Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 ** $Id: expr.c,v 1.387 2008/07/28 19:34:53 drh Exp $
17 #include "sqliteInt.h"
21 ** Return the 'affinity' of the expression pExpr if any.
23 ** If pExpr is a column, a reference to a column via an 'AS' alias,
24 ** or a sub-select with a column as the return value, then the
25 ** affinity of that column is returned. Otherwise, 0x00 is returned,
26 ** indicating no affinity for the expression.
28 ** i.e. the WHERE clause expresssions in the following statements all
31 ** CREATE TABLE t1(a);
32 ** SELECT * FROM t1 WHERE a;
33 ** SELECT a AS b FROM t1 WHERE b;
34 ** SELECT * FROM t1 WHERE (select a from t1);
36 char sqlite3ExprAffinity(Expr *pExpr){
39 return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
41 #ifndef SQLITE_OMIT_CAST
43 return sqlite3AffinityType(&pExpr->token);
46 return pExpr->affinity;
50 ** Set the collating sequence for expression pExpr to be the collating
51 ** sequence named by pToken. Return a pointer to the revised expression.
52 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
53 ** flag. An explicit collating sequence will override implicit
54 ** collating sequences.
56 Expr *sqlite3ExprSetColl(Parse *pParse, Expr *pExpr, Token *pName){
57 char *zColl = 0; /* Dequoted name of collation sequence */
59 sqlite3 *db = pParse->db;
60 zColl = sqlite3NameFromToken(db, pName);
62 pColl = sqlite3LocateCollSeq(pParse, zColl, -1);
65 pExpr->flags |= EP_ExpCollate;
68 sqlite3DbFree(db, zColl);
73 ** Return the default collation sequence for the expression pExpr. If
74 ** there is no default collation type, return 0.
76 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
82 if( (op==TK_CAST || op==TK_UPLUS) && !pColl ){
83 return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
86 if( sqlite3CheckCollSeq(pParse, pColl) ){
93 ** pExpr is an operand of a comparison operator. aff2 is the
94 ** type affinity of the other operand. This routine returns the
95 ** type affinity that should be used for the comparison operator.
97 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
98 char aff1 = sqlite3ExprAffinity(pExpr);
100 /* Both sides of the comparison are columns. If one has numeric
101 ** affinity, use that. Otherwise use no affinity.
103 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
104 return SQLITE_AFF_NUMERIC;
106 return SQLITE_AFF_NONE;
108 }else if( !aff1 && !aff2 ){
109 /* Neither side of the comparison is a column. Compare the
112 return SQLITE_AFF_NONE;
114 /* One side is a column, the other is not. Use the columns affinity. */
115 assert( aff1==0 || aff2==0 );
116 return (aff1 + aff2);
121 ** pExpr is a comparison operator. Return the type affinity that should
122 ** be applied to both operands prior to doing the comparison.
124 static char comparisonAffinity(Expr *pExpr){
126 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
127 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
129 assert( pExpr->pLeft );
130 aff = sqlite3ExprAffinity(pExpr->pLeft);
132 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
134 else if( pExpr->pSelect ){
135 aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
138 aff = SQLITE_AFF_NONE;
144 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
145 ** idx_affinity is the affinity of an indexed column. Return true
146 ** if the index with affinity idx_affinity may be used to implement
147 ** the comparison in pExpr.
149 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
150 char aff = comparisonAffinity(pExpr);
152 case SQLITE_AFF_NONE:
154 case SQLITE_AFF_TEXT:
155 return idx_affinity==SQLITE_AFF_TEXT;
157 return sqlite3IsNumericAffinity(idx_affinity);
162 ** Return the P5 value that should be used for a binary comparison
163 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
165 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
166 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
167 aff = sqlite3CompareAffinity(pExpr1, aff) | jumpIfNull;
172 ** Return a pointer to the collation sequence that should be used by
173 ** a binary comparison operator comparing pLeft and pRight.
175 ** If the left hand expression has a collating sequence type, then it is
176 ** used. Otherwise the collation sequence for the right hand expression
177 ** is used, or the default (BINARY) if neither expression has a collating
180 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
181 ** it is not considered.
183 CollSeq *sqlite3BinaryCompareCollSeq(
190 if( pLeft->flags & EP_ExpCollate ){
191 assert( pLeft->pColl );
192 pColl = pLeft->pColl;
193 }else if( pRight && pRight->flags & EP_ExpCollate ){
194 assert( pRight->pColl );
195 pColl = pRight->pColl;
197 pColl = sqlite3ExprCollSeq(pParse, pLeft);
199 pColl = sqlite3ExprCollSeq(pParse, pRight);
206 ** Generate the operands for a comparison operation. Before
207 ** generating the code for each operand, set the EP_AnyAff
208 ** flag on the expression so that it will be able to used a
209 ** cached column value that has previously undergone an
212 static void codeCompareOperands(
213 Parse *pParse, /* Parsing and code generating context */
214 Expr *pLeft, /* The left operand */
215 int *pRegLeft, /* Register where left operand is stored */
216 int *pFreeLeft, /* Free this register when done */
217 Expr *pRight, /* The right operand */
218 int *pRegRight, /* Register where right operand is stored */
219 int *pFreeRight /* Write temp register for right operand there */
221 while( pLeft->op==TK_UPLUS ) pLeft = pLeft->pLeft;
222 pLeft->flags |= EP_AnyAff;
223 *pRegLeft = sqlite3ExprCodeTemp(pParse, pLeft, pFreeLeft);
224 while( pRight->op==TK_UPLUS ) pRight = pRight->pLeft;
225 pRight->flags |= EP_AnyAff;
226 *pRegRight = sqlite3ExprCodeTemp(pParse, pRight, pFreeRight);
230 ** Generate code for a comparison operator.
232 static int codeCompare(
233 Parse *pParse, /* The parsing (and code generating) context */
234 Expr *pLeft, /* The left operand */
235 Expr *pRight, /* The right operand */
236 int opcode, /* The comparison opcode */
237 int in1, int in2, /* Register holding operands */
238 int dest, /* Jump here if true. */
239 int jumpIfNull /* If true, jump if either operand is NULL */
245 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
246 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
247 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
248 (void*)p4, P4_COLLSEQ);
249 sqlite3VdbeChangeP5(pParse->pVdbe, p5);
250 if( (p5 & SQLITE_AFF_MASK)!=SQLITE_AFF_NONE ){
251 sqlite3ExprCacheAffinityChange(pParse, in1, 1);
252 sqlite3ExprCacheAffinityChange(pParse, in2, 1);
257 #if SQLITE_MAX_EXPR_DEPTH>0
259 ** Check that argument nHeight is less than or equal to the maximum
260 ** expression depth allowed. If it is not, leave an error message in
263 static int checkExprHeight(Parse *pParse, int nHeight){
265 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
266 if( nHeight>mxHeight ){
267 sqlite3ErrorMsg(pParse,
268 "Expression tree is too large (maximum depth %d)", mxHeight
275 /* The following three functions, heightOfExpr(), heightOfExprList()
276 ** and heightOfSelect(), are used to determine the maximum height
277 ** of any expression tree referenced by the structure passed as the
280 ** If this maximum height is greater than the current value pointed
281 ** to by pnHeight, the second parameter, then set *pnHeight to that
284 static void heightOfExpr(Expr *p, int *pnHeight){
286 if( p->nHeight>*pnHeight ){
287 *pnHeight = p->nHeight;
291 static void heightOfExprList(ExprList *p, int *pnHeight){
294 for(i=0; i<p->nExpr; i++){
295 heightOfExpr(p->a[i].pExpr, pnHeight);
299 static void heightOfSelect(Select *p, int *pnHeight){
301 heightOfExpr(p->pWhere, pnHeight);
302 heightOfExpr(p->pHaving, pnHeight);
303 heightOfExpr(p->pLimit, pnHeight);
304 heightOfExpr(p->pOffset, pnHeight);
305 heightOfExprList(p->pEList, pnHeight);
306 heightOfExprList(p->pGroupBy, pnHeight);
307 heightOfExprList(p->pOrderBy, pnHeight);
308 heightOfSelect(p->pPrior, pnHeight);
313 ** Set the Expr.nHeight variable in the structure passed as an
314 ** argument. An expression with no children, Expr.pList or
315 ** Expr.pSelect member has a height of 1. Any other expression
316 ** has a height equal to the maximum height of any other
317 ** referenced Expr plus one.
319 static void exprSetHeight(Expr *p){
321 heightOfExpr(p->pLeft, &nHeight);
322 heightOfExpr(p->pRight, &nHeight);
323 heightOfExprList(p->pList, &nHeight);
324 heightOfSelect(p->pSelect, &nHeight);
325 p->nHeight = nHeight + 1;
329 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
330 ** the height is greater than the maximum allowed expression depth,
331 ** leave an error in pParse.
333 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
335 checkExprHeight(pParse, p->nHeight);
339 ** Return the maximum height of any expression tree referenced
340 ** by the select statement passed as an argument.
342 int sqlite3SelectExprHeight(Select *p){
344 heightOfSelect(p, &nHeight);
348 #define checkExprHeight(x,y)
349 #define exprSetHeight(y)
350 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
353 ** Construct a new expression node and return a pointer to it. Memory
354 ** for this node is obtained from sqlite3_malloc(). The calling function
355 ** is responsible for making sure the node eventually gets freed.
358 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
359 int op, /* Expression opcode */
360 Expr *pLeft, /* Left operand */
361 Expr *pRight, /* Right operand */
362 const Token *pToken /* Argument token */
365 pNew = sqlite3DbMallocZero(db, sizeof(Expr));
367 /* When malloc fails, delete pLeft and pRight. Expressions passed to
368 ** this function must always be allocated with sqlite3Expr() for this
371 sqlite3ExprDelete(db, pLeft);
372 sqlite3ExprDelete(db, pRight);
377 pNew->pRight = pRight;
379 pNew->span.z = (u8*)"";
381 assert( pToken->dyn==0 );
382 pNew->span = pNew->token = *pToken;
385 if( pRight->span.dyn==0 && pLeft->span.dyn==0 ){
386 sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
388 if( pRight->flags & EP_ExpCollate ){
389 pNew->flags |= EP_ExpCollate;
390 pNew->pColl = pRight->pColl;
393 if( pLeft->flags & EP_ExpCollate ){
394 pNew->flags |= EP_ExpCollate;
395 pNew->pColl = pLeft->pColl;
404 ** Works like sqlite3Expr() except that it takes an extra Parse*
405 ** argument and notifies the associated connection object if malloc fails.
408 Parse *pParse, /* Parsing context */
409 int op, /* Expression opcode */
410 Expr *pLeft, /* Left operand */
411 Expr *pRight, /* Right operand */
412 const Token *pToken /* Argument token */
414 Expr *p = sqlite3Expr(pParse->db, op, pLeft, pRight, pToken);
416 checkExprHeight(pParse, p->nHeight);
422 ** When doing a nested parse, you can include terms in an expression
423 ** that look like this: #1 #2 ... These terms refer to registers
424 ** in the virtual machine. #N is the N-th register.
426 ** This routine is called by the parser to deal with on of those terms.
427 ** It immediately generates code to store the value in a memory location.
428 ** The returns an expression that will code to extract the value from
429 ** that memory location as needed.
431 Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
432 Vdbe *v = pParse->pVdbe;
434 if( pParse->nested==0 ){
435 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
436 return sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
439 p = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, pToken);
441 return 0; /* Malloc failed */
443 p->iTable = atoi((char*)&pToken->z[1]);
448 ** Join two expressions using an AND operator. If either expression is
449 ** NULL, then just return the other expression.
451 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
454 }else if( pRight==0 ){
457 return sqlite3Expr(db, TK_AND, pLeft, pRight, 0);
462 ** Set the Expr.span field of the given expression to span all
463 ** text between the two given tokens. Both tokens must be pointing
464 ** at the same string.
466 void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
470 pExpr->span.z = pLeft->z;
471 pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
476 ** Construct a new expression node for a function with multiple
479 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
481 sqlite3 *db = pParse->db;
483 pNew = sqlite3DbMallocZero(db, sizeof(Expr) );
485 sqlite3ExprListDelete(db, pList); /* Avoid leaking memory when malloc fails */
488 pNew->op = TK_FUNCTION;
490 assert( pToken->dyn==0 );
491 pNew->token = *pToken;
492 pNew->span = pNew->token;
494 sqlite3ExprSetHeight(pParse, pNew);
499 ** Assign a variable number to an expression that encodes a wildcard
500 ** in the original SQL statement.
502 ** Wildcards consisting of a single "?" are assigned the next sequential
505 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
506 ** sure "nnn" is not too be to avoid a denial of service attack when
507 ** the SQL statement comes from an external source.
509 ** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
510 ** as the previous instance of the same wildcard. Or if this is the first
511 ** instance of the wildcard, the next sequenial variable number is
514 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
516 sqlite3 *db = pParse->db;
518 if( pExpr==0 ) return;
519 pToken = &pExpr->token;
520 assert( pToken->n>=1 );
521 assert( pToken->z!=0 );
522 assert( pToken->z[0]!=0 );
524 /* Wildcard of the form "?". Assign the next variable number */
525 pExpr->iTable = ++pParse->nVar;
526 }else if( pToken->z[0]=='?' ){
527 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
528 ** use it as the variable number */
530 pExpr->iTable = i = atoi((char*)&pToken->z[1]);
533 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
534 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
535 if( i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
536 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
537 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
539 if( i>pParse->nVar ){
543 /* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
544 ** number as the prior appearance of the same name, or if the name
545 ** has never appeared before, reuse the same variable number
549 for(i=0; i<pParse->nVarExpr; i++){
551 if( (pE = pParse->apVarExpr[i])!=0
553 && memcmp(pE->token.z, pToken->z, n)==0 ){
554 pExpr->iTable = pE->iTable;
558 if( i>=pParse->nVarExpr ){
559 pExpr->iTable = ++pParse->nVar;
560 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
561 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
563 sqlite3DbReallocOrFree(
566 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
569 if( !db->mallocFailed ){
570 assert( pParse->apVarExpr!=0 );
571 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
575 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
576 sqlite3ErrorMsg(pParse, "too many SQL variables");
581 ** Recursively delete an expression tree.
583 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
585 if( p->span.dyn ) sqlite3DbFree(db, (char*)p->span.z);
586 if( p->token.dyn ) sqlite3DbFree(db, (char*)p->token.z);
587 sqlite3ExprDelete(db, p->pLeft);
588 sqlite3ExprDelete(db, p->pRight);
589 sqlite3ExprListDelete(db, p->pList);
590 sqlite3SelectDelete(db, p->pSelect);
591 sqlite3DbFree(db, p);
595 ** The Expr.token field might be a string literal that is quoted.
596 ** If so, remove the quotation marks.
598 void sqlite3DequoteExpr(sqlite3 *db, Expr *p){
599 if( ExprHasAnyProperty(p, EP_Dequoted) ){
602 ExprSetProperty(p, EP_Dequoted);
603 if( p->token.dyn==0 ){
604 sqlite3TokenCopy(db, &p->token, &p->token);
606 sqlite3Dequote((char*)p->token.z);
611 ** The following group of routines make deep copies of expressions,
612 ** expression lists, ID lists, and select statements. The copies can
613 ** be deleted (by being passed to their respective ...Delete() routines)
614 ** without effecting the originals.
616 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
617 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
618 ** by subsequent calls to sqlite*ListAppend() routines.
620 ** Any tables that the SrcList might point to are not duplicated.
622 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p){
625 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
626 if( pNew==0 ) return 0;
627 memcpy(pNew, p, sizeof(*pNew));
629 pNew->token.z = (u8*)sqlite3DbStrNDup(db, (char*)p->token.z, p->token.n);
632 assert( pNew->token.z==0 );
635 pNew->pLeft = sqlite3ExprDup(db, p->pLeft);
636 pNew->pRight = sqlite3ExprDup(db, p->pRight);
637 pNew->pList = sqlite3ExprListDup(db, p->pList);
638 pNew->pSelect = sqlite3SelectDup(db, p->pSelect);
641 void sqlite3TokenCopy(sqlite3 *db, Token *pTo, Token *pFrom){
642 if( pTo->dyn ) sqlite3DbFree(db, (char*)pTo->z);
645 pTo->z = (u8*)sqlite3DbStrNDup(db, (char*)pFrom->z, pFrom->n);
651 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p){
653 struct ExprList_item *pItem, *pOldItem;
656 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
657 if( pNew==0 ) return 0;
659 pNew->nExpr = pNew->nAlloc = p->nExpr;
660 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
662 sqlite3DbFree(db, pNew);
666 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
667 Expr *pNewExpr, *pOldExpr;
668 pItem->pExpr = pNewExpr = sqlite3ExprDup(db, pOldExpr = pOldItem->pExpr);
669 if( pOldExpr->span.z!=0 && pNewExpr ){
670 /* Always make a copy of the span for top-level expressions in the
671 ** expression list. The logic in SELECT processing that determines
672 ** the names of columns in the result set needs this information */
673 sqlite3TokenCopy(db, &pNewExpr->span, &pOldExpr->span);
675 assert( pNewExpr==0 || pNewExpr->span.z!=0
676 || pOldExpr->span.z==0
677 || db->mallocFailed );
678 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
679 pItem->sortOrder = pOldItem->sortOrder;
680 pItem->isAgg = pOldItem->isAgg;
687 ** If cursors, triggers, views and subqueries are all omitted from
688 ** the build, then none of the following routines, except for
689 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
690 ** called with a NULL argument.
692 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
693 || !defined(SQLITE_OMIT_SUBQUERY)
694 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p){
699 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
700 pNew = sqlite3DbMallocRaw(db, nByte );
701 if( pNew==0 ) return 0;
702 pNew->nSrc = pNew->nAlloc = p->nSrc;
703 for(i=0; i<p->nSrc; i++){
704 struct SrcList_item *pNewItem = &pNew->a[i];
705 struct SrcList_item *pOldItem = &p->a[i];
707 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
708 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
709 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
710 pNewItem->jointype = pOldItem->jointype;
711 pNewItem->iCursor = pOldItem->iCursor;
712 pNewItem->isPopulated = pOldItem->isPopulated;
713 pTab = pNewItem->pTab = pOldItem->pTab;
717 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect);
718 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn);
719 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
720 pNewItem->colUsed = pOldItem->colUsed;
724 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
728 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
729 if( pNew==0 ) return 0;
730 pNew->nId = pNew->nAlloc = p->nId;
731 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
733 sqlite3DbFree(db, pNew);
736 for(i=0; i<p->nId; i++){
737 struct IdList_item *pNewItem = &pNew->a[i];
738 struct IdList_item *pOldItem = &p->a[i];
739 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
740 pNewItem->idx = pOldItem->idx;
744 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
747 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
748 if( pNew==0 ) return 0;
749 pNew->isDistinct = p->isDistinct;
750 pNew->pEList = sqlite3ExprListDup(db, p->pEList);
751 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc);
752 pNew->pWhere = sqlite3ExprDup(db, p->pWhere);
753 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy);
754 pNew->pHaving = sqlite3ExprDup(db, p->pHaving);
755 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy);
757 pNew->pPrior = sqlite3SelectDup(db, p->pPrior);
758 pNew->pLimit = sqlite3ExprDup(db, p->pLimit);
759 pNew->pOffset = sqlite3ExprDup(db, p->pOffset);
762 pNew->isResolved = p->isResolved;
763 pNew->isAgg = p->isAgg;
765 pNew->disallowOrderBy = 0;
766 pNew->pRightmost = 0;
767 pNew->addrOpenEphm[0] = -1;
768 pNew->addrOpenEphm[1] = -1;
769 pNew->addrOpenEphm[2] = -1;
773 Select *sqlite3SelectDup(sqlite3 *db, Select *p){
781 ** Add a new element to the end of an expression list. If pList is
782 ** initially NULL, then create a new expression list.
784 ExprList *sqlite3ExprListAppend(
785 Parse *pParse, /* Parsing context */
786 ExprList *pList, /* List to which to append. Might be NULL */
787 Expr *pExpr, /* Expression to be appended */
788 Token *pName /* AS keyword for the expression */
790 sqlite3 *db = pParse->db;
792 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
796 assert( pList->nAlloc==0 );
798 if( pList->nAlloc<=pList->nExpr ){
799 struct ExprList_item *a;
800 int n = pList->nAlloc*2 + 4;
801 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
808 assert( pList->a!=0 );
809 if( pExpr || pName ){
810 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
811 memset(pItem, 0, sizeof(*pItem));
812 pItem->zName = sqlite3NameFromToken(db, pName);
813 pItem->pExpr = pExpr;
818 /* Avoid leaking memory if malloc has failed. */
819 sqlite3ExprDelete(db, pExpr);
820 sqlite3ExprListDelete(db, pList);
825 ** If the expression list pEList contains more than iLimit elements,
826 ** leave an error message in pParse.
828 void sqlite3ExprListCheckLength(
833 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
834 testcase( pEList && pEList->nExpr==mx );
835 testcase( pEList && pEList->nExpr==mx+1 );
836 if( pEList && pEList->nExpr>mx ){
837 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
842 ** Delete an entire expression list.
844 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
846 struct ExprList_item *pItem;
847 if( pList==0 ) return;
848 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
849 assert( pList->nExpr<=pList->nAlloc );
850 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
851 sqlite3ExprDelete(db, pItem->pExpr);
852 sqlite3DbFree(db, pItem->zName);
854 sqlite3DbFree(db, pList->a);
855 sqlite3DbFree(db, pList);
859 ** Walk an expression tree. Call xFunc for each node visited. xFunc
860 ** is called on the node before xFunc is called on the nodes children.
862 ** The return value from xFunc determines whether the tree walk continues.
863 ** 0 means continue walking the tree. 1 means do not walk children
864 ** of the current node but continue with siblings. 2 means abandon
865 ** the tree walk completely.
867 ** The return value from this routine is 1 to abandon the tree walk
868 ** and 0 to continue.
870 ** NOTICE: This routine does *not* descend into subqueries.
872 static int walkExprList(ExprList *, int (*)(void *, Expr*), void *);
873 static int walkExprTree(Expr *pExpr, int (*xFunc)(void*,Expr*), void *pArg){
875 if( pExpr==0 ) return 0;
876 rc = (*xFunc)(pArg, pExpr);
878 if( walkExprTree(pExpr->pLeft, xFunc, pArg) ) return 1;
879 if( walkExprTree(pExpr->pRight, xFunc, pArg) ) return 1;
880 if( walkExprList(pExpr->pList, xFunc, pArg) ) return 1;
886 ** Call walkExprTree() for every expression in list p.
888 static int walkExprList(ExprList *p, int (*xFunc)(void *, Expr*), void *pArg){
890 struct ExprList_item *pItem;
892 for(i=p->nExpr, pItem=p->a; i>0; i--, pItem++){
893 if( walkExprTree(pItem->pExpr, xFunc, pArg) ) return 1;
899 ** Call walkExprTree() for every expression in Select p, not including
900 ** expressions that are part of sub-selects in any FROM clause or the LIMIT
901 ** or OFFSET expressions..
903 static int walkSelectExpr(Select *p, int (*xFunc)(void *, Expr*), void *pArg){
904 walkExprList(p->pEList, xFunc, pArg);
905 walkExprTree(p->pWhere, xFunc, pArg);
906 walkExprList(p->pGroupBy, xFunc, pArg);
907 walkExprTree(p->pHaving, xFunc, pArg);
908 walkExprList(p->pOrderBy, xFunc, pArg);
910 walkSelectExpr(p->pPrior, xFunc, pArg);
917 ** This routine is designed as an xFunc for walkExprTree().
919 ** pArg is really a pointer to an integer. If we can tell by looking
920 ** at pExpr that the expression that contains pExpr is not a constant
921 ** expression, then set *pArg to 0 and return 2 to abandon the tree walk.
922 ** If pExpr does does not disqualify the expression from being a constant
925 ** After walking the whole tree, if no nodes are found that disqualify
926 ** the expression as constant, then we assume the whole expression
927 ** is constant. See sqlite3ExprIsConstant() for additional information.
929 static int exprNodeIsConstant(void *pArg, Expr *pExpr){
930 int *pN = (int*)pArg;
932 /* If *pArg is 3 then any term of the expression that comes from
933 ** the ON or USING clauses of a join disqualifies the expression
934 ** from being considered constant. */
935 if( (*pN)==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
941 /* Consider functions to be constant if all their arguments are constant
944 if( (*pN)==2 ) return 0;
949 case TK_AGG_FUNCTION:
951 #ifndef SQLITE_OMIT_SUBQUERY
954 testcase( pExpr->op==TK_SELECT );
955 testcase( pExpr->op==TK_EXISTS );
957 testcase( pExpr->op==TK_ID );
958 testcase( pExpr->op==TK_COLUMN );
959 testcase( pExpr->op==TK_DOT );
960 testcase( pExpr->op==TK_AGG_FUNCTION );
961 testcase( pExpr->op==TK_AGG_COLUMN );
965 if( pExpr->pSelect ){
975 ** Walk an expression tree. Return 1 if the expression is constant
976 ** and 0 if it involves variables or function calls.
978 ** For the purposes of this function, a double-quoted string (ex: "abc")
979 ** is considered a variable but a single-quoted string (ex: 'abc') is
982 int sqlite3ExprIsConstant(Expr *p){
984 walkExprTree(p, exprNodeIsConstant, &isConst);
989 ** Walk an expression tree. Return 1 if the expression is constant
990 ** that does no originate from the ON or USING clauses of a join.
991 ** Return 0 if it involves variables or function calls or terms from
992 ** an ON or USING clause.
994 int sqlite3ExprIsConstantNotJoin(Expr *p){
996 walkExprTree(p, exprNodeIsConstant, &isConst);
1001 ** Walk an expression tree. Return 1 if the expression is constant
1002 ** or a function call with constant arguments. Return and 0 if there
1003 ** are any variables.
1005 ** For the purposes of this function, a double-quoted string (ex: "abc")
1006 ** is considered a variable but a single-quoted string (ex: 'abc') is
1009 int sqlite3ExprIsConstantOrFunction(Expr *p){
1011 walkExprTree(p, exprNodeIsConstant, &isConst);
1016 ** If the expression p codes a constant integer that is small enough
1017 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1018 ** in *pValue. If the expression is not an integer or if it is too big
1019 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1021 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1023 if( p->flags & EP_IntValue ){
1024 *pValue = p->iTable;
1029 rc = sqlite3GetInt32((char*)p->token.z, pValue);
1033 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1038 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1048 p->flags |= EP_IntValue;
1049 p->iTable = *pValue;
1055 ** Return TRUE if the given string is a row-id column name.
1057 int sqlite3IsRowid(const char *z){
1058 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1059 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1060 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1065 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up
1066 ** that name in the set of source tables in pSrcList and make the pExpr
1067 ** expression node refer back to that source column. The following changes
1068 ** are made to pExpr:
1070 ** pExpr->iDb Set the index in db->aDb[] of the database holding
1072 ** pExpr->iTable Set to the cursor number for the table obtained
1074 ** pExpr->iColumn Set to the column number within the table.
1075 ** pExpr->op Set to TK_COLUMN.
1076 ** pExpr->pLeft Any expression this points to is deleted
1077 ** pExpr->pRight Any expression this points to is deleted.
1079 ** The pDbToken is the name of the database (the "X"). This value may be
1080 ** NULL meaning that name is of the form Y.Z or Z. Any available database
1081 ** can be used. The pTableToken is the name of the table (the "Y"). This
1082 ** value can be NULL if pDbToken is also NULL. If pTableToken is NULL it
1083 ** means that the form of the name is Z and that columns from any table
1086 ** If the name cannot be resolved unambiguously, leave an error message
1087 ** in pParse and return non-zero. Return zero on success.
1089 static int lookupName(
1090 Parse *pParse, /* The parsing context */
1091 Token *pDbToken, /* Name of the database containing table, or NULL */
1092 Token *pTableToken, /* Name of table containing column, or NULL */
1093 Token *pColumnToken, /* Name of the column. */
1094 NameContext *pNC, /* The name context used to resolve the name */
1095 Expr *pExpr /* Make this EXPR node point to the selected column */
1097 char *zDb = 0; /* Name of the database. The "X" in X.Y.Z */
1098 char *zTab = 0; /* Name of the table. The "Y" in X.Y.Z or Y.Z */
1099 char *zCol = 0; /* Name of the column. The "Z" */
1100 int i, j; /* Loop counters */
1101 int cnt = 0; /* Number of matching column names */
1102 int cntTab = 0; /* Number of matching table names */
1103 sqlite3 *db = pParse->db; /* The database */
1104 struct SrcList_item *pItem; /* Use for looping over pSrcList items */
1105 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */
1106 NameContext *pTopNC = pNC; /* First namecontext in the list */
1107 Schema *pSchema = 0; /* Schema of the expression */
1109 assert( pColumnToken && pColumnToken->z ); /* The Z in X.Y.Z cannot be NULL */
1110 zDb = sqlite3NameFromToken(db, pDbToken);
1111 zTab = sqlite3NameFromToken(db, pTableToken);
1112 zCol = sqlite3NameFromToken(db, pColumnToken);
1113 if( db->mallocFailed ){
1114 goto lookupname_end;
1118 while( pNC && cnt==0 ){
1120 SrcList *pSrcList = pNC->pSrcList;
1123 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){
1130 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1131 assert( pTab->nCol>0 );
1133 if( pItem->zAlias ){
1134 char *zTabName = pItem->zAlias;
1135 if( sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1137 char *zTabName = pTab->zName;
1138 if( zTabName==0 || sqlite3StrICmp(zTabName, zTab)!=0 ) continue;
1139 if( zDb!=0 && sqlite3StrICmp(db->aDb[iDb].zName, zDb)!=0 ){
1144 if( 0==(cntTab++) ){
1145 pExpr->iTable = pItem->iCursor;
1146 pSchema = pTab->pSchema;
1149 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
1150 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1151 const char *zColl = pTab->aCol[j].zColl;
1154 pExpr->iTable = pItem->iCursor;
1156 pSchema = pTab->pSchema;
1157 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */
1158 pExpr->iColumn = j==pTab->iPKey ? -1 : j;
1159 pExpr->affinity = pTab->aCol[j].affinity;
1160 if( (pExpr->flags & EP_ExpCollate)==0 ){
1161 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1163 if( i<pSrcList->nSrc-1 ){
1164 if( pItem[1].jointype & JT_NATURAL ){
1165 /* If this match occurred in the left table of a natural join,
1166 ** then skip the right table to avoid a duplicate match */
1169 }else if( (pUsing = pItem[1].pUsing)!=0 ){
1170 /* If this match occurs on a column that is in the USING clause
1171 ** of a join, skip the search of the right table of the join
1172 ** to avoid a duplicate match there. */
1174 for(k=0; k<pUsing->nId; k++){
1175 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ){
1189 #ifndef SQLITE_OMIT_TRIGGER
1190 /* If we have not already resolved the name, then maybe
1191 ** it is a new.* or old.* trigger argument reference
1193 if( zDb==0 && zTab!=0 && cnt==0 && pParse->trigStack!=0 ){
1194 TriggerStack *pTriggerStack = pParse->trigStack;
1197 if( pTriggerStack->newIdx != -1 && sqlite3StrICmp("new", zTab) == 0 ){
1198 pExpr->iTable = pTriggerStack->newIdx;
1199 assert( pTriggerStack->pTab );
1200 pTab = pTriggerStack->pTab;
1201 piColMask = &(pTriggerStack->newColMask);
1202 }else if( pTriggerStack->oldIdx != -1 && sqlite3StrICmp("old", zTab)==0 ){
1203 pExpr->iTable = pTriggerStack->oldIdx;
1204 assert( pTriggerStack->pTab );
1205 pTab = pTriggerStack->pTab;
1206 piColMask = &(pTriggerStack->oldColMask);
1211 Column *pCol = pTab->aCol;
1213 pSchema = pTab->pSchema;
1215 for(iCol=0; iCol < pTab->nCol; iCol++, pCol++) {
1216 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
1217 const char *zColl = pTab->aCol[iCol].zColl;
1219 pExpr->iColumn = iCol==pTab->iPKey ? -1 : iCol;
1220 pExpr->affinity = pTab->aCol[iCol].affinity;
1221 if( (pExpr->flags & EP_ExpCollate)==0 ){
1222 pExpr->pColl = sqlite3FindCollSeq(db, ENC(db), zColl,-1, 0);
1226 testcase( iCol==31 );
1227 testcase( iCol==32 );
1228 *piColMask |= ((u32)1<<iCol) | (iCol>=32?0xffffffff:0);
1235 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1238 ** Perhaps the name is a reference to the ROWID
1240 if( cnt==0 && cntTab==1 && sqlite3IsRowid(zCol) ){
1242 pExpr->iColumn = -1;
1243 pExpr->affinity = SQLITE_AFF_INTEGER;
1247 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
1248 ** might refer to an result-set alias. This happens, for example, when
1249 ** we are resolving names in the WHERE clause of the following command:
1251 ** SELECT a+b AS x FROM table WHERE x<10;
1253 ** In cases like this, replace pExpr with a copy of the expression that
1254 ** forms the result set entry ("a+b" in the example) and return immediately.
1255 ** Note that the expression in the result set should have already been
1256 ** resolved by the time the WHERE clause is resolved.
1258 if( cnt==0 && (pEList = pNC->pEList)!=0 && zTab==0 ){
1259 for(j=0; j<pEList->nExpr; j++){
1260 char *zAs = pEList->a[j].zName;
1261 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1263 assert( pExpr->pLeft==0 && pExpr->pRight==0 );
1264 assert( pExpr->pList==0 );
1265 assert( pExpr->pSelect==0 );
1266 pOrig = pEList->a[j].pExpr;
1267 if( !pNC->allowAgg && ExprHasProperty(pOrig, EP_Agg) ){
1268 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
1269 sqlite3DbFree(db, zCol);
1272 pDup = sqlite3ExprDup(db, pOrig);
1273 if( pExpr->flags & EP_ExpCollate ){
1274 pDup->pColl = pExpr->pColl;
1275 pDup->flags |= EP_ExpCollate;
1277 if( pExpr->span.dyn ) sqlite3DbFree(db, (char*)pExpr->span.z);
1278 if( pExpr->token.dyn ) sqlite3DbFree(db, (char*)pExpr->token.z);
1279 memcpy(pExpr, pDup, sizeof(*pExpr));
1280 sqlite3DbFree(db, pDup);
1283 assert( zTab==0 && zDb==0 );
1284 goto lookupname_end_2;
1289 /* Advance to the next name context. The loop will exit when either
1290 ** we have a match (cnt>0) or when we run out of name contexts.
1298 ** If X and Y are NULL (in other words if only the column name Z is
1299 ** supplied) and the value of Z is enclosed in double-quotes, then
1300 ** Z is a string literal if it doesn't match any column names. In that
1301 ** case, we need to return right away and not make any changes to
1304 ** Because no reference was made to outer contexts, the pNC->nRef
1305 ** fields are not changed in any context.
1307 if( cnt==0 && zTab==0 && pColumnToken->z[0]=='"' ){
1308 sqlite3DbFree(db, zCol);
1313 ** cnt==0 means there was not match. cnt>1 means there were two or
1314 ** more matches. Either way, we have an error.
1318 zErr = cnt==0 ? "no such column" : "ambiguous column name";
1320 sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol);
1322 sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol);
1324 sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol);
1329 /* If a column from a table in pSrcList is referenced, then record
1330 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes
1331 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the
1332 ** column number is greater than the number of bits in the bitmask
1333 ** then set the high-order bit of the bitmask.
1335 if( pExpr->iColumn>=0 && pMatch!=0 ){
1336 int n = pExpr->iColumn;
1337 testcase( n==sizeof(Bitmask)*8-1 );
1338 if( n>=sizeof(Bitmask)*8 ){
1339 n = sizeof(Bitmask)*8-1;
1341 assert( pMatch->iCursor==pExpr->iTable );
1342 pMatch->colUsed |= ((Bitmask)1)<<n;
1346 /* Clean up and return
1348 sqlite3DbFree(db, zDb);
1349 sqlite3DbFree(db, zTab);
1350 sqlite3ExprDelete(db, pExpr->pLeft);
1352 sqlite3ExprDelete(db, pExpr->pRight);
1354 pExpr->op = TK_COLUMN;
1356 sqlite3DbFree(db, zCol);
1359 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList);
1360 if( pMatch && !pMatch->pSelect ){
1361 pExpr->pTab = pMatch->pTab;
1363 /* Increment the nRef value on all name contexts from TopNC up to
1364 ** the point where the name matched. */
1366 assert( pTopNC!=0 );
1368 if( pTopNC==pNC ) break;
1369 pTopNC = pTopNC->pNext;
1378 ** This routine is designed as an xFunc for walkExprTree().
1380 ** Resolve symbolic names into TK_COLUMN operators for the current
1381 ** node in the expression tree. Return 0 to continue the search down
1382 ** the tree or 2 to abort the tree walk.
1384 ** This routine also does error checking and name resolution for
1385 ** function names. The operator for aggregate functions is changed
1386 ** to TK_AGG_FUNCTION.
1388 static int nameResolverStep(void *pArg, Expr *pExpr){
1389 NameContext *pNC = (NameContext*)pArg;
1392 if( pExpr==0 ) return 1;
1394 pParse = pNC->pParse;
1396 if( ExprHasAnyProperty(pExpr, EP_Resolved) ) return 1;
1397 ExprSetProperty(pExpr, EP_Resolved);
1399 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){
1400 SrcList *pSrcList = pNC->pSrcList;
1402 for(i=0; i<pNC->pSrcList->nSrc; i++){
1403 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab);
1407 switch( pExpr->op ){
1408 /* Double-quoted strings (ex: "abc") are used as identifiers if
1409 ** possible. Otherwise they remain as strings. Single-quoted
1410 ** strings (ex: 'abc') are always string literals.
1413 if( pExpr->token.z[0]=='\'' ) break;
1414 /* Fall thru into the TK_ID case if this is a double-quoted string */
1416 /* A lone identifier is the name of a column.
1419 lookupName(pParse, 0, 0, &pExpr->token, pNC, pExpr);
1423 /* A table name and column name: ID.ID
1424 ** Or a database, table and column: ID.ID.ID
1432 /* if( pSrcList==0 ) break; */
1433 pRight = pExpr->pRight;
1434 if( pRight->op==TK_ID ){
1436 pTable = &pExpr->pLeft->token;
1437 pColumn = &pRight->token;
1439 assert( pRight->op==TK_DOT );
1440 pDb = &pExpr->pLeft->token;
1441 pTable = &pRight->pLeft->token;
1442 pColumn = &pRight->pRight->token;
1444 lookupName(pParse, pDb, pTable, pColumn, pNC, pExpr);
1448 /* Resolve function names
1452 ExprList *pList = pExpr->pList; /* The argument list */
1453 int n = pList ? pList->nExpr : 0; /* Number of arguments */
1454 int no_such_func = 0; /* True if no such function exists */
1455 int wrong_num_args = 0; /* True if wrong number of arguments */
1456 int is_agg = 0; /* True if is an aggregate function */
1458 int auth; /* Authorization to use the function */
1459 int nId; /* Number of characters in function name */
1460 const char *zId; /* The function name. */
1461 FuncDef *pDef; /* Information about the function */
1462 int enc = ENC(pParse->db); /* The database encoding */
1464 zId = (char*)pExpr->token.z;
1465 nId = pExpr->token.n;
1466 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0);
1468 pDef = sqlite3FindFunction(pParse->db, zId, nId, -1, enc, 0);
1475 is_agg = pDef->xFunc==0;
1477 #ifndef SQLITE_OMIT_AUTHORIZATION
1479 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
1480 if( auth!=SQLITE_OK ){
1481 if( auth==SQLITE_DENY ){
1482 sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
1486 pExpr->op = TK_NULL;
1491 if( is_agg && !pNC->allowAgg ){
1492 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
1495 }else if( no_such_func ){
1496 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
1498 }else if( wrong_num_args ){
1499 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
1504 pExpr->op = TK_AGG_FUNCTION;
1507 if( is_agg ) pNC->allowAgg = 0;
1508 for(i=0; pNC->nErr==0 && i<n; i++){
1509 walkExprTree(pList->a[i].pExpr, nameResolverStep, pNC);
1511 if( is_agg ) pNC->allowAgg = 1;
1512 /* FIX ME: Compute pExpr->affinity based on the expected return
1513 ** type of the function
1517 #ifndef SQLITE_OMIT_SUBQUERY
1522 if( pExpr->pSelect ){
1523 int nRef = pNC->nRef;
1524 #ifndef SQLITE_OMIT_CHECK
1526 sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints");
1529 sqlite3SelectResolve(pParse, pExpr->pSelect, pNC);
1530 assert( pNC->nRef>=nRef );
1531 if( nRef!=pNC->nRef ){
1532 ExprSetProperty(pExpr, EP_VarSelect);
1537 #ifndef SQLITE_OMIT_CHECK
1540 sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints");
1550 ** This routine walks an expression tree and resolves references to
1551 ** table columns. Nodes of the form ID.ID or ID resolve into an
1552 ** index to the table in the table list and a column offset. The
1553 ** Expr.opcode for such nodes is changed to TK_COLUMN. The Expr.iTable
1554 ** value is changed to the index of the referenced table in pTabList
1555 ** plus the "base" value. The base value will ultimately become the
1556 ** VDBE cursor number for a cursor that is pointing into the referenced
1557 ** table. The Expr.iColumn value is changed to the index of the column
1558 ** of the referenced table. The Expr.iColumn value for the special
1559 ** ROWID column is -1. Any INTEGER PRIMARY KEY column is tried as an
1562 ** Also resolve function names and check the functions for proper
1563 ** usage. Make sure all function names are recognized and all functions
1564 ** have the correct number of arguments. Leave an error message
1565 ** in pParse->zErrMsg if anything is amiss. Return the number of errors.
1567 ** If the expression contains aggregate functions then set the EP_Agg
1568 ** property on the expression.
1570 int sqlite3ExprResolveNames(
1571 NameContext *pNC, /* Namespace to resolve expressions in. */
1572 Expr *pExpr /* The expression to be analyzed. */
1576 if( pExpr==0 ) return 0;
1577 #if SQLITE_MAX_EXPR_DEPTH>0
1579 if( checkExprHeight(pNC->pParse, pExpr->nHeight + pNC->pParse->nHeight) ){
1582 pNC->pParse->nHeight += pExpr->nHeight;
1585 savedHasAgg = pNC->hasAgg;
1587 walkExprTree(pExpr, nameResolverStep, pNC);
1588 #if SQLITE_MAX_EXPR_DEPTH>0
1589 pNC->pParse->nHeight -= pExpr->nHeight;
1592 ExprSetProperty(pExpr, EP_Error);
1595 ExprSetProperty(pExpr, EP_Agg);
1596 }else if( savedHasAgg ){
1599 return ExprHasProperty(pExpr, EP_Error);
1603 ** A pointer instance of this structure is used to pass information
1604 ** through walkExprTree into codeSubqueryStep().
1606 typedef struct QueryCoder QueryCoder;
1608 Parse *pParse; /* The parsing context */
1609 NameContext *pNC; /* Namespace of first enclosing query */
1613 int sqlite3_enable_in_opt = 1;
1615 #define sqlite3_enable_in_opt 1
1619 ** Return true if the IN operator optimization is enabled and
1620 ** the SELECT statement p exists and is of the
1623 ** SELECT <column> FROM <table>
1625 ** If this is the case, it may be possible to use an existing table
1626 ** or index instead of generating an epheremal table.
1628 #ifndef SQLITE_OMIT_SUBQUERY
1629 static int isCandidateForInOpt(Select *p){
1633 if( !sqlite3_enable_in_opt ) return 0; /* IN optimization must be enabled */
1634 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1635 if( p->pPrior ) return 0; /* Not a compound SELECT */
1636 if( p->isDistinct ) return 0; /* No DISTINCT keyword */
1637 if( p->isAgg ) return 0; /* Contains no aggregate functions */
1638 if( p->pGroupBy ) return 0; /* Has no GROUP BY clause */
1639 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1640 if( p->pOffset ) return 0;
1641 if( p->pWhere ) return 0; /* Has no WHERE clause */
1643 if( pSrc==0 ) return 0; /* A single table in the FROM clause */
1644 if( pSrc->nSrc!=1 ) return 0;
1645 if( pSrc->a[0].pSelect ) return 0; /* FROM clause is not a subquery */
1646 pTab = pSrc->a[0].pTab;
1647 if( pTab==0 ) return 0;
1648 if( pTab->pSelect ) return 0; /* FROM clause is not a view */
1649 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1651 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1652 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1655 #endif /* SQLITE_OMIT_SUBQUERY */
1658 ** This function is used by the implementation of the IN (...) operator.
1659 ** It's job is to find or create a b-tree structure that may be used
1660 ** either to test for membership of the (...) set or to iterate through
1661 ** its members, skipping duplicates.
1663 ** The cursor opened on the structure (database table, database index
1664 ** or ephermal table) is stored in pX->iTable before this function returns.
1665 ** The returned value indicates the structure type, as follows:
1667 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1668 ** IN_INDEX_INDEX - The cursor was opened on a database index.
1669 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1670 ** populated epheremal table.
1672 ** An existing structure may only be used if the SELECT is of the simple
1675 ** SELECT <column> FROM <table>
1677 ** If prNotFound parameter is 0, then the structure will be used to iterate
1678 ** through the set members, skipping any duplicates. In this case an
1679 ** epheremal table must be used unless the selected <column> is guaranteed
1680 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1681 ** is unique by virtue of a constraint or implicit index.
1683 ** If the prNotFound parameter is not 0, then the structure will be used
1684 ** for fast set membership tests. In this case an epheremal table must
1685 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1686 ** be found with <column> as its left-most column.
1688 ** When the structure is being used for set membership tests, the user
1689 ** needs to know whether or not the structure contains an SQL NULL
1690 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1691 ** If there is a chance that the structure may contain a NULL value at
1692 ** runtime, then a register is allocated and the register number written
1693 ** to *prNotFound. If there is no chance that the structure contains a
1694 ** NULL value, then *prNotFound is left unchanged.
1696 ** If a register is allocated and its location stored in *prNotFound, then
1697 ** its initial value is NULL. If the structure does not remain constant
1698 ** for the duration of the query (i.e. the set is a correlated sub-select),
1699 ** the value of the allocated register is reset to NULL each time the
1700 ** structure is repopulated. This allows the caller to use vdbe code
1701 ** equivalent to the following:
1703 ** if( register==NULL ){
1704 ** has_null = <test if data structure contains null>
1708 ** in order to avoid running the <test if data structure contains null>
1709 ** test more often than is necessary.
1711 #ifndef SQLITE_OMIT_SUBQUERY
1712 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1715 int iTab = pParse->nTab++;
1716 int mustBeUnique = !prNotFound;
1718 /* The follwing if(...) expression is true if the SELECT is of the
1721 ** SELECT <column> FROM <table>
1723 ** If this is the case, it may be possible to use an existing table
1724 ** or index instead of generating an epheremal table.
1727 if( isCandidateForInOpt(p) ){
1728 sqlite3 *db = pParse->db;
1730 Expr *pExpr = p->pEList->a[0].pExpr;
1731 int iCol = pExpr->iColumn;
1732 Vdbe *v = sqlite3GetVdbe(pParse);
1734 /* This function is only called from two places. In both cases the vdbe
1735 ** has already been allocated. So assume sqlite3GetVdbe() is always
1740 int iMem = ++pParse->nMem;
1742 Table *pTab = p->pSrc->a[0].pTab;
1743 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1744 sqlite3VdbeUsesBtree(v, iDb);
1746 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1747 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1749 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1750 eType = IN_INDEX_ROWID;
1752 sqlite3VdbeJumpHere(v, iAddr);
1754 /* The collation sequence used by the comparison. If an index is to
1755 ** be used in place of a temp-table, it must be ordered according
1756 ** to this collation sequence.
1758 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1760 /* Check that the affinity that will be used to perform the
1761 ** comparison is the same as the affinity of the column. If
1762 ** it is not, it is not possible to use any index.
1764 Table *pTab = p->pSrc->a[0].pTab;
1765 char aff = comparisonAffinity(pX);
1766 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1768 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1769 if( (pIdx->aiColumn[0]==iCol)
1770 && (pReq==sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], -1, 0))
1771 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1774 int iMem = ++pParse->nMem;
1778 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1779 iDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
1780 sqlite3VdbeUsesBtree(v, iDb);
1782 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1783 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1785 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIdx->nColumn);
1786 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1787 pKey,P4_KEYINFO_HANDOFF);
1788 VdbeComment((v, "%s", pIdx->zName));
1789 eType = IN_INDEX_INDEX;
1791 sqlite3VdbeJumpHere(v, iAddr);
1792 if( prNotFound && !pTab->aCol[iCol].notNull ){
1793 *prNotFound = ++pParse->nMem;
1801 int rMayHaveNull = 0;
1803 *prNotFound = rMayHaveNull = ++pParse->nMem;
1805 sqlite3CodeSubselect(pParse, pX, rMayHaveNull);
1806 eType = IN_INDEX_EPH;
1815 ** Generate code for scalar subqueries used as an expression
1816 ** and IN operators. Examples:
1818 ** (SELECT a FROM b) -- subquery
1819 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1820 ** x IN (4,5,11) -- IN operator with list on right-hand side
1821 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1823 ** The pExpr parameter describes the expression that contains the IN
1824 ** operator or subquery.
1826 #ifndef SQLITE_OMIT_SUBQUERY
1827 void sqlite3CodeSubselect(Parse *pParse, Expr *pExpr, int rMayHaveNull){
1828 int testAddr = 0; /* One-time test address */
1829 Vdbe *v = sqlite3GetVdbe(pParse);
1833 /* This code must be run in its entirety every time it is encountered
1834 ** if any of the following is true:
1836 ** * The right-hand side is a correlated subquery
1837 ** * The right-hand side is an expression list containing variables
1838 ** * We are inside a trigger
1840 ** If all of the above are false, then we can run this code just once
1841 ** save the results, and reuse the same result on subsequent invocations.
1843 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->trigStack ){
1844 int mem = ++pParse->nMem;
1845 sqlite3VdbeAddOp1(v, OP_If, mem);
1846 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1847 assert( testAddr>0 || pParse->db->mallocFailed );
1850 switch( pExpr->op ){
1854 int addr; /* Address of OP_OpenEphemeral instruction */
1857 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1860 affinity = sqlite3ExprAffinity(pExpr->pLeft);
1862 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1863 ** expression it is handled the same way. A virtual table is
1864 ** filled with single-field index keys representing the results
1865 ** from the SELECT or the <exprlist>.
1867 ** If the 'x' expression is a column value, or the SELECT...
1868 ** statement returns a column value, then the affinity of that
1869 ** column is used to build the index keys. If both 'x' and the
1870 ** SELECT... statement are columns, then numeric affinity is used
1871 ** if either column has NUMERIC or INTEGER affinity. If neither
1872 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1875 pExpr->iTable = pParse->nTab++;
1876 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, 1);
1877 memset(&keyInfo, 0, sizeof(keyInfo));
1880 if( pExpr->pSelect ){
1881 /* Case 1: expr IN (SELECT ...)
1883 ** Generate code to write the results of the select into the temporary
1884 ** table allocated and opened above.
1889 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1890 dest.affinity = (int)affinity;
1891 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1892 if( sqlite3Select(pParse, pExpr->pSelect, &dest, 0, 0, 0) ){
1895 pEList = pExpr->pSelect->pEList;
1896 if( pEList && pEList->nExpr>0 ){
1897 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1898 pEList->a[0].pExpr);
1900 }else if( pExpr->pList ){
1901 /* Case 2: expr IN (exprlist)
1903 ** For each expression, build an index key from the evaluation and
1904 ** store it in the temporary table. If <expr> is a column, then use
1905 ** that columns affinity when building index keys. If <expr> is not
1906 ** a column, use numeric affinity.
1909 ExprList *pList = pExpr->pList;
1910 struct ExprList_item *pItem;
1914 affinity = SQLITE_AFF_NONE;
1916 keyInfo.aColl[0] = pExpr->pLeft->pColl;
1918 /* Loop through each expression in <exprlist>. */
1919 r1 = sqlite3GetTempReg(pParse);
1920 r2 = sqlite3GetTempReg(pParse);
1921 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1922 Expr *pE2 = pItem->pExpr;
1924 /* If the expression is not constant then we will need to
1925 ** disable the test that was generated above that makes sure
1926 ** this code only executes once. Because for a non-constant
1927 ** expression we need to rerun this code each time.
1929 if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1930 sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1934 /* Evaluate the expression and insert it into the temp table */
1935 pParse->disableColCache++;
1936 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1937 assert( pParse->disableColCache>0 );
1938 pParse->disableColCache--;
1939 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1940 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1941 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1943 sqlite3ReleaseTempReg(pParse, r1);
1944 sqlite3ReleaseTempReg(pParse, r2);
1946 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1952 /* This has to be a scalar SELECT. Generate code to put the
1953 ** value of this select in a memory cell and record the number
1954 ** of the memory cell in iColumn.
1956 static const Token one = { (u8*)"1", 0, 1 };
1960 pSel = pExpr->pSelect;
1961 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1962 if( pExpr->op==TK_SELECT ){
1963 dest.eDest = SRT_Mem;
1964 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1965 VdbeComment((v, "Init subquery result"));
1967 dest.eDest = SRT_Exists;
1968 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1969 VdbeComment((v, "Init EXISTS result"));
1971 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1972 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &one);
1973 if( sqlite3Select(pParse, pSel, &dest, 0, 0, 0) ){
1976 pExpr->iColumn = dest.iParm;
1982 sqlite3VdbeJumpHere(v, testAddr-1);
1987 #endif /* SQLITE_OMIT_SUBQUERY */
1990 ** Duplicate an 8-byte value
1992 static char *dup8bytes(Vdbe *v, const char *in){
1993 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
2001 ** Generate an instruction that will put the floating point
2002 ** value described by z[0..n-1] into register iMem.
2004 ** The z[] string will probably not be zero-terminated. But the
2005 ** z[n] character is guaranteed to be something that does not look
2006 ** like the continuation of the number.
2008 static void codeReal(Vdbe *v, const char *z, int n, int negateFlag, int iMem){
2009 assert( z || v==0 || sqlite3VdbeDb(v)->mallocFailed );
2013 assert( !isdigit(z[n]) );
2014 sqlite3AtoF(z, &value);
2015 if( sqlite3IsNaN(value) ){
2016 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem);
2018 if( negateFlag ) value = -value;
2019 zV = dup8bytes(v, (char*)&value);
2020 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2027 ** Generate an instruction that will put the integer describe by
2028 ** text z[0..n-1] into register iMem.
2030 ** The z[] string will probably not be zero-terminated. But the
2031 ** z[n] character is guaranteed to be something that does not look
2032 ** like the continuation of the number.
2034 static void codeInteger(Vdbe *v, Expr *pExpr, int negFlag, int iMem){
2036 if( pExpr->flags & EP_IntValue ){
2037 int i = pExpr->iTable;
2038 if( negFlag ) i = -i;
2039 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2040 }else if( (z = (char*)pExpr->token.z)!=0 ){
2042 int n = pExpr->token.n;
2043 assert( !isdigit(z[n]) );
2044 if( sqlite3GetInt32(z, &i) ){
2045 if( negFlag ) i = -i;
2046 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2047 }else if( sqlite3FitsIn64Bits(z, negFlag) ){
2050 sqlite3Atoi64(z, &value);
2051 if( negFlag ) value = -value;
2052 zV = dup8bytes(v, (char*)&value);
2053 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2055 codeReal(v, z, n, negFlag, iMem);
2062 ** Generate code that will extract the iColumn-th column from
2063 ** table pTab and store the column value in a register. An effort
2064 ** is made to store the column value in register iReg, but this is
2065 ** not guaranteed. The location of the column value is returned.
2067 ** There must be an open cursor to pTab in iTable when this routine
2068 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2070 ** This routine might attempt to reuse the value of the column that
2071 ** has already been loaded into a register. The value will always
2072 ** be used if it has not undergone any affinity changes. But if
2073 ** an affinity change has occurred, then the cached value will only be
2074 ** used if allowAffChng is true.
2076 int sqlite3ExprCodeGetColumn(
2077 Parse *pParse, /* Parsing and code generating context */
2078 Table *pTab, /* Description of the table we are reading from */
2079 int iColumn, /* Index of the table column */
2080 int iTable, /* The cursor pointing to the table */
2081 int iReg, /* Store results here */
2082 int allowAffChng /* True if prior affinity changes are OK */
2084 Vdbe *v = pParse->pVdbe;
2086 struct yColCache *p;
2088 for(i=0, p=pParse->aColCache; i<pParse->nColCache; i++, p++){
2089 if( p->iTable==iTable && p->iColumn==iColumn
2090 && (!p->affChange || allowAffChng) ){
2092 sqlite3VdbeAddOp0(v, OP_Noop);
2093 VdbeComment((v, "OPT: tab%d.col%d -> r%d", iTable, iColumn, p->iReg));
2100 int op = (pTab && IsVirtual(pTab)) ? OP_VRowid : OP_Rowid;
2101 sqlite3VdbeAddOp2(v, op, iTable, iReg);
2102 }else if( pTab==0 ){
2103 sqlite3VdbeAddOp3(v, OP_Column, iTable, iColumn, iReg);
2105 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2106 sqlite3VdbeAddOp3(v, op, iTable, iColumn, iReg);
2107 sqlite3ColumnDefault(v, pTab, iColumn);
2108 #ifndef SQLITE_OMIT_FLOATING_POINT
2109 if( pTab->aCol[iColumn].affinity==SQLITE_AFF_REAL ){
2110 sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
2114 if( pParse->disableColCache==0 ){
2115 i = pParse->iColCache;
2116 p = &pParse->aColCache[i];
2118 p->iColumn = iColumn;
2122 if( i>=ArraySize(pParse->aColCache) ) i = 0;
2123 if( i>pParse->nColCache ) pParse->nColCache = i;
2124 pParse->iColCache = i;
2130 ** Clear all column cache entries associated with the vdbe
2131 ** cursor with cursor number iTable.
2133 void sqlite3ExprClearColumnCache(Parse *pParse, int iTable){
2135 pParse->nColCache = 0;
2136 pParse->iColCache = 0;
2139 for(i=0; i<pParse->nColCache; i++){
2140 if( pParse->aColCache[i].iTable==iTable ){
2141 testcase( i==pParse->nColCache-1 );
2142 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
2143 pParse->iColCache = pParse->nColCache;
2150 ** Record the fact that an affinity change has occurred on iCount
2151 ** registers starting with iStart.
2153 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2154 int iEnd = iStart + iCount - 1;
2156 for(i=0; i<pParse->nColCache; i++){
2157 int r = pParse->aColCache[i].iReg;
2158 if( r>=iStart && r<=iEnd ){
2159 pParse->aColCache[i].affChange = 1;
2165 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2166 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2168 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2170 if( iFrom==iTo ) return;
2171 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2172 for(i=0; i<pParse->nColCache; i++){
2173 int x = pParse->aColCache[i].iReg;
2174 if( x>=iFrom && x<iFrom+nReg ){
2175 pParse->aColCache[i].iReg += iTo-iFrom;
2181 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2182 ** over to iTo..iTo+nReg-1.
2184 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2186 if( iFrom==iTo ) return;
2187 for(i=0; i<nReg; i++){
2188 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2193 ** Return true if any register in the range iFrom..iTo (inclusive)
2194 ** is used as part of the column cache.
2196 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2198 for(i=0; i<pParse->nColCache; i++){
2199 int r = pParse->aColCache[i].iReg;
2200 if( r>=iFrom && r<=iTo ) return 1;
2206 ** Theres is a value in register iCurrent. We ultimately want
2207 ** the value to be in register iTarget. It might be that
2208 ** iCurrent and iTarget are the same register.
2210 ** We are going to modify the value, so we need to make sure it
2211 ** is not a cached register. If iCurrent is a cached register,
2212 ** then try to move the value over to iTarget. If iTarget is a
2213 ** cached register, then clear the corresponding cache line.
2215 ** Return the register that the value ends up in.
2217 int sqlite3ExprWritableRegister(Parse *pParse, int iCurrent, int iTarget){
2219 assert( pParse->pVdbe!=0 );
2220 if( !usedAsColumnCache(pParse, iCurrent, iCurrent) ){
2223 if( iCurrent!=iTarget ){
2224 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, iCurrent, iTarget);
2226 for(i=0; i<pParse->nColCache; i++){
2227 if( pParse->aColCache[i].iReg==iTarget ){
2228 pParse->aColCache[i] = pParse->aColCache[--pParse->nColCache];
2229 pParse->iColCache = pParse->nColCache;
2236 ** If the last instruction coded is an ephemeral copy of any of
2237 ** the registers in the nReg registers beginning with iReg, then
2238 ** convert the last instruction from OP_SCopy to OP_Copy.
2240 void sqlite3ExprHardCopy(Parse *pParse, int iReg, int nReg){
2246 addr = sqlite3VdbeCurrentAddr(v);
2247 pOp = sqlite3VdbeGetOp(v, addr-1);
2248 assert( pOp || pParse->db->mallocFailed );
2249 if( pOp && pOp->opcode==OP_SCopy && pOp->p1>=iReg && pOp->p1<iReg+nReg ){
2250 pOp->opcode = OP_Copy;
2255 ** Generate code into the current Vdbe to evaluate the given
2256 ** expression. Attempt to store the results in register "target".
2257 ** Return the register where results are stored.
2259 ** With this routine, there is no guaranteed that results will
2260 ** be stored in target. The result might be stored in some other
2261 ** register if it is convenient to do so. The calling function
2262 ** must check the return code and move the results to the desired
2265 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2266 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2267 int op; /* The opcode being coded */
2268 int inReg = target; /* Results stored in register inReg */
2269 int regFree1 = 0; /* If non-zero free this temporary register */
2270 int regFree2 = 0; /* If non-zero free this temporary register */
2271 int r1, r2, r3, r4; /* Various register numbers */
2273 assert( v!=0 || pParse->db->mallocFailed );
2274 assert( target>0 && target<=pParse->nMem );
2275 if( v==0 ) return 0;
2283 case TK_AGG_COLUMN: {
2284 AggInfo *pAggInfo = pExpr->pAggInfo;
2285 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2286 if( !pAggInfo->directMode ){
2287 assert( pCol->iMem>0 );
2290 }else if( pAggInfo->useSortingIdx ){
2291 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2292 pCol->iSorterColumn, target);
2295 /* Otherwise, fall thru into the TK_COLUMN case */
2298 if( pExpr->iTable<0 ){
2299 /* This only happens when coding check constraints */
2300 assert( pParse->ckBase>0 );
2301 inReg = pExpr->iColumn + pParse->ckBase;
2303 testcase( (pExpr->flags & EP_AnyAff)!=0 );
2304 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2305 pExpr->iColumn, pExpr->iTable, target,
2306 pExpr->flags & EP_AnyAff);
2311 codeInteger(v, pExpr, 0, target);
2315 codeReal(v, (char*)pExpr->token.z, pExpr->token.n, 0, target);
2319 sqlite3DequoteExpr(pParse->db, pExpr);
2320 sqlite3VdbeAddOp4(v,OP_String8, 0, target, 0,
2321 (char*)pExpr->token.z, pExpr->token.n);
2325 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2328 #ifndef SQLITE_OMIT_BLOB_LITERAL
2333 assert( pExpr->token.n>=3 );
2334 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
2335 assert( pExpr->token.z[1]=='\'' );
2336 assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
2337 n = pExpr->token.n - 3;
2338 z = (char*)pExpr->token.z + 2;
2339 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2340 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2345 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iTable, target);
2346 if( pExpr->token.n>1 ){
2347 sqlite3VdbeChangeP4(v, -1, (char*)pExpr->token.z, pExpr->token.n);
2352 inReg = pExpr->iTable;
2355 #ifndef SQLITE_OMIT_CAST
2357 /* Expressions of the form: CAST(pLeft AS token) */
2359 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2360 aff = sqlite3AffinityType(&pExpr->token);
2361 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2362 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
2363 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
2364 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2365 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
2366 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
2367 testcase( to_op==OP_ToText );
2368 testcase( to_op==OP_ToBlob );
2369 testcase( to_op==OP_ToNumeric );
2370 testcase( to_op==OP_ToInt );
2371 testcase( to_op==OP_ToReal );
2372 sqlite3VdbeAddOp1(v, to_op, inReg);
2373 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2374 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2377 #endif /* SQLITE_OMIT_CAST */
2384 assert( TK_LT==OP_Lt );
2385 assert( TK_LE==OP_Le );
2386 assert( TK_GT==OP_Gt );
2387 assert( TK_GE==OP_Ge );
2388 assert( TK_EQ==OP_Eq );
2389 assert( TK_NE==OP_Ne );
2390 testcase( op==TK_LT );
2391 testcase( op==TK_LE );
2392 testcase( op==TK_GT );
2393 testcase( op==TK_GE );
2394 testcase( op==TK_EQ );
2395 testcase( op==TK_NE );
2396 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
2397 pExpr->pRight, &r2, ®Free2);
2398 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2399 r1, r2, inReg, SQLITE_STOREP2);
2400 testcase( regFree1==0 );
2401 testcase( regFree2==0 );
2416 assert( TK_AND==OP_And );
2417 assert( TK_OR==OP_Or );
2418 assert( TK_PLUS==OP_Add );
2419 assert( TK_MINUS==OP_Subtract );
2420 assert( TK_REM==OP_Remainder );
2421 assert( TK_BITAND==OP_BitAnd );
2422 assert( TK_BITOR==OP_BitOr );
2423 assert( TK_SLASH==OP_Divide );
2424 assert( TK_LSHIFT==OP_ShiftLeft );
2425 assert( TK_RSHIFT==OP_ShiftRight );
2426 assert( TK_CONCAT==OP_Concat );
2427 testcase( op==TK_AND );
2428 testcase( op==TK_OR );
2429 testcase( op==TK_PLUS );
2430 testcase( op==TK_MINUS );
2431 testcase( op==TK_REM );
2432 testcase( op==TK_BITAND );
2433 testcase( op==TK_BITOR );
2434 testcase( op==TK_SLASH );
2435 testcase( op==TK_LSHIFT );
2436 testcase( op==TK_RSHIFT );
2437 testcase( op==TK_CONCAT );
2438 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2439 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
2440 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2441 testcase( regFree1==0 );
2442 testcase( regFree2==0 );
2446 Expr *pLeft = pExpr->pLeft;
2448 if( pLeft->op==TK_FLOAT || pLeft->op==TK_INTEGER ){
2449 if( pLeft->op==TK_FLOAT ){
2450 codeReal(v, (char*)pLeft->token.z, pLeft->token.n, 1, target);
2452 codeInteger(v, pLeft, 1, target);
2455 regFree1 = r1 = sqlite3GetTempReg(pParse);
2456 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2457 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
2458 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2459 testcase( regFree2==0 );
2466 assert( TK_BITNOT==OP_BitNot );
2467 assert( TK_NOT==OP_Not );
2468 testcase( op==TK_BITNOT );
2469 testcase( op==TK_NOT );
2470 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2471 testcase( inReg==target );
2472 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2473 inReg = sqlite3ExprWritableRegister(pParse, inReg, target);
2474 sqlite3VdbeAddOp1(v, op, inReg);
2480 assert( TK_ISNULL==OP_IsNull );
2481 assert( TK_NOTNULL==OP_NotNull );
2482 testcase( op==TK_ISNULL );
2483 testcase( op==TK_NOTNULL );
2484 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2485 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2486 testcase( regFree1==0 );
2487 addr = sqlite3VdbeAddOp1(v, op, r1);
2488 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2489 sqlite3VdbeJumpHere(v, addr);
2492 case TK_AGG_FUNCTION: {
2493 AggInfo *pInfo = pExpr->pAggInfo;
2495 sqlite3ErrorMsg(pParse, "misuse of aggregate: %T",
2498 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2504 ExprList *pList = pExpr->pList;
2505 int nExpr = pList ? pList->nExpr : 0;
2511 sqlite3 *db = pParse->db;
2515 testcase( op==TK_CONST_FUNC );
2516 testcase( op==TK_FUNCTION );
2517 zId = (char*)pExpr->token.z;
2518 nId = pExpr->token.n;
2519 pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
2522 nExpr = pList->nExpr;
2523 r1 = sqlite3GetTempRange(pParse, nExpr);
2524 sqlite3ExprCodeExprList(pParse, pList, r1, 1);
2528 #ifndef SQLITE_OMIT_VIRTUALTABLE
2529 /* Possibly overload the function if the first argument is
2530 ** a virtual table column.
2532 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2533 ** second argument, not the first, as the argument to test to
2534 ** see if it is a column in a virtual table. This is done because
2535 ** the left operand of infix functions (the operand we want to
2536 ** control overloading) ends up as the second argument to the
2537 ** function. The expression "A glob B" is equivalent to
2538 ** "glob(B,A). We want to use the A in "A glob B" to test
2539 ** for function overloading. But we use the B term in "glob(B,A)".
2541 if( nExpr>=2 && (pExpr->flags & EP_InfixFunc) ){
2542 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[1].pExpr);
2543 }else if( nExpr>0 ){
2544 pDef = sqlite3VtabOverloadFunction(db, pDef, nExpr, pList->a[0].pExpr);
2547 for(i=0; i<nExpr && i<32; i++){
2548 if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
2549 constMask |= (1<<i);
2551 if( pDef->needCollSeq && !pColl ){
2552 pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
2555 if( pDef->needCollSeq ){
2556 if( !pColl ) pColl = pParse->db->pDfltColl;
2557 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2559 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2560 (char*)pDef, P4_FUNCDEF);
2561 sqlite3VdbeChangeP5(v, nExpr);
2563 sqlite3ReleaseTempRange(pParse, r1, nExpr);
2565 sqlite3ExprCacheAffinityChange(pParse, r1, nExpr);
2568 #ifndef SQLITE_OMIT_SUBQUERY
2571 testcase( op==TK_EXISTS );
2572 testcase( op==TK_SELECT );
2573 if( pExpr->iColumn==0 ){
2574 sqlite3CodeSubselect(pParse, pExpr, 0);
2576 inReg = pExpr->iColumn;
2581 int rMayHaveNull = 0;
2586 VdbeNoopComment((v, "begin IN expr r%d", target));
2587 eType = sqlite3FindInIndex(pParse, pExpr, &rMayHaveNull);
2589 rNotFound = ++pParse->nMem;
2592 /* Figure out the affinity to use to create a key from the results
2593 ** of the expression. affinityStr stores a static string suitable for
2594 ** P4 of OP_MakeRecord.
2596 affinity = comparisonAffinity(pExpr);
2599 /* Code the <expr> from "<expr> IN (...)". The temporary table
2600 ** pExpr->iTable contains the values that make up the (...) set.
2602 pParse->disableColCache++;
2603 sqlite3ExprCode(pParse, pExpr->pLeft, target);
2604 pParse->disableColCache--;
2605 j2 = sqlite3VdbeAddOp1(v, OP_IsNull, target);
2606 if( eType==IN_INDEX_ROWID ){
2607 j3 = sqlite3VdbeAddOp1(v, OP_MustBeInt, target);
2608 j4 = sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, 0, target);
2609 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2610 j5 = sqlite3VdbeAddOp0(v, OP_Goto);
2611 sqlite3VdbeJumpHere(v, j3);
2612 sqlite3VdbeJumpHere(v, j4);
2613 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2615 r2 = regFree2 = sqlite3GetTempReg(pParse);
2617 /* Create a record and test for set membership. If the set contains
2618 ** the value, then jump to the end of the test code. The target
2619 ** register still contains the true (1) value written to it earlier.
2621 sqlite3VdbeAddOp4(v, OP_MakeRecord, target, 1, r2, &affinity, 1);
2622 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2623 j5 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, r2);
2625 /* If the set membership test fails, then the result of the
2626 ** "x IN (...)" expression must be either 0 or NULL. If the set
2627 ** contains no NULL values, then the result is 0. If the set
2628 ** contains one or more NULL values, then the result of the
2629 ** expression is also NULL.
2632 /* This branch runs if it is known at compile time (now) that
2633 ** the set contains no NULL values. This happens as the result
2634 ** of a "NOT NULL" constraint in the database schema. No need
2635 ** to test the data structure at runtime in this case.
2637 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2639 /* This block populates the rNotFound register with either NULL
2640 ** or 0 (an integer value). If the data structure contains one
2641 ** or more NULLs, then set rNotFound to NULL. Otherwise, set it
2642 ** to 0. If register rMayHaveNull is already set to some value
2643 ** other than NULL, then the test has already been run and
2644 ** rNotFound is already populated.
2646 static const char nullRecord[] = { 0x02, 0x00 };
2647 j3 = sqlite3VdbeAddOp1(v, OP_NotNull, rMayHaveNull);
2648 sqlite3VdbeAddOp2(v, OP_Null, 0, rNotFound);
2649 sqlite3VdbeAddOp4(v, OP_Blob, 2, rMayHaveNull, 0,
2650 nullRecord, P4_STATIC);
2651 j4 = sqlite3VdbeAddOp3(v, OP_Found, pExpr->iTable, 0, rMayHaveNull);
2652 sqlite3VdbeAddOp2(v, OP_Integer, 0, rNotFound);
2653 sqlite3VdbeJumpHere(v, j4);
2654 sqlite3VdbeJumpHere(v, j3);
2656 /* Copy the value of register rNotFound (which is either NULL or 0)
2657 ** into the target register. This will be the result of the
2660 sqlite3VdbeAddOp2(v, OP_Copy, rNotFound, target);
2663 sqlite3VdbeJumpHere(v, j2);
2664 sqlite3VdbeJumpHere(v, j5);
2665 VdbeComment((v, "end IN expr r%d", target));
2670 ** x BETWEEN y AND z
2672 ** This is equivalent to
2676 ** X is stored in pExpr->pLeft.
2677 ** Y is stored in pExpr->pList->a[0].pExpr.
2678 ** Z is stored in pExpr->pList->a[1].pExpr.
2681 Expr *pLeft = pExpr->pLeft;
2682 struct ExprList_item *pLItem = pExpr->pList->a;
2683 Expr *pRight = pLItem->pExpr;
2685 codeCompareOperands(pParse, pLeft, &r1, ®Free1,
2686 pRight, &r2, ®Free2);
2687 testcase( regFree1==0 );
2688 testcase( regFree2==0 );
2689 r3 = sqlite3GetTempReg(pParse);
2690 r4 = sqlite3GetTempReg(pParse);
2691 codeCompare(pParse, pLeft, pRight, OP_Ge,
2692 r1, r2, r3, SQLITE_STOREP2);
2694 pRight = pLItem->pExpr;
2695 sqlite3ReleaseTempReg(pParse, regFree2);
2696 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
2697 testcase( regFree2==0 );
2698 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2699 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2700 sqlite3ReleaseTempReg(pParse, r3);
2701 sqlite3ReleaseTempReg(pParse, r4);
2705 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2711 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2714 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2716 ** Form A is can be transformed into the equivalent form B as follows:
2717 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2718 ** WHEN x=eN THEN rN ELSE y END
2720 ** X (if it exists) is in pExpr->pLeft.
2721 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2722 ** ELSE clause and no other term matches, then the result of the
2723 ** exprssion is NULL.
2724 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2726 ** The result of the expression is the Ri for the first matching Ei,
2727 ** or if there is no matching Ei, the ELSE term Y, or if there is
2728 ** no ELSE term, NULL.
2731 int endLabel; /* GOTO label for end of CASE stmt */
2732 int nextCase; /* GOTO label for next WHEN clause */
2733 int nExpr; /* 2x number of WHEN terms */
2734 int i; /* Loop counter */
2735 ExprList *pEList; /* List of WHEN terms */
2736 struct ExprList_item *aListelem; /* Array of WHEN terms */
2737 Expr opCompare; /* The X==Ei expression */
2738 Expr cacheX; /* Cached expression X */
2739 Expr *pX; /* The X expression */
2740 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
2742 assert(pExpr->pList);
2743 assert((pExpr->pList->nExpr % 2) == 0);
2744 assert(pExpr->pList->nExpr > 0);
2745 pEList = pExpr->pList;
2746 aListelem = pEList->a;
2747 nExpr = pEList->nExpr;
2748 endLabel = sqlite3VdbeMakeLabel(v);
2749 if( (pX = pExpr->pLeft)!=0 ){
2751 testcase( pX->op==TK_COLUMN || pX->op==TK_REGISTER );
2752 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
2753 testcase( regFree1==0 );
2754 cacheX.op = TK_REGISTER;
2756 opCompare.op = TK_EQ;
2757 opCompare.pLeft = &cacheX;
2760 pParse->disableColCache++;
2761 for(i=0; i<nExpr; i=i+2){
2763 opCompare.pRight = aListelem[i].pExpr;
2765 pTest = aListelem[i].pExpr;
2767 nextCase = sqlite3VdbeMakeLabel(v);
2768 testcase( pTest->op==TK_COLUMN || pTest->op==TK_REGISTER );
2769 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2770 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2771 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2772 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2773 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2774 sqlite3VdbeResolveLabel(v, nextCase);
2776 if( pExpr->pRight ){
2777 sqlite3ExprCode(pParse, pExpr->pRight, target);
2779 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2781 sqlite3VdbeResolveLabel(v, endLabel);
2782 assert( pParse->disableColCache>0 );
2783 pParse->disableColCache--;
2786 #ifndef SQLITE_OMIT_TRIGGER
2788 if( !pParse->trigStack ){
2789 sqlite3ErrorMsg(pParse,
2790 "RAISE() may only be used within a trigger-program");
2793 if( pExpr->iColumn!=OE_Ignore ){
2794 assert( pExpr->iColumn==OE_Rollback ||
2795 pExpr->iColumn == OE_Abort ||
2796 pExpr->iColumn == OE_Fail );
2797 sqlite3DequoteExpr(pParse->db, pExpr);
2798 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, pExpr->iColumn, 0,
2799 (char*)pExpr->token.z, pExpr->token.n);
2801 assert( pExpr->iColumn == OE_Ignore );
2802 sqlite3VdbeAddOp2(v, OP_ContextPop, 0, 0);
2803 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->trigStack->ignoreJump);
2804 VdbeComment((v, "raise(IGNORE)"));
2810 sqlite3ReleaseTempReg(pParse, regFree1);
2811 sqlite3ReleaseTempReg(pParse, regFree2);
2816 ** Generate code to evaluate an expression and store the results
2817 ** into a register. Return the register number where the results
2820 ** If the register is a temporary register that can be deallocated,
2821 ** then write its number into *pReg. If the result register is not
2822 ** a temporary, then set *pReg to zero.
2824 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2825 int r1 = sqlite3GetTempReg(pParse);
2826 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2830 sqlite3ReleaseTempReg(pParse, r1);
2837 ** Generate code that will evaluate expression pExpr and store the
2838 ** results in register target. The results are guaranteed to appear
2839 ** in register target.
2841 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2844 assert( target>0 && target<=pParse->nMem );
2845 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2846 assert( pParse->pVdbe || pParse->db->mallocFailed );
2847 if( inReg!=target && pParse->pVdbe ){
2848 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2854 ** Generate code that evalutes the given expression and puts the result
2855 ** in register target.
2857 ** Also make a copy of the expression results into another "cache" register
2858 ** and modify the expression so that the next time it is evaluated,
2859 ** the result is a copy of the cache register.
2861 ** This routine is used for expressions that are used multiple
2862 ** times. They are evaluated once and the results of the expression
2865 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2866 Vdbe *v = pParse->pVdbe;
2868 inReg = sqlite3ExprCode(pParse, pExpr, target);
2870 if( pExpr->op!=TK_REGISTER ){
2872 iMem = ++pParse->nMem;
2873 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2874 pExpr->iTable = iMem;
2875 pExpr->iColumn = pExpr->op;
2876 pExpr->op = TK_REGISTER;
2882 ** Return TRUE if pExpr is an constant expression that is appropriate
2883 ** for factoring out of a loop. Appropriate expressions are:
2885 ** * Any expression that evaluates to two or more opcodes.
2887 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2888 ** or OP_Variable that does not need to be placed in a
2889 ** specific register.
2891 ** There is no point in factoring out single-instruction constant
2892 ** expressions that need to be placed in a particular register.
2893 ** We could factor them out, but then we would end up adding an
2894 ** OP_SCopy instruction to move the value into the correct register
2895 ** later. We might as well just use the original instruction and
2896 ** avoid the OP_SCopy.
2898 static int isAppropriateForFactoring(Expr *p){
2899 if( !sqlite3ExprIsConstantNotJoin(p) ){
2900 return 0; /* Only constant expressions are appropriate for factoring */
2902 if( (p->flags & EP_FixedDest)==0 ){
2903 return 1; /* Any constant without a fixed destination is appropriate */
2905 while( p->op==TK_UPLUS ) p = p->pLeft;
2907 #ifndef SQLITE_OMIT_BLOB_LITERAL
2915 testcase( p->op==TK_BLOB );
2916 testcase( p->op==TK_VARIABLE );
2917 testcase( p->op==TK_INTEGER );
2918 testcase( p->op==TK_FLOAT );
2919 testcase( p->op==TK_NULL );
2920 testcase( p->op==TK_STRING );
2921 /* Single-instruction constants with a fixed destination are
2922 ** better done in-line. If we factor them, they will just end
2923 ** up generating an OP_SCopy to move the value to the destination
2928 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2941 ** If pExpr is a constant expression that is appropriate for
2942 ** factoring out of a loop, then evaluate the expression
2943 ** into a register and convert the expression into a TK_REGISTER
2946 static int evalConstExpr(void *pArg, Expr *pExpr){
2947 Parse *pParse = (Parse*)pArg;
2948 switch( pExpr->op ){
2953 case TK_AGG_FUNCTION:
2954 case TK_CONST_FUNC: {
2955 /* The arguments to a function have a fixed destination.
2956 ** Mark them this way to avoid generated unneeded OP_SCopy
2959 ExprList *pList = pExpr->pList;
2961 int i = pList->nExpr;
2962 struct ExprList_item *pItem = pList->a;
2963 for(; i>0; i--, pItem++){
2964 if( pItem->pExpr ) pItem->pExpr->flags |= EP_FixedDest;
2970 if( isAppropriateForFactoring(pExpr) ){
2971 int r1 = ++pParse->nMem;
2973 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2974 if( r1!=r2 ) sqlite3ReleaseTempReg(pParse, r1);
2975 pExpr->iColumn = pExpr->op;
2976 pExpr->op = TK_REGISTER;
2984 ** Preevaluate constant subexpressions within pExpr and store the
2985 ** results in registers. Modify pExpr so that the constant subexpresions
2986 ** are TK_REGISTER opcodes that refer to the precomputed values.
2988 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
2989 walkExprTree(pExpr, evalConstExpr, pParse);
2994 ** Generate code that pushes the value of every element of the given
2995 ** expression list into a sequence of registers beginning at target.
2997 ** Return the number of elements evaluated.
2999 int sqlite3ExprCodeExprList(
3000 Parse *pParse, /* Parsing context */
3001 ExprList *pList, /* The expression list to be coded */
3002 int target, /* Where to write results */
3003 int doHardCopy /* Call sqlite3ExprHardCopy on each element if true */
3005 struct ExprList_item *pItem;
3007 assert( pList!=0 || pParse->db->mallocFailed );
3013 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3014 sqlite3ExprCode(pParse, pItem->pExpr, target+i);
3015 if( doHardCopy ) sqlite3ExprHardCopy(pParse, target, n);
3021 ** Generate code for a boolean expression such that a jump is made
3022 ** to the label "dest" if the expression is true but execution
3023 ** continues straight thru if the expression is false.
3025 ** If the expression evaluates to NULL (neither true nor false), then
3026 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3028 ** This code depends on the fact that certain token values (ex: TK_EQ)
3029 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3030 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3031 ** the make process cause these values to align. Assert()s in the code
3032 ** below verify that the numbers are aligned correctly.
3034 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3035 Vdbe *v = pParse->pVdbe;
3041 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3042 if( v==0 || pExpr==0 ) return;
3046 int d2 = sqlite3VdbeMakeLabel(v);
3047 testcase( jumpIfNull==0 );
3048 testcase( pParse->disableColCache==0 );
3049 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3050 pParse->disableColCache++;
3051 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3052 assert( pParse->disableColCache>0 );
3053 pParse->disableColCache--;
3054 sqlite3VdbeResolveLabel(v, d2);
3058 testcase( jumpIfNull==0 );
3059 testcase( pParse->disableColCache==0 );
3060 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3061 pParse->disableColCache++;
3062 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3063 assert( pParse->disableColCache>0 );
3064 pParse->disableColCache--;
3068 testcase( jumpIfNull==0 );
3069 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3078 assert( TK_LT==OP_Lt );
3079 assert( TK_LE==OP_Le );
3080 assert( TK_GT==OP_Gt );
3081 assert( TK_GE==OP_Ge );
3082 assert( TK_EQ==OP_Eq );
3083 assert( TK_NE==OP_Ne );
3084 testcase( op==TK_LT );
3085 testcase( op==TK_LE );
3086 testcase( op==TK_GT );
3087 testcase( op==TK_GE );
3088 testcase( op==TK_EQ );
3089 testcase( op==TK_NE );
3090 testcase( jumpIfNull==0 );
3091 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
3092 pExpr->pRight, &r2, ®Free2);
3093 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3094 r1, r2, dest, jumpIfNull);
3095 testcase( regFree1==0 );
3096 testcase( regFree2==0 );
3101 assert( TK_ISNULL==OP_IsNull );
3102 assert( TK_NOTNULL==OP_NotNull );
3103 testcase( op==TK_ISNULL );
3104 testcase( op==TK_NOTNULL );
3105 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3106 sqlite3VdbeAddOp2(v, op, r1, dest);
3107 testcase( regFree1==0 );
3111 /* x BETWEEN y AND z
3117 ** Code it as such, taking care to do the common subexpression
3118 ** elementation of x.
3125 exprX = *pExpr->pLeft;
3126 exprAnd.op = TK_AND;
3127 exprAnd.pLeft = &compLeft;
3128 exprAnd.pRight = &compRight;
3129 compLeft.op = TK_GE;
3130 compLeft.pLeft = &exprX;
3131 compLeft.pRight = pExpr->pList->a[0].pExpr;
3132 compRight.op = TK_LE;
3133 compRight.pLeft = &exprX;
3134 compRight.pRight = pExpr->pList->a[1].pExpr;
3135 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
3136 testcase( regFree1==0 );
3137 exprX.op = TK_REGISTER;
3138 testcase( jumpIfNull==0 );
3139 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3143 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
3144 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3145 testcase( regFree1==0 );
3146 testcase( jumpIfNull==0 );
3150 sqlite3ReleaseTempReg(pParse, regFree1);
3151 sqlite3ReleaseTempReg(pParse, regFree2);
3155 ** Generate code for a boolean expression such that a jump is made
3156 ** to the label "dest" if the expression is false but execution
3157 ** continues straight thru if the expression is true.
3159 ** If the expression evaluates to NULL (neither true nor false) then
3160 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3163 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3164 Vdbe *v = pParse->pVdbe;
3170 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3171 if( v==0 || pExpr==0 ) return;
3173 /* The value of pExpr->op and op are related as follows:
3176 ** --------- ----------
3177 ** TK_ISNULL OP_NotNull
3178 ** TK_NOTNULL OP_IsNull
3186 ** For other values of pExpr->op, op is undefined and unused.
3187 ** The value of TK_ and OP_ constants are arranged such that we
3188 ** can compute the mapping above using the following expression.
3189 ** Assert()s verify that the computation is correct.
3191 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3193 /* Verify correct alignment of TK_ and OP_ constants
3195 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3196 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3197 assert( pExpr->op!=TK_NE || op==OP_Eq );
3198 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3199 assert( pExpr->op!=TK_LT || op==OP_Ge );
3200 assert( pExpr->op!=TK_LE || op==OP_Gt );
3201 assert( pExpr->op!=TK_GT || op==OP_Le );
3202 assert( pExpr->op!=TK_GE || op==OP_Lt );
3204 switch( pExpr->op ){
3206 testcase( jumpIfNull==0 );
3207 testcase( pParse->disableColCache==0 );
3208 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3209 pParse->disableColCache++;
3210 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3211 assert( pParse->disableColCache>0 );
3212 pParse->disableColCache--;
3216 int d2 = sqlite3VdbeMakeLabel(v);
3217 testcase( jumpIfNull==0 );
3218 testcase( pParse->disableColCache==0 );
3219 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3220 pParse->disableColCache++;
3221 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3222 assert( pParse->disableColCache>0 );
3223 pParse->disableColCache--;
3224 sqlite3VdbeResolveLabel(v, d2);
3228 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3237 testcase( op==TK_LT );
3238 testcase( op==TK_LE );
3239 testcase( op==TK_GT );
3240 testcase( op==TK_GE );
3241 testcase( op==TK_EQ );
3242 testcase( op==TK_NE );
3243 testcase( jumpIfNull==0 );
3244 codeCompareOperands(pParse, pExpr->pLeft, &r1, ®Free1,
3245 pExpr->pRight, &r2, ®Free2);
3246 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3247 r1, r2, dest, jumpIfNull);
3248 testcase( regFree1==0 );
3249 testcase( regFree2==0 );
3254 testcase( op==TK_ISNULL );
3255 testcase( op==TK_NOTNULL );
3256 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3257 sqlite3VdbeAddOp2(v, op, r1, dest);
3258 testcase( regFree1==0 );
3262 /* x BETWEEN y AND z
3268 ** Code it as such, taking care to do the common subexpression
3269 ** elementation of x.
3276 exprX = *pExpr->pLeft;
3277 exprAnd.op = TK_AND;
3278 exprAnd.pLeft = &compLeft;
3279 exprAnd.pRight = &compRight;
3280 compLeft.op = TK_GE;
3281 compLeft.pLeft = &exprX;
3282 compLeft.pRight = pExpr->pList->a[0].pExpr;
3283 compRight.op = TK_LE;
3284 compRight.pLeft = &exprX;
3285 compRight.pRight = pExpr->pList->a[1].pExpr;
3286 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
3287 testcase( regFree1==0 );
3288 exprX.op = TK_REGISTER;
3289 testcase( jumpIfNull==0 );
3290 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3294 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
3295 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3296 testcase( regFree1==0 );
3297 testcase( jumpIfNull==0 );
3301 sqlite3ReleaseTempReg(pParse, regFree1);
3302 sqlite3ReleaseTempReg(pParse, regFree2);
3306 ** Do a deep comparison of two expression trees. Return TRUE (non-zero)
3307 ** if they are identical and return FALSE if they differ in any way.
3309 ** Sometimes this routine will return FALSE even if the two expressions
3310 ** really are equivalent. If we cannot prove that the expressions are
3311 ** identical, we return FALSE just to be safe. So if this routine
3312 ** returns false, then you do not really know for certain if the two
3313 ** expressions are the same. But if you get a TRUE return, then you
3314 ** can be sure the expressions are the same. In the places where
3315 ** this routine is used, it does not hurt to get an extra FALSE - that
3316 ** just might result in some slightly slower code. But returning
3317 ** an incorrect TRUE could lead to a malfunction.
3319 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3324 if( pA->op!=pB->op ) return 0;
3325 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 0;
3326 if( !sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 0;
3327 if( !sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 0;
3329 if( pB->pList==0 ) return 0;
3330 if( pA->pList->nExpr!=pB->pList->nExpr ) return 0;
3331 for(i=0; i<pA->pList->nExpr; i++){
3332 if( !sqlite3ExprCompare(pA->pList->a[i].pExpr, pB->pList->a[i].pExpr) ){
3336 }else if( pB->pList ){
3339 if( pA->pSelect || pB->pSelect ) return 0;
3340 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 0;
3341 if( pA->op!=TK_COLUMN && pA->token.z ){
3342 if( pB->token.z==0 ) return 0;
3343 if( pB->token.n!=pA->token.n ) return 0;
3344 if( sqlite3StrNICmp((char*)pA->token.z,(char*)pB->token.z,pB->token.n)!=0 ){
3353 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3354 ** the new element. Return a negative number if malloc fails.
3356 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3358 pInfo->aCol = sqlite3ArrayAllocate(
3361 sizeof(pInfo->aCol[0]),
3364 &pInfo->nColumnAlloc,
3371 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3372 ** the new element. Return a negative number if malloc fails.
3374 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3376 pInfo->aFunc = sqlite3ArrayAllocate(
3379 sizeof(pInfo->aFunc[0]),
3389 ** This is an xFunc for walkExprTree() used to implement
3390 ** sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3391 ** for additional information.
3393 ** This routine analyzes the aggregate function at pExpr.
3395 static int analyzeAggregate(void *pArg, Expr *pExpr){
3397 NameContext *pNC = (NameContext *)pArg;
3398 Parse *pParse = pNC->pParse;
3399 SrcList *pSrcList = pNC->pSrcList;
3400 AggInfo *pAggInfo = pNC->pAggInfo;
3402 switch( pExpr->op ){
3405 /* Check to see if the column is in one of the tables in the FROM
3406 ** clause of the aggregate query */
3408 struct SrcList_item *pItem = pSrcList->a;
3409 for(i=0; i<pSrcList->nSrc; i++, pItem++){
3410 struct AggInfo_col *pCol;
3411 if( pExpr->iTable==pItem->iCursor ){
3412 /* If we reach this point, it means that pExpr refers to a table
3413 ** that is in the FROM clause of the aggregate query.
3415 ** Make an entry for the column in pAggInfo->aCol[] if there
3416 ** is not an entry there already.
3419 pCol = pAggInfo->aCol;
3420 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3421 if( pCol->iTable==pExpr->iTable &&
3422 pCol->iColumn==pExpr->iColumn ){
3426 if( (k>=pAggInfo->nColumn)
3427 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3429 pCol = &pAggInfo->aCol[k];
3430 pCol->pTab = pExpr->pTab;
3431 pCol->iTable = pExpr->iTable;
3432 pCol->iColumn = pExpr->iColumn;
3433 pCol->iMem = ++pParse->nMem;
3434 pCol->iSorterColumn = -1;
3435 pCol->pExpr = pExpr;
3436 if( pAggInfo->pGroupBy ){
3438 ExprList *pGB = pAggInfo->pGroupBy;
3439 struct ExprList_item *pTerm = pGB->a;
3441 for(j=0; j<n; j++, pTerm++){
3442 Expr *pE = pTerm->pExpr;
3443 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3444 pE->iColumn==pExpr->iColumn ){
3445 pCol->iSorterColumn = j;
3450 if( pCol->iSorterColumn<0 ){
3451 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3454 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3455 ** because it was there before or because we just created it).
3456 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3457 ** pAggInfo->aCol[] entry.
3459 pExpr->pAggInfo = pAggInfo;
3460 pExpr->op = TK_AGG_COLUMN;
3463 } /* endif pExpr->iTable==pItem->iCursor */
3464 } /* end loop over pSrcList */
3468 case TK_AGG_FUNCTION: {
3469 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3471 if( pNC->nDepth==0 ){
3472 /* Check to see if pExpr is a duplicate of another aggregate
3473 ** function that is already in the pAggInfo structure
3475 struct AggInfo_func *pItem = pAggInfo->aFunc;
3476 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3477 if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
3481 if( i>=pAggInfo->nFunc ){
3482 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
3484 u8 enc = ENC(pParse->db);
3485 i = addAggInfoFunc(pParse->db, pAggInfo);
3487 pItem = &pAggInfo->aFunc[i];
3488 pItem->pExpr = pExpr;
3489 pItem->iMem = ++pParse->nMem;
3490 pItem->pFunc = sqlite3FindFunction(pParse->db,
3491 (char*)pExpr->token.z, pExpr->token.n,
3492 pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
3493 if( pExpr->flags & EP_Distinct ){
3494 pItem->iDistinct = pParse->nTab++;
3496 pItem->iDistinct = -1;
3500 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3503 pExpr->pAggInfo = pAggInfo;
3509 /* Recursively walk subqueries looking for TK_COLUMN nodes that need
3510 ** to be changed to TK_AGG_COLUMN. But increment nDepth so that
3511 ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
3513 if( pExpr->pSelect ){
3515 walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
3522 ** Analyze the given expression looking for aggregate functions and
3523 ** for variables that need to be added to the pParse->aAgg[] array.
3524 ** Make additional entries to the pParse->aAgg[] array as necessary.
3526 ** This routine should only be called after the expression has been
3527 ** analyzed by sqlite3ExprResolveNames().
3529 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3530 walkExprTree(pExpr, analyzeAggregate, pNC);
3534 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3535 ** expression list. Return the number of errors.
3537 ** If an error is found, the analysis is cut short.
3539 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3540 struct ExprList_item *pItem;
3543 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3544 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3550 ** Allocate or deallocate temporary use registers during code generation.
3552 int sqlite3GetTempReg(Parse *pParse){
3553 if( pParse->nTempReg==0 ){
3554 return ++pParse->nMem;
3556 return pParse->aTempReg[--pParse->nTempReg];
3558 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3559 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3560 sqlite3ExprWritableRegister(pParse, iReg, iReg);
3561 pParse->aTempReg[pParse->nTempReg++] = iReg;
3566 ** Allocate or deallocate a block of nReg consecutive registers
3568 int sqlite3GetTempRange(Parse *pParse, int nReg){
3570 i = pParse->iRangeReg;
3571 n = pParse->nRangeReg;
3572 if( nReg<=n && !usedAsColumnCache(pParse, i, i+n-1) ){
3573 pParse->iRangeReg += nReg;
3574 pParse->nRangeReg -= nReg;
3577 pParse->nMem += nReg;
3581 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3582 if( nReg>pParse->nRangeReg ){
3583 pParse->nRangeReg = nReg;
3584 pParse->iRangeReg = iReg;