Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This is the implementation of the page cache subsystem or "pager".
14 ** The pager is used to access a database disk file. It implements
15 ** atomic commit and rollback through the use of a journal file that
16 ** is separate from the database file. The pager also implements file
17 ** locking to prevent two processes from writing the same database
18 ** file simultaneously, or one process from reading the database while
19 ** another is writing.
21 ** @(#) $Id: pager.c,v 1.469 2008/08/02 03:50:39 drh Exp $
23 #ifndef SQLITE_OMIT_DISKIO
24 #include "sqliteInt.h"
29 ** Macros for troubleshooting. Normally turned off
32 #define sqlite3DebugPrintf printf
33 #define PAGERTRACE1(X) sqlite3DebugPrintf(X)
34 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y)
35 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z)
36 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
37 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
39 #define PAGERTRACE1(X)
40 #define PAGERTRACE2(X,Y)
41 #define PAGERTRACE3(X,Y,Z)
42 #define PAGERTRACE4(X,Y,Z,W)
43 #define PAGERTRACE5(X,Y,Z,W,V)
47 ** The following two macros are used within the PAGERTRACEX() macros above
48 ** to print out file-descriptors.
50 ** PAGERID() takes a pointer to a Pager struct as its argument. The
51 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
52 ** struct as its argument.
54 #define PAGERID(p) ((int)(p->fd))
55 #define FILEHANDLEID(fd) ((int)fd)
58 ** The page cache as a whole is always in one of the following
61 ** PAGER_UNLOCK The page cache is not currently reading or
62 ** writing the database file. There is no
63 ** data held in memory. This is the initial
66 ** PAGER_SHARED The page cache is reading the database.
67 ** Writing is not permitted. There can be
68 ** multiple readers accessing the same database
69 ** file at the same time.
71 ** PAGER_RESERVED This process has reserved the database for writing
72 ** but has not yet made any changes. Only one process
73 ** at a time can reserve the database. The original
74 ** database file has not been modified so other
75 ** processes may still be reading the on-disk
78 ** PAGER_EXCLUSIVE The page cache is writing the database.
79 ** Access is exclusive. No other processes or
80 ** threads can be reading or writing while one
81 ** process is writing.
83 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE
84 ** after all dirty pages have been written to the
85 ** database file and the file has been synced to
86 ** disk. All that remains to do is to remove or
87 ** truncate the journal file and the transaction
90 ** The page cache comes up in PAGER_UNLOCK. The first time a
91 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
92 ** After all pages have been released using sqlite_page_unref(),
93 ** the state transitions back to PAGER_UNLOCK. The first time
94 ** that sqlite3PagerWrite() is called, the state transitions to
95 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be
96 ** called on an outstanding page which means that the pager must
97 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
98 ** PAGER_RESERVED means that there is an open rollback journal.
99 ** The transition to PAGER_EXCLUSIVE occurs before any changes
100 ** are made to the database file, though writes to the rollback
101 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback()
102 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
103 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
105 #define PAGER_UNLOCK 0
106 #define PAGER_SHARED 1 /* same as SHARED_LOCK */
107 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */
108 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */
109 #define PAGER_SYNCED 5
112 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
113 ** then failed attempts to get a reserved lock will invoke the busy callback.
114 ** This is off by default. To see why, consider the following scenario:
116 ** Suppose thread A already has a shared lock and wants a reserved lock.
117 ** Thread B already has a reserved lock and wants an exclusive lock. If
118 ** both threads are using their busy callbacks, it might be a long time
119 ** be for one of the threads give up and allows the other to proceed.
120 ** But if the thread trying to get the reserved lock gives up quickly
121 ** (if it never invokes its busy callback) then the contention will be
124 #ifndef SQLITE_BUSY_RESERVED_LOCK
125 # define SQLITE_BUSY_RESERVED_LOCK 0
129 ** This macro rounds values up so that if the value is an address it
130 ** is guaranteed to be an address that is aligned to an 8-byte boundary.
132 #define FORCE_ALIGNMENT(X) (((X)+7)&~7)
134 typedef struct PgHdr PgHdr;
137 ** Each pager stores all currently unreferenced pages in a list sorted
138 ** in least-recently-used (LRU) order (i.e. the first item on the list has
139 ** not been referenced in a long time, the last item has been recently
140 ** used). An instance of this structure is included as part of each
141 ** pager structure for this purpose (variable Pager.lru).
143 ** Additionally, if memory-management is enabled, all unreferenced pages
144 ** are stored in a global LRU list (global variable sqlite3LruPageList).
146 ** In both cases, the PagerLruList.pFirstSynced variable points to
147 ** the first page in the corresponding list that does not require an
148 ** fsync() operation before its memory can be reclaimed. If no such
149 ** page exists, PagerLruList.pFirstSynced is set to NULL.
151 typedef struct PagerLruList PagerLruList;
152 struct PagerLruList {
153 PgHdr *pFirst; /* First page in LRU list */
154 PgHdr *pLast; /* Last page in LRU list (the most recently used) */
155 PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */
159 ** The following structure contains the next and previous pointers used
160 ** to link a PgHdr structure into a PagerLruList linked list.
162 typedef struct PagerLruLink PagerLruLink;
163 struct PagerLruLink {
169 ** Each in-memory image of a page begins with the following header.
170 ** This header is only visible to this pager module. The client
171 ** code that calls pager sees only the data that follows the header.
173 ** Client code should call sqlite3PagerWrite() on a page prior to making
174 ** any modifications to that page. The first time sqlite3PagerWrite()
175 ** is called, the original page contents are written into the rollback
176 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once
177 ** the journal page has made it onto the disk surface, PgHdr.needSync
178 ** is cleared. The modified page cannot be written back into the original
179 ** database file until the journal pages has been synced to disk and the
180 ** PgHdr.needSync has been cleared.
182 ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
183 ** is cleared again when the page content is written back to the original
186 ** Details of important structure elements:
190 ** If this is true, this means that it is not safe to write the page
191 ** content to the database because the original content needed
192 ** for rollback has not by synced to the main rollback journal.
193 ** The original content may have been written to the rollback journal
194 ** but it has not yet been synced. So we cannot write to the database
195 ** file because power failure might cause the page in the journal file
196 ** to never reach the disk. It is as if the write to the journal file
197 ** does not occur until the journal file is synced.
199 ** This flag is false if the page content exactly matches what
200 ** currently exists in the database file. The needSync flag is also
201 ** false if the original content has been written to the main rollback
202 ** journal and synced. If the page represents a new page that has
203 ** been added onto the end of the database during the current
204 ** transaction, the needSync flag is true until the original database
205 ** size in the journal header has been synced to disk.
209 ** This is true if the original page has been written into the main
210 ** rollback journal. This is always false for new pages added to
211 ** the end of the database file during the current transaction.
212 ** And this flag says nothing about whether or not the journal
213 ** has been synced to disk. For pages that are in the original
214 ** database file, the following expression should always be true:
216 ** inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno)
218 ** The pPager->pInJournal object is only valid for the original
219 ** pages of the database, not new pages that are added to the end
220 ** of the database, so obviously the above expression cannot be
221 ** valid for new pages. For new pages inJournal is always 0.
225 ** When true, this means that the content of the page has been
226 ** modified and needs to be written back to the database file.
227 ** If false, it means that either the content of the page is
228 ** unchanged or else the content is unimportant and we do not
229 ** care whether or not it is preserved.
233 ** This means that the sqlite3PagerDontRollback() API should be
234 ** ignored for this page. The DontRollback() API attempts to say
235 ** that the content of the page on disk is unimportant (it is an
236 ** unused page on the freelist) so that it is unnecessary to
237 ** rollback changes to this page because the content of the page
238 ** can change without changing the meaning of the database. This
239 ** flag overrides any DontRollback() attempt. This flag is set
240 ** when a page that originally contained valid data is added to
241 ** the freelist. Later in the same transaction, this page might
242 ** be pulled from the freelist and reused for something different
243 ** and at that point the DontRollback() API will be called because
244 ** pages taken from the freelist do not need to be protected by
245 ** the rollback journal. But this flag says that the page was
246 ** not originally part of the freelist so that it still needs to
247 ** be rolled back in spite of any subsequent DontRollback() calls.
251 ** This flag means (when true) that the content of the page has
252 ** not yet been loaded from disk. The in-memory content is just
253 ** garbage. (Actually, we zero the content, but you should not
254 ** make any assumptions about the content nevertheless.) If the
255 ** content is needed in the future, it should be read from the
256 ** original database file.
259 Pager *pPager; /* The pager to which this page belongs */
260 Pgno pgno; /* The page number for this page */
261 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */
262 PagerLruLink free; /* Next and previous free pages */
263 PgHdr *pNextAll; /* A list of all pages */
264 u8 inJournal; /* TRUE if has been written to journal */
265 u8 dirty; /* TRUE if we need to write back changes */
266 u8 needSync; /* Sync journal before writing this page */
267 u8 alwaysRollback; /* Disable DontRollback() for this page */
268 u8 needRead; /* Read content if PagerWrite() is called */
269 short int nRef; /* Number of users of this page */
270 PgHdr *pDirty, *pPrevDirty; /* Dirty pages */
271 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
272 PgHdr *pPrevAll; /* A list of all pages */
273 PagerLruLink gfree; /* Global list of nRef==0 pages */
275 #ifdef SQLITE_CHECK_PAGES
278 void *pData; /* Page data */
279 /* Pager.nExtra bytes of local data appended to this header */
283 ** For an in-memory only database, some extra information is recorded about
284 ** each page so that changes can be rolled back. (Journal files are not
285 ** used for in-memory databases.) The following information is added to
286 ** the end of every EXTRA block for in-memory databases.
288 ** This information could have been added directly to the PgHdr structure.
289 ** But then it would take up an extra 8 bytes of storage on every PgHdr
290 ** even for disk-based databases. Splitting it out saves 8 bytes. This
291 ** is only a savings of 0.8% but those percentages add up.
293 typedef struct PgHistory PgHistory;
295 u8 *pOrig; /* Original page text. Restore to this on a full rollback */
296 u8 *pStmt; /* Text as it was at the beginning of the current statement */
297 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */
298 u8 inStmt; /* TRUE if in the statement subjournal */
302 ** A macro used for invoking the codec if there is one
304 #ifdef SQLITE_HAS_CODEC
305 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
306 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
308 # define CODEC1(P,D,N,X) /* NO-OP */
309 # define CODEC2(P,D,N,X) ((char*)D)
313 ** Convert a pointer to a PgHdr into a pointer to its data
316 #define PGHDR_TO_DATA(P) ((P)->pData)
317 #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
318 #define PGHDR_TO_HIST(P,PGR) \
319 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
322 ** A open page cache is an instance of the following structure.
324 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
325 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists
326 ** and is returned as the result of every major pager API call. The
327 ** SQLITE_FULL return code is slightly different. It persists only until the
328 ** next successful rollback is performed on the pager cache. Also,
329 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
330 ** APIs, they may still be used successfully.
333 sqlite3_vfs *pVfs; /* OS functions to use for IO */
334 u8 journalOpen; /* True if journal file descriptors is valid */
335 u8 journalStarted; /* True if header of journal is synced */
336 u8 useJournal; /* Use a rollback journal on this file */
337 u8 noReadlock; /* Do not bother to obtain readlocks */
338 u8 stmtOpen; /* True if the statement subjournal is open */
339 u8 stmtInUse; /* True we are in a statement subtransaction */
340 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/
341 u8 noSync; /* Do not sync the journal if true */
342 u8 fullSync; /* Do extra syncs of the journal for robustness */
343 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */
344 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
345 u8 tempFile; /* zFilename is a temporary file */
346 u8 readOnly; /* True for a read-only database */
347 u8 needSync; /* True if an fsync() is needed on the journal */
348 u8 dirtyCache; /* True if cached pages have changed */
349 u8 alwaysRollback; /* Disable DontRollback() for all pages */
350 u8 memDb; /* True to inhibit all file I/O */
351 u8 setMaster; /* True if a m-j name has been written to jrnl */
352 u8 doNotSync; /* Boolean. While true, do not spill the cache */
353 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
354 u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */
355 u8 dbModified; /* True if there are any changes to the Db */
356 u8 changeCountDone; /* Set after incrementing the change-counter */
357 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
358 int errCode; /* One of several kinds of errors */
359 int dbSize; /* Number of pages in the file */
360 int origDbSize; /* dbSize before the current change */
361 int stmtSize; /* Size of database (in pages) at stmt_begin() */
362 int nRec; /* Number of pages written to the journal */
363 u32 cksumInit; /* Quasi-random value added to every checksum */
364 int stmtNRec; /* Number of records in stmt subjournal */
365 int nExtra; /* Add this many bytes to each in-memory page */
366 int pageSize; /* Number of bytes in a page */
367 int nPage; /* Total number of in-memory pages */
368 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */
369 int mxPage; /* Maximum number of pages to hold in cache */
370 Pgno mxPgno; /* Maximum allowed size of the database */
371 Bitvec *pInJournal; /* One bit for each page in the database file */
372 Bitvec *pInStmt; /* One bit for each page in the database */
373 char *zFilename; /* Name of the database file */
374 char *zJournal; /* Name of the journal file */
375 char *zDirectory; /* Directory hold database and journal files */
376 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */
377 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/
378 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */
379 PagerLruList lru; /* LRU list of free pages */
380 PgHdr *pAll; /* List of all pages */
381 PgHdr *pStmt; /* List of pages in the statement subjournal */
382 PgHdr *pDirty; /* List of all dirty pages */
383 i64 journalOff; /* Current byte offset in the journal file */
384 i64 journalHdr; /* Byte offset to previous journal header */
385 i64 stmtHdrOff; /* First journal header written this statement */
386 i64 stmtCksum; /* cksumInit when statement was started */
387 i64 stmtJSize; /* Size of journal at stmt_begin() */
388 int sectorSize; /* Assumed sector size during rollback */
390 int nHit, nMiss; /* Cache hits and missing */
391 int nRead, nWrite; /* Database pages read/written */
393 void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
394 void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */
395 #ifdef SQLITE_HAS_CODEC
396 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
397 void *pCodecArg; /* First argument to xCodec() */
399 int nHash; /* Size of the pager hash table */
400 PgHdr **aHash; /* Hash table to map page number to PgHdr */
401 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
402 Pager *pNext; /* Doubly linked list of pagers on which */
403 Pager *pPrev; /* sqlite3_release_memory() will work */
404 volatile int iInUseMM; /* Non-zero if unavailable to MM */
405 volatile int iInUseDB; /* Non-zero if in sqlite3_release_memory() */
407 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
408 char dbFileVers[16]; /* Changes whenever database file changes */
409 i64 journalSizeLimit; /* Size limit for persistent journal files */
413 ** The following global variables hold counters used for
414 ** testing purposes only. These variables do not exist in
415 ** a non-testing build. These variables are not thread-safe.
418 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
419 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
420 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
421 int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */
422 # define PAGER_INCR(v) v++
424 # define PAGER_INCR(v)
428 ** The following variable points to the head of a double-linked list
429 ** of all pagers that are eligible for page stealing by the
430 ** sqlite3_release_memory() interface. Access to this list is
431 ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
433 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
434 static Pager *sqlite3PagerList = 0;
435 static PagerLruList sqlite3LruPageList = {0, 0, 0};
440 ** Journal files begin with the following magic string. The data
441 ** was obtained from /dev/random. It is used only as a sanity check.
443 ** Since version 2.8.0, the journal format contains additional sanity
444 ** checking information. If the power fails while the journal is begin
445 ** written, semi-random garbage data might appear in the journal
446 ** file after power is restored. If an attempt is then made
447 ** to roll the journal back, the database could be corrupted. The additional
448 ** sanity checking data is an attempt to discover the garbage in the
449 ** journal and ignore it.
451 ** The sanity checking information for the new journal format consists
452 ** of a 32-bit checksum on each page of data. The checksum covers both
453 ** the page number and the pPager->pageSize bytes of data for the page.
454 ** This cksum is initialized to a 32-bit random value that appears in the
455 ** journal file right after the header. The random initializer is important,
456 ** because garbage data that appears at the end of a journal is likely
457 ** data that was once in other files that have now been deleted. If the
458 ** garbage data came from an obsolete journal file, the checksums might
459 ** be correct. But by initializing the checksum to random value which
460 ** is different for every journal, we minimize that risk.
462 static const unsigned char aJournalMagic[] = {
463 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
467 ** The size of the header and of each page in the journal is determined
468 ** by the following macros.
470 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
473 ** The journal header size for this pager. In the future, this could be
474 ** set to some value read from the disk controller. The important
475 ** characteristic is that it is the same size as a disk sector.
477 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
480 ** The macro MEMDB is true if we are dealing with an in-memory database.
481 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
482 ** the value of MEMDB will be a constant and the compiler will optimize
483 ** out code that would never execute.
485 #ifdef SQLITE_OMIT_MEMORYDB
488 # define MEMDB pPager->memDb
492 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
493 ** reserved for working around a windows/posix incompatibility). It is
494 ** used in the journal to signify that the remainder of the journal file
495 ** is devoted to storing a master journal name - there are no more pages to
496 ** roll back. See comments for function writeMasterJournal() for details.
498 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
499 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
502 ** The maximum legal page number is (2^31 - 1).
504 #define PAGER_MAX_PGNO 2147483647
507 ** The pagerEnter() and pagerLeave() routines acquire and release
508 ** a mutex on each pager. The mutex is recursive.
510 ** This is a special-purpose mutex. It only provides mutual exclusion
511 ** between the Btree and the Memory Management sqlite3_release_memory()
512 ** function. It does not prevent, for example, two Btrees from accessing
513 ** the same pager at the same time. Other general-purpose mutexes in
514 ** the btree layer handle that chore.
516 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
517 static void pagerEnter(Pager *p){
519 if( p->iInUseMM && p->iInUseDB==1 ){
520 #ifndef SQLITE_MUTEX_NOOP
521 sqlite3_mutex *mutex;
522 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
525 sqlite3_mutex_enter(mutex);
527 sqlite3_mutex_leave(mutex);
529 assert( p->iInUseMM==0 );
531 static void pagerLeave(Pager *p){
533 assert( p->iInUseDB>=0 );
536 # define pagerEnter(X)
537 # define pagerLeave(X)
541 ** Add page pPg to the end of the linked list managed by structure
542 ** pList (pPg becomes the last entry in the list - the most recently
543 ** used). Argument pLink should point to either pPg->free or pPg->gfree,
544 ** depending on whether pPg is being added to the pager-specific or
547 static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
549 pLink->pPrev = pList->pLast;
551 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
552 assert(pLink==&pPg->free || pLink==&pPg->gfree);
553 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
557 int iOff = (char *)pLink - (char *)pPg;
558 PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
559 pLastLink->pNext = pPg;
561 assert(!pList->pFirst);
566 if( !pList->pFirstSynced && pPg->needSync==0 ){
567 pList->pFirstSynced = pPg;
572 ** Remove pPg from the list managed by the structure pointed to by pList.
574 ** Argument pLink should point to either pPg->free or pPg->gfree, depending
575 ** on whether pPg is being added to the pager-specific or global LRU list.
577 static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
578 int iOff = (char *)pLink - (char *)pPg;
580 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
581 assert(pLink==&pPg->free || pLink==&pPg->gfree);
582 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
585 if( pPg==pList->pFirst ){
586 pList->pFirst = pLink->pNext;
588 if( pPg==pList->pLast ){
589 pList->pLast = pLink->pPrev;
592 PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
593 pPrevLink->pNext = pLink->pNext;
596 PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
597 pNextLink->pPrev = pLink->pPrev;
599 if( pPg==pList->pFirstSynced ){
600 PgHdr *p = pLink->pNext;
601 while( p && p->needSync ){
602 PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
605 pList->pFirstSynced = p;
608 pLink->pNext = pLink->pPrev = 0;
612 ** Add page pPg to the list of free pages for the pager. If
613 ** memory-management is enabled, also add the page to the global
614 ** list of free pages.
616 static void lruListAdd(PgHdr *pPg){
617 listAdd(&pPg->pPager->lru, &pPg->free, pPg);
618 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
619 if( !pPg->pPager->memDb ){
620 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
621 listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
622 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
628 ** Remove page pPg from the list of free pages for the associated pager.
629 ** If memory-management is enabled, also remove pPg from the global list
632 static void lruListRemove(PgHdr *pPg){
633 listRemove(&pPg->pPager->lru, &pPg->free, pPg);
634 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
635 if( !pPg->pPager->memDb ){
636 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
637 listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
638 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
644 ** This function is called just after the needSync flag has been cleared
645 ** from all pages managed by pPager (usually because the journal file
646 ** has just been synced). It updates the pPager->lru.pFirstSynced variable
647 ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
650 static void lruListSetFirstSynced(Pager *pPager){
651 pPager->lru.pFirstSynced = pPager->lru.pFirst;
652 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
653 if( !pPager->memDb ){
655 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
656 for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
657 assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
658 sqlite3LruPageList.pFirstSynced = p;
659 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
665 ** Return true if page *pPg has already been written to the statement
666 ** journal (or statement snapshot has been created, if *pPg is part
667 ** of an in-memory database).
669 static int pageInStatement(PgHdr *pPg){
670 Pager *pPager = pPg->pPager;
672 return PGHDR_TO_HIST(pPg, pPager)->inStmt;
674 return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno);
679 ** Change the size of the pager hash table to N. N must be a power
682 static void pager_resize_hash_table(Pager *pPager, int N){
684 assert( N>0 && (N&(N-1))==0 );
685 #ifdef SQLITE_MALLOC_SOFT_LIMIT
686 if( N*sizeof(aHash[0])>SQLITE_MALLOC_SOFT_LIMIT ){
687 N = SQLITE_MALLOC_SOFT_LIMIT/sizeof(aHash[0]);
689 if( N==pPager->nHash ) return;
692 if( pPager->aHash!=0 ) sqlite3BeginBenignMalloc();
693 aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
694 if( pPager->aHash!=0 ) sqlite3EndBenignMalloc();
697 /* Failure to rehash is not an error. It is only a performance hit. */
700 sqlite3_free(pPager->aHash);
702 pPager->aHash = aHash;
703 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
706 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
709 h = pPg->pgno & (N-1);
710 pPg->pNextHash = aHash[h];
712 aHash[h]->pPrevHash = pPg;
720 ** Read a 32-bit integer from the given file descriptor. Store the integer
721 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an
722 ** error code is something goes wrong.
724 ** All values are stored on disk as big-endian.
726 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
728 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
730 *pRes = sqlite3Get4byte(ac);
736 ** Write a 32-bit integer into a string buffer in big-endian byte order.
738 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
741 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
742 ** on success or an error code is something goes wrong.
744 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
747 return sqlite3OsWrite(fd, ac, 4, offset);
751 ** If file pFd is open, call sqlite3OsUnlock() on it.
753 static int osUnlock(sqlite3_file *pFd, int eLock){
754 if( !pFd->pMethods ){
757 return sqlite3OsUnlock(pFd, eLock);
761 ** This function determines whether or not the atomic-write optimization
762 ** can be used with this pager. The optimization can be used if:
764 ** (a) the value returned by OsDeviceCharacteristics() indicates that
765 ** a database page may be written atomically, and
766 ** (b) the value returned by OsSectorSize() is less than or equal
769 ** If the optimization cannot be used, 0 is returned. If it can be used,
770 ** then the value returned is the size of the journal file when it
771 ** contains rollback data for exactly one page.
773 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
774 static int jrnlBufferSize(Pager *pPager){
775 int dc; /* Device characteristics */
776 int nSector; /* Sector size */
777 int szPage; /* Page size */
778 sqlite3_file *fd = pPager->fd;
781 dc = sqlite3OsDeviceCharacteristics(fd);
782 nSector = sqlite3OsSectorSize(fd);
783 szPage = pPager->pageSize;
786 assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
787 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
790 (dc & (SQLITE_IOCAP_ATOMIC|(szPage>>8)) && nSector<=szPage) ){
791 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
798 ** This function should be called when an error occurs within the pager
799 ** code. The first argument is a pointer to the pager structure, the
800 ** second the error-code about to be returned by a pager API function.
801 ** The value returned is a copy of the second argument to this function.
803 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
804 ** the error becomes persistent. Until the persisten error is cleared,
805 ** subsequent API calls on this Pager will immediately return the same
808 ** A persistent error indicates that the contents of the pager-cache
809 ** cannot be trusted. This state can be cleared by completely discarding
810 ** the contents of the pager-cache. If a transaction was active when
811 ** the persistent error occured, then the rollback journal may need
814 static void pager_unlock(Pager *pPager);
815 static int pager_error(Pager *pPager, int rc){
818 pPager->errCode==SQLITE_FULL ||
819 pPager->errCode==SQLITE_OK ||
820 (pPager->errCode & 0xff)==SQLITE_IOERR
827 pPager->errCode = rc;
828 if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
829 /* If the pager is already unlocked, call pager_unlock() now to
830 ** clear the error state and ensure that the pager-cache is
833 pager_unlock(pPager);
840 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
841 ** on the cache using a hash function. This is used for testing
842 ** and debugging only.
844 #ifdef SQLITE_CHECK_PAGES
846 ** Return a 32-bit hash of the page data for pPage.
848 static u32 pager_datahash(int nByte, unsigned char *pData){
851 for(i=0; i<nByte; i++){
852 hash = (hash*1039) + pData[i];
856 static u32 pager_pagehash(PgHdr *pPage){
857 return pager_datahash(pPage->pPager->pageSize,
858 (unsigned char *)PGHDR_TO_DATA(pPage));
862 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
863 ** is defined, and NDEBUG is not defined, an assert() statement checks
864 ** that the page is either dirty or still matches the calculated page-hash.
866 #define CHECK_PAGE(x) checkPage(x)
867 static void checkPage(PgHdr *pPg){
868 Pager *pPager = pPg->pPager;
869 assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
870 pPg->pageHash==pager_pagehash(pPg) );
874 #define pager_datahash(X,Y) 0
875 #define pager_pagehash(X) 0
876 #define CHECK_PAGE(x)
880 ** When this is called the journal file for pager pPager must be open.
881 ** The master journal file name is read from the end of the file and
882 ** written into memory supplied by the caller.
884 ** zMaster must point to a buffer of at least nMaster bytes allocated by
885 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
886 ** enough space to write the master journal name). If the master journal
887 ** name in the journal is longer than nMaster bytes (including a
888 ** nul-terminator), then this is handled as if no master journal name
889 ** were present in the journal.
891 ** If no master journal file name is present zMaster[0] is set to 0 and
892 ** SQLITE_OK returned.
894 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
899 u32 u; /* Unsigned loop counter */
900 unsigned char aMagic[8]; /* A buffer to hold the magic header */
904 rc = sqlite3OsFileSize(pJrnl, &szJ);
905 if( rc!=SQLITE_OK || szJ<16 ) return rc;
907 rc = read32bits(pJrnl, szJ-16, &len);
908 if( rc!=SQLITE_OK ) return rc;
914 rc = read32bits(pJrnl, szJ-12, &cksum);
915 if( rc!=SQLITE_OK ) return rc;
917 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
918 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
920 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
926 /* See if the checksum matches the master journal name */
927 for(u=0; u<len; u++){
931 /* If the checksum doesn't add up, then one or more of the disk sectors
932 ** containing the master journal filename is corrupted. This means
933 ** definitely roll back, so just return SQLITE_OK and report a (nul)
934 ** master-journal filename.
943 ** Seek the journal file descriptor to the next sector boundary where a
944 ** journal header may be read or written. Pager.journalOff is updated with
945 ** the new seek offset.
947 ** i.e for a sector size of 512:
949 ** Input Offset Output Offset
950 ** ---------------------------------------
957 static void seekJournalHdr(Pager *pPager){
959 i64 c = pPager->journalOff;
961 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
963 assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
965 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
966 pPager->journalOff = offset;
970 ** Write zeros over the header of the journal file. This has the
971 ** effect of invalidating the journal file and committing the
974 static int zeroJournalHdr(Pager *pPager, int doTruncate){
976 static const char zeroHdr[28];
978 if( pPager->journalOff ){
979 i64 iLimit = pPager->journalSizeLimit;
981 IOTRACE(("JZEROHDR %p\n", pPager))
982 if( doTruncate || iLimit==0 ){
983 rc = sqlite3OsTruncate(pPager->jfd, 0);
985 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
987 if( rc==SQLITE_OK && !pPager->noSync ){
988 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags);
991 /* At this point the transaction is committed but the write lock
992 ** is still held on the file. If there is a size limit configured for
993 ** the persistent journal and the journal file currently consumes more
994 ** space than that limit allows for, truncate it now. There is no need
995 ** to sync the file following this operation.
997 if( rc==SQLITE_OK && iLimit>0 ){
999 rc = sqlite3OsFileSize(pPager->jfd, &sz);
1000 if( rc==SQLITE_OK && sz>iLimit ){
1001 rc = sqlite3OsTruncate(pPager->jfd, iLimit);
1009 ** The journal file must be open when this routine is called. A journal
1010 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
1011 ** current location.
1013 ** The format for the journal header is as follows:
1014 ** - 8 bytes: Magic identifying journal format.
1015 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
1016 ** - 4 bytes: Random number used for page hash.
1017 ** - 4 bytes: Initial database page count.
1018 ** - 4 bytes: Sector size used by the process that wrote this journal.
1019 ** - 4 bytes: Database page size.
1021 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
1023 static int writeJournalHdr(Pager *pPager){
1025 char *zHeader = pPager->pTmpSpace;
1026 int nHeader = pPager->pageSize;
1029 if( nHeader>JOURNAL_HDR_SZ(pPager) ){
1030 nHeader = JOURNAL_HDR_SZ(pPager);
1033 if( pPager->stmtHdrOff==0 ){
1034 pPager->stmtHdrOff = pPager->journalOff;
1037 seekJournalHdr(pPager);
1038 pPager->journalHdr = pPager->journalOff;
1040 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
1043 ** Write the nRec Field - the number of page records that follow this
1044 ** journal header. Normally, zero is written to this value at this time.
1045 ** After the records are added to the journal (and the journal synced,
1046 ** if in full-sync mode), the zero is overwritten with the true number
1047 ** of records (see syncJournal()).
1049 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
1050 ** reading the journal this value tells SQLite to assume that the
1051 ** rest of the journal file contains valid page records. This assumption
1052 ** is dangerous, as if a failure occured whilst writing to the journal
1053 ** file it may contain some garbage data. There are two scenarios
1054 ** where this risk can be ignored:
1056 ** * When the pager is in no-sync mode. Corruption can follow a
1057 ** power failure in this case anyway.
1059 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
1060 ** that garbage data is never appended to the journal file.
1062 assert(pPager->fd->pMethods||pPager->noSync);
1063 if( (pPager->noSync)
1064 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
1066 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
1068 put32bits(&zHeader[sizeof(aJournalMagic)], 0);
1071 /* The random check-hash initialiser */
1072 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
1073 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
1074 /* The initial database size */
1075 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
1076 /* The assumed sector size for this process */
1077 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
1078 if( pPager->journalHdr==0 ){
1080 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
1083 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
1084 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
1085 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
1086 pPager->journalOff += nHeader;
1093 ** The journal file must be open when this is called. A journal header file
1094 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
1095 ** file. See comments above function writeJournalHdr() for a description of
1096 ** the journal header format.
1098 ** If the header is read successfully, *nRec is set to the number of
1099 ** page records following this header and *dbSize is set to the size of the
1100 ** database before the transaction began, in pages. Also, pPager->cksumInit
1101 ** is set to the value read from the journal header. SQLITE_OK is returned
1104 ** If the journal header file appears to be corrupted, SQLITE_DONE is
1105 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes
1106 ** cannot be read from the journal file an error code is returned.
1108 static int readJournalHdr(
1115 unsigned char aMagic[8]; /* A buffer to hold the magic header */
1119 seekJournalHdr(pPager);
1120 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
1123 jrnlOff = pPager->journalOff;
1125 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
1127 jrnlOff += sizeof(aMagic);
1129 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
1133 rc = read32bits(pPager->jfd, jrnlOff, pNRec);
1136 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
1139 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
1142 rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize);
1145 && iPageSize<=SQLITE_MAX_PAGE_SIZE
1146 && ((iPageSize-1)&iPageSize)==0
1148 u16 pagesize = iPageSize;
1149 rc = sqlite3PagerSetPagesize(pPager, &pagesize);
1153 /* Update the assumed sector-size to match the value used by
1154 ** the process that created this journal. If this journal was
1155 ** created by a process other than this one, then this routine
1156 ** is being called from within pager_playback(). The local value
1157 ** of Pager.sectorSize is restored at the end of that routine.
1159 rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
1162 pPager->journalOff += JOURNAL_HDR_SZ(pPager);
1168 ** Write the supplied master journal name into the journal file for pager
1169 ** pPager at the current location. The master journal name must be the last
1170 ** thing written to a journal file. If the pager is in full-sync mode, the
1171 ** journal file descriptor is advanced to the next sector boundary before
1172 ** anything is written. The format is:
1174 ** + 4 bytes: PAGER_MJ_PGNO.
1175 ** + N bytes: length of master journal name.
1177 ** + 4 bytes: Master journal name checksum.
1178 ** + 8 bytes: aJournalMagic[].
1180 ** The master journal page checksum is the sum of the bytes in the master
1183 ** If zMaster is a NULL pointer (occurs for a single database transaction),
1184 ** this call is a no-op.
1186 static int writeMasterJournal(Pager *pPager, const char *zMaster){
1193 char zBuf[sizeof(aJournalMagic)+2*4];
1195 if( !zMaster || pPager->setMaster) return SQLITE_OK;
1196 pPager->setMaster = 1;
1198 len = strlen(zMaster);
1199 for(i=0; i<len; i++){
1200 cksum += zMaster[i];
1203 /* If in full-sync mode, advance to the next disk sector before writing
1204 ** the master journal name. This is in case the previous page written to
1205 ** the journal has already been synced.
1207 if( pPager->fullSync ){
1208 seekJournalHdr(pPager);
1210 jrnlOff = pPager->journalOff;
1211 pPager->journalOff += (len+20);
1213 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
1214 if( rc!=SQLITE_OK ) return rc;
1217 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
1218 if( rc!=SQLITE_OK ) return rc;
1221 put32bits(zBuf, len);
1222 put32bits(&zBuf[4], cksum);
1223 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
1224 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
1225 jrnlOff += 8+sizeof(aJournalMagic);
1226 pPager->needSync = !pPager->noSync;
1228 /* If the pager is in peristent-journal mode, then the physical
1229 ** journal-file may extend past the end of the master-journal name
1230 ** and 8 bytes of magic data just written to the file. This is
1231 ** dangerous because the code to rollback a hot-journal file
1232 ** will not be able to find the master-journal name to determine
1233 ** whether or not the journal is hot.
1235 ** Easiest thing to do in this scenario is to truncate the journal
1236 ** file to the required size.
1239 && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK
1242 rc = sqlite3OsTruncate(pPager->jfd, jrnlOff);
1248 ** Add or remove a page from the list of all pages that are in the
1249 ** statement journal.
1251 ** The Pager keeps a separate list of pages that are currently in
1252 ** the statement journal. This helps the sqlite3PagerStmtCommit()
1253 ** routine run MUCH faster for the common case where there are many
1254 ** pages in memory but only a few are in the statement journal.
1256 static void page_add_to_stmt_list(PgHdr *pPg){
1257 Pager *pPager = pPg->pPager;
1258 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
1260 if( !pHist->inStmt ){
1261 assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
1262 if( pPager->pStmt ){
1263 PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
1265 pHist->pNextStmt = pPager->pStmt;
1266 pPager->pStmt = pPg;
1272 ** Find a page in the hash table given its page number. Return
1273 ** a pointer to the page or NULL if not found.
1275 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
1277 if( pPager->aHash==0 ) return 0;
1278 p = pPager->aHash[pgno & (pPager->nHash-1)];
1279 while( p && p->pgno!=pgno ){
1286 ** Clear the in-memory cache. This routine
1287 ** sets the state of the pager back to what it was when it was first
1288 ** opened. Any outstanding pages are invalidated and subsequent attempts
1289 ** to access those pages will likely result in a coredump.
1291 static void pager_reset(Pager *pPager){
1293 if( pPager->errCode ) return;
1294 for(pPg=pPager->pAll; pPg; pPg=pNext){
1295 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
1296 PAGER_INCR(sqlite3_pager_pgfree_count);
1297 pNext = pPg->pNextAll;
1299 sqlite3PageFree(pPg->pData);
1302 assert(pPager->lru.pFirst==0);
1303 assert(pPager->lru.pFirstSynced==0);
1304 assert(pPager->lru.pLast==0);
1309 sqlite3_free(pPager->aHash);
1316 ** Unlock the database file.
1318 ** If the pager is currently in error state, discard the contents of
1319 ** the cache and reset the Pager structure internal state. If there is
1320 ** an open journal-file, then the next time a shared-lock is obtained
1321 ** on the pager file (by this or any other process), it will be
1322 ** treated as a hot-journal and rolled back.
1324 static void pager_unlock(Pager *pPager){
1325 if( !pPager->exclusiveMode ){
1327 int rc = osUnlock(pPager->fd, NO_LOCK);
1328 if( rc ) pPager->errCode = rc;
1329 pPager->dbSize = -1;
1330 IOTRACE(("UNLOCK %p\n", pPager))
1332 /* Always close the journal file when dropping the database lock.
1333 ** Otherwise, another connection with journal_mode=delete might
1334 ** delete the file out from under us.
1336 if( pPager->journalOpen ){
1337 sqlite3OsClose(pPager->jfd);
1338 pPager->journalOpen = 0;
1339 sqlite3BitvecDestroy(pPager->pInJournal);
1340 pPager->pInJournal = 0;
1343 /* If Pager.errCode is set, the contents of the pager cache cannot be
1344 ** trusted. Now that the pager file is unlocked, the contents of the
1345 ** cache can be discarded and the error code safely cleared.
1347 if( pPager->errCode ){
1348 if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK;
1349 pager_reset(pPager);
1350 if( pPager->stmtOpen ){
1351 sqlite3OsClose(pPager->stfd);
1352 sqlite3BitvecDestroy(pPager->pInStmt);
1353 pPager->pInStmt = 0;
1355 pPager->stmtOpen = 0;
1356 pPager->stmtInUse = 0;
1357 pPager->journalOff = 0;
1358 pPager->journalStarted = 0;
1359 pPager->stmtAutoopen = 0;
1360 pPager->origDbSize = 0;
1364 if( !MEMDB || pPager->errCode==SQLITE_OK ){
1365 pPager->state = PAGER_UNLOCK;
1366 pPager->changeCountDone = 0;
1372 ** Execute a rollback if a transaction is active and unlock the
1373 ** database file. If the pager has already entered the error state,
1374 ** do not attempt the rollback.
1376 static void pagerUnlockAndRollback(Pager *p){
1377 /* assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); */
1378 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
1379 sqlite3BeginBenignMalloc();
1380 sqlite3PagerRollback(p);
1381 sqlite3EndBenignMalloc();
1385 assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
1386 assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
1391 ** This routine ends a transaction. A transaction is ended by either
1392 ** a COMMIT or a ROLLBACK.
1394 ** When this routine is called, the pager has the journal file open and
1395 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release
1396 ** the database lock and acquires a SHARED lock in its place if that is
1397 ** the appropriate thing to do. Release locks usually is appropriate,
1398 ** unless we are in exclusive access mode or unless this is a
1399 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
1401 ** The journal file is either deleted or truncated.
1403 ** TODO: Consider keeping the journal file open for temporary databases.
1404 ** This might give a performance improvement on windows where opening
1405 ** a file is an expensive operation.
1407 static int pager_end_transaction(Pager *pPager, int hasMaster){
1410 int rc2 = SQLITE_OK;
1412 if( pPager->state<PAGER_RESERVED ){
1415 sqlite3PagerStmtCommit(pPager);
1416 if( pPager->stmtOpen && !pPager->exclusiveMode ){
1417 sqlite3OsClose(pPager->stfd);
1418 pPager->stmtOpen = 0;
1420 if( pPager->journalOpen ){
1421 if( pPager->exclusiveMode
1422 || pPager->journalMode==PAGER_JOURNALMODE_PERSIST
1424 rc = zeroJournalHdr(pPager, hasMaster);
1425 pager_error(pPager, rc);
1426 pPager->journalOff = 0;
1427 pPager->journalStarted = 0;
1429 sqlite3OsClose(pPager->jfd);
1430 pPager->journalOpen = 0;
1431 if( rc==SQLITE_OK && !pPager->tempFile ){
1432 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
1435 sqlite3BitvecDestroy(pPager->pInJournal);
1436 pPager->pInJournal = 0;
1437 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
1441 pPg->alwaysRollback = 0;
1442 #ifdef SQLITE_CHECK_PAGES
1443 pPg->pageHash = pager_pagehash(pPg);
1447 pPager->dirtyCache = 0;
1450 assert( pPager->pInJournal==0 );
1453 if( !pPager->exclusiveMode ){
1454 rc2 = osUnlock(pPager->fd, SHARED_LOCK);
1455 pPager->state = PAGER_SHARED;
1456 }else if( pPager->state==PAGER_SYNCED ){
1457 pPager->state = PAGER_EXCLUSIVE;
1459 pPager->origDbSize = 0;
1460 pPager->setMaster = 0;
1461 pPager->needSync = 0;
1462 lruListSetFirstSynced(pPager);
1463 pPager->dbSize = -1;
1464 pPager->dbModified = 0;
1466 return (rc==SQLITE_OK?rc2:rc);
1470 ** Compute and return a checksum for the page of data.
1472 ** This is not a real checksum. It is really just the sum of the
1473 ** random initial value and the page number. We experimented with
1474 ** a checksum of the entire data, but that was found to be too slow.
1476 ** Note that the page number is stored at the beginning of data and
1477 ** the checksum is stored at the end. This is important. If journal
1478 ** corruption occurs due to a power failure, the most likely scenario
1479 ** is that one end or the other of the record will be changed. It is
1480 ** much less likely that the two ends of the journal record will be
1481 ** correct and the middle be corrupt. Thus, this "checksum" scheme,
1482 ** though fast and simple, catches the mostly likely kind of corruption.
1484 ** FIX ME: Consider adding every 200th (or so) byte of the data to the
1485 ** checksum. That way if a single page spans 3 or more disk sectors and
1486 ** only the middle sector is corrupt, we will still have a reasonable
1487 ** chance of failing the checksum and thus detecting the problem.
1489 static u32 pager_cksum(Pager *pPager, const u8 *aData){
1490 u32 cksum = pPager->cksumInit;
1491 int i = pPager->pageSize-200;
1499 /* Forward declaration */
1500 static void makeClean(PgHdr*);
1503 ** Read a single page from the journal file opened on file descriptor
1504 ** jfd. Playback this one page.
1506 ** If useCksum==0 it means this journal does not use checksums. Checksums
1507 ** are not used in statement journals because statement journals do not
1508 ** need to survive power failures.
1510 static int pager_playback_one_page(
1517 PgHdr *pPg; /* An existing page in the cache */
1518 Pgno pgno; /* The page number of a page in journal */
1519 u32 cksum; /* Checksum used for sanity checking */
1520 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */
1522 /* useCksum should be true for the main journal and false for
1523 ** statement journals. Verify that this is always the case
1525 assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
1528 rc = read32bits(jfd, offset, &pgno);
1529 if( rc!=SQLITE_OK ) return rc;
1530 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
1531 if( rc!=SQLITE_OK ) return rc;
1532 pPager->journalOff += pPager->pageSize + 4;
1534 /* Sanity checking on the page. This is more important that I originally
1535 ** thought. If a power failure occurs while the journal is being written,
1536 ** it could cause invalid data to be written into the journal. We need to
1537 ** detect this invalid data (with high probability) and ignore it.
1539 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
1542 if( pgno>(unsigned)pPager->dbSize ){
1546 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
1548 pPager->journalOff += 4;
1549 if( pager_cksum(pPager, aData)!=cksum ){
1554 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
1556 /* If the pager is in RESERVED state, then there must be a copy of this
1557 ** page in the pager cache. In this case just update the pager cache,
1558 ** not the database file. The page is left marked dirty in this case.
1560 ** An exception to the above rule: If the database is in no-sync mode
1561 ** and a page is moved during an incremental vacuum then the page may
1562 ** not be in the pager cache. Later: if a malloc() or IO error occurs
1563 ** during a Movepage() call, then the page may not be in the cache
1564 ** either. So the condition described in the above paragraph is not
1567 ** If in EXCLUSIVE state, then we update the pager cache if it exists
1568 ** and the main file. The page is then marked not dirty.
1570 ** Ticket #1171: The statement journal might contain page content that is
1571 ** different from the page content at the start of the transaction.
1572 ** This occurs when a page is changed prior to the start of a statement
1573 ** then changed again within the statement. When rolling back such a
1574 ** statement we must not write to the original database unless we know
1575 ** for certain that original page contents are synced into the main rollback
1576 ** journal. Otherwise, a power loss might leave modified data in the
1577 ** database file without an entry in the rollback journal that can
1578 ** restore the database to its original form. Two conditions must be
1579 ** met before writing to the database files. (1) the database must be
1580 ** locked. (2) we know that the original page content is fully synced
1581 ** in the main journal either because the page is not in cache or else
1582 ** the page is marked as needSync==0.
1584 ** 2008-04-14: When attempting to vacuum a corrupt database file, it
1585 ** is possible to fail a statement on a database that does not yet exist.
1586 ** Do not attempt to write if database file has never been opened.
1588 pPg = pager_lookup(pPager, pgno);
1589 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
1590 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
1591 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0)
1592 && pPager->fd->pMethods ){
1593 i64 offset = (pgno-1)*(i64)pPager->pageSize;
1594 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
1600 /* No page should ever be explicitly rolled back that is in use, except
1601 ** for page 1 which is held in use in order to keep the lock on the
1602 ** database active. However such a page may be rolled back as a result
1603 ** of an internal error resulting in an automatic call to
1604 ** sqlite3PagerRollback().
1607 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
1608 pData = PGHDR_TO_DATA(pPg);
1609 memcpy(pData, aData, pPager->pageSize);
1610 if( pPager->xReiniter ){
1611 pPager->xReiniter(pPg, pPager->pageSize);
1613 #ifdef SQLITE_CHECK_PAGES
1614 pPg->pageHash = pager_pagehash(pPg);
1616 /* If this was page 1, then restore the value of Pager.dbFileVers.
1617 ** Do this before any decoding. */
1619 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
1622 /* Decode the page just read from disk */
1623 CODEC1(pPager, pData, pPg->pgno, 3);
1629 ** Parameter zMaster is the name of a master journal file. A single journal
1630 ** file that referred to the master journal file has just been rolled back.
1631 ** This routine checks if it is possible to delete the master journal file,
1632 ** and does so if it is.
1634 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
1635 ** available for use within this function.
1638 ** The master journal file contains the names of all child journals.
1639 ** To tell if a master journal can be deleted, check to each of the
1640 ** children. If all children are either missing or do not refer to
1641 ** a different master journal, then this master journal can be deleted.
1643 static int pager_delmaster(Pager *pPager, const char *zMaster){
1644 sqlite3_vfs *pVfs = pPager->pVfs;
1646 int master_open = 0;
1647 sqlite3_file *pMaster;
1648 sqlite3_file *pJournal;
1649 char *zMasterJournal = 0; /* Contents of master journal file */
1650 i64 nMasterJournal; /* Size of master journal file */
1652 /* Open the master journal file exclusively in case some other process
1653 ** is running this routine also. Not that it makes too much difference.
1655 pMaster = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile * 2);
1656 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
1660 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
1661 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
1663 if( rc!=SQLITE_OK ) goto delmaster_out;
1666 rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
1667 if( rc!=SQLITE_OK ) goto delmaster_out;
1669 if( nMasterJournal>0 ){
1671 char *zMasterPtr = 0;
1672 int nMasterPtr = pPager->pVfs->mxPathname+1;
1674 /* Load the entire master journal file into space obtained from
1675 ** sqlite3_malloc() and pointed to by zMasterJournal.
1677 zMasterJournal = (char *)sqlite3Malloc(nMasterJournal + nMasterPtr);
1678 if( !zMasterJournal ){
1682 zMasterPtr = &zMasterJournal[nMasterJournal];
1683 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
1684 if( rc!=SQLITE_OK ) goto delmaster_out;
1686 zJournal = zMasterJournal;
1687 while( (zJournal-zMasterJournal)<nMasterJournal ){
1689 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
1690 if( rc!=SQLITE_OK ){
1694 /* One of the journals pointed to by the master journal exists.
1695 ** Open it and check if it points at the master journal. If
1696 ** so, return without deleting the master journal file.
1699 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
1700 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
1701 if( rc!=SQLITE_OK ){
1705 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
1706 sqlite3OsClose(pJournal);
1707 if( rc!=SQLITE_OK ){
1711 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
1713 /* We have a match. Do not delete the master journal file. */
1717 zJournal += (strlen(zJournal)+1);
1721 rc = sqlite3OsDelete(pVfs, zMaster, 0);
1724 if( zMasterJournal ){
1725 sqlite3_free(zMasterJournal);
1728 sqlite3OsClose(pMaster);
1730 sqlite3_free(pMaster);
1735 static void pager_truncate_cache(Pager *pPager);
1738 ** Truncate the main file of the given pager to the number of pages
1739 ** indicated. Also truncate the cached representation of the file.
1741 ** Might might be the case that the file on disk is smaller than nPage.
1742 ** This can happen, for example, if we are in the middle of a transaction
1743 ** which has extended the file size and the new pages are still all held
1744 ** in cache, then an INSERT or UPDATE does a statement rollback. Some
1745 ** operating system implementations can get confused if you try to
1746 ** truncate a file to some size that is larger than it currently is,
1747 ** so detect this case and write a single zero byte to the end of the new
1750 static int pager_truncate(Pager *pPager, int nPage){
1752 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
1753 i64 currentSize, newSize;
1754 rc = sqlite3OsFileSize(pPager->fd, ¤tSize);
1755 newSize = pPager->pageSize*(i64)nPage;
1756 if( rc==SQLITE_OK && currentSize!=newSize ){
1757 if( currentSize>newSize ){
1758 rc = sqlite3OsTruncate(pPager->fd, newSize);
1760 rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1);
1764 if( rc==SQLITE_OK ){
1765 pPager->dbSize = nPage;
1766 pager_truncate_cache(pPager);
1772 ** Set the sectorSize for the given pager.
1774 ** The sector size is at least as big as the sector size reported
1775 ** by sqlite3OsSectorSize(). The minimum sector size is 512.
1777 static void setSectorSize(Pager *pPager){
1778 assert(pPager->fd->pMethods||pPager->tempFile);
1779 if( !pPager->tempFile ){
1780 /* Sector size doesn't matter for temporary files. Also, the file
1781 ** may not have been opened yet, in whcih case the OsSectorSize()
1782 ** call will segfault.
1784 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
1786 if( pPager->sectorSize<512 ){
1787 pPager->sectorSize = 512;
1792 ** Playback the journal and thus restore the database file to
1793 ** the state it was in before we started making changes.
1795 ** The journal file format is as follows:
1797 ** (1) 8 byte prefix. A copy of aJournalMagic[].
1798 ** (2) 4 byte big-endian integer which is the number of valid page records
1799 ** in the journal. If this value is 0xffffffff, then compute the
1800 ** number of page records from the journal size.
1801 ** (3) 4 byte big-endian integer which is the initial value for the
1803 ** (4) 4 byte integer which is the number of pages to truncate the
1804 ** database to during a rollback.
1805 ** (5) 4 byte big-endian integer which is the sector size. The header
1806 ** is this many bytes in size.
1807 ** (6) 4 byte big-endian integer which is the page case.
1808 ** (7) 4 byte integer which is the number of bytes in the master journal
1809 ** name. The value may be zero (indicate that there is no master
1811 ** (8) N bytes of the master journal name. The name will be nul-terminated
1812 ** and might be shorter than the value read from (5). If the first byte
1813 ** of the name is \000 then there is no master journal. The master
1814 ** journal name is stored in UTF-8.
1815 ** (9) Zero or more pages instances, each as follows:
1816 ** + 4 byte page number.
1817 ** + pPager->pageSize bytes of data.
1818 ** + 4 byte checksum
1820 ** When we speak of the journal header, we mean the first 8 items above.
1821 ** Each entry in the journal is an instance of the 9th item.
1823 ** Call the value from the second bullet "nRec". nRec is the number of
1824 ** valid page entries in the journal. In most cases, you can compute the
1825 ** value of nRec from the size of the journal file. But if a power
1826 ** failure occurred while the journal was being written, it could be the
1827 ** case that the size of the journal file had already been increased but
1828 ** the extra entries had not yet made it safely to disk. In such a case,
1829 ** the value of nRec computed from the file size would be too large. For
1830 ** that reason, we always use the nRec value in the header.
1832 ** If the nRec value is 0xffffffff it means that nRec should be computed
1833 ** from the file size. This value is used when the user selects the
1834 ** no-sync option for the journal. A power failure could lead to corruption
1835 ** in this case. But for things like temporary table (which will be
1836 ** deleted when the power is restored) we don't care.
1838 ** If the file opened as the journal file is not a well-formed
1839 ** journal file then all pages up to the first corrupted page are rolled
1840 ** back (or no pages if the journal header is corrupted). The journal file
1841 ** is then deleted and SQLITE_OK returned, just as if no corruption had
1842 ** been encountered.
1844 ** If an I/O or malloc() error occurs, the journal-file is not deleted
1845 ** and an error code is returned.
1847 static int pager_playback(Pager *pPager, int isHot){
1848 sqlite3_vfs *pVfs = pPager->pVfs;
1849 i64 szJ; /* Size of the journal file in bytes */
1850 u32 nRec; /* Number of Records in the journal */
1851 u32 u; /* Unsigned loop counter */
1852 Pgno mxPg = 0; /* Size of the original file in pages */
1853 int rc; /* Result code of a subroutine */
1854 int res = 1; /* Value returned by sqlite3OsAccess() */
1855 char *zMaster = 0; /* Name of master journal file if any */
1857 /* Figure out how many records are in the journal. Abort early if
1858 ** the journal is empty.
1860 assert( pPager->journalOpen );
1861 rc = sqlite3OsFileSize(pPager->jfd, &szJ);
1862 if( rc!=SQLITE_OK || szJ==0 ){
1866 /* Read the master journal name from the journal, if it is present.
1867 ** If a master journal file name is specified, but the file is not
1868 ** present on disk, then the journal is not hot and does not need to be
1871 zMaster = pPager->pTmpSpace;
1872 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
1873 if( rc==SQLITE_OK && zMaster[0] ){
1874 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1877 if( rc!=SQLITE_OK || !res ){
1880 pPager->journalOff = 0;
1882 /* This loop terminates either when the readJournalHdr() call returns
1883 ** SQLITE_DONE or an IO error occurs. */
1886 /* Read the next journal header from the journal file. If there are
1887 ** not enough bytes left in the journal file for a complete header, or
1888 ** it is corrupted, then a process must of failed while writing it.
1889 ** This indicates nothing more needs to be rolled back.
1891 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
1892 if( rc!=SQLITE_OK ){
1893 if( rc==SQLITE_DONE ){
1899 /* If nRec is 0xffffffff, then this journal was created by a process
1900 ** working in no-sync mode. This means that the rest of the journal
1901 ** file consists of pages, there are no more journal headers. Compute
1902 ** the value of nRec based on this assumption.
1904 if( nRec==0xffffffff ){
1905 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
1906 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
1909 /* If nRec is 0 and this rollback is of a transaction created by this
1910 ** process and if this is the final header in the journal, then it means
1911 ** that this part of the journal was being filled but has not yet been
1912 ** synced to disk. Compute the number of pages based on the remaining
1913 ** size of the file.
1915 ** The third term of the test was added to fix ticket #2565.
1917 if( nRec==0 && !isHot &&
1918 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
1919 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
1922 /* If this is the first header read from the journal, truncate the
1923 ** database file back to its original size.
1925 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
1926 rc = pager_truncate(pPager, mxPg);
1927 if( rc!=SQLITE_OK ){
1932 /* Copy original pages out of the journal and back into the database file.
1934 for(u=0; u<nRec; u++){
1935 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
1936 if( rc!=SQLITE_OK ){
1937 if( rc==SQLITE_DONE ){
1939 pPager->journalOff = szJ;
1951 if( rc==SQLITE_OK ){
1952 zMaster = pPager->pTmpSpace;
1953 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
1955 if( rc==SQLITE_OK ){
1956 rc = pager_end_transaction(pPager, zMaster[0]!='\0');
1958 if( rc==SQLITE_OK && zMaster[0] ){
1959 /* If there was a master journal and this routine will return success,
1960 ** see if it is possible to delete the master journal.
1962 rc = pager_delmaster(pPager, zMaster);
1965 /* The Pager.sectorSize variable may have been updated while rolling
1966 ** back a journal created by a process with a different sector size
1967 ** value. Reset it to the correct value for this process.
1969 setSectorSize(pPager);
1974 ** Playback the statement journal.
1976 ** This is similar to playing back the transaction journal but with
1977 ** a few extra twists.
1979 ** (1) The number of pages in the database file at the start of
1980 ** the statement is stored in pPager->stmtSize, not in the
1981 ** journal file itself.
1983 ** (2) In addition to playing back the statement journal, also
1984 ** playback all pages of the transaction journal beginning
1985 ** at offset pPager->stmtJSize.
1987 static int pager_stmt_playback(Pager *pPager){
1988 i64 szJ; /* Size of the full journal */
1990 int nRec; /* Number of Records */
1991 int i; /* Loop counter */
1994 szJ = pPager->journalOff;
1996 /* Set hdrOff to be the offset just after the end of the last journal
1997 ** page written before the first journal-header for this statement
1998 ** transaction was written, or the end of the file if no journal
1999 ** header was written.
2001 hdrOff = pPager->stmtHdrOff;
2002 assert( pPager->fullSync || !hdrOff );
2007 /* Truncate the database back to its original size.
2009 rc = pager_truncate(pPager, pPager->stmtSize);
2010 assert( pPager->state>=PAGER_SHARED );
2012 /* Figure out how many records are in the statement journal.
2014 assert( pPager->stmtInUse && pPager->journalOpen );
2015 nRec = pPager->stmtNRec;
2017 /* Copy original pages out of the statement journal and back into the
2018 ** database file. Note that the statement journal omits checksums from
2019 ** each record since power-failure recovery is not important to statement
2022 for(i=0; i<nRec; i++){
2023 i64 offset = i*(4+pPager->pageSize);
2024 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
2025 assert( rc!=SQLITE_DONE );
2026 if( rc!=SQLITE_OK ) goto end_stmt_playback;
2029 /* Now roll some pages back from the transaction journal. Pager.stmtJSize
2030 ** was the size of the journal file when this statement was started, so
2031 ** everything after that needs to be rolled back, either into the
2032 ** database, the memory cache, or both.
2034 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
2035 ** of the first journal header written during this statement transaction.
2037 pPager->journalOff = pPager->stmtJSize;
2038 pPager->cksumInit = pPager->stmtCksum;
2039 while( pPager->journalOff < hdrOff ){
2040 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
2041 assert( rc!=SQLITE_DONE );
2042 if( rc!=SQLITE_OK ) goto end_stmt_playback;
2045 while( pPager->journalOff < szJ ){
2046 u32 nJRec; /* Number of Journal Records */
2048 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
2049 if( rc!=SQLITE_OK ){
2050 assert( rc!=SQLITE_DONE );
2051 goto end_stmt_playback;
2054 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
2056 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
2057 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
2058 assert( rc!=SQLITE_DONE );
2059 if( rc!=SQLITE_OK ) goto end_stmt_playback;
2063 pPager->journalOff = szJ;
2066 if( rc==SQLITE_OK) {
2067 pPager->journalOff = szJ;
2068 /* pager_reload_cache(pPager); */
2074 ** Change the maximum number of in-memory pages that are allowed.
2076 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
2078 pPager->mxPage = mxPage;
2080 pPager->mxPage = 10;
2085 ** Adjust the robustness of the database to damage due to OS crashes
2086 ** or power failures by changing the number of syncs()s when writing
2087 ** the rollback journal. There are three levels:
2089 ** OFF sqlite3OsSync() is never called. This is the default
2090 ** for temporary and transient files.
2092 ** NORMAL The journal is synced once before writes begin on the
2093 ** database. This is normally adequate protection, but
2094 ** it is theoretically possible, though very unlikely,
2095 ** that an inopertune power failure could leave the journal
2096 ** in a state which would cause damage to the database
2097 ** when it is rolled back.
2099 ** FULL The journal is synced twice before writes begin on the
2100 ** database (with some additional information - the nRec field
2101 ** of the journal header - being written in between the two
2102 ** syncs). If we assume that writing a
2103 ** single disk sector is atomic, then this mode provides
2104 ** assurance that the journal will not be corrupted to the
2105 ** point of causing damage to the database during rollback.
2107 ** Numeric values associated with these states are OFF==1, NORMAL=2,
2110 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2111 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
2112 pPager->noSync = level==1 || pPager->tempFile;
2113 pPager->fullSync = level==3 && !pPager->tempFile;
2114 pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
2115 if( pPager->noSync ) pPager->needSync = 0;
2120 ** The following global variable is incremented whenever the library
2121 ** attempts to open a temporary file. This information is used for
2122 ** testing and analysis only.
2125 int sqlite3_opentemp_count = 0;
2129 ** Open a temporary file.
2131 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some
2132 ** other error code if we fail. The OS will automatically delete the temporary
2133 ** file when it is closed.
2135 static int sqlite3PagerOpentemp(
2136 Pager *pPager, /* The pager object */
2137 sqlite3_file *pFile, /* Write the file descriptor here */
2138 int vfsFlags /* Flags passed through to the VFS */
2143 sqlite3_opentemp_count++; /* Used for testing and analysis only */
2146 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
2147 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
2148 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
2149 assert( rc!=SQLITE_OK || pFile->pMethods );
2154 ** Create a new page cache and put a pointer to the page cache in *ppPager.
2155 ** The file to be cached need not exist. The file is not locked until
2156 ** the first call to sqlite3PagerGet() and is only held open until the
2157 ** last page is released using sqlite3PagerUnref().
2159 ** If zFilename is NULL then a randomly-named temporary file is created
2160 ** and used as the file to be cached. The file will be deleted
2161 ** automatically when it is closed.
2163 ** If zFilename is ":memory:" then all information is held in cache.
2164 ** It is never written to disk. This can be used to implement an
2165 ** in-memory database.
2167 int sqlite3PagerOpen(
2168 sqlite3_vfs *pVfs, /* The virtual file system to use */
2169 Pager **ppPager, /* Return the Pager structure here */
2170 const char *zFilename, /* Name of the database file to open */
2171 int nExtra, /* Extra bytes append to each in-memory page */
2172 int flags, /* flags controlling this file */
2173 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */
2182 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
2183 int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
2184 int journalFileSize = sqlite3JournalSize(pVfs);
2185 int szPageDflt = SQLITE_DEFAULT_PAGE_SIZE;
2186 char *zPathname = 0;
2189 /* The default return is a NULL pointer */
2192 /* Compute and store the full pathname in an allocated buffer pointed
2193 ** to by zPathname, length nPathname. Or, if this is a temporary file,
2194 ** leave both nPathname and zPathname set to 0.
2196 if( zFilename && zFilename[0] ){
2197 nPathname = pVfs->mxPathname+1;
2198 zPathname = sqlite3Malloc(nPathname*2);
2200 return SQLITE_NOMEM;
2202 #ifndef SQLITE_OMIT_MEMORYDB
2203 if( strcmp(zFilename,":memory:")==0 ){
2209 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
2211 if( rc!=SQLITE_OK ){
2212 sqlite3_free(zPathname);
2215 nPathname = strlen(zPathname);
2218 /* Allocate memory for the pager structure */
2219 pPager = sqlite3MallocZero(
2220 sizeof(*pPager) + /* Pager structure */
2221 journalFileSize + /* The journal file structure */
2222 pVfs->szOsFile * 3 + /* The main db and two journal files */
2223 3*nPathname + 40 /* zFilename, zDirectory, zJournal */
2226 sqlite3_free(zPathname);
2227 return SQLITE_NOMEM;
2229 pPtr = (u8 *)&pPager[1];
2230 pPager->vfsFlags = vfsFlags;
2231 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
2232 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
2233 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
2234 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
2235 pPager->zDirectory = &pPager->zFilename[nPathname+1];
2236 pPager->zJournal = &pPager->zDirectory[nPathname+1];
2237 pPager->pVfs = pVfs;
2239 memcpy(pPager->zFilename, zPathname, nPathname+1);
2240 sqlite3_free(zPathname);
2243 /* Open the pager file.
2245 if( zFilename && zFilename[0] && !memDb ){
2246 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
2247 rc = SQLITE_CANTOPEN;
2250 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
2251 pPager->vfsFlags, &fout);
2252 readOnly = (fout&SQLITE_OPEN_READONLY);
2254 /* If the file was successfully opened for read/write access,
2255 ** choose a default page size in case we have to create the
2256 ** database file. The default page size is the maximum of:
2258 ** + SQLITE_DEFAULT_PAGE_SIZE,
2259 ** + The value returned by sqlite3OsSectorSize()
2260 ** + The largest page size that can be written atomically.
2262 if( rc==SQLITE_OK && !readOnly ){
2263 int iSectorSize = sqlite3OsSectorSize(pPager->fd);
2264 if( szPageDflt<iSectorSize ){
2265 szPageDflt = iSectorSize;
2267 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
2269 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
2271 assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
2272 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
2273 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
2274 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
2275 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) szPageDflt = ii;
2279 if( szPageDflt>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
2280 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
2285 /* If a temporary file is requested, it is not opened immediately.
2286 ** In this case we accept the default page size and delay actually
2287 ** opening the file until the first call to OsWrite().
2290 pPager->state = PAGER_EXCLUSIVE;
2293 if( pPager && rc==SQLITE_OK ){
2294 pPager->pTmpSpace = sqlite3PageMalloc(szPageDflt);
2297 /* If an error occured in either of the blocks above.
2298 ** Free the Pager structure and close the file.
2299 ** Since the pager is not allocated there is no need to set
2300 ** any Pager.errMask variables.
2302 if( !pPager || !pPager->pTmpSpace ){
2303 sqlite3OsClose(pPager->fd);
2304 sqlite3_free(pPager);
2305 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
2308 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
2309 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
2311 /* Fill in Pager.zDirectory[] */
2312 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
2313 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
2314 if( i>0 ) pPager->zDirectory[i-1] = 0;
2316 /* Fill in Pager.zJournal[] */
2318 memcpy(pPager->zJournal, pPager->zFilename, nPathname);
2319 memcpy(&pPager->zJournal[nPathname], "-journal", 9);
2321 pPager->zJournal = 0;
2324 /* pPager->journalOpen = 0; */
2325 pPager->useJournal = useJournal && !memDb;
2326 pPager->noReadlock = noReadlock && readOnly;
2327 /* pPager->stmtOpen = 0; */
2328 /* pPager->stmtInUse = 0; */
2329 /* pPager->nRef = 0; */
2330 pPager->dbSize = memDb-1;
2331 pPager->pageSize = szPageDflt;
2332 /* pPager->stmtSize = 0; */
2333 /* pPager->stmtJSize = 0; */
2334 /* pPager->nPage = 0; */
2335 pPager->mxPage = 100;
2336 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
2337 /* pPager->state = PAGER_UNLOCK; */
2338 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
2339 /* pPager->errMask = 0; */
2340 pPager->tempFile = tempFile;
2341 assert( tempFile==PAGER_LOCKINGMODE_NORMAL
2342 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
2343 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
2344 pPager->exclusiveMode = tempFile;
2345 pPager->memDb = memDb;
2346 pPager->readOnly = readOnly;
2347 /* pPager->needSync = 0; */
2348 pPager->noSync = pPager->tempFile || !useJournal;
2349 pPager->fullSync = (pPager->noSync?0:1);
2350 pPager->sync_flags = SQLITE_SYNC_NORMAL;
2351 /* pPager->pFirst = 0; */
2352 /* pPager->pFirstSynced = 0; */
2353 /* pPager->pLast = 0; */
2354 pPager->nExtra = FORCE_ALIGNMENT(nExtra);
2355 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
2356 assert(pPager->fd->pMethods||memDb||tempFile);
2358 setSectorSize(pPager);
2360 /* pPager->pBusyHandler = 0; */
2361 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
2363 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
2364 pPager->iInUseMM = 0;
2365 pPager->iInUseDB = 0;
2367 #ifndef SQLITE_MUTEX_NOOP
2368 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
2370 sqlite3_mutex_enter(mutex);
2371 pPager->pNext = sqlite3PagerList;
2372 if( sqlite3PagerList ){
2373 assert( sqlite3PagerList->pPrev==0 );
2374 sqlite3PagerList->pPrev = pPager;
2377 sqlite3PagerList = pPager;
2378 sqlite3_mutex_leave(mutex);
2385 ** Set the busy handler function.
2387 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
2388 pPager->pBusyHandler = pBusyHandler;
2392 ** Set the destructor for this pager. If not NULL, the destructor is called
2393 ** when the reference count on each page reaches zero. The destructor can
2394 ** be used to clean up information in the extra segment appended to each page.
2396 ** The destructor is not called as a result sqlite3PagerClose().
2397 ** Destructors are only called by sqlite3PagerUnref().
2399 void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
2400 pPager->xDestructor = xDesc;
2404 ** Set the reinitializer for this pager. If not NULL, the reinitializer
2405 ** is called when the content of a page in cache is restored to its original
2406 ** value as a result of a rollback. The callback gives higher-level code
2407 ** an opportunity to restore the EXTRA section to agree with the restored
2410 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
2411 pPager->xReiniter = xReinit;
2415 ** Set the page size to *pPageSize. If the suggest new page size is
2416 ** inappropriate, then an alternative page size is set to that
2417 ** value before returning.
2419 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
2421 u16 pageSize = *pPageSize;
2422 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
2423 if( pageSize && pageSize!=pPager->pageSize
2424 && !pPager->memDb && pPager->nRef==0
2426 char *pNew = (char *)sqlite3PageMalloc(pageSize);
2431 pager_reset(pPager);
2432 pPager->pageSize = pageSize;
2433 setSectorSize(pPager);
2434 sqlite3PageFree(pPager->pTmpSpace);
2435 pPager->pTmpSpace = pNew;
2439 *pPageSize = pPager->pageSize;
2444 ** Return a pointer to the "temporary page" buffer held internally
2445 ** by the pager. This is a buffer that is big enough to hold the
2446 ** entire content of a database page. This buffer is used internally
2447 ** during rollback and will be overwritten whenever a rollback
2448 ** occurs. But other modules are free to use it too, as long as
2449 ** no rollbacks are happening.
2451 void *sqlite3PagerTempSpace(Pager *pPager){
2452 return pPager->pTmpSpace;
2456 ** Attempt to set the maximum database page count if mxPage is positive.
2457 ** Make no changes if mxPage is zero or negative. And never reduce the
2458 ** maximum page count below the current size of the database.
2460 ** Regardless of mxPage, return the current maximum page count.
2462 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
2464 pPager->mxPgno = mxPage;
2466 sqlite3PagerPagecount(pPager, 0);
2467 return pPager->mxPgno;
2471 ** The following set of routines are used to disable the simulated
2472 ** I/O error mechanism. These routines are used to avoid simulated
2473 ** errors in places where we do not care about errors.
2475 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
2476 ** and generate no code.
2479 extern int sqlite3_io_error_pending;
2480 extern int sqlite3_io_error_hit;
2481 static int saved_cnt;
2482 void disable_simulated_io_errors(void){
2483 saved_cnt = sqlite3_io_error_pending;
2484 sqlite3_io_error_pending = -1;
2486 void enable_simulated_io_errors(void){
2487 sqlite3_io_error_pending = saved_cnt;
2490 # define disable_simulated_io_errors()
2491 # define enable_simulated_io_errors()
2495 ** Read the first N bytes from the beginning of the file into memory
2496 ** that pDest points to.
2498 ** No error checking is done. The rational for this is that this function
2499 ** may be called even if the file does not exist or contain a header. In
2500 ** these cases sqlite3OsRead() will return an error, to which the correct
2501 ** response is to zero the memory at pDest and continue. A real IO error
2502 ** will presumably recur and be picked up later (Todo: Think about this).
2504 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
2506 memset(pDest, 0, N);
2507 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
2508 if( pPager->fd->pMethods ){
2509 IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
2510 rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
2511 if( rc==SQLITE_IOERR_SHORT_READ ){
2519 ** Return the total number of pages in the disk file associated with
2522 ** If the PENDING_BYTE lies on the page directly after the end of the
2523 ** file, then consider this page part of the file too. For example, if
2524 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
2525 ** file is 4096 bytes, 5 is returned instead of 4.
2527 int sqlite3PagerPagecount(Pager *pPager, int *pnPage){
2530 assert( pPager!=0 );
2531 if( pPager->errCode ){
2532 return pPager->errCode;
2534 if( pPager->dbSize>=0 ){
2537 assert(pPager->fd->pMethods||pPager->tempFile);
2538 if( (pPager->fd->pMethods)
2539 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
2541 pager_error(pPager, rc);
2545 if( n>0 && n<pPager->pageSize ){
2548 n /= pPager->pageSize;
2550 if( pPager->state!=PAGER_UNLOCK ){
2554 if( n==(PENDING_BYTE/pPager->pageSize) ){
2557 if( n>pPager->mxPgno ){
2567 #ifndef SQLITE_OMIT_MEMORYDB
2569 ** Clear a PgHistory block
2571 static void clearHistory(PgHistory *pHist){
2572 sqlite3PageFree(pHist->pOrig);
2573 sqlite3PageFree(pHist->pStmt);
2578 #define clearHistory(x)
2582 ** Forward declaration
2584 static int syncJournal(Pager*);
2587 ** Unlink pPg from its hash chain. Also set the page number to 0 to indicate
2588 ** that the page is not part of any hash chain. This is required because the
2589 ** sqlite3PagerMovepage() routine can leave a page in the
2590 ** pNextFree/pPrevFree list that is not a part of any hash-chain.
2592 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
2594 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
2597 if( pPg->pNextHash ){
2598 pPg->pNextHash->pPrevHash = pPg->pPrevHash;
2600 if( pPg->pPrevHash ){
2601 assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
2602 pPg->pPrevHash->pNextHash = pPg->pNextHash;
2604 int h = pPg->pgno & (pPager->nHash-1);
2605 pPager->aHash[h] = pPg->pNextHash;
2608 clearHistory(PGHDR_TO_HIST(pPg, pPager));
2611 pPg->pNextHash = pPg->pPrevHash = 0;
2615 ** Unlink a page from the free list (the list of all pages where nRef==0)
2616 ** and from its hash collision chain.
2618 static void unlinkPage(PgHdr *pPg){
2619 Pager *pPager = pPg->pPager;
2621 /* Unlink from free page list */
2624 /* Unlink from the pgno hash table */
2625 unlinkHashChain(pPager, pPg);
2629 ** This routine is used to truncate the cache when a database
2630 ** is truncated. Drop from the cache all pages whose pgno is
2631 ** larger than pPager->dbSize and is unreferenced.
2633 ** Referenced pages larger than pPager->dbSize are zeroed.
2635 ** Actually, at the point this routine is called, it would be
2636 ** an error to have a referenced page. But rather than delete
2637 ** that page and guarantee a subsequent segfault, it seems better
2638 ** to zero it and hope that we error out sanely.
2640 static void pager_truncate_cache(Pager *pPager){
2643 int dbSize = pPager->dbSize;
2645 ppPg = &pPager->pAll;
2646 while( (pPg = *ppPg)!=0 ){
2647 if( pPg->pgno<=dbSize ){
2648 ppPg = &pPg->pNextAll;
2649 }else if( pPg->nRef>0 ){
2650 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
2651 ppPg = &pPg->pNextAll;
2653 *ppPg = pPg->pNextAll;
2654 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
2656 (*ppPg)->pPrevAll = pPg->pPrevAll;
2659 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
2660 PAGER_INCR(sqlite3_pager_pgfree_count);
2663 sqlite3PageFree(pPg->pData);
2671 ** Try to obtain a lock on a file. Invoke the busy callback if the lock
2672 ** is currently not available. Repeat until the busy callback returns
2673 ** false or until the lock succeeds.
2675 ** Return SQLITE_OK on success and an error code if we cannot obtain
2678 static int pager_wait_on_lock(Pager *pPager, int locktype){
2681 /* The OS lock values must be the same as the Pager lock values */
2682 assert( PAGER_SHARED==SHARED_LOCK );
2683 assert( PAGER_RESERVED==RESERVED_LOCK );
2684 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
2686 /* If the file is currently unlocked then the size must be unknown */
2687 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
2689 if( pPager->state>=locktype ){
2692 if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0;
2694 rc = sqlite3OsLock(pPager->fd, locktype);
2695 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
2696 if( rc==SQLITE_OK ){
2697 pPager->state = locktype;
2698 IOTRACE(("LOCK %p %d\n", pPager, locktype))
2705 ** Truncate the file to the number of pages specified.
2707 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
2709 assert( pPager->state>=PAGER_SHARED || MEMDB );
2710 sqlite3PagerPagecount(pPager, 0);
2711 if( pPager->errCode ){
2712 rc = pPager->errCode;
2715 if( nPage>=(unsigned)pPager->dbSize ){
2719 pPager->dbSize = nPage;
2720 pager_truncate_cache(pPager);
2724 rc = syncJournal(pPager);
2726 if( rc!=SQLITE_OK ){
2730 /* Get an exclusive lock on the database before truncating. */
2732 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2734 if( rc!=SQLITE_OK ){
2738 rc = pager_truncate(pPager, nPage);
2743 ** Shutdown the page cache. Free all memory and close all files.
2745 ** If a transaction was in progress when this routine is called, that
2746 ** transaction is rolled back. All outstanding pages are invalidated
2747 ** and their memory is freed. Any attempt to use a page associated
2748 ** with this page cache after this function returns will likely
2749 ** result in a coredump.
2751 ** This function always succeeds. If a transaction is active an attempt
2752 ** is made to roll it back. If an error occurs during the rollback
2753 ** a hot journal may be left in the filesystem but no error is returned
2756 int sqlite3PagerClose(Pager *pPager){
2757 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
2759 #ifndef SQLITE_MUTEX_NOOP
2760 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
2762 sqlite3_mutex_enter(mutex);
2763 if( pPager->pPrev ){
2764 pPager->pPrev->pNext = pPager->pNext;
2766 sqlite3PagerList = pPager->pNext;
2768 if( pPager->pNext ){
2769 pPager->pNext->pPrev = pPager->pPrev;
2771 sqlite3_mutex_leave(mutex);
2775 disable_simulated_io_errors();
2776 sqlite3BeginBenignMalloc();
2777 pPager->errCode = 0;
2778 pPager->exclusiveMode = 0;
2779 pager_reset(pPager);
2780 pagerUnlockAndRollback(pPager);
2781 enable_simulated_io_errors();
2782 sqlite3EndBenignMalloc();
2783 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
2784 IOTRACE(("CLOSE %p\n", pPager))
2785 if( pPager->journalOpen ){
2786 sqlite3OsClose(pPager->jfd);
2788 sqlite3BitvecDestroy(pPager->pInJournal);
2789 if( pPager->stmtOpen ){
2790 sqlite3OsClose(pPager->stfd);
2792 sqlite3OsClose(pPager->fd);
2793 /* Temp files are automatically deleted by the OS
2794 ** if( pPager->tempFile ){
2795 ** sqlite3OsDelete(pPager->zFilename);
2799 sqlite3_free(pPager->aHash);
2800 sqlite3PageFree(pPager->pTmpSpace);
2801 sqlite3_free(pPager);
2805 #if !defined(NDEBUG) || defined(SQLITE_TEST)
2807 ** Return the page number for the given page data.
2809 Pgno sqlite3PagerPagenumber(DbPage *p){
2815 ** The page_ref() function increments the reference count for a page.
2816 ** If the page is currently on the freelist (the reference count is zero) then
2817 ** remove it from the freelist.
2819 ** For non-test systems, page_ref() is a macro that calls _page_ref()
2820 ** online of the reference count is zero. For test systems, page_ref()
2821 ** is a real function so that we can set breakpoints and trace it.
2823 static void _page_ref(PgHdr *pPg){
2825 /* The page is currently on the freelist. Remove it. */
2827 pPg->pPager->nRef++;
2832 static void page_ref(PgHdr *pPg){
2840 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
2844 ** Increment the reference count for a page. The input pointer is
2845 ** a reference to the page data.
2847 int sqlite3PagerRef(DbPage *pPg){
2848 pagerEnter(pPg->pPager);
2850 pagerLeave(pPg->pPager);
2855 ** Sync the journal. In other words, make sure all the pages that have
2856 ** been written to the journal have actually reached the surface of the
2857 ** disk. It is not safe to modify the original database file until after
2858 ** the journal has been synced. If the original database is modified before
2859 ** the journal is synced and a power failure occurs, the unsynced journal
2860 ** data would be lost and we would be unable to completely rollback the
2861 ** database changes. Database corruption would occur.
2863 ** This routine also updates the nRec field in the header of the journal.
2864 ** (See comments on the pager_playback() routine for additional information.)
2865 ** If the sync mode is FULL, two syncs will occur. First the whole journal
2866 ** is synced, then the nRec field is updated, then a second sync occurs.
2868 ** For temporary databases, we do not care if we are able to rollback
2869 ** after a power failure, so no sync occurs.
2871 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
2872 ** the database is stored, then OsSync() is never called on the journal
2873 ** file. In this case all that is required is to update the nRec field in
2874 ** the journal header.
2876 ** This routine clears the needSync field of every page current held in
2879 static int syncJournal(Pager *pPager){
2883 /* Sync the journal before modifying the main database
2884 ** (assuming there is a journal and it needs to be synced.)
2886 if( pPager->needSync ){
2887 if( !pPager->tempFile ){
2888 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
2889 assert( pPager->journalOpen );
2891 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
2892 /* Write the nRec value into the journal file header. If in
2893 ** full-synchronous mode, sync the journal first. This ensures that
2894 ** all data has really hit the disk before nRec is updated to mark
2895 ** it as a candidate for rollback.
2897 ** This is not required if the persistent media supports the
2898 ** SAFE_APPEND property. Because in this case it is not possible
2899 ** for garbage data to be appended to the file, the nRec field
2900 ** is populated with 0xFFFFFFFF when the journal header is written
2901 ** and never needs to be updated.
2904 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
2905 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
2906 IOTRACE(("JSYNC %p\n", pPager))
2907 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
2908 if( rc!=0 ) return rc;
2911 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
2912 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
2913 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
2916 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
2917 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
2918 IOTRACE(("JSYNC %p\n", pPager))
2919 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
2920 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
2922 if( rc!=0 ) return rc;
2924 pPager->journalStarted = 1;
2926 pPager->needSync = 0;
2928 /* Erase the needSync flag from every page.
2930 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2933 lruListSetFirstSynced(pPager);
2937 /* If the Pager.needSync flag is clear then the PgHdr.needSync
2938 ** flag must also be clear for all pages. Verify that this
2939 ** invariant is true.
2942 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2943 assert( pPg->needSync==0 );
2945 assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
2953 ** Merge two lists of pages connected by pDirty and in pgno order.
2954 ** Do not both fixing the pPrevDirty pointers.
2956 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
2957 PgHdr result, *pTail;
2960 if( pA->pgno<pB->pgno ){
2977 return result.pDirty;
2981 ** Sort the list of pages in accending order by pgno. Pages are
2982 ** connected by pDirty pointers. The pPrevDirty pointers are
2983 ** corrupted by this sort.
2985 #define N_SORT_BUCKET_ALLOC 25
2986 #define N_SORT_BUCKET 25
2988 int sqlite3_pager_n_sort_bucket = 0;
2989 #undef N_SORT_BUCKET
2990 #define N_SORT_BUCKET \
2991 (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
2993 static PgHdr *sort_pagelist(PgHdr *pIn){
2994 PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
2996 memset(a, 0, sizeof(a));
3001 for(i=0; i<N_SORT_BUCKET-1; i++){
3006 p = merge_pagelist(a[i], p);
3010 if( i==N_SORT_BUCKET-1 ){
3011 /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
3012 ** elements in the input list. This is possible, but impractical.
3013 ** Testing this line is the point of global variable
3014 ** sqlite3_pager_n_sort_bucket.
3016 a[i] = merge_pagelist(a[i], p);
3020 for(i=1; i<N_SORT_BUCKET; i++){
3021 p = merge_pagelist(p, a[i]);
3027 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write
3028 ** every one of those pages out to the database file and mark them all
3031 static int pager_write_pagelist(PgHdr *pList){
3036 if( pList==0 ) return SQLITE_OK;
3037 pPager = pList->pPager;
3039 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
3040 ** database file. If there is already an EXCLUSIVE lock, the following
3041 ** calls to sqlite3OsLock() are no-ops.
3043 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
3044 ** through an intermediate state PENDING. A PENDING lock prevents new
3045 ** readers from attaching to the database but is unsufficient for us to
3046 ** write. The idea of a PENDING lock is to prevent new readers from
3047 ** coming in while we wait for existing readers to clear.
3049 ** While the pager is in the RESERVED state, the original database file
3050 ** is unchanged and we can rollback without having to playback the
3051 ** journal into the original database file. Once we transition to
3052 ** EXCLUSIVE, it means the database file has been changed and any rollback
3053 ** will require a journal playback.
3055 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
3056 if( rc!=SQLITE_OK ){
3060 pList = sort_pagelist(pList);
3061 for(p=pList; p; p=p->pDirty){
3066 /* If the file has not yet been opened, open it now. */
3067 if( !pPager->fd->pMethods ){
3068 assert(pPager->tempFile);
3069 rc = sqlite3PagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
3074 /* If there are dirty pages in the page cache with page numbers greater
3075 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
3076 ** make the file smaller (presumably by auto-vacuum code). Do not write
3077 ** any such pages to the file.
3079 if( pList->pgno<=pPager->dbSize ){
3080 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
3081 char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
3082 PAGERTRACE4("STORE %d page %d hash(%08x)\n",
3083 PAGERID(pPager), pList->pgno, pager_pagehash(pList));
3084 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
3085 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
3086 PAGER_INCR(sqlite3_pager_writedb_count);
3087 PAGER_INCR(pPager->nWrite);
3088 if( pList->pgno==1 ){
3089 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
3094 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
3098 #ifdef SQLITE_CHECK_PAGES
3099 pList->pageHash = pager_pagehash(pList);
3101 pList = pList->pDirty;
3107 ** Collect every dirty page into a dirty list and
3108 ** return a pointer to the head of that list. All pages are
3109 ** collected even if they are still in use.
3111 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
3114 /* Verify the sanity of the dirty list when we are running
3115 ** in debugging mode. This is expensive, so do not
3116 ** do this on a normal build. */
3120 for(p=pPager->pAll; p; p=p->pNextAll){ if( p->dirty ) n1++; }
3121 for(p=pPager->pDirty; p; p=p->pDirty){ n2++; }
3125 return pPager->pDirty;
3129 ** Return 1 if there is a hot journal on the given pager.
3130 ** A hot journal is one that needs to be played back.
3132 ** If the current size of the database file is 0 but a journal file
3133 ** exists, that is probably an old journal left over from a prior
3134 ** database with the same name. Just delete the journal.
3136 ** Return negative if unable to determine the status of the journal.
3138 ** This routine does not open the journal file to examine its
3139 ** content. Hence, the journal might contain the name of a master
3140 ** journal file that has been deleted, and hence not be hot. Or
3141 ** the header of the journal might be zeroed out. This routine
3142 ** does not discover these cases of a non-hot journal - if the
3143 ** journal file exists and is not empty this routine assumes it
3144 ** is hot. The pager_playback() routine will discover that the
3145 ** journal file is not really hot and will no-op.
3147 static int hasHotJournal(Pager *pPager, int *pExists){
3148 sqlite3_vfs *pVfs = pPager->pVfs;
3151 if( pPager->useJournal && pPager->fd->pMethods ){
3155 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
3156 if( rc==SQLITE_OK && exists ){
3157 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
3160 if( rc==SQLITE_OK && exists && !locked ){
3162 rc = sqlite3PagerPagecount(pPager, &nPage);
3163 if( rc==SQLITE_OK ){
3165 sqlite3OsDelete(pVfs, pPager->zJournal, 0);
3177 ** Try to find a page in the cache that can be recycled.
3179 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
3180 ** does not set the pPager->errCode variable.
3182 static int pager_recycle(Pager *pPager, PgHdr **ppPg){
3186 /* It is illegal to call this function unless the pager object
3187 ** pointed to by pPager has at least one free page (page with nRef==0).
3190 assert(pPager->lru.pFirst);
3192 /* Find a page to recycle. Try to locate a page that does not
3193 ** require us to do an fsync() on the journal.
3195 pPg = pPager->lru.pFirstSynced;
3197 /* If we could not find a page that does not require an fsync()
3198 ** on the journal file then fsync the journal file. This is a
3199 ** very slow operation, so we work hard to avoid it. But sometimes
3200 ** it can't be helped.
3202 if( pPg==0 && pPager->lru.pFirst ){
3203 if( !pPager->errCode ){
3204 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
3205 int rc = syncJournal(pPager);
3209 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
3210 /* If in full-sync mode, write a new journal header into the
3211 ** journal file. This is done to avoid ever modifying a journal
3212 ** header that is involved in the rollback of pages that have
3213 ** already been written to the database (in case the header is
3214 ** trashed when the nRec field is updated).
3217 assert( pPager->journalOff > 0 );
3218 assert( pPager->doNotSync==0 );
3219 rc = writeJournalHdr(pPager);
3225 pPg = pPager->lru.pFirst;
3228 assert( pPg->nRef==0 );
3230 /* Write the page to the database file if it is dirty.
3232 if( pPg->dirty && !pPager->errCode ){
3234 assert( pPg->needSync==0 );
3238 rc = pager_write_pagelist( pPg );
3240 if( rc!=SQLITE_OK ){
3244 assert( pPg->dirty==0 || pPager->errCode );
3246 /* If the page we are recycling is marked as alwaysRollback, then
3247 ** set the global alwaysRollback flag, thus disabling the
3248 ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
3249 ** It is necessary to do this because the page marked alwaysRollback
3250 ** might be reloaded at a later time but at that point we won't remember
3251 ** that is was marked alwaysRollback. This means that all pages must
3252 ** be marked as alwaysRollback from here on out.
3254 if( pPg->alwaysRollback ){
3255 IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
3256 pPager->alwaysRollback = 1;
3259 /* Unlink the old page from the free list and the hash table
3262 assert( pPg->pgno==0 );
3268 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
3270 ** This function is called to free superfluous dynamically allocated memory
3271 ** held by the pager system. Memory in use by any SQLite pager allocated
3272 ** by the current thread may be sqlite3_free()ed.
3274 ** nReq is the number of bytes of memory required. Once this much has
3275 ** been released, the function returns. The return value is the total number
3276 ** of bytes of memory released.
3278 int sqlite3PagerReleaseMemory(int nReq){
3279 int nReleased = 0; /* Bytes of memory released so far */
3280 Pager *pPager; /* For looping over pagers */
3281 BusyHandler *savedBusy; /* Saved copy of the busy handler */
3284 /* Acquire the memory-management mutex
3286 #ifndef SQLITE_MUTEX_NOOP
3287 sqlite3_mutex *mutex; /* The MEM2 mutex */
3288 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM2);
3290 sqlite3_mutex_enter(mutex);
3292 /* Signal all database connections that memory management wants
3293 ** to have access to the pagers.
3295 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
3296 pPager->iInUseMM = 1;
3299 while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
3303 /* Try to find a page to recycle that does not require a sync(). If
3304 ** this is not possible, find one that does require a sync().
3306 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
3307 pPg = sqlite3LruPageList.pFirstSynced;
3308 while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
3309 pPg = pPg->gfree.pNext;
3312 pPg = sqlite3LruPageList.pFirst;
3313 while( pPg && pPg->pPager->iInUseDB ){
3314 pPg = pPg->gfree.pNext;
3317 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU));
3319 /* If pPg==0, then the block above has failed to find a page to
3320 ** recycle. In this case return early - no further memory will
3325 pPager = pPg->pPager;
3326 assert(!pPg->needSync || pPg==pPager->lru.pFirst);
3327 assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
3329 savedBusy = pPager->pBusyHandler;
3330 pPager->pBusyHandler = 0;
3331 rc = pager_recycle(pPager, &pRecycled);
3332 pPager->pBusyHandler = savedBusy;
3333 assert(pRecycled==pPg || rc!=SQLITE_OK);
3334 if( rc==SQLITE_OK ){
3335 /* We've found a page to free. At this point the page has been
3336 ** removed from the page hash-table, free-list and synced-list
3337 ** (pFirstSynced). It is still in the all pages (pAll) list.
3338 ** Remove it from this list before freeing.
3340 ** Todo: Check the Pager.pStmt list to make sure this is Ok. It
3341 ** probably is though.
3345 if( pPg==pPager->pAll ){
3346 assert(pPg->pPrevAll==0);
3347 assert(pPg->pNextAll==0 || pPg->pNextAll->pPrevAll==pPg);
3348 pPager->pAll = pPg->pNextAll;
3350 pPager->pAll->pPrevAll = 0;
3353 assert(pPg->pPrevAll);
3354 assert(pPg->pPrevAll->pNextAll==pPg);
3355 pTmp = pPg->pPrevAll;
3356 pTmp->pNextAll = pPg->pNextAll;
3357 if( pTmp->pNextAll ){
3358 pTmp->pNextAll->pPrevAll = pTmp;
3362 sizeof(*pPg) + pPager->pageSize
3363 + sizeof(u32) + pPager->nExtra
3364 + MEMDB*sizeof(PgHistory)
3366 IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
3367 PAGER_INCR(sqlite3_pager_pgfree_count);
3368 sqlite3PageFree(pPg->pData);
3372 /* An error occured whilst writing to the database file or
3373 ** journal in pager_recycle(). The error is not returned to the
3374 ** caller of this function. Instead, set the Pager.errCode variable.
3375 ** The error will be returned to the user (or users, in the case
3376 ** of a shared pager cache) of the pager for which the error occured.
3379 (rc&0xff)==SQLITE_IOERR ||
3383 assert( pPager->state>=PAGER_RESERVED );
3384 pager_error(pPager, rc);
3388 /* Clear the memory management flags and release the mutex
3390 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
3391 pPager->iInUseMM = 0;
3393 sqlite3_mutex_leave(mutex);
3395 /* Return the number of bytes released
3399 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
3402 ** Read the content of page pPg out of the database file.
3404 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
3408 assert(pPager->fd->pMethods||pPager->tempFile);
3409 if( !pPager->fd->pMethods ){
3410 return SQLITE_IOERR_SHORT_READ;
3412 offset = (pgno-1)*(i64)pPager->pageSize;
3413 rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
3414 PAGER_INCR(sqlite3_pager_readdb_count);
3415 PAGER_INCR(pPager->nRead);
3416 IOTRACE(("PGIN %p %d\n", pPager, pgno));
3418 memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
3419 sizeof(pPager->dbFileVers));
3421 CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
3422 PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
3423 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
3429 ** This function is called to obtain the shared lock required before
3430 ** data may be read from the pager cache. If the shared lock has already
3431 ** been obtained, this function is a no-op.
3433 ** Immediately after obtaining the shared lock (if required), this function
3434 ** checks for a hot-journal file. If one is found, an emergency rollback
3435 ** is performed immediately.
3437 static int pagerSharedLock(Pager *pPager){
3439 int isErrorReset = 0;
3441 /* If this database is opened for exclusive access, has no outstanding
3442 ** page references and is in an error-state, now is the chance to clear
3443 ** the error. Discard the contents of the pager-cache and treat any
3444 ** open journal file as a hot-journal.
3446 if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
3447 if( pPager->journalOpen ){
3450 pPager->errCode = SQLITE_OK;
3451 pager_reset(pPager);
3454 /* If the pager is still in an error state, do not proceed. The error
3455 ** state will be cleared at some point in the future when all page
3456 ** references are dropped and the cache can be discarded.
3458 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
3459 return pPager->errCode;
3462 if( pPager->state==PAGER_UNLOCK || isErrorReset ){
3463 sqlite3_vfs *pVfs = pPager->pVfs;
3466 assert( pPager->nRef==0 );
3467 if( !pPager->noReadlock ){
3468 rc = pager_wait_on_lock(pPager, SHARED_LOCK);
3469 if( rc!=SQLITE_OK ){
3470 assert( pPager->state==PAGER_UNLOCK );
3471 return pager_error(pPager, rc);
3473 assert( pPager->state>=SHARED_LOCK );
3476 /* If a journal file exists, and there is no RESERVED lock on the
3477 ** database file, then it either needs to be played back or deleted.
3479 if( !isErrorReset ){
3480 rc = hasHotJournal(pPager, &isHotJournal);
3481 if( rc!=SQLITE_OK ){
3485 if( isErrorReset || isHotJournal ){
3486 /* Get an EXCLUSIVE lock on the database file. At this point it is
3487 ** important that a RESERVED lock is not obtained on the way to the
3488 ** EXCLUSIVE lock. If it were, another process might open the
3489 ** database file, detect the RESERVED lock, and conclude that the
3490 ** database is safe to read while this process is still rolling it
3493 ** Because the intermediate RESERVED lock is not requested, the
3494 ** second process will get to this point in the code and fail to
3495 ** obtain its own EXCLUSIVE lock on the database file.
3497 if( pPager->state<EXCLUSIVE_LOCK ){
3498 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
3499 if( rc!=SQLITE_OK ){
3500 rc = pager_error(pPager, rc);
3503 pPager->state = PAGER_EXCLUSIVE;
3506 /* Open the journal for read/write access. This is because in
3507 ** exclusive-access mode the file descriptor will be kept open and
3508 ** possibly used for a transaction later on. On some systems, the
3509 ** OsTruncate() call used in exclusive-access mode also requires
3510 ** a read/write file handle.
3512 if( !isErrorReset && pPager->journalOpen==0 ){
3514 rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res);
3515 if( rc==SQLITE_OK ){
3518 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
3519 assert( !pPager->tempFile );
3520 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
3521 assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
3522 if( fout&SQLITE_OPEN_READONLY ){
3524 sqlite3OsClose(pPager->jfd);
3527 /* If the journal does not exist, that means some other process
3528 ** has already rolled it back */
3533 if( rc!=SQLITE_OK ){
3534 if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK
3535 && rc!=SQLITE_IOERR_NOMEM
3541 pPager->journalOpen = 1;
3542 pPager->journalStarted = 0;
3543 pPager->journalOff = 0;
3544 pPager->setMaster = 0;
3545 pPager->journalHdr = 0;
3547 /* Playback and delete the journal. Drop the database write
3548 ** lock and reacquire the read lock.
3550 rc = pager_playback(pPager, 1);
3551 if( rc!=SQLITE_OK ){
3552 rc = pager_error(pPager, rc);
3555 assert(pPager->state==PAGER_SHARED ||
3556 (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
3561 /* The shared-lock has just been acquired on the database file
3562 ** and there are already pages in the cache (from a previous
3563 ** read or write transaction). Check to see if the database
3564 ** has been modified. If the database has changed, flush the
3567 ** Database changes is detected by looking at 15 bytes beginning
3568 ** at offset 24 into the file. The first 4 of these 16 bytes are
3569 ** a 32-bit counter that is incremented with each change. The
3570 ** other bytes change randomly with each file change when
3571 ** a codec is in use.
3573 ** There is a vanishingly small chance that a change will not be
3574 ** detected. The chance of an undetected change is so small that
3575 ** it can be neglected.
3577 char dbFileVers[sizeof(pPager->dbFileVers)];
3578 sqlite3PagerPagecount(pPager, 0);
3580 if( pPager->errCode ){
3581 rc = pPager->errCode;
3585 if( pPager->dbSize>0 ){
3586 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
3587 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
3588 if( rc!=SQLITE_OK ){
3592 memset(dbFileVers, 0, sizeof(dbFileVers));
3595 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
3596 pager_reset(pPager);
3600 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
3601 if( pPager->state==PAGER_UNLOCK ){
3602 pPager->state = PAGER_SHARED;
3607 if( rc!=SQLITE_OK ){
3608 /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */
3609 pager_unlock(pPager);
3615 ** Allocate a PgHdr object. Either create a new one or reuse
3616 ** an existing one that is not otherwise in use.
3618 ** A new PgHdr structure is created if any of the following are
3621 ** (1) We have not exceeded our maximum allocated cache size
3622 ** as set by the "PRAGMA cache_size" command.
3624 ** (2) There are no unused PgHdr objects available at this time.
3626 ** (3) This is an in-memory database.
3628 ** (4) There are no PgHdr objects that do not require a journal
3629 ** file sync and a sync of the journal file is currently
3632 ** Otherwise, reuse an existing PgHdr. In other words, reuse an
3633 ** existing PgHdr if all of the following are true:
3635 ** (1) We have reached or exceeded the maximum cache size
3636 ** allowed by "PRAGMA cache_size".
3638 ** (2) There is a PgHdr available with PgHdr->nRef==0
3640 ** (3) We are not in an in-memory database
3642 ** (4) Either there is an available PgHdr that does not need
3643 ** to be synced to disk or else disk syncing is currently
3646 static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
3651 /* Create a new PgHdr if any of the four conditions defined
3652 ** above are met: */
3653 if( pPager->nPage<pPager->mxPage
3654 || pPager->lru.pFirst==0
3656 || (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
3658 void *pData = 0; /* Initialized to placate warning */
3659 if( pPager->nPage>=pPager->nHash ){
3660 pager_resize_hash_table(pPager,
3661 pPager->nHash<256 ? 256 : pPager->nHash*2);
3662 if( pPager->nHash==0 ){
3664 goto pager_allocate_out;
3668 nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
3669 + MEMDB*sizeof(PgHistory);
3670 pPg = sqlite3Malloc( nByteHdr );
3672 pData = sqlite3PageMalloc( pPager->pageSize );
3681 goto pager_allocate_out;
3683 memset(pPg, 0, nByteHdr);
3685 pPg->pPager = pPager;
3686 pPg->pNextAll = pPager->pAll;
3687 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
3688 if( pPg->pNextAll ){
3689 pPg->pNextAll->pPrevAll = pPg;
3695 /* Recycle an existing page with a zero ref-count. */
3696 rc = pager_recycle(pPager, &pPg);
3697 if( rc==SQLITE_BUSY ){
3698 rc = SQLITE_IOERR_BLOCKED;
3700 if( rc!=SQLITE_OK ){
3701 goto pager_allocate_out;
3703 assert( pPager->state>=SHARED_LOCK );
3713 ** Make sure we have the content for a page. If the page was
3714 ** previously acquired with noContent==1, then the content was
3715 ** just initialized to zeros instead of being read from disk.
3716 ** But now we need the real data off of disk. So make sure we
3717 ** have it. Read it in if we do not have it already.
3719 static int pager_get_content(PgHdr *pPg){
3720 if( pPg->needRead ){
3721 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
3722 if( rc==SQLITE_OK ){
3734 ** A read lock on the disk file is obtained when the first page is acquired.
3735 ** This read lock is dropped when the last page is released.
3737 ** This routine works for any page number greater than 0. If the database
3738 ** file is smaller than the requested page, then no actual disk
3739 ** read occurs and the memory image of the page is initialized to
3740 ** all zeros. The extra data appended to a page is always initialized
3741 ** to zeros the first time a page is loaded into memory.
3743 ** The acquisition might fail for several reasons. In all cases,
3744 ** an appropriate error code is returned and *ppPage is set to NULL.
3746 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
3747 ** to find a page in the in-memory cache first. If the page is not already
3748 ** in memory, this routine goes to disk to read it in whereas Lookup()
3749 ** just returns 0. This routine acquires a read-lock the first time it
3750 ** has to go to disk, and could also playback an old journal if necessary.
3751 ** Since Lookup() never goes to disk, it never has to deal with locks
3752 ** or journal files.
3754 ** If noContent is false, the page contents are actually read from disk.
3755 ** If noContent is true, it means that we do not care about the contents
3756 ** of the page at this time, so do not do a disk read. Just fill in the
3757 ** page content with zeros. But mark the fact that we have not read the
3758 ** content by setting the PgHdr.needRead flag. Later on, if
3759 ** sqlite3PagerWrite() is called on this page or if this routine is
3760 ** called again with noContent==0, that means that the content is needed
3761 ** and the disk read should occur at that point.
3763 static int pagerAcquire(
3764 Pager *pPager, /* The pager open on the database file */
3765 Pgno pgno, /* Page number to fetch */
3766 DbPage **ppPage, /* Write a pointer to the page here */
3767 int noContent /* Do not bother reading content from disk if true */
3772 assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
3774 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
3775 ** number greater than this, or zero, is requested.
3777 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
3778 return SQLITE_CORRUPT_BKPT;
3781 /* Make sure we have not hit any critical errors.
3783 assert( pPager!=0 );
3786 /* If this is the first page accessed, then get a SHARED lock
3787 ** on the database file. pagerSharedLock() is a no-op if
3788 ** a database lock is already held.
3790 rc = pagerSharedLock(pPager);
3791 if( rc!=SQLITE_OK ){
3794 assert( pPager->state!=PAGER_UNLOCK );
3796 pPg = pager_lookup(pPager, pgno);
3798 /* The requested page is not in the page cache. */
3801 PAGER_INCR(pPager->nMiss);
3802 rc = pagerAllocatePage(pPager, &pPg);
3803 if( rc!=SQLITE_OK ){
3808 assert( !MEMDB || pgno>pPager->stmtSize );
3809 pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
3816 if( pPager->nExtra>0 ){
3817 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
3819 rc = sqlite3PagerPagecount(pPager, &nMax);
3820 if( rc!=SQLITE_OK ){
3821 sqlite3PagerUnref(pPg);
3825 /* Populate the page with data, either by reading from the database
3826 ** file, or by setting the entire page to zero.
3828 if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
3829 if( pgno>pPager->mxPgno ){
3830 sqlite3PagerUnref(pPg);
3833 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
3834 pPg->needRead = noContent && !pPager->alwaysRollback;
3835 IOTRACE(("ZERO %p %d\n", pPager, pgno));
3837 rc = readDbPage(pPager, pPg, pgno);
3838 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
3840 sqlite3PagerUnref(pPg);
3846 /* Link the page into the page hash table */
3847 h = pgno & (pPager->nHash-1);
3849 pPg->pNextHash = pPager->aHash[h];
3850 pPager->aHash[h] = pPg;
3851 if( pPg->pNextHash ){
3852 assert( pPg->pNextHash->pPrevHash==0 );
3853 pPg->pNextHash->pPrevHash = pPg;
3856 #ifdef SQLITE_CHECK_PAGES
3857 pPg->pageHash = pager_pagehash(pPg);
3860 /* The requested page is in the page cache. */
3861 assert(pPager->nRef>0 || pgno==1);
3862 PAGER_INCR(pPager->nHit);
3864 rc = pager_get_content(pPg);
3874 int sqlite3PagerAcquire(
3875 Pager *pPager, /* The pager open on the database file */
3876 Pgno pgno, /* Page number to fetch */
3877 DbPage **ppPage, /* Write a pointer to the page here */
3878 int noContent /* Do not bother reading content from disk if true */
3882 rc = pagerAcquire(pPager, pgno, ppPage, noContent);
3889 ** Acquire a page if it is already in the in-memory cache. Do
3890 ** not read the page from disk. Return a pointer to the page,
3891 ** or 0 if the page is not in cache.
3893 ** See also sqlite3PagerGet(). The difference between this routine
3894 ** and sqlite3PagerGet() is that _get() will go to the disk and read
3895 ** in the page if the page is not already in cache. This routine
3896 ** returns NULL if the page is not in cache or if a disk I/O error
3897 ** has ever happened.
3899 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
3902 assert( pPager!=0 );
3906 if( pPager->state==PAGER_UNLOCK ){
3907 assert( !pPager->pAll || pPager->exclusiveMode );
3908 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
3910 }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
3920 ** If the number of references to the page drop to zero, then the
3921 ** page is added to the LRU list. When all references to all pages
3922 ** are released, a rollback occurs and the lock on the database is
3925 int sqlite3PagerUnref(DbPage *pPg){
3928 if( pPg==0 ) return SQLITE_OK;
3929 pPager = pPg->pPager;
3931 /* Decrement the reference count for this page
3933 assert( pPg->nRef>0 );
3934 pagerEnter(pPg->pPager);
3939 /* When the number of references to a page reach 0, call the
3940 ** destructor and add the page to the freelist.
3945 if( pPager->xDestructor ){
3946 pPager->xDestructor(pPg, pPager->pageSize);
3949 /* When all pages reach the freelist, drop the read lock from
3950 ** the database file.
3953 assert( pPager->nRef>=0 );
3954 if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
3955 pagerUnlockAndRollback(pPager);
3963 ** Create a journal file for pPager. There should already be a RESERVED
3964 ** or EXCLUSIVE lock on the database file when this routine is called.
3966 ** Return SQLITE_OK if everything. Return an error code and release the
3967 ** write lock if anything goes wrong.
3969 static int pager_open_journal(Pager *pPager){
3970 sqlite3_vfs *pVfs = pPager->pVfs;
3971 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
3975 assert( pPager->state>=PAGER_RESERVED );
3976 assert( pPager->useJournal );
3977 assert( pPager->pInJournal==0 );
3978 sqlite3PagerPagecount(pPager, 0);
3980 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
3982 if( pPager->pInJournal==0 ){
3984 goto failed_to_open_journal;
3987 if( pPager->journalOpen==0 ){
3988 if( pPager->tempFile ){
3989 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
3991 flags |= (SQLITE_OPEN_MAIN_JOURNAL);
3993 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3994 rc = sqlite3JournalOpen(
3995 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
3998 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
4000 assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
4001 pPager->journalOff = 0;
4002 pPager->setMaster = 0;
4003 pPager->journalHdr = 0;
4004 if( rc!=SQLITE_OK ){
4005 if( rc==SQLITE_NOMEM ){
4006 sqlite3OsDelete(pVfs, pPager->zJournal, 0);
4008 goto failed_to_open_journal;
4011 pPager->journalOpen = 1;
4012 pPager->journalStarted = 0;
4013 pPager->needSync = 0;
4014 pPager->alwaysRollback = 0;
4016 if( pPager->errCode ){
4017 rc = pPager->errCode;
4018 goto failed_to_open_journal;
4020 pPager->origDbSize = pPager->dbSize;
4022 rc = writeJournalHdr(pPager);
4024 if( pPager->stmtAutoopen && rc==SQLITE_OK ){
4025 rc = sqlite3PagerStmtBegin(pPager);
4027 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
4028 rc = pager_end_transaction(pPager, 0);
4029 if( rc==SQLITE_OK ){
4035 failed_to_open_journal:
4036 sqlite3BitvecDestroy(pPager->pInJournal);
4037 pPager->pInJournal = 0;
4042 ** Acquire a write-lock on the database. The lock is removed when
4043 ** the any of the following happen:
4045 ** * sqlite3PagerCommitPhaseTwo() is called.
4046 ** * sqlite3PagerRollback() is called.
4047 ** * sqlite3PagerClose() is called.
4048 ** * sqlite3PagerUnref() is called to on every outstanding page.
4050 ** The first parameter to this routine is a pointer to any open page of the
4051 ** database file. Nothing changes about the page - it is used merely to
4052 ** acquire a pointer to the Pager structure and as proof that there is
4053 ** already a read-lock on the database.
4055 ** The second parameter indicates how much space in bytes to reserve for a
4056 ** master journal file-name at the start of the journal when it is created.
4058 ** A journal file is opened if this is not a temporary file. For temporary
4059 ** files, the opening of the journal file is deferred until there is an
4060 ** actual need to write to the journal.
4062 ** If the database is already reserved for writing, this routine is a no-op.
4064 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
4065 ** immediately instead of waiting until we try to flush the cache. The
4066 ** exFlag is ignored if a transaction is already active.
4068 int sqlite3PagerBegin(DbPage *pPg, int exFlag){
4069 Pager *pPager = pPg->pPager;
4072 assert( pPg->nRef>0 );
4073 assert( pPager->state!=PAGER_UNLOCK );
4074 if( pPager->state==PAGER_SHARED ){
4075 assert( pPager->pInJournal==0 );
4077 pPager->state = PAGER_EXCLUSIVE;
4078 pPager->origDbSize = pPager->dbSize;
4080 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
4081 if( rc==SQLITE_OK ){
4082 pPager->state = PAGER_RESERVED;
4084 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
4087 if( rc!=SQLITE_OK ){
4091 pPager->dirtyCache = 0;
4092 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
4093 if( pPager->useJournal && !pPager->tempFile
4094 && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
4095 rc = pager_open_journal(pPager);
4098 }else if( pPager->journalOpen && pPager->journalOff==0 ){
4099 /* This happens when the pager was in exclusive-access mode the last
4100 ** time a (read or write) transaction was successfully concluded
4101 ** by this connection. Instead of deleting the journal file it was
4102 ** kept open and either was truncated to 0 bytes or its header was
4103 ** overwritten with zeros.
4105 assert( pPager->nRec==0 );
4106 assert( pPager->origDbSize==0 );
4107 assert( pPager->pInJournal==0 );
4108 sqlite3PagerPagecount(pPager, 0);
4110 pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize );
4112 if( !pPager->pInJournal ){
4115 pPager->origDbSize = pPager->dbSize;
4116 rc = writeJournalHdr(pPager);
4119 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
4125 ** Make a page dirty. Set its dirty flag and add it to the dirty
4128 static void makeDirty(PgHdr *pPg){
4129 if( pPg->dirty==0 ){
4130 Pager *pPager = pPg->pPager;
4132 pPg->pDirty = pPager->pDirty;
4133 if( pPager->pDirty ){
4134 pPager->pDirty->pPrevDirty = pPg;
4136 pPg->pPrevDirty = 0;
4137 pPager->pDirty = pPg;
4142 ** Make a page clean. Clear its dirty bit and remove it from the
4145 static void makeClean(PgHdr *pPg){
4149 assert( pPg->pDirty->pPrevDirty==pPg );
4150 pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
4152 if( pPg->pPrevDirty ){
4153 assert( pPg->pPrevDirty->pDirty==pPg );
4154 pPg->pPrevDirty->pDirty = pPg->pDirty;
4156 assert( pPg->pPager->pDirty==pPg );
4157 pPg->pPager->pDirty = pPg->pDirty;
4164 ** Mark a data page as writeable. The page is written into the journal
4165 ** if it is not there already. This routine must be called before making
4166 ** changes to a page.
4168 ** The first time this routine is called, the pager creates a new
4169 ** journal and acquires a RESERVED lock on the database. If the RESERVED
4170 ** lock could not be acquired, this routine returns SQLITE_BUSY. The
4171 ** calling routine must check for that return value and be careful not to
4172 ** change any page data until this routine returns SQLITE_OK.
4174 ** If the journal file could not be written because the disk is full,
4175 ** then this routine returns SQLITE_FULL and does an immediate rollback.
4176 ** All subsequent write attempts also return SQLITE_FULL until there
4177 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
4180 static int pager_write(PgHdr *pPg){
4181 void *pData = PGHDR_TO_DATA(pPg);
4182 Pager *pPager = pPg->pPager;
4187 if( pPager->errCode ){
4188 return pPager->errCode;
4190 if( pPager->readOnly ){
4194 assert( !pPager->setMaster );
4198 /* If this page was previously acquired with noContent==1, that means
4199 ** we didn't really read in the content of the page. This can happen
4200 ** (for example) when the page is being moved to the freelist. But
4201 ** now we are (perhaps) moving the page off of the freelist for
4202 ** reuse and we need to know its original content so that content
4203 ** can be stored in the rollback journal. So do the read at this
4206 rc = pager_get_content(pPg);
4211 /* Mark the page as dirty. If the page has already been written
4212 ** to the journal then we can return right away.
4215 if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
4216 pPager->dirtyCache = 1;
4217 pPager->dbModified = 1;
4220 /* If we get this far, it means that the page needs to be
4221 ** written to the transaction journal or the ckeckpoint journal
4224 ** First check to see that the transaction journal exists and
4225 ** create it if it does not.
4227 assert( pPager->state!=PAGER_UNLOCK );
4228 rc = sqlite3PagerBegin(pPg, 0);
4229 if( rc!=SQLITE_OK ){
4232 assert( pPager->state>=PAGER_RESERVED );
4233 if( !pPager->journalOpen && pPager->useJournal
4234 && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
4235 rc = pager_open_journal(pPager);
4236 if( rc!=SQLITE_OK ) return rc;
4238 pPager->dirtyCache = 1;
4239 pPager->dbModified = 1;
4241 /* The transaction journal now exists and we have a RESERVED or an
4242 ** EXCLUSIVE lock on the main database file. Write the current page to
4243 ** the transaction journal if it is not there already.
4245 if( !pPg->inJournal && (pPager->journalOpen || MEMDB) ){
4246 if( (int)pPg->pgno <= pPager->origDbSize ){
4248 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4249 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
4250 assert( pHist->pOrig==0 );
4251 pHist->pOrig = sqlite3PageMalloc( pPager->pageSize );
4252 if( !pHist->pOrig ){
4253 return SQLITE_NOMEM;
4255 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
4260 /* We should never write to the journal file the page that
4261 ** contains the database locks. The following assert verifies
4262 ** that we do not. */
4263 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
4264 pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
4265 cksum = pager_cksum(pPager, (u8*)pData2);
4266 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
4267 if( rc==SQLITE_OK ){
4268 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
4269 pPager->journalOff + 4);
4270 pPager->journalOff += pPager->pageSize+4;
4272 if( rc==SQLITE_OK ){
4273 rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
4274 pPager->journalOff += 4;
4276 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
4277 pPager->journalOff, pPager->pageSize));
4278 PAGER_INCR(sqlite3_pager_writej_count);
4279 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
4280 PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
4282 /* An error has occured writing to the journal file. The
4283 ** transaction will be rolled back by the layer above.
4285 if( rc!=SQLITE_OK ){
4290 assert( pPager->pInJournal!=0 );
4291 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
4292 pPg->needSync = !pPager->noSync;
4293 if( pPager->stmtInUse ){
4294 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
4298 pPg->needSync = !pPager->journalStarted && !pPager->noSync;
4299 PAGERTRACE4("APPEND %d page %d needSync=%d\n",
4300 PAGERID(pPager), pPg->pgno, pPg->needSync);
4302 if( pPg->needSync ){
4303 pPager->needSync = 1;
4308 /* If the statement journal is open and the page is not in it,
4309 ** then write the current page to the statement journal. Note that
4310 ** the statement journal format differs from the standard journal format
4311 ** in that it omits the checksums and the header.
4313 if( pPager->stmtInUse
4314 && !pageInStatement(pPg)
4315 && (int)pPg->pgno<=pPager->stmtSize
4317 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
4319 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4320 assert( pHist->pStmt==0 );
4321 pHist->pStmt = sqlite3PageMalloc( pPager->pageSize );
4323 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
4325 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
4326 page_add_to_stmt_list(pPg);
4328 i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
4329 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
4330 rc = write32bits(pPager->stfd, offset, pPg->pgno);
4331 if( rc==SQLITE_OK ){
4332 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
4334 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
4335 if( rc!=SQLITE_OK ){
4339 assert( pPager->pInStmt!=0 );
4340 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
4345 /* Update the database size and return.
4347 assert( pPager->state>=PAGER_SHARED );
4348 if( pPager->dbSize<(int)pPg->pgno ){
4349 pPager->dbSize = pPg->pgno;
4350 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
4358 ** This function is used to mark a data-page as writable. It uses
4359 ** pager_write() to open a journal file (if it is not already open)
4360 ** and write the page *pData to the journal.
4362 ** The difference between this function and pager_write() is that this
4363 ** function also deals with the special case where 2 or more pages
4364 ** fit on a single disk sector. In this case all co-resident pages
4365 ** must have been written to the journal file before returning.
4367 int sqlite3PagerWrite(DbPage *pDbPage){
4370 PgHdr *pPg = pDbPage;
4371 Pager *pPager = pPg->pPager;
4372 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
4375 if( !MEMDB && nPagePerSector>1 ){
4376 Pgno nPageCount; /* Total number of pages in database file */
4377 Pgno pg1; /* First page of the sector pPg is located on. */
4378 int nPage; /* Number of pages starting at pg1 to journal */
4382 /* Set the doNotSync flag to 1. This is because we cannot allow a journal
4383 ** header to be written between the pages journaled by this function.
4385 assert( pPager->doNotSync==0 );
4386 pPager->doNotSync = 1;
4388 /* This trick assumes that both the page-size and sector-size are
4389 ** an integer power of 2. It sets variable pg1 to the identifier
4390 ** of the first page of the sector pPg is located on.
4392 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
4394 sqlite3PagerPagecount(pPager, (int *)&nPageCount);
4395 if( pPg->pgno>nPageCount ){
4396 nPage = (pPg->pgno - pg1)+1;
4397 }else if( (pg1+nPagePerSector-1)>nPageCount ){
4398 nPage = nPageCount+1-pg1;
4400 nPage = nPagePerSector;
4403 assert(pg1<=pPg->pgno);
4404 assert((pg1+nPage)>pPg->pgno);
4406 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
4409 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
4410 if( pg!=PAGER_MJ_PGNO(pPager) ){
4411 rc = sqlite3PagerGet(pPager, pg, &pPage);
4412 if( rc==SQLITE_OK ){
4413 rc = pager_write(pPage);
4414 if( pPage->needSync ){
4417 sqlite3PagerUnref(pPage);
4420 }else if( (pPage = pager_lookup(pPager, pg))!=0 ){
4421 if( pPage->needSync ){
4427 /* If the PgHdr.needSync flag is set for any of the nPage pages
4428 ** starting at pg1, then it needs to be set for all of them. Because
4429 ** writing to any of these nPage pages may damage the others, the
4430 ** journal file must contain sync()ed copies of all of them
4431 ** before any of them can be written out to the database file.
4434 for(ii=0; ii<nPage && needSync; ii++){
4435 PgHdr *pPage = pager_lookup(pPager, pg1+ii);
4436 if( pPage ) pPage->needSync = 1;
4438 assert(pPager->needSync);
4441 assert( pPager->doNotSync==1 );
4442 pPager->doNotSync = 0;
4444 rc = pager_write(pDbPage);
4451 ** Return TRUE if the page given in the argument was previously passed
4452 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
4453 ** to change the content of the page.
4456 int sqlite3PagerIswriteable(DbPage *pPg){
4462 ** A call to this routine tells the pager that it is not necessary to
4463 ** write the information on page pPg back to the disk, even though
4464 ** that page might be marked as dirty.
4466 ** The overlying software layer calls this routine when all of the data
4467 ** on the given page is unused. The pager marks the page as clean so
4468 ** that it does not get written to disk.
4470 ** Tests show that this optimization, together with the
4471 ** sqlite3PagerDontRollback() below, more than double the speed
4472 ** of large INSERT operations and quadruple the speed of large DELETEs.
4474 ** When this routine is called, set the alwaysRollback flag to true.
4475 ** Subsequent calls to sqlite3PagerDontRollback() for the same page
4476 ** will thereafter be ignored. This is necessary to avoid a problem
4477 ** where a page with data is added to the freelist during one part of
4478 ** a transaction then removed from the freelist during a later part
4479 ** of the same transaction and reused for some other purpose. When it
4480 ** is first added to the freelist, this routine is called. When reused,
4481 ** the sqlite3PagerDontRollback() routine is called. But because the
4482 ** page contains critical data, we still need to be sure it gets
4483 ** rolled back in spite of the sqlite3PagerDontRollback() call.
4485 void sqlite3PagerDontWrite(DbPage *pDbPage){
4486 PgHdr *pPg = pDbPage;
4487 Pager *pPager = pPg->pPager;
4491 pPg->alwaysRollback = 1;
4492 if( pPg->dirty && !pPager->stmtInUse ){
4493 assert( pPager->state>=PAGER_SHARED );
4494 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
4495 /* If this pages is the last page in the file and the file has grown
4496 ** during the current transaction, then do NOT mark the page as clean.
4497 ** When the database file grows, we must make sure that the last page
4498 ** gets written at least once so that the disk file will be the correct
4499 ** size. If you do not write this page and the size of the file
4500 ** on the disk ends up being too small, that can lead to database
4501 ** corruption during the next transaction.
4504 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
4505 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
4507 #ifdef SQLITE_CHECK_PAGES
4508 pPg->pageHash = pager_pagehash(pPg);
4516 ** A call to this routine tells the pager that if a rollback occurs,
4517 ** it is not necessary to restore the data on the given page. This
4518 ** means that the pager does not have to record the given page in the
4519 ** rollback journal.
4521 ** If we have not yet actually read the content of this page (if
4522 ** the PgHdr.needRead flag is set) then this routine acts as a promise
4523 ** that we will never need to read the page content in the future.
4524 ** so the needRead flag can be cleared at this point.
4526 void sqlite3PagerDontRollback(DbPage *pPg){
4527 Pager *pPager = pPg->pPager;
4530 assert( pPager->state>=PAGER_RESERVED );
4532 /* If the journal file is not open, or DontWrite() has been called on
4533 ** this page (DontWrite() sets the alwaysRollback flag), then this
4534 ** function is a no-op.
4536 if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){
4540 assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */
4542 #ifdef SQLITE_SECURE_DELETE
4543 if( pPg->inJournal || (int)pPg->pgno > pPager->origDbSize ){
4548 /* If SECURE_DELETE is disabled, then there is no way that this
4549 ** routine can be called on a page for which sqlite3PagerDontWrite()
4550 ** has not been previously called during the same transaction.
4551 ** And if DontWrite() has previously been called, the following
4552 ** conditions must be met.
4554 ** (Later:) Not true. If the database is corrupted by having duplicate
4555 ** pages on the freelist (ex: corrupt9.test) then the following is not
4556 ** necessarily true:
4558 /* assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); */
4560 assert( pPager->pInJournal!=0 );
4561 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
4564 if( pPager->stmtInUse ){
4565 assert( pPager->stmtSize >= pPager->origDbSize );
4566 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno);
4568 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
4569 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
4575 ** This routine is called to increment the database file change-counter,
4576 ** stored at byte 24 of the pager file.
4578 static int pager_incr_changecounter(Pager *pPager, int isDirect){
4583 #ifndef SQLITE_ENABLE_ATOMIC_WRITE
4584 assert( isDirect==0 ); /* isDirect is only true for atomic writes */
4586 if( !pPager->changeCountDone ){
4587 /* Open page 1 of the file for writing. */
4588 rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
4589 if( rc!=SQLITE_OK ) return rc;
4592 rc = sqlite3PagerWrite(pPgHdr);
4593 if( rc!=SQLITE_OK ){
4594 sqlite3PagerUnref(pPgHdr);
4599 /* Increment the value just read and write it back to byte 24. */
4600 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
4602 put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
4604 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
4605 if( isDirect && pPager->fd->pMethods ){
4606 const void *zBuf = PGHDR_TO_DATA(pPgHdr);
4607 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
4611 /* Release the page reference. */
4612 sqlite3PagerUnref(pPgHdr);
4613 pPager->changeCountDone = 1;
4619 ** Sync the pager file to disk.
4621 int sqlite3PagerSync(Pager *pPager){
4624 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
4630 ** Sync the database file for the pager pPager. zMaster points to the name
4631 ** of a master journal file that should be written into the individual
4632 ** journal file. zMaster may be NULL, which is interpreted as no master
4633 ** journal (a single database transaction).
4635 ** This routine ensures that the journal is synced, all dirty pages written
4636 ** to the database file and the database file synced. The only thing that
4637 ** remains to commit the transaction is to delete the journal file (or
4638 ** master journal file if specified).
4640 ** Note that if zMaster==NULL, this does not overwrite a previous value
4641 ** passed to an sqlite3PagerCommitPhaseOne() call.
4643 ** If parameter nTrunc is non-zero, then the pager file is truncated to
4644 ** nTrunc pages (this is used by auto-vacuum databases).
4646 ** If the final parameter - noSync - is true, then the database file itself
4647 ** is not synced. The caller must call sqlite3PagerSync() directly to
4648 ** sync the database file before calling CommitPhaseTwo() to delete the
4649 ** journal file in this case.
4651 int sqlite3PagerCommitPhaseOne(
4653 const char *zMaster,
4659 if( pPager->errCode ){
4660 return pPager->errCode;
4663 /* If no changes have been made, we can leave the transaction early.
4665 if( pPager->dbModified==0 &&
4666 (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
4667 pPager->exclusiveMode!=0) ){
4668 assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
4672 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
4673 pPager->zFilename, zMaster, nTrunc);
4676 /* If this is an in-memory db, or no pages have been written to, or this
4677 ** function has already been called, it is a no-op.
4679 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
4682 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
4683 /* The atomic-write optimization can be used if all of the
4684 ** following are true:
4686 ** + The file-system supports the atomic-write property for
4687 ** blocks of size page-size, and
4688 ** + This commit is not part of a multi-file transaction, and
4689 ** + Exactly one page has been modified and store in the journal file.
4691 ** If the optimization can be used, then the journal file will never
4692 ** be created for this transaction.
4694 int useAtomicWrite = (
4696 pPager->journalOpen &&
4697 pPager->journalOff==jrnlBufferSize(pPager) &&
4699 (0==pPager->pDirty || 0==pPager->pDirty->pDirty)
4701 assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF );
4702 if( useAtomicWrite ){
4703 /* Update the nRec field in the journal file. */
4704 int offset = pPager->journalHdr + sizeof(aJournalMagic);
4705 assert(pPager->nRec==1);
4706 rc = write32bits(pPager->jfd, offset, pPager->nRec);
4708 /* Update the db file change counter. The following call will modify
4709 ** the in-memory representation of page 1 to include the updated
4710 ** change counter and then write page 1 directly to the database
4711 ** file. Because of the atomic-write property of the host file-system,
4714 if( rc==SQLITE_OK ){
4715 rc = pager_incr_changecounter(pPager, 1);
4718 rc = sqlite3JournalCreate(pPager->jfd);
4721 if( !useAtomicWrite && rc==SQLITE_OK )
4724 /* If a master journal file name has already been written to the
4725 ** journal file, then no sync is required. This happens when it is
4726 ** written, then the process fails to upgrade from a RESERVED to an
4727 ** EXCLUSIVE lock. The next time the process tries to commit the
4728 ** transaction the m-j name will have already been written.
4730 if( !pPager->setMaster ){
4731 rc = pager_incr_changecounter(pPager, 0);
4732 if( rc!=SQLITE_OK ) goto sync_exit;
4733 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
4734 #ifndef SQLITE_OMIT_AUTOVACUUM
4736 /* If this transaction has made the database smaller, then all pages
4737 ** being discarded by the truncation must be written to the journal
4741 int iSkip = PAGER_MJ_PGNO(pPager);
4742 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
4743 if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){
4744 rc = sqlite3PagerGet(pPager, i, &pPg);
4745 if( rc!=SQLITE_OK ) goto sync_exit;
4746 rc = sqlite3PagerWrite(pPg);
4747 sqlite3PagerUnref(pPg);
4748 if( rc!=SQLITE_OK ) goto sync_exit;
4753 rc = writeMasterJournal(pPager, zMaster);
4754 if( rc!=SQLITE_OK ) goto sync_exit;
4755 rc = syncJournal(pPager);
4758 if( rc!=SQLITE_OK ) goto sync_exit;
4760 #ifndef SQLITE_OMIT_AUTOVACUUM
4762 rc = sqlite3PagerTruncate(pPager, nTrunc);
4763 if( rc!=SQLITE_OK ) goto sync_exit;
4767 /* Write all dirty pages to the database file */
4768 pPg = pager_get_all_dirty_pages(pPager);
4769 rc = pager_write_pagelist(pPg);
4770 if( rc!=SQLITE_OK ){
4771 assert( rc!=SQLITE_IOERR_BLOCKED );
4772 /* The error might have left the dirty list all fouled up here,
4773 ** but that does not matter because if the if the dirty list did
4774 ** get corrupted, then the transaction will roll back and
4775 ** discard the dirty list. There is an assert in
4776 ** pager_get_all_dirty_pages() that verifies that no attempt
4777 ** is made to use an invalid dirty list.
4783 /* Sync the database file. */
4784 if( !pPager->noSync && !noSync ){
4785 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
4787 IOTRACE(("DBSYNC %p\n", pPager))
4789 pPager->state = PAGER_SYNCED;
4790 }else if( MEMDB && nTrunc!=0 ){
4791 rc = sqlite3PagerTruncate(pPager, nTrunc);
4795 if( rc==SQLITE_IOERR_BLOCKED ){
4796 /* pager_incr_changecounter() may attempt to obtain an exclusive
4797 * lock to spill the cache and return IOERR_BLOCKED. But since
4798 * there is no chance the cache is inconsistent, it is
4799 * better to return SQLITE_BUSY.
4809 ** Commit all changes to the database and release the write lock.
4811 ** If the commit fails for any reason, a rollback attempt is made
4812 ** and an error code is returned. If the commit worked, SQLITE_OK
4815 int sqlite3PagerCommitPhaseTwo(Pager *pPager){
4819 if( pPager->errCode ){
4820 return pPager->errCode;
4822 if( pPager->state<PAGER_RESERVED ){
4823 return SQLITE_ERROR;
4825 if( pPager->dbModified==0 &&
4826 (pPager->journalMode!=PAGER_JOURNALMODE_DELETE ||
4827 pPager->exclusiveMode!=0) ){
4828 assert( pPager->dirtyCache==0 || pPager->journalOpen==0 );
4832 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
4834 pPg = pager_get_all_dirty_pages(pPager);
4836 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4837 clearHistory(pHist);
4842 pHist->pPrevStmt = pHist->pNextStmt = 0;
4847 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
4848 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4849 assert( !pPg->alwaysRollback );
4850 assert( !pHist->pOrig );
4851 assert( !pHist->pStmt );
4855 pPager->state = PAGER_SHARED;
4859 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
4860 rc = pager_end_transaction(pPager, pPager->setMaster);
4861 rc = pager_error(pPager, rc);
4867 ** Rollback all changes. The database falls back to PAGER_SHARED mode.
4868 ** All in-memory cache pages revert to their original data contents.
4869 ** The journal is deleted.
4871 ** This routine cannot fail unless some other process is not following
4872 ** the correct locking protocol or unless some other
4873 ** process is writing trash into the journal file (SQLITE_CORRUPT) or
4874 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error
4875 ** codes are returned for all these occasions. Otherwise,
4876 ** SQLITE_OK is returned.
4878 int sqlite3PagerRollback(Pager *pPager){
4880 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
4883 for(p=pPager->pAll; p; p=p->pNextAll){
4885 assert( !p->alwaysRollback );
4887 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
4888 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
4892 pHist = PGHDR_TO_HIST(p, pPager);
4894 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
4895 PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
4897 PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
4899 clearHistory(pHist);
4903 pHist->pPrevStmt = pHist->pNextStmt = 0;
4904 if( pPager->xReiniter ){
4905 pPager->xReiniter(p, pPager->pageSize);
4910 pPager->dbSize = pPager->origDbSize;
4911 pager_truncate_cache(pPager);
4912 pPager->stmtInUse = 0;
4913 pPager->state = PAGER_SHARED;
4918 if( !pPager->dirtyCache || !pPager->journalOpen ){
4919 rc = pager_end_transaction(pPager, pPager->setMaster);
4924 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
4925 if( pPager->state>=PAGER_EXCLUSIVE ){
4926 pager_playback(pPager, 0);
4929 return pPager->errCode;
4931 if( pPager->state==PAGER_RESERVED ){
4933 rc = pager_playback(pPager, 0);
4934 rc2 = pager_end_transaction(pPager, pPager->setMaster);
4935 if( rc==SQLITE_OK ){
4939 rc = pager_playback(pPager, 0);
4941 /* pager_reset(pPager); */
4942 pPager->dbSize = -1;
4944 /* If an error occurs during a ROLLBACK, we can no longer trust the pager
4945 ** cache. So call pager_error() on the way out to make any error
4948 rc = pager_error(pPager, rc);
4954 ** Return TRUE if the database file is opened read-only. Return FALSE
4955 ** if the database is (in theory) writable.
4957 int sqlite3PagerIsreadonly(Pager *pPager){
4958 return pPager->readOnly;
4962 ** Return the number of references to the pager.
4964 int sqlite3PagerRefcount(Pager *pPager){
4965 return pPager->nRef;
4970 ** This routine is used for testing and analysis only.
4972 int *sqlite3PagerStats(Pager *pPager){
4974 a[0] = pPager->nRef;
4975 a[1] = pPager->nPage;
4976 a[2] = pPager->mxPage;
4977 a[3] = pPager->dbSize;
4978 a[4] = pPager->state;
4979 a[5] = pPager->errCode;
4980 a[6] = pPager->nHit;
4981 a[7] = pPager->nMiss;
4982 a[8] = 0; /* Used to be pPager->nOvfl */
4983 a[9] = pPager->nRead;
4984 a[10] = pPager->nWrite;
4987 int sqlite3PagerIsMemdb(Pager *pPager){
4993 ** Set the statement rollback point.
4995 ** This routine should be called with the transaction journal already
4996 ** open. A new statement journal is created that can be used to rollback
4997 ** changes of a single SQL command within a larger transaction.
4999 static int pagerStmtBegin(Pager *pPager){
5001 assert( !pPager->stmtInUse );
5002 assert( pPager->state>=PAGER_SHARED );
5003 assert( pPager->dbSize>=0 );
5004 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
5006 pPager->stmtInUse = 1;
5007 pPager->stmtSize = pPager->dbSize;
5010 if( !pPager->journalOpen ){
5011 pPager->stmtAutoopen = 1;
5014 assert( pPager->journalOpen );
5016 assert( pPager->pInStmt==0 );
5017 pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize);
5019 if( pPager->pInStmt==0 ){
5020 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
5021 return SQLITE_NOMEM;
5023 pPager->stmtJSize = pPager->journalOff;
5024 pPager->stmtSize = pPager->dbSize;
5025 pPager->stmtHdrOff = 0;
5026 pPager->stmtCksum = pPager->cksumInit;
5027 if( !pPager->stmtOpen ){
5028 rc = sqlite3PagerOpentemp(pPager, pPager->stfd, SQLITE_OPEN_SUBJOURNAL);
5030 goto stmt_begin_failed;
5032 pPager->stmtOpen = 1;
5033 pPager->stmtNRec = 0;
5035 pPager->stmtInUse = 1;
5039 if( pPager->pInStmt ){
5040 sqlite3BitvecDestroy(pPager->pInStmt);
5041 pPager->pInStmt = 0;
5045 int sqlite3PagerStmtBegin(Pager *pPager){
5048 rc = pagerStmtBegin(pPager);
5054 ** Commit a statement.
5056 int sqlite3PagerStmtCommit(Pager *pPager){
5058 if( pPager->stmtInUse ){
5060 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
5062 /* sqlite3OsTruncate(pPager->stfd, 0); */
5063 sqlite3BitvecDestroy(pPager->pInStmt);
5064 pPager->pInStmt = 0;
5066 for(pPg=pPager->pStmt; pPg; pPg=pNext){
5067 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
5068 pNext = pHist->pNextStmt;
5069 assert( pHist->inStmt );
5071 pHist->pPrevStmt = pHist->pNextStmt = 0;
5072 sqlite3PageFree(pHist->pStmt);
5076 pPager->stmtNRec = 0;
5077 pPager->stmtInUse = 0;
5080 pPager->stmtAutoopen = 0;
5086 ** Rollback a statement.
5088 int sqlite3PagerStmtRollback(Pager *pPager){
5091 if( pPager->stmtInUse ){
5092 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
5096 for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
5097 pHist = PGHDR_TO_HIST(pPg, pPager);
5099 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
5100 sqlite3PageFree(pHist->pStmt);
5104 pPager->dbSize = pPager->stmtSize;
5105 pager_truncate_cache(pPager);
5108 rc = pager_stmt_playback(pPager);
5110 sqlite3PagerStmtCommit(pPager);
5114 pPager->stmtAutoopen = 0;
5120 ** Return the full pathname of the database file.
5122 const char *sqlite3PagerFilename(Pager *pPager){
5123 return pPager->zFilename;
5127 ** Return the VFS structure for the pager.
5129 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
5130 return pPager->pVfs;
5134 ** Return the file handle for the database file associated
5135 ** with the pager. This might return NULL if the file has
5136 ** not yet been opened.
5138 sqlite3_file *sqlite3PagerFile(Pager *pPager){
5143 ** Return the directory of the database file.
5145 const char *sqlite3PagerDirname(Pager *pPager){
5146 return pPager->zDirectory;
5150 ** Return the full pathname of the journal file.
5152 const char *sqlite3PagerJournalname(Pager *pPager){
5153 return pPager->zJournal;
5157 ** Return true if fsync() calls are disabled for this pager. Return FALSE
5158 ** if fsync()s are executed normally.
5160 int sqlite3PagerNosync(Pager *pPager){
5161 return pPager->noSync;
5164 #ifdef SQLITE_HAS_CODEC
5166 ** Set the codec for this pager
5168 void sqlite3PagerSetCodec(
5170 void *(*xCodec)(void*,void*,Pgno,int),
5173 pPager->xCodec = xCodec;
5174 pPager->pCodecArg = pCodecArg;
5178 #ifndef SQLITE_OMIT_AUTOVACUUM
5180 ** Move the page pPg to location pgno in the file.
5182 ** There must be no references to the page previously located at
5183 ** pgno (which we call pPgOld) though that page is allowed to be
5184 ** in cache. If the page previous located at pgno is not already
5185 ** in the rollback journal, it is not put there by by this routine.
5187 ** References to the page pPg remain valid. Updating any
5188 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes
5189 ** allocated along with the page) is the responsibility of the caller.
5191 ** A transaction must be active when this routine is called. It used to be
5192 ** required that a statement transaction was not active, but this restriction
5193 ** has been removed (CREATE INDEX needs to move a page when a statement
5194 ** transaction is active).
5196 ** If the fourth argument, isCommit, is non-zero, then this page is being
5197 ** moved as part of a database reorganization just before the transaction
5198 ** is being committed. In this case, it is guaranteed that the database page
5199 ** pPg refers to will not be written to again within this transaction.
5201 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
5202 PgHdr *pPgOld; /* The page being overwritten. */
5204 Pgno needSyncPgno = 0;
5207 assert( pPg->nRef>0 );
5209 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
5210 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
5211 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
5213 pager_get_content(pPg);
5215 /* If the journal needs to be sync()ed before page pPg->pgno can
5216 ** be written to, store pPg->pgno in local variable needSyncPgno.
5218 ** If the isCommit flag is set, there is no need to remember that
5219 ** the journal needs to be sync()ed before database page pPg->pgno
5220 ** can be written to. The caller has already promised not to write to it.
5222 if( pPg->needSync && !isCommit ){
5223 needSyncPgno = pPg->pgno;
5224 assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
5225 assert( pPg->dirty );
5226 assert( pPager->needSync );
5229 /* Unlink pPg from its hash-chain */
5230 unlinkHashChain(pPager, pPg);
5232 /* If the cache contains a page with page-number pgno, remove it
5233 ** from its hash chain. Also, if the PgHdr.needSync was set for
5234 ** page pgno before the 'move' operation, it needs to be retained
5235 ** for the page moved there.
5238 pPgOld = pager_lookup(pPager, pgno);
5240 assert( pPgOld->nRef==0 );
5241 unlinkHashChain(pPager, pPgOld);
5243 pPg->needSync = pPgOld->needSync;
5247 pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno);
5249 /* Change the page number for pPg and insert it into the new hash-chain. */
5252 h = pgno & (pPager->nHash-1);
5253 if( pPager->aHash[h] ){
5254 assert( pPager->aHash[h]->pPrevHash==0 );
5255 pPager->aHash[h]->pPrevHash = pPg;
5257 pPg->pNextHash = pPager->aHash[h];
5258 pPager->aHash[h] = pPg;
5262 pPager->dirtyCache = 1;
5263 pPager->dbModified = 1;
5266 /* If needSyncPgno is non-zero, then the journal file needs to be
5267 ** sync()ed before any data is written to database file page needSyncPgno.
5268 ** Currently, no such page exists in the page-cache and the
5269 ** "is journaled" bitvec flag has been set. This needs to be remedied by
5270 ** loading the page into the pager-cache and setting the PgHdr.needSync
5273 ** If the attempt to load the page into the page-cache fails, (due
5274 ** to a malloc() or IO failure), clear the bit in the pInJournal[]
5275 ** array. Otherwise, if the page is loaded and written again in
5276 ** this transaction, it may be written to the database file before
5277 ** it is synced into the journal file. This way, it may end up in
5278 ** the journal file twice, but that is not a problem.
5280 ** The sqlite3PagerGet() call may cause the journal to sync. So make
5281 ** sure the Pager.needSync flag is set too.
5285 assert( pPager->needSync );
5286 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
5287 if( rc!=SQLITE_OK ){
5288 if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){
5289 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno);
5294 pPager->needSync = 1;
5295 pPgHdr->needSync = 1;
5296 pPgHdr->inJournal = 1;
5298 sqlite3PagerUnref(pPgHdr);
5307 ** Return a pointer to the data for the specified page.
5309 void *sqlite3PagerGetData(DbPage *pPg){
5310 return PGHDR_TO_DATA(pPg);
5314 ** Return a pointer to the Pager.nExtra bytes of "extra" space
5315 ** allocated along with the specified page.
5317 void *sqlite3PagerGetExtra(DbPage *pPg){
5318 Pager *pPager = pPg->pPager;
5319 return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
5323 ** Get/set the locking-mode for this pager. Parameter eMode must be one
5324 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
5325 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
5326 ** the locking-mode is set to the value specified.
5328 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or
5329 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
5332 int sqlite3PagerLockingMode(Pager *pPager, int eMode){
5333 assert( eMode==PAGER_LOCKINGMODE_QUERY
5334 || eMode==PAGER_LOCKINGMODE_NORMAL
5335 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
5336 assert( PAGER_LOCKINGMODE_QUERY<0 );
5337 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
5338 if( eMode>=0 && !pPager->tempFile ){
5339 pPager->exclusiveMode = eMode;
5341 return (int)pPager->exclusiveMode;
5345 ** Get/set the journal-mode for this pager. Parameter eMode must be one
5346 ** of PAGER_JOURNALMODE_QUERY, PAGER_JOURNALMODE_DELETE or
5347 ** PAGER_JOURNALMODE_PERSIST. If the parameter is not _QUERY, then
5348 ** the journal-mode is set to the value specified.
5350 ** The returned value is either PAGER_JOURNALMODE_DELETE or
5351 ** PAGER_JOURNALMODE_PERSIST, indicating the current (possibly updated)
5354 int sqlite3PagerJournalMode(Pager *pPager, int eMode){
5355 assert( eMode==PAGER_JOURNALMODE_QUERY
5356 || eMode==PAGER_JOURNALMODE_DELETE
5357 || eMode==PAGER_JOURNALMODE_PERSIST
5358 || eMode==PAGER_JOURNALMODE_OFF );
5359 assert( PAGER_JOURNALMODE_QUERY<0 );
5360 assert( PAGER_JOURNALMODE_DELETE>=0 && PAGER_JOURNALMODE_PERSIST>=0 );
5362 pPager->journalMode = eMode;
5364 return (int)pPager->journalMode;
5368 ** Get/set the size-limit used for persistent journal files.
5370 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
5372 pPager->journalSizeLimit = iLimit;
5374 return pPager->journalSizeLimit;
5377 #endif /* SQLITE_OMIT_DISKIO */