName+1]);
2541 memcpy(pIndex->zName, zName, nName+1);
2542 pIndex->pTable = pTab;
2543 pIndex->nColumn = pList->nExpr;
2544 pIndex->onError = onError;
2545 pIndex->autoIndex = pName==0;
2546 pIndex->pSchema = db->aDb[iDb].pSchema;
2548 /* Check to see if we should honor DESC requests on index columns
2550 if( pDb->pSchema->file_format>=4 ){
2551 sortOrderMask = -1; /* Honor DESC */
2553 sortOrderMask = 0; /* Ignore DESC */
2556 /* Scan the names of the columns of the table to be indexed and
2557 ** load the column indices into the Index structure. Report an error
2558 ** if any column is not found.
2560 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2561 const char *zColName = pListItem->zName;
2563 int requestedSortOrder;
2564 char *zColl; /* Collation sequence name */
2566 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2567 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2569 if( j>=pTab->nCol ){
2570 sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2571 pTab->zName, zColName);
2572 goto exit_create_index;
2574 /* TODO: Add a test to make sure that the same column is not named
2575 ** more than once within the same index. Only the first instance of
2576 ** the column will ever be used by the optimizer. Note that using the
2577 ** same column more than once cannot be an error because that would
2578 ** break backwards compatibility - it needs to be a warning.
2580 pIndex->aiColumn[i] = j;
2581 if( pListItem->pExpr && pListItem->pExpr->pColl ){
2582 assert( pListItem->pExpr->pColl );
2584 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
2585 zExtra += (strlen(zColl) + 1);
2587 zColl = pTab->aCol[j].zColl;
2589 zColl = db->pDfltColl->zName;
2592 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
2593 goto exit_create_index;
2595 pIndex->azColl[i] = zColl;
2596 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2597 pIndex->aSortOrder[i] = requestedSortOrder;
2599 sqlite3DefaultRowEst(pIndex);
2601 if( pTab==pParse->pNewTable ){
2602 /* This routine has been called to create an automatic index as a
2603 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2604 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2607 ** CREATE TABLE t(x PRIMARY KEY, y);
2608 ** CREATE TABLE t(x, y, UNIQUE(x, y));
2610 ** Either way, check to see if the table already has such an index. If
2611 ** so, don't bother creating this one. This only applies to
2612 ** automatically created indices. Users can do as they wish with
2613 ** explicit indices.
2616 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2618 assert( pIdx->onError!=OE_None );
2619 assert( pIdx->autoIndex );
2620 assert( pIndex->onError!=OE_None );
2622 if( pIdx->nColumn!=pIndex->nColumn ) continue;
2623 for(k=0; k<pIdx->nColumn; k++){
2624 const char *z1 = pIdx->azColl[k];
2625 const char *z2 = pIndex->azColl[k];
2626 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2627 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
2628 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2630 if( k==pIdx->nColumn ){
2631 if( pIdx->onError!=pIndex->onError ){
2632 /* This constraint creates the same index as a previous
2633 ** constraint specified somewhere in the CREATE TABLE statement.
2634 ** However the ON CONFLICT clauses are different. If both this
2635 ** constraint and the previous equivalent constraint have explicit
2636 ** ON CONFLICT clauses this is an error. Otherwise, use the
2637 ** explicitly specified behaviour for the index.
2639 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2640 sqlite3ErrorMsg(pParse,
2641 "conflicting ON CONFLICT clauses specified", 0);
2643 if( pIdx->onError==OE_Default ){
2644 pIdx->onError = pIndex->onError;
2647 goto exit_create_index;
2652 /* Link the new Index structure to its table and to the other
2653 ** in-memory database structures.
2655 if( db->init.busy ){
2657 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2658 pIndex->zName, strlen(pIndex->zName)+1, pIndex);
2660 assert( p==pIndex ); /* Malloc must have failed */
2661 db->mallocFailed = 1;
2662 goto exit_create_index;
2664 db->flags |= SQLITE_InternChanges;
2666 pIndex->tnum = db->init.newTnum;
2670 /* If the db->init.busy is 0 then create the index on disk. This
2671 ** involves writing the index into the master table and filling in the
2672 ** index with the current table contents.
2674 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2675 ** command. db->init.busy is 1 when a database is opened and
2676 ** CREATE INDEX statements are read out of the master table. In
2677 ** the latter case the index already exists on disk, which is why
2678 ** we don't want to recreate it.
2680 ** If pTblName==0 it means this index is generated as a primary key
2681 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
2682 ** has just been created, it contains no data and the index initialization
2683 ** step can be skipped.
2685 else if( db->init.busy==0 ){
2688 int iMem = ++pParse->nMem;
2690 v = sqlite3GetVdbe(pParse);
2691 if( v==0 ) goto exit_create_index;
2694 /* Create the rootpage for the index
2696 sqlite3BeginWriteOperation(pParse, 1, iDb);
2697 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2699 /* Gather the complete text of the CREATE INDEX statement into
2700 ** the zStmt variable
2702 if( pStart && pEnd ){
2703 /* A named index with an explicit CREATE INDEX statement */
2704 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2705 onError==OE_None ? "" : " UNIQUE",
2706 pEnd->z - pName->z + 1,
2709 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2710 /* zStmt = sqlite3MPrintf(""); */
2714 /* Add an entry in sqlite_master for this index
2716 sqlite3NestedParse(pParse,
2717 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2718 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2724 sqlite3DbFree(db, zStmt);
2726 /* Fill the index with data and reparse the schema. Code an OP_Expire
2727 ** to invalidate all pre-compiled statements.
2730 sqlite3RefillIndex(pParse, pIndex, iMem);
2731 sqlite3ChangeCookie(pParse, iDb);
2732 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2733 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
2734 sqlite3VdbeAddOp1(v, OP_Expire, 0);
2738 /* When adding an index to the list of indices for a table, make
2739 ** sure all indices labeled OE_Replace come after all those labeled
2740 ** OE_Ignore. This is necessary for the correct operation of UPDATE
2743 if( db->init.busy || pTblName==0 ){
2744 if( onError!=OE_Replace || pTab->pIndex==0
2745 || pTab->pIndex->onError==OE_Replace){
2746 pIndex->pNext = pTab->pIndex;
2747 pTab->pIndex = pIndex;
2749 Index *pOther = pTab->pIndex;
2750 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2751 pOther = pOther->pNext;
2753 pIndex->pNext = pOther->pNext;
2754 pOther->pNext = pIndex;
2759 /* Clean up before exiting */
2764 sqlite3ExprListDelete(db, pList);
2765 sqlite3SrcListDelete(db, pTblName);
2766 sqlite3DbFree(db, zName);
2771 ** Generate code to make sure the file format number is at least minFormat.
2772 ** The generated code will increase the file format number if necessary.
2774 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
2776 v = sqlite3GetVdbe(pParse);
2778 int r1 = sqlite3GetTempReg(pParse);
2779 int r2 = sqlite3GetTempReg(pParse);
2781 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
2782 sqlite3VdbeUsesBtree(v, iDb);
2783 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
2784 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
2785 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
2786 sqlite3VdbeJumpHere(v, j1);
2787 sqlite3ReleaseTempReg(pParse, r1);
2788 sqlite3ReleaseTempReg(pParse, r2);
2793 ** Fill the Index.aiRowEst[] array with default information - information
2794 ** to be used when we have not run the ANALYZE command.
2796 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2797 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
2798 ** number of rows in the table that match any particular value of the
2799 ** first column of the index. aiRowEst[2] is an estimate of the number
2800 ** of rows that match any particular combiniation of the first 2 columns
2801 ** of the index. And so forth. It must always be the case that
2803 ** aiRowEst[N]<=aiRowEst[N-1]
2806 ** Apart from that, we have little to go on besides intuition as to
2807 ** how aiRowEst[] should be initialized. The numbers generated here
2808 ** are based on typical values found in actual indices.
2810 void sqlite3DefaultRowEst(Index *pIdx){
2811 unsigned *a = pIdx->aiRowEst;
2815 for(i=pIdx->nColumn; i>=5; i--){
2822 if( pIdx->onError!=OE_None ){
2823 a[pIdx->nColumn] = 1;
2828 ** This routine will drop an existing named index. This routine
2829 ** implements the DROP INDEX statement.
2831 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2834 sqlite3 *db = pParse->db;
2837 if( pParse->nErr || db->mallocFailed ){
2838 goto exit_drop_index;
2840 assert( pName->nSrc==1 );
2841 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2842 goto exit_drop_index;
2844 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2847 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2849 pParse->checkSchema = 1;
2850 goto exit_drop_index;
2852 if( pIndex->autoIndex ){
2853 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2854 "or PRIMARY KEY constraint cannot be dropped", 0);
2855 goto exit_drop_index;
2857 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2858 #ifndef SQLITE_OMIT_AUTHORIZATION
2860 int code = SQLITE_DROP_INDEX;
2861 Table *pTab = pIndex->pTable;
2862 const char *zDb = db->aDb[iDb].zName;
2863 const char *zTab = SCHEMA_TABLE(iDb);
2864 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2865 goto exit_drop_index;
2867 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2868 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2869 goto exit_drop_index;
2874 /* Generate code to remove the index and from the master table */
2875 v = sqlite3GetVdbe(pParse);
2877 sqlite3BeginWriteOperation(pParse, 1, iDb);
2878 sqlite3NestedParse(pParse,
2879 "DELETE FROM %Q.%s WHERE name=%Q",
2880 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2883 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2884 sqlite3NestedParse(pParse,
2885 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2886 db->aDb[iDb].zName, pIndex->zName
2889 sqlite3ChangeCookie(pParse, iDb);
2890 destroyRootPage(pParse, pIndex->tnum, iDb);
2891 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2895 sqlite3SrcListDelete(db, pName);
2899 ** pArray is a pointer to an array of objects. Each object in the
2900 ** array is szEntry bytes in size. This routine allocates a new
2901 ** object on the end of the array.
2903 ** *pnEntry is the number of entries already in use. *pnAlloc is
2904 ** the previously allocated size of the array. initSize is the
2905 ** suggested initial array size allocation.
2907 ** The index of the new entry is returned in *pIdx.
2909 ** This routine returns a pointer to the array of objects. This
2910 ** might be the same as the pArray parameter or it might be a different
2911 ** pointer if the array was resized.
2913 void *sqlite3ArrayAllocate(
2914 sqlite3 *db, /* Connection to notify of malloc failures */
2915 void *pArray, /* Array of objects. Might be reallocated */
2916 int szEntry, /* Size of each object in the array */
2917 int initSize, /* Suggested initial allocation, in elements */
2918 int *pnEntry, /* Number of objects currently in use */
2919 int *pnAlloc, /* Current size of the allocation, in elements */
2920 int *pIdx /* Write the index of a new slot here */
2923 if( *pnEntry >= *pnAlloc ){
2926 newSize = (*pnAlloc)*2 + initSize;
2927 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
2936 memset(&z[*pnEntry * szEntry], 0, szEntry);
2943 ** Append a new element to the given IdList. Create a new IdList if
2946 ** A new IdList is returned, or NULL if malloc() fails.
2948 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
2951 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
2952 if( pList==0 ) return 0;
2955 pList->a = sqlite3ArrayAllocate(
2958 sizeof(pList->a[0]),
2965 sqlite3IdListDelete(db, pList);
2968 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
2973 ** Delete an IdList.
2975 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
2977 if( pList==0 ) return;
2978 for(i=0; i<pList->nId; i++){
2979 sqlite3DbFree(db, pList->a[i].zName);
2981 sqlite3DbFree(db, pList->a);
2982 sqlite3DbFree(db, pList);
2986 ** Return the index in pList of the identifier named zId. Return -1
2989 int sqlite3IdListIndex(IdList *pList, const char *zName){
2991 if( pList==0 ) return -1;
2992 for(i=0; i<pList->nId; i++){
2993 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
2999 ** Append a new table name to the given SrcList. Create a new SrcList if
3000 ** need be. A new entry is created in the SrcList even if pToken is NULL.
3002 ** A new SrcList is returned, or NULL if malloc() fails.
3004 ** If pDatabase is not null, it means that the table has an optional
3005 ** database name prefix. Like this: "database.table". The pDatabase
3006 ** points to the table name and the pTable points to the database name.
3007 ** The SrcList.a[].zName field is filled with the table name which might
3008 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3009 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3010 ** or with NULL if no database is specified.
3012 ** In other words, if call like this:
3014 ** sqlite3SrcListAppend(D,A,B,0);
3016 ** Then B is a table name and the database name is unspecified. If called
3019 ** sqlite3SrcListAppend(D,A,B,C);
3021 ** Then C is the table name and B is the database name.
3023 SrcList *sqlite3SrcListAppend(
3024 sqlite3 *db, /* Connection to notify of malloc failures */
3025 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3026 Token *pTable, /* Table to append */
3027 Token *pDatabase /* Database of the table */
3029 struct SrcList_item *pItem;
3031 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3032 if( pList==0 ) return 0;
3035 if( pList->nSrc>=pList->nAlloc ){
3038 pNew = sqlite3DbRealloc(db, pList,
3039 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
3041 sqlite3SrcListDelete(db, pList);
3046 pItem = &pList->a[pList->nSrc];
3047 memset(pItem, 0, sizeof(pList->a[0]));
3048 if( pDatabase && pDatabase->z==0 ){
3051 if( pDatabase && pTable ){
3052 Token *pTemp = pDatabase;
3056 pItem->zName = sqlite3NameFromToken(db, pTable);
3057 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3058 pItem->iCursor = -1;
3064 ** Assign cursors to all tables in a SrcList
3066 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3068 struct SrcList_item *pItem;
3069 assert(pList || pParse->db->mallocFailed );
3071 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3072 if( pItem->iCursor>=0 ) break;
3073 pItem->iCursor = pParse->nTab++;
3074 if( pItem->pSelect ){
3075 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3082 ** Delete an entire SrcList including all its substructure.
3084 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3086 struct SrcList_item *pItem;
3087 if( pList==0 ) return;
3088 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3089 sqlite3DbFree(db, pItem->zDatabase);
3090 sqlite3DbFree(db, pItem->zName);
3091 sqlite3DbFree(db, pItem->zAlias);
3092 sqlite3DbFree(db, pItem->zIndex);
3093 sqlite3DeleteTable(pItem->pTab);
3094 sqlite3SelectDelete(db, pItem->pSelect);
3095 sqlite3ExprDelete(db, pItem->pOn);
3096 sqlite3IdListDelete(db, pItem->pUsing);
3098 sqlite3DbFree(db, pList);
3102 ** This routine is called by the parser to add a new term to the
3103 ** end of a growing FROM clause. The "p" parameter is the part of
3104 ** the FROM clause that has already been constructed. "p" is NULL
3105 ** if this is the first term of the FROM clause. pTable and pDatabase
3106 ** are the name of the table and database named in the FROM clause term.
3107 ** pDatabase is NULL if the database name qualifier is missing - the
3108 ** usual case. If the term has a alias, then pAlias points to the
3109 ** alias token. If the term is a subquery, then pSubquery is the
3110 ** SELECT statement that the subquery encodes. The pTable and
3111 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3112 ** parameters are the content of the ON and USING clauses.
3114 ** Return a new SrcList which encodes is the FROM with the new
3117 SrcList *sqlite3SrcListAppendFromTerm(
3118 Parse *pParse, /* Parsing context */
3119 SrcList *p, /* The left part of the FROM clause already seen */
3120 Token *pTable, /* Name of the table to add to the FROM clause */
3121 Token *pDatabase, /* Name of the database containing pTable */
3122 Token *pAlias, /* The right-hand side of the AS subexpression */
3123 Select *pSubquery, /* A subquery used in place of a table name */
3124 Expr *pOn, /* The ON clause of a join */
3125 IdList *pUsing /* The USING clause of a join */
3127 struct SrcList_item *pItem;
3128 sqlite3 *db = pParse->db;
3129 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3130 if( p==0 || p->nSrc==0 ){
3131 sqlite3ExprDelete(db, pOn);
3132 sqlite3IdListDelete(db, pUsing);
3133 sqlite3SelectDelete(db, pSubquery);
3136 pItem = &p->a[p->nSrc-1];
3137 if( pAlias && pAlias->n ){
3138 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3140 pItem->pSelect = pSubquery;
3142 pItem->pUsing = pUsing;
3147 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3148 ** element of the source-list passed as the second argument.
3150 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3151 if( pIndexedBy && p && p->nSrc>0 ){
3152 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3153 assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3154 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3155 /* A "NOT INDEXED" clause was supplied. See parse.y
3156 ** construct "indexed_opt" for details. */
3157 pItem->notIndexed = 1;
3159 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3165 ** When building up a FROM clause in the parser, the join operator
3166 ** is initially attached to the left operand. But the code generator
3167 ** expects the join operator to be on the right operand. This routine
3168 ** Shifts all join operators from left to right for an entire FROM
3171 ** Example: Suppose the join is like this:
3173 ** A natural cross join B
3175 ** The operator is "natural cross join". The A and B operands are stored
3176 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3177 ** operator with A. This routine shifts that operator over to B.
3179 void sqlite3SrcListShiftJoinType(SrcList *p){
3182 for(i=p->nSrc-1; i>0; i--){
3183 p->a[i].jointype = p->a[i-1].jointype;
3185 p->a[0].jointype = 0;
3190 ** Begin a transaction
3192 void sqlite3BeginTransaction(Parse *pParse, int type){
3197 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3198 if( pParse->nErr || db->mallocFailed ) return;
3199 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
3201 v = sqlite3GetVdbe(pParse);
3203 if( type!=TK_DEFERRED ){
3204 for(i=0; i<db->nDb; i++){
3205 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3206 sqlite3VdbeUsesBtree(v, i);
3209 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3213 ** Commit a transaction
3215 void sqlite3CommitTransaction(Parse *pParse){
3219 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3220 if( pParse->nErr || db->mallocFailed ) return;
3221 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
3223 v = sqlite3GetVdbe(pParse);
3225 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3230 ** Rollback a transaction
3232 void sqlite3RollbackTransaction(Parse *pParse){
3236 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3237 if( pParse->nErr || db->mallocFailed ) return;
3238 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
3240 v = sqlite3GetVdbe(pParse);
3242 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3247 ** Make sure the TEMP database is open and available for use. Return
3248 ** the number of errors. Leave any error messages in the pParse structure.
3250 int sqlite3OpenTempDatabase(Parse *pParse){
3251 sqlite3 *db = pParse->db;
3252 if( db->aDb[1].pBt==0 && !pParse->explain ){
3254 static const int flags =
3255 SQLITE_OPEN_READWRITE |
3256 SQLITE_OPEN_CREATE |
3257 SQLITE_OPEN_EXCLUSIVE |
3258 SQLITE_OPEN_DELETEONCLOSE |
3259 SQLITE_OPEN_TEMP_DB;
3261 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
3263 if( rc!=SQLITE_OK ){
3264 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3265 "file for storing temporary tables");
3269 assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
3270 assert( db->aDb[1].pSchema );
3271 sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
3272 db->dfltJournalMode);
3278 ** Generate VDBE code that will verify the schema cookie and start
3279 ** a read-transaction for all named database files.
3281 ** It is important that all schema cookies be verified and all
3282 ** read transactions be started before anything else happens in
3283 ** the VDBE program. But this routine can be called after much other
3284 ** code has been generated. So here is what we do:
3286 ** The first time this routine is called, we code an OP_Goto that
3287 ** will jump to a subroutine at the end of the program. Then we
3288 ** record every database that needs its schema verified in the
3289 ** pParse->cookieMask field. Later, after all other code has been
3290 ** generated, the subroutine that does the cookie verifications and
3291 ** starts the transactions will be coded and the OP_Goto P2 value
3292 ** will be made to point to that subroutine. The generation of the
3293 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3295 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3296 ** schema on any databases. This can be used to position the OP_Goto
3297 ** early in the code, before we know if any database tables will be used.
3299 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3304 v = sqlite3GetVdbe(pParse);
3305 if( v==0 ) return; /* This only happens if there was a prior error */
3307 if( pParse->cookieGoto==0 ){
3308 pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3311 assert( iDb<db->nDb );
3312 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3313 assert( iDb<SQLITE_MAX_ATTACHED+2 );
3315 if( (pParse->cookieMask & mask)==0 ){
3316 pParse->cookieMask |= mask;
3317 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3318 if( !OMIT_TEMPDB && iDb==1 ){
3319 sqlite3OpenTempDatabase(pParse);
3326 ** Generate VDBE code that prepares for doing an operation that
3327 ** might change the database.
3329 ** This routine starts a new transaction if we are not already within
3330 ** a transaction. If we are already within a transaction, then a checkpoint
3331 ** is set if the setStatement parameter is true. A checkpoint should
3332 ** be set for operations that might fail (due to a constraint) part of
3333 ** the way through and which will need to undo some writes without having to
3334 ** rollback the whole transaction. For operations where all constraints
3335 ** can be checked before any changes are made to the database, it is never
3336 ** necessary to undo a write and the checkpoint should not be set.
3338 ** Only database iDb and the temp database are made writable by this call.
3339 ** If iDb==0, then the main and temp databases are made writable. If
3340 ** iDb==1 then only the temp database is made writable. If iDb>1 then the
3341 ** specified auxiliary database and the temp database are made writable.
3343 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3344 Vdbe *v = sqlite3GetVdbe(pParse);
3346 sqlite3CodeVerifySchema(pParse, iDb);
3347 pParse->writeMask |= 1<<iDb;
3348 if( setStatement && pParse->nested==0 ){
3349 sqlite3VdbeAddOp1(v, OP_Statement, iDb);
3351 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
3352 sqlite3BeginWriteOperation(pParse, setStatement, 1);
3357 ** Check to see if pIndex uses the collating sequence pColl. Return
3358 ** true if it does and false if it does not.
3360 #ifndef SQLITE_OMIT_REINDEX
3361 static int collationMatch(const char *zColl, Index *pIndex){
3363 for(i=0; i<pIndex->nColumn; i++){
3364 const char *z = pIndex->azColl[i];
3365 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
3374 ** Recompute all indices of pTab that use the collating sequence pColl.
3375 ** If pColl==0 then recompute all indices of pTab.
3377 #ifndef SQLITE_OMIT_REINDEX
3378 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3379 Index *pIndex; /* An index associated with pTab */
3381 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3382 if( zColl==0 || collationMatch(zColl, pIndex) ){
3383 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3384 sqlite3BeginWriteOperation(pParse, 0, iDb);
3385 sqlite3RefillIndex(pParse, pIndex, -1);
3392 ** Recompute all indices of all tables in all databases where the
3393 ** indices use the collating sequence pColl. If pColl==0 then recompute
3394 ** all indices everywhere.
3396 #ifndef SQLITE_OMIT_REINDEX
3397 static void reindexDatabases(Parse *pParse, char const *zColl){
3398 Db *pDb; /* A single database */
3399 int iDb; /* The database index number */
3400 sqlite3 *db = pParse->db; /* The database connection */
3401 HashElem *k; /* For looping over tables in pDb */
3402 Table *pTab; /* A table in the database */
3404 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3406 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
3407 pTab = (Table*)sqliteHashData(k);
3408 reindexTable(pParse, pTab, zColl);
3415 ** Generate code for the REINDEX command.
3418 ** REINDEX <collation> -- 2
3419 ** REINDEX ?<database>.?<tablename> -- 3
3420 ** REINDEX ?<database>.?<indexname> -- 4
3422 ** Form 1 causes all indices in all attached databases to be rebuilt.
3423 ** Form 2 rebuilds all indices in all databases that use the named
3424 ** collating function. Forms 3 and 4 rebuild the named index or all
3425 ** indices associated with the named table.
3427 #ifndef SQLITE_OMIT_REINDEX
3428 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3429 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
3430 char *z; /* Name of a table or index */
3431 const char *zDb; /* Name of the database */
3432 Table *pTab; /* A table in the database */
3433 Index *pIndex; /* An index associated with pTab */
3434 int iDb; /* The database index number */
3435 sqlite3 *db = pParse->db; /* The database connection */
3436 Token *pObjName; /* Name of the table or index to be reindexed */
3438 /* Read the database schema. If an error occurs, leave an error message
3439 ** and code in pParse and return NULL. */
3440 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3444 if( pName1==0 || pName1->z==0 ){
3445 reindexDatabases(pParse, 0);
3447 }else if( pName2==0 || pName2->z==0 ){
3449 assert( pName1->z );
3450 zColl = sqlite3NameFromToken(pParse->db, pName1);
3451 if( !zColl ) return;
3452 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
3455 reindexDatabases(pParse, zColl);
3456 sqlite3DbFree(db, zColl);
3460 sqlite3DbFree(db, zColl);
3462 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3464 z = sqlite3NameFromToken(db, pObjName);
3466 zDb = db->aDb[iDb].zName;
3467 pTab = sqlite3FindTable(db, z, zDb);
3469 reindexTable(pParse, pTab, 0);
3470 sqlite3DbFree(db, z);
3473 pIndex = sqlite3FindIndex(db, z, zDb);
3474 sqlite3DbFree(db, z);
3476 sqlite3BeginWriteOperation(pParse, 0, iDb);
3477 sqlite3RefillIndex(pParse, pIndex, -1);
3480 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3485 ** Return a dynamicly allocated KeyInfo structure that can be used
3486 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3488 ** If successful, a pointer to the new structure is returned. In this case
3489 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3490 ** pointer. If an error occurs (out of memory or missing collation
3491 ** sequence), NULL is returned and the state of pParse updated to reflect
3494 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3496 int nCol = pIdx->nColumn;
3497 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3498 sqlite3 *db = pParse->db;
3499 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3502 pKey->db = pParse->db;
3503 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3504 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3505 for(i=0; i<nCol; i++){
3506 char *zColl = pIdx->azColl[i];
3508 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
3509 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3511 pKey->nField = nCol;
3515 sqlite3DbFree(db, pKey);