Update contrib.
2 /********************************************************************************************/
4 /* HSO3.hpp header file */
6 /* This file is not currently part of the Boost library. It is simply an example of the use */
7 /* quaternions can be put to. Hopefully it will be useful too. */
9 /* This file provides tools to convert between quaternions and R^3 rotation matrices. */
11 /********************************************************************************************/
13 // (C) Copyright Hubert Holin 2001.
14 // Distributed under the Boost Software License, Version 1.0. (See
15 // accompanying file LICENSE_1_0.txt or copy at
16 // http://www.boost.org/LICENSE_1_0.txt)
23 #if defined(__GNUC__) && (__GNUC__ < 3)
24 #include <boost/limits.hpp>
32 #include <boost/math/quaternion.hpp>
35 #if defined(__GNUC__) && (__GNUC__ < 3)
36 // gcc 2.x ignores function scope using declarations, put them here instead:
37 using namespace ::std;
38 using namespace ::boost::math;
41 template<typename TYPE_FLOAT>
44 TYPE_FLOAT a11, a12, a13;
45 TYPE_FLOAT a21, a22, a23;
46 TYPE_FLOAT a31, a32, a33;
50 // Note: the input quaternion need not be of norm 1 for the following function
52 template<typename TYPE_FLOAT>
53 R3_matrix<TYPE_FLOAT> quaternion_to_R3_rotation(::boost::math::quaternion<TYPE_FLOAT> const & q)
55 using ::std::numeric_limits;
57 TYPE_FLOAT a = q.R_component_1();
58 TYPE_FLOAT b = q.R_component_2();
59 TYPE_FLOAT c = q.R_component_3();
60 TYPE_FLOAT d = q.R_component_4();
73 TYPE_FLOAT norme_carre = aa+bb+cc+dd;
75 if (norme_carre <= numeric_limits<TYPE_FLOAT>::epsilon())
77 ::std::string error_reporting("Argument to quaternion_to_R3_rotation is too small!");
78 ::std::underflow_error bad_argument(error_reporting);
83 R3_matrix<TYPE_FLOAT> out_matrix;
85 out_matrix.a11 = (aa+bb-cc-dd)/norme_carre;
86 out_matrix.a12 = 2*(-ad+bc)/norme_carre;
87 out_matrix.a13 = 2*(ac+bd)/norme_carre;
88 out_matrix.a21 = 2*(ad+bc)/norme_carre;
89 out_matrix.a22 = (aa-bb+cc-dd)/norme_carre;
90 out_matrix.a23 = 2*(-ab+cd)/norme_carre;
91 out_matrix.a31 = 2*(-ac+bd)/norme_carre;
92 out_matrix.a32 = 2*(ab+cd)/norme_carre;
93 out_matrix.a33 = (aa-bb-cc+dd)/norme_carre;
99 template<typename TYPE_FLOAT>
100 void find_invariant_vector( R3_matrix<TYPE_FLOAT> const & rot,
107 using ::std::numeric_limits;
109 TYPE_FLOAT b11 = rot.a11 - static_cast<TYPE_FLOAT>(1);
110 TYPE_FLOAT b12 = rot.a12;
111 TYPE_FLOAT b13 = rot.a13;
112 TYPE_FLOAT b21 = rot.a21;
113 TYPE_FLOAT b22 = rot.a22 - static_cast<TYPE_FLOAT>(1);
114 TYPE_FLOAT b23 = rot.a23;
115 TYPE_FLOAT b31 = rot.a31;
116 TYPE_FLOAT b32 = rot.a32;
117 TYPE_FLOAT b33 = rot.a33 - static_cast<TYPE_FLOAT>(1);
119 TYPE_FLOAT minors[9] =
132 TYPE_FLOAT * where = ::std::max_element(minors, minors+9);
134 TYPE_FLOAT det = *where;
136 if (det <= numeric_limits<TYPE_FLOAT>::epsilon())
138 ::std::string error_reporting("Underflow error in find_invariant_vector!");
139 ::std::underflow_error processing_error(error_reporting);
141 throw(processing_error);
144 switch (where-minors)
148 z = static_cast<TYPE_FLOAT>(1);
150 x = (-b13*b22+b12*b23)/det;
151 y = (-b11*b23+b13*b21)/det;
157 y = static_cast<TYPE_FLOAT>(1);
159 x = (-b12*b23+b13*b22)/det;
160 z = (-b11*b22+b12*b21)/det;
166 x = static_cast<TYPE_FLOAT>(1);
168 y = (-b11*b23+b13*b21)/det;
169 z = (-b12*b21+b11*b22)/det;
175 z = static_cast<TYPE_FLOAT>(1);
177 x = (-b13*b32+b12*b33)/det;
178 y = (-b11*b33+b13*b31)/det;
184 y = static_cast<TYPE_FLOAT>(1);
186 x = (-b12*b33+b13*b32)/det;
187 z = (-b11*b32+b12*b31)/det;
193 x = static_cast<TYPE_FLOAT>(1);
195 y = (-b11*b33+b13*b31)/det;
196 z = (-b12*b31+b11*b32)/det;
202 z = static_cast<TYPE_FLOAT>(1);
204 x = (-b23*b32+b22*b33)/det;
205 y = (-b21*b33+b23*b31)/det;
211 y = static_cast<TYPE_FLOAT>(1);
213 x = (-b22*b33+b23*b32)/det;
214 z = (-b21*b32+b22*b31)/det;
220 x = static_cast<TYPE_FLOAT>(1);
222 y = (-b21*b33+b23*b31)/det;
223 z = (-b22*b31+b21*b32)/det;
229 ::std::string error_reporting("Impossible condition in find_invariant_vector");
230 ::std::logic_error processing_error(error_reporting);
232 throw(processing_error);
237 TYPE_FLOAT vecnorm = sqrt(x*x+y*y+z*z);
239 if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
241 ::std::string error_reporting("Overflow error in find_invariant_vector!");
242 ::std::overflow_error processing_error(error_reporting);
244 throw(processing_error);
253 template<typename TYPE_FLOAT>
254 void find_orthogonal_vector( TYPE_FLOAT x,
264 using ::std::numeric_limits;
266 TYPE_FLOAT vecnormsqr = x*x+y*y+z*z;
268 if (vecnormsqr <= numeric_limits<TYPE_FLOAT>::epsilon())
270 ::std::string error_reporting("Underflow error in find_orthogonal_vector!");
271 ::std::underflow_error processing_error(error_reporting);
273 throw(processing_error);
278 TYPE_FLOAT components[3] =
285 TYPE_FLOAT * where = ::std::min_element(components, components+3);
287 switch (where-components)
291 if (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
294 w = static_cast<TYPE_FLOAT>(0);
295 u = static_cast<TYPE_FLOAT>(1);
299 lambda = -x/vecnormsqr;
301 u = static_cast<TYPE_FLOAT>(1) + lambda*x;
310 if (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
313 w = static_cast<TYPE_FLOAT>(0);
314 v = static_cast<TYPE_FLOAT>(1);
318 lambda = -y/vecnormsqr;
321 v = static_cast<TYPE_FLOAT>(1) + lambda*y;
329 if (*where <= numeric_limits<TYPE_FLOAT>::epsilon())
332 v = static_cast<TYPE_FLOAT>(0);
333 w = static_cast<TYPE_FLOAT>(1);
337 lambda = -z/vecnormsqr;
341 w = static_cast<TYPE_FLOAT>(1) + lambda*z;
348 ::std::string error_reporting("Impossible condition in find_invariant_vector");
349 ::std::logic_error processing_error(error_reporting);
351 throw(processing_error);
356 TYPE_FLOAT vecnorm = sqrt(u*u+v*v+w*w);
358 if (vecnorm <= numeric_limits<TYPE_FLOAT>::epsilon())
360 ::std::string error_reporting("Underflow error in find_orthogonal_vector!");
361 ::std::underflow_error processing_error(error_reporting);
363 throw(processing_error);
372 // Note: we want [[v, v, w], [r, s, t], [x, y, z]] to be a direct orthogonal basis
373 // of R^3. It might not be orthonormal, however, and we do not check if the
374 // two input vectors are colinear or not.
376 template<typename TYPE_FLOAT>
377 void find_vector_for_BOD(TYPE_FLOAT x,
394 template<typename TYPE_FLOAT>
395 inline bool is_R3_rotation_matrix(R3_matrix<TYPE_FLOAT> const & mat)
399 using ::std::numeric_limits;
403 (abs(mat.a11*mat.a11+mat.a21*mat.a21+mat.a31*mat.a31 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
404 (abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
405 (abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
406 //(abs(mat.a11*mat.a12+mat.a21*mat.a22+mat.a31*mat.a32 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
407 (abs(mat.a12*mat.a12+mat.a22*mat.a22+mat.a32*mat.a32 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
408 (abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
409 //(abs(mat.a11*mat.a13+mat.a21*mat.a23+mat.a31*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
410 //(abs(mat.a12*mat.a13+mat.a22*mat.a23+mat.a32*mat.a33 - static_cast<TYPE_FLOAT>(0)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())||
411 (abs(mat.a13*mat.a13+mat.a23*mat.a23+mat.a33*mat.a33 - static_cast<TYPE_FLOAT>(1)) > static_cast<TYPE_FLOAT>(10)*numeric_limits<TYPE_FLOAT>::epsilon())
417 template<typename TYPE_FLOAT>
418 ::boost::math::quaternion<TYPE_FLOAT> R3_rotation_to_quaternion( R3_matrix<TYPE_FLOAT> const & rot,
419 ::boost::math::quaternion<TYPE_FLOAT> const * hint = 0)
421 using ::boost::math::abs;
426 using ::std::numeric_limits;
428 if (!is_R3_rotation_matrix(rot))
430 ::std::string error_reporting("Argument to R3_rotation_to_quaternion is not an R^3 rotation matrix!");
431 ::std::range_error bad_argument(error_reporting);
436 ::boost::math::quaternion<TYPE_FLOAT> q;
439 (abs(rot.a11 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
440 (abs(rot.a22 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())&&
441 (abs(rot.a33 - static_cast<TYPE_FLOAT>(1)) <= numeric_limits<TYPE_FLOAT>::epsilon())
444 q = ::boost::math::quaternion<TYPE_FLOAT>(1);
448 TYPE_FLOAT cos_theta = (rot.a11+rot.a22+rot.a33-static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
449 TYPE_FLOAT stuff = (cos_theta+static_cast<TYPE_FLOAT>(1))/static_cast<TYPE_FLOAT>(2);
450 TYPE_FLOAT cos_theta_sur_2 = sqrt(stuff);
451 TYPE_FLOAT sin_theta_sur_2 = sqrt(1-stuff);
457 find_invariant_vector(rot, x, y, z);
463 find_orthogonal_vector(x, y, z, u, v, w);
469 find_vector_for_BOD(x, y, z, u, v, w, r, s, t);
471 TYPE_FLOAT ru = rot.a11*u+rot.a12*v+rot.a13*w;
472 TYPE_FLOAT rv = rot.a21*u+rot.a22*v+rot.a23*w;
473 TYPE_FLOAT rw = rot.a31*u+rot.a32*v+rot.a33*w;
475 TYPE_FLOAT angle_sign_determinator = r*ru+s*rv+t*rw;
477 if (angle_sign_determinator > +numeric_limits<TYPE_FLOAT>::epsilon())
479 q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, +x*sin_theta_sur_2, +y*sin_theta_sur_2, +z*sin_theta_sur_2);
481 else if (angle_sign_determinator < -numeric_limits<TYPE_FLOAT>::epsilon())
483 q = ::boost::math::quaternion<TYPE_FLOAT>(cos_theta_sur_2, -x*sin_theta_sur_2, -y*sin_theta_sur_2, -z*sin_theta_sur_2);
487 TYPE_FLOAT desambiguator = u*ru+v*rv+w*rw;
489 if (desambiguator >= static_cast<TYPE_FLOAT>(1))
491 q = ::boost::math::quaternion<TYPE_FLOAT>(0, +x, +y, +z);
495 q = ::boost::math::quaternion<TYPE_FLOAT>(0, -x, -y, -z);
500 if ((hint != 0) && (abs(*hint+q) < abs(*hint-q)))
508 #endif /* TEST_HSO3_HPP */