Update contrib.
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 ** $Id: build.c,v 1.493 2008/08/04 04:39:49 danielk1977 Exp $
27 #include "sqliteInt.h"
31 ** This routine is called when a new SQL statement is beginning to
32 ** be parsed. Initialize the pParse structure as needed.
34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
35 pParse->explain = explainFlag;
39 #ifndef SQLITE_OMIT_SHARED_CACHE
41 ** The TableLock structure is only used by the sqlite3TableLock() and
42 ** codeTableLocks() functions.
45 int iDb; /* The database containing the table to be locked */
46 int iTab; /* The root page of the table to be locked */
47 u8 isWriteLock; /* True for write lock. False for a read lock */
48 const char *zName; /* Name of the table */
52 ** Record the fact that we want to lock a table at run-time.
54 ** The table to be locked has root page iTab and is found in database iDb.
55 ** A read or a write lock can be taken depending on isWritelock.
57 ** This routine just records the fact that the lock is desired. The
58 ** code to make the lock occur is generated by a later call to
59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
61 void sqlite3TableLock(
62 Parse *pParse, /* Parsing context */
63 int iDb, /* Index of the database containing the table to lock */
64 int iTab, /* Root page number of the table to be locked */
65 u8 isWriteLock, /* True for a write lock */
66 const char *zName /* Name of the table to be locked */
76 for(i=0; i<pParse->nTableLock; i++){
77 p = &pParse->aTableLock[i];
78 if( p->iDb==iDb && p->iTab==iTab ){
79 p->isWriteLock = (p->isWriteLock || isWriteLock);
84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
86 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
87 if( pParse->aTableLock ){
88 p = &pParse->aTableLock[pParse->nTableLock++];
91 p->isWriteLock = isWriteLock;
94 pParse->nTableLock = 0;
95 pParse->db->mallocFailed = 1;
100 ** Code an OP_TableLock instruction for each table locked by the
101 ** statement (configured by calls to sqlite3TableLock()).
103 static void codeTableLocks(Parse *pParse){
107 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
111 for(i=0; i<pParse->nTableLock; i++){
112 TableLock *p = &pParse->aTableLock[i];
114 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
115 p->zName, P4_STATIC);
119 #define codeTableLocks(x)
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
137 if( db->mallocFailed ) return;
138 if( pParse->nested ) return;
139 if( pParse->nErr ) return;
141 /* Begin by generating some termination code at the end of the
144 v = sqlite3GetVdbe(pParse);
146 sqlite3VdbeAddOp0(v, OP_Halt);
148 /* The cookie mask contains one bit for each database file open.
149 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
150 ** set for each database that is used. Generate code to start a
151 ** transaction on each used database and to verify the schema cookie
152 ** on each used database.
154 if( pParse->cookieGoto>0 ){
157 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
158 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
159 if( (mask & pParse->cookieMask)==0 ) continue;
160 sqlite3VdbeUsesBtree(v, iDb);
161 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
162 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
164 #ifndef SQLITE_OMIT_VIRTUALTABLE
167 for(i=0; i<pParse->nVtabLock; i++){
168 char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
169 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
171 pParse->nVtabLock = 0;
175 /* Once all the cookies have been verified and transactions opened,
176 ** obtain the required table-locks. This is a no-op unless the
177 ** shared-cache feature is enabled.
179 codeTableLocks(pParse);
180 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
183 #ifndef SQLITE_OMIT_TRACE
184 if( !db->init.busy ){
185 /* Change the P4 argument of the first opcode (which will always be
186 ** an OP_Trace) to be the complete text of the current SQL statement.
188 VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
189 if( pOp && pOp->opcode==OP_Trace ){
190 sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
193 #endif /* SQLITE_OMIT_TRACE */
197 /* Get the VDBE program ready for execution
199 if( v && pParse->nErr==0 && !db->mallocFailed ){
201 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
202 sqlite3VdbeTrace(v, trace);
204 assert( pParse->disableColCache==0 ); /* Disables and re-enables match */
205 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
206 pParse->nTab+3, pParse->explain);
207 pParse->rc = SQLITE_DONE;
208 pParse->colNamesSet = 0;
209 }else if( pParse->rc==SQLITE_OK ){
210 pParse->rc = SQLITE_ERROR;
216 pParse->cookieMask = 0;
217 pParse->cookieGoto = 0;
221 ** Run the parser and code generator recursively in order to generate
222 ** code for the SQL statement given onto the end of the pParse context
223 ** currently under construction. When the parser is run recursively
224 ** this way, the final OP_Halt is not appended and other initialization
225 ** and finalization steps are omitted because those are handling by the
228 ** Not everything is nestable. This facility is designed to permit
229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
230 ** care if you decide to try to use this routine for some other purposes.
232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
236 sqlite3 *db = pParse->db;
237 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
238 char saveBuf[SAVE_SZ];
240 if( pParse->nErr ) return;
241 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
242 va_start(ap, zFormat);
243 zSql = sqlite3VMPrintf(db, zFormat, ap);
246 return; /* A malloc must have failed */
249 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
250 memset(&pParse->nVar, 0, SAVE_SZ);
251 sqlite3RunParser(pParse, zSql, &zErrMsg);
252 sqlite3DbFree(db, zErrMsg);
253 sqlite3DbFree(db, zSql);
254 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
259 ** Locate the in-memory structure that describes a particular database
260 ** table given the name of that table and (optionally) the name of the
261 ** database containing the table. Return NULL if not found.
263 ** If zDatabase is 0, all databases are searched for the table and the
264 ** first matching table is returned. (No checking for duplicate table
265 ** names is done.) The search order is TEMP first, then MAIN, then any
266 ** auxiliary databases added using the ATTACH command.
268 ** See also sqlite3LocateTable().
270 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
275 nName = sqlite3Strlen(db, zName) + 1;
276 for(i=OMIT_TEMPDB; i<db->nDb; i++){
277 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
278 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
279 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table. Return NULL if not found. Also leave an
289 ** error message in pParse->zErrMsg.
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
295 Table *sqlite3LocateTable(
296 Parse *pParse, /* context in which to report errors */
297 int isView, /* True if looking for a VIEW rather than a TABLE */
298 const char *zName, /* Name of the table we are looking for */
299 const char *zDbase /* Name of the database. Might be NULL */
303 /* Read the database schema. If an error occurs, leave an error message
304 ** and code in pParse and return NULL. */
305 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
309 p = sqlite3FindTable(pParse->db, zName, zDbase);
311 const char *zMsg = isView ? "no such view" : "no such table";
313 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
315 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
317 pParse->checkSchema = 1;
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned. (No checking
330 ** for duplicate index names is done.) The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
337 int nName = sqlite3Strlen(db, zName)+1;
338 for(i=OMIT_TEMPDB; i<db->nDb; i++){
339 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
340 Schema *pSchema = db->aDb[j].pSchema;
341 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
342 assert( pSchema || (j==1 && !db->aDb[1].pBt) );
344 p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
352 ** Reclaim the memory used by an index
354 static void freeIndex(Index *p){
355 sqlite3 *db = p->pTable->db;
356 sqlite3DbFree(db, p->zColAff);
357 sqlite3DbFree(db, p);
361 ** Remove the given index from the index hash table, and free
362 ** its memory structures.
364 ** The index is removed from the database hash tables but
365 ** it is not unlinked from the Table that it indexes.
366 ** Unlinking from the Table must be done by the calling function.
368 static void sqliteDeleteIndex(Index *p){
370 const char *zName = p->zName;
372 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
373 assert( pOld==0 || pOld==p );
378 ** For the index called zIdxName which is found in the database iDb,
379 ** unlike that index from its Table then remove the index from
380 ** the index hash table and free all memory structures associated
383 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
386 Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
388 len = sqlite3Strlen(db, zIdxName);
389 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
391 if( pIndex->pTable->pIndex==pIndex ){
392 pIndex->pTable->pIndex = pIndex->pNext;
395 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
396 if( p && p->pNext==pIndex ){
397 p->pNext = pIndex->pNext;
402 db->flags |= SQLITE_InternChanges;
406 ** Erase all schema information from the in-memory hash tables of
407 ** a single database. This routine is called to reclaim memory
408 ** before the database closes. It is also called during a rollback
409 ** if there were schema changes during the transaction or if a
410 ** schema-cookie mismatch occurs.
412 ** If iDb<=0 then reset the internal schema tables for all database
413 ** files. If iDb>=2 then reset the internal schema for only the
414 ** single file indicated.
416 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
418 assert( iDb>=0 && iDb<db->nDb );
421 sqlite3BtreeEnterAll(db);
423 for(i=iDb; i<db->nDb; i++){
424 Db *pDb = &db->aDb[i];
426 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
427 sqlite3SchemaFree(pDb->pSchema);
432 db->flags &= ~SQLITE_InternChanges;
433 sqlite3BtreeLeaveAll(db);
435 /* If one or more of the auxiliary database files has been closed,
436 ** then remove them from the auxiliary database list. We take the
437 ** opportunity to do this here since we have just deleted all of the
438 ** schema hash tables and therefore do not have to make any changes
439 ** to any of those tables.
441 for(i=0; i<db->nDb; i++){
442 struct Db *pDb = &db->aDb[i];
444 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
448 for(i=j=2; i<db->nDb; i++){
449 struct Db *pDb = &db->aDb[i];
451 sqlite3DbFree(db, pDb->zName);
456 db->aDb[j] = db->aDb[i];
460 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
462 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
463 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
464 sqlite3DbFree(db, db->aDb);
465 db->aDb = db->aDbStatic;
470 ** This routine is called when a commit occurs.
472 void sqlite3CommitInternalChanges(sqlite3 *db){
473 db->flags &= ~SQLITE_InternChanges;
477 ** Clear the column names from a table or view.
479 static void sqliteResetColumnNames(Table *pTable){
482 sqlite3 *db = pTable->db;
484 if( (pCol = pTable->aCol)!=0 ){
485 for(i=0; i<pTable->nCol; i++, pCol++){
486 sqlite3DbFree(db, pCol->zName);
487 sqlite3ExprDelete(db, pCol->pDflt);
488 sqlite3DbFree(db, pCol->zType);
489 sqlite3DbFree(db, pCol->zColl);
491 sqlite3DbFree(db, pTable->aCol);
498 ** Remove the memory data structures associated with the given
499 ** Table. No changes are made to disk by this routine.
501 ** This routine just deletes the data structure. It does not unlink
502 ** the table data structure from the hash table. Nor does it remove
503 ** foreign keys from the sqlite.aFKey hash table. But it does destroy
504 ** memory structures of the indices and foreign keys associated with
507 void sqlite3DeleteTable(Table *pTable){
508 Index *pIndex, *pNext;
509 FKey *pFKey, *pNextFKey;
512 if( pTable==0 ) return;
515 /* Do not delete the table until the reference count reaches zero. */
517 if( pTable->nRef>0 ){
520 assert( pTable->nRef==0 );
522 /* Delete all indices associated with this table
524 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
525 pNext = pIndex->pNext;
526 assert( pIndex->pSchema==pTable->pSchema );
527 sqliteDeleteIndex(pIndex);
530 #ifndef SQLITE_OMIT_FOREIGN_KEY
531 /* Delete all foreign keys associated with this table. The keys
532 ** should have already been unlinked from the pSchema->aFKey hash table
534 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
535 pNextFKey = pFKey->pNextFrom;
536 assert( sqlite3HashFind(&pTable->pSchema->aFKey,
537 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
538 sqlite3DbFree(db, pFKey);
542 /* Delete the Table structure itself.
544 sqliteResetColumnNames(pTable);
545 sqlite3DbFree(db, pTable->zName);
546 sqlite3DbFree(db, pTable->zColAff);
547 sqlite3SelectDelete(db, pTable->pSelect);
548 #ifndef SQLITE_OMIT_CHECK
549 sqlite3ExprDelete(db, pTable->pCheck);
551 sqlite3VtabClear(pTable);
552 sqlite3DbFree(db, pTable);
556 ** Unlink the given table from the hash tables and the delete the
557 ** table structure with all its indices and foreign keys.
559 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
565 assert( iDb>=0 && iDb<db->nDb );
566 assert( zTabName && zTabName[0] );
568 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
570 #ifndef SQLITE_OMIT_FOREIGN_KEY
571 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
572 int nTo = strlen(pF1->zTo) + 1;
573 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
575 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
577 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
579 pF2->pNextTo = pF1->pNextTo;
584 sqlite3DeleteTable(p);
586 db->flags |= SQLITE_InternChanges;
590 ** Given a token, return a string that consists of the text of that
591 ** token with any quotations removed. Space to hold the returned string
592 ** is obtained from sqliteMalloc() and must be freed by the calling
595 ** Tokens are often just pointers into the original SQL text and so
596 ** are not \000 terminated and are not persistent. The returned string
597 ** is \000 terminated and is persistent.
599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
602 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
603 sqlite3Dequote(zName);
611 ** Open the sqlite_master table stored in database number iDb for
612 ** writing. The table is opened using cursor 0.
614 void sqlite3OpenMasterTable(Parse *p, int iDb){
615 Vdbe *v = sqlite3GetVdbe(p);
616 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
617 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
618 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
622 ** The token *pName contains the name of a database (either "main" or
623 ** "temp" or the name of an attached db). This routine returns the
624 ** index of the named database in db->aDb[], or -1 if the named db
627 int sqlite3FindDb(sqlite3 *db, Token *pName){
628 int i = -1; /* Database number */
629 int n; /* Number of characters in the name */
630 Db *pDb; /* A database whose name space is being searched */
631 char *zName; /* Name we are searching for */
633 zName = sqlite3NameFromToken(db, pName);
636 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
637 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) &&
638 0==sqlite3StrICmp(pDb->zName, zName) ){
642 sqlite3DbFree(db, zName);
647 /* The table or view or trigger name is passed to this routine via tokens
648 ** pName1 and pName2. If the table name was fully qualified, for example:
650 ** CREATE TABLE xxx.yyy (...);
652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
653 ** the table name is not fully qualified, i.e.:
655 ** CREATE TABLE yyy(...);
657 ** Then pName1 is set to "yyy" and pName2 is "".
659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
660 ** pName2) that stores the unqualified table name. The index of the
661 ** database "xxx" is returned.
663 int sqlite3TwoPartName(
664 Parse *pParse, /* Parsing and code generating context */
665 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
666 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
667 Token **pUnqual /* Write the unqualified object name here */
669 int iDb; /* Database holding the object */
670 sqlite3 *db = pParse->db;
672 if( pName2 && pName2->n>0 ){
673 assert( !db->init.busy );
675 iDb = sqlite3FindDb(db, pName1);
677 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
682 assert( db->init.iDb==0 || db->init.busy );
690 ** This routine is used to check if the UTF-8 string zName is a legal
691 ** unqualified name for a new schema object (table, index, view or
692 ** trigger). All names are legal except those that begin with the string
693 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
694 ** is reserved for internal use.
696 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
697 if( !pParse->db->init.busy && pParse->nested==0
698 && (pParse->db->flags & SQLITE_WriteSchema)==0
699 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
700 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
707 ** Begin constructing a new table representation in memory. This is
708 ** the first of several action routines that get called in response
709 ** to a CREATE TABLE statement. In particular, this routine is called
710 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
711 ** flag is true if the table should be stored in the auxiliary database
712 ** file instead of in the main database file. This is normally the case
713 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
716 ** The new table record is initialized and put in pParse->pNewTable.
717 ** As more of the CREATE TABLE statement is parsed, additional action
718 ** routines will be called to add more information to this record.
719 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
720 ** is called to complete the construction of the new table record.
722 void sqlite3StartTable(
723 Parse *pParse, /* Parser context */
724 Token *pName1, /* First part of the name of the table or view */
725 Token *pName2, /* Second part of the name of the table or view */
726 int isTemp, /* True if this is a TEMP table */
727 int isView, /* True if this is a VIEW */
728 int isVirtual, /* True if this is a VIRTUAL table */
729 int noErr /* Do nothing if table already exists */
732 char *zName = 0; /* The name of the new table */
733 sqlite3 *db = pParse->db;
735 int iDb; /* Database number to create the table in */
736 Token *pName; /* Unqualified name of the table to create */
738 /* The table or view name to create is passed to this routine via tokens
739 ** pName1 and pName2. If the table name was fully qualified, for example:
741 ** CREATE TABLE xxx.yyy (...);
743 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
744 ** the table name is not fully qualified, i.e.:
746 ** CREATE TABLE yyy(...);
748 ** Then pName1 is set to "yyy" and pName2 is "".
750 ** The call below sets the pName pointer to point at the token (pName1 or
751 ** pName2) that stores the unqualified table name. The variable iDb is
752 ** set to the index of the database that the table or view is to be
755 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
757 if( !OMIT_TEMPDB && isTemp && iDb>1 ){
758 /* If creating a temp table, the name may not be qualified */
759 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
762 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
764 pParse->sNameToken = *pName;
765 zName = sqlite3NameFromToken(db, pName);
766 if( zName==0 ) return;
767 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
768 goto begin_table_error;
770 if( db->init.iDb==1 ) isTemp = 1;
771 #ifndef SQLITE_OMIT_AUTHORIZATION
772 assert( (isTemp & 1)==isTemp );
775 char *zDb = db->aDb[iDb].zName;
776 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
777 goto begin_table_error;
780 if( !OMIT_TEMPDB && isTemp ){
781 code = SQLITE_CREATE_TEMP_VIEW;
783 code = SQLITE_CREATE_VIEW;
786 if( !OMIT_TEMPDB && isTemp ){
787 code = SQLITE_CREATE_TEMP_TABLE;
789 code = SQLITE_CREATE_TABLE;
792 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
793 goto begin_table_error;
798 /* Make sure the new table name does not collide with an existing
799 ** index or table name in the same database. Issue an error message if
800 ** it does. The exception is if the statement being parsed was passed
801 ** to an sqlite3_declare_vtab() call. In that case only the column names
802 ** and types will be used, so there is no need to test for namespace
805 if( !IN_DECLARE_VTAB ){
806 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
807 goto begin_table_error;
809 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
812 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
814 goto begin_table_error;
816 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
817 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
818 goto begin_table_error;
822 pTable = sqlite3DbMallocZero(db, sizeof(Table));
824 db->mallocFailed = 1;
825 pParse->rc = SQLITE_NOMEM;
827 goto begin_table_error;
829 pTable->zName = zName;
831 pTable->pSchema = db->aDb[iDb].pSchema;
834 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
835 pParse->pNewTable = pTable;
837 /* If this is the magic sqlite_sequence table used by autoincrement,
838 ** then record a pointer to this table in the main database structure
839 ** so that INSERT can find the table easily.
841 #ifndef SQLITE_OMIT_AUTOINCREMENT
842 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
843 pTable->pSchema->pSeqTab = pTable;
847 /* Begin generating the code that will insert the table record into
848 ** the SQLITE_MASTER table. Note in particular that we must go ahead
849 ** and allocate the record number for the table entry now. Before any
850 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
851 ** indices to be created and the table record must come before the
852 ** indices. Hence, the record number for the table must be allocated
855 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
858 int reg1, reg2, reg3;
859 sqlite3BeginWriteOperation(pParse, 0, iDb);
861 #ifndef SQLITE_OMIT_VIRTUALTABLE
863 sqlite3VdbeAddOp0(v, OP_VBegin);
867 /* If the file format and encoding in the database have not been set,
870 reg1 = pParse->regRowid = ++pParse->nMem;
871 reg2 = pParse->regRoot = ++pParse->nMem;
872 reg3 = ++pParse->nMem;
873 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */
874 sqlite3VdbeUsesBtree(v, iDb);
875 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
876 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
877 1 : SQLITE_MAX_FILE_FORMAT;
878 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
879 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
880 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
881 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
882 sqlite3VdbeJumpHere(v, j1);
884 /* This just creates a place-holder record in the sqlite_master table.
885 ** The record created does not contain anything yet. It will be replaced
886 ** by the real entry in code generated at sqlite3EndTable().
888 ** The rowid for the new entry is left on the top of the stack.
889 ** The rowid value is needed by the code that sqlite3EndTable will
892 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
893 if( isView || isVirtual ){
894 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
898 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
900 sqlite3OpenMasterTable(pParse, iDb);
901 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
902 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
903 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
904 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
905 sqlite3VdbeAddOp0(v, OP_Close);
908 /* Normal (non-error) return. */
911 /* If an error occurs, we jump here */
913 sqlite3DbFree(db, zName);
918 ** This macro is used to compare two strings in a case-insensitive manner.
919 ** It is slightly faster than calling sqlite3StrICmp() directly, but
920 ** produces larger code.
922 ** WARNING: This macro is not compatible with the strcmp() family. It
923 ** returns true if the two strings are equal, otherwise false.
925 #define STRICMP(x, y) (\
926 sqlite3UpperToLower[*(unsigned char *)(x)]== \
927 sqlite3UpperToLower[*(unsigned char *)(y)] \
928 && sqlite3StrICmp((x)+1,(y)+1)==0 )
931 ** Add a new column to the table currently being constructed.
933 ** The parser calls this routine once for each column declaration
934 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
935 ** first to get things going. Then this routine is called for each
938 void sqlite3AddColumn(Parse *pParse, Token *pName){
943 sqlite3 *db = pParse->db;
944 if( (p = pParse->pNewTable)==0 ) return;
945 #if SQLITE_MAX_COLUMN
946 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
947 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
951 z = sqlite3NameFromToken(pParse->db, pName);
953 for(i=0; i<p->nCol; i++){
954 if( STRICMP(z, p->aCol[i].zName) ){
955 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
956 sqlite3DbFree(db, z);
960 if( (p->nCol & 0x7)==0 ){
962 aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
964 sqlite3DbFree(db, z);
969 pCol = &p->aCol[p->nCol];
970 memset(pCol, 0, sizeof(p->aCol[0]));
973 /* If there is no type specified, columns have the default affinity
974 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
975 ** be called next to set pCol->affinity correctly.
977 pCol->affinity = SQLITE_AFF_NONE;
982 ** This routine is called by the parser while in the middle of
983 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
984 ** been seen on a column. This routine sets the notNull flag on
985 ** the column currently under construction.
987 void sqlite3AddNotNull(Parse *pParse, int onError){
990 if( (p = pParse->pNewTable)==0 ) return;
992 if( i>=0 ) p->aCol[i].notNull = onError;
996 ** Scan the column type name zType (length nType) and return the
997 ** associated affinity type.
999 ** This routine does a case-independent search of zType for the
1000 ** substrings in the following table. If one of the substrings is
1001 ** found, the corresponding affinity is returned. If zType contains
1002 ** more than one of the substrings, entries toward the top of
1003 ** the table take priority. For example, if zType is 'BLOBINT',
1004 ** SQLITE_AFF_INTEGER is returned.
1006 ** Substring | Affinity
1007 ** --------------------------------
1008 ** 'INT' | SQLITE_AFF_INTEGER
1009 ** 'CHAR' | SQLITE_AFF_TEXT
1010 ** 'CLOB' | SQLITE_AFF_TEXT
1011 ** 'TEXT' | SQLITE_AFF_TEXT
1012 ** 'BLOB' | SQLITE_AFF_NONE
1013 ** 'REAL' | SQLITE_AFF_REAL
1014 ** 'FLOA' | SQLITE_AFF_REAL
1015 ** 'DOUB' | SQLITE_AFF_REAL
1017 ** If none of the substrings in the above table are found,
1018 ** SQLITE_AFF_NUMERIC is returned.
1020 char sqlite3AffinityType(const Token *pType){
1022 char aff = SQLITE_AFF_NUMERIC;
1023 const unsigned char *zIn = pType->z;
1024 const unsigned char *zEnd = &pType->z[pType->n];
1027 h = (h<<8) + sqlite3UpperToLower[*zIn];
1029 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1030 aff = SQLITE_AFF_TEXT;
1031 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1032 aff = SQLITE_AFF_TEXT;
1033 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1034 aff = SQLITE_AFF_TEXT;
1035 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1036 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1037 aff = SQLITE_AFF_NONE;
1038 #ifndef SQLITE_OMIT_FLOATING_POINT
1039 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1040 && aff==SQLITE_AFF_NUMERIC ){
1041 aff = SQLITE_AFF_REAL;
1042 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1043 && aff==SQLITE_AFF_NUMERIC ){
1044 aff = SQLITE_AFF_REAL;
1045 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1046 && aff==SQLITE_AFF_NUMERIC ){
1047 aff = SQLITE_AFF_REAL;
1049 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1050 aff = SQLITE_AFF_INTEGER;
1059 ** This routine is called by the parser while in the middle of
1060 ** parsing a CREATE TABLE statement. The pFirst token is the first
1061 ** token in the sequence of tokens that describe the type of the
1062 ** column currently under construction. pLast is the last token
1063 ** in the sequence. Use this information to construct a string
1064 ** that contains the typename of the column and store that string
1067 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1073 if( (p = pParse->pNewTable)==0 ) return;
1078 sqlite3DbFree(db, pCol->zType);
1079 pCol->zType = sqlite3NameFromToken(db, pType);
1080 pCol->affinity = sqlite3AffinityType(pType);
1084 ** The expression is the default value for the most recently added column
1085 ** of the table currently under construction.
1087 ** Default value expressions must be constant. Raise an exception if this
1090 ** This routine is called by the parser while in the middle of
1091 ** parsing a CREATE TABLE statement.
1093 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
1096 sqlite3 *db = pParse->db;
1097 if( (p = pParse->pNewTable)!=0 ){
1098 pCol = &(p->aCol[p->nCol-1]);
1099 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
1100 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1104 sqlite3ExprDelete(db, pCol->pDflt);
1105 pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
1107 sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
1111 sqlite3ExprDelete(db, pExpr);
1115 ** Designate the PRIMARY KEY for the table. pList is a list of names
1116 ** of columns that form the primary key. If pList is NULL, then the
1117 ** most recently added column of the table is the primary key.
1119 ** A table can have at most one primary key. If the table already has
1120 ** a primary key (and this is the second primary key) then create an
1123 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1124 ** then we will try to use that column as the rowid. Set the Table.iPKey
1125 ** field of the table under construction to be the index of the
1126 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1127 ** no INTEGER PRIMARY KEY.
1129 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1130 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1132 void sqlite3AddPrimaryKey(
1133 Parse *pParse, /* Parsing context */
1134 ExprList *pList, /* List of field names to be indexed */
1135 int onError, /* What to do with a uniqueness conflict */
1136 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1137 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1139 Table *pTab = pParse->pNewTable;
1142 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1143 if( pTab->hasPrimKey ){
1144 sqlite3ErrorMsg(pParse,
1145 "table \"%s\" has more than one primary key", pTab->zName);
1146 goto primary_key_exit;
1148 pTab->hasPrimKey = 1;
1150 iCol = pTab->nCol - 1;
1151 pTab->aCol[iCol].isPrimKey = 1;
1153 for(i=0; i<pList->nExpr; i++){
1154 for(iCol=0; iCol<pTab->nCol; iCol++){
1155 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1159 if( iCol<pTab->nCol ){
1160 pTab->aCol[iCol].isPrimKey = 1;
1163 if( pList->nExpr>1 ) iCol = -1;
1165 if( iCol>=0 && iCol<pTab->nCol ){
1166 zType = pTab->aCol[iCol].zType;
1168 if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1169 && sortOrder==SQLITE_SO_ASC ){
1171 pTab->keyConf = onError;
1172 pTab->autoInc = autoInc;
1173 }else if( autoInc ){
1174 #ifndef SQLITE_OMIT_AUTOINCREMENT
1175 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1176 "INTEGER PRIMARY KEY");
1179 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1184 sqlite3ExprListDelete(pParse->db, pList);
1189 ** Add a new CHECK constraint to the table currently under construction.
1191 void sqlite3AddCheckConstraint(
1192 Parse *pParse, /* Parsing context */
1193 Expr *pCheckExpr /* The check expression */
1195 sqlite3 *db = pParse->db;
1196 #ifndef SQLITE_OMIT_CHECK
1197 Table *pTab = pParse->pNewTable;
1198 if( pTab && !IN_DECLARE_VTAB ){
1199 /* The CHECK expression must be duplicated so that tokens refer
1200 ** to malloced space and not the (ephemeral) text of the CREATE TABLE
1202 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck,
1203 sqlite3ExprDup(db, pCheckExpr));
1206 sqlite3ExprDelete(db, pCheckExpr);
1210 ** Set the collation function of the most recently parsed table column
1211 ** to the CollSeq given.
1213 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1216 char *zColl; /* Dequoted name of collation sequence */
1219 if( (p = pParse->pNewTable)==0 ) return;
1222 zColl = sqlite3NameFromToken(db, pToken);
1223 if( !zColl ) return;
1225 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
1227 p->aCol[i].zColl = zColl;
1229 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1230 ** then an index may have been created on this column before the
1231 ** collation type was added. Correct this if it is the case.
1233 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1234 assert( pIdx->nColumn==1 );
1235 if( pIdx->aiColumn[0]==i ){
1236 pIdx->azColl[0] = p->aCol[i].zColl;
1240 sqlite3DbFree(db, zColl);
1245 ** This function returns the collation sequence for database native text
1246 ** encoding identified by the string zName, length nName.
1248 ** If the requested collation sequence is not available, or not available
1249 ** in the database native encoding, the collation factory is invoked to
1250 ** request it. If the collation factory does not supply such a sequence,
1251 ** and the sequence is available in another text encoding, then that is
1252 ** returned instead.
1254 ** If no versions of the requested collations sequence are available, or
1255 ** another error occurs, NULL is returned and an error message written into
1258 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1259 ** invokes the collation factory if the named collation cannot be found
1260 ** and generates an error message.
1262 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
1263 sqlite3 *db = pParse->db;
1265 u8 initbusy = db->init.busy;
1268 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
1269 if( !initbusy && (!pColl || !pColl->xCmp) ){
1270 pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
1273 nName = sqlite3Strlen(db, zName);
1275 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
1285 ** Generate code that will increment the schema cookie.
1287 ** The schema cookie is used to determine when the schema for the
1288 ** database changes. After each schema change, the cookie value
1289 ** changes. When a process first reads the schema it records the
1290 ** cookie. Thereafter, whenever it goes to access the database,
1291 ** it checks the cookie to make sure the schema has not changed
1292 ** since it was last read.
1294 ** This plan is not completely bullet-proof. It is possible for
1295 ** the schema to change multiple times and for the cookie to be
1296 ** set back to prior value. But schema changes are infrequent
1297 ** and the probability of hitting the same cookie value is only
1298 ** 1 chance in 2^32. So we're safe enough.
1300 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1301 int r1 = sqlite3GetTempReg(pParse);
1302 sqlite3 *db = pParse->db;
1303 Vdbe *v = pParse->pVdbe;
1304 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1305 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
1306 sqlite3ReleaseTempReg(pParse, r1);
1310 ** Measure the number of characters needed to output the given
1311 ** identifier. The number returned includes any quotes used
1312 ** but does not include the null terminator.
1314 ** The estimate is conservative. It might be larger that what is
1317 static int identLength(const char *z){
1319 for(n=0; *z; n++, z++){
1320 if( *z=='"' ){ n++; }
1326 ** Write an identifier onto the end of the given string. Add
1327 ** quote characters as needed.
1329 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1330 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1331 int i, j, needQuote;
1333 for(j=0; zIdent[j]; j++){
1334 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1336 needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
1337 || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1338 if( needQuote ) z[i++] = '"';
1339 for(j=0; zIdent[j]; j++){
1341 if( zIdent[j]=='"' ) z[i++] = '"';
1343 if( needQuote ) z[i++] = '"';
1349 ** Generate a CREATE TABLE statement appropriate for the given
1350 ** table. Memory to hold the text of the statement is obtained
1351 ** from sqliteMalloc() and must be freed by the calling function.
1353 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
1356 char *zSep, *zSep2, *zEnd, *z;
1359 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1360 n += identLength(pCol->zName);
1363 n += (strlen(z) + 1);
1366 n += identLength(p->zName);
1376 n += 35 + 6*p->nCol;
1377 zStmt = sqlite3Malloc( n );
1379 db->mallocFailed = 1;
1382 sqlite3_snprintf(n, zStmt,
1383 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
1385 identPut(zStmt, &k, p->zName);
1387 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1388 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1389 k += strlen(&zStmt[k]);
1391 identPut(zStmt, &k, pCol->zName);
1392 if( (z = pCol->zType)!=0 ){
1394 assert( strlen(z)+k+1<=n );
1395 sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
1399 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1404 ** This routine is called to report the final ")" that terminates
1405 ** a CREATE TABLE statement.
1407 ** The table structure that other action routines have been building
1408 ** is added to the internal hash tables, assuming no errors have
1411 ** An entry for the table is made in the master table on disk, unless
1412 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1413 ** it means we are reading the sqlite_master table because we just
1414 ** connected to the database or because the sqlite_master table has
1415 ** recently changed, so the entry for this table already exists in
1416 ** the sqlite_master table. We do not want to create it again.
1418 ** If the pSelect argument is not NULL, it means that this routine
1419 ** was called to create a table generated from a
1420 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1421 ** the new table will match the result set of the SELECT.
1423 void sqlite3EndTable(
1424 Parse *pParse, /* Parse context */
1425 Token *pCons, /* The ',' token after the last column defn. */
1426 Token *pEnd, /* The final ')' token in the CREATE TABLE */
1427 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1430 sqlite3 *db = pParse->db;
1433 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
1436 p = pParse->pNewTable;
1439 assert( !db->init.busy || !pSelect );
1441 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1443 #ifndef SQLITE_OMIT_CHECK
1444 /* Resolve names in all CHECK constraint expressions.
1447 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
1448 NameContext sNC; /* Name context for pParse->pNewTable */
1450 memset(&sNC, 0, sizeof(sNC));
1451 memset(&sSrc, 0, sizeof(sSrc));
1453 sSrc.a[0].zName = p->zName;
1455 sSrc.a[0].iCursor = -1;
1456 sNC.pParse = pParse;
1457 sNC.pSrcList = &sSrc;
1459 if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){
1463 #endif /* !defined(SQLITE_OMIT_CHECK) */
1465 /* If the db->init.busy is 1 it means we are reading the SQL off the
1466 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1467 ** So do not write to the disk again. Extract the root page number
1468 ** for the table from the db->init.newTnum field. (The page number
1469 ** should have been put there by the sqliteOpenCb routine.)
1471 if( db->init.busy ){
1472 p->tnum = db->init.newTnum;
1475 /* If not initializing, then create a record for the new table
1476 ** in the SQLITE_MASTER table of the database. The record number
1477 ** for the new table entry should already be on the stack.
1479 ** If this is a TEMPORARY table, write the entry into the auxiliary
1480 ** file instead of into the main database file.
1482 if( !db->init.busy ){
1485 char *zType; /* "view" or "table" */
1486 char *zType2; /* "VIEW" or "TABLE" */
1487 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1489 v = sqlite3GetVdbe(pParse);
1492 sqlite3VdbeAddOp1(v, OP_Close, 0);
1494 /* Create the rootpage for the new table and push it onto the stack.
1495 ** A view has no rootpage, so just push a zero onto the stack for
1496 ** views. Initialize zType at the same time.
1498 if( p->pSelect==0 ){
1499 /* A regular table */
1502 #ifndef SQLITE_OMIT_VIEW
1510 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1511 ** statement to populate the new table. The root-page number for the
1512 ** new table is on the top of the vdbe stack.
1514 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1515 ** suitable state to query for the column names and types to be used
1516 ** by the new table.
1518 ** A shared-cache write-lock is not required to write to the new table,
1519 ** as a schema-lock must have already been obtained to create it. Since
1520 ** a schema-lock excludes all other database users, the write-lock would
1527 assert(pParse->nTab==0);
1528 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1529 sqlite3VdbeChangeP5(v, 1);
1531 sqlite3SelectDestInit(&dest, SRT_Table, 1);
1532 sqlite3Select(pParse, pSelect, &dest, 0, 0, 0);
1533 sqlite3VdbeAddOp1(v, OP_Close, 1);
1534 if( pParse->nErr==0 ){
1535 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect);
1536 if( pSelTab==0 ) return;
1537 assert( p->aCol==0 );
1538 p->nCol = pSelTab->nCol;
1539 p->aCol = pSelTab->aCol;
1542 sqlite3DeleteTable(pSelTab);
1546 /* Compute the complete text of the CREATE statement */
1548 zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
1550 n = pEnd->z - pParse->sNameToken.z + 1;
1551 zStmt = sqlite3MPrintf(db,
1552 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1556 /* A slot for the record has already been allocated in the
1557 ** SQLITE_MASTER table. We just need to update that slot with all
1558 ** the information we've collected. The rowid for the preallocated
1559 ** slot is the 2nd item on the stack. The top of the stack is the
1560 ** root page for the new table (or a 0 if this is a view).
1562 sqlite3NestedParse(pParse,
1564 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1566 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1574 sqlite3DbFree(db, zStmt);
1575 sqlite3ChangeCookie(pParse, iDb);
1577 #ifndef SQLITE_OMIT_AUTOINCREMENT
1578 /* Check to see if we need to create an sqlite_sequence table for
1579 ** keeping track of autoincrement keys.
1582 Db *pDb = &db->aDb[iDb];
1583 if( pDb->pSchema->pSeqTab==0 ){
1584 sqlite3NestedParse(pParse,
1585 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1592 /* Reparse everything to update our internal data structures */
1593 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1594 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1598 /* Add the table to the in-memory representation of the database.
1600 if( db->init.busy && pParse->nErr==0 ){
1603 Schema *pSchema = p->pSchema;
1604 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
1606 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
1607 db->mallocFailed = 1;
1610 #ifndef SQLITE_OMIT_FOREIGN_KEY
1611 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
1613 int nTo = strlen(pFKey->zTo) + 1;
1614 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
1615 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
1616 if( data==(void *)pFKey ){
1617 db->mallocFailed = 1;
1621 pParse->pNewTable = 0;
1623 db->flags |= SQLITE_InternChanges;
1625 #ifndef SQLITE_OMIT_ALTERTABLE
1627 const char *zName = (const char *)pParse->sNameToken.z;
1629 assert( !pSelect && pCons && pEnd );
1633 nName = (const char *)pCons->z - zName;
1634 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1640 #ifndef SQLITE_OMIT_VIEW
1642 ** The parser calls this routine in order to create a new VIEW
1644 void sqlite3CreateView(
1645 Parse *pParse, /* The parsing context */
1646 Token *pBegin, /* The CREATE token that begins the statement */
1647 Token *pName1, /* The token that holds the name of the view */
1648 Token *pName2, /* The token that holds the name of the view */
1649 Select *pSelect, /* A SELECT statement that will become the new view */
1650 int isTemp, /* TRUE for a TEMPORARY view */
1651 int noErr /* Suppress error messages if VIEW already exists */
1655 const unsigned char *z;
1660 sqlite3 *db = pParse->db;
1662 if( pParse->nVar>0 ){
1663 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1664 sqlite3SelectDelete(db, pSelect);
1667 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1668 p = pParse->pNewTable;
1669 if( p==0 || pParse->nErr ){
1670 sqlite3SelectDelete(db, pSelect);
1673 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1674 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1675 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1676 && sqlite3FixSelect(&sFix, pSelect)
1678 sqlite3SelectDelete(db, pSelect);
1682 /* Make a copy of the entire SELECT statement that defines the view.
1683 ** This will force all the Expr.token.z values to be dynamically
1684 ** allocated rather than point to the input string - which means that
1685 ** they will persist after the current sqlite3_exec() call returns.
1687 p->pSelect = sqlite3SelectDup(db, pSelect);
1688 sqlite3SelectDelete(db, pSelect);
1689 if( db->mallocFailed ){
1692 if( !db->init.busy ){
1693 sqlite3ViewGetColumnNames(pParse, p);
1696 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1699 sEnd = pParse->sLastToken;
1700 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
1704 n = sEnd.z - pBegin->z;
1705 z = (const unsigned char*)pBegin->z;
1706 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
1710 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1711 sqlite3EndTable(pParse, 0, &sEnd, 0);
1714 #endif /* SQLITE_OMIT_VIEW */
1716 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1718 ** The Table structure pTable is really a VIEW. Fill in the names of
1719 ** the columns of the view in the pTable structure. Return the number
1720 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1722 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1723 Table *pSelTab; /* A fake table from which we get the result set */
1724 Select *pSel; /* Copy of the SELECT that implements the view */
1725 int nErr = 0; /* Number of errors encountered */
1726 int n; /* Temporarily holds the number of cursors assigned */
1727 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
1728 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1732 #ifndef SQLITE_OMIT_VIRTUALTABLE
1733 if( sqlite3VtabCallConnect(pParse, pTable) ){
1734 return SQLITE_ERROR;
1736 if( IsVirtual(pTable) ) return 0;
1739 #ifndef SQLITE_OMIT_VIEW
1740 /* A positive nCol means the columns names for this view are
1743 if( pTable->nCol>0 ) return 0;
1745 /* A negative nCol is a special marker meaning that we are currently
1746 ** trying to compute the column names. If we enter this routine with
1747 ** a negative nCol, it means two or more views form a loop, like this:
1749 ** CREATE VIEW one AS SELECT * FROM two;
1750 ** CREATE VIEW two AS SELECT * FROM one;
1752 ** Actually, this error is caught previously and so the following test
1753 ** should always fail. But we will leave it in place just to be safe.
1755 if( pTable->nCol<0 ){
1756 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1759 assert( pTable->nCol>=0 );
1761 /* If we get this far, it means we need to compute the table names.
1762 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1763 ** "*" elements in the results set of the view and will assign cursors
1764 ** to the elements of the FROM clause. But we do not want these changes
1765 ** to be permanent. So the computation is done on a copy of the SELECT
1766 ** statement that defines the view.
1768 assert( pTable->pSelect );
1769 pSel = sqlite3SelectDup(db, pTable->pSelect);
1772 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1774 #ifndef SQLITE_OMIT_AUTHORIZATION
1777 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
1780 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel);
1784 assert( pTable->aCol==0 );
1785 pTable->nCol = pSelTab->nCol;
1786 pTable->aCol = pSelTab->aCol;
1789 sqlite3DeleteTable(pSelTab);
1790 pTable->pSchema->flags |= DB_UnresetViews;
1795 sqlite3SelectDelete(db, pSel);
1799 #endif /* SQLITE_OMIT_VIEW */
1802 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1804 #ifndef SQLITE_OMIT_VIEW
1806 ** Clear the column names from every VIEW in database idx.
1808 static void sqliteViewResetAll(sqlite3 *db, int idx){
1810 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1811 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1812 Table *pTab = sqliteHashData(i);
1813 if( pTab->pSelect ){
1814 sqliteResetColumnNames(pTab);
1817 DbClearProperty(db, idx, DB_UnresetViews);
1820 # define sqliteViewResetAll(A,B)
1821 #endif /* SQLITE_OMIT_VIEW */
1824 ** This function is called by the VDBE to adjust the internal schema
1825 ** used by SQLite when the btree layer moves a table root page. The
1826 ** root-page of a table or index in database iDb has changed from iFrom
1829 ** Ticket #1728: The symbol table might still contain information
1830 ** on tables and/or indices that are the process of being deleted.
1831 ** If you are unlucky, one of those deleted indices or tables might
1832 ** have the same rootpage number as the real table or index that is
1833 ** being moved. So we cannot stop searching after the first match
1834 ** because the first match might be for one of the deleted indices
1835 ** or tables and not the table/index that is actually being moved.
1836 ** We must continue looping until all tables and indices with
1837 ** rootpage==iFrom have been converted to have a rootpage of iTo
1838 ** in order to be certain that we got the right one.
1840 #ifndef SQLITE_OMIT_AUTOVACUUM
1841 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
1845 pHash = &pDb->pSchema->tblHash;
1846 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1847 Table *pTab = sqliteHashData(pElem);
1848 if( pTab->tnum==iFrom ){
1852 pHash = &pDb->pSchema->idxHash;
1853 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1854 Index *pIdx = sqliteHashData(pElem);
1855 if( pIdx->tnum==iFrom ){
1863 ** Write code to erase the table with root-page iTable from database iDb.
1864 ** Also write code to modify the sqlite_master table and internal schema
1865 ** if a root-page of another table is moved by the btree-layer whilst
1866 ** erasing iTable (this can happen with an auto-vacuum database).
1868 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1869 Vdbe *v = sqlite3GetVdbe(pParse);
1870 int r1 = sqlite3GetTempReg(pParse);
1871 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1872 #ifndef SQLITE_OMIT_AUTOVACUUM
1873 /* OP_Destroy stores an in integer r1. If this integer
1874 ** is non-zero, then it is the root page number of a table moved to
1875 ** location iTable. The following code modifies the sqlite_master table to
1878 ** The "#%d" in the SQL is a special constant that means whatever value
1879 ** is on the top of the stack. See sqlite3RegisterExpr().
1881 sqlite3NestedParse(pParse,
1882 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1883 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1885 sqlite3ReleaseTempReg(pParse, r1);
1889 ** Write VDBE code to erase table pTab and all associated indices on disk.
1890 ** Code to update the sqlite_master tables and internal schema definitions
1891 ** in case a root-page belonging to another table is moved by the btree layer
1892 ** is also added (this can happen with an auto-vacuum database).
1894 static void destroyTable(Parse *pParse, Table *pTab){
1895 #ifdef SQLITE_OMIT_AUTOVACUUM
1897 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1898 destroyRootPage(pParse, pTab->tnum, iDb);
1899 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1900 destroyRootPage(pParse, pIdx->tnum, iDb);
1903 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1904 ** is not defined), then it is important to call OP_Destroy on the
1905 ** table and index root-pages in order, starting with the numerically
1906 ** largest root-page number. This guarantees that none of the root-pages
1907 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1908 ** following were coded:
1914 ** and root page 5 happened to be the largest root-page number in the
1915 ** database, then root page 5 would be moved to page 4 by the
1916 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1917 ** a free-list page.
1919 int iTab = pTab->tnum;
1926 if( iDestroyed==0 || iTab<iDestroyed ){
1929 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1930 int iIdx = pIdx->tnum;
1931 assert( pIdx->pSchema==pTab->pSchema );
1932 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1939 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1940 destroyRootPage(pParse, iLargest, iDb);
1941 iDestroyed = iLargest;
1948 ** This routine is called to do the work of a DROP TABLE statement.
1949 ** pName is the name of the table to be dropped.
1951 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1954 sqlite3 *db = pParse->db;
1957 if( pParse->nErr || db->mallocFailed ){
1958 goto exit_drop_table;
1960 assert( pName->nSrc==1 );
1961 pTab = sqlite3LocateTable(pParse, isView,
1962 pName->a[0].zName, pName->a[0].zDatabase);
1966 sqlite3ErrorClear(pParse);
1968 goto exit_drop_table;
1970 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1971 assert( iDb>=0 && iDb<db->nDb );
1973 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
1974 ** it is initialized.
1976 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
1977 goto exit_drop_table;
1979 #ifndef SQLITE_OMIT_AUTHORIZATION
1982 const char *zTab = SCHEMA_TABLE(iDb);
1983 const char *zDb = db->aDb[iDb].zName;
1984 const char *zArg2 = 0;
1985 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
1986 goto exit_drop_table;
1989 if( !OMIT_TEMPDB && iDb==1 ){
1990 code = SQLITE_DROP_TEMP_VIEW;
1992 code = SQLITE_DROP_VIEW;
1994 #ifndef SQLITE_OMIT_VIRTUALTABLE
1995 }else if( IsVirtual(pTab) ){
1996 code = SQLITE_DROP_VTABLE;
1997 zArg2 = pTab->pMod->zName;
2000 if( !OMIT_TEMPDB && iDb==1 ){
2001 code = SQLITE_DROP_TEMP_TABLE;
2003 code = SQLITE_DROP_TABLE;
2006 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2007 goto exit_drop_table;
2009 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2010 goto exit_drop_table;
2014 if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){
2015 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2016 goto exit_drop_table;
2019 #ifndef SQLITE_OMIT_VIEW
2020 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2023 if( isView && pTab->pSelect==0 ){
2024 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2025 goto exit_drop_table;
2027 if( !isView && pTab->pSelect ){
2028 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2029 goto exit_drop_table;
2033 /* Generate code to remove the table from the master table
2036 v = sqlite3GetVdbe(pParse);
2039 Db *pDb = &db->aDb[iDb];
2040 sqlite3BeginWriteOperation(pParse, 1, iDb);
2042 #ifndef SQLITE_OMIT_VIRTUALTABLE
2043 if( IsVirtual(pTab) ){
2044 Vdbe *v = sqlite3GetVdbe(pParse);
2046 sqlite3VdbeAddOp0(v, OP_VBegin);
2051 /* Drop all triggers associated with the table being dropped. Code
2052 ** is generated to remove entries from sqlite_master and/or
2053 ** sqlite_temp_master if required.
2055 pTrigger = pTab->pTrigger;
2057 assert( pTrigger->pSchema==pTab->pSchema ||
2058 pTrigger->pSchema==db->aDb[1].pSchema );
2059 sqlite3DropTriggerPtr(pParse, pTrigger);
2060 pTrigger = pTrigger->pNext;
2063 #ifndef SQLITE_OMIT_AUTOINCREMENT
2064 /* Remove any entries of the sqlite_sequence table associated with
2065 ** the table being dropped. This is done before the table is dropped
2066 ** at the btree level, in case the sqlite_sequence table needs to
2067 ** move as a result of the drop (can happen in auto-vacuum mode).
2069 if( pTab->autoInc ){
2070 sqlite3NestedParse(pParse,
2071 "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2072 pDb->zName, pTab->zName
2077 /* Drop all SQLITE_MASTER table and index entries that refer to the
2078 ** table. The program name loops through the master table and deletes
2079 ** every row that refers to a table of the same name as the one being
2080 ** dropped. Triggers are handled seperately because a trigger can be
2081 ** created in the temp database that refers to a table in another
2084 sqlite3NestedParse(pParse,
2085 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2086 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2088 /* Drop any statistics from the sqlite_stat1 table, if it exists */
2089 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2090 sqlite3NestedParse(pParse,
2091 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2095 if( !isView && !IsVirtual(pTab) ){
2096 destroyTable(pParse, pTab);
2099 /* Remove the table entry from SQLite's internal schema and modify
2100 ** the schema cookie.
2102 if( IsVirtual(pTab) ){
2103 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2105 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2106 sqlite3ChangeCookie(pParse, iDb);
2108 sqliteViewResetAll(db, iDb);
2111 sqlite3SrcListDelete(db, pName);
2115 ** This routine is called to create a new foreign key on the table
2116 ** currently under construction. pFromCol determines which columns
2117 ** in the current table point to the foreign key. If pFromCol==0 then
2118 ** connect the key to the last column inserted. pTo is the name of
2119 ** the table referred to. pToCol is a list of tables in the other
2120 ** pTo table that the foreign key points to. flags contains all
2121 ** information about the conflict resolution algorithms specified
2122 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2124 ** An FKey structure is created and added to the table currently
2125 ** under construction in the pParse->pNewTable field. The new FKey
2126 ** is not linked into db->aFKey at this point - that does not happen
2127 ** until sqlite3EndTable().
2129 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2130 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2132 void sqlite3CreateForeignKey(
2133 Parse *pParse, /* Parsing context */
2134 ExprList *pFromCol, /* Columns in this table that point to other table */
2135 Token *pTo, /* Name of the other table */
2136 ExprList *pToCol, /* Columns in the other table */
2137 int flags /* Conflict resolution algorithms. */
2139 #ifndef SQLITE_OMIT_FOREIGN_KEY
2141 Table *p = pParse->pNewTable;
2150 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
2152 int iCol = p->nCol-1;
2153 if( iCol<0 ) goto fk_end;
2154 if( pToCol && pToCol->nExpr!=1 ){
2155 sqlite3ErrorMsg(pParse, "foreign key on %s"
2156 " should reference only one column of table %T",
2157 p->aCol[iCol].zName, pTo);
2161 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2162 sqlite3ErrorMsg(pParse,
2163 "number of columns in foreign key does not match the number of "
2164 "columns in the referenced table");
2167 nCol = pFromCol->nExpr;
2169 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2171 for(i=0; i<pToCol->nExpr; i++){
2172 nByte += strlen(pToCol->a[i].zName) + 1;
2175 pFKey = sqlite3DbMallocZero(db, nByte );
2180 pFKey->pNextFrom = p->pFKey;
2181 z = (char*)&pFKey[1];
2182 pFKey->aCol = (struct sColMap*)z;
2183 z += sizeof(struct sColMap)*nCol;
2185 memcpy(z, pTo->z, pTo->n);
2191 pFKey->aCol[0].iFrom = p->nCol-1;
2193 for(i=0; i<nCol; i++){
2195 for(j=0; j<p->nCol; j++){
2196 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2197 pFKey->aCol[i].iFrom = j;
2202 sqlite3ErrorMsg(pParse,
2203 "unknown column \"%s\" in foreign key definition",
2204 pFromCol->a[i].zName);
2210 for(i=0; i<nCol; i++){
2211 int n = strlen(pToCol->a[i].zName);
2212 pFKey->aCol[i].zCol = z;
2213 memcpy(z, pToCol->a[i].zName, n);
2218 pFKey->isDeferred = 0;
2219 pFKey->deleteConf = flags & 0xff;
2220 pFKey->updateConf = (flags >> 8 ) & 0xff;
2221 pFKey->insertConf = (flags >> 16 ) & 0xff;
2223 /* Link the foreign key to the table as the last step.
2229 sqlite3DbFree(db, pFKey);
2230 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2231 sqlite3ExprListDelete(db, pFromCol);
2232 sqlite3ExprListDelete(db, pToCol);
2236 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2237 ** clause is seen as part of a foreign key definition. The isDeferred
2238 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2239 ** The behavior of the most recently created foreign key is adjusted
2242 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2243 #ifndef SQLITE_OMIT_FOREIGN_KEY
2246 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2247 pFKey->isDeferred = isDeferred;
2252 ** Generate code that will erase and refill index *pIdx. This is
2253 ** used to initialize a newly created index or to recompute the
2254 ** content of an index in response to a REINDEX command.
2256 ** if memRootPage is not negative, it means that the index is newly
2257 ** created. The register specified by memRootPage contains the
2258 ** root page number of the index. If memRootPage is negative, then
2259 ** the index already exists and must be cleared before being refilled and
2260 ** the root page number of the index is taken from pIndex->tnum.
2262 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2263 Table *pTab = pIndex->pTable; /* The table that is indexed */
2264 int iTab = pParse->nTab; /* Btree cursor used for pTab */
2265 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */
2266 int addr1; /* Address of top of loop */
2267 int tnum; /* Root page of index */
2268 Vdbe *v; /* Generate code into this virtual machine */
2269 KeyInfo *pKey; /* KeyInfo for index */
2270 int regIdxKey; /* Registers containing the index key */
2271 int regRecord; /* Register holding assemblied index record */
2272 sqlite3 *db = pParse->db; /* The database connection */
2273 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2275 #ifndef SQLITE_OMIT_AUTHORIZATION
2276 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2277 db->aDb[iDb].zName ) ){
2282 /* Require a write-lock on the table to perform this operation */
2283 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2285 v = sqlite3GetVdbe(pParse);
2287 if( memRootPage>=0 ){
2290 tnum = pIndex->tnum;
2291 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2293 pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2294 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2295 (char *)pKey, P4_KEYINFO_HANDOFF);
2296 if( memRootPage>=0 ){
2297 sqlite3VdbeChangeP5(v, 1);
2299 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2300 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2301 regRecord = sqlite3GetTempReg(pParse);
2302 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2303 if( pIndex->onError!=OE_None ){
2307 regRowid = regIdxKey + pIndex->nColumn;
2308 j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
2309 j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
2310 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
2311 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
2312 "indexed columns are not unique", P4_STATIC);
2313 sqlite3VdbeJumpHere(v, j1);
2314 sqlite3VdbeJumpHere(v, j2);
2316 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2317 sqlite3ReleaseTempReg(pParse, regRecord);
2318 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2319 sqlite3VdbeJumpHere(v, addr1);
2320 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2321 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2325 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2326 ** and pTblList is the name of the table that is to be indexed. Both will
2327 ** be NULL for a primary key or an index that is created to satisfy a
2328 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2329 ** as the table to be indexed. pParse->pNewTable is a table that is
2330 ** currently being constructed by a CREATE TABLE statement.
2332 ** pList is a list of columns to be indexed. pList will be NULL if this
2333 ** is a primary key or unique-constraint on the most recent column added
2334 ** to the table currently under construction.
2336 void sqlite3CreateIndex(
2337 Parse *pParse, /* All information about this parse */
2338 Token *pName1, /* First part of index name. May be NULL */
2339 Token *pName2, /* Second part of index name. May be NULL */
2340 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2341 ExprList *pList, /* A list of columns to be indexed */
2342 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2343 Token *pStart, /* The CREATE token that begins this statement */
2344 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
2345 int sortOrder, /* Sort order of primary key when pList==NULL */
2346 int ifNotExist /* Omit error if index already exists */
2348 Table *pTab = 0; /* Table to be indexed */
2349 Index *pIndex = 0; /* The index to be created */
2350 char *zName = 0; /* Name of the index */
2351 int nName; /* Number of characters in zName */
2353 Token nullId; /* Fake token for an empty ID list */
2354 DbFixer sFix; /* For assigning database names to pTable */
2355 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2356 sqlite3 *db = pParse->db;
2357 Db *pDb; /* The specific table containing the indexed database */
2358 int iDb; /* Index of the database that is being written */
2359 Token *pName = 0; /* Unqualified name of the index to create */
2360 struct ExprList_item *pListItem; /* For looping over pList */
2365 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
2366 goto exit_create_index;
2370 ** Find the table that is to be indexed. Return early if not found.
2374 /* Use the two-part index name to determine the database
2375 ** to search for the table. 'Fix' the table name to this db
2376 ** before looking up the table.
2378 assert( pName1 && pName2 );
2379 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2380 if( iDb<0 ) goto exit_create_index;
2382 #ifndef SQLITE_OMIT_TEMPDB
2383 /* If the index name was unqualified, check if the the table
2384 ** is a temp table. If so, set the database to 1. Do not do this
2385 ** if initialising a database schema.
2387 if( !db->init.busy ){
2388 pTab = sqlite3SrcListLookup(pParse, pTblName);
2389 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2395 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2396 sqlite3FixSrcList(&sFix, pTblName)
2398 /* Because the parser constructs pTblName from a single identifier,
2399 ** sqlite3FixSrcList can never fail. */
2402 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2403 pTblName->a[0].zDatabase);
2404 if( !pTab ) goto exit_create_index;
2405 assert( db->aDb[iDb].pSchema==pTab->pSchema );
2408 pTab = pParse->pNewTable;
2409 if( !pTab ) goto exit_create_index;
2410 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2412 pDb = &db->aDb[iDb];
2414 if( pTab==0 || pParse->nErr ) goto exit_create_index;
2415 if( pTab->readOnly ){
2416 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2417 goto exit_create_index;
2419 #ifndef SQLITE_OMIT_VIEW
2420 if( pTab->pSelect ){
2421 sqlite3ErrorMsg(pParse, "views may not be indexed");
2422 goto exit_create_index;
2425 #ifndef SQLITE_OMIT_VIRTUALTABLE
2426 if( IsVirtual(pTab) ){
2427 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2428 goto exit_create_index;
2433 ** Find the name of the index. Make sure there is not already another
2434 ** index or table with the same name.
2436 ** Exception: If we are reading the names of permanent indices from the
2437 ** sqlite_master table (because some other process changed the schema) and
2438 ** one of the index names collides with the name of a temporary table or
2439 ** index, then we will continue to process this index.
2441 ** If pName==0 it means that we are
2442 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2446 zName = sqlite3NameFromToken(db, pName);
2447 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2448 if( zName==0 ) goto exit_create_index;
2449 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2450 goto exit_create_index;
2452 if( !db->init.busy ){
2453 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
2454 if( sqlite3FindTable(db, zName, 0)!=0 ){
2455 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2456 goto exit_create_index;
2459 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2461 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2463 goto exit_create_index;
2468 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2469 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2471 goto exit_create_index;
2475 /* Check for authorization to create an index.
2477 #ifndef SQLITE_OMIT_AUTHORIZATION
2479 const char *zDb = pDb->zName;
2480 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2481 goto exit_create_index;
2483 i = SQLITE_CREATE_INDEX;
2484 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2485 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2486 goto exit_create_index;
2491 /* If pList==0, it means this routine was called to make a primary
2492 ** key out of the last column added to the table under construction.
2493 ** So create a fake list to simulate this.
2496 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
2497 nullId.n = strlen((char*)nullId.z);
2498 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
2499 if( pList==0 ) goto exit_create_index;
2500 pList->a[0].sortOrder = sortOrder;
2503 /* Figure out how many bytes of space are required to store explicitly
2504 ** specified collation sequence names.
2506 for(i=0; i<pList->nExpr; i++){
2507 Expr *pExpr = pList->a[i].pExpr;
2509 nExtra += (1 + strlen(pExpr->pColl->zName));
2514 ** Allocate the index structure.
2516 nName = strlen(zName);
2517 nCol = pList->nExpr;
2518 pIndex = sqlite3DbMallocZero(db,
2519 sizeof(Index) + /* Index structure */
2520 sizeof(int)*nCol + /* Index.aiColumn */
2521 sizeof(int)*(nCol+1) + /* Index.aiRowEst */
2522 sizeof(char *)*nCol + /* Index.azColl */
2523 sizeof(u8)*nCol + /* Index.aSortOrder */
2524 nName + 1 + /* Index.zName */
2525 nExtra /* Collation sequence names */
2527 if( db->mallocFailed ){
2528 goto exit_create_index;
2530 pIndex->azColl = (char**)(&pIndex[1]);
2531 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2532 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2533 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2534 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2535 zExtra = (char *)(&pIndex->zName[nName+1]);
2536 memcpy(pIndex->zName, zName, nName+1);
2537 pIndex->pTable = pTab;
2538 pIndex->nColumn = pList->nExpr;
2539 pIndex->onError = onError;
2540 pIndex->autoIndex = pName==0;
2541 pIndex->pSchema = db->aDb[iDb].pSchema;
2543 /* Check to see if we should honor DESC requests on index columns
2545 if( pDb->pSchema->file_format>=4 ){
2546 sortOrderMask = -1; /* Honor DESC */
2548 sortOrderMask = 0; /* Ignore DESC */
2551 /* Scan the names of the columns of the table to be indexed and
2552 ** load the column indices into the Index structure. Report an error
2553 ** if any column is not found.
2555 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2556 const char *zColName = pListItem->zName;
2558 int requestedSortOrder;
2559 char *zColl; /* Collation sequence name */
2561 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2562 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2564 if( j>=pTab->nCol ){
2565 sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2566 pTab->zName, zColName);
2567 goto exit_create_index;
2569 /* TODO: Add a test to make sure that the same column is not named
2570 ** more than once within the same index. Only the first instance of
2571 ** the column will ever be used by the optimizer. Note that using the
2572 ** same column more than once cannot be an error because that would
2573 ** break backwards compatibility - it needs to be a warning.
2575 pIndex->aiColumn[i] = j;
2576 if( pListItem->pExpr ){
2577 assert( pListItem->pExpr->pColl );
2579 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
2580 zExtra += (strlen(zColl) + 1);
2582 zColl = pTab->aCol[j].zColl;
2584 zColl = db->pDfltColl->zName;
2587 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
2588 goto exit_create_index;
2590 pIndex->azColl[i] = zColl;
2591 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2592 pIndex->aSortOrder[i] = requestedSortOrder;
2594 sqlite3DefaultRowEst(pIndex);
2596 if( pTab==pParse->pNewTable ){
2597 /* This routine has been called to create an automatic index as a
2598 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2599 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2602 ** CREATE TABLE t(x PRIMARY KEY, y);
2603 ** CREATE TABLE t(x, y, UNIQUE(x, y));
2605 ** Either way, check to see if the table already has such an index. If
2606 ** so, don't bother creating this one. This only applies to
2607 ** automatically created indices. Users can do as they wish with
2608 ** explicit indices.
2611 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2613 assert( pIdx->onError!=OE_None );
2614 assert( pIdx->autoIndex );
2615 assert( pIndex->onError!=OE_None );
2617 if( pIdx->nColumn!=pIndex->nColumn ) continue;
2618 for(k=0; k<pIdx->nColumn; k++){
2619 const char *z1 = pIdx->azColl[k];
2620 const char *z2 = pIndex->azColl[k];
2621 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2622 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
2623 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2625 if( k==pIdx->nColumn ){
2626 if( pIdx->onError!=pIndex->onError ){
2627 /* This constraint creates the same index as a previous
2628 ** constraint specified somewhere in the CREATE TABLE statement.
2629 ** However the ON CONFLICT clauses are different. If both this
2630 ** constraint and the previous equivalent constraint have explicit
2631 ** ON CONFLICT clauses this is an error. Otherwise, use the
2632 ** explicitly specified behaviour for the index.
2634 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2635 sqlite3ErrorMsg(pParse,
2636 "conflicting ON CONFLICT clauses specified", 0);
2638 if( pIdx->onError==OE_Default ){
2639 pIdx->onError = pIndex->onError;
2642 goto exit_create_index;
2647 /* Link the new Index structure to its table and to the other
2648 ** in-memory database structures.
2650 if( db->init.busy ){
2652 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2653 pIndex->zName, strlen(pIndex->zName)+1, pIndex);
2655 assert( p==pIndex ); /* Malloc must have failed */
2656 db->mallocFailed = 1;
2657 goto exit_create_index;
2659 db->flags |= SQLITE_InternChanges;
2661 pIndex->tnum = db->init.newTnum;
2665 /* If the db->init.busy is 0 then create the index on disk. This
2666 ** involves writing the index into the master table and filling in the
2667 ** index with the current table contents.
2669 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2670 ** command. db->init.busy is 1 when a database is opened and
2671 ** CREATE INDEX statements are read out of the master table. In
2672 ** the latter case the index already exists on disk, which is why
2673 ** we don't want to recreate it.
2675 ** If pTblName==0 it means this index is generated as a primary key
2676 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
2677 ** has just been created, it contains no data and the index initialization
2678 ** step can be skipped.
2680 else if( db->init.busy==0 ){
2683 int iMem = ++pParse->nMem;
2685 v = sqlite3GetVdbe(pParse);
2686 if( v==0 ) goto exit_create_index;
2689 /* Create the rootpage for the index
2691 sqlite3BeginWriteOperation(pParse, 1, iDb);
2692 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2694 /* Gather the complete text of the CREATE INDEX statement into
2695 ** the zStmt variable
2697 if( pStart && pEnd ){
2698 /* A named index with an explicit CREATE INDEX statement */
2699 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2700 onError==OE_None ? "" : " UNIQUE",
2701 pEnd->z - pName->z + 1,
2704 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2705 /* zStmt = sqlite3MPrintf(""); */
2709 /* Add an entry in sqlite_master for this index
2711 sqlite3NestedParse(pParse,
2712 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2713 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2719 sqlite3DbFree(db, zStmt);
2721 /* Fill the index with data and reparse the schema. Code an OP_Expire
2722 ** to invalidate all pre-compiled statements.
2725 sqlite3RefillIndex(pParse, pIndex, iMem);
2726 sqlite3ChangeCookie(pParse, iDb);
2727 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2728 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
2729 sqlite3VdbeAddOp1(v, OP_Expire, 0);
2733 /* When adding an index to the list of indices for a table, make
2734 ** sure all indices labeled OE_Replace come after all those labeled
2735 ** OE_Ignore. This is necessary for the correct operation of UPDATE
2738 if( db->init.busy || pTblName==0 ){
2739 if( onError!=OE_Replace || pTab->pIndex==0
2740 || pTab->pIndex->onError==OE_Replace){
2741 pIndex->pNext = pTab->pIndex;
2742 pTab->pIndex = pIndex;
2744 Index *pOther = pTab->pIndex;
2745 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2746 pOther = pOther->pNext;
2748 pIndex->pNext = pOther->pNext;
2749 pOther->pNext = pIndex;
2754 /* Clean up before exiting */
2757 sqlite3_free(pIndex->zColAff);
2758 sqlite3DbFree(db, pIndex);
2760 sqlite3ExprListDelete(db, pList);
2761 sqlite3SrcListDelete(db, pTblName);
2762 sqlite3DbFree(db, zName);
2767 ** Generate code to make sure the file format number is at least minFormat.
2768 ** The generated code will increase the file format number if necessary.
2770 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
2772 v = sqlite3GetVdbe(pParse);
2774 int r1 = sqlite3GetTempReg(pParse);
2775 int r2 = sqlite3GetTempReg(pParse);
2777 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
2778 sqlite3VdbeUsesBtree(v, iDb);
2779 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
2780 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
2781 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
2782 sqlite3VdbeJumpHere(v, j1);
2783 sqlite3ReleaseTempReg(pParse, r1);
2784 sqlite3ReleaseTempReg(pParse, r2);
2789 ** Fill the Index.aiRowEst[] array with default information - information
2790 ** to be used when we have not run the ANALYZE command.
2792 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2793 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
2794 ** number of rows in the table that match any particular value of the
2795 ** first column of the index. aiRowEst[2] is an estimate of the number
2796 ** of rows that match any particular combiniation of the first 2 columns
2797 ** of the index. And so forth. It must always be the case that
2799 ** aiRowEst[N]<=aiRowEst[N-1]
2802 ** Apart from that, we have little to go on besides intuition as to
2803 ** how aiRowEst[] should be initialized. The numbers generated here
2804 ** are based on typical values found in actual indices.
2806 void sqlite3DefaultRowEst(Index *pIdx){
2807 unsigned *a = pIdx->aiRowEst;
2811 for(i=pIdx->nColumn; i>=5; i--){
2818 if( pIdx->onError!=OE_None ){
2819 a[pIdx->nColumn] = 1;
2824 ** This routine will drop an existing named index. This routine
2825 ** implements the DROP INDEX statement.
2827 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2830 sqlite3 *db = pParse->db;
2833 if( pParse->nErr || db->mallocFailed ){
2834 goto exit_drop_index;
2836 assert( pName->nSrc==1 );
2837 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2838 goto exit_drop_index;
2840 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2843 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2845 pParse->checkSchema = 1;
2846 goto exit_drop_index;
2848 if( pIndex->autoIndex ){
2849 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2850 "or PRIMARY KEY constraint cannot be dropped", 0);
2851 goto exit_drop_index;
2853 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2854 #ifndef SQLITE_OMIT_AUTHORIZATION
2856 int code = SQLITE_DROP_INDEX;
2857 Table *pTab = pIndex->pTable;
2858 const char *zDb = db->aDb[iDb].zName;
2859 const char *zTab = SCHEMA_TABLE(iDb);
2860 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2861 goto exit_drop_index;
2863 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2864 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2865 goto exit_drop_index;
2870 /* Generate code to remove the index and from the master table */
2871 v = sqlite3GetVdbe(pParse);
2873 sqlite3BeginWriteOperation(pParse, 1, iDb);
2874 sqlite3NestedParse(pParse,
2875 "DELETE FROM %Q.%s WHERE name=%Q",
2876 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2879 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2880 sqlite3NestedParse(pParse,
2881 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2882 db->aDb[iDb].zName, pIndex->zName
2885 sqlite3ChangeCookie(pParse, iDb);
2886 destroyRootPage(pParse, pIndex->tnum, iDb);
2887 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2891 sqlite3SrcListDelete(db, pName);
2895 ** pArray is a pointer to an array of objects. Each object in the
2896 ** array is szEntry bytes in size. This routine allocates a new
2897 ** object on the end of the array.
2899 ** *pnEntry is the number of entries already in use. *pnAlloc is
2900 ** the previously allocated size of the array. initSize is the
2901 ** suggested initial array size allocation.
2903 ** The index of the new entry is returned in *pIdx.
2905 ** This routine returns a pointer to the array of objects. This
2906 ** might be the same as the pArray parameter or it might be a different
2907 ** pointer if the array was resized.
2909 void *sqlite3ArrayAllocate(
2910 sqlite3 *db, /* Connection to notify of malloc failures */
2911 void *pArray, /* Array of objects. Might be reallocated */
2912 int szEntry, /* Size of each object in the array */
2913 int initSize, /* Suggested initial allocation, in elements */
2914 int *pnEntry, /* Number of objects currently in use */
2915 int *pnAlloc, /* Current size of the allocation, in elements */
2916 int *pIdx /* Write the index of a new slot here */
2919 if( *pnEntry >= *pnAlloc ){
2922 newSize = (*pnAlloc)*2 + initSize;
2923 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
2932 memset(&z[*pnEntry * szEntry], 0, szEntry);
2939 ** Append a new element to the given IdList. Create a new IdList if
2942 ** A new IdList is returned, or NULL if malloc() fails.
2944 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
2947 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
2948 if( pList==0 ) return 0;
2951 pList->a = sqlite3ArrayAllocate(
2954 sizeof(pList->a[0]),
2961 sqlite3IdListDelete(db, pList);
2964 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
2969 ** Delete an IdList.
2971 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
2973 if( pList==0 ) return;
2974 for(i=0; i<pList->nId; i++){
2975 sqlite3DbFree(db, pList->a[i].zName);
2977 sqlite3DbFree(db, pList->a);
2978 sqlite3DbFree(db, pList);
2982 ** Return the index in pList of the identifier named zId. Return -1
2985 int sqlite3IdListIndex(IdList *pList, const char *zName){
2987 if( pList==0 ) return -1;
2988 for(i=0; i<pList->nId; i++){
2989 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
2995 ** Append a new table name to the given SrcList. Create a new SrcList if
2996 ** need be. A new entry is created in the SrcList even if pToken is NULL.
2998 ** A new SrcList is returned, or NULL if malloc() fails.
3000 ** If pDatabase is not null, it means that the table has an optional
3001 ** database name prefix. Like this: "database.table". The pDatabase
3002 ** points to the table name and the pTable points to the database name.
3003 ** The SrcList.a[].zName field is filled with the table name which might
3004 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3005 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3006 ** or with NULL if no database is specified.
3008 ** In other words, if call like this:
3010 ** sqlite3SrcListAppend(D,A,B,0);
3012 ** Then B is a table name and the database name is unspecified. If called
3015 ** sqlite3SrcListAppend(D,A,B,C);
3017 ** Then C is the table name and B is the database name.
3019 SrcList *sqlite3SrcListAppend(
3020 sqlite3 *db, /* Connection to notify of malloc failures */
3021 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3022 Token *pTable, /* Table to append */
3023 Token *pDatabase /* Database of the table */
3025 struct SrcList_item *pItem;
3027 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3028 if( pList==0 ) return 0;
3031 if( pList->nSrc>=pList->nAlloc ){
3034 pNew = sqlite3DbRealloc(db, pList,
3035 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
3037 sqlite3SrcListDelete(db, pList);
3042 pItem = &pList->a[pList->nSrc];
3043 memset(pItem, 0, sizeof(pList->a[0]));
3044 if( pDatabase && pDatabase->z==0 ){
3047 if( pDatabase && pTable ){
3048 Token *pTemp = pDatabase;
3052 pItem->zName = sqlite3NameFromToken(db, pTable);
3053 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3054 pItem->iCursor = -1;
3055 pItem->isPopulated = 0;
3061 ** Assign cursors to all tables in a SrcList
3063 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3065 struct SrcList_item *pItem;
3066 assert(pList || pParse->db->mallocFailed );
3068 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3069 if( pItem->iCursor>=0 ) break;
3070 pItem->iCursor = pParse->nTab++;
3071 if( pItem->pSelect ){
3072 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3079 ** Delete an entire SrcList including all its substructure.
3081 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3083 struct SrcList_item *pItem;
3084 if( pList==0 ) return;
3085 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3086 sqlite3DbFree(db, pItem->zDatabase);
3087 sqlite3DbFree(db, pItem->zName);
3088 sqlite3DbFree(db, pItem->zAlias);
3089 sqlite3DeleteTable(pItem->pTab);
3090 sqlite3SelectDelete(db, pItem->pSelect);
3091 sqlite3ExprDelete(db, pItem->pOn);
3092 sqlite3IdListDelete(db, pItem->pUsing);
3094 sqlite3DbFree(db, pList);
3098 ** This routine is called by the parser to add a new term to the
3099 ** end of a growing FROM clause. The "p" parameter is the part of
3100 ** the FROM clause that has already been constructed. "p" is NULL
3101 ** if this is the first term of the FROM clause. pTable and pDatabase
3102 ** are the name of the table and database named in the FROM clause term.
3103 ** pDatabase is NULL if the database name qualifier is missing - the
3104 ** usual case. If the term has a alias, then pAlias points to the
3105 ** alias token. If the term is a subquery, then pSubquery is the
3106 ** SELECT statement that the subquery encodes. The pTable and
3107 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3108 ** parameters are the content of the ON and USING clauses.
3110 ** Return a new SrcList which encodes is the FROM with the new
3113 SrcList *sqlite3SrcListAppendFromTerm(
3114 Parse *pParse, /* Parsing context */
3115 SrcList *p, /* The left part of the FROM clause already seen */
3116 Token *pTable, /* Name of the table to add to the FROM clause */
3117 Token *pDatabase, /* Name of the database containing pTable */
3118 Token *pAlias, /* The right-hand side of the AS subexpression */
3119 Select *pSubquery, /* A subquery used in place of a table name */
3120 Expr *pOn, /* The ON clause of a join */
3121 IdList *pUsing /* The USING clause of a join */
3123 struct SrcList_item *pItem;
3124 sqlite3 *db = pParse->db;
3125 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3126 if( p==0 || p->nSrc==0 ){
3127 sqlite3ExprDelete(db, pOn);
3128 sqlite3IdListDelete(db, pUsing);
3129 sqlite3SelectDelete(db, pSubquery);
3132 pItem = &p->a[p->nSrc-1];
3133 if( pAlias && pAlias->n ){
3134 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3136 pItem->pSelect = pSubquery;
3138 pItem->pUsing = pUsing;
3143 ** When building up a FROM clause in the parser, the join operator
3144 ** is initially attached to the left operand. But the code generator
3145 ** expects the join operator to be on the right operand. This routine
3146 ** Shifts all join operators from left to right for an entire FROM
3149 ** Example: Suppose the join is like this:
3151 ** A natural cross join B
3153 ** The operator is "natural cross join". The A and B operands are stored
3154 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3155 ** operator with A. This routine shifts that operator over to B.
3157 void sqlite3SrcListShiftJoinType(SrcList *p){
3160 for(i=p->nSrc-1; i>0; i--){
3161 p->a[i].jointype = p->a[i-1].jointype;
3163 p->a[0].jointype = 0;
3168 ** Begin a transaction
3170 void sqlite3BeginTransaction(Parse *pParse, int type){
3175 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3176 if( pParse->nErr || db->mallocFailed ) return;
3177 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
3179 v = sqlite3GetVdbe(pParse);
3181 if( type!=TK_DEFERRED ){
3182 for(i=0; i<db->nDb; i++){
3183 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3184 sqlite3VdbeUsesBtree(v, i);
3187 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3191 ** Commit a transaction
3193 void sqlite3CommitTransaction(Parse *pParse){
3197 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3198 if( pParse->nErr || db->mallocFailed ) return;
3199 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
3201 v = sqlite3GetVdbe(pParse);
3203 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3208 ** Rollback a transaction
3210 void sqlite3RollbackTransaction(Parse *pParse){
3214 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
3215 if( pParse->nErr || db->mallocFailed ) return;
3216 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
3218 v = sqlite3GetVdbe(pParse);
3220 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3225 ** Make sure the TEMP database is open and available for use. Return
3226 ** the number of errors. Leave any error messages in the pParse structure.
3228 int sqlite3OpenTempDatabase(Parse *pParse){
3229 sqlite3 *db = pParse->db;
3230 if( db->aDb[1].pBt==0 && !pParse->explain ){
3232 static const int flags =
3233 SQLITE_OPEN_READWRITE |
3234 SQLITE_OPEN_CREATE |
3235 SQLITE_OPEN_EXCLUSIVE |
3236 SQLITE_OPEN_DELETEONCLOSE |
3237 SQLITE_OPEN_TEMP_DB;
3239 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
3241 if( rc!=SQLITE_OK ){
3242 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3243 "file for storing temporary tables");
3247 assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
3248 assert( db->aDb[1].pSchema );
3249 sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
3250 db->dfltJournalMode);
3256 ** Generate VDBE code that will verify the schema cookie and start
3257 ** a read-transaction for all named database files.
3259 ** It is important that all schema cookies be verified and all
3260 ** read transactions be started before anything else happens in
3261 ** the VDBE program. But this routine can be called after much other
3262 ** code has been generated. So here is what we do:
3264 ** The first time this routine is called, we code an OP_Goto that
3265 ** will jump to a subroutine at the end of the program. Then we
3266 ** record every database that needs its schema verified in the
3267 ** pParse->cookieMask field. Later, after all other code has been
3268 ** generated, the subroutine that does the cookie verifications and
3269 ** starts the transactions will be coded and the OP_Goto P2 value
3270 ** will be made to point to that subroutine. The generation of the
3271 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3273 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3274 ** schema on any databases. This can be used to position the OP_Goto
3275 ** early in the code, before we know if any database tables will be used.
3277 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3282 v = sqlite3GetVdbe(pParse);
3283 if( v==0 ) return; /* This only happens if there was a prior error */
3285 if( pParse->cookieGoto==0 ){
3286 pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3289 assert( iDb<db->nDb );
3290 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3291 assert( iDb<SQLITE_MAX_ATTACHED+2 );
3293 if( (pParse->cookieMask & mask)==0 ){
3294 pParse->cookieMask |= mask;
3295 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3296 if( !OMIT_TEMPDB && iDb==1 ){
3297 sqlite3OpenTempDatabase(pParse);
3304 ** Generate VDBE code that prepares for doing an operation that
3305 ** might change the database.
3307 ** This routine starts a new transaction if we are not already within
3308 ** a transaction. If we are already within a transaction, then a checkpoint
3309 ** is set if the setStatement parameter is true. A checkpoint should
3310 ** be set for operations that might fail (due to a constraint) part of
3311 ** the way through and which will need to undo some writes without having to
3312 ** rollback the whole transaction. For operations where all constraints
3313 ** can be checked before any changes are made to the database, it is never
3314 ** necessary to undo a write and the checkpoint should not be set.
3316 ** Only database iDb and the temp database are made writable by this call.
3317 ** If iDb==0, then the main and temp databases are made writable. If
3318 ** iDb==1 then only the temp database is made writable. If iDb>1 then the
3319 ** specified auxiliary database and the temp database are made writable.
3321 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3322 Vdbe *v = sqlite3GetVdbe(pParse);
3324 sqlite3CodeVerifySchema(pParse, iDb);
3325 pParse->writeMask |= 1<<iDb;
3326 if( setStatement && pParse->nested==0 ){
3327 sqlite3VdbeAddOp1(v, OP_Statement, iDb);
3329 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
3330 sqlite3BeginWriteOperation(pParse, setStatement, 1);
3335 ** Check to see if pIndex uses the collating sequence pColl. Return
3336 ** true if it does and false if it does not.
3338 #ifndef SQLITE_OMIT_REINDEX
3339 static int collationMatch(const char *zColl, Index *pIndex){
3341 for(i=0; i<pIndex->nColumn; i++){
3342 const char *z = pIndex->azColl[i];
3343 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
3352 ** Recompute all indices of pTab that use the collating sequence pColl.
3353 ** If pColl==0 then recompute all indices of pTab.
3355 #ifndef SQLITE_OMIT_REINDEX
3356 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3357 Index *pIndex; /* An index associated with pTab */
3359 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3360 if( zColl==0 || collationMatch(zColl, pIndex) ){
3361 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3362 sqlite3BeginWriteOperation(pParse, 0, iDb);
3363 sqlite3RefillIndex(pParse, pIndex, -1);
3370 ** Recompute all indices of all tables in all databases where the
3371 ** indices use the collating sequence pColl. If pColl==0 then recompute
3372 ** all indices everywhere.
3374 #ifndef SQLITE_OMIT_REINDEX
3375 static void reindexDatabases(Parse *pParse, char const *zColl){
3376 Db *pDb; /* A single database */
3377 int iDb; /* The database index number */
3378 sqlite3 *db = pParse->db; /* The database connection */
3379 HashElem *k; /* For looping over tables in pDb */
3380 Table *pTab; /* A table in the database */
3382 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3384 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
3385 pTab = (Table*)sqliteHashData(k);
3386 reindexTable(pParse, pTab, zColl);
3393 ** Generate code for the REINDEX command.
3396 ** REINDEX <collation> -- 2
3397 ** REINDEX ?<database>.?<tablename> -- 3
3398 ** REINDEX ?<database>.?<indexname> -- 4
3400 ** Form 1 causes all indices in all attached databases to be rebuilt.
3401 ** Form 2 rebuilds all indices in all databases that use the named
3402 ** collating function. Forms 3 and 4 rebuild the named index or all
3403 ** indices associated with the named table.
3405 #ifndef SQLITE_OMIT_REINDEX
3406 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3407 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
3408 char *z; /* Name of a table or index */
3409 const char *zDb; /* Name of the database */
3410 Table *pTab; /* A table in the database */
3411 Index *pIndex; /* An index associated with pTab */
3412 int iDb; /* The database index number */
3413 sqlite3 *db = pParse->db; /* The database connection */
3414 Token *pObjName; /* Name of the table or index to be reindexed */
3416 /* Read the database schema. If an error occurs, leave an error message
3417 ** and code in pParse and return NULL. */
3418 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3422 if( pName1==0 || pName1->z==0 ){
3423 reindexDatabases(pParse, 0);
3425 }else if( pName2==0 || pName2->z==0 ){
3427 assert( pName1->z );
3428 zColl = sqlite3NameFromToken(pParse->db, pName1);
3429 if( !zColl ) return;
3430 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
3433 reindexDatabases(pParse, zColl);
3434 sqlite3DbFree(db, zColl);
3438 sqlite3DbFree(db, zColl);
3440 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3442 z = sqlite3NameFromToken(db, pObjName);
3444 zDb = db->aDb[iDb].zName;
3445 pTab = sqlite3FindTable(db, z, zDb);
3447 reindexTable(pParse, pTab, 0);
3448 sqlite3DbFree(db, z);
3451 pIndex = sqlite3FindIndex(db, z, zDb);
3452 sqlite3DbFree(db, z);
3454 sqlite3BeginWriteOperation(pParse, 0, iDb);
3455 sqlite3RefillIndex(pParse, pIndex, -1);
3458 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3463 ** Return a dynamicly allocated KeyInfo structure that can be used
3464 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3466 ** If successful, a pointer to the new structure is returned. In this case
3467 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3468 ** pointer. If an error occurs (out of memory or missing collation
3469 ** sequence), NULL is returned and the state of pParse updated to reflect
3472 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3474 int nCol = pIdx->nColumn;
3475 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3476 sqlite3 *db = pParse->db;
3477 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3480 pKey->db = pParse->db;
3481 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3482 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3483 for(i=0; i<nCol; i++){
3484 char *zColl = pIdx->azColl[i];
3486 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
3487 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3489 pKey->nField = nCol;
3493 sqlite3DbFree(db, pKey);