Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 ** $Id: vdbeapi.c,v 1.138 2008/08/02 03:50:39 drh Exp $
18 #include "sqliteInt.h"
21 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
23 ** The following structure contains pointers to the end points of a
24 ** doubly-linked list of all compiled SQL statements that may be holding
25 ** buffers eligible for release when the sqlite3_release_memory() interface is
26 ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2
29 ** Statements are added to the end of this list when sqlite3_reset() is
30 ** called. They are removed either when sqlite3_step() or sqlite3_finalize()
31 ** is called. When statements are added to this list, the associated
32 ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that
33 ** can be freed using sqlite3VdbeReleaseMemory().
35 ** When statements are added or removed from this list, the mutex
36 ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is
37 ** already held. The LRU2 mutex is then obtained, blocking if necessary,
38 ** the linked-list pointers manipulated and the LRU2 mutex relinquished.
40 struct StatementLruList {
44 static struct StatementLruList sqlite3LruStatements;
47 ** Check that the list looks to be internally consistent. This is used
48 ** as part of an assert() statement as follows:
50 ** assert( stmtLruCheck() );
53 static int stmtLruCheck(){
55 for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){
56 assert(p->pLruNext || p==sqlite3LruStatements.pLast);
57 assert(!p->pLruNext || p->pLruNext->pLruPrev==p);
58 assert(p->pLruPrev || p==sqlite3LruStatements.pFirst);
59 assert(!p->pLruPrev || p->pLruPrev->pLruNext==p);
66 ** Add vdbe p to the end of the statement lru list. It is assumed that
67 ** p is not already part of the list when this is called. The lru list
68 ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex.
70 static void stmtLruAdd(Vdbe *p){
71 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
73 if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){
74 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
78 assert( stmtLruCheck() );
80 if( !sqlite3LruStatements.pFirst ){
81 assert( !sqlite3LruStatements.pLast );
82 sqlite3LruStatements.pFirst = p;
83 sqlite3LruStatements.pLast = p;
85 assert( !sqlite3LruStatements.pLast->pLruNext );
86 p->pLruPrev = sqlite3LruStatements.pLast;
87 sqlite3LruStatements.pLast->pLruNext = p;
88 sqlite3LruStatements.pLast = p;
91 assert( stmtLruCheck() );
93 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
97 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove
98 ** statement p from the least-recently-used statement list. If the
99 ** statement is not currently part of the list, this call is a no-op.
101 static void stmtLruRemoveNomutex(Vdbe *p){
102 if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){
103 assert( stmtLruCheck() );
105 p->pLruNext->pLruPrev = p->pLruPrev;
107 sqlite3LruStatements.pLast = p->pLruPrev;
110 p->pLruPrev->pLruNext = p->pLruNext;
112 sqlite3LruStatements.pFirst = p->pLruNext;
116 assert( stmtLruCheck() );
121 ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove
122 ** statement p from the least-recently-used statement list. If the
123 ** statement is not currently part of the list, this call is a no-op.
125 static void stmtLruRemove(Vdbe *p){
126 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
127 stmtLruRemoveNomutex(p);
128 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
132 ** Try to release n bytes of memory by freeing buffers associated
133 ** with the memory registers of currently unused vdbes.
135 int sqlite3VdbeReleaseMemory(int n){
140 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
141 for(p=sqlite3LruStatements.pFirst; p && nFree<n; p=pNext){
144 /* For each statement handle in the lru list, attempt to obtain the
145 ** associated database mutex. If it cannot be obtained, continue
146 ** to the next statement handle. It is not possible to block on
147 ** the database mutex - that could cause deadlock.
149 if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){
150 nFree += sqlite3VdbeReleaseBuffers(p);
151 stmtLruRemoveNomutex(p);
152 sqlite3_mutex_leave(p->db->mutex);
155 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2));
161 ** Call sqlite3Reprepare() on the statement. Remove it from the
162 ** lru list before doing so, as Reprepare() will free all the
163 ** memory register buffers anyway.
165 int vdbeReprepare(Vdbe *p){
167 return sqlite3Reprepare(p);
170 #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */
171 #define stmtLruRemove(x)
172 #define stmtLruAdd(x)
173 #define vdbeReprepare(x) sqlite3Reprepare(x)
178 ** Return TRUE (non-zero) of the statement supplied as an argument needs
179 ** to be recompiled. A statement needs to be recompiled whenever the
180 ** execution environment changes in a way that would alter the program
181 ** that sqlite3_prepare() generates. For example, if new functions or
182 ** collating sequences are registered or if an authorizer function is
185 int sqlite3_expired(sqlite3_stmt *pStmt){
186 Vdbe *p = (Vdbe*)pStmt;
187 return p==0 || p->expired;
191 ** The following routine destroys a virtual machine that is created by
192 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
193 ** success/failure code that describes the result of executing the virtual
196 ** This routine sets the error code and string returned by
197 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
199 int sqlite3_finalize(sqlite3_stmt *pStmt){
204 Vdbe *v = (Vdbe*)pStmt;
205 #ifndef SQLITE_MUTEX_NOOP
206 sqlite3_mutex *mutex = v->db->mutex;
208 sqlite3_mutex_enter(mutex);
210 rc = sqlite3VdbeFinalize(v);
211 sqlite3_mutex_leave(mutex);
217 ** Terminate the current execution of an SQL statement and reset it
218 ** back to its starting state so that it can be reused. A success code from
219 ** the prior execution is returned.
221 ** This routine sets the error code and string returned by
222 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
224 int sqlite3_reset(sqlite3_stmt *pStmt){
229 Vdbe *v = (Vdbe*)pStmt;
230 sqlite3_mutex_enter(v->db->mutex);
231 rc = sqlite3VdbeReset(v);
233 sqlite3VdbeMakeReady(v, -1, 0, 0, 0);
234 assert( (rc & (v->db->errMask))==rc );
235 sqlite3_mutex_leave(v->db->mutex);
241 ** Set all the parameters in the compiled SQL statement to NULL.
243 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
246 Vdbe *p = (Vdbe*)pStmt;
247 #ifndef SQLITE_MUTEX_NOOP
248 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
250 sqlite3_mutex_enter(mutex);
251 for(i=0; i<p->nVar; i++){
252 sqlite3VdbeMemRelease(&p->aVar[i]);
253 p->aVar[i].flags = MEM_Null;
255 sqlite3_mutex_leave(mutex);
260 /**************************** sqlite3_value_ *******************************
261 ** The following routines extract information from a Mem or sqlite3_value
264 const void *sqlite3_value_blob(sqlite3_value *pVal){
266 if( p->flags & (MEM_Blob|MEM_Str) ){
267 sqlite3VdbeMemExpandBlob(p);
268 p->flags &= ~MEM_Str;
269 p->flags |= MEM_Blob;
272 return sqlite3_value_text(pVal);
275 int sqlite3_value_bytes(sqlite3_value *pVal){
276 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
278 int sqlite3_value_bytes16(sqlite3_value *pVal){
279 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
281 double sqlite3_value_double(sqlite3_value *pVal){
282 return sqlite3VdbeRealValue((Mem*)pVal);
284 int sqlite3_value_int(sqlite3_value *pVal){
285 return sqlite3VdbeIntValue((Mem*)pVal);
287 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
288 return sqlite3VdbeIntValue((Mem*)pVal);
290 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
291 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
293 #ifndef SQLITE_OMIT_UTF16
294 const void *sqlite3_value_text16(sqlite3_value* pVal){
295 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
297 const void *sqlite3_value_text16be(sqlite3_value *pVal){
298 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
300 const void *sqlite3_value_text16le(sqlite3_value *pVal){
301 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
303 #endif /* SQLITE_OMIT_UTF16 */
304 int sqlite3_value_type(sqlite3_value* pVal){
308 /**************************** sqlite3_result_ *******************************
309 ** The following routines are used by user-defined functions to specify
310 ** the function result.
312 void sqlite3_result_blob(
313 sqlite3_context *pCtx,
319 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
320 sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel);
322 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
323 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
324 sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
326 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
327 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
328 pCtx->isError = SQLITE_ERROR;
329 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
331 #ifndef SQLITE_OMIT_UTF16
332 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
333 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
334 pCtx->isError = SQLITE_ERROR;
335 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
338 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
339 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
340 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
342 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
343 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
344 sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
346 void sqlite3_result_null(sqlite3_context *pCtx){
347 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
348 sqlite3VdbeMemSetNull(&pCtx->s);
350 void sqlite3_result_text(
351 sqlite3_context *pCtx,
356 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
357 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel);
359 #ifndef SQLITE_OMIT_UTF16
360 void sqlite3_result_text16(
361 sqlite3_context *pCtx,
366 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
367 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel);
369 void sqlite3_result_text16be(
370 sqlite3_context *pCtx,
375 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
376 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel);
378 void sqlite3_result_text16le(
379 sqlite3_context *pCtx,
384 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
385 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel);
387 #endif /* SQLITE_OMIT_UTF16 */
388 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
389 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
390 sqlite3VdbeMemCopy(&pCtx->s, pValue);
392 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
393 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
394 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
396 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
397 pCtx->isError = errCode;
400 /* Force an SQLITE_TOOBIG error. */
401 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
402 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
403 pCtx->isError = SQLITE_TOOBIG;
404 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
405 SQLITE_UTF8, SQLITE_STATIC);
408 /* An SQLITE_NOMEM error. */
409 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
410 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
411 sqlite3VdbeMemSetNull(&pCtx->s);
412 pCtx->isError = SQLITE_NOMEM;
413 pCtx->s.db->mallocFailed = 1;
417 ** Execute the statement pStmt, either until a row of data is ready, the
418 ** statement is completely executed or an error occurs.
420 ** This routine implements the bulk of the logic behind the sqlite_step()
421 ** API. The only thing omitted is the automatic recompile if a
422 ** schema change has occurred. That detail is handled by the
423 ** outer sqlite3_step() wrapper procedure.
425 static int sqlite3Step(Vdbe *p){
430 if( p->magic!=VDBE_MAGIC_RUN ){
431 return SQLITE_MISUSE;
434 /* Assert that malloc() has not failed */
436 assert( !db->mallocFailed );
438 if( p->pc<=0 && p->expired ){
439 if( p->rc==SQLITE_OK ){
440 p->rc = SQLITE_SCHEMA;
445 if( sqlite3SafetyOn(db) ){
446 p->rc = SQLITE_MISUSE;
447 return SQLITE_MISUSE;
450 /* If there are no other statements currently running, then
451 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
452 ** from interrupting a statement that has not yet started.
454 if( db->activeVdbeCnt==0 ){
455 db->u1.isInterrupted = 0;
458 #ifndef SQLITE_OMIT_TRACE
459 if( db->xProfile && !db->init.busy ){
461 sqlite3OsCurrentTime(db->pVfs, &rNow);
462 p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0;
470 #ifndef SQLITE_OMIT_EXPLAIN
472 rc = sqlite3VdbeList(p);
474 #endif /* SQLITE_OMIT_EXPLAIN */
476 rc = sqlite3VdbeExec(p);
479 if( sqlite3SafetyOff(db) ){
483 #ifndef SQLITE_OMIT_TRACE
484 /* Invoke the profile callback if there is one
486 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0
487 && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){
491 sqlite3OsCurrentTime(db->pVfs, &rNow);
492 elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime;
493 db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime);
498 /*sqlite3Error(p->db, rc, 0);*/
499 p->rc = sqlite3ApiExit(p->db, p->rc);
501 assert( (rc&0xff)==rc );
502 if( p->zSql && (rc&0xff)<SQLITE_ROW ){
503 /* This behavior occurs if sqlite3_prepare_v2() was used to build
504 ** the prepared statement. Return error codes directly */
505 p->db->errCode = p->rc;
506 /* sqlite3Error(p->db, p->rc, 0); */
509 /* This is for legacy sqlite3_prepare() builds and when the code
510 ** is SQLITE_ROW or SQLITE_DONE */
516 ** This is the top-level implementation of sqlite3_step(). Call
517 ** sqlite3Step() to do most of the work. If a schema error occurs,
518 ** call sqlite3Reprepare() and try again.
520 #ifdef SQLITE_OMIT_PARSER
521 int sqlite3_step(sqlite3_stmt *pStmt){
522 int rc = SQLITE_MISUSE;
526 sqlite3_mutex_enter(v->db->mutex);
528 sqlite3_mutex_leave(v->db->mutex);
533 int sqlite3_step(sqlite3_stmt *pStmt){
534 int rc = SQLITE_MISUSE;
537 Vdbe *v = (Vdbe*)pStmt;
539 sqlite3_mutex_enter(db->mutex);
540 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
542 && vdbeReprepare(v) ){
543 sqlite3_reset(pStmt);
546 if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){
547 /* This case occurs after failing to recompile an sql statement.
548 ** The error message from the SQL compiler has already been loaded
549 ** into the database handle. This block copies the error message
550 ** from the database handle into the statement and sets the statement
551 ** program counter to 0 to ensure that when the statement is
552 ** finalized or reset the parser error message is available via
553 ** sqlite3_errmsg() and sqlite3_errcode().
555 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
556 sqlite3DbFree(db, v->zErrMsg);
557 if( !db->mallocFailed ){
558 v->zErrMsg = sqlite3DbStrDup(db, zErr);
561 v->rc = SQLITE_NOMEM;
564 rc = sqlite3ApiExit(db, rc);
565 sqlite3_mutex_leave(db->mutex);
572 ** Extract the user data from a sqlite3_context structure and return a
575 void *sqlite3_user_data(sqlite3_context *p){
576 assert( p && p->pFunc );
577 return p->pFunc->pUserData;
581 ** Extract the user data from a sqlite3_context structure and return a
584 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
585 assert( p && p->pFunc );
590 ** The following is the implementation of an SQL function that always
591 ** fails with an error message stating that the function is used in the
592 ** wrong context. The sqlite3_overload_function() API might construct
593 ** SQL function that use this routine so that the functions will exist
594 ** for name resolution but are actually overloaded by the xFindFunction
595 ** method of virtual tables.
597 void sqlite3InvalidFunction(
598 sqlite3_context *context, /* The function calling context */
599 int argc, /* Number of arguments to the function */
600 sqlite3_value **argv /* Value of each argument */
602 const char *zName = context->pFunc->zName;
604 zErr = sqlite3MPrintf(0,
605 "unable to use function %s in the requested context", zName);
606 sqlite3_result_error(context, zErr, -1);
611 ** Allocate or return the aggregate context for a user function. A new
612 ** context is allocated on the first call. Subsequent calls return the
613 ** same context that was returned on prior calls.
615 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
617 assert( p && p->pFunc && p->pFunc->xStep );
618 assert( sqlite3_mutex_held(p->s.db->mutex) );
620 if( (pMem->flags & MEM_Agg)==0 ){
622 sqlite3VdbeMemReleaseExternal(pMem);
623 pMem->flags = MEM_Null;
626 sqlite3VdbeMemGrow(pMem, nByte, 0);
627 pMem->flags = MEM_Agg;
628 pMem->u.pDef = p->pFunc;
630 memset(pMem->z, 0, nByte);
634 return (void*)pMem->z;
638 ** Return the auxilary data pointer, if any, for the iArg'th argument to
639 ** the user-function defined by pCtx.
641 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
644 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
645 pVdbeFunc = pCtx->pVdbeFunc;
646 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
649 return pVdbeFunc->apAux[iArg].pAux;
653 ** Set the auxilary data pointer and delete function, for the iArg'th
654 ** argument to the user-function defined by pCtx. Any previous value is
655 ** deleted by calling the delete function specified when it was set.
657 void sqlite3_set_auxdata(
658 sqlite3_context *pCtx,
661 void (*xDelete)(void*)
663 struct AuxData *pAuxData;
665 if( iArg<0 ) goto failed;
667 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
668 pVdbeFunc = pCtx->pVdbeFunc;
669 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
670 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
671 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
672 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
676 pCtx->pVdbeFunc = pVdbeFunc;
677 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
678 pVdbeFunc->nAux = iArg+1;
679 pVdbeFunc->pFunc = pCtx->pFunc;
682 pAuxData = &pVdbeFunc->apAux[iArg];
683 if( pAuxData->pAux && pAuxData->xDelete ){
684 pAuxData->xDelete(pAuxData->pAux);
686 pAuxData->pAux = pAux;
687 pAuxData->xDelete = xDelete;
697 ** Return the number of times the Step function of a aggregate has been
700 ** This function is deprecated. Do not use it for new code. It is
701 ** provide only to avoid breaking legacy code. New aggregate function
702 ** implementations should keep their own counts within their aggregate
705 int sqlite3_aggregate_count(sqlite3_context *p){
706 assert( p && p->pFunc && p->pFunc->xStep );
711 ** Return the number of columns in the result set for the statement pStmt.
713 int sqlite3_column_count(sqlite3_stmt *pStmt){
714 Vdbe *pVm = (Vdbe *)pStmt;
715 return pVm ? pVm->nResColumn : 0;
719 ** Return the number of values available from the current row of the
720 ** currently executing statement pStmt.
722 int sqlite3_data_count(sqlite3_stmt *pStmt){
723 Vdbe *pVm = (Vdbe *)pStmt;
724 if( pVm==0 || pVm->pResultSet==0 ) return 0;
725 return pVm->nResColumn;
730 ** Check to see if column iCol of the given statement is valid. If
731 ** it is, return a pointer to the Mem for the value of that column.
732 ** If iCol is not valid, return a pointer to a Mem which has a value
735 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
741 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
742 sqlite3_mutex_enter(pVm->db->mutex);
743 vals = sqlite3_data_count(pStmt);
744 pOut = &pVm->pResultSet[i];
746 static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 };
748 sqlite3_mutex_enter(pVm->db->mutex);
749 sqlite3Error(pVm->db, SQLITE_RANGE, 0);
751 pOut = (Mem*)&nullMem;
757 ** This function is called after invoking an sqlite3_value_XXX function on a
758 ** column value (i.e. a value returned by evaluating an SQL expression in the
759 ** select list of a SELECT statement) that may cause a malloc() failure. If
760 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
761 ** code of statement pStmt set to SQLITE_NOMEM.
763 ** Specifically, this is called from within:
765 ** sqlite3_column_int()
766 ** sqlite3_column_int64()
767 ** sqlite3_column_text()
768 ** sqlite3_column_text16()
769 ** sqlite3_column_real()
770 ** sqlite3_column_bytes()
771 ** sqlite3_column_bytes16()
773 ** But not for sqlite3_column_blob(), which never calls malloc().
775 static void columnMallocFailure(sqlite3_stmt *pStmt)
777 /* If malloc() failed during an encoding conversion within an
778 ** sqlite3_column_XXX API, then set the return code of the statement to
779 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
780 ** and _finalize() will return NOMEM.
782 Vdbe *p = (Vdbe *)pStmt;
784 p->rc = sqlite3ApiExit(p->db, p->rc);
785 sqlite3_mutex_leave(p->db->mutex);
789 /**************************** sqlite3_column_ *******************************
790 ** The following routines are used to access elements of the current row
791 ** in the result set.
793 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
795 val = sqlite3_value_blob( columnMem(pStmt,i) );
796 /* Even though there is no encoding conversion, value_blob() might
797 ** need to call malloc() to expand the result of a zeroblob()
800 columnMallocFailure(pStmt);
803 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
804 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
805 columnMallocFailure(pStmt);
808 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
809 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
810 columnMallocFailure(pStmt);
813 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
814 double val = sqlite3_value_double( columnMem(pStmt,i) );
815 columnMallocFailure(pStmt);
818 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
819 int val = sqlite3_value_int( columnMem(pStmt,i) );
820 columnMallocFailure(pStmt);
823 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
824 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
825 columnMallocFailure(pStmt);
828 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
829 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
830 columnMallocFailure(pStmt);
833 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
834 sqlite3_value *pOut = columnMem(pStmt, i);
835 columnMallocFailure(pStmt);
838 #ifndef SQLITE_OMIT_UTF16
839 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
840 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
841 columnMallocFailure(pStmt);
844 #endif /* SQLITE_OMIT_UTF16 */
845 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
846 int iType = sqlite3_value_type( columnMem(pStmt,i) );
847 columnMallocFailure(pStmt);
851 /* The following function is experimental and subject to change or
853 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
854 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
859 ** Convert the N-th element of pStmt->pColName[] into a string using
860 ** xFunc() then return that string. If N is out of range, return 0.
862 ** There are up to 5 names for each column. useType determines which
863 ** name is returned. Here are the names:
865 ** 0 The column name as it should be displayed for output
866 ** 1 The datatype name for the column
867 ** 2 The name of the database that the column derives from
868 ** 3 The name of the table that the column derives from
869 ** 4 The name of the table column that the result column derives from
871 ** If the result is not a simple column reference (if it is an expression
872 ** or a constant) then useTypes 2, 3, and 4 return NULL.
874 static const void *columnName(
877 const void *(*xFunc)(Mem*),
881 Vdbe *p = (Vdbe *)pStmt;
886 n = sqlite3_column_count(pStmt);
889 sqlite3_mutex_enter(p->db->mutex);
890 ret = xFunc(&p->aColName[N]);
892 /* A malloc may have failed inside of the xFunc() call. If this
893 ** is the case, clear the mallocFailed flag and return NULL.
895 if( p->db && p->db->mallocFailed ){
896 p->db->mallocFailed = 0;
899 sqlite3_mutex_leave(p->db->mutex);
906 ** Return the name of the Nth column of the result set returned by SQL
909 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
911 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
913 #ifndef SQLITE_OMIT_UTF16
914 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
916 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
921 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
922 ** not define OMIT_DECLTYPE.
924 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
925 # error "Must not define both SQLITE_OMIT_DECLTYPE \
926 and SQLITE_ENABLE_COLUMN_METADATA"
929 #ifndef SQLITE_OMIT_DECLTYPE
931 ** Return the column declaration type (if applicable) of the 'i'th column
932 ** of the result set of SQL statement pStmt.
934 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
936 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
938 #ifndef SQLITE_OMIT_UTF16
939 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
941 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
943 #endif /* SQLITE_OMIT_UTF16 */
944 #endif /* SQLITE_OMIT_DECLTYPE */
946 #ifdef SQLITE_ENABLE_COLUMN_METADATA
948 ** Return the name of the database from which a result column derives.
949 ** NULL is returned if the result column is an expression or constant or
950 ** anything else which is not an unabiguous reference to a database column.
952 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
954 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
956 #ifndef SQLITE_OMIT_UTF16
957 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
959 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
961 #endif /* SQLITE_OMIT_UTF16 */
964 ** Return the name of the table from which a result column derives.
965 ** NULL is returned if the result column is an expression or constant or
966 ** anything else which is not an unabiguous reference to a database column.
968 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
970 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
972 #ifndef SQLITE_OMIT_UTF16
973 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
975 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
977 #endif /* SQLITE_OMIT_UTF16 */
980 ** Return the name of the table column from which a result column derives.
981 ** NULL is returned if the result column is an expression or constant or
982 ** anything else which is not an unabiguous reference to a database column.
984 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
986 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
988 #ifndef SQLITE_OMIT_UTF16
989 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
991 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
993 #endif /* SQLITE_OMIT_UTF16 */
994 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
997 /******************************* sqlite3_bind_ ***************************
999 ** Routines used to attach values to wildcards in a compiled SQL statement.
1002 ** Unbind the value bound to variable i in virtual machine p. This is the
1003 ** the same as binding a NULL value to the column. If the "i" parameter is
1004 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1006 ** The error code stored in database p->db is overwritten with the return
1007 ** value in any case.
1009 static int vdbeUnbind(Vdbe *p, int i){
1011 if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1012 if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0);
1013 return SQLITE_MISUSE;
1015 if( i<1 || i>p->nVar ){
1016 sqlite3Error(p->db, SQLITE_RANGE, 0);
1017 return SQLITE_RANGE;
1021 sqlite3VdbeMemRelease(pVar);
1022 pVar->flags = MEM_Null;
1023 sqlite3Error(p->db, SQLITE_OK, 0);
1028 ** Bind a text or BLOB value.
1030 static int bindText(
1031 sqlite3_stmt *pStmt, /* The statement to bind against */
1032 int i, /* Index of the parameter to bind */
1033 const void *zData, /* Pointer to the data to be bound */
1034 int nData, /* Number of bytes of data to be bound */
1035 void (*xDel)(void*), /* Destructor for the data */
1036 int encoding /* Encoding for the data */
1038 Vdbe *p = (Vdbe *)pStmt;
1043 return SQLITE_MISUSE;
1045 sqlite3_mutex_enter(p->db->mutex);
1046 rc = vdbeUnbind(p, i);
1047 if( rc==SQLITE_OK && zData!=0 ){
1048 pVar = &p->aVar[i-1];
1049 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1050 if( rc==SQLITE_OK && encoding!=0 ){
1051 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1053 sqlite3Error(p->db, rc, 0);
1054 rc = sqlite3ApiExit(p->db, rc);
1056 sqlite3_mutex_leave(p->db->mutex);
1062 ** Bind a blob value to an SQL statement variable.
1064 int sqlite3_bind_blob(
1065 sqlite3_stmt *pStmt,
1071 return bindText(pStmt, i, zData, nData, xDel, 0);
1073 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1075 Vdbe *p = (Vdbe *)pStmt;
1076 sqlite3_mutex_enter(p->db->mutex);
1077 rc = vdbeUnbind(p, i);
1078 if( rc==SQLITE_OK ){
1079 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1081 sqlite3_mutex_leave(p->db->mutex);
1084 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1085 return sqlite3_bind_int64(p, i, (i64)iValue);
1087 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1089 Vdbe *p = (Vdbe *)pStmt;
1090 sqlite3_mutex_enter(p->db->mutex);
1091 rc = vdbeUnbind(p, i);
1092 if( rc==SQLITE_OK ){
1093 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1095 sqlite3_mutex_leave(p->db->mutex);
1098 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1100 Vdbe *p = (Vdbe*)pStmt;
1101 sqlite3_mutex_enter(p->db->mutex);
1102 rc = vdbeUnbind(p, i);
1103 sqlite3_mutex_leave(p->db->mutex);
1106 int sqlite3_bind_text(
1107 sqlite3_stmt *pStmt,
1113 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1115 #ifndef SQLITE_OMIT_UTF16
1116 int sqlite3_bind_text16(
1117 sqlite3_stmt *pStmt,
1123 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1125 #endif /* SQLITE_OMIT_UTF16 */
1126 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1128 Vdbe *p = (Vdbe *)pStmt;
1129 sqlite3_mutex_enter(p->db->mutex);
1130 rc = vdbeUnbind(p, i);
1131 if( rc==SQLITE_OK ){
1132 rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue);
1133 if( rc==SQLITE_OK ){
1134 rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db));
1137 rc = sqlite3ApiExit(p->db, rc);
1138 sqlite3_mutex_leave(p->db->mutex);
1141 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1143 Vdbe *p = (Vdbe *)pStmt;
1144 sqlite3_mutex_enter(p->db->mutex);
1145 rc = vdbeUnbind(p, i);
1146 if( rc==SQLITE_OK ){
1147 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1149 sqlite3_mutex_leave(p->db->mutex);
1154 ** Return the number of wildcards that can be potentially bound to.
1155 ** This routine is added to support DBD::SQLite.
1157 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1158 Vdbe *p = (Vdbe*)pStmt;
1159 return p ? p->nVar : 0;
1163 ** Create a mapping from variable numbers to variable names
1164 ** in the Vdbe.azVar[] array, if such a mapping does not already
1167 static void createVarMap(Vdbe *p){
1169 sqlite3_mutex_enter(p->db->mutex);
1173 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1174 if( pOp->opcode==OP_Variable ){
1175 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1176 p->azVar[pOp->p1-1] = pOp->p4.z;
1181 sqlite3_mutex_leave(p->db->mutex);
1186 ** Return the name of a wildcard parameter. Return NULL if the index
1187 ** is out of range or if the wildcard is unnamed.
1189 ** The result is always UTF-8.
1191 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1192 Vdbe *p = (Vdbe*)pStmt;
1193 if( p==0 || i<1 || i>p->nVar ){
1197 return p->azVar[i-1];
1201 ** Given a wildcard parameter name, return the index of the variable
1202 ** with that name. If there is no variable with the given name,
1205 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1206 Vdbe *p = (Vdbe*)pStmt;
1213 for(i=0; i<p->nVar; i++){
1214 const char *z = p->azVar[i];
1215 if( z && strcmp(z,zName)==0 ){
1224 ** Transfer all bindings from the first statement over to the second.
1225 ** If the two statements contain a different number of bindings, then
1226 ** an SQLITE_ERROR is returned.
1228 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1229 Vdbe *pFrom = (Vdbe*)pFromStmt;
1230 Vdbe *pTo = (Vdbe*)pToStmt;
1231 int i, rc = SQLITE_OK;
1232 if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT)
1233 || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT)
1234 || pTo->db!=pFrom->db ){
1235 return SQLITE_MISUSE;
1237 if( pFrom->nVar!=pTo->nVar ){
1238 return SQLITE_ERROR;
1240 sqlite3_mutex_enter(pTo->db->mutex);
1241 for(i=0; rc==SQLITE_OK && i<pFrom->nVar; i++){
1242 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1244 sqlite3_mutex_leave(pTo->db->mutex);
1245 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
1250 ** Return the sqlite3* database handle to which the prepared statement given
1251 ** in the argument belongs. This is the same database handle that was
1252 ** the first argument to the sqlite3_prepare() that was used to create
1253 ** the statement in the first place.
1255 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1256 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1260 ** Return a pointer to the next prepared statement after pStmt associated
1261 ** with database connection pDb. If pStmt is NULL, return the first
1262 ** prepared statement for the database connection. Return NULL if there
1265 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1266 sqlite3_stmt *pNext;
1267 sqlite3_mutex_enter(pDb->mutex);
1269 pNext = (sqlite3_stmt*)pDb->pVdbe;
1271 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1273 sqlite3_mutex_leave(pDb->mutex);