os/ossrv/compressionlibs/ziplib/src/zlib/trees.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 /* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
     2  * All rights reserved.
     3  */
     4 
     5 /* trees.cpp -- output deflated data using Huffman coding
     6  * Copyright (C) 1995-2005 Jean-loup Gailly
     7  * For conditions of distribution and use, see copyright notice in zlib.h
     8  */
     9 
    10 /*
    11  *  ALGORITHM
    12  *
    13  *      The "deflation" process uses several Huffman trees. The more
    14  *      common source values are represented by shorter bit sequences.
    15  *
    16  *      Each code tree is stored in a compressed form which is itself
    17  * a Huffman encoding of the lengths of all the code strings (in
    18  * ascending order by source values).  The actual code strings are
    19  * reconstructed from the lengths in the inflate process, as described
    20  * in the deflate specification.
    21  *
    22  *  REFERENCES
    23  *
    24  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
    25  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
    26  *
    27  *      Storer, James A.
    28  *          Data Compression:  Methods and Theory, pp. 49-50.
    29  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
    30  *
    31  *      Sedgewick, R.
    32  *          Algorithms, p290.
    33  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
    34  */
    35 
    36 /* @(#) $Id$ */
    37 
    38 /* #define GEN_TREES_H */
    39 
    40 #include "deflate.h"
    41 
    42 #ifdef DEBUG
    43 #  include <ctype.h>
    44 #endif
    45 
    46 /* ===========================================================================
    47  * Constants
    48  */
    49 
    50 #define MAX_BL_BITS 7
    51 /* Bit length codes must not exceed MAX_BL_BITS bits */
    52 
    53 #define END_BLOCK 256
    54 /* end of block literal code */
    55 
    56 #define REP_3_6      16
    57 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
    58 
    59 #define REPZ_3_10    17
    60 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
    61 
    62 #define REPZ_11_138  18
    63 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
    64 
    65 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
    66    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
    67 
    68 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
    69    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
    70 
    71 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
    72    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
    73 
    74 local const uch bl_order[BL_CODES]
    75    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
    76 /* The lengths of the bit length codes are sent in order of decreasing
    77  * probability, to avoid transmitting the lengths for unused bit length codes.
    78  */
    79 
    80 #define Buf_size (8 * 2*sizeof(char))
    81 /* Number of bits used within bi_buf. (bi_buf might be implemented on
    82  * more than 16 bits on some systems.)
    83  */
    84 
    85 /* ===========================================================================
    86  * Local data. These are initialized only once.
    87  */
    88 
    89 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
    90 
    91 #if defined(GEN_TREES_H) || !defined(STDC)
    92 /* non ANSI compilers may not accept trees.h */
    93 
    94 local ct_data static_ltree[L_CODES+2];
    95 /* The static literal tree. Since the bit lengths are imposed, there is no
    96  * need for the L_CODES extra codes used during heap construction. However
    97  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
    98  * below).
    99  */
   100 
   101 local ct_data static_dtree[D_CODES];
   102 /* The static distance tree. (Actually a trivial tree since all codes use
   103  * 5 bits.)
   104  */
   105 
   106 uch _dist_code[DIST_CODE_LEN];
   107 /* Distance codes. The first 256 values correspond to the distances
   108  * 3 .. 258, the last 256 values correspond to the top 8 bits of
   109  * the 15 bit distances.
   110  */
   111 
   112 uch _length_code[MAX_MATCH-MIN_MATCH+1];
   113 /* length code for each normalized match length (0 == MIN_MATCH) */
   114 
   115 local int base_length[LENGTH_CODES];
   116 /* First normalized length for each code (0 = MIN_MATCH) */
   117 
   118 local int base_dist[D_CODES];
   119 /* First normalized distance for each code (0 = distance of 1) */
   120 
   121 #else
   122 #  include "trees.h"
   123 #endif /* GEN_TREES_H */
   124 
   125 struct static_tree_desc_s {
   126     const ct_data *static_tree;  /* static tree or NULL */
   127     const intf *extra_bits;      /* extra bits for each code or NULL */
   128     int     extra_base;          /* base index for extra_bits */
   129     int     elems;               /* max number of elements in the tree */
   130     int     max_length;          /* max bit length for the codes */
   131 };
   132 #ifndef SYMBIAN_EZLIB_DEVICE
   133 local static_tree_desc  static_l_desc =
   134 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   135 
   136 local static_tree_desc  static_d_desc =
   137 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   138 
   139 local static_tree_desc  static_bl_desc =
   140 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   141 
   142 #else
   143 
   144 local const static_tree_desc  static_l_desc =
   145 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
   146 
   147 local const static_tree_desc  static_d_desc =
   148 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
   149 
   150 local const static_tree_desc  static_bl_desc =
   151 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
   152 
   153 #endif //SYMBIAN_EZLIB_DEVICE
   154 
   155 
   156 /* ===========================================================================
   157  * Local (static) routines in this file.
   158  */
   159 
   160 local void tr_static_init OF((void));
   161 local void init_block     OF((deflate_state *s));
   162 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
   163 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
   164 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
   165 local void build_tree     OF((deflate_state *s, tree_desc *desc));
   166 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   167 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
   168 local int  build_bl_tree  OF((deflate_state *s));
   169 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
   170                               int blcodes));
   171 local void compress_block OF((deflate_state *s, ct_data *ltree,
   172                               ct_data *dtree));
   173 local void set_data_type  OF((deflate_state *s));
   174 local unsigned bi_reverse OF((unsigned value, int length));
   175 local void bi_windup      OF((deflate_state *s));
   176 local void bi_flush       OF((deflate_state *s));
   177 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
   178                               int header));
   179 
   180 #ifdef GEN_TREES_H
   181 local void gen_trees_header OF((void));
   182 #endif
   183 
   184 #ifndef DEBUG
   185 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
   186    /* Send a code of the given tree. c and tree must not have side effects */
   187 
   188 #else /* DEBUG */
   189 #  define send_code(s, c, tree) \
   190      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
   191        send_bits(s, tree[c].Code, tree[c].Len); }
   192 #endif
   193 
   194 /* ===========================================================================
   195  * Output a short LSB first on the stream.
   196  * IN assertion: there is enough room in pendingBuf.
   197  */
   198 #define put_short(s, w) { \
   199     put_byte(s, (uch)((w) & 0xff)); \
   200     put_byte(s, (uch)((ush)(w) >> 8)); \
   201 }
   202 
   203 /* ===========================================================================
   204  * Send a value on a given number of bits.
   205  * IN assertion: length <= 16 and value fits in length bits.
   206  */
   207 #ifdef DEBUG
   208 local void send_bits      OF((deflate_state *s, int value, int length));
   209 
   210 #ifdef __SYMBIAN32__
   211 local void send_bits(deflate_state * s, int value,int  length)
   212 #else	
   213 local void send_bits(s, value, length)
   214     deflate_state *s;
   215     int value;  /* value to send */
   216     int length; /* number of bits */
   217 #endif //__SYMBIAN32__
   218 {
   219     Tracevv((stderr," l %2d v %4x ", length, value));
   220     Assert(length > 0 && length <= 15, "invalid length");
   221     s->bits_sent += (ulg)length;
   222 
   223     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
   224      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
   225      * unused bits in value.
   226      */
   227     if (s->bi_valid > (int)Buf_size - length) {
   228         s->bi_buf |= (value << s->bi_valid);
   229         put_short(s, s->bi_buf);
   230         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
   231         s->bi_valid += length - Buf_size;
   232     } else {
   233         s->bi_buf |= value << s->bi_valid;
   234         s->bi_valid += length;
   235     }
   236 }
   237 #else /* !DEBUG */
   238 
   239 #define send_bits(s, value, length) \
   240 { int len = length;\
   241   if (s->bi_valid > (int)Buf_size - len) {\
   242     int val = value;\
   243     s->bi_buf |= (val << s->bi_valid);\
   244     put_short(s, s->bi_buf);\
   245 	s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
   246     s->bi_valid += len - Buf_size;\
   247   } else {\
   248     s->bi_buf |= (value) << s->bi_valid;\
   249     s->bi_valid += len;\
   250   }\
   251 }
   252 #endif /* DEBUG */
   253 
   254 
   255 /* the arguments must not have side effects */
   256 
   257 /* ===========================================================================
   258  * Initialize the various 'constant' tables.
   259  */
   260 local void tr_static_init()
   261 {
   262 #if defined(GEN_TREES_H) || !defined(STDC)
   263     static int static_init_done = 0;
   264     int n;        /* iterates over tree elements */
   265     int bits;     /* bit counter */
   266     int length;   /* length value */
   267     int code;     /* code value */
   268     int dist;     /* distance index */
   269     ush bl_count[MAX_BITS+1];
   270     /* number of codes at each bit length for an optimal tree */
   271 
   272     if (static_init_done) return;
   273 
   274     /* For some embedded targets, global variables are not initialized: */
   275     static_l_desc.static_tree = static_ltree;
   276     static_l_desc.extra_bits = extra_lbits;
   277     static_d_desc.static_tree = static_dtree;
   278     static_d_desc.extra_bits = extra_dbits;
   279     static_bl_desc.extra_bits = extra_blbits;
   280 
   281     /* Initialize the mapping length (0..255) -> length code (0..28) */
   282     length = 0;
   283     for (code = 0; code < LENGTH_CODES-1; code++) {
   284         base_length[code] = length;
   285         for (n = 0; n < (1<<extra_lbits[code]); n++) {
   286             _length_code[length++] = (uch)code;
   287         }
   288     }
   289     Assert (length == 256, "tr_static_init: length != 256");
   290     /* Note that the length 255 (match length 258) can be represented
   291      * in two different ways: code 284 + 5 bits or code 285, so we
   292      * overwrite length_code[255] to use the best encoding:
   293      */
   294     _length_code[length-1] = (uch)code;
   295 
   296     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
   297     dist = 0;
   298     for (code = 0 ; code < 16; code++) {
   299         base_dist[code] = dist;
   300         for (n = 0; n < (1<<extra_dbits[code]); n++) {
   301             _dist_code[dist++] = (uch)code;
   302         }
   303     }
   304     Assert (dist == 256, "tr_static_init: dist != 256");
   305     dist >>= 7; /* from now on, all distances are divided by 128 */
   306     for ( ; code < D_CODES; code++) {
   307         base_dist[code] = dist << 7;
   308         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
   309             _dist_code[256 + dist++] = (uch)code;
   310         }
   311     }
   312     Assert (dist == 256, "tr_static_init: 256+dist != 512");
   313 
   314     /* Construct the codes of the static literal tree */
   315     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
   316     n = 0;
   317     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
   318     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
   319     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
   320     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
   321     /* Codes 286 and 287 do not exist, but we must include them in the
   322      * tree construction to get a canonical Huffman tree (longest code
   323      * all ones)
   324      */
   325     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
   326 
   327     /* The static distance tree is trivial: */
   328     for (n = 0; n < D_CODES; n++) {
   329         static_dtree[n].Len = 5;
   330         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
   331     }
   332     static_init_done = 1;
   333 
   334 #  ifdef GEN_TREES_H
   335     gen_trees_header();
   336 #  endif
   337 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
   338 }
   339 /* ===========================================================================
   340  * Genererate the file trees.h describing the static trees.
   341  */
   342 #ifdef GEN_TREES_H
   343 #  ifndef DEBUG
   344 #    include <stdio.h>
   345 #  endif
   346 
   347 #  define SEPARATOR(i, last, width) \
   348       ((i) == (last)? "\n};\n\n" :    \
   349        ((i) % (width) == (width)-1 ? ",\n" : ", "))
   350 
   351 void gen_trees_header()
   352 {
   353     FILE *header = fopen("trees.h", "w");
   354     int i;
   355 
   356     Assert (header != NULL, "Can't open trees.h");
   357     fprintf(header,
   358             "/* header created automatically with -DGEN_TREES_H */\n\n");
   359 
   360     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
   361     for (i = 0; i < L_CODES+2; i++) {
   362         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
   363                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
   364     }
   365 
   366     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
   367     for (i = 0; i < D_CODES; i++) {
   368         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
   369                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
   370     }
   371 
   372     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
   373     for (i = 0; i < DIST_CODE_LEN; i++) {
   374         fprintf(header, "%2u%s", _dist_code[i],
   375                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
   376     }
   377 
   378     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
   379     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
   380         fprintf(header, "%2u%s", _length_code[i],
   381                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
   382     }
   383 
   384     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
   385     for (i = 0; i < LENGTH_CODES; i++) {
   386         fprintf(header, "%1u%s", base_length[i],
   387                 SEPARATOR(i, LENGTH_CODES-1, 20));
   388     }
   389 
   390     fprintf(header, "local const int base_dist[D_CODES] = {\n");
   391     for (i = 0; i < D_CODES; i++) {
   392         fprintf(header, "%5u%s", base_dist[i],
   393                 SEPARATOR(i, D_CODES-1, 10));
   394     }
   395 
   396     fclose(header);
   397 }
   398 #endif /* GEN_TREES_H */
   399 
   400 /* ===========================================================================
   401  * Initialize the tree data structures for a new zlib stream.
   402  */
   403 #ifdef __SYMBIAN32__
   404 void _tr_init(   deflate_state * s)
   405 #else    
   406 void _tr_init(s)
   407     deflate_state *s;
   408 #endif //__SYMBIAN32__
   409 {
   410     tr_static_init();
   411 
   412     s->l_desc.dyn_tree = s->dyn_ltree;
   413     s->l_desc.stat_desc = &static_l_desc;
   414 
   415     s->d_desc.dyn_tree = s->dyn_dtree;
   416     s->d_desc.stat_desc = &static_d_desc;
   417 
   418     s->bl_desc.dyn_tree = s->bl_tree;
   419     s->bl_desc.stat_desc = &static_bl_desc;
   420 
   421     s->bi_buf = 0;
   422     s->bi_valid = 0;
   423     s->last_eob_len = 8; /* enough lookahead for inflate */
   424 #ifdef DEBUG
   425     s->compressed_len = 0L;
   426     s->bits_sent = 0L;
   427 #endif
   428 
   429     /* Initialize the first block of the first file: */
   430     init_block(s);
   431 }
   432 
   433 /* ===========================================================================
   434  * Initialize a new block.
   435  */
   436 #ifdef __SYMBIAN32__
   437 local void init_block(    deflate_state * s)
   438 #else
   439 local void init_block(s)
   440     deflate_state *s;
   441 #endif //__SYMBIAN32__
   442 {
   443     int n; /* iterates over tree elements */
   444 
   445     /* Initialize the trees. */
   446     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
   447     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
   448     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
   449 
   450     s->dyn_ltree[END_BLOCK].Freq = 1;
   451     s->opt_len = s->static_len = 0L;
   452     s->last_lit = s->matches = 0;
   453 }
   454 
   455 #define SMALLEST 1
   456 /* Index within the heap array of least frequent node in the Huffman tree */
   457 
   458 
   459 /* ===========================================================================
   460  * Remove the smallest element from the heap and recreate the heap with
   461  * one less element. Updates heap and heap_len.
   462  */
   463 #define pqremove(s, tree, top) \
   464 {\
   465     top = s->heap[SMALLEST]; \
   466     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
   467     pqdownheap(s, tree, SMALLEST); \
   468 }
   469 
   470 /* ===========================================================================
   471  * Compares to subtrees, using the tree depth as tie breaker when
   472  * the subtrees have equal frequency. This minimizes the worst case length.
   473  */
   474 #define smaller(tree, n, m, depth) \
   475    (tree[n].Freq < tree[m].Freq || \
   476    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
   477 
   478 /* ===========================================================================
   479  * Restore the heap property by moving down the tree starting at node k,
   480  * exchanging a node with the smallest of its two sons if necessary, stopping
   481  * when the heap property is re-established (each father smaller than its
   482  * two sons).
   483  */
   484 #ifdef __SYMBIAN32__
   485 local void pqdownheap(  deflate_state * s,ct_data *  tree,int k)
   486 #else
   487 local void pqdownheap(s, tree, k)
   488     deflate_state *s;
   489     ct_data *tree;  /* the tree to restore */
   490     int k;               /* node to move down */
   491 #endif //__SYMBIAN32__	
   492 {
   493     int v = s->heap[k];
   494     int j = k << 1;  /* left son of k */
   495     while (j <= s->heap_len) {
   496         /* Set j to the smallest of the two sons: */
   497         if (j < s->heap_len &&
   498             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
   499             j++;
   500         }
   501         /* Exit if v is smaller than both sons */
   502         if (smaller(tree, v, s->heap[j], s->depth)) break;
   503 
   504         /* Exchange v with the smallest son */
   505         s->heap[k] = s->heap[j];  k = j;
   506 
   507         /* And continue down the tree, setting j to the left son of k */
   508         j <<= 1;
   509     }
   510     s->heap[k] = v;
   511 }
   512 
   513 /* ===========================================================================
   514  * Compute the optimal bit lengths for a tree and update the total bit length
   515  * for the current block.
   516  * IN assertion: the fields freq and dad are set, heap[heap_max] and
   517  *    above are the tree nodes sorted by increasing frequency.
   518  * OUT assertions: the field len is set to the optimal bit length, the
   519  *     array bl_count contains the frequencies for each bit length.
   520  *     The length opt_len is updated; static_len is also updated if stree is
   521  *     not null.
   522  */
   523 #ifdef __SYMBIAN32__
   524 local void gen_bitlen(    deflate_state * s,     tree_desc * desc)
   525 #else
   526 local void gen_bitlen(s, desc)
   527     deflate_state *s;
   528     tree_desc *desc;    /* the tree descriptor */
   529 #endif //__SYMBIAN32__
   530 {
   531     ct_data *tree        = desc->dyn_tree;
   532     int max_code         = desc->max_code;
   533     const ct_data *stree = desc->stat_desc->static_tree;
   534     const intf *extra    = desc->stat_desc->extra_bits;
   535     int base             = desc->stat_desc->extra_base;
   536     int max_length       = desc->stat_desc->max_length;
   537     int h;              /* heap index */
   538     int n, m;           /* iterate over the tree elements */
   539     int bits;           /* bit length */
   540     int xbits;          /* extra bits */
   541     ush f;              /* frequency */
   542     int overflow = 0;   /* number of elements with bit length too large */
   543 
   544     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
   545 
   546     /* In a first pass, compute the optimal bit lengths (which may
   547      * overflow in the case of the bit length tree).
   548      */
   549     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
   550 
   551     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
   552         n = s->heap[h];
   553         bits = tree[tree[n].Dad].Len + 1;
   554         if (bits > max_length) bits = max_length, overflow++;
   555         tree[n].Len = (ush)bits;
   556         /* We overwrite tree[n].Dad which is no longer needed */
   557 
   558         if (n > max_code) continue; /* not a leaf node */
   559 
   560         s->bl_count[bits]++;
   561         xbits = 0;
   562         if (n >= base) xbits = extra[n-base];
   563         f = tree[n].Freq;
   564         s->opt_len += (ulg)f * (bits + xbits);
   565         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
   566     }
   567     if (overflow == 0) return;
   568 
   569     Trace((stderr,"\nbit length overflow\n"));
   570     /* This happens for example on obj2 and pic of the Calgary corpus */
   571 
   572     /* Find the first bit length which could increase: */
   573     do {
   574         bits = max_length-1;
   575         while (s->bl_count[bits] == 0) bits--;
   576         s->bl_count[bits]--;      /* move one leaf down the tree */
   577         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
   578         s->bl_count[max_length]--;
   579         /* The brother of the overflow item also moves one step up,
   580          * but this does not affect bl_count[max_length]
   581          */
   582         overflow -= 2;
   583     } while (overflow > 0);
   584 
   585     /* Now recompute all bit lengths, scanning in increasing frequency.
   586      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
   587      * lengths instead of fixing only the wrong ones. This idea is taken
   588      * from 'ar' written by Haruhiko Okumura.)
   589      */
   590     for (bits = max_length; bits != 0; bits--) {
   591         n = s->bl_count[bits];
   592         while (n != 0) {
   593             m = s->heap[--h];
   594             if (m > max_code) continue;
   595             if ((unsigned) tree[m].Len != (unsigned) bits) {
   596                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
   597                 s->opt_len += ((long)bits - (long)tree[m].Len)
   598                               *(long)tree[m].Freq;
   599                 tree[m].Len = (ush)bits;
   600             }
   601             n--;
   602         }
   603     }
   604 }
   605 
   606 /* ===========================================================================
   607  * Generate the codes for a given tree and bit counts (which need not be
   608  * optimal).
   609  * IN assertion: the array bl_count contains the bit length statistics for
   610  * the given tree and the field len is set for all tree elements.
   611  * OUT assertion: the field code is set for all tree elements of non
   612  *     zero code length.
   613  */
   614 #ifdef __SYMBIAN32__
   615 local void gen_codes (    ct_data * tree, int max_code,    ushf *  bl_count)
   616 #else
   617 local void gen_codes (tree, max_code, bl_count)
   618     ct_data *tree;             /* the tree to decorate */
   619     int max_code;              /* largest code with non zero frequency */
   620     ushf *bl_count;            /* number of codes at each bit length */
   621 #endif //__SYMBIAN32__
   622 {
   623     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
   624     ush code = 0;              /* running code value */
   625     int bits;                  /* bit index */
   626     int n;                     /* code index */
   627 
   628     /* The distribution counts are first used to generate the code values
   629      * without bit reversal.
   630      */
   631     for (bits = 1; bits <= MAX_BITS; bits++) {
   632         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
   633     }
   634     /* Check that the bit counts in bl_count are consistent. The last code
   635      * must be all ones.
   636      */
   637     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
   638             "inconsistent bit counts");
   639     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
   640 
   641     for (n = 0;  n <= max_code; n++) {
   642         int len = tree[n].Len;
   643         if (len == 0) continue;
   644         /* Now reverse the bits */
   645         tree[n].Code = bi_reverse(next_code[len]++, len);
   646 
   647         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
   648              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
   649     }
   650 }
   651 
   652 /* ===========================================================================
   653  * Construct one Huffman tree and assigns the code bit strings and lengths.
   654  * Update the total bit length for the current block.
   655  * IN assertion: the field freq is set for all tree elements.
   656  * OUT assertions: the fields len and code are set to the optimal bit length
   657  *     and corresponding code. The length opt_len is updated; static_len is
   658  *     also updated if stree is not null. The field max_code is set.
   659  */
   660 #ifdef __SYMBIAN32__
   661 local void build_tree(    deflate_state * s,    tree_desc *  desc)
   662 #else
   663 local void build_tree(s, desc)
   664     deflate_state *s;
   665     tree_desc *desc; /* the tree descriptor */
   666 #endif //__SYMBIAN32__
   667 {
   668     ct_data *tree         = desc->dyn_tree;
   669     const ct_data *stree  = desc->stat_desc->static_tree;
   670     int elems             = desc->stat_desc->elems;
   671     int n, m;          /* iterate over heap elements */
   672     int max_code = -1; /* largest code with non zero frequency */
   673     int node;          /* new node being created */
   674 
   675     /* Construct the initial heap, with least frequent element in
   676      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
   677      * heap[0] is not used.
   678      */
   679     s->heap_len = 0, s->heap_max = HEAP_SIZE;
   680 
   681     for (n = 0; n < elems; n++) {
   682         if (tree[n].Freq != 0) {
   683             s->heap[++(s->heap_len)] = max_code = n;
   684             s->depth[n] = 0;
   685         } else {
   686             tree[n].Len = 0;
   687         }
   688     }
   689 
   690     /* The pkzip format requires that at least one distance code exists,
   691      * and that at least one bit should be sent even if there is only one
   692      * possible code. So to avoid special checks later on we force at least
   693      * two codes of non zero frequency.
   694      */
   695     while (s->heap_len < 2) {
   696         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
   697         tree[node].Freq = 1;
   698         s->depth[node] = 0;
   699         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
   700         /* node is 0 or 1 so it does not have extra bits */
   701     }
   702     desc->max_code = max_code;
   703 
   704     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
   705      * establish sub-heaps of increasing lengths:
   706      */
   707     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
   708 
   709     /* Construct the Huffman tree by repeatedly combining the least two
   710      * frequent nodes.
   711      */
   712     node = elems;              /* next internal node of the tree */
   713     do {
   714         pqremove(s, tree, n);  /* n = node of least frequency */
   715         m = s->heap[SMALLEST]; /* m = node of next least frequency */
   716 
   717         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
   718         s->heap[--(s->heap_max)] = m;
   719 
   720         /* Create a new node father of n and m */
   721         tree[node].Freq = tree[n].Freq + tree[m].Freq;
   722         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
   723                                 s->depth[n] : s->depth[m]) + 1);
   724         tree[n].Dad = tree[m].Dad = (ush)node;
   725 #ifdef DUMP_BL_TREE
   726         if (tree == s->bl_tree) {
   727             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
   728                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
   729         }
   730 #endif
   731         /* and insert the new node in the heap */
   732         s->heap[SMALLEST] = node++;
   733         pqdownheap(s, tree, SMALLEST);
   734 
   735     } while (s->heap_len >= 2);
   736 
   737     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
   738 
   739     /* At this point, the fields freq and dad are set. We can now
   740      * generate the bit lengths.
   741      */
   742     gen_bitlen(s, (tree_desc *)desc);
   743 
   744     /* The field len is now set, we can generate the bit codes */
   745     gen_codes ((ct_data *)tree, max_code, s->bl_count);
   746 }
   747 
   748 /* ===========================================================================
   749  * Scan a literal or distance tree to determine the frequencies of the codes
   750  * in the bit length tree.
   751  */
   752  #ifdef __SYMBIAN32__
   753  local void scan_tree (   deflate_state * s,   ct_data *  tree,int  max_code)
   754  #else
   755 local void scan_tree (s, tree, max_code)
   756     deflate_state *s;
   757     ct_data *tree;   /* the tree to be scanned */
   758     int max_code;    /* and its largest code of non zero frequency */
   759 #endif //__SYMBIAN32__
   760 {
   761     int n;                     /* iterates over all tree elements */
   762     int prevlen = -1;          /* last emitted length */
   763     int curlen;                /* length of current code */
   764     int nextlen = tree[0].Len; /* length of next code */
   765     int count = 0;             /* repeat count of the current code */
   766     int max_count = 7;         /* max repeat count */
   767     int min_count = 4;         /* min repeat count */
   768 
   769     if (nextlen == 0) max_count = 138, min_count = 3;
   770     tree[max_code+1].Len = (ush)0xffff; /* guard */
   771 
   772     for (n = 0; n <= max_code; n++) {
   773         curlen = nextlen; nextlen = tree[n+1].Len;
   774         if (++count < max_count && curlen == nextlen) {
   775             continue;
   776         } else if (count < min_count) {
   777             s->bl_tree[curlen].Freq += count;
   778         } else if (curlen != 0) {
   779             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
   780             s->bl_tree[REP_3_6].Freq++;
   781         } else if (count <= 10) {
   782             s->bl_tree[REPZ_3_10].Freq++;
   783         } else {
   784             s->bl_tree[REPZ_11_138].Freq++;
   785         }
   786         count = 0; prevlen = curlen;
   787         if (nextlen == 0) {
   788             max_count = 138, min_count = 3;
   789         } else if (curlen == nextlen) {
   790             max_count = 6, min_count = 3;
   791         } else {
   792             max_count = 7, min_count = 4;
   793         }
   794     }
   795 }
   796 
   797 /* ===========================================================================
   798  * Send a literal or distance tree in compressed form, using the codes in
   799  * bl_tree.
   800  */
   801 #ifdef __SYMBIAN32__
   802 local void send_tree (    deflate_state * s,    ct_data *  tree, int max_code)
   803 #else
   804 local void send_tree (s, tree, max_code)
   805     deflate_state *s;
   806     ct_data *tree; /* the tree to be scanned */
   807     int max_code;       /* and its largest code of non zero frequency */
   808 #endif //__SYMBIAN32__
   809 {
   810     int n;                     /* iterates over all tree elements */
   811     int prevlen = -1;          /* last emitted length */
   812     int curlen;                /* length of current code */
   813     int nextlen = tree[0].Len; /* length of next code */
   814     int count = 0;             /* repeat count of the current code */
   815     int max_count = 7;         /* max repeat count */
   816     int min_count = 4;         /* min repeat count */
   817 
   818     /* tree[max_code+1].Len = -1; */  /* guard already set */
   819     if (nextlen == 0) max_count = 138, min_count = 3;
   820 
   821     for (n = 0; n <= max_code; n++) {
   822         curlen = nextlen; nextlen = tree[n+1].Len;
   823         if (++count < max_count && curlen == nextlen) {
   824             continue;
   825         } else if (count < min_count) {
   826             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
   827 
   828         } else if (curlen != 0) {
   829             if (curlen != prevlen) {
   830                 send_code(s, curlen, s->bl_tree); count--;
   831             }
   832             Assert(count >= 3 && count <= 6, " 3_6?");
   833             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
   834 
   835         } else if (count <= 10) {
   836             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
   837 
   838         } else {
   839             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
   840         }
   841         count = 0; prevlen = curlen;
   842         if (nextlen == 0) {
   843             max_count = 138, min_count = 3;
   844         } else if (curlen == nextlen) {
   845             max_count = 6, min_count = 3;
   846         } else {
   847             max_count = 7, min_count = 4;
   848         }
   849     }
   850 }
   851 
   852 /* ===========================================================================
   853  * Construct the Huffman tree for the bit lengths and return the index in
   854  * bl_order of the last bit length code to send.
   855  */
   856 #ifdef __SYMBIAN32__
   857 local int build_bl_tree(  deflate_state * s)
   858 #else
   859 local int build_bl_tree(s)
   860     deflate_state *s;
   861 #endif //__SYMBIAN32__
   862 {
   863     int max_blindex;  /* index of last bit length code of non zero freq */
   864 
   865     /* Determine the bit length frequencies for literal and distance trees */
   866     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
   867     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
   868 
   869     /* Build the bit length tree: */
   870     build_tree(s, (tree_desc *)(&(s->bl_desc)));
   871     /* opt_len now includes the length of the tree representations, except
   872      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
   873      */
   874 
   875     /* Determine the number of bit length codes to send. The pkzip format
   876      * requires that at least 4 bit length codes be sent. (appnote.txt says
   877      * 3 but the actual value used is 4.)
   878      */
   879     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
   880         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
   881     }
   882     /* Update opt_len to include the bit length tree and counts */
   883     s->opt_len += 3*(max_blindex+1) + 5+5+4;
   884     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
   885             s->opt_len, s->static_len));
   886 
   887     return max_blindex;
   888 }
   889 
   890 /* ===========================================================================
   891  * Send the header for a block using dynamic Huffman trees: the counts, the
   892  * lengths of the bit length codes, the literal tree and the distance tree.
   893  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
   894  */
   895 #ifdef __SYMBIAN32__
   896 local void send_all_trees(   deflate_state * s, int lcodes, int dcodes, int blcodes)
   897 #else	
   898 local void send_all_trees(s, lcodes, dcodes, blcodes)
   899     deflate_state *s;
   900     int lcodes, dcodes, blcodes; /* number of codes for each tree */
   901 #endif //__SYMBIAN32__
   902 {
   903     int rank;                    /* index in bl_order */
   904 
   905     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
   906     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
   907             "too many codes");
   908     Tracev((stderr, "\nbl counts: "));
   909     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
   910     send_bits(s, dcodes-1,   5);
   911     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
   912     for (rank = 0; rank < blcodes; rank++) {
   913         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
   914         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
   915     }
   916     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
   917 
   918     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
   919     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
   920 
   921     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
   922     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
   923 }
   924 
   925 /* ===========================================================================
   926  * Send a stored block
   927  */
   928 #ifdef __SYMBIAN32__
   929 void _tr_stored_block(   deflate_state * s,    charf *  buf,ulg  stored_len, int eof)
   930 #else
   931 void _tr_stored_block(s, buf, stored_len, eof)
   932     deflate_state *s;
   933     charf *buf;       /* input block */
   934     ulg stored_len;   /* length of input block */
   935     int eof;          /* true if this is the last block for a file */
   936 #endif //__SYMBIAN32__	
   937 {
   938     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
   939 #ifdef DEBUG
   940     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
   941     s->compressed_len += (stored_len + 4) << 3;
   942 #endif
   943     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
   944 }
   945 
   946 /* ===========================================================================
   947  * Send one empty static block to give enough lookahead for inflate.
   948  * This takes 10 bits, of which 7 may remain in the bit buffer.
   949  * The current inflate code requires 9 bits of lookahead. If the
   950  * last two codes for the previous block (real code plus EOB) were coded
   951  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
   952  * the last real code. In this case we send two empty static blocks instead
   953  * of one. (There are no problems if the previous block is stored or fixed.)
   954  * To simplify the code, we assume the worst case of last real code encoded
   955  * on one bit only.
   956  */
   957 #ifdef __SYMBIAN32__
   958 void _tr_align(    deflate_state * s)
   959 #else
   960 void _tr_align(s)
   961     deflate_state *s;
   962 #endif //__SYMBIAN32__
   963 {
   964     send_bits(s, STATIC_TREES<<1, 3);
   965     send_code(s, END_BLOCK, static_ltree);
   966 #ifdef DEBUG
   967     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
   968 #endif
   969     bi_flush(s);
   970     /* Of the 10 bits for the empty block, we have already sent
   971      * (10 - bi_valid) bits. The lookahead for the last real code (before
   972      * the EOB of the previous block) was thus at least one plus the length
   973      * of the EOB plus what we have just sent of the empty static block.
   974      */
   975     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
   976         send_bits(s, STATIC_TREES<<1, 3);
   977         send_code(s, END_BLOCK, static_ltree);
   978 #ifdef DEBUG
   979         s->compressed_len += 10L;
   980 #endif
   981         bi_flush(s);
   982     }
   983     s->last_eob_len = 7;
   984 }
   985 
   986 /* ===========================================================================
   987  * Determine the best encoding for the current block: dynamic trees, static
   988  * trees or store, and output the encoded block to the zip file.
   989  */
   990 #ifdef __SYMBIAN32__
   991 void _tr_flush_block(  deflate_state * s,    charf *  buf,ulg  stored_len,int  eof)
   992 #else
   993 void _tr_flush_block(s, buf, stored_len, eof)
   994     deflate_state *s;
   995     charf *buf;       /* input block, or NULL if too old */
   996     ulg stored_len;   /* length of input block */
   997     int eof;          /* true if this is the last block for a file */
   998 #endif //__SYMBIAN32__	
   999 {
  1000     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
  1001     int max_blindex = 0;  /* index of last bit length code of non zero freq */
  1002 
  1003     /* Build the Huffman trees unless a stored block is forced */
  1004     if (s->level > 0) {
  1005 
  1006         /* Check if the file is binary or text */
  1007         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
  1008             set_data_type(s);
  1009 
  1010         /* Construct the literal and distance trees */
  1011         build_tree(s, (tree_desc *)(&(s->l_desc)));
  1012         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
  1013                 s->static_len));
  1014 
  1015         build_tree(s, (tree_desc *)(&(s->d_desc)));
  1016         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
  1017                 s->static_len));
  1018         /* At this point, opt_len and static_len are the total bit lengths of
  1019          * the compressed block data, excluding the tree representations.
  1020          */
  1021 
  1022         /* Build the bit length tree for the above two trees, and get the index
  1023          * in bl_order of the last bit length code to send.
  1024          */
  1025         max_blindex = build_bl_tree(s);
  1026 
  1027         /* Determine the best encoding. Compute the block lengths in bytes. */
  1028         opt_lenb = (s->opt_len+3+7)>>3;
  1029         static_lenb = (s->static_len+3+7)>>3;
  1030 
  1031         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
  1032                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
  1033                 s->last_lit));
  1034 
  1035         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
  1036 
  1037     } else {
  1038         Assert(buf != (char*)0, "lost buf");
  1039         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
  1040     }
  1041 
  1042 #ifdef FORCE_STORED
  1043     if (buf != (char*)0) { /* force stored block */
  1044 #else
  1045     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
  1046                        /* 4: two words for the lengths */
  1047 #endif
  1048         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
  1049          * Otherwise we can't have processed more than WSIZE input bytes since
  1050          * the last block flush, because compression would have been
  1051          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
  1052          * transform a block into a stored block.
  1053          */
  1054         _tr_stored_block(s, buf, stored_len, eof);
  1055 
  1056 #ifdef FORCE_STATIC
  1057     } else if (static_lenb >= 0) { /* force static trees */
  1058 #else
  1059     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
  1060 #endif
  1061         send_bits(s, (STATIC_TREES<<1)+eof, 3);
  1062         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
  1063 #ifdef DEBUG
  1064         s->compressed_len += 3 + s->static_len;
  1065 #endif
  1066     } else {
  1067         send_bits(s, (DYN_TREES<<1)+eof, 3);
  1068         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
  1069                        max_blindex+1);
  1070         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
  1071 #ifdef DEBUG
  1072         s->compressed_len += 3 + s->opt_len;
  1073 #endif
  1074     }
  1075     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
  1076     /* The above check is made mod 2^32, for files larger than 512 MB
  1077      * and uLong implemented on 32 bits.
  1078      */
  1079     init_block(s);
  1080 
  1081     if (eof) {
  1082         bi_windup(s);
  1083 #ifdef DEBUG
  1084         s->compressed_len += 7;  /* align on byte boundary */
  1085 #endif
  1086     }
  1087     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
  1088            s->compressed_len-7*eof));
  1089 }
  1090 
  1091 /* ===========================================================================
  1092  * Save the match info and tally the frequency counts. Return true if
  1093  * the current block must be flushed.
  1094  */
  1095 #ifndef SYMBIAN_EZLIB_DEVICE
  1096 
  1097 #ifdef __SYMBIAN32__
  1098 int _tr_tally (   deflate_state * s,unsigned  dist,unsigned  lc)
  1099 #else
  1100 int _tr_tally (s, dist, lc)
  1101     deflate_state *s;
  1102     unsigned dist;  /* distance of matched string */
  1103     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
  1104 #endif //__SYMBIAN32__
  1105 {
  1106     s->d_buf[s->last_lit] = (ush)dist;
  1107     s->l_buf[s->last_lit++] = (uch)lc;
  1108     if (dist == 0) {
  1109         /* lc is the unmatched char */
  1110         s->dyn_ltree[lc].Freq++;
  1111     } else {
  1112         s->matches++;
  1113         /* Here, lc is the match length - MIN_MATCH */
  1114         dist--;             /* dist = match distance - 1 */
  1115         Assert((ush)dist < (ush)MAX_DIST(s) &&
  1116                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
  1117                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
  1118 
  1119         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
  1120         s->dyn_dtree[d_code(dist)].Freq++;
  1121     }
  1122 
  1123 #ifdef TRUNCATE_BLOCK
  1124     /* Try to guess if it is profitable to stop the current block here */
  1125     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
  1126         /* Compute an upper bound for the compressed length */
  1127         ulg out_length = (ulg)s->last_lit*8L;
  1128         ulg in_length = (ulg)((long)s->strstart - s->block_start);
  1129         int dcode;
  1130         for (dcode = 0; dcode < D_CODES; dcode++) {
  1131             out_length += (ulg)s->dyn_dtree[dcode].Freq *
  1132                 (5L+extra_dbits[dcode]);
  1133         }
  1134         out_length >>= 3;
  1135         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
  1136                s->last_lit, in_length, out_length,
  1137                100L - out_length*100L/in_length));
  1138         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
  1139     }
  1140 #endif
  1141     return (s->last_lit == s->lit_bufsize-1);
  1142     /* We avoid equality with lit_bufsize because of wraparound at 64K
  1143      * on 16 bit machines and because stored blocks are restricted to
  1144      * 64K-1 bytes.
  1145      */
  1146 }
  1147 #endif //SYMBIAN_EZLIB_DEVICE
  1148 /* ===========================================================================
  1149  * Send the block data compressed using the given Huffman trees
  1150  */
  1151 #ifdef __SYMBIAN32__
  1152 local void compress_block(  deflate_state * s,    ct_data *  ltree,     ct_data * dtree)
  1153 #else
  1154 local void compress_block(s, ltree, dtree)
  1155     deflate_state *s;
  1156     ct_data *ltree; /* literal tree */
  1157     ct_data *dtree; /* distance tree */
  1158 #endif //__SYMBIAN32__
  1159 {
  1160     unsigned dist;      /* distance of matched string */
  1161     int lc;             /* match length or unmatched char (if dist == 0) */
  1162     unsigned lx = 0;    /* running index in l_buf */
  1163     unsigned code;      /* the code to send */
  1164     int extra;          /* number of extra bits to send */
  1165 
  1166     if (s->last_lit != 0) do {
  1167         dist = s->d_buf[lx];
  1168         lc = s->l_buf[lx++];
  1169         if (dist == 0) {
  1170             send_code(s, lc, ltree); /* send a literal byte */
  1171             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
  1172         } else {
  1173             /* Here, lc is the match length - MIN_MATCH */
  1174             code = _length_code[lc];
  1175             send_code(s, code+LITERALS+1, ltree); /* send the length code */
  1176             extra = extra_lbits[code];
  1177             if (extra != 0) {
  1178                 lc -= base_length[code];
  1179                 send_bits(s, lc, extra);       /* send the extra length bits */
  1180             }
  1181             dist--; /* dist is now the match distance - 1 */
  1182             code = d_code(dist);
  1183             Assert (code < D_CODES, "bad d_code");
  1184 
  1185             send_code(s, code, dtree);       /* send the distance code */
  1186             extra = extra_dbits[code];
  1187             if (extra != 0) {
  1188                 dist -= base_dist[code];
  1189                 send_bits(s, dist, extra);   /* send the extra distance bits */
  1190             }
  1191         } /* literal or match pair ? */
  1192 
  1193         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
  1194         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
  1195                "pendingBuf overflow");
  1196 
  1197     } while (lx < s->last_lit);
  1198 
  1199     send_code(s, END_BLOCK, ltree);
  1200     s->last_eob_len = ltree[END_BLOCK].Len;
  1201 }
  1202 
  1203 /* ===========================================================================
  1204  * Set the data type to BINARY or TEXT, using a crude approximation:
  1205  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
  1206  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
  1207  * IN assertion: the fields Freq of dyn_ltree are set.
  1208  */
  1209 #ifdef __SYMBIAN32__
  1210 local void set_data_type(    deflate_state * s)
  1211 #else
  1212 local void set_data_type(s)
  1213     deflate_state *s;
  1214 #endif //__SYMBIAN32__
  1215 {
  1216     int n;
  1217 
  1218     for (n = 0; n < 9; n++)
  1219         if (s->dyn_ltree[n].Freq != 0)
  1220             break;
  1221     if (n == 9)
  1222         for (n = 14; n < 32; n++)
  1223             if (s->dyn_ltree[n].Freq != 0)
  1224                 break;
  1225     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
  1226 }
  1227 
  1228 /* ===========================================================================
  1229  * Reverse the first len bits of a code, using straightforward code (a faster
  1230  * method would use a table)
  1231  * IN assertion: 1 <= len <= 15
  1232  */
  1233 #ifdef __SYMBIAN32__
  1234 local unsigned bi_reverse(unsigned code,int  len)
  1235 #else
  1236 local unsigned bi_reverse(code, len)
  1237     unsigned code; /* the value to invert */
  1238     int len;       /* its bit length */
  1239 #endif //__SYMBIAN32__
  1240 {
  1241     register unsigned res = 0;
  1242     do {
  1243         res |= code & 1;
  1244         code >>= 1, res <<= 1;
  1245     } while (--len > 0);
  1246     return res >> 1;
  1247 }
  1248 
  1249 /* ===========================================================================
  1250  * Flush the bit buffer, keeping at most 7 bits in it.
  1251  */
  1252 #ifdef __SYMBIAN32__
  1253 local void bi_flush(  deflate_state * s)
  1254 #else
  1255 local void bi_flush(s)
  1256     deflate_state *s;
  1257 #endif //__SYMBIAN32__
  1258 {
  1259     if (s->bi_valid == 16) {
  1260         put_short(s, s->bi_buf);
  1261         s->bi_buf = 0;
  1262         s->bi_valid = 0;
  1263     } else if (s->bi_valid >= 8) {
  1264         put_byte(s, (Byte)s->bi_buf);
  1265         s->bi_buf >>= 8;
  1266         s->bi_valid -= 8;
  1267     }
  1268 }
  1269 
  1270 /* ===========================================================================
  1271  * Flush the bit buffer and align the output on a byte boundary
  1272  */
  1273 #ifdef __SYMBIAN32__
  1274 local void bi_windup(    deflate_state * s)
  1275 #else
  1276 local void bi_windup(s)
  1277     deflate_state *s;
  1278 #endif //__SYMBIAN32__
  1279 {
  1280     if (s->bi_valid > 8) {
  1281         put_short(s, s->bi_buf);
  1282     } else if (s->bi_valid > 0) {
  1283         put_byte(s, (Byte)s->bi_buf);
  1284     }
  1285     s->bi_buf = 0;
  1286     s->bi_valid = 0;
  1287 #ifdef DEBUG
  1288     s->bits_sent = (s->bits_sent+7) & ~7;
  1289 #endif
  1290 }
  1291 
  1292 /* ===========================================================================
  1293  * Copy a stored block, storing first the length and its
  1294  * one's complement if requested.
  1295  */
  1296 #ifdef __SYMBIAN32__
  1297 local void copy_block(    deflate_state * s,    charf    * buf,unsigned  len,int  header)
  1298 #else
  1299 local void copy_block(s, buf, len, header)
  1300     deflate_state *s;
  1301     charf    *buf;    /* the input data */
  1302     unsigned len;     /* its length */
  1303     int      header;  /* true if block header must be written */
  1304 #endif //__SYMBIAN32__	
  1305 {
  1306     bi_windup(s);        /* align on byte boundary */
  1307     s->last_eob_len = 8; /* enough lookahead for inflate */
  1308 
  1309     if (header) {
  1310         put_short(s, (ush)len);
  1311         put_short(s, (ush)~len);
  1312 #ifdef DEBUG
  1313         s->bits_sent += 2*16;
  1314 #endif
  1315     }
  1316 #ifdef DEBUG
  1317     s->bits_sent += (ulg)len<<3;
  1318 #endif
  1319     while (len--) {
  1320         put_byte(s, *buf++);
  1321     }
  1322 }