os/ossrv/glib/tests/memchunks.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* GLIB - Library of useful routines for C programming
     2  * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
     3  * Portions copyright (c) 2009 Nokia Corporation.  All rights reserved.
     4  * This library is free software; you can redistribute it and/or
     5  * modify it under the terms of the GNU Lesser General Public
     6  * License as published by the Free Software Foundation; either
     7  * version 2 of the License, or (at your option) any later version.
     8  *
     9  * This library is distributed in the hope that it will be useful,
    10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    12  * Lesser General Public License for more details.
    13  *
    14  * You should have received a copy of the GNU Lesser General Public
    15  * License along with this library; if not, write to the
    16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
    17  * Boston, MA 02111-1307, USA.
    18  */
    19 
    20 /*
    21  * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
    22  * file for a list of people on the GLib Team.  See the ChangeLog
    23  * files for a list of changes.  These files are distributed with
    24  * GLib at ftp://ftp.gtk.org/pub/gtk/. 
    25  */
    26 
    27 /* 
    28  * MT safe
    29  */
    30 
    31 #include "config.h"
    32 
    33 #include <stdlib.h>
    34 #include <string.h>
    35 #include <signal.h>
    36 
    37 #include "glib.h"
    38 
    39 #ifdef __SYMBIAN32__
    40 #include <glib_global.h>
    41 #endif//__SYMBIAN32__
    42 
    43 /* notes on macros:
    44  * if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped.
    45  */
    46 
    47 #define MEM_PROFILE_TABLE_SIZE 4096
    48 
    49 #define MEM_AREA_SIZE 4L
    50 
    51 static guint mem_chunk_recursion = 0;
    52 #  define MEM_CHUNK_ROUTINE_COUNT()	(mem_chunk_recursion)
    53 #  define ENTER_MEM_CHUNK_ROUTINE()	(mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1)
    54 #  define LEAVE_MEM_CHUNK_ROUTINE()	(mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1)
    55 
    56 /* --- old memchunk prototypes --- */
    57 void            old_mem_chunks_init     (void);
    58 GMemChunk*      old_mem_chunk_new       (const gchar  *name,
    59                                          gint          atom_size,
    60                                          gulong        area_size,
    61                                          gint          type);
    62 void            old_mem_chunk_destroy   (GMemChunk *mem_chunk);
    63 gpointer        old_mem_chunk_alloc     (GMemChunk *mem_chunk);
    64 gpointer        old_mem_chunk_alloc0    (GMemChunk *mem_chunk);
    65 void            old_mem_chunk_free      (GMemChunk *mem_chunk,
    66                                          gpointer   mem);
    67 void            old_mem_chunk_clean     (GMemChunk *mem_chunk);
    68 void            old_mem_chunk_reset     (GMemChunk *mem_chunk);
    69 void            old_mem_chunk_print     (GMemChunk *mem_chunk);
    70 void            old_mem_chunk_info      (void);
    71 
    72 
    73 /* --- MemChunks --- */
    74 #ifndef G_ALLOC_AND_FREE
    75 typedef struct _GAllocator GAllocator;
    76 typedef struct _GMemChunk  GMemChunk;
    77 #define G_ALLOC_ONLY	  1
    78 #define G_ALLOC_AND_FREE  2
    79 #endif
    80 
    81 typedef struct _GFreeAtom      GFreeAtom;
    82 typedef struct _GMemArea       GMemArea;
    83 
    84 struct _GFreeAtom
    85 {
    86   GFreeAtom *next;
    87 };
    88 
    89 struct _GMemArea
    90 {
    91   GMemArea *next;            /* the next mem area */
    92   GMemArea *prev;            /* the previous mem area */
    93   gulong index;              /* the current index into the "mem" array */
    94   gulong free;               /* the number of free bytes in this mem area */
    95   gulong allocated;          /* the number of atoms allocated from this area */
    96   gulong mark;               /* is this mem area marked for deletion */
    97   gchar mem[MEM_AREA_SIZE];  /* the mem array from which atoms get allocated
    98 			      * the actual size of this array is determined by
    99 			      *  the mem chunk "area_size". ANSI says that it
   100 			      *  must be declared to be the maximum size it
   101 			      *  can possibly be (even though the actual size
   102 			      *  may be less).
   103 			      */
   104 };
   105 
   106 struct _GMemChunk
   107 {
   108   const gchar *name;         /* name of this MemChunk...used for debugging output */
   109   gint type;                 /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */
   110   gint num_mem_areas;        /* the number of memory areas */
   111   gint num_marked_areas;     /* the number of areas marked for deletion */
   112   guint atom_size;           /* the size of an atom */
   113   gulong area_size;          /* the size of a memory area */
   114   GMemArea *mem_area;        /* the current memory area */
   115   GMemArea *mem_areas;       /* a list of all the mem areas owned by this chunk */
   116   GMemArea *free_mem_area;   /* the free area...which is about to be destroyed */
   117   GFreeAtom *free_atoms;     /* the free atoms list */
   118   GTree *mem_tree;           /* tree of mem areas sorted by memory address */
   119   GMemChunk *next;           /* pointer to the next chunk */
   120   GMemChunk *prev;           /* pointer to the previous chunk */
   121 };
   122 
   123 
   124 static gulong old_mem_chunk_compute_size (gulong    size,
   125                                           gulong    min_size) G_GNUC_CONST;
   126 static gint   old_mem_chunk_area_compare (GMemArea *a,
   127                                           GMemArea *b);
   128 static gint   old_mem_chunk_area_search  (GMemArea *a,
   129                                           gchar    *addr);
   130 
   131 /* here we can't use StaticMutexes, as they depend upon a working
   132  * g_malloc, the same holds true for StaticPrivate
   133  */
   134 static GMutex        *mem_chunks_lock = NULL;
   135 static GMemChunk     *mem_chunks = NULL;
   136 
   137 void
   138 old_mem_chunks_init (void)
   139 {
   140   mem_chunks_lock = g_mutex_new ();
   141 }
   142 
   143 GMemChunk*
   144 old_mem_chunk_new (const gchar  *name,
   145                    gint          atom_size,
   146                    gulong        area_size,
   147                    gint          type)
   148 {
   149   GMemChunk *mem_chunk;
   150   gulong rarea_size;
   151   
   152   g_return_val_if_fail (atom_size > 0, NULL);
   153   g_return_val_if_fail (area_size >= atom_size, NULL);
   154   
   155   ENTER_MEM_CHUNK_ROUTINE ();
   156   
   157   area_size = (area_size + atom_size - 1) / atom_size;
   158   area_size *= atom_size;
   159   
   160   mem_chunk = g_new (GMemChunk, 1);
   161   mem_chunk->name = name;
   162   mem_chunk->type = type;
   163   mem_chunk->num_mem_areas = 0;
   164   mem_chunk->num_marked_areas = 0;
   165   mem_chunk->mem_area = NULL;
   166   mem_chunk->free_mem_area = NULL;
   167   mem_chunk->free_atoms = NULL;
   168   mem_chunk->mem_tree = NULL;
   169   mem_chunk->mem_areas = NULL;
   170   mem_chunk->atom_size = atom_size;
   171   
   172   if (mem_chunk->type == G_ALLOC_AND_FREE)
   173     mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
   174   
   175   if (mem_chunk->atom_size % G_MEM_ALIGN)
   176     mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN);
   177   
   178   rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE;
   179   rarea_size = old_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE);
   180   mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE);
   181   
   182   g_mutex_lock (mem_chunks_lock);
   183   mem_chunk->next = mem_chunks;
   184   mem_chunk->prev = NULL;
   185   if (mem_chunks)
   186     mem_chunks->prev = mem_chunk;
   187   mem_chunks = mem_chunk;
   188   g_mutex_unlock (mem_chunks_lock);
   189   
   190   LEAVE_MEM_CHUNK_ROUTINE ();
   191   
   192   return mem_chunk;
   193 }
   194 
   195 void
   196 old_mem_chunk_destroy (GMemChunk *mem_chunk)
   197 {
   198   GMemArea *mem_areas;
   199   GMemArea *temp_area;
   200   
   201   g_return_if_fail (mem_chunk != NULL);
   202   
   203   ENTER_MEM_CHUNK_ROUTINE ();
   204   
   205   mem_areas = mem_chunk->mem_areas;
   206   while (mem_areas)
   207     {
   208       temp_area = mem_areas;
   209       mem_areas = mem_areas->next;
   210       g_free (temp_area);
   211     }
   212   
   213   g_mutex_lock (mem_chunks_lock);
   214   if (mem_chunk->next)
   215     mem_chunk->next->prev = mem_chunk->prev;
   216   if (mem_chunk->prev)
   217     mem_chunk->prev->next = mem_chunk->next;
   218   
   219   if (mem_chunk == mem_chunks)
   220     mem_chunks = mem_chunks->next;
   221   g_mutex_unlock (mem_chunks_lock);
   222   
   223   if (mem_chunk->type == G_ALLOC_AND_FREE)
   224     g_tree_destroy (mem_chunk->mem_tree);  
   225   
   226   g_free (mem_chunk);
   227   
   228   LEAVE_MEM_CHUNK_ROUTINE ();
   229 }
   230 
   231 gpointer
   232 old_mem_chunk_alloc (GMemChunk *mem_chunk)
   233 {
   234   GMemArea *temp_area;
   235   gpointer mem;
   236   
   237   ENTER_MEM_CHUNK_ROUTINE ();
   238   
   239   g_return_val_if_fail (mem_chunk != NULL, NULL);
   240   
   241   while (mem_chunk->free_atoms)
   242     {
   243       /* Get the first piece of memory on the "free_atoms" list.
   244        * We can go ahead and destroy the list node we used to keep
   245        *  track of it with and to update the "free_atoms" list to
   246        *  point to its next element.
   247        */
   248       mem = mem_chunk->free_atoms;
   249       mem_chunk->free_atoms = mem_chunk->free_atoms->next;
   250       
   251       /* Determine which area this piece of memory is allocated from */
   252       temp_area = g_tree_search (mem_chunk->mem_tree,
   253 				 (GCompareFunc) old_mem_chunk_area_search,
   254 				 mem);
   255       
   256       /* If the area has been marked, then it is being destroyed.
   257        *  (ie marked to be destroyed).
   258        * We check to see if all of the segments on the free list that
   259        *  reference this area have been removed. This occurs when
   260        *  the ammount of free memory is less than the allocatable size.
   261        * If the chunk should be freed, then we place it in the "free_mem_area".
   262        * This is so we make sure not to free the mem area here and then
   263        *  allocate it again a few lines down.
   264        * If we don't allocate a chunk a few lines down then the "free_mem_area"
   265        *  will be freed.
   266        * If there is already a "free_mem_area" then we'll just free this mem area.
   267        */
   268       if (temp_area->mark)
   269         {
   270           /* Update the "free" memory available in that area */
   271           temp_area->free += mem_chunk->atom_size;
   272 	  
   273           if (temp_area->free == mem_chunk->area_size)
   274             {
   275               if (temp_area == mem_chunk->mem_area)
   276                 mem_chunk->mem_area = NULL;
   277 	      
   278               if (mem_chunk->free_mem_area)
   279                 {
   280                   mem_chunk->num_mem_areas -= 1;
   281 		  
   282                   if (temp_area->next)
   283                     temp_area->next->prev = temp_area->prev;
   284                   if (temp_area->prev)
   285                     temp_area->prev->next = temp_area->next;
   286                   if (temp_area == mem_chunk->mem_areas)
   287                     mem_chunk->mem_areas = mem_chunk->mem_areas->next;
   288 		  
   289 		  if (mem_chunk->type == G_ALLOC_AND_FREE)
   290 		    g_tree_remove (mem_chunk->mem_tree, temp_area);
   291                   g_free (temp_area);
   292                 }
   293               else
   294                 mem_chunk->free_mem_area = temp_area;
   295 	      
   296 	      mem_chunk->num_marked_areas -= 1;
   297 	    }
   298 	}
   299       else
   300         {
   301           /* Update the number of allocated atoms count.
   302 	   */
   303           temp_area->allocated += 1;
   304 	  
   305           /* The area wasn't marked...return the memory
   306 	   */
   307 	  goto outa_here;
   308         }
   309     }
   310   
   311   /* If there isn't a current mem area or the current mem area is out of space
   312    *  then allocate a new mem area. We'll first check and see if we can use
   313    *  the "free_mem_area". Otherwise we'll just malloc the mem area.
   314    */
   315   if ((!mem_chunk->mem_area) ||
   316       ((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size))
   317     {
   318       if (mem_chunk->free_mem_area)
   319         {
   320           mem_chunk->mem_area = mem_chunk->free_mem_area;
   321 	  mem_chunk->free_mem_area = NULL;
   322         }
   323       else
   324         {
   325 #ifdef ENABLE_GC_FRIENDLY
   326 	  mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) -
   327 						       MEM_AREA_SIZE +
   328 						       mem_chunk->area_size); 
   329 #else /* !ENABLE_GC_FRIENDLY */
   330 	  mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) -
   331 						      MEM_AREA_SIZE +
   332 						      mem_chunk->area_size);
   333 #endif /* ENABLE_GC_FRIENDLY */
   334 	  
   335 	  mem_chunk->num_mem_areas += 1;
   336 	  mem_chunk->mem_area->next = mem_chunk->mem_areas;
   337 	  mem_chunk->mem_area->prev = NULL;
   338 	  
   339 	  if (mem_chunk->mem_areas)
   340 	    mem_chunk->mem_areas->prev = mem_chunk->mem_area;
   341 	  mem_chunk->mem_areas = mem_chunk->mem_area;
   342 	  
   343 	  if (mem_chunk->type == G_ALLOC_AND_FREE)
   344 	    g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area);
   345         }
   346       
   347       mem_chunk->mem_area->index = 0;
   348       mem_chunk->mem_area->free = mem_chunk->area_size;
   349       mem_chunk->mem_area->allocated = 0;
   350       mem_chunk->mem_area->mark = 0;
   351     }
   352   
   353   /* Get the memory and modify the state variables appropriately.
   354    */
   355   mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index];
   356   mem_chunk->mem_area->index += mem_chunk->atom_size;
   357   mem_chunk->mem_area->free -= mem_chunk->atom_size;
   358   mem_chunk->mem_area->allocated += 1;
   359   
   360  outa_here:
   361   
   362   LEAVE_MEM_CHUNK_ROUTINE ();
   363   
   364   return mem;
   365 }
   366 
   367 gpointer
   368 old_mem_chunk_alloc0 (GMemChunk *mem_chunk)
   369 {
   370   gpointer mem;
   371   
   372   mem = old_mem_chunk_alloc (mem_chunk);
   373   if (mem)
   374     {
   375       memset (mem, 0, mem_chunk->atom_size);
   376     }
   377   
   378   return mem;
   379 }
   380 
   381 void
   382 old_mem_chunk_free (GMemChunk *mem_chunk,
   383                     gpointer   mem)
   384 {
   385   GMemArea *temp_area;
   386   GFreeAtom *free_atom;
   387   
   388   g_return_if_fail (mem_chunk != NULL);
   389   g_return_if_fail (mem != NULL);
   390   
   391   ENTER_MEM_CHUNK_ROUTINE ();
   392   
   393 #ifdef ENABLE_GC_FRIENDLY
   394   memset (mem, 0, mem_chunk->atom_size);
   395 #endif /* ENABLE_GC_FRIENDLY */
   396   
   397   /* Don't do anything if this is an ALLOC_ONLY chunk
   398    */
   399   if (mem_chunk->type == G_ALLOC_AND_FREE)
   400     {
   401       /* Place the memory on the "free_atoms" list
   402        */
   403       free_atom = (GFreeAtom*) mem;
   404       free_atom->next = mem_chunk->free_atoms;
   405       mem_chunk->free_atoms = free_atom;
   406       
   407       temp_area = g_tree_search (mem_chunk->mem_tree,
   408 				 (GCompareFunc) old_mem_chunk_area_search,
   409 				 mem);
   410       
   411       temp_area->allocated -= 1;
   412       
   413       if (temp_area->allocated == 0)
   414 	{
   415 	  temp_area->mark = 1;
   416 	  mem_chunk->num_marked_areas += 1;
   417 	}
   418     }
   419   
   420   LEAVE_MEM_CHUNK_ROUTINE ();
   421 }
   422 
   423 /* This doesn't free the free_area if there is one */
   424 void
   425 old_mem_chunk_clean (GMemChunk *mem_chunk)
   426 {
   427   GMemArea *mem_area;
   428   GFreeAtom *prev_free_atom;
   429   GFreeAtom *temp_free_atom;
   430   gpointer mem;
   431   
   432   g_return_if_fail (mem_chunk != NULL);
   433   
   434   ENTER_MEM_CHUNK_ROUTINE ();
   435   
   436   if (mem_chunk->type == G_ALLOC_AND_FREE)
   437     {
   438       prev_free_atom = NULL;
   439       temp_free_atom = mem_chunk->free_atoms;
   440       
   441       while (temp_free_atom)
   442 	{
   443 	  mem = (gpointer) temp_free_atom;
   444 	  
   445 	  mem_area = g_tree_search (mem_chunk->mem_tree,
   446 				    (GCompareFunc) old_mem_chunk_area_search,
   447 				    mem);
   448 	  
   449           /* If this mem area is marked for destruction then delete the
   450 	   *  area and list node and decrement the free mem.
   451            */
   452 	  if (mem_area->mark)
   453 	    {
   454 	      if (prev_free_atom)
   455 		prev_free_atom->next = temp_free_atom->next;
   456 	      else
   457 		mem_chunk->free_atoms = temp_free_atom->next;
   458 	      temp_free_atom = temp_free_atom->next;
   459 	      
   460 	      mem_area->free += mem_chunk->atom_size;
   461 	      if (mem_area->free == mem_chunk->area_size)
   462 		{
   463 		  mem_chunk->num_mem_areas -= 1;
   464 		  mem_chunk->num_marked_areas -= 1;
   465 		  
   466 		  if (mem_area->next)
   467 		    mem_area->next->prev = mem_area->prev;
   468 		  if (mem_area->prev)
   469 		    mem_area->prev->next = mem_area->next;
   470 		  if (mem_area == mem_chunk->mem_areas)
   471 		    mem_chunk->mem_areas = mem_chunk->mem_areas->next;
   472 		  if (mem_area == mem_chunk->mem_area)
   473 		    mem_chunk->mem_area = NULL;
   474 		  
   475 		  if (mem_chunk->type == G_ALLOC_AND_FREE)
   476 		    g_tree_remove (mem_chunk->mem_tree, mem_area);
   477 		  g_free (mem_area);
   478 		}
   479 	    }
   480 	  else
   481 	    {
   482 	      prev_free_atom = temp_free_atom;
   483 	      temp_free_atom = temp_free_atom->next;
   484 	    }
   485 	}
   486     }
   487   LEAVE_MEM_CHUNK_ROUTINE ();
   488 }
   489 
   490 void
   491 old_mem_chunk_reset (GMemChunk *mem_chunk)
   492 {
   493   GMemArea *mem_areas;
   494   GMemArea *temp_area;
   495   
   496   g_return_if_fail (mem_chunk != NULL);
   497   
   498   ENTER_MEM_CHUNK_ROUTINE ();
   499   
   500   mem_areas = mem_chunk->mem_areas;
   501   mem_chunk->num_mem_areas = 0;
   502   mem_chunk->mem_areas = NULL;
   503   mem_chunk->mem_area = NULL;
   504   
   505   while (mem_areas)
   506     {
   507       temp_area = mem_areas;
   508       mem_areas = mem_areas->next;
   509       g_free (temp_area);
   510     }
   511   
   512   mem_chunk->free_atoms = NULL;
   513   
   514   if (mem_chunk->mem_tree)
   515     {
   516       g_tree_destroy (mem_chunk->mem_tree);
   517       mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare);
   518     }
   519   
   520   LEAVE_MEM_CHUNK_ROUTINE ();
   521 }
   522 
   523 void
   524 old_mem_chunk_print (GMemChunk *mem_chunk)
   525 {
   526   GMemArea *mem_areas;
   527   gulong mem;
   528   
   529   g_return_if_fail (mem_chunk != NULL);
   530   
   531   mem_areas = mem_chunk->mem_areas;
   532   mem = 0;
   533   
   534   while (mem_areas)
   535     {
   536       mem += mem_chunk->area_size - mem_areas->free;
   537       mem_areas = mem_areas->next;
   538     }
   539   
   540   g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO,
   541 	 "%s: %ld bytes using %d mem areas",
   542 	 mem_chunk->name, mem, mem_chunk->num_mem_areas);
   543 }
   544 
   545 void
   546 old_mem_chunk_info (void)
   547 {
   548   GMemChunk *mem_chunk;
   549   gint count;
   550   
   551   count = 0;
   552   g_mutex_lock (mem_chunks_lock);
   553   mem_chunk = mem_chunks;
   554   while (mem_chunk)
   555     {
   556       count += 1;
   557       mem_chunk = mem_chunk->next;
   558     }
   559   g_mutex_unlock (mem_chunks_lock);
   560   
   561   g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count);
   562   
   563   g_mutex_lock (mem_chunks_lock);
   564   mem_chunk = mem_chunks;
   565   g_mutex_unlock (mem_chunks_lock);
   566   
   567   while (mem_chunk)
   568     {
   569       old_mem_chunk_print ((GMemChunk*) mem_chunk);
   570       mem_chunk = mem_chunk->next;
   571     }  
   572 }
   573 
   574 static gulong
   575 old_mem_chunk_compute_size (gulong size,
   576                             gulong min_size)
   577 {
   578   gulong power_of_2;
   579   gulong lower, upper;
   580   
   581   power_of_2 = 16;
   582   while (power_of_2 < size)
   583     power_of_2 <<= 1;
   584   
   585   lower = power_of_2 >> 1;
   586   upper = power_of_2;
   587   
   588   if (size - lower < upper - size && lower >= min_size)
   589     return lower;
   590   else
   591     return upper;
   592 }
   593 
   594 static gint
   595 old_mem_chunk_area_compare (GMemArea *a,
   596                             GMemArea *b)
   597 {
   598   if (a->mem > b->mem)
   599     return 1;
   600   else if (a->mem < b->mem)
   601     return -1;
   602   return 0;
   603 }
   604 
   605 static gint
   606 old_mem_chunk_area_search (GMemArea *a,
   607                            gchar    *addr)
   608 {
   609   if (a->mem <= addr)
   610     {
   611       if (addr < &a->mem[a->index])
   612 	return 0;
   613       return 1;
   614     }
   615   return -1;
   616 }