os/persistentdata/persistentstorage/sql/SQLite/mem3.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /*
     2 ** 2007 October 14
     3 **
     4 ** The author disclaims copyright to this source code.  In place of
     5 ** a legal notice, here is a blessing:
     6 **
     7 **    May you do good and not evil.
     8 **    May you find forgiveness for yourself and forgive others.
     9 **    May you share freely, never taking more than you give.
    10 **
    11 *************************************************************************
    12 ** This file contains the C functions that implement a memory
    13 ** allocation subsystem for use by SQLite. 
    14 **
    15 ** This version of the memory allocation subsystem omits all
    16 ** use of malloc(). The SQLite user supplies a block of memory
    17 ** before calling sqlite3_initialize() from which allocations
    18 ** are made and returned by the xMalloc() and xRealloc() 
    19 ** implementations. Once sqlite3_initialize() has been called,
    20 ** the amount of memory available to SQLite is fixed and cannot
    21 ** be changed.
    22 **
    23 ** This version of the memory allocation subsystem is included
    24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
    25 **
    26 ** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $
    27 */
    28 #include "sqliteInt.h"
    29 
    30 /*
    31 ** This version of the memory allocator is only built into the library
    32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
    33 ** mean that the library will use a memory-pool by default, just that
    34 ** it is available. The mempool allocator is activated by calling
    35 ** sqlite3_config().
    36 */
    37 #ifdef SQLITE_ENABLE_MEMSYS3
    38 
    39 /*
    40 ** Maximum size (in Mem3Blocks) of a "small" chunk.
    41 */
    42 #define MX_SMALL 10
    43 
    44 
    45 /*
    46 ** Number of freelist hash slots
    47 */
    48 #define N_HASH  61
    49 
    50 /*
    51 ** A memory allocation (also called a "chunk") consists of two or 
    52 ** more blocks where each block is 8 bytes.  The first 8 bytes are 
    53 ** a header that is not returned to the user.
    54 **
    55 ** A chunk is two or more blocks that is either checked out or
    56 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
    57 ** size of the allocation in blocks if the allocation is free.
    58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
    59 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
    60 ** is true if the previous chunk is checked out and false if the
    61 ** previous chunk is free.  The u.hdr.prevSize field is the size of
    62 ** the previous chunk in blocks if the previous chunk is on the
    63 ** freelist. If the previous chunk is checked out, then
    64 ** u.hdr.prevSize can be part of the data for that chunk and should
    65 ** not be read or written.
    66 **
    67 ** We often identify a chunk by its index in mem3.aPool[].  When
    68 ** this is done, the chunk index refers to the second block of
    69 ** the chunk.  In this way, the first chunk has an index of 1.
    70 ** A chunk index of 0 means "no such chunk" and is the equivalent
    71 ** of a NULL pointer.
    72 **
    73 ** The second block of free chunks is of the form u.list.  The
    74 ** two fields form a double-linked list of chunks of related sizes.
    75 ** Pointers to the head of the list are stored in mem3.aiSmall[] 
    76 ** for smaller chunks and mem3.aiHash[] for larger chunks.
    77 **
    78 ** The second block of a chunk is user data if the chunk is checked 
    79 ** out.  If a chunk is checked out, the user data may extend into
    80 ** the u.hdr.prevSize value of the following chunk.
    81 */
    82 typedef struct Mem3Block Mem3Block;
    83 struct Mem3Block {
    84   union {
    85     struct {
    86       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
    87       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
    88     } hdr;
    89     struct {
    90       u32 next;       /* Index in mem3.aPool[] of next free chunk */
    91       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
    92     } list;
    93   } u;
    94 };
    95 
    96 /*
    97 ** All of the static variables used by this module are collected
    98 ** into a single structure named "mem3".  This is to keep the
    99 ** static variables organized and to reduce namespace pollution
   100 ** when this module is combined with other in the amalgamation.
   101 */
   102 static struct {
   103   /*
   104   ** True if we are evaluating an out-of-memory callback.
   105   */
   106   int alarmBusy;
   107   
   108   /*
   109   ** Mutex to control access to the memory allocation subsystem.
   110   */
   111   sqlite3_mutex *mutex;
   112   
   113   /*
   114   ** The minimum amount of free space that we have seen.
   115   */
   116   u32 mnMaster;
   117 
   118   /*
   119   ** iMaster is the index of the master chunk.  Most new allocations
   120   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
   121   ** of the current master.  iMaster is 0 if there is not master chunk.
   122   ** The master chunk is not in either the aiHash[] or aiSmall[].
   123   */
   124   u32 iMaster;
   125   u32 szMaster;
   126 
   127   /*
   128   ** Array of lists of free blocks according to the block size 
   129   ** for smaller chunks, or a hash on the block size for larger
   130   ** chunks.
   131   */
   132   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
   133   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
   134 
   135   /*
   136   ** Memory available for allocation. nPool is the size of the array
   137   ** (in Mem3Blocks) pointed to by aPool less 2.
   138   */
   139   u32 nPool;
   140   Mem3Block *aPool;
   141 } mem3;
   142 
   143 /*
   144 ** Unlink the chunk at mem3.aPool[i] from list it is currently
   145 ** on.  *pRoot is the list that i is a member of.
   146 */
   147 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
   148   u32 next = mem3.aPool[i].u.list.next;
   149   u32 prev = mem3.aPool[i].u.list.prev;
   150   assert( sqlite3_mutex_held(mem3.mutex) );
   151   if( prev==0 ){
   152     *pRoot = next;
   153   }else{
   154     mem3.aPool[prev].u.list.next = next;
   155   }
   156   if( next ){
   157     mem3.aPool[next].u.list.prev = prev;
   158   }
   159   mem3.aPool[i].u.list.next = 0;
   160   mem3.aPool[i].u.list.prev = 0;
   161 }
   162 
   163 /*
   164 ** Unlink the chunk at index i from 
   165 ** whatever list is currently a member of.
   166 */
   167 static void memsys3Unlink(u32 i){
   168   u32 size, hash;
   169   assert( sqlite3_mutex_held(mem3.mutex) );
   170   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
   171   assert( i>=1 );
   172   size = mem3.aPool[i-1].u.hdr.size4x/4;
   173   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
   174   assert( size>=2 );
   175   if( size <= MX_SMALL ){
   176     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
   177   }else{
   178     hash = size % N_HASH;
   179     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
   180   }
   181 }
   182 
   183 /*
   184 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
   185 ** at *pRoot.
   186 */
   187 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
   188   assert( sqlite3_mutex_held(mem3.mutex) );
   189   mem3.aPool[i].u.list.next = *pRoot;
   190   mem3.aPool[i].u.list.prev = 0;
   191   if( *pRoot ){
   192     mem3.aPool[*pRoot].u.list.prev = i;
   193   }
   194   *pRoot = i;
   195 }
   196 
   197 /*
   198 ** Link the chunk at index i into either the appropriate
   199 ** small chunk list, or into the large chunk hash table.
   200 */
   201 static void memsys3Link(u32 i){
   202   u32 size, hash;
   203   assert( sqlite3_mutex_held(mem3.mutex) );
   204   assert( i>=1 );
   205   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
   206   size = mem3.aPool[i-1].u.hdr.size4x/4;
   207   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
   208   assert( size>=2 );
   209   if( size <= MX_SMALL ){
   210     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
   211   }else{
   212     hash = size % N_HASH;
   213     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
   214   }
   215 }
   216 
   217 /*
   218 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
   219 ** will already be held (obtained by code in malloc.c) if
   220 ** sqlite3Config.bMemStat is true.
   221 */
   222 static void memsys3Enter(void){
   223   if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){
   224     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   225   }
   226   sqlite3_mutex_enter(mem3.mutex);
   227 }
   228 static void memsys3Leave(void){
   229   sqlite3_mutex_leave(mem3.mutex);
   230 }
   231 
   232 /*
   233 ** Called when we are unable to satisfy an allocation of nBytes.
   234 */
   235 static void memsys3OutOfMemory(int nByte){
   236   if( !mem3.alarmBusy ){
   237     mem3.alarmBusy = 1;
   238     assert( sqlite3_mutex_held(mem3.mutex) );
   239     sqlite3_mutex_leave(mem3.mutex);
   240     sqlite3_release_memory(nByte);
   241     sqlite3_mutex_enter(mem3.mutex);
   242     mem3.alarmBusy = 0;
   243   }
   244 }
   245 
   246 
   247 /*
   248 ** Chunk i is a free chunk that has been unlinked.  Adjust its 
   249 ** size parameters for check-out and return a pointer to the 
   250 ** user portion of the chunk.
   251 */
   252 static void *memsys3Checkout(u32 i, int nBlock){
   253   u32 x;
   254   assert( sqlite3_mutex_held(mem3.mutex) );
   255   assert( i>=1 );
   256   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
   257   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
   258   x = mem3.aPool[i-1].u.hdr.size4x;
   259   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
   260   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
   261   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
   262   return &mem3.aPool[i];
   263 }
   264 
   265 /*
   266 ** Carve a piece off of the end of the mem3.iMaster free chunk.
   267 ** Return a pointer to the new allocation.  Or, if the master chunk
   268 ** is not large enough, return 0.
   269 */
   270 static void *memsys3FromMaster(int nBlock){
   271   assert( sqlite3_mutex_held(mem3.mutex) );
   272   assert( mem3.szMaster>=nBlock );
   273   if( nBlock>=mem3.szMaster-1 ){
   274     /* Use the entire master */
   275     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
   276     mem3.iMaster = 0;
   277     mem3.szMaster = 0;
   278     mem3.mnMaster = 0;
   279     return p;
   280   }else{
   281     /* Split the master block.  Return the tail. */
   282     u32 newi, x;
   283     newi = mem3.iMaster + mem3.szMaster - nBlock;
   284     assert( newi > mem3.iMaster+1 );
   285     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
   286     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
   287     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
   288     mem3.szMaster -= nBlock;
   289     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
   290     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
   291     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
   292     if( mem3.szMaster < mem3.mnMaster ){
   293       mem3.mnMaster = mem3.szMaster;
   294     }
   295     return (void*)&mem3.aPool[newi];
   296   }
   297 }
   298 
   299 /*
   300 ** *pRoot is the head of a list of free chunks of the same size
   301 ** or same size hash.  In other words, *pRoot is an entry in either
   302 ** mem3.aiSmall[] or mem3.aiHash[].  
   303 **
   304 ** This routine examines all entries on the given list and tries
   305 ** to coalesce each entries with adjacent free chunks.  
   306 **
   307 ** If it sees a chunk that is larger than mem3.iMaster, it replaces 
   308 ** the current mem3.iMaster with the new larger chunk.  In order for
   309 ** this mem3.iMaster replacement to work, the master chunk must be
   310 ** linked into the hash tables.  That is not the normal state of
   311 ** affairs, of course.  The calling routine must link the master
   312 ** chunk before invoking this routine, then must unlink the (possibly
   313 ** changed) master chunk once this routine has finished.
   314 */
   315 static void memsys3Merge(u32 *pRoot){
   316   u32 iNext, prev, size, i, x;
   317 
   318   assert( sqlite3_mutex_held(mem3.mutex) );
   319   for(i=*pRoot; i>0; i=iNext){
   320     iNext = mem3.aPool[i].u.list.next;
   321     size = mem3.aPool[i-1].u.hdr.size4x;
   322     assert( (size&1)==0 );
   323     if( (size&2)==0 ){
   324       memsys3UnlinkFromList(i, pRoot);
   325       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
   326       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
   327       if( prev==iNext ){
   328         iNext = mem3.aPool[prev].u.list.next;
   329       }
   330       memsys3Unlink(prev);
   331       size = i + size/4 - prev;
   332       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
   333       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
   334       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
   335       memsys3Link(prev);
   336       i = prev;
   337     }else{
   338       size /= 4;
   339     }
   340     if( size>mem3.szMaster ){
   341       mem3.iMaster = i;
   342       mem3.szMaster = size;
   343     }
   344   }
   345 }
   346 
   347 /*
   348 ** Return a block of memory of at least nBytes in size.
   349 ** Return NULL if unable.
   350 **
   351 ** This function assumes that the necessary mutexes, if any, are
   352 ** already held by the caller. Hence "Unsafe".
   353 */
   354 static void *memsys3MallocUnsafe(int nByte){
   355   u32 i;
   356   int nBlock;
   357   int toFree;
   358 
   359   assert( sqlite3_mutex_held(mem3.mutex) );
   360   assert( sizeof(Mem3Block)==8 );
   361   if( nByte<=12 ){
   362     nBlock = 2;
   363   }else{
   364     nBlock = (nByte + 11)/8;
   365   }
   366   assert( nBlock>=2 );
   367 
   368   /* STEP 1:
   369   ** Look for an entry of the correct size in either the small
   370   ** chunk table or in the large chunk hash table.  This is
   371   ** successful most of the time (about 9 times out of 10).
   372   */
   373   if( nBlock <= MX_SMALL ){
   374     i = mem3.aiSmall[nBlock-2];
   375     if( i>0 ){
   376       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
   377       return memsys3Checkout(i, nBlock);
   378     }
   379   }else{
   380     int hash = nBlock % N_HASH;
   381     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
   382       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
   383         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
   384         return memsys3Checkout(i, nBlock);
   385       }
   386     }
   387   }
   388 
   389   /* STEP 2:
   390   ** Try to satisfy the allocation by carving a piece off of the end
   391   ** of the master chunk.  This step usually works if step 1 fails.
   392   */
   393   if( mem3.szMaster>=nBlock ){
   394     return memsys3FromMaster(nBlock);
   395   }
   396 
   397 
   398   /* STEP 3:  
   399   ** Loop through the entire memory pool.  Coalesce adjacent free
   400   ** chunks.  Recompute the master chunk as the largest free chunk.
   401   ** Then try again to satisfy the allocation by carving a piece off
   402   ** of the end of the master chunk.  This step happens very
   403   ** rarely (we hope!)
   404   */
   405   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
   406     memsys3OutOfMemory(toFree);
   407     if( mem3.iMaster ){
   408       memsys3Link(mem3.iMaster);
   409       mem3.iMaster = 0;
   410       mem3.szMaster = 0;
   411     }
   412     for(i=0; i<N_HASH; i++){
   413       memsys3Merge(&mem3.aiHash[i]);
   414     }
   415     for(i=0; i<MX_SMALL-1; i++){
   416       memsys3Merge(&mem3.aiSmall[i]);
   417     }
   418     if( mem3.szMaster ){
   419       memsys3Unlink(mem3.iMaster);
   420       if( mem3.szMaster>=nBlock ){
   421         return memsys3FromMaster(nBlock);
   422       }
   423     }
   424   }
   425 
   426   /* If none of the above worked, then we fail. */
   427   return 0;
   428 }
   429 
   430 /*
   431 ** Free an outstanding memory allocation.
   432 **
   433 ** This function assumes that the necessary mutexes, if any, are
   434 ** already held by the caller. Hence "Unsafe".
   435 */
   436 void memsys3FreeUnsafe(void *pOld){
   437   Mem3Block *p = (Mem3Block*)pOld;
   438   int i;
   439   u32 size, x;
   440   assert( sqlite3_mutex_held(mem3.mutex) );
   441   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
   442   i = p - mem3.aPool;
   443   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
   444   size = mem3.aPool[i-1].u.hdr.size4x/4;
   445   assert( i+size<=mem3.nPool+1 );
   446   mem3.aPool[i-1].u.hdr.size4x &= ~1;
   447   mem3.aPool[i+size-1].u.hdr.prevSize = size;
   448   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
   449   memsys3Link(i);
   450 
   451   /* Try to expand the master using the newly freed chunk */
   452   if( mem3.iMaster ){
   453     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
   454       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
   455       mem3.iMaster -= size;
   456       mem3.szMaster += size;
   457       memsys3Unlink(mem3.iMaster);
   458       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
   459       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
   460       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
   461     }
   462     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
   463     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
   464       memsys3Unlink(mem3.iMaster+mem3.szMaster);
   465       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
   466       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
   467       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
   468     }
   469   }
   470 }
   471 
   472 /*
   473 ** Return the size of an outstanding allocation, in bytes.  The
   474 ** size returned omits the 8-byte header overhead.  This only
   475 ** works for chunks that are currently checked out.
   476 */
   477 static int memsys3Size(void *p){
   478   Mem3Block *pBlock;
   479   if( p==0 ) return 0;
   480   pBlock = (Mem3Block*)p;
   481   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
   482   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
   483 }
   484 
   485 /*
   486 ** Round up a request size to the next valid allocation size.
   487 */
   488 static int memsys3Roundup(int n){
   489   if( n<=12 ){
   490     return 12;
   491   }else{
   492     return ((n+11)&~7) - 4;
   493   }
   494 }
   495 
   496 /*
   497 ** Allocate nBytes of memory.
   498 */
   499 static void *memsys3Malloc(int nBytes){
   500   sqlite3_int64 *p;
   501   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
   502   memsys3Enter();
   503   p = memsys3MallocUnsafe(nBytes);
   504   memsys3Leave();
   505   return (void*)p; 
   506 }
   507 
   508 /*
   509 ** Free memory.
   510 */
   511 void memsys3Free(void *pPrior){
   512   assert( pPrior );
   513   memsys3Enter();
   514   memsys3FreeUnsafe(pPrior);
   515   memsys3Leave();
   516 }
   517 
   518 /*
   519 ** Change the size of an existing memory allocation
   520 */
   521 void *memsys3Realloc(void *pPrior, int nBytes){
   522   int nOld;
   523   void *p;
   524   if( pPrior==0 ){
   525     return sqlite3_malloc(nBytes);
   526   }
   527   if( nBytes<=0 ){
   528     sqlite3_free(pPrior);
   529     return 0;
   530   }
   531   nOld = memsys3Size(pPrior);
   532   if( nBytes<=nOld && nBytes>=nOld-128 ){
   533     return pPrior;
   534   }
   535   memsys3Enter();
   536   p = memsys3MallocUnsafe(nBytes);
   537   if( p ){
   538     if( nOld<nBytes ){
   539       memcpy(p, pPrior, nOld);
   540     }else{
   541       memcpy(p, pPrior, nBytes);
   542     }
   543     memsys3FreeUnsafe(pPrior);
   544   }
   545   memsys3Leave();
   546   return p;
   547 }
   548 
   549 /*
   550 ** Initialize this module.
   551 */
   552 static int memsys3Init(void *NotUsed){
   553   if( !sqlite3Config.pHeap ){
   554     return SQLITE_ERROR;
   555   }
   556 
   557   /* Store a pointer to the memory block in global structure mem3. */
   558   assert( sizeof(Mem3Block)==8 );
   559   mem3.aPool = (Mem3Block *)sqlite3Config.pHeap;
   560   mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2;
   561 
   562   /* Initialize the master block. */
   563   mem3.szMaster = mem3.nPool;
   564   mem3.mnMaster = mem3.szMaster;
   565   mem3.iMaster = 1;
   566   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
   567   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
   568   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
   569 
   570   return SQLITE_OK;
   571 }
   572 
   573 /*
   574 ** Deinitialize this module.
   575 */
   576 static void memsys3Shutdown(void *NotUsed){
   577   return;
   578 }
   579 
   580 
   581 
   582 /*
   583 ** Open the file indicated and write a log of all unfreed memory 
   584 ** allocations into that log.
   585 */
   586 #ifdef SQLITE_DEBUG
   587 void sqlite3Memsys3Dump(const char *zFilename){
   588   FILE *out;
   589   int i, j;
   590   u32 size;
   591   if( zFilename==0 || zFilename[0]==0 ){
   592     out = stdout;
   593   }else{
   594     out = fopen(zFilename, "w");
   595     if( out==0 ){
   596       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
   597                       zFilename);
   598       return;
   599     }
   600   }
   601   memsys3Enter();
   602   fprintf(out, "CHUNKS:\n");
   603   for(i=1; i<=mem3.nPool; i+=size/4){
   604     size = mem3.aPool[i-1].u.hdr.size4x;
   605     if( size/4<=1 ){
   606       fprintf(out, "%p size error\n", &mem3.aPool[i]);
   607       assert( 0 );
   608       break;
   609     }
   610     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
   611       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
   612       assert( 0 );
   613       break;
   614     }
   615     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
   616       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
   617       assert( 0 );
   618       break;
   619     }
   620     if( size&1 ){
   621       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
   622     }else{
   623       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
   624                   i==mem3.iMaster ? " **master**" : "");
   625     }
   626   }
   627   for(i=0; i<MX_SMALL-1; i++){
   628     if( mem3.aiSmall[i]==0 ) continue;
   629     fprintf(out, "small(%2d):", i);
   630     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
   631       fprintf(out, " %p(%d)", &mem3.aPool[j],
   632               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
   633     }
   634     fprintf(out, "\n"); 
   635   }
   636   for(i=0; i<N_HASH; i++){
   637     if( mem3.aiHash[i]==0 ) continue;
   638     fprintf(out, "hash(%2d):", i);
   639     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
   640       fprintf(out, " %p(%d)", &mem3.aPool[j],
   641               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
   642     }
   643     fprintf(out, "\n"); 
   644   }
   645   fprintf(out, "master=%d\n", mem3.iMaster);
   646   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
   647   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
   648   sqlite3_mutex_leave(mem3.mutex);
   649   if( out==stdout ){
   650     fflush(stdout);
   651   }else{
   652     fclose(out);
   653   }
   654 }
   655 #endif
   656 
   657 /*
   658 ** This routine is the only routine in this file with external 
   659 ** linkage.
   660 **
   661 ** Populate the low-level memory allocation function pointers in
   662 ** sqlite3Config.m with pointers to the routines in this file. The
   663 ** arguments specify the block of memory to manage.
   664 **
   665 ** This routine is only called by sqlite3_config(), and therefore
   666 ** is not required to be threadsafe (it is not).
   667 */
   668 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
   669   static const sqlite3_mem_methods mempoolMethods = {
   670      memsys3Malloc,
   671      memsys3Free,
   672      memsys3Realloc,
   673      memsys3Size,
   674      memsys3Roundup,
   675      memsys3Init,
   676      memsys3Shutdown,
   677      0
   678   };
   679   return &mempoolMethods;
   680 }
   681 
   682 #endif /* SQLITE_ENABLE_MEMSYS3 */