os/kernelhwsrv/kernel/eka/memmodel/epoc/multiple/x86/xmmu.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 // Copyright (c) 1997-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // e32\memmodel\epoc\multiple\x86\xmmu.cpp
    15 // 
    16 //
    17 
    18 #include <x86_mem.h>
    19 #include <mmubase.inl>
    20 #include <ramcache.h>
    21 #include "execs.h"
    22 #include <defrag.h>
    23 
    24 extern "C" void DoTotalInvalidateTLB();
    25 
    26 // Constants for X86 MMU
    27 const TUint32 KPdePtePresent=0x01;
    28 const TUint32 KPdePteWrite=0x02;
    29 const TUint32 KPdePteUser=0x04;
    30 const TUint32 KPdePteWriteThrough=0x08;
    31 const TUint32 KPdePteUncached=0x10;
    32 const TUint32 KPdePteAccessed=0x20;
    33 const TUint32 KPdePteDirty=0x40;
    34 const TUint32 KPdeLargePage=0x80;						// Pentium and above, not 486
    35 const TUint32 KPdePteGlobal=0x100;						// P6 and above, not 486 or Pentium
    36 const TUint32 KPdePtePhysAddrMask=0xfffff000u;
    37 const TUint32 KPdeLargePagePhysAddrMask=0xffc00000u;	// Pentium and above, not 486
    38 
    39 const TPde KPdPdePerm=KPdePtePresent|KPdePteWrite;
    40 const TPte KPdPtePerm=KPdePtePresent|KPdePteWrite;
    41 const TPde KPtPdePerm=KPdePtePresent|KPdePteWrite;
    42 const TPte KPtPtePerm=KPdePtePresent|KPdePteWrite;
    43 const TPde KPtInfoPdePerm=KPdePtePresent|KPdePteWrite;
    44 const TPte KPtInfoPtePerm=KPdePtePresent|KPdePteWrite;
    45 const TPde KRomPdePerm=KPdePtePresent|KPdePteWrite|KPdePteUser;
    46 const TPte KRomPtePerm=KPdePtePresent|KPdePteUser;
    47 const TPde KShadowPdePerm=KPdePtePresent|KPdePteWrite|KPdePteUser;
    48 const TPte KShadowPtePerm=KPdePtePresent|KPdePteWrite|KPdePteUser;	// unfortunately there's no RWRO
    49 
    50 // Permissions for each chunk type
    51 
    52 const TPde KStandardPtePerm=KPdePtePresent|KPdePteWrite|KPdePteUser;
    53 const TPte KPdePermNONO=KPdePtePresent|KPdePteWrite|KPdePteUser;
    54 const TPte KPdePermRONO=KPdePtePresent;
    55 const TPte KPdePermRORO=KPdePtePresent|KPdePteUser;
    56 const TPte KPdePermRWNO=KPdePtePresent|KPdePteWrite;
    57 const TPte KPdePermRWRW=KPdePtePresent|KPdePteWrite|KPdePteUser;
    58 
    59 LOCAL_D const TPte ChunkPtePermissions[ENumChunkTypes] =
    60 	{
    61 	KStandardPtePerm|KPdePteGlobal,		// EKernelData
    62 	KStandardPtePerm|KPdePteGlobal,		// EKernelStack
    63 	KPdePermRWNO|KPdePteGlobal,			// EKernelCode - loading
    64 	KPdePermRWNO,						// EDll (used for global code) - loading
    65 	KPdePermRORO,						// EUserCode
    66 	KStandardPtePerm,					// ERamDrive
    67 	KStandardPtePerm,					// EUserData
    68 	KStandardPtePerm,					// EDllData
    69 	KStandardPtePerm,					// EUserSelfModCode
    70 	KStandardPtePerm,					// ESharedKernelSingle
    71 	KStandardPtePerm,					// ESharedKernelMultiple
    72 	KStandardPtePerm,					// ESharedIo
    73 	KStandardPtePerm|KPdePteGlobal,		// ESharedKernelMirror
    74 	KStandardPtePerm|KPdePteGlobal,		// EKernelMessage
    75 	};
    76 
    77 LOCAL_D const TPde ChunkPdePermissions[ENumChunkTypes] =
    78 	{
    79 	KPdePermRWNO,			// EKernelData
    80 	KPdePermRWNO,			// EKernelStack
    81 	KPdePermRWNO,			// EKernelCode
    82 	KPdePermRWRW,			// EDll
    83 	KPdePermRWRW,			// EUserCode
    84 	KPdePermRWRW,			// ERamDrive
    85 	KPdePermRWRW,			// EUserData
    86 	KPdePermRWRW,			// EDllData
    87 	KPdePermRWRW,			// EUserSelfModCode
    88 	KPdePermRWRW,			// ESharedKernelSingle
    89 	KPdePermRWRW,			// ESharedKernelMultiple
    90 	KPdePermRWRW,			// ESharedIo
    91 	KPdePermRWNO,			// ESharedKernelMirror
    92 	KPdePermRWNO,			// EKernelMessage
    93 	};
    94 
    95 #if defined(KMMU)
    96 extern "C" void __DebugMsgFlushTLB()
    97 	{
    98 	__KTRACE_OPT(KMMU,Kern::Printf("FlushTLB"));
    99 	}
   100 
   101 extern "C" void __DebugMsgLocalFlushTLB()
   102 	{
   103 	__KTRACE_OPT(KMMU,Kern::Printf("FlushTLB"));
   104 	}
   105 
   106 extern "C" void __DebugMsgTotalFlushTLB()
   107 	{
   108 	__KTRACE_OPT(KMMU,Kern::Printf("TotalFlushTLB"));
   109 	}
   110 
   111 extern "C" void __DebugMsgINVLPG(int a)
   112 	{
   113 	__KTRACE_OPT(KMMU,Kern::Printf("INVLPG(%08x)",a));
   114 	}
   115 #endif
   116 
   117 // Inline functions for simple transformations
   118 inline TLinAddr PageTableLinAddr(TInt aId)
   119 	{
   120 	return (KPageTableBase+(aId<<KPageTableShift));
   121 	}
   122 
   123 inline TPte* PageTable(TInt aId)
   124 	{
   125 	return (TPte*)(KPageTableBase+(aId<<KPageTableShift));
   126 	}
   127 
   128 inline TLinAddr PageDirectoryLinAddr(TInt aOsAsid)
   129 	{
   130 	return (KPageDirectoryBase+(aOsAsid<<KPageTableShift));
   131 	}
   132 
   133 extern "C" {
   134 
   135 void __fastcall DoInvalidateTLBForPage(TLinAddr /*aLinAddr*/);
   136 void DoInvalidateTLB();
   137 void DoLocalInvalidateTLB();
   138 
   139 }
   140 
   141 
   142 #ifdef __SMP__
   143 
   144 TSpinLock ShadowSpinLock(TSpinLock::EOrderGenericPreHigh0);	// Used when stopping other CPUs
   145 
   146 class TTLBIPI : public TGenericIPI
   147 	{
   148 public:
   149 	TTLBIPI();
   150 
   151 	static void InvalidateForPagesIsr(TGenericIPI*);
   152 	static void LocalInvalidateIsr(TGenericIPI*);
   153 	static void TotalInvalidateIsr(TGenericIPI*);
   154 	static void InvalidateIsr(TGenericIPI*);
   155 	static void WaitAndInvalidateIsr(TGenericIPI*);
   156 	void AddAddress(TLinAddr aAddr);
   157 	void InvalidateList();
   158 public:
   159 	volatile TInt	iFlag;
   160 	TInt			iCount;
   161 	TLinAddr		iAddr[KMaxPages];
   162 	};
   163 
   164 TTLBIPI::TTLBIPI()
   165 	:	iFlag(0), iCount(0)
   166 	{
   167 	}
   168 
   169 void TTLBIPI::LocalInvalidateIsr(TGenericIPI*)
   170 	{
   171 	__KTRACE_OPT(KMMU2,Kern::Printf("TLBLocInv"));
   172 	DoLocalInvalidateTLB();
   173 	}
   174 
   175 void TTLBIPI::TotalInvalidateIsr(TGenericIPI*)
   176 	{
   177 	__KTRACE_OPT(KMMU2,Kern::Printf("TLBTotInv"));
   178 	DoTotalInvalidateTLB();
   179 	}
   180 
   181 void TTLBIPI::InvalidateIsr(TGenericIPI*)
   182 	{
   183 	__KTRACE_OPT(KMMU2,Kern::Printf("TLBInv"));
   184 	DoInvalidateTLB();
   185 	}
   186 
   187 void TTLBIPI::WaitAndInvalidateIsr(TGenericIPI* aTLBIPI)
   188 	{
   189 	__KTRACE_OPT(KMMU2,Kern::Printf("TLBWtInv"));
   190 	TTLBIPI& a = *(TTLBIPI*)aTLBIPI;
   191 	while (!a.iFlag)
   192 		{}
   193 	if (a.iCount == 1)
   194 		DoInvalidateTLBForPage(a.iAddr[0]);
   195 	else
   196 		DoInvalidateTLB();
   197 	}
   198 
   199 void TTLBIPI::InvalidateForPagesIsr(TGenericIPI* aTLBIPI)
   200 	{
   201 	TTLBIPI& a = *(TTLBIPI*)aTLBIPI;
   202 	TInt i;
   203 	for (i=0; i<a.iCount; ++i)
   204 		{
   205 		__KTRACE_OPT(KMMU2,Kern::Printf("TLBInv %08x", a.iAddr[i]));
   206 		DoInvalidateTLBForPage(a.iAddr[i]);
   207 		}
   208 	}
   209 
   210 void TTLBIPI::AddAddress(TLinAddr aAddr)
   211 	{
   212 	iAddr[iCount] = aAddr;
   213 	if (++iCount == KMaxPages)
   214 		InvalidateList();
   215 	}
   216 
   217 void TTLBIPI::InvalidateList()
   218 	{
   219 	NKern::Lock();
   220 	InvalidateForPagesIsr(this);
   221 	QueueAllOther(&InvalidateForPagesIsr);
   222 	NKern::Unlock();
   223 	WaitCompletion();
   224 	iCount = 0;
   225 	}
   226 
   227 void LocalInvalidateTLB()
   228 	{
   229 	TTLBIPI ipi;
   230 	NKern::Lock();
   231 	DoLocalInvalidateTLB();
   232 	ipi.QueueAllOther(&TTLBIPI::LocalInvalidateIsr);
   233 	NKern::Unlock();
   234 	ipi.WaitCompletion();
   235 	}
   236 
   237 void TotalInvalidateTLB()
   238 	{
   239 	TTLBIPI ipi;
   240 	NKern::Lock();
   241 	DoTotalInvalidateTLB();
   242 	ipi.QueueAllOther(&TTLBIPI::TotalInvalidateIsr);
   243 	NKern::Unlock();
   244 	ipi.WaitCompletion();
   245 	}
   246 
   247 void InvalidateTLB()
   248 	{
   249 	TTLBIPI ipi;
   250 	NKern::Lock();
   251 	DoInvalidateTLB();
   252 	ipi.QueueAllOther(&TTLBIPI::InvalidateIsr);
   253 	NKern::Unlock();
   254 	ipi.WaitCompletion();
   255 	}
   256 
   257 void InvalidateTLBForPage(TLinAddr aAddr)
   258 	{
   259 	TTLBIPI ipi;
   260 	ipi.AddAddress(aAddr);
   261 	ipi.InvalidateList();
   262 	}
   263 
   264 #else
   265 #define	InvalidateTLBForPage(a)		DoInvalidateTLBForPage(a)
   266 #define	LocalInvalidateTLB()		DoLocalInvalidateTLB()
   267 #define	TotalInvalidateTLB()		TotalInvalidateTLB()
   268 #define	InvalidateTLB()				DoInvalidateTLB()
   269 #endif
   270 
   271 
   272 TPte* SafePageTableFromPde(TPde aPde)
   273 	{
   274 	if (aPde&KPdePtePresent)
   275 		{
   276 		SPageInfo* pi = SPageInfo::SafeFromPhysAddr(aPde);
   277 		if (pi)
   278 			{
   279 			TInt id=pi->Offset();	// assumes page table size = page size
   280 			return PageTable(id);
   281 			}
   282 		}
   283 	return 0;
   284 	}
   285 
   286 TPte* SafePtePtrFromLinAddr(TLinAddr aAddress, TInt aOsAsid=0)
   287 	{
   288 	TPde pde = PageDirectory(aOsAsid)[aAddress>>KChunkShift];
   289 	TPte* pt = SafePageTableFromPde(pde);
   290 	if(pt)
   291 		pt += (aAddress>>KPageShift)&(KChunkMask>>KPageShift);
   292 	return pt;
   293 	}
   294 
   295 TPte* PtePtrFromLinAddr(TLinAddr aAddress, TInt aOsAsid=0)
   296 	{
   297 	TPde pde = PageDirectory(aOsAsid)[aAddress>>KChunkShift];
   298 	SPageInfo* pi = SPageInfo::FromPhysAddr(pde);
   299 	TInt id = (pi->Offset()<<KPtClusterShift) | ((pde>>KPageTableShift)&KPtClusterMask);
   300 	TPte* pt = PageTable(id);
   301 	pt += (aAddress>>KPageShift)&(KChunkMask>>KPageShift);
   302 	return pt;
   303 	}
   304 
   305 TInt X86Mmu::LinearToPhysical(TLinAddr aAddr, TInt aSize, TPhysAddr& aPhysicalAddress, TPhysAddr* aPhysicalPageList, TInt aOsAsid)
   306 	{
   307 	TPhysAddr physStart = LinearToPhysical(aAddr,aOsAsid);
   308 
   309 	TInt pageShift = iPageShift;
   310 	TUint32 page = aAddr>>pageShift<<pageShift;
   311 	TUint32 lastPage = (aAddr+aSize-1)>>pageShift<<pageShift;
   312 	TUint32* pageList = aPhysicalPageList;
   313 	TUint32 nextPhys = LinearToPhysical(page,aOsAsid);
   314 	TUint32 pageSize = 1<<pageShift;
   315 	while(page<=lastPage)
   316 		{
   317 		TPhysAddr phys = LinearToPhysical(page,aOsAsid);
   318 		if(pageList)
   319 			*pageList++ = phys;
   320 		if(phys!=nextPhys)
   321 			nextPhys = KPhysAddrInvalid;
   322 		else
   323 			nextPhys += pageSize;
   324 		page += pageSize;
   325 		}
   326 	if(nextPhys==KPhysAddrInvalid)
   327 		{
   328 		// Memory is discontiguous...
   329 		aPhysicalAddress = KPhysAddrInvalid;
   330 		return 1;
   331 		}
   332 	else
   333 		{
   334 		// Memory is contiguous...
   335 		aPhysicalAddress = physStart;
   336 		return KErrNone;
   337 		}
   338 	return KErrNone;
   339 	}
   340 
   341 TPhysAddr X86Mmu::LinearToPhysical(TLinAddr aLinAddr, TInt aOsAsid)
   342 //
   343 // Find the physical address corresponding to a given linear address in a specified OS
   344 // address space. Call with system locked.
   345 //
   346 	{
   347 	__KTRACE_OPT(KMMU2,Kern::Printf("X86Mmu::LinearToPhysical(%08x,%d)",aLinAddr,aOsAsid));
   348 	TInt pdeIndex=aLinAddr>>KChunkShift;
   349 	TPde pde=PageDirectory(aOsAsid)[pdeIndex];
   350 	TPhysAddr pa=KPhysAddrInvalid;
   351 	if (pde & KPdePtePresent)
   352 		{
   353 		SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pde);
   354 		if (pi)
   355 			{
   356 			TInt id=pi->Offset();	// assumes page table size = page size
   357 			TPte* pPte=PageTable(id);
   358 			TPte pte=pPte[(aLinAddr&KChunkMask)>>KPageShift];
   359 			if (pte & KPdePtePresent)
   360 				{
   361 				pa=(pte&KPdePtePhysAddrMask)+(aLinAddr&KPageMask);
   362 				__KTRACE_OPT(KMMU2,Kern::Printf("Mapped with page table - returning %08x",pa));
   363 				}
   364 			}
   365 		}
   366 	return pa;
   367 	}
   368 
   369 
   370 TInt X86Mmu::PreparePagesForDMA(TLinAddr /*aLinAddr*/, TInt /*aSize*/, TInt /*aOsAsid*/, TPhysAddr* /*aPhysicalPageList*/)
   371 	{
   372 	return KErrNotSupported;
   373 	}
   374 
   375 TInt X86Mmu::ReleasePagesFromDMA(TPhysAddr* /*aPhysicalPageList*/, TInt /*aPageCount*/)
   376 	{
   377 	return KErrNotSupported;
   378 	}
   379 
   380 static const TInt PermissionLookup[8]=
   381 	{
   382 	0,
   383 	EMapAttrReadSup|EMapAttrExecSup,
   384 	0,
   385 	EMapAttrWriteSup|EMapAttrReadSup|EMapAttrExecSup,
   386 	0,
   387 	EMapAttrReadUser|EMapAttrExecUser,
   388 	0,
   389 	EMapAttrWriteUser|EMapAttrReadUser|EMapAttrExecUser
   390 	};
   391 
   392 TInt X86Mmu::PageTableId(TLinAddr aAddr, TInt aOsAsid)
   393 	{
   394 	TInt id=-1;
   395 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::PageTableId(%08x,%d)",aAddr,aOsAsid));
   396 	TInt pdeIndex=aAddr>>KChunkShift;
   397 	TPde pde=PageDirectory(aOsAsid)[pdeIndex];
   398 	if (pde & KPdePtePresent)
   399 		{
   400 		SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pde);
   401 		if (pi)
   402 			id=pi->Offset();	// assumes page table size = page size
   403 		}
   404 	__KTRACE_OPT(KMMU,Kern::Printf("ID=%d",id));
   405 	return id;
   406 	}
   407 
   408 // Used only during boot for recovery of RAM drive
   409 TInt X86Mmu::BootPageTableId(TLinAddr aAddr, TPhysAddr& aPtPhys)
   410 	{
   411 	TInt id=KErrNotFound;
   412 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu:BootPageTableId(%08x,&)",aAddr));
   413 	TPde* kpd=(TPde*)KPageDirectoryBase;	// kernel page directory
   414 	TInt pdeIndex=aAddr>>KChunkShift;
   415 	TPde pde = kpd[pdeIndex];
   416 	if (pde & KPdePtePresent)
   417 		{
   418 		aPtPhys = pde & KPdePtePhysAddrMask;
   419 		SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pde);
   420 		if (pi)
   421 			{
   422 			SPageInfo::TType type = pi->Type();
   423 			if (type == SPageInfo::EPageTable)
   424 				id=pi->Offset();	// assumes page table size = page size
   425 			else if (type == SPageInfo::EUnused)
   426 				id = KErrUnknown;
   427 			}
   428 		}
   429 	__KTRACE_OPT(KMMU,Kern::Printf("ID=%d",id));
   430 	return id;
   431 	}
   432 
   433 TBool X86Mmu::PteIsPresent(TPte aPte)
   434 	{
   435 	return aPte & KPdePtePresent;
   436 	}
   437 
   438 TPhysAddr X86Mmu::PtePhysAddr(TPte aPte, TInt /*aPteIndex*/)
   439 	{
   440 	return aPte & KPdePtePhysAddrMask;
   441 	}
   442 
   443 TPhysAddr X86Mmu::PdePhysAddr(TLinAddr aAddr)
   444 	{
   445 	TPde* kpd = (TPde*)KPageDirectoryBase;	// kernel page directory
   446 	TPde pde = kpd[aAddr>>KChunkShift];
   447 	if (pde & (KPdePtePresent|KPdeLargePage) == (KPdePtePresent|KPdeLargePage))
   448 		return pde & KPdeLargePagePhysAddrMask;
   449 	return KPhysAddrInvalid;
   450 	}
   451 
   452 void X86Mmu::Init1()
   453 	{
   454 	__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("X86Mmu::Init1"));
   455 
   456 	TUint pge = TheSuperPage().iCpuId & EX86Feat_PGE;
   457 	iPteGlobal = pge ? KPdePteGlobal : 0;	
   458 	X86_UseGlobalPTEs = pge!=0;
   459 
   460 	// MmuBase data
   461 	iPageSize=KPageSize;
   462 	iPageMask=KPageMask;
   463 	iPageShift=KPageShift;
   464 	iChunkSize=KChunkSize;
   465 	iChunkMask=KChunkMask;
   466 	iChunkShift=KChunkShift;
   467 	iPageTableSize=KPageTableSize;
   468 	iPageTableMask=KPageTableMask;
   469 	iPageTableShift=KPageTableShift;
   470 	iPtClusterSize=KPtClusterSize;
   471 	iPtClusterMask=KPtClusterMask;
   472 	iPtClusterShift=KPtClusterShift;
   473 	iPtBlockSize=KPtBlockSize;
   474 	iPtBlockMask=KPtBlockMask;
   475 	iPtBlockShift=KPtBlockShift;
   476 	iPtGroupSize=KChunkSize/KPageTableSize;
   477 	iPtGroupMask=iPtGroupSize-1;
   478 	iPtGroupShift=iChunkShift-iPageTableShift;
   479 	//TInt* iPtBlockCount;		// dynamically allocated - Init2
   480 	//TInt* iPtGroupCount;		// dynamically allocated - Init2
   481 	iPtInfo=(SPageTableInfo*)KPageTableInfoBase;
   482 	iPageTableLinBase=KPageTableBase;
   483 	//iRamPageAllocator;		// dynamically allocated - Init2
   484 	//iAsyncFreeList;			// dynamically allocated - Init2
   485 	//iPageTableAllocator;		// dynamically allocated - Init2
   486 	//iPageTableLinearAllocator;// dynamically allocated - Init2
   487 	iPtInfoPtePerm=KPtInfoPtePerm|iPteGlobal;
   488 	iPtPtePerm=KPtPtePerm|iPteGlobal;
   489 	iPtPdePerm=KPtPdePerm;
   490 	iUserCodeLoadPtePerm=KPdePermRWNO;
   491 	iKernelCodePtePerm=KPdePermRONO|iPteGlobal;
   492 	iTempAddr=KTempAddr;
   493 	iSecondTempAddr=KSecondTempAddr;
   494 
   495 	TUint pse = TheSuperPage().iCpuId & EX86Feat_PSE;
   496 	iMapSizes = pse ? KPageSize|KChunkSize : KPageSize;
   497 
   498 	iDecommitThreshold=0;		// no cache consistency issues on decommit
   499 	iRomLinearBase = ::RomHeaderAddress;
   500 	iRomLinearEnd = KRomLinearEnd;
   501 	iShadowPtePerm = KShadowPtePerm;
   502 	iShadowPdePerm = KShadowPdePerm;
   503 
   504 	// Mmu data
   505 	TInt total_ram=TheSuperPage().iTotalRamSize;
   506 
   507 	iNumOsAsids=1024;
   508 	iNumGlobalPageDirs=1;
   509 	//iOsAsidAllocator;			// dynamically allocated - Init2
   510 	iGlobalPdSize=KPageTableSize;
   511 	iGlobalPdShift=KPageTableShift;
   512 	iLocalPdSize=0;
   513 	iLocalPdShift=0;
   514 	iAsidGroupSize=KChunkSize/KPageTableSize;
   515 	iAsidGroupMask=iAsidGroupSize-1;
   516 	iAsidGroupShift=iChunkShift-iGlobalPdShift;
   517 	iAliasSize=KPageSize;
   518 	iAliasMask=KPageMask;
   519 	iAliasShift=KPageShift;
   520 	iUserLocalBase=KUserLocalDataBase;
   521 	iUserSharedBase=KUserSharedDataBase;
   522 	iAsidInfo=(TUint32*)KAsidInfoBase;
   523 	iPdeBase=KPageDirectoryBase;
   524 	iPdPtePerm=KPdPtePerm|iPteGlobal;
   525 	iPdPdePerm=KPdPdePerm;
   526 	iRamDriveMask=0x00f00000;
   527 	iGlobalCodePtePerm=KPdePermRORO|iPteGlobal;
   528 
   529 	iMaxDllDataSize=Min(total_ram/2, 0x08000000);				// phys RAM/2 up to 128Mb
   530 	iMaxDllDataSize=(iMaxDllDataSize+iChunkMask)&~iChunkMask;	// round up to chunk size
   531 	iMaxUserCodeSize=Min(total_ram, 0x10000000);				// phys RAM up to 256Mb
   532 	iMaxUserCodeSize=(iMaxUserCodeSize+iChunkMask)&~iChunkMask;	// round up to chunk size
   533 	iUserLocalEnd=iUserSharedBase-iMaxDllDataSize;
   534 	iUserSharedEnd=KUserSharedDataEnd-iMaxUserCodeSize;
   535 	iDllDataBase=iUserLocalEnd;
   536 	iUserCodeBase=iUserSharedEnd;
   537 	__KTRACE_OPT(KMMU,Kern::Printf("ULB %08x ULE %08x USB %08x USE %08x",iUserLocalBase,iUserLocalEnd,
   538 																			iUserSharedBase,iUserSharedEnd));
   539 	__KTRACE_OPT(KMMU,Kern::Printf("DDB %08x UCB %08x",iDllDataBase,iUserCodeBase));
   540 
   541 	// X86Mmu data
   542 
   543 	// other
   544 	PP::MaxUserThreadStack=0x14000;			// 80K - STDLIB asks for 64K for PosixServer!!!!
   545 	PP::UserThreadStackGuard=0x2000;		// 8K
   546 	PP::MaxStackSpacePerProcess=0x200000;	// 2Mb
   547 	K::SupervisorThreadStackSize=0x1000;	// 4K
   548 	PP::SupervisorThreadStackGuard=0x1000;	// 4K
   549 	K::MachineConfig=(TMachineConfig*)KMachineConfigLinAddr;
   550 	PP::RamDriveStartAddress=KRamDriveStartAddress;
   551 	PP::RamDriveRange=KRamDriveMaxSize;
   552 	PP::RamDriveMaxSize=KRamDriveMaxSize;	// may be reduced later
   553 	K::MemModelAttributes=EMemModelTypeMultiple|EMemModelAttrNonExProt|EMemModelAttrKernProt|EMemModelAttrWriteProt|
   554 						EMemModelAttrVA|EMemModelAttrProcessProt|EMemModelAttrSameVA|EMemModelAttrSvKernProt|
   555 						EMemModelAttrIPCKernProt|EMemModelAttrRamCodeProt;
   556 
   557 #ifdef __SMP__
   558 	ApTrampolinePage = KApTrampolinePageLin;
   559 
   560 	TInt i;
   561 	for (i=0; i<KMaxCpus; ++i)
   562 		{
   563 		TSubScheduler& ss = TheSubSchedulers[i];
   564 		TLinAddr a = KIPCAlias + (i<<KChunkShift);
   565 		ss.i_AliasLinAddr = (TAny*)a;
   566 		ss.i_AliasPdePtr = (TAny*)(KPageDirectoryBase + (a>>KChunkShift)*sizeof(TPde));
   567 		}
   568 #endif
   569 
   570 	Mmu::Init1();
   571 	}
   572 
   573 void X86Mmu::DoInit2()
   574 	{
   575 	__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("X86Mmu::DoInit2"));
   576 	iTempPte=PageTable(PageTableId(iTempAddr,0))+((iTempAddr&KChunkMask)>>KPageShift);
   577 	iSecondTempPte=PageTable(PageTableId(iSecondTempAddr,0))+((iSecondTempAddr&KChunkMask)>>KPageShift);
   578 	__KTRACE_OPT2(KBOOT,KMMU,Kern::Printf("iTempAddr=%08x, iTempPte=%08x, iSecondTempAddr=%08x, iSecondTempPte=%08x",
   579 			iTempAddr, iTempPte, iSecondTempAddr, iSecondTempPte));
   580 	CreateKernelSection(KKernelSectionEnd, iAliasShift);
   581 	CreateUserGlobalSection(KUserGlobalDataBase, KUserGlobalDataEnd);
   582 	iUserHwChunkAllocator=THwChunkAddressAllocator::New(0, iUserGlobalSection);
   583 	__ASSERT_ALWAYS(iUserHwChunkAllocator, Panic(ECreateUserGlobalSectionFailed));
   584 	Mmu::DoInit2();
   585 	}
   586 
   587 #ifndef __MMU_MACHINE_CODED__
   588 void X86Mmu::MapRamPages(TInt aId, SPageInfo::TType aType, TAny* aPtr, TUint32 aOffset, const TPhysAddr* aPageList, TInt aNumPages, TPte aPtePerm)
   589 //
   590 // Map a list of physical RAM pages into a specified page table with specified PTE permissions.
   591 // Update the page information array.
   592 // Call this with the system locked.
   593 //
   594 	{
   595 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::MapRamPages() id=%d type=%d ptr=%08x off=%08x n=%d perm=%08x",
   596 			aId, aType, aPtr, aOffset, aNumPages, aPtePerm));
   597 
   598 	SPageTableInfo& ptinfo=iPtInfo[aId];
   599 	ptinfo.iCount+=aNumPages;
   600 	aOffset>>=KPageShift;
   601 	TInt ptOffset=aOffset & KPagesInPDEMask;				// entry number in page table
   602 	TPte* pPte=PageTable(aId)+ptOffset;						// address of first PTE
   603 	while(aNumPages--)
   604 		{
   605 		TPhysAddr pa = *aPageList++;
   606 		*pPte++ =  pa | aPtePerm;					// insert PTE
   607 		__KTRACE_OPT(KMMU,Kern::Printf("Writing PTE %08x to %08x",pPte[-1],pPte-1));
   608 		if (aType!=SPageInfo::EInvalid)
   609 			{
   610 			SPageInfo* pi = SPageInfo::SafeFromPhysAddr(pa);
   611 			if(pi)
   612 				{
   613 				pi->Set(aType,aPtr,aOffset);
   614 				__KTRACE_OPT(KMMU,Kern::Printf("I: %d %08x %08x",aType,aPtr,aOffset));
   615 				++aOffset;	// increment offset for next page
   616 				}
   617 			}
   618 		}
   619 	__DRAIN_WRITE_BUFFER;
   620 	}
   621 
   622 void X86Mmu::MapPhysicalPages(TInt aId, SPageInfo::TType aType, TAny* aPtr, TUint32 aOffset, TPhysAddr aPhysAddr, TInt aNumPages, TPte aPtePerm)
   623 //
   624 // Map consecutive physical pages into a specified page table with specified PTE permissions.
   625 // Update the page information array if RAM pages are being mapped.
   626 // Call this with the system locked.
   627 //
   628 	{
   629 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::MapPhysicalPages() id=%d type=%d ptr=%08x off=%08x phys=%08x n=%d perm=%08x",
   630 			aId, aType, aPtr, aOffset, aPhysAddr, aNumPages, aPtePerm));
   631 	SPageTableInfo& ptinfo=iPtInfo[aId];
   632 	ptinfo.iCount+=aNumPages;
   633 	aOffset>>=KPageShift;
   634 	TInt ptOffset=aOffset & KPagesInPDEMask;				// entry number in page table
   635 	TPte* pPte=(TPte*)(PageTableLinAddr(aId))+ptOffset;		// address of first PTE
   636 	SPageInfo* pi;
   637 	if(aType==SPageInfo::EInvalid)
   638 		pi = NULL;
   639 	else
   640 		pi = SPageInfo::SafeFromPhysAddr(aPhysAddr);
   641 	while(aNumPages--)
   642 		{
   643 		*pPte++ = aPhysAddr|aPtePerm;						// insert PTE
   644 		aPhysAddr+=KPageSize;
   645 		__KTRACE_OPT(KMMU,Kern::Printf("Writing PTE %08x to %08x",pPte[-1],pPte-1));
   646 		if (pi)
   647 			{
   648 			pi->Set(aType,aPtr,aOffset);
   649 			++aOffset;										// increment offset for next page
   650 			__KTRACE_OPT(KMMU,Kern::Printf("I: %d %08x %08x",aType,aPtr,aOffset));
   651 			++pi;
   652 			}
   653 		}
   654 	__DRAIN_WRITE_BUFFER;
   655 	}
   656 
   657 void X86Mmu::MapVirtual(TInt /*aId*/, TInt /*aNumPages*/)
   658 //
   659 // Used in the implementation of demand paging - not supported on x86
   660 //
   661 	{
   662 	MM::Panic(MM::EOperationNotSupported);
   663 	}
   664 
   665 void X86Mmu::RemapPage(TInt /*aId*/, TUint32 /*aAddr*/, TPhysAddr /*aOldAddr*/, TPhysAddr /*aNewAddr*/, TPte /*aPtePerm*/, DProcess* /*aProcess*/)
   666 	{
   667 	MM::Panic(MM::EOperationNotSupported);
   668 	}
   669 
   670 void X86Mmu::RemapPageByAsid(TBitMapAllocator* /*aOsAsids*/, TLinAddr /*aLinAddr*/, TPhysAddr /*aOldAddr*/, TPhysAddr /*aNewAddr*/, TPte /*aPtePerm*/)
   671 	{
   672 	MM::Panic(MM::EOperationNotSupported);
   673 	}
   674 
   675 TInt X86Mmu::UnmapPages(TInt aId, TUint32 aAddr, TInt aNumPages, TPhysAddr* aPageList, TBool aSetPagesFree, TInt& aNumPtes, TInt& aNumFree, DProcess*)
   676 //
   677 // Unmap a specified area at address aAddr in page table aId. Place physical addresses of unmapped
   678 // pages into aPageList, and count of unmapped pages into aNumPtes.
   679 // Return number of pages still mapped using this page table.
   680 // Call this with the system locked.
   681 	{
   682 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::UnmapPages() id=%d off=%08x n=%d pl=%08x set-free=%08x",aId,aAddr,aNumPages,aPageList,aSetPagesFree));
   683 	TInt ptOffset=(aAddr&KChunkMask)>>KPageShift;			// entry number in page table
   684 	TPte* pPte=PageTable(aId)+ptOffset;						// address of first PTE
   685 	TInt np=0;
   686 	TInt nf=0;
   687 #ifdef __SMP__
   688 	TTLBIPI ipi;
   689 #endif
   690 	while(aNumPages--)
   691 		{
   692 		TPte pte=*pPte;						// get original PTE
   693 		*pPte++=0;							// clear PTE
   694 		if (pte & KPdePtePresent)
   695 			{
   696 #ifdef __SMP__
   697 			ipi.AddAddress(aAddr);
   698 #else
   699 			InvalidateTLBForPage(aAddr);	// flush any corresponding TLB entry
   700 #endif
   701 			++np;							// count unmapped pages
   702 			TPhysAddr pa=pte & KPdePtePhysAddrMask;	// physical address of unmapped page
   703 			if (aSetPagesFree)
   704 				{
   705 				SPageInfo* pi = SPageInfo::FromPhysAddr(pa);
   706 				if(iRamCache->PageUnmapped(pi))
   707 					{
   708 					pi->SetUnused();					// mark page as unused
   709 					if (pi->LockCount()==0)
   710 						{
   711 						*aPageList++=pa;			// store in page list
   712 						++nf;						// count free pages
   713 						}
   714 					}
   715 				}
   716 			else
   717 				*aPageList++=pa;				// store in page list
   718 			}
   719 		aAddr+=KPageSize;
   720 		}
   721 #ifdef __SMP__
   722 	ipi.InvalidateList();
   723 #endif
   724 	aNumPtes=np;
   725 	aNumFree=nf;
   726 	SPageTableInfo& ptinfo=iPtInfo[aId];
   727 	TInt r=(ptinfo.iCount-=np);
   728 	__DRAIN_WRITE_BUFFER;
   729 	__KTRACE_OPT(KMMU,Kern::Printf("Pages recovered %d Pages remaining %d NF=%d",np,r,nf));
   730 	return r;								// return number of pages remaining in this page table
   731 	}
   732 
   733 TInt X86Mmu::UnmapUnownedPages(TInt aId, TUint32 aAddr, TInt aNumPages, TPhysAddr* aPageList, TLinAddr* aLAPageList, TInt& aNumPtes, TInt& aNumFree, DProcess*)
   734 //
   735 // Unmap a specified area at address aAddr in page table aId. Place physical addresses of unmapped
   736 // pages into aPageList, and count of unmapped pages into aNumPtes.
   737 // Return number of pages still mapped using this page table.
   738 // Call this with the system locked.
   739 	{
   740 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::UnmapPages() id=%d off=%08x n=%d pl=%08x",aId,aAddr,aNumPages,aPageList));
   741 	TInt ptOffset=(aAddr&KChunkMask)>>KPageShift;			// entry number in page table
   742 	TPte* pPte=PageTable(aId)+ptOffset;						// address of first PTE
   743 	TInt np=0;
   744 	TInt nf=0;
   745 #ifdef __SMP__
   746 	TTLBIPI ipi;
   747 #endif
   748 	while(aNumPages--)
   749 		{
   750 		TPte pte=*pPte;						// get original PTE
   751 		*pPte++=0;							// clear PTE
   752 		if (pte & KPdePtePresent)
   753 			{
   754 #ifdef __SMP__
   755 			ipi.AddAddress(aAddr);
   756 #else
   757 			InvalidateTLBForPage(aAddr);	// flush any corresponding TLB entry
   758 #endif
   759 			++np;							// count unmapped pages
   760 			TPhysAddr pa=pte & KPdePtePhysAddrMask;	// physical address of unmapped page
   761 
   762 			nf++;
   763 			*aPageList++=pa;				// store in page list
   764 			*aLAPageList++ = aAddr;
   765 			}
   766 		aAddr+=KPageSize;
   767 		}
   768 #ifdef __SMP__
   769 	ipi.InvalidateList();
   770 #endif
   771 	aNumPtes=np;
   772 	aNumFree=nf;
   773 	SPageTableInfo& ptinfo=iPtInfo[aId];
   774 	TInt r=(ptinfo.iCount-=np);
   775 	__DRAIN_WRITE_BUFFER;
   776 	__KTRACE_OPT(KMMU,Kern::Printf("Pages recovered %d Pages remaining %d NF=%d",np,r,nf));
   777 	return r;								// return number of pages remaining in this page table
   778 	}
   779 
   780 TInt X86Mmu::UnmapVirtual(TInt /*aId*/, TUint32 /*aAddr*/, TInt /*aNumPages*/, TPhysAddr* /*aPageList*/, TBool /*aSetPagesFree*/, TInt& /*aNumPtes*/, TInt& /*aNumFree*/, DProcess* /*aProcess*/)
   781 //
   782 // Used in the implementation of demand paging - not supported on x86
   783 //
   784 	{
   785 	MM::Panic(MM::EOperationNotSupported);
   786 	return 0; // keep compiler happy
   787 	}
   788 
   789 TInt X86Mmu::UnmapUnownedVirtual(TInt /*aId*/, TUint32 /*aAddr*/, TInt /*aNumPages*/, TPhysAddr* /*aPageList*/, TLinAddr*  /*aLALinAddr*/, TInt& /*aNumPtes*/, TInt& /*aNumFree*/, DProcess* /*aProcess*/)
   790 //
   791 // Used in the implementation of demand paging - not supported on x86
   792 //
   793 	{
   794 	MM::Panic(MM::EOperationNotSupported);
   795 	return 0; // keep compiler happy
   796 	}
   797 
   798 void X86Mmu::DoAssignPageTable(TInt aId, TLinAddr aAddr, TPde aPdePerm, const TAny* aOsAsids)
   799 //
   800 // Assign an allocated page table to map a given linear address with specified permissions.
   801 // This should be called with the system unlocked and the MMU mutex held.
   802 //
   803 	{
   804 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::DoAssignPageTable %d to %08x perm %08x asid %08x",aId,aAddr,aPdePerm,aOsAsids));
   805 	TLinAddr ptLin=PageTableLinAddr(aId);
   806 	TPhysAddr ptPhys=LinearToPhysical(ptLin,0);
   807 	TInt pdeIndex=TInt(aAddr>>KChunkShift);
   808 	TInt os_asid=(TInt)aOsAsids;
   809 	if (TUint32(os_asid)<TUint32(iNumOsAsids))
   810 		{
   811 		// single OS ASID
   812 		TPde* pageDir=PageDirectory(os_asid);
   813 		NKern::LockSystem();
   814 		pageDir[pdeIndex]=ptPhys|aPdePerm;
   815 		NKern::UnlockSystem();
   816 		__KTRACE_OPT(KMMU,Kern::Printf("Writing PDE %08x to %08x",ptPhys|aPdePerm,pageDir+pdeIndex));
   817 		}
   818 	else
   819 		{
   820 		// selection of OS ASIDs or all OS ASIDs
   821 		const TBitMapAllocator* pB=(const TBitMapAllocator*)aOsAsids;
   822 		if (os_asid==-1)
   823 			pB=iOsAsidAllocator;	// 0's in positions which exist
   824 		TInt num_os_asids=pB->iSize-pB->iAvail;
   825 		for (os_asid=0; num_os_asids; ++os_asid)
   826 			{
   827 			if (pB->NotAllocated(os_asid,1))
   828 				continue;			// os_asid is not needed
   829 			TPde* pageDir=PageDirectory(os_asid);
   830 			NKern::LockSystem();
   831 			pageDir[pdeIndex]=ptPhys|aPdePerm;
   832 			NKern::UnlockSystem();
   833 			__KTRACE_OPT(KMMU,Kern::Printf("Writing PDE %08x to %08x",ptPhys|aPdePerm,pageDir+pdeIndex));
   834 			--num_os_asids;
   835 			}
   836 		}
   837 	__DRAIN_WRITE_BUFFER;
   838 	}
   839 
   840 void X86Mmu::RemapPageTableSingle(TPhysAddr aOld, TPhysAddr aNew, TLinAddr aAddr, TInt aOsAsid)
   841 	{
   842 	MM::Panic(MM::EOperationNotSupported);
   843 	}
   844 
   845 void X86Mmu::RemapPageTableGlobal(TPhysAddr aOld, TPhysAddr aNew, TLinAddr aAddr)
   846 	{
   847 	MM::Panic(MM::EOperationNotSupported);
   848 	}
   849 
   850 void X86Mmu::RemapPageTableMultiple(TPhysAddr aOld, TPhysAddr aNew, TLinAddr aAddr, const TAny* aOsAsids)
   851 	{
   852 	MM::Panic(MM::EOperationNotSupported);
   853 	}
   854 
   855 void X86Mmu::RemapPageTableAliases(TPhysAddr aOld, TPhysAddr aNew)
   856 	{
   857 	MM::Panic(MM::EOperationNotSupported);
   858 	}
   859 
   860 void X86Mmu::DoUnassignPageTable(TLinAddr aAddr, const TAny* aOsAsids)
   861 //
   862 // Unassign a now-empty page table currently mapping the specified linear address.
   863 // We assume that TLB and/or cache flushing has been done when any RAM pages were unmapped.
   864 // This should be called with the system unlocked and the MMU mutex held.
   865 //
   866 	{
   867 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::DoUnassignPageTable at %08x a=%08x",aAddr,aOsAsids));
   868 	TInt pdeIndex=TInt(aAddr>>KChunkShift);
   869 	TInt os_asid=(TInt)aOsAsids;
   870 	TUint pde=0;
   871 
   872 	SDblQue checkedList;
   873 	SDblQueLink* next;
   874 
   875 	if (TUint32(os_asid)<TUint32(iNumOsAsids))
   876 		{
   877 		// single OS ASID
   878 		TPde* pageDir=PageDirectory(os_asid);
   879 		NKern::LockSystem();
   880 		pde = pageDir[pdeIndex];
   881 		pageDir[pdeIndex]=0;
   882 		__KTRACE_OPT(KMMU,Kern::Printf("Clearing PDE at %08x",pageDir+pdeIndex));
   883 
   884 		// remove any aliases of the page table...
   885 		TUint ptId = pde>>KPageTableShift;
   886 		while(!iAliasList.IsEmpty())
   887 			{
   888 			next = iAliasList.First()->Deque();
   889 			checkedList.Add(next);
   890 			DMemModelThread* thread = _LOFF(next, DMemModelThread, iAliasLink);
   891 			if(thread->iAliasOsAsid==os_asid && (thread->iAliasPde>>KPageTableShift)==ptId)
   892 				{
   893 				// the page table is being aliased by the thread, so remove it...
   894 				thread->iAliasPde = 0;
   895 				}
   896 			NKern::FlashSystem();
   897 			}
   898 		}
   899 	else
   900 		{
   901 		// selection of OS ASIDs or all OS ASIDs
   902 		const TBitMapAllocator* pB=(const TBitMapAllocator*)aOsAsids;
   903 		if (os_asid==-1)
   904 			pB=iOsAsidAllocator;	// 0's in positions which exist
   905 		TInt num_os_asids=pB->iSize-pB->iAvail;
   906 		for (os_asid=0; num_os_asids; ++os_asid)
   907 			{
   908 			if (pB->NotAllocated(os_asid,1))
   909 				continue;			// os_asid is not needed
   910 			TPde* pageDir=PageDirectory(os_asid);
   911 			NKern::LockSystem();
   912 			pde = pageDir[pdeIndex];
   913 			pageDir[pdeIndex]=0;
   914 			NKern::UnlockSystem();
   915 			__KTRACE_OPT(KMMU,Kern::Printf("Clearing PDE at %08x",pageDir+pdeIndex));
   916 			--num_os_asids;
   917 			}
   918 
   919 		// remove any aliases of the page table...
   920 		TUint ptId = pde>>KPageTableShift;
   921 		NKern::LockSystem();
   922 		while(!iAliasList.IsEmpty())
   923 			{
   924 			next = iAliasList.First()->Deque();
   925 			checkedList.Add(next);
   926 			DMemModelThread* thread = _LOFF(next, DMemModelThread, iAliasLink);
   927 			if((thread->iAliasPde>>KPageTableShift)==ptId && !pB->NotAllocated(thread->iAliasOsAsid,1))
   928 				{
   929 				// the page table is being aliased by the thread, so remove it...
   930 				thread->iAliasPde = 0;
   931 				}
   932 			NKern::FlashSystem();
   933 			}
   934 		}
   935 
   936 	// copy checkedList back to iAliasList
   937 	iAliasList.MoveFrom(&checkedList);
   938 
   939 	NKern::UnlockSystem();
   940 
   941 	__DRAIN_WRITE_BUFFER; // because page tables have been updated
   942 	}
   943 #endif
   944 
   945 // Initialise page table at physical address aXptPhys to be used as page table aXptId
   946 // to expand the virtual address range used for mapping page tables. Map the page table
   947 // at aPhysAddr as page table aId using the expanded range.
   948 // Assign aXptPhys to kernel's Page Directory.
   949 // Called with system unlocked and MMU mutex held.
   950 void X86Mmu::BootstrapPageTable(TInt aXptId, TPhysAddr aXptPhys, TInt aId, TPhysAddr aPhysAddr)
   951 	{
   952 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::BootstrapPageTable xptid=%04x, xptphys=%08x, id=%04x, phys=%08x",
   953 						aXptId, aXptPhys, aId, aPhysAddr));
   954 	
   955 	// put in a temporary mapping for aXptPhys
   956 	*iTempPte = aXptPhys | KPtPtePerm | iPteGlobal;
   957 	__DRAIN_WRITE_BUFFER;
   958 
   959 	// clear XPT
   960 	TPte* xpt=(TPte*)iTempAddr;
   961 	memclr(xpt, KPageSize);
   962 
   963 	// map XPT
   964 	xpt[aXptId & KPagesInPDEMask] = aXptPhys | KPtPtePerm | iPteGlobal;
   965 
   966 	// map other page table
   967 	xpt[aId & KPagesInPDEMask] = aPhysAddr | KPtPtePerm | iPteGlobal;
   968 
   969 	// remove temporary mapping
   970 	iTempPte=0;
   971 	__DRAIN_WRITE_BUFFER;
   972 	InvalidateTLBForPage(iTempAddr);
   973 
   974 	// initialise PtInfo...
   975 	TLinAddr xptAddr = PageTableLinAddr(aXptId);
   976 	iPtInfo[aXptId].SetGlobal(xptAddr>>KChunkShift);
   977 
   978 	// map xpt...
   979 	TInt pdeIndex=TInt(xptAddr>>KChunkShift);
   980 	TPde* pageDir=PageDirectory(0);
   981 	NKern::LockSystem();
   982 	pageDir[pdeIndex]=aXptPhys|KPtPdePerm;
   983 	__DRAIN_WRITE_BUFFER;
   984 	NKern::UnlockSystem();				
   985 	}
   986 
   987 void X86Mmu::FixupXPageTable(TInt aId, TLinAddr aTempMap, TPhysAddr aOld, TPhysAddr aNew)
   988 	{
   989 	MM::Panic(MM::EOperationNotSupported);
   990 	}
   991 
   992 TInt X86Mmu::NewPageDirectory(TInt aOsAsid, TBool aSeparateGlobal, TPhysAddr& aPhysAddr, TInt& aNumPages)
   993 	{
   994 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::NewPageDirectory(%d,%d)",aOsAsid,aSeparateGlobal));
   995 	TInt r=AllocRamPages(&aPhysAddr,1, EPageFixed);
   996 	if (r!=KErrNone)
   997 		return r;
   998 #ifdef BTRACE_KERNEL_MEMORY
   999 	BTrace4(BTrace::EKernelMemory, BTrace::EKernelMemoryMiscAlloc, 1<<KPageShift);
  1000 	Epoc::KernelMiscPages += 1;
  1001 #endif
  1002 	SPageInfo* pi = SPageInfo::FromPhysAddr(aPhysAddr);
  1003 	NKern::LockSystem();
  1004 	pi->SetPageDir(aOsAsid,0);
  1005 	NKern::UnlockSystem();
  1006 	aNumPages=1;
  1007 	return KErrNone;
  1008 	}
  1009 
  1010 inline void CopyPdes(TPde* aDest, const TPde* aSrc, TLinAddr aBase, TLinAddr aEnd)
  1011 	{
  1012 	memcpy(aDest+(aBase>>KChunkShift), aSrc+(aBase>>KChunkShift), ((aEnd-aBase)>>KChunkShift)*sizeof(TPde));
  1013 	}
  1014 
  1015 inline void ZeroPdes(TPde* aDest, TLinAddr aBase, TLinAddr aEnd)
  1016 	{
  1017 	memclr(aDest+(aBase>>KChunkShift), ((aEnd-aBase)>>KChunkShift)*sizeof(TPde));
  1018 	}
  1019 
  1020 void X86Mmu::InitPageDirectory(TInt aOsAsid, TBool)
  1021 	{
  1022 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::InitPageDirectory(%d)",aOsAsid));
  1023 	TPde* newpd=PageDirectory(aOsAsid);					// new page directory
  1024 	const TPde* kpd=(const TPde*)KPageDirectoryBase;	// kernel page directory
  1025 	ZeroPdes(newpd, 0x00000000, KUserSharedDataEnd);	// clear user mapping area
  1026 	ZeroPdes(newpd, KRamDriveStartAddress, KRamDriveEndAddress);	// don't copy RAM drive
  1027 	CopyPdes(newpd, kpd, KRomLinearBase, KUserGlobalDataEnd);		// copy ROM + user global
  1028 	CopyPdes(newpd, kpd, KRamDriveEndAddress, 0x00000000);			// copy kernel mappings
  1029 	__DRAIN_WRITE_BUFFER;
  1030 	}
  1031 
  1032 void X86Mmu::ClearPageTable(TInt aId, TInt aFirstIndex)
  1033 	{
  1034 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu:ClearPageTable(%d,%d)",aId,aFirstIndex));
  1035 	TPte* pte=PageTable(aId);
  1036 	memclr(pte+aFirstIndex, KPageSize-aFirstIndex*sizeof(TPte));
  1037 	__DRAIN_WRITE_BUFFER;
  1038 	}
  1039 
  1040 void X86Mmu::ApplyTopLevelPermissions(TLinAddr aAddr, TInt aOsAsid, TInt aNumPdes, TPde aPdePerm)
  1041 	{
  1042 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::ApplyTopLevelPermissions %04x:%08x->%08x count %d",
  1043 												aOsAsid, aAddr, aPdePerm, aNumPdes));
  1044 	TInt ix=aAddr>>KChunkShift;
  1045 	TPde* pPde=PageDirectory(aOsAsid)+ix;
  1046 	TPde* pPdeEnd=pPde+aNumPdes;
  1047 	NKern::LockSystem();
  1048 	for (; pPde<pPdeEnd; ++pPde)
  1049 		{
  1050 		TPde pde=*pPde;
  1051 		if (pde)
  1052 			*pPde = (pde&KPdePtePhysAddrMask)|aPdePerm;
  1053 		}
  1054 	NKern::UnlockSystem();
  1055 	(aAddr>=KUserSharedDataEnd) ? InvalidateTLB() : LocalInvalidateTLB();
  1056 	__DRAIN_WRITE_BUFFER;
  1057 	}
  1058 
  1059 void X86Mmu::ApplyPagePermissions(TInt aId, TInt aPageOffset, TInt aNumPages, TPte aPtePerm)
  1060 	{
  1061 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu::ApplyPagePermissions %04x:%03x+%03x perm %08x",
  1062 												aId, aPageOffset, aNumPages, aPtePerm));
  1063 	TPte* pPte=PageTable(aId)+aPageOffset;
  1064 	TPde* pPteEnd=pPte+aNumPages;
  1065 	TPte g=0;
  1066 	NKern::LockSystem();
  1067 	for (; pPte<pPteEnd; ++pPte)
  1068 		{
  1069 		TPte pte=*pPte;
  1070 		g |= pte;
  1071 		if (pte)
  1072 			*pPte = (pte&KPdePtePhysAddrMask)|aPtePerm;
  1073 		}
  1074 	NKern::UnlockSystem();
  1075 	(g & KPdePteGlobal) ? InvalidateTLB() : LocalInvalidateTLB();
  1076 	__DRAIN_WRITE_BUFFER;
  1077 	}
  1078 
  1079 
  1080 // Set up a page table (specified by aId) to map a 4Mb section of ROM containing aRomAddr
  1081 // using ROM at aOrigPhys.
  1082 void X86Mmu::InitShadowPageTable(TInt aId, TLinAddr aRomAddr, TPhysAddr aOrigPhys)
  1083 	{
  1084 	(void)aId, (void)aRomAddr, (void)aOrigPhys;
  1085 	FAULT();	// Never used
  1086 /*
  1087 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu:InitShadowPageTable id=%04x aRomAddr=%08x aOrigPhys=%08x",
  1088 		aId, aRomAddr, aOrigPhys));
  1089 	TPte* ppte = PageTable(aId);
  1090 	TPte* ppte_End = ppte + KChunkSize/KPageSize;
  1091 	TPhysAddr phys = aOrigPhys - (aRomAddr & KChunkMask);
  1092 	for (; ppte<ppte_End; ++ppte, phys+=KPageSize)
  1093 		*ppte = phys | KRomPtePerm;
  1094 	__DRAIN_WRITE_BUFFER;
  1095 */
  1096 	}
  1097 
  1098 // Copy the contents of ROM at aRomAddr to a shadow page at physical address aShadowPhys
  1099 void X86Mmu::InitShadowPage(TPhysAddr aShadowPhys, TLinAddr aRomAddr)
  1100 	{
  1101 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu:InitShadowPage aShadowPhys=%08x aRomAddr=%08x",
  1102 		aShadowPhys, aRomAddr));
  1103 
  1104 	// put in a temporary mapping for aShadowPhys
  1105 	// make it noncacheable
  1106 	*iTempPte = aShadowPhys | KPtPtePerm | iPteGlobal;
  1107 	__DRAIN_WRITE_BUFFER;
  1108 
  1109 	// copy contents of ROM
  1110 	wordmove( (TAny*)iTempAddr, (const TAny*)aRomAddr, KPageSize );
  1111 	__DRAIN_WRITE_BUFFER;	// make sure contents are written to memory
  1112 
  1113 	// remove temporary mapping
  1114 	*iTempPte=0;
  1115 	__DRAIN_WRITE_BUFFER;
  1116 	InvalidateTLBForPage(iTempAddr);
  1117 	}
  1118 
  1119 // Assign a shadow page table to replace a ROM section mapping
  1120 // Enter and return with system locked
  1121 void X86Mmu::AssignShadowPageTable(TInt aId, TLinAddr aRomAddr)
  1122 	{
  1123 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu:AssignShadowPageTable aId=%04x aRomAddr=%08x",
  1124 		aId, aRomAddr));
  1125 	TLinAddr ptLin=PageTableLinAddr(aId);
  1126 	TPhysAddr ptPhys=LinearToPhysical(ptLin, 0);
  1127 	TPde* ppde = ::InitPageDirectory + (aRomAddr>>KChunkShift);
  1128 	TPde newpde = ptPhys | KShadowPdePerm;
  1129 	__KTRACE_OPT(KMMU,Kern::Printf("Writing PDE %08x to %08x", newpde, ppde));
  1130 #ifdef __SMP__
  1131 	TTLBIPI ipi;
  1132 	NKern::Lock();		// stop other processors passing this point
  1133 	ShadowSpinLock.LockOnly();
  1134 	ipi.QueueAllOther(&TTLBIPI::WaitAndInvalidateIsr);
  1135 	ipi.WaitEntry();	// wait for other processors to stop in the ISR
  1136 #endif
  1137 	TInt irq=NKern::DisableAllInterrupts();
  1138 	*ppde = newpde;		// map in the page table
  1139 	__DRAIN_WRITE_BUFFER;	// make sure new PDE written to main memory
  1140 	DoInvalidateTLB();	// completely flush TLB
  1141 	NKern::RestoreInterrupts(irq);
  1142 #ifdef __SMP__
  1143 	ipi.iFlag = 1;		// release other processors so they can flush their TLBs
  1144 	ipi.WaitCompletion();	// wait for other processors to flush their TLBs
  1145 	ShadowSpinLock.UnlockOnly();
  1146 	NKern::Unlock();
  1147 #endif
  1148 	}
  1149 
  1150 void X86Mmu::DoUnmapShadowPage(TInt aId, TLinAddr aRomAddr, TPhysAddr aOrigPhys)
  1151 	{
  1152 	__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu:DoUnmapShadowPage, id=%04x lin=%08x origphys=%08x", aId, aRomAddr, aOrigPhys));
  1153 	TPte* ppte = PageTable(aId) + ((aRomAddr & KChunkMask)>>KPageShift);
  1154 	TPte newpte = aOrigPhys | KRomPtePerm;
  1155 	__KTRACE_OPT(KMMU,Kern::Printf("Writing PTE %08x to %08x", newpte, ppte));
  1156 #ifdef __SMP__
  1157 	TTLBIPI ipi;
  1158 	ipi.AddAddress(aRomAddr);
  1159 	NKern::Lock();		// stop other processors passing this point
  1160 	ShadowSpinLock.LockOnly();
  1161 	ipi.QueueAllOther(&TTLBIPI::WaitAndInvalidateIsr);
  1162 	ipi.WaitEntry();	// wait for other processors to stop
  1163 #endif
  1164 	TInt irq=NKern::DisableAllInterrupts();
  1165 	*ppte = newpte;
  1166 	__DRAIN_WRITE_BUFFER;
  1167 	DoInvalidateTLBForPage(aRomAddr);
  1168 	NKern::RestoreInterrupts(irq);
  1169 #ifdef __SMP__
  1170 	ipi.iFlag = 1;		// release other processors so they can flush their TLBs
  1171 	ipi.WaitCompletion();	// wait for other processors to flush their TLBs
  1172 	ShadowSpinLock.UnlockOnly();
  1173 	NKern::Unlock();
  1174 #endif
  1175 	}
  1176 
  1177 TInt X86Mmu::UnassignShadowPageTable(TLinAddr /*aRomAddr*/, TPhysAddr /*aOrigPhys*/)
  1178 	{
  1179 	// not used since we use page mappings for the ROM
  1180 	return KErrGeneral;
  1181 	}
  1182 
  1183 TInt X86Mmu::CopyToShadowMemory(TLinAddr aDest, TLinAddr aSrc, TUint32 aLength)
  1184 	{
  1185 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu:CopyToShadowMemory aDest=%08x aSrc=%08x aLength=%08x", aDest, aSrc, aLength));
  1186 
  1187 	// Check that destination is ROM
  1188 	if (aDest<iRomLinearBase || (aDest+aLength) > iRomLinearEnd)
  1189 		{
  1190 		__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu:CopyToShadowMemory: Destination not entirely in ROM"));
  1191 		return KErrArgument;
  1192 		}
  1193 
  1194 	// do operation with RamAlloc mutex held (to prevent shadow pages from being released from under us)
  1195 	Kern::MutexWait(*RamAllocatorMutex);
  1196 
  1197 	TInt r = KErrNone;
  1198 	while (aLength)
  1199 		{
  1200 		// Calculate memory size to copy in this loop. A single page region will be copied per loop
  1201 		TInt copySize = Min(aLength, iPageSize - (aDest&iPageMask));
  1202 
  1203 		// Get physical address
  1204 		TPhysAddr	physAddr = LinearToPhysical(aDest&~iPageMask, 0);
  1205 		if (KPhysAddrInvalid==physAddr)
  1206 			{
  1207 			r = KErrArgument;
  1208 			break;
  1209 			}
  1210 		
  1211 		//check whether it is shadowed rom
  1212 		SPageInfo* pi = SPageInfo::SafeFromPhysAddr(physAddr);
  1213 		if (pi==0 || pi->Type()!=SPageInfo::EShadow)
  1214 			{
  1215 			__KTRACE_OPT(KMMU,Kern::Printf("X86Mmu:CopyToShadowMemory: No shadow page at this address"));
  1216 			r = KErrArgument;
  1217 			break;
  1218 			}
  1219 
  1220 		//Temporarily map into writable memory and copy data. RamAllocator DMutex is required
  1221 		TLinAddr tempAddr = MapTemp (physAddr, aDest&~iPageMask);
  1222 		__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu:CopyToShadowMemory Copy aDest=%08x aSrc=%08x aSize=%08x", tempAddr+(aDest&iPageMask), aSrc, copySize));
  1223 		memcpy ((TAny*)(tempAddr+(aDest&iPageMask)), (const TAny*)aSrc, copySize);  //Kernel-to-Kernel copy is presumed
  1224 		UnmapTemp();
  1225 
  1226 		//Update variables for the next loop/page
  1227 		aDest+=copySize;
  1228 		aSrc+=copySize;
  1229 		aLength-=copySize;
  1230 		}
  1231 
  1232 	Kern::MutexSignal(*RamAllocatorMutex);
  1233 	return r;
  1234 	}
  1235 
  1236 void X86Mmu::DoFreezeShadowPage(TInt aId, TLinAddr aRomAddr)
  1237 	{
  1238 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu:DoFreezeShadowPage aId=%04x aRomAddr=%08x",
  1239 		aId, aRomAddr));
  1240 	TPte* ppte = PageTable(aId) + ((aRomAddr & KChunkMask)>>KPageShift);
  1241 	TPte newpte = (*ppte & KPdePtePhysAddrMask) | KRomPtePerm;
  1242 	__KTRACE_OPT(KMMU,Kern::Printf("Writing PTE %08x to %08x", newpte, ppte));
  1243 	*ppte = newpte;
  1244 	__DRAIN_WRITE_BUFFER;
  1245 	InvalidateTLBForPage(aRomAddr);
  1246 	}
  1247 
  1248 void X86Mmu::FlushShadow(TLinAddr aRomAddr)
  1249 	{
  1250 #ifdef __SMP__
  1251 	TTLBIPI ipi;
  1252 	ipi.AddAddress(aRomAddr);
  1253 	NKern::Lock();		// stop other processors passing this point
  1254 	ShadowSpinLock.LockOnly();
  1255 	ipi.QueueAllOther(&TTLBIPI::WaitAndInvalidateIsr);
  1256 	ipi.WaitEntry();	// wait for other processors to stop
  1257 	DoInvalidateTLBForPage(aRomAddr);
  1258 	ipi.iFlag = 1;		// release other processors so they can flush their TLBs
  1259 	ipi.WaitCompletion();	// wait for other processors to flush their TLBs
  1260 	ShadowSpinLock.UnlockOnly();
  1261 	NKern::Unlock();
  1262 #else
  1263 	InvalidateTLBForPage(aRomAddr);		// remove all TLB references to original ROM page
  1264 #endif
  1265 	}
  1266 
  1267 void X86Mmu::Pagify(TInt aId, TLinAddr aLinAddr)
  1268 	{
  1269 	// Nothing to do on x86
  1270 	}
  1271 
  1272 void X86Mmu::ClearRamDrive(TLinAddr aStart)
  1273 	{
  1274 	// clear the page directory entries corresponding to the RAM drive
  1275 	TPde* kpd=(TPde*)KPageDirectoryBase;	// kernel page directory
  1276 	ZeroPdes(kpd, aStart, KRamDriveEndAddress);
  1277 	__DRAIN_WRITE_BUFFER;
  1278 	}
  1279 
  1280 // Generic cache/TLB flush function.
  1281 // Which things are flushed is determined by aMask.
  1282 void X86Mmu::GenericFlush(TUint32 aMask)
  1283 	{
  1284 	__KTRACE_OPT(KMMU,Kern::Printf("GenericFlush %x",aMask));
  1285 	if (aMask&(EFlushDPermChg|EFlushIPermChg))
  1286 		InvalidateTLB();
  1287 	}
  1288 
  1289 TPde X86Mmu::PdePermissions(TChunkType aChunkType, TBool aRO)
  1290 	{
  1291 	if (aChunkType==EUserData && aRO)
  1292 		return KPdePtePresent|KPdePteUser;
  1293 	return ChunkPdePermissions[aChunkType];
  1294 	}
  1295 
  1296 TPte X86Mmu::PtePermissions(TChunkType aChunkType)
  1297 	{
  1298 	TPte pte=ChunkPtePermissions[aChunkType];
  1299 	return (pte&~KPdePteGlobal)|(pte&iPteGlobal);
  1300 	}
  1301 
  1302 const TUint FBLK=(EMapAttrFullyBlocking>>12);
  1303 const TUint BFNC=(EMapAttrBufferedNC>>12);
  1304 const TUint BUFC=(EMapAttrBufferedC>>12);
  1305 const TUint L1UN=(EMapAttrL1Uncached>>12);
  1306 const TUint WTRA=(EMapAttrCachedWTRA>>12);
  1307 const TUint WTWA=(EMapAttrCachedWTWA>>12);
  1308 const TUint WBRA=(EMapAttrCachedWBRA>>12);
  1309 const TUint WBWA=(EMapAttrCachedWBWA>>12);
  1310 const TUint AWTR=(EMapAttrAltCacheWTRA>>12);
  1311 const TUint AWTW=(EMapAttrAltCacheWTWA>>12);
  1312 const TUint AWBR=(EMapAttrAltCacheWBRA>>12);
  1313 const TUint AWBW=(EMapAttrAltCacheWBWA>>12);
  1314 
  1315 const TUint16 UNS=0xffffu;	// Unsupported attribute
  1316 const TUint16 SPE=0xfffeu;	// Special processing required
  1317 
  1318 static const TUint16 CacheBuffAttributes[16]=
  1319 	{0x10,0x10,0x10,0x10,0x08,0x08,0x00,0x00, UNS, UNS, UNS, UNS, UNS, UNS, UNS,0x00};
  1320 static const TUint8 CacheBuffActual[16]=
  1321 	{FBLK,FBLK,FBLK,FBLK,WTRA,WTRA,WBWA,WBWA,FBLK,FBLK,FBLK,FBLK,FBLK,FBLK,FBLK,WBWA};
  1322 
  1323 static const TUint8 ActualReadPrivilegeLevel[4]={1,1,4,4};	// RONO,RWNO,RORO,RWRW
  1324 static const TUint8 ActualWritePrivilegeLevel[4]={0,1,0,4};	// RONO,RWNO,RORO,RWRW
  1325 
  1326 TInt X86Mmu::PdePtePermissions(TUint& aMapAttr, TPde& aPde, TPte& aPte)
  1327 	{
  1328 	__KTRACE_OPT(KMMU,Kern::Printf(">X86Mmu::PdePtePermissions, mapattr=%08x",aMapAttr));
  1329 	TUint read=aMapAttr & EMapAttrReadMask;
  1330 	TUint write=(aMapAttr & EMapAttrWriteMask)>>4;
  1331 	TUint exec=(aMapAttr & EMapAttrExecMask)>>8;
  1332 	TUint cache=(aMapAttr & EMapAttrL1CacheMask)>>12;
  1333 	TPte pte;
  1334 	// ignore L2 cache attributes for now - downgrade to L2 uncached
  1335 
  1336 	// if execute access is greater than read, adjust read (since there are no separate execute permissions on X86)
  1337 	if (exec>read)
  1338 		read=exec;
  1339 	pte=0;
  1340 	if (write==0)
  1341 		{
  1342 		// read-only
  1343 		if (read>=4)
  1344 			pte=KPdePermRORO;			// user and supervisor read-only
  1345 		else
  1346 			pte=KPdePermRONO;			// supervisor r/o user no access
  1347 		}
  1348 	else if (write<4)
  1349 		{
  1350 		// only supervisor can write
  1351 		if (read>=4)
  1352 			pte=KPdePermRWRW;			// full access since no RWRO
  1353 		else
  1354 			pte=KPdePermRWNO;			// sup rw user no access
  1355 		}
  1356 	else
  1357 		pte=KPdePermRWRW;				// sup rw user rw
  1358 	read=ActualReadPrivilegeLevel[pte>>1];
  1359 	write=ActualWritePrivilegeLevel[pte>>1];
  1360 	TUint cbatt=CacheBuffAttributes[cache];
  1361 	TInt r=KErrNone;
  1362 	if (cbatt==UNS)
  1363 		r=KErrNotSupported;
  1364 	if (r==KErrNone)
  1365 		{
  1366 		cache=CacheBuffActual[cache];
  1367 		aPde=KPdePtePresent|KPdePteWrite|KPdePteUser;
  1368 		aPte=pte|cbatt|iPteGlobal;		// HW chunks can always be global
  1369 		aMapAttr=read|(write<<4)|(read<<8)|(cache<<12);
  1370 		}
  1371 	__KTRACE_OPT(KMMU,Kern::Printf("<X86Mmu::PdePtePermissions, r=%d, mapattr=%08x, pde=%08x, pte=%08x",
  1372 								r,aMapAttr,aPde,aPte));
  1373 	return r;
  1374 	}
  1375 
  1376 THwChunkAddressAllocator* X86Mmu::MappingRegion(TUint aMapAttr)
  1377 	{
  1378 	TUint read=aMapAttr & EMapAttrReadMask;
  1379 	TUint write=(aMapAttr & EMapAttrWriteMask)>>4;
  1380 	TUint exec=(aMapAttr & EMapAttrExecMask)>>8;
  1381 	if (read>=4 || write>=4 || exec>=4)
  1382 		return iUserHwChunkAllocator;	// if any access in user mode, must put it in user global section
  1383 	return iHwChunkAllocator;
  1384 	}
  1385 
  1386 void X86Mmu::Map(TLinAddr aLinAddr, TPhysAddr aPhysAddr, TInt aSize, TPde aPdePerm, TPte aPtePerm, TInt aMapShift)
  1387 //
  1388 // Map a region of physical addresses aPhysAddr to aPhysAddr+aSize-1 to virtual address aLinAddr.
  1389 // Use permissions specified by aPdePerm and aPtePerm. Use mapping sizes up to and including (1<<aMapShift).
  1390 // Assume any page tables required are already assigned.
  1391 // aLinAddr, aPhysAddr, aSize must be page-aligned.
  1392 //
  1393 	{
  1394 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu::Map lin=%08x phys=%08x size=%08x", aLinAddr, aPhysAddr, aSize));
  1395 	__KTRACE_OPT(KMMU, Kern::Printf("pde=%08x pte=%08x mapshift=%d", aPdePerm, aPtePerm, aMapShift));
  1396 	TPde lp_pde=aPtePerm|KPdeLargePage;
  1397 	TLinAddr la=aLinAddr;
  1398 	TPhysAddr pa=aPhysAddr;
  1399 	TInt remain=aSize;
  1400 	while (remain)
  1401 		{
  1402 		if (aMapShift>=KChunkShift && (la & KChunkMask)==0 && remain>=KChunkSize)
  1403 			{
  1404 			// use large pages
  1405 			TInt npdes=remain>>KChunkShift;
  1406 			const TBitMapAllocator& b=*iOsAsidAllocator;
  1407 			TInt num_os_asids=b.iSize-b.iAvail;
  1408 			TInt os_asid=0;
  1409 			for (; num_os_asids; ++os_asid)
  1410 				{
  1411 				if (b.NotAllocated(os_asid,1))
  1412 					continue;			// os_asid is not needed
  1413 				TPde* p_pde=PageDirectory(os_asid)+(la>>KChunkShift);
  1414 				TPde* p_pde_E=p_pde+npdes;
  1415 				TPde pde=pa|lp_pde;
  1416 				NKern::LockSystem();
  1417 				for (; p_pde < p_pde_E; pde+=KChunkSize)
  1418 					{
  1419 					__ASSERT_DEBUG(*p_pde==0, MM::Panic(MM::EPdeAlreadyInUse));
  1420 					__KTRACE_OPT(KMMU,Kern::Printf("Writing PDE %08x to %08x", pde, p_pde));
  1421 					*p_pde++=pde;
  1422 					}
  1423 				NKern::UnlockSystem();
  1424 				--num_os_asids;
  1425 				}
  1426 			npdes<<=KChunkShift;
  1427 			la+=npdes, pa+=npdes, remain-=npdes;
  1428 			continue;
  1429 			}
  1430 		// use normal pages
  1431 		TInt block_size = Min(remain, KChunkSize-(la&KChunkMask));
  1432 		TInt id=PageTableId(la, 0);
  1433 		__ASSERT_DEBUG(id>=0, MM::Panic(MM::EMmuMapNoPageTable));
  1434 		TPte* p_pte=PageTable(id)+((la&KChunkMask)>>KPageShift);
  1435 		TPte* p_pte_E = p_pte + (block_size>>KPageShift);
  1436 		TPte pte=pa|aPtePerm;
  1437 		SPageTableInfo& ptinfo=iPtInfo[id];
  1438 		NKern::LockSystem();
  1439 		for (; p_pte < p_pte_E; pte+=KPageSize)
  1440 			{
  1441 			__ASSERT_DEBUG(*p_pte==0, MM::Panic(MM::EPteAlreadyInUse));
  1442 			__KTRACE_OPT(KMMU,Kern::Printf("Writing PTE %08x to %08x", pte, p_pte));
  1443 			*p_pte++=pte;
  1444 			++ptinfo.iCount;
  1445 			NKern::FlashSystem();
  1446 			}
  1447 		NKern::UnlockSystem();
  1448 		la+=block_size, pa+=block_size, remain-=block_size;
  1449 		}
  1450 	}
  1451 
  1452 void X86Mmu::Unmap(TLinAddr aLinAddr, TInt aSize)
  1453 //
  1454 // Remove all mappings in the specified range of addresses.
  1455 // Don't free page tables.
  1456 // aLinAddr, aSize must be page-aligned.
  1457 //
  1458 	{
  1459 	__KTRACE_OPT(KMMU, Kern::Printf("X86Mmu::Unmap lin=%08x size=%08x", aLinAddr, aSize));
  1460 #ifdef __SMP__
  1461 	TTLBIPI ipi;
  1462 #endif
  1463 	TLinAddr a=aLinAddr;
  1464 	TLinAddr end=a+aSize;
  1465 	__KTRACE_OPT(KMMU,Kern::Printf("a=%08x end=%08x",a,end));
  1466 	NKern::LockSystem();
  1467 	while(a!=end)
  1468 		{
  1469 		TInt pdeIndex=a>>KChunkShift;
  1470 		TLinAddr next=(pdeIndex<<KChunkShift)+KChunkSize;
  1471 		TInt to_do=Min(TInt(end-a), TInt(next-a))>>KPageShift;
  1472 		__KTRACE_OPT(KMMU,Kern::Printf("a=%08x next=%08x to_do=%d",a,next,to_do));
  1473 		TPde pde=::InitPageDirectory[pdeIndex];
  1474 		if ( (pde&(KPdePtePresent|KPdeLargePage))==(KPdePtePresent|KPdeLargePage) )
  1475 			{
  1476 			__ASSERT_DEBUG(!(a&KChunkMask), MM::Panic(MM::EUnmapBadAlignment));
  1477 			::InitPageDirectory[pdeIndex]=0;
  1478 #ifdef __SMP__
  1479 			ipi.AddAddress(a);
  1480 #else
  1481 			InvalidateTLBForPage(a);	// flush any corresponding TLB entry
  1482 #endif
  1483 			a=next;
  1484 			NKern::FlashSystem();
  1485 			continue;
  1486 			}
  1487 		TInt ptid=PageTableId(a,0);
  1488 		SPageTableInfo& ptinfo=iPtInfo[ptid];
  1489 		if (ptid>=0)
  1490 			{
  1491 			TPte* ppte=PageTable(ptid)+((a&KChunkMask)>>KPageShift);
  1492 			TPte* ppte_End=ppte+to_do;
  1493 			for (; ppte<ppte_End; ++ppte, a+=KPageSize)
  1494 				{
  1495 				if (*ppte & KPdePtePresent)
  1496 					--ptinfo.iCount;
  1497 				*ppte=0;
  1498 #ifdef __SMP__
  1499 				ipi.AddAddress(a);
  1500 #else
  1501 				InvalidateTLBForPage(a);	// flush any corresponding TLB entry
  1502 #endif
  1503 				NKern::FlashSystem();
  1504 				}
  1505 			}
  1506 		else
  1507 			a += (to_do<<KPageShift);
  1508 		}
  1509 #ifdef __SMP__
  1510 	ipi.InvalidateList();
  1511 #endif
  1512 	NKern::UnlockSystem();
  1513 	}
  1514 
  1515 
  1516 void X86Mmu::ClearPages(TInt aNumPages, TPhysAddr* aPageList, TUint8 aClearByte)
  1517 	{
  1518 	//map the pages at a temporary address, clear them and unmap
  1519 	__ASSERT_MUTEX(RamAllocatorMutex);
  1520 	while (--aNumPages >= 0)
  1521 		{
  1522 		TPhysAddr pa;
  1523 		if((TInt)aPageList&1)
  1524 			{
  1525 			pa = (TPhysAddr)aPageList&~1;
  1526 			*(TPhysAddr*)&aPageList += iPageSize;
  1527 			}
  1528 		else
  1529 			pa = *aPageList++;
  1530 		*iTempPte = pa | KPdePtePresent | KPdePteWrite | iPteGlobal;
  1531 		__DRAIN_WRITE_BUFFER;
  1532 		InvalidateTLBForPage(iTempAddr);
  1533 		memset((TAny*)iTempAddr, aClearByte, iPageSize);
  1534 		}
  1535 	*iTempPte=0;
  1536 	__DRAIN_WRITE_BUFFER;
  1537 	InvalidateTLBForPage(iTempAddr);
  1538 	}
  1539 
  1540 TLinAddr X86Mmu::MapTemp(TPhysAddr aPage,TLinAddr /*aLinAddr*/,TInt aPages)
  1541 	{
  1542 	__ASSERT_MUTEX(RamAllocatorMutex);
  1543 	__ASSERT_DEBUG(!*iTempPte,MM::Panic(MM::ETempMappingAlreadyInUse));
  1544 	__ASSERT_DEBUG(aPages<=4,MM::Panic(MM::ETempMappingNoRoom));
  1545 	iTempMapCount = aPages;
  1546 	for (TInt i=0; i<aPages; i++)
  1547 		{
  1548 		iTempPte[i] = ((aPage&~KPageMask)+(i<<KPageShift)) | KPdePtePresent | KPdePteWrite | iPteGlobal
  1549 		__DRAIN_WRITE_BUFFER;
  1550 		InvalidateTLBForPage(iTempAddr+(i<<KPageShift));
  1551 		}
  1552 	return iTempAddr;
  1553 	}
  1554 
  1555 TLinAddr X86Mmu::MapTemp(TPhysAddr aPage,TLinAddr aLinAddr,TInt aPages, TMemoryType)
  1556 	{
  1557 	return MapTemp(aPage, aLinAddr, aPages);
  1558 	}
  1559 
  1560 TLinAddr X86Mmu::MapSecondTemp(TPhysAddr aPage,TLinAddr /*aLinAddr*/,TInt aPages)
  1561 	{
  1562 	__ASSERT_MUTEX(RamAllocatorMutex);
  1563 	__ASSERT_DEBUG(!*iSecondTempPte,MM::Panic(MM::ETempMappingAlreadyInUse));
  1564 	__ASSERT_DEBUG(aPages<=4,MM::Panic(MM::ETempMappingNoRoom));
  1565 	iSecondTempMapCount = aPages;
  1566 	for (TInt i=0; i<aPages; i++)
  1567 		{
  1568 		iSecondTempPte[i] = ((aPage&~KPageMask)+(i<<KPageShift)) | KPdePtePresent | KPdePteWrite | iPteGlobal
  1569 		__DRAIN_WRITE_BUFFER;
  1570 		InvalidateTLBForPage(iSecondTempAddr+(i<<KPageShift));
  1571 		}
  1572 	return iSecondTempAddr;
  1573 	}
  1574 
  1575 void X86Mmu::UnmapTemp()
  1576 	{
  1577 	__ASSERT_MUTEX(RamAllocatorMutex);
  1578 	for (TInt i=0; i<iTempMapCount; i++)
  1579 		{
  1580 		iTempPte[i] = 0;
  1581 		__DRAIN_WRITE_BUFFER;
  1582 		InvalidateTLBForPage(iTempAddr+(i<<KPageShift));
  1583 		}
  1584 	}
  1585 
  1586 void X86Mmu::UnmapSecondTemp()
  1587 	{
  1588 	__ASSERT_MUTEX(RamAllocatorMutex);
  1589 	for (TInt i=0; i<iSecondTempMapCount; i++)
  1590 		{
  1591 		iSecondTempPte[i] = 0;
  1592 		__DRAIN_WRITE_BUFFER;
  1593 		InvalidateTLBForPage(iSecondTempAddr+(i<<KPageShift));
  1594 		}
  1595 	}
  1596 
  1597 void ExecHandler::UnlockRamDrive()
  1598 	{
  1599 	}
  1600 
  1601 EXPORT_C void TInternalRamDrive::Unlock()
  1602 	{
  1603 	}
  1604 
  1605 EXPORT_C void TInternalRamDrive::Lock()
  1606 	{
  1607 	}
  1608 
  1609 TBool X86Mmu::ValidateLocalIpcAddress(TLinAddr aAddr,TInt aSize,TBool aWrite)
  1610 	{
  1611 	__NK_ASSERT_DEBUG(aSize<=KChunkSize);
  1612 	TLinAddr end = aAddr+aSize-1;
  1613 	if(end<aAddr)
  1614 		end = ~0u;
  1615 
  1616 	if(TUint(aAddr^KIPCAlias)<TUint(KChunkSize) || TUint(end^KIPCAlias)<TUint(KChunkSize))
  1617 		{
  1618 		// local address is in alias region.
  1619 		// remove alias...
  1620 		NKern::LockSystem();
  1621 		((DMemModelThread*)TheCurrentThread)->RemoveAlias();
  1622 		NKern::UnlockSystem();
  1623 		// access memory, which will cause an exception...
  1624 		if(!(TUint(aAddr^KIPCAlias)<TUint(KChunkSize)))
  1625 			aAddr = end;
  1626 		DoInvalidateTLBForPage(aAddr);	// only need to do this processor since alias range is owned by the thread
  1627 		if(aWrite)
  1628 			*(volatile TUint8*)aAddr = 0;
  1629 		else
  1630 			aWrite = *(volatile TUint8*)aAddr;
  1631 		// can't get here
  1632 		__NK_ASSERT_DEBUG(0);
  1633 		}
  1634 
  1635 	TUint32 local_mask;
  1636 	DMemModelProcess* process=(DMemModelProcess*)TheCurrentThread->iOwningProcess;
  1637 	if(aWrite)
  1638 		local_mask = process->iAddressCheckMaskW;
  1639 	else
  1640 		local_mask = process->iAddressCheckMaskR;
  1641 	TInt mask = 2<<(end>>27);
  1642 	mask -= 1<<(aAddr>>27);
  1643 	if((local_mask&mask)!=mask)
  1644 		return EFalse;
  1645 
  1646 	return ETrue;
  1647 	}
  1648 
  1649 TInt DMemModelThread::Alias(TLinAddr aAddr, DMemModelProcess* aProcess, TInt aSize, TInt aPerm, TLinAddr& aAliasAddr, TInt& aAliasSize)
  1650 //
  1651 // Set up an alias mapping starting at address aAddr in specified process.
  1652 // Check permissions aPerm.
  1653 // Enter and return with system locked.
  1654 // Note: Alias is removed if an exception if trapped by DThread::IpcExcHandler.
  1655 //
  1656 	{
  1657 	__KTRACE_OPT(KMMU2,Kern::Printf("Thread %O Alias %08x+%x Process %O perm %x",this,aAddr,aSize,aProcess,aPerm));
  1658 	__ASSERT_SYSTEM_LOCK;
  1659 
  1660 	if(TUint(aAddr^KIPCAlias)<TUint(KIPCAliasAreaSize))
  1661 		return KErrBadDescriptor; // prevent access to alias region
  1662 
  1663 	// check if memory is in region which is safe to access with supervisor permissions...
  1664 	TBool okForSupervisorAccess = aPerm&(EMapAttrReadSup|EMapAttrWriteSup) ? 1 : 0;
  1665 	if(!okForSupervisorAccess)
  1666 		{
  1667 		if(aAddr>=0xc0000000) // address in kernel area (top 1GB)?
  1668 			return KErrBadDescriptor; // don't have permission
  1669 		TUint32 local_mask;
  1670 		if(aPerm&EMapAttrWriteUser)
  1671 			local_mask = aProcess->iAddressCheckMaskW;
  1672 		else
  1673 			local_mask = aProcess->iAddressCheckMaskR;
  1674 		okForSupervisorAccess = (local_mask>>(aAddr>>27))&1;
  1675 		}
  1676 
  1677 	if(aAddr>=KUserSharedDataEnd) // if address is in global section, don't bother aliasing it...
  1678 		{
  1679 		if(iAliasLinAddr)
  1680 			RemoveAlias();
  1681 		aAliasAddr = aAddr;
  1682 		TInt maxSize = KChunkSize-(aAddr&KChunkMask);
  1683 		aAliasSize = aSize<maxSize ? aSize : maxSize;
  1684 		return okForSupervisorAccess;
  1685 		}
  1686 
  1687 	TInt asid = aProcess->iOsAsid;
  1688 	TPde* pd = PageDirectory(asid);
  1689 	TPde pde = pd[aAddr>>KChunkShift];
  1690 #ifdef __SMP__
  1691 	TLinAddr aliasAddr;
  1692 #else
  1693 	TLinAddr aliasAddr = KIPCAlias+(aAddr&(KChunkMask & ~KPageMask));
  1694 #endif
  1695 	if(pde==iAliasPde && iAliasLinAddr)
  1696 		{
  1697 		// pde already aliased, so just update linear address...
  1698 #ifdef __SMP__
  1699 		__NK_ASSERT_DEBUG(iCpuRestoreCookie>=0);
  1700 		aliasAddr = iAliasLinAddr & ~KChunkMask;
  1701 		aliasAddr |= (aAddr & (KChunkMask & ~KPageMask));
  1702 #endif
  1703 		iAliasLinAddr = aliasAddr;
  1704 		}
  1705 	else
  1706 		{
  1707 		// alias PDE changed...
  1708 		if(!iAliasLinAddr)
  1709 			{
  1710 			::TheMmu.iAliasList.Add(&iAliasLink); // add to list if not already aliased
  1711 #ifdef __SMP__
  1712 			__NK_ASSERT_DEBUG(iCpuRestoreCookie==-1);
  1713 			iCpuRestoreCookie = NKern::FreezeCpu();	// temporarily lock current thread to this processor
  1714 #endif
  1715 			}
  1716 		iAliasPde = pde;
  1717 		iAliasOsAsid = asid;
  1718 #ifdef __SMP__
  1719 		TSubScheduler& ss = SubScheduler();	// OK since we are locked to this CPU
  1720 		aliasAddr = TLinAddr(ss.i_AliasLinAddr) + (aAddr & (KChunkMask & ~KPageMask));
  1721 		iAliasPdePtr = (TPde*)(TLinAddr(ss.i_AliasPdePtr) + (((DMemModelProcess*)iOwningProcess)->iOsAsid << KPageTableShift));
  1722 #endif
  1723 		iAliasLinAddr = aliasAddr;
  1724 		}
  1725 	__KTRACE_OPT(KMMU,Kern::Printf("Writing PDE %08x to %08x", pde, iAliasPdePtr));
  1726 		*iAliasPdePtr = pde;
  1727 		__DRAIN_WRITE_BUFFER;
  1728 	DoInvalidateTLBForPage(aliasAddr);	// only need to do this processor
  1729 	TInt offset = aAddr&KPageMask;
  1730 	aAliasAddr = aliasAddr | offset;
  1731 	TInt maxSize = KPageSize - offset;
  1732 	aAliasSize = aSize<maxSize ? aSize : maxSize;
  1733 	return okForSupervisorAccess;
  1734 	}
  1735 
  1736 void DMemModelThread::RemoveAlias()
  1737 //
  1738 // Remove alias mapping (if present)
  1739 // Enter and return with system locked.
  1740 //
  1741 	{
  1742 	__KTRACE_OPT(KMMU2,Kern::Printf("Thread %O RemoveAlias", this));
  1743 	__ASSERT_SYSTEM_LOCK;
  1744 	TLinAddr addr = iAliasLinAddr;
  1745 	if(addr)
  1746 		{
  1747 		iAliasLinAddr = 0;
  1748 		iAliasPde = 0;
  1749 		__KTRACE_OPT(KMMU,Kern::Printf("Clearing PDE at %08x", iAliasPdePtr));
  1750 		*iAliasPdePtr = 0;
  1751 		__DRAIN_WRITE_BUFFER;
  1752 		DoInvalidateTLBForPage(addr);	// only need to do it for this processor
  1753 		iAliasLink.Deque();
  1754 #ifdef __SMP__
  1755 		__NK_ASSERT_DEBUG(iCpuRestoreCookie>=0);
  1756 		NKern::EndFreezeCpu(iCpuRestoreCookie);
  1757 		iCpuRestoreCookie = -1;
  1758 #endif
  1759 		}
  1760 	}
  1761 
  1762 void X86Mmu::CacheMaintenanceOnDecommit(TPhysAddr)
  1763 	{
  1764 	// no cache operations required on freeing memory
  1765 	}
  1766 
  1767 void X86Mmu::CacheMaintenanceOnDecommit(const TPhysAddr*, TInt)
  1768 	{
  1769 	// no cache operations required on freeing memory
  1770 	}
  1771 
  1772 void X86Mmu::CacheMaintenanceOnPreserve(TPhysAddr, TUint)
  1773 	{
  1774 	// no cache operations required on freeing memory
  1775 	}
  1776 
  1777 void X86Mmu::CacheMaintenanceOnPreserve(const TPhysAddr*, TInt, TUint)
  1778 	{
  1779 	// no cache operations required on freeing memory
  1780 	}
  1781 
  1782 void X86Mmu::CacheMaintenanceOnPreserve(TPhysAddr , TInt , TLinAddr , TUint )
  1783 	{
  1784 	// no cache operations required on freeing memory
  1785 	}
  1786 
  1787 
  1788 TInt X86Mmu::UnlockRamCachePages(TLinAddr aLinAddr, TInt aNumPages, DProcess* aProcess)
  1789 	{
  1790 	TInt asid = ((DMemModelProcess*)aProcess)->iOsAsid;
  1791 	TInt page = aLinAddr>>KPageShift;
  1792 	NKern::LockSystem();
  1793 	for(;;)
  1794 		{
  1795 		TPde* pd = PageDirectory(asid)+(page>>(KChunkShift-KPageShift));
  1796 		TPte* pt = SafePageTableFromPde(*pd++);
  1797 		__NK_ASSERT_DEBUG(pt);
  1798 		TInt pteIndex = page&(KChunkMask>>KPageShift);
  1799 		pt += pteIndex;
  1800 		do
  1801 			{
  1802 			TInt pagesInPt = (KChunkSize>>KPageShift)-pteIndex;
  1803 			if(pagesInPt>aNumPages)
  1804 				pagesInPt = aNumPages;
  1805 			if(pagesInPt>KMaxPages)
  1806 				pagesInPt = KMaxPages;
  1807 
  1808 			aNumPages -= pagesInPt;
  1809 			page += pagesInPt;
  1810 
  1811 			do
  1812 				{
  1813 				TPte pte = *pt++;
  1814 				if(pte) // pte may be null if page has already been unlocked and reclaimed by system
  1815 					iRamCache->DonateRamCachePage(SPageInfo::FromPhysAddr(pte));
  1816 				}
  1817 			while(--pagesInPt);
  1818 
  1819 			if(!aNumPages)
  1820 				{
  1821 				NKern::UnlockSystem();
  1822 				return KErrNone;
  1823 				}
  1824 
  1825 			pteIndex = page&(KChunkMask>>KPageShift);
  1826 			}
  1827 		while(!NKern::FlashSystem() && pteIndex);
  1828 		}
  1829 	}
  1830 
  1831 
  1832 TInt X86Mmu::LockRamCachePages(TLinAddr aLinAddr, TInt aNumPages, DProcess* aProcess)
  1833 	{
  1834 	TInt asid = ((DMemModelProcess*)aProcess)->iOsAsid;
  1835 	TInt page = aLinAddr>>KPageShift;
  1836 	NKern::LockSystem();
  1837 	for(;;)
  1838 		{
  1839 		TPde* pd = PageDirectory(asid)+(page>>(KChunkShift-KPageShift));
  1840 		TPte* pt = SafePageTableFromPde(*pd++);
  1841 		__NK_ASSERT_DEBUG(pt);
  1842 		TInt pteIndex = page&(KChunkMask>>KPageShift);
  1843 		pt += pteIndex;
  1844 		do
  1845 			{
  1846 			TInt pagesInPt = (KChunkSize>>KPageShift)-pteIndex;
  1847 			if(pagesInPt>aNumPages)
  1848 				pagesInPt = aNumPages;
  1849 			if(pagesInPt>KMaxPages)
  1850 				pagesInPt = KMaxPages;
  1851 
  1852 			aNumPages -= pagesInPt;
  1853 			page += pagesInPt;
  1854 
  1855 			do
  1856 				{
  1857 				TPte pte = *pt++;
  1858 				if(pte==0)
  1859 					goto not_found;
  1860 				if(!iRamCache->ReclaimRamCachePage(SPageInfo::FromPhysAddr(pte)))
  1861 					goto not_found;
  1862 				}
  1863 			while(--pagesInPt);
  1864 
  1865 			if(!aNumPages)
  1866 				{
  1867 				NKern::UnlockSystem();
  1868 				return KErrNone;
  1869 				}
  1870 
  1871 			pteIndex = page&(KChunkMask>>KPageShift);
  1872 			}
  1873 		while(!NKern::FlashSystem() && pteIndex);
  1874 		}
  1875 not_found:
  1876 	NKern::UnlockSystem();
  1877 	return KErrNotFound;
  1878 	}
  1879 
  1880 
  1881 void RamCache::SetFree(SPageInfo* aPageInfo)
  1882 	{
  1883 	// Make a page free
  1884 	TInt type = aPageInfo->Type();
  1885 	if(type==SPageInfo::EPagedCache)
  1886 		{
  1887 		TInt offset = aPageInfo->Offset()<<KPageShift;
  1888 		DMemModelChunk* chunk = (DMemModelChunk*)aPageInfo->Owner();
  1889 		__NK_ASSERT_DEBUG(TUint(offset)<TUint(chunk->iSize));
  1890 		TLinAddr lin = ((TLinAddr)chunk->iBase)+offset;
  1891 		TInt asid = ((DMemModelProcess*)chunk->iOwningProcess)->iOsAsid;
  1892 		TPte* pt = PtePtrFromLinAddr(lin,asid);
  1893 		*pt = 0;
  1894 		InvalidateTLBForPage(lin);
  1895 
  1896 		// actually decommit it from chunk...
  1897 		TInt ptid = ((TLinAddr)pt-KPageTableBase)>>KPageTableShift;
  1898 		SPageTableInfo& ptinfo=((X86Mmu*)iMmu)->iPtInfo[ptid];
  1899 		if(!--ptinfo.iCount)
  1900 			{
  1901 			chunk->iPageTables[offset>>KChunkShift] = 0xffff;
  1902 			NKern::UnlockSystem();
  1903 			((X86Mmu*)iMmu)->DoUnassignPageTable(lin, (TAny*)asid);
  1904 			((X86Mmu*)iMmu)->FreePageTable(ptid);
  1905 			NKern::LockSystem();
  1906 			}
  1907 		}
  1908 	else
  1909 		{
  1910 		__KTRACE_OPT2(KPAGING,KPANIC,Kern::Printf("DP: SetFree() with bad page type = %d",aPageInfo->Type()));
  1911 		Panic(EUnexpectedPageType);
  1912 		}
  1913 	}
  1914 
  1915 // Not supported on x86 - no defrag yet
  1916 void X86Mmu::DisablePageModification(DMemModelChunk* aChunk, TInt aOffset)
  1917 	{
  1918 	MM::Panic(MM::EOperationNotSupported);
  1919 	}
  1920 
  1921 TInt X86Mmu::RamDefragFault(TAny* aExceptionInfo)
  1922 	{
  1923 	MM::Panic(MM::EOperationNotSupported);
  1924 	return KErrAbort;
  1925 	}