os/kernelhwsrv/kernel/eka/memmodel/epoc/multiple/mchunk.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 // Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // e32\memmodel\epoc\multiple\mchunk.cpp
    15 // 
    16 //
    17 
    18 #include "memmodel.h"
    19 #include "cache_maintenance.h"
    20 #include <mmubase.inl>
    21 #include <ramalloc.h>
    22 
    23 DMemModelChunk::DMemModelChunk()
    24 	{
    25 	}
    26 
    27 TLinearSection* DMemModelChunk::LinearSection()
    28 	{
    29 	Mmu& m=Mmu::Get();
    30 	TInt ar=(iAttributes&EAddressRangeMask);
    31 	switch (ar)
    32 		{
    33 		case EAddressLocal:			return ((DMemModelProcess*)iOwningProcess)->iLocalSection;
    34 		case EAddressFixed:			return NULL;
    35 		case EAddressShared:		return m.iSharedSection;
    36 		case EAddressUserGlobal:	return m.iUserGlobalSection;
    37 		case EAddressKernel:		return m.iKernelSection;
    38 		}
    39 	MM::Panic(MM::EChunkBadAddressRange);
    40 	return NULL;
    41 	}
    42 
    43 void DMemModelChunk::Destruct()
    44 	{
    45 	__KTRACE_OPT(KTHREAD,Kern::Printf("DMemModelChunk destruct %O",this));
    46 	if (iPageTables)
    47 		{
    48 #ifdef _DEBUG
    49 		TInt r;
    50 #define SET_R_IF_DEBUG(x)	r = (x)
    51 #else
    52 #define SET_R_IF_DEBUG(x)	(void)(x)
    53 #endif
    54 		if (iAttributes & EDisconnected)
    55 			SET_R_IF_DEBUG(Decommit(0,iMaxSize));
    56 		else if (iAttributes & EDoubleEnded)
    57 			SET_R_IF_DEBUG(AdjustDoubleEnded(0,0));
    58 		else
    59 			SET_R_IF_DEBUG(Adjust(0));
    60 		__ASSERT_DEBUG(r==KErrNone, MM::Panic(MM::EDecommitFailed));
    61 #ifdef _DEBUG
    62 		// check all page tables have been freed...
    63 		Mmu& m=Mmu::Get();
    64 		TInt nPdes=(iMaxSize+m.iChunkMask)>>m.iChunkShift;
    65 		for(TInt i=0; i<nPdes; i++)
    66 			{
    67 			__NK_ASSERT_DEBUG(iPageTables[i]==0xffff);
    68 			}
    69 #endif
    70 		}
    71 	if (iBase)
    72 		{
    73 		TLinearSection* s=LinearSection();
    74 		if(s)
    75 			{
    76 			Mmu::Wait();
    77 			__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::~DMemModelChunk remove region"));
    78 			Mmu& m=Mmu::Get();
    79 			s->iAllocator.Free( (TLinAddr(iBase)-s->iBase)>>m.iChunkShift, iMaxSize>>m.iChunkShift);
    80 			Mmu::Signal();
    81 			}
    82 		}
    83 	delete iOsAsids;
    84 	Kern::Free(iPageTables);
    85 	delete iPageBitMap;
    86 	delete iPermanentPageBitMap;
    87 
    88 	if(iKernelMirror)
    89 		iKernelMirror->Close(NULL);
    90 
    91 	TDfc* dfc = iDestroyedDfc;
    92 	if (dfc)
    93 		dfc->QueueOnIdle();
    94 
    95 	__KTRACE_OPT(KMEMTRACE, {Mmu::Wait(); Kern::Printf("MT:D %d %x %O",NTickCount(),this,this);Mmu::Signal();});
    96 #ifdef BTRACE_CHUNKS
    97 	BTraceContext4(BTrace::EChunks,BTrace::EChunkDestroyed,this);
    98 #endif
    99 	}
   100 
   101 TInt DMemModelChunk::Close(TAny* aPtr)
   102 	{
   103 	if (aPtr)
   104 		{
   105 		DMemModelProcess* pP=(DMemModelProcess*)aPtr;
   106 		if ((iAttributes&EMapTypeMask)==EMapTypeLocal)
   107 			pP=(DMemModelProcess*)iOwningProcess;
   108 		pP->RemoveChunk(this);
   109 		}
   110 	TInt r=Dec();
   111 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Close %d %O",r,this));
   112 	__NK_ASSERT_DEBUG(r > 0); // Should never be negative.
   113 	if (r==1)
   114 		{
   115 		K::ObjDelete(this);
   116 		return EObjectDeleted;
   117 		}
   118 	return 0;
   119 	}
   120 
   121 
   122 TUint8* DMemModelChunk::Base(DProcess* aProcess)
   123 	{
   124 	return iBase;
   125 	}
   126 
   127 
   128 TInt DMemModelChunk::DoCreate(SChunkCreateInfo& aInfo)
   129 	{
   130 	__KTRACE_OPT(KMMU,Kern::Printf("Chunk %O DoCreate att=%08x",this,iAttributes));
   131 
   132 	__ASSERT_COMPILE(!(EMMChunkAttributesMask & EChunkAttributesMask));
   133 
   134 	if (aInfo.iMaxSize<=0)
   135 		return KErrArgument;
   136 
   137 	if (iKernelMirror)
   138 		{
   139 		iKernelMirror->iAttributes |= iAttributes|EMemoryNotOwned;
   140 		TInt r=iKernelMirror->DoCreate(aInfo);
   141 		if(r!=KErrNone)
   142 			return r;
   143 		}
   144 
   145 	Mmu& m=Mmu::Get();
   146 	TInt nPdes=(aInfo.iMaxSize+m.iChunkMask)>>m.iChunkShift;
   147 	iMaxSize=nPdes<<m.iChunkShift;
   148 	iMapAttr = aInfo.iMapAttr;
   149 	SetupPermissions();
   150 	TInt mapType=iAttributes & EMapTypeMask;
   151 	if (mapType==EMapTypeShared)
   152 		{
   153 		iOsAsids=TBitMapAllocator::New(m.iNumOsAsids,ETrue);
   154 		if (!iOsAsids)
   155 			return KErrNoMemory;
   156 		}
   157 	TInt maxpages=iMaxSize>>m.iPageShift;
   158 	if (iAttributes & EDisconnected)
   159 		{
   160 		TBitMapAllocator* pM=TBitMapAllocator::New(maxpages,ETrue);
   161 		if (!pM)
   162 			return KErrNoMemory;
   163 		iPageBitMap=pM;
   164 		__KTRACE_OPT(KMMU,Kern::Printf("PageBitMap at %08x, MaxPages %d",pM,maxpages));
   165 		}
   166 	if(iChunkType==ESharedKernelSingle || iChunkType==ESharedKernelMultiple)
   167 		{
   168 		TBitMapAllocator* pM=TBitMapAllocator::New(maxpages,ETrue);
   169 		if (!pM)
   170 			return KErrNoMemory;
   171 		iPermanentPageBitMap = pM;
   172 		}
   173 	iPageTables=(TUint16*)Kern::Alloc(nPdes*sizeof(TUint16));
   174 	if (!iPageTables)
   175 		return KErrNoMemory;
   176 	memset(iPageTables,0xff,nPdes*sizeof(TUint16));
   177 	MmuBase::Wait();
   178 	TInt r=AllocateAddress();
   179 	__KTRACE_OPT(KMEMTRACE,Kern::Printf("MT:C %d %x %O",NTickCount(),this,this));
   180 	MmuBase::Signal();
   181 #ifdef BTRACE_CHUNKS
   182 	TKName nameBuf;
   183 	Name(nameBuf);
   184 	BTraceContextN(BTrace::EChunks,BTrace::EChunkCreated,this,iMaxSize,nameBuf.Ptr(),nameBuf.Size());
   185 	if(iOwningProcess)
   186 		BTrace8(BTrace::EChunks,BTrace::EChunkOwner,this,iOwningProcess);
   187 	BTraceContext12(BTrace::EChunks,BTrace::EChunkInfo,this,iChunkType,iAttributes);
   188 #endif
   189 	return r;
   190 	}
   191 
   192 void DMemModelChunk::ClaimInitialPages()
   193 	{
   194 	__KTRACE_OPT(KMMU,Kern::Printf("Chunk %O ClaimInitialPages()",this));
   195 	Mmu& m=Mmu::Get();
   196 	TInt offset=0;
   197 	TUint32 ccp=K::CompressKHeapPtr(this);
   198 	NKern::LockSystem();
   199 	while(offset<iSize)
   200 		{
   201 		TInt ptid=m.PageTableId(TLinAddr(iBase)+offset);
   202 		__ASSERT_ALWAYS(ptid>=0,MM::Panic(MM::EClaimInitialPagesBadPageTable));
   203 		__KTRACE_OPT(KMMU,Kern::Printf("Offset %x PTID=%d",offset,ptid));
   204 		iPageTables[offset>>m.iChunkShift]=ptid;
   205 		SPageTableInfo& ptinfo = m.PtInfo(ptid);
   206 		ptinfo.SetChunk(ccp,offset>>m.iChunkShift);
   207 		TPte* pPte=(TPte*)m.PageTableLinAddr(ptid);
   208 		TInt i;
   209 		TInt np = 0;
   210 		TInt flashCount = MM::MaxPagesInOneGo;
   211 		for (i=0; i<m.iChunkSize>>m.iPageShift; ++i, offset+=m.iPageSize)
   212 			{
   213 			if(--flashCount<=0)
   214 				{
   215 				flashCount = MM::MaxPagesInOneGo;
   216 				NKern::FlashSystem();
   217 				}
   218 			TPte pte=pPte[i];
   219 			if (m.PteIsPresent(pte))
   220 				{
   221 				++np;
   222 				TPhysAddr phys=m.PtePhysAddr(pte, i);
   223 				__KTRACE_OPT(KMMU,Kern::Printf("Offset %x phys %08x",offset,phys));
   224 				SPageInfo* info = SPageInfo::SafeFromPhysAddr(phys);
   225 				if(info)
   226 					{
   227 					info->SetChunk(this,offset>>m.iPageShift);
   228 #ifdef BTRACE_KERNEL_MEMORY
   229 					--Epoc::KernelMiscPages; // page now owned by chunk, and is not 'miscelaneous'
   230 #endif
   231 					}
   232 				}
   233 			}
   234 		ptinfo.iCount = np;
   235 		__KTRACE_OPT(KMMU,Kern::Printf("Offset %x PTID %d NP %d", offset, ptid, np));
   236 		}
   237 	NKern::UnlockSystem();
   238 	}
   239 
   240 void DMemModelChunk::SetFixedAddress(TLinAddr aAddr, TInt aInitialSize)
   241 	{
   242 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O SetFixedAddress %08x size %08x",this,aAddr,aInitialSize));
   243 	iBase=(TUint8*)aAddr;
   244 	iSize=Mmu::RoundToPageSize(aInitialSize);
   245 	ClaimInitialPages();
   246 	}
   247 
   248 TInt DMemModelChunk::Reserve(TInt aInitialSize)
   249 //
   250 // Reserve home section address space for a chunk
   251 //
   252 	{
   253 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O Reserve() size %08x",this,aInitialSize));
   254 	iSize=Mmu::RoundToPageSize(aInitialSize);
   255 	ClaimInitialPages();
   256 	return KErrNone;
   257 	}
   258 
   259 TInt DMemModelChunk::Adjust(TInt aNewSize)
   260 //
   261 // Adjust a standard chunk.
   262 //
   263 	{
   264 
   265 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Adjust %08x",aNewSize));
   266 	if (iAttributes & (EDoubleEnded|EDisconnected))
   267 		return KErrGeneral;
   268 	if (aNewSize<0 || aNewSize>iMaxSize)
   269 		return KErrArgument;
   270 
   271 	TInt r=KErrNone;
   272 	TInt newSize=Mmu::RoundToPageSize(aNewSize);
   273 	if (newSize!=iSize)
   274 		{
   275 		Mmu::Wait();
   276 		if (newSize>iSize)
   277 			{
   278 			__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Adjust growing"));
   279 			r=DoCommit(iSize,newSize-iSize);
   280 			}
   281 		else if (newSize<iSize)
   282 			{
   283 			__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Adjust shrinking"));
   284 			DoDecommit(newSize,iSize-newSize);
   285 			}
   286 		Mmu::Signal();
   287 		}
   288 	__COND_DEBUG_EVENT(r==KErrNone, EEventUpdateChunk, this);
   289 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O adjusted to %x base %08x",this,iSize,iBase));
   290 	return r;
   291 	}
   292 
   293 TInt DMemModelChunk::Address(TInt aOffset, TInt aSize, TLinAddr& aKernelAddress)
   294 	{
   295 	if(!iPermanentPageBitMap)
   296 		return KErrAccessDenied;
   297 	if(TUint(aOffset)>=TUint(iMaxSize))
   298 		return KErrArgument;
   299 	if(TUint(aOffset+aSize)>TUint(iMaxSize))
   300 		return KErrArgument;
   301 	if(aSize<=0)
   302 		return KErrArgument;
   303 	TInt pageShift = Mmu::Get().iPageShift;
   304 	TInt start = aOffset>>pageShift;
   305 	TInt size = ((aOffset+aSize-1)>>pageShift)-start+1;
   306 	if(iPermanentPageBitMap->NotAllocated(start,size))
   307 		return KErrNotFound;
   308 	aKernelAddress = (TLinAddr)iKernelMirror->iBase+aOffset;
   309 	return KErrNone;
   310 	}
   311 
   312 TInt DMemModelChunk::PhysicalAddress(TInt aOffset, TInt aSize, TLinAddr& aKernelAddress, TUint32& aPhysicalAddress, TUint32* aPhysicalPageList)
   313 	{
   314 	TInt r=Address(aOffset,aSize,aKernelAddress);
   315 	if(r!=KErrNone)
   316 		return r;
   317 
   318 	return Mmu::Get().LinearToPhysical(aKernelAddress,aSize,aPhysicalAddress,aPhysicalPageList);
   319 	}
   320 
   321 void DMemModelChunk::Substitute(TInt aOffset, TPhysAddr aOldAddr, TPhysAddr aNewAddr)
   322 	{
   323 	// Substitute the page mapping at aOffset with aNewAddr.
   324 	// Enter and leave with system locked.
   325 	// This is sometimes called with interrupts disabled and should leave them alone.
   326 	Mmu& m = Mmu::Get();
   327 	__ASSERT_ALWAYS(iKernelMirror==NULL,MM::Panic(MM::EChunkRemapUnsupported));
   328 	
   329 	TInt ptid=iPageTables[aOffset>>m.iChunkShift];
   330 	if(ptid==0xffff)
   331 		MM::Panic(MM::EChunkRemapNoPageTable);
   332 
   333 	// Permissions for global code will have been overwritten with ApplyPermissions
   334 	// so we can't trust iPtePermissions for those chunk types
   335 	TPte perms;
   336    	if(iChunkType==EKernelCode)
   337 		perms = m.iKernelCodePtePerm;
   338 	else if(iChunkType==EDll)
   339 		perms = m.iGlobalCodePtePerm;
   340 	else
   341 		perms = iPtePermissions;
   342 
   343 	m.RemapPage(ptid, (TLinAddr)iBase+aOffset, aOldAddr, aNewAddr, perms, iOwningProcess);
   344 	}
   345 
   346 /**
   347 Get the movability type of the chunk's pages
   348 @return How movable the chunk's pages are
   349 */
   350 TZonePageType DMemModelChunk::GetPageType()
   351 	{
   352 	// Shared chunks have their physical addresses available
   353 	if (iChunkType == ESharedKernelSingle ||
   354 		iChunkType == ESharedKernelMultiple || 
   355 		iChunkType == ESharedIo ||
   356 		iChunkType == ESharedKernelMirror ||
   357 		iChunkType == EKernelMessage ||
   358 		iChunkType == EKernelData)	// Don't move kernel heap pages as DMA may be accessing them.
   359 		{
   360 		return EPageFixed;
   361 		}
   362 	// All other types of chunk are movable
   363 	return EPageMovable;
   364 	}
   365 
   366 TInt DMemModelChunk::DoCommit(TInt aOffset, TInt aSize, TCommitType aCommitType, TUint32* aExtraArg)
   367 	{
   368 	// Commit more RAM to a chunk at a specified offset
   369 	// enter and leave with system unlocked
   370 	// must hold RamAlloc mutex before calling this function
   371 	__ASSERT_MUTEX(MmuBase::RamAllocatorMutex);
   372 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::DoCommit %x+%x type=%d extra=%08x",aOffset,aSize,aCommitType,aExtraArg));
   373 	TInt offset=aOffset;
   374 	TInt endOffset=offset+aSize;
   375 	TInt newPtId=-1;
   376 	Mmu& m = Mmu::Get();
   377 	DRamAllocator& a = *m.iRamPageAllocator;
   378 	TInt r=KErrNone;
   379 	TPhysAddr pageList[KMaxPages];
   380 	TPhysAddr* pPageList=0; 	// In case of discontiguous commit it points to the list of physical pages.
   381 	TPhysAddr nextPage=0; 		// In case of contiguous commit, it points to the physical address to commit
   382 	SPageInfo::TType type = SPageInfo::EChunk;
   383 
   384 	// Set flag to indicate if RAM should be cleared before being committed.
   385 	// Note, EDll, EUserCode are covered in the code segment, in order not to clear
   386 	// the region overwritten by the loader
   387 	TBool clearRam =	iChunkType==EUserData
   388 					 || iChunkType==EDllData
   389 					 || iChunkType==EUserSelfModCode
   390 					 || iChunkType==ESharedKernelSingle
   391 					 || iChunkType==ESharedKernelMultiple
   392 					 || iChunkType==ESharedIo
   393 					 || iChunkType==ERamDrive;
   394 
   395 
   396 	TBool ownsMemory = !(iAttributes&EMemoryNotOwned);
   397 	TBool physicalCommit = aCommitType&DChunk::ECommitPhysicalMask;
   398 	if(ownsMemory)
   399 		{
   400 		if(physicalCommit)
   401 			return KErrNotSupported;
   402 		}
   403 	else
   404 		{
   405 		if(!physicalCommit && aCommitType != DChunk::ECommitVirtual)
   406 			return KErrNotSupported;
   407 		type = SPageInfo::EInvalid;	// to indicate page info not to be updated
   408 		}
   409 
   410 	switch(aCommitType)
   411 		{
   412 	case DChunk::ECommitDiscontiguous:
   413 		// No setup to do
   414 		break;
   415 
   416 	case DChunk::ECommitContiguous:
   417 		{
   418 		// Allocate a block of contiguous RAM from the free pool
   419 		TInt numPages=(endOffset-offset)>>m.iPageShift;
   420 		r=m.AllocContiguousRam(numPages<<m.iPageShift, nextPage, GetPageType(), 0);
   421 		if (r!=KErrNone)
   422 			return r;
   423 		if(clearRam)
   424 			m.ClearPages(numPages, (TPhysAddr*)(nextPage|1), iClearByte);  // clear RAM if required
   425 		*aExtraArg = nextPage;	// store physical address of RAM as return argument
   426 		}
   427 		break;
   428 
   429 	case DChunk::ECommitDiscontiguousPhysical:
   430 		{
   431 		pPageList = aExtraArg;				// use pages given given to us
   432 
   433 		// Check address of pages are multiples of page size...
   434 		TInt numPages=(endOffset-offset)>>m.iPageShift;
   435 		TUint32* ptr = aExtraArg;
   436 		TUint32* endPtr = aExtraArg+numPages;
   437 		if(ptr>=endPtr)
   438 			return KErrNone;				// Zero size commit is OK
   439 		TPhysAddr pageBits = 0;
   440 		do
   441 			pageBits |= *ptr++;
   442 		while(ptr<endPtr);
   443 		if(pageBits&(m.iPageSize-1))
   444 			return KErrArgument;			// all addresses must be multiple of page size
   445 		}
   446 		break;
   447 
   448 	case DChunk::ECommitContiguousPhysical:
   449 		nextPage = (TPhysAddr)aExtraArg;	// we have been given the physical address to use
   450 		if(nextPage&(m.iPageSize-1))
   451 			return KErrArgument;			// address must be multiple of page size
   452 		break;
   453 
   454 	case DChunk::ECommitVirtual:
   455 #ifndef __MARM__
   456 		return KErrNotSupported;
   457 #endif
   458 		break;
   459 
   460 	default:
   461 		return KErrNotSupported;
   462 		}
   463 
   464 	while(offset<endOffset)
   465 		{
   466 		TInt np=(endOffset-offset)>>m.iPageShift;	// pages remaining to satisfy request
   467 		TInt npEnd=(m.iChunkSize-(offset&m.iChunkMask))>>m.iPageShift;// number of pages to end of page table
   468 		if (np>npEnd)
   469 			np=npEnd;								// limit to single page table
   470 		if (np>MM::MaxPagesInOneGo)
   471 			np=MM::MaxPagesInOneGo;					// limit
   472 		TInt ptid=iPageTables[offset>>m.iChunkShift];
   473 		newPtId=-1;
   474 		if (ptid==0xffff)
   475 			{
   476 			// need to allocate a new page table
   477 			newPtId=m.AllocPageTable();
   478 			if (newPtId<0)
   479 				{
   480 				r=KErrNoMemory;
   481 				break;	// Exit the loop. Below, we'll free all ram
   482 						// that is allocated in the previous loop passes.
   483 				}
   484 			ptid=newPtId;
   485 			}
   486 
   487 		if(aCommitType==DChunk::ECommitDiscontiguous)
   488 			{
   489 			pPageList = pageList;
   490 			r=m.AllocRamPages(pPageList,np, GetPageType());	// try to allocate pages
   491 			if (r!=KErrNone)  //If fail, clean up what was allocated in this loop.
   492 				{
   493 				if (newPtId>=0)
   494 					m.FreePageTable(newPtId);
   495 					break;	// Exit the loop. Below, we'll free all ram
   496 							// that is allocated in the previous loop passes.
   497 				}
   498 			if(clearRam)
   499 				m.ClearPages(np, pPageList, iClearByte);	// clear RAM if required
   500 			}
   501 
   502 		TInt commitSize = np<<m.iPageShift;
   503 		
   504 
   505 		// In shared chunks (visible to both user and kernel side), it is always kernel side
   506 		// to be mapped the first. Decommiting will go in reverse order.
   507 		if(iKernelMirror)
   508 			{
   509 			// Map the same memory into the kernel mirror chunk
   510 			if(pPageList)
   511 				r = iKernelMirror->DoCommit(offset,commitSize,ECommitDiscontiguousPhysical,pPageList);
   512 			else
   513 				r = iKernelMirror->DoCommit(offset,commitSize,ECommitContiguousPhysical,(TUint32*)nextPage);
   514 			__KTRACE_OPT(KMMU,Kern::Printf("iKernelMirror->DoCommit returns %d",r));
   515 			if(r!=KErrNone) //If fail, clean up what was allocated in this loop.
   516 				{
   517 				if(aCommitType==DChunk::ECommitDiscontiguous)
   518 					m.FreePages(pPageList,np,EPageFixed);
   519 				if (newPtId>=0)
   520 					m.FreePageTable(newPtId);
   521 				
   522 				break;	// Exit the loop. Below, we'll free all ram
   523 						// that is allocated in the previous loop passes.
   524 				}
   525 			}
   526 
   527 		// Commit the memory.
   528 		NKern::LockSystem(); // lock the system while we change the MMU mappings
   529 		iSize += commitSize;					// update committed size
   530 		if (aCommitType==DChunk::ECommitVirtual)
   531 			m.MapVirtual(ptid, np);
   532 		else if(pPageList)
   533 			{
   534 			m.MapRamPages(ptid, type, this, offset, pPageList, np, iPtePermissions);
   535 			pPageList += np;
   536 			}
   537 		else
   538 			{
   539 			m.MapPhysicalPages(ptid, type, this, offset, nextPage, np, iPtePermissions);
   540 			nextPage += commitSize;
   541 			}
   542 		NKern::UnlockSystem();
   543 
   544 		if (newPtId>=0)
   545 			{
   546 			// We have allocated a new page table, now we must assign it
   547 			iPageTables[offset>>m.iChunkShift]=ptid;
   548 			TLinAddr addr=(TLinAddr)iBase+offset;	// current address
   549 			m.AssignPageTable(ptid, SPageTableInfo::EChunk, this, addr, iPdePermissions);
   550 			newPtId = -1;
   551 			}
   552 		__KTRACE_OPT(KMEMTRACE,Kern::Printf("MT:A %d %x %x %O",NTickCount(),this,iSize,this));
   553 #ifdef BTRACE_CHUNKS
   554 		BTraceContext12(BTrace::EChunks,ownsMemory?BTrace::EChunkMemoryAllocated:BTrace::EChunkMemoryAdded,this,offset,commitSize);
   555 #endif
   556 		
   557 		offset += commitSize;				// update offset
   558 		}
   559 
   560 	if (r==KErrNone)
   561 		{
   562 		if(iPermanentPageBitMap)
   563 			iPermanentPageBitMap->Alloc(aOffset>>m.iPageShift,aSize>>m.iPageShift);
   564 		}
   565 	else
   566 		{
   567 		// We ran out of memory somewhere.
   568 		// Free any memory we succeeded in allocating in the loops before the one that failed
   569 		if (iChunkType != ESharedKernelMirror) //Kernel mirror chunk will be decommited alongside the main chunk.
   570 			{
   571 			DChunk::TDecommitType decommitType = aCommitType==DChunk::ECommitVirtual ?
   572 																DChunk::EDecommitVirtual : DChunk::EDecommitNormal;
   573 			DoDecommit(aOffset,offset-aOffset,decommitType);
   574 			}
   575 
   576 		if(aCommitType==DChunk::ECommitContiguous)
   577 			{
   578 			// Free the pages we allocated but didn't get around to commiting
   579 			// It has to go page after page as we cannot use FreePhysicalRam here because the part of
   580 			// of original allocated contiguous memory is already partly freed (in DoDecommit).
   581 			TPhysAddr last = nextPage + ((endOffset-offset)>>m.iPageShift<<m.iPageShift);
   582 			while(nextPage<last)
   583 				{
   584 				a.FreeRamPage(nextPage, GetPageType());
   585 				nextPage += m.iPageSize;
   586 				}
   587 			*aExtraArg = KPhysAddrInvalid;	// return invalid physical address
   588 			}
   589 
   590 		m.iAllocFailed=ETrue;
   591 		}
   592 	return r;
   593 	}
   594 
   595 void DMemModelChunk::DoDecommit(TInt aOffset, TInt aSize, TDecommitType aDecommitType)
   596 	{
   597 	// Decommit RAM from a chunk at a specified offset
   598 	// enter and leave with system unlocked
   599 	// must hold RamAlloc mutex before calling this function
   600 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::DoDecommit %x+%x",aOffset,aSize));
   601 	
   602 	TBool ownsMemory = !(iAttributes&EMemoryNotOwned);
   603 
   604 	TInt deferred=0;
   605 	TInt offset=aOffset;
   606 	TInt endOffset=offset+aSize;
   607 	Mmu& m = Mmu::Get();
   608 	DRamAllocator& a = *m.iRamPageAllocator;
   609 	TPhysAddr pageList[KMaxPages];
   610 	TLinAddr linearPageList[KMaxPages];
   611 	const TAny* asids=GLOBAL_MAPPING;
   612 	if (iOsAsids)
   613 		asids=iOsAsids;
   614 	else if (iOwningProcess)
   615 		asids=(const TAny*)((DMemModelProcess*)iOwningProcess)->iOsAsid;
   616 	TUint size_in_pages = (TUint)(Min(aSize,iSize)>>m.iPageShift);
   617 	TBool sync_decommit = (size_in_pages<m.iDecommitThreshold);
   618 	TInt total_freed=0;
   619 	while(offset<endOffset)
   620 		{
   621 		TInt np=(endOffset-offset)>>m.iPageShift;		// number of pages remaining to decommit
   622 		TInt pdeEnd=(offset+m.iChunkSize)&~m.iChunkMask;
   623 		TInt npEnd=(pdeEnd-offset)>>m.iPageShift;		// number of pages to end of page table
   624 		if (np>npEnd)
   625 			np=npEnd;									// limit to single page table
   626 		if (np>MM::MaxPagesInOneGo)
   627 			np=MM::MaxPagesInOneGo;						// limit
   628 		TLinAddr addr=(TLinAddr)iBase+offset;			// current address
   629 		TInt ptid=iPageTables[offset>>m.iChunkShift];	// get page table ID if a page table is already assigned here
   630 		if (ptid!=0xffff)
   631 			{
   632 			TInt nPtes=0;
   633 			TInt nUnmapped=0;
   634 
   635 #ifdef BTRACE_CHUNKS
   636 			TUint oldFree = m.FreeRamInBytes();
   637 #endif
   638 			// Unmap the pages, clear the PTEs and place the physical addresses of the now-free RAM pages in
   639 			// pageList. Return nPtes=number of pages placed in list, remain=number of PTEs remaining in page table
   640 			// Bit 31 of return value is set if TLB flush may be incomplete
   641 			NKern::LockSystem();
   642 			TInt remain;
   643 			if (ownsMemory)
   644 				{
   645 				if (aDecommitType == EDecommitVirtual)
   646 					remain=m.UnmapVirtual(ptid,addr,np,pageList,ETrue,nPtes,nUnmapped,iOwningProcess);
   647 				else
   648 					remain=m.UnmapPages(ptid,addr,np,pageList,ETrue,nPtes,nUnmapped,iOwningProcess);
   649 				}
   650 			else
   651 				{
   652 				if (aDecommitType == EDecommitVirtual)
   653 					remain=m.UnmapUnownedVirtual(ptid,addr,np,pageList,linearPageList,nPtes,nUnmapped,iOwningProcess);
   654 				else
   655 					remain=m.UnmapUnownedPages(ptid,addr,np,pageList,linearPageList,nPtes,nUnmapped,iOwningProcess);
   656 				}
   657             TInt nFree = ownsMemory ? nUnmapped : 0; //The number of pages to free
   658 			deferred |= remain;
   659 			TInt decommitSize=nPtes<<m.iPageShift;
   660 			iSize-=decommitSize;                // reduce the committed size
   661 			NKern::UnlockSystem();
   662 
   663 			
   664 
   665 			__KTRACE_OPT(KMEMTRACE,Kern::Printf("MT:A %d %x %x %O",NTickCount(),this,iSize,this));
   666 #ifdef BTRACE_CHUNKS
   667 			TUint reclaimed = (oldFree-m.FreeRamInBytes())>>m.iPageShift; // number of 'unlocked' pages reclaimed from ram cache
   668 			if(nFree-reclaimed)
   669 				BTraceContext12(BTrace::EChunks,ownsMemory?BTrace::EChunkMemoryDeallocated:BTrace::EChunkMemoryRemoved,this,offset,(nFree-reclaimed)<<m.iPageShift);
   670 #endif
   671 
   672 			if (sync_decommit && (remain & KUnmapPagesTLBFlushDeferred))
   673 				{
   674 				// must ensure DTLB flushed before doing cache purge on decommit
   675 				m.GenericFlush(Mmu::EFlushDTLB);
   676 				}
   677 
   678 			// if page table is now completely empty, unassign it and update chunk PDE info
   679 			remain &= KUnmapPagesCountMask;
   680 			if (remain==0)
   681 				{
   682 				m.DoUnassignPageTable(addr, asids);
   683 				m.FreePageTable(ptid);
   684 				iPageTables[offset>>m.iChunkShift]=0xffff;
   685 				}
   686 
   687 			// Physical memory not owned by the chunk has to be preserved from cache memory.
   688 			if(!ownsMemory)
   689 				{
   690 				// If a chunk has Kernel mirror, it is sufficient to do it just once.
   691 				if (!iKernelMirror)
   692 					{
   693 					TInt i;
   694 					for (i=0;i<nUnmapped;i++)
   695 						m.CacheMaintenanceOnPreserve(pageList[i], KPageSize, linearPageList[i], iMapAttr);
   696 					}
   697 				}
   698 			else if (nFree)
   699 				{
   700 	            // We can now return the decommitted pages to the free page list and sort out caching.
   701 				total_freed+=nFree;
   702 				if (sync_decommit) //Purge cache if the size is below decommit threshold
   703 					m.CacheMaintenanceOnDecommit(pageList, nFree);
   704 				a.FreeRamPages(pageList,nFree, GetPageType());
   705 				}
   706 
   707 			offset+=(np<<m.iPageShift);
   708 			}
   709 		else
   710 			{
   711 			__KTRACE_OPT(KMMU,Kern::Printf("No page table at %08x",addr));
   712 			if ((iAttributes&EDisconnected)==0)
   713 				MM::Panic(MM::EChunkDecommitNoPageTable);
   714 			offset=pdeEnd;	// disconnected chunk - step on to next PDE
   715 			}
   716 		}
   717 	if (deferred & KUnmapPagesTLBFlushDeferred)
   718 		m.GenericFlush( (iAttributes&ECode) ? Mmu::EFlushDTLB|Mmu::EFlushITLB : Mmu::EFlushDTLB );
   719 	
   720 	if (total_freed && !sync_decommit) //Flash entire cache if the size exceeds decommit threshold
   721 		CacheMaintenance::SyncPhysicalCache_All();		//On ARMv6, this deals with both L1 & L2 cache
   722 
   723 	// Kernel mapped part of the chunk is removed at the end. At this point, no user side is mapped 
   724 	// which ensures that evicting data from cache will surely succeed.
   725 	if(iKernelMirror)
   726 		iKernelMirror->DoDecommit(aOffset,aSize);
   727 	}
   728 
   729 
   730 TInt DMemModelChunk::AdjustDoubleEnded(TInt aBottom, TInt aTop)
   731 //
   732 // Adjust a double-ended chunk.
   733 //
   734 	{
   735 
   736 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::AdjustDoubleEnded %x-%x",aBottom,aTop));
   737 	if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDoubleEnded)
   738 		return KErrGeneral;
   739 	if (aTop<0 || aBottom<0 || aTop<aBottom || aTop>iMaxSize)
   740 		return KErrArgument;
   741 	Mmu& m = Mmu::Get();
   742 	aBottom &= ~m.iPageMask;
   743 	aTop=(aTop+m.iPageMask)&~m.iPageMask;
   744 	TInt newSize=aTop-aBottom;
   745 	if (newSize>iMaxSize)
   746 		return KErrArgument;
   747 
   748 	Mmu::Wait();
   749 	TInt initBottom=iStartPos;
   750 	TInt initTop=iStartPos+iSize;
   751 	TInt nBottom=Max(aBottom,iStartPos);	// intersection bottom
   752 	TInt nTop=Min(aTop,iStartPos+iSize);	// intersection top
   753 	TInt r=KErrNone;
   754 	if (nBottom<nTop)
   755 		{
   756 		__KTRACE_OPT(KMMU,Kern::Printf("Initial and final regions intersect"));
   757 		if (initBottom<nBottom)
   758 			{
   759 			iStartPos=aBottom;
   760 			DoDecommit(initBottom,nBottom-initBottom);
   761 			}
   762 		if (initTop>nTop)
   763 			DoDecommit(nTop,initTop-nTop);	// this changes iSize
   764 		if (aBottom<nBottom)
   765 			{
   766 			r=DoCommit(aBottom,nBottom-aBottom);
   767 			if (r==KErrNone)
   768 				{
   769 				if (aTop>nTop)
   770 					r=DoCommit(nTop,aTop-nTop);
   771 				if (r==KErrNone)
   772 					iStartPos=aBottom;
   773 				else
   774 					DoDecommit(aBottom,nBottom-aBottom);
   775 				}
   776 			}
   777 		else if (aTop>nTop)
   778 			r=DoCommit(nTop,aTop-nTop);
   779 		}
   780 	else
   781 		{
   782 		__KTRACE_OPT(KMMU,Kern::Printf("Initial and final regions disjoint"));
   783 		if (iSize)
   784 			DoDecommit(initBottom,iSize);
   785 		iStartPos=aBottom;
   786 		if (newSize)
   787 			r=DoCommit(iStartPos,newSize);
   788 		}
   789 	Mmu::Signal();
   790 	__COND_DEBUG_EVENT(r==KErrNone, EEventUpdateChunk, this);
   791 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk %O adjusted to %x+%x base %08x",this,iStartPos,iSize,iBase));
   792 	return r;
   793 	}
   794 
   795 TInt DMemModelChunk::Commit(TInt aOffset, TInt aSize, TCommitType aCommitType, TUint32* aExtraArg)
   796 //
   797 // Commit to a disconnected chunk.
   798 //
   799 	{
   800 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Commit %x+%x type=%d extra=%08x",aOffset,aSize,aCommitType,aExtraArg));
   801 	if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
   802 		return KErrGeneral;
   803 	if (aOffset<0 || aSize<0)
   804 		return KErrArgument;
   805 	if (aSize==0)
   806 		return KErrNone;
   807 	Mmu& m = Mmu::Get();
   808 	aSize+=(aOffset & m.iPageMask);
   809 	aOffset &= ~m.iPageMask;
   810 	aSize=(aSize+m.iPageMask)&~m.iPageMask;
   811 	if ((aOffset+aSize)>iMaxSize)
   812 		return KErrArgument;
   813 
   814 	Mmu::Wait();
   815 	TInt r=KErrNone;
   816 	TInt i=aOffset>>m.iPageShift;
   817 	TInt n=aSize>>m.iPageShift;
   818 	if (iPageBitMap->NotFree(i,n))
   819 		r=KErrAlreadyExists;
   820 	else
   821 		{
   822 		r=DoCommit(aOffset,aSize,aCommitType,aExtraArg);		
   823 		if (r==KErrNone)
   824 			iPageBitMap->Alloc(i,n);
   825 		}
   826 	Mmu::Signal();
   827 	__COND_DEBUG_EVENT(r==KErrNone, EEventUpdateChunk, this);
   828 	return r;
   829 	}
   830 
   831 TInt DMemModelChunk::Allocate(TInt aSize, TInt aGuard, TInt aAlign)
   832 //
   833 // Allocate offset and commit to a disconnected chunk.
   834 //
   835 	{
   836 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Allocate %x %x %d",aSize,aGuard,aAlign));
   837 
   838 	// Only allow this to be called on disconnected chunks and not disconnected 
   839 	// cache chunks as when guards pages exist the bit map can't be used to determine
   840 	// the size of disconnected cache chunks as is required by Decommit().
   841 	if ((iAttributes & (EDoubleEnded|EDisconnected|ECache))!=EDisconnected)
   842 		return KErrGeneral;
   843 
   844 	if (aSize<=0 || aGuard<0)
   845 		return KErrArgument;
   846 	Mmu& m = Mmu::Get();
   847 	aAlign=Max(aAlign-m.iPageShift,0);
   848 	TInt base=TInt(TLinAddr(iBase)>>m.iPageShift);
   849 	aSize=(aSize+m.iPageMask)&~m.iPageMask;
   850 	aGuard=(aGuard+m.iPageMask)&~m.iPageMask;
   851 	if ((aSize+aGuard)>iMaxSize)
   852 		return KErrArgument;
   853 
   854 	Mmu::Wait();
   855 	TInt r=KErrNone;
   856 	TInt n=(aSize+aGuard)>>m.iPageShift;
   857 	TInt i=iPageBitMap->AllocAligned(n,aAlign,base,EFalse);		// allocate the offset
   858 	if (i<0)
   859 		r=KErrNoMemory;		// run out of reserved space for this chunk
   860 	else
   861 		{
   862 		TInt offset=i<<m.iPageShift;
   863 		__KTRACE_OPT(KMMU,Kern::Printf("Offset %x allocated",offset));
   864 		r=DoCommit(offset+aGuard,aSize);
   865 		if (r==KErrNone)
   866 			{
   867 			iPageBitMap->Alloc(i,n);
   868 			r=offset;		// if operation successful, return allocated offset
   869 			}
   870 		}
   871 	Mmu::Signal();
   872 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Allocate returns %x",r));
   873 	__COND_DEBUG_EVENT(r==KErrNone, EEventUpdateChunk, this);
   874 	return r;
   875 	}
   876 
   877 TInt DMemModelChunk::Decommit(TInt aOffset, TInt aSize)
   878 //
   879 // Decommit from a disconnected chunk.
   880 //
   881 	{
   882 	return Decommit(aOffset, aSize, EDecommitNormal);
   883 	}
   884 
   885 TInt DMemModelChunk::Decommit(TInt aOffset, TInt aSize, TDecommitType aDecommitType)
   886 //
   887 // Decommit from a disconnected chunk
   888 // 
   889 // @param aDecommitType Used to indicate whether area was originally committed with the
   890 // 					  	ECommitVirtual type
   891 //
   892 	{
   893 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Decommit %x+%x",aOffset,aSize));
   894 	if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
   895 		return KErrGeneral;
   896 	if (aOffset<0 || aSize<0)
   897 		return KErrArgument;
   898 	if (aSize==0)
   899 		return KErrNone;
   900 #ifndef __MARM__
   901 	if (aDecommitType == EDecommitVirtual)
   902 		return KErrNotSupported;
   903 #endif
   904 	Mmu& m = Mmu::Get();
   905 	aSize+=(aOffset & m.iPageMask);
   906 	aOffset &= ~m.iPageMask;
   907 	aSize=(aSize+m.iPageMask)&~m.iPageMask;
   908 	if ((aOffset+aSize)>iMaxSize)
   909 		return KErrArgument;
   910 
   911 	Mmu::Wait();
   912 
   913 	// limit the range to the home region range
   914 	__KTRACE_OPT(KMMU,Kern::Printf("Rounded and Clipped range %x+%x",aOffset,aSize));
   915 
   916 	TInt i=aOffset>>m.iPageShift;
   917 	TInt n=aSize>>m.iPageShift;
   918 
   919 	__KTRACE_OPT(KMMU,Kern::Printf("Calling SelectiveFree(%d,%d)",i,n));
   920 	TUint oldAvail = iPageBitMap->iAvail;
   921 	TUint oldSize = iSize;
   922 
   923 	// Free those positions which are still commited and also any guard pages, 
   924 	// i.e. pages that are reserved in this chunk but which are not commited.
   925 	iPageBitMap->SelectiveFree(i,n);
   926 
   927 	DoDecommit(aOffset,aSize,aDecommitType);
   928 
   929 	if (iAttributes & ECache)
   930 		{// If this is the file server cache chunk then adjust the size based 
   931 		// on the bit map size because:-
   932 		//	- 	Unlocked and reclaimed pages will be unmapped without updating
   933 		// 		iSize or the bit map. 
   934 		//	-	DoDecommit() only decommits the mapped pages.
   935 		// For all other chunks what is mapped is what is committed to the 
   936 		// chunk so iSize is accurate.
   937 		TUint actualFreedPages = iPageBitMap->iAvail - oldAvail;
   938 		iSize = oldSize - (actualFreedPages << KPageShift);
   939 		}
   940 
   941 	Mmu::Signal();
   942 	__DEBUG_EVENT(EEventUpdateChunk, this);
   943 	return KErrNone;
   944 	}
   945 
   946 TInt DMemModelChunk::Unlock(TInt aOffset, TInt aSize)
   947 	{
   948 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Unlock %x+%x",aOffset,aSize));
   949 	if (!(iAttributes&ECache))
   950 		return KErrGeneral;
   951 	if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
   952 		return KErrGeneral;
   953 
   954 	// Mark this as the file server cache chunk.  This is safe as it is only the 
   955 	// file server that can invoke this function.
   956 	iAttributes |= ECache;
   957 
   958 	if (aOffset<0 || aSize<0)
   959 		return KErrArgument;
   960 	if (aSize==0)
   961 		return KErrNone;
   962 	Mmu& m = Mmu::Get();
   963 	aSize+=(aOffset & m.iPageMask);
   964 	aOffset &= ~m.iPageMask;
   965 	aSize=(aSize+m.iPageMask)&~m.iPageMask;
   966 	if ((aOffset+aSize)>iMaxSize)
   967 		return KErrArgument;
   968 
   969 	Mmu::Wait();
   970 	TInt r=KErrNone;
   971 	TInt i=aOffset>>m.iPageShift;
   972 	TInt n=aSize>>m.iPageShift;
   973 	if (iPageBitMap->NotAllocated(i,n))
   974 		r=KErrNotFound;
   975 	else
   976 		{
   977 #ifdef BTRACE_CHUNKS
   978 		TUint oldFree = m.FreeRamInBytes();
   979 #endif
   980 		r=m.UnlockRamCachePages((TLinAddr)(iBase+aOffset),n,iOwningProcess);
   981 #ifdef BTRACE_CHUNKS
   982 		if(r==KErrNone)
   983 			{
   984 			TUint unlocked = m.FreeRamInBytes()-oldFree; // size of memory unlocked
   985 			if(unlocked)
   986 				BTraceContext12(BTrace::EChunks,BTrace::EChunkMemoryDeallocated,this,aOffset,unlocked);
   987 			}
   988 #endif
   989 		}
   990 
   991 	Mmu::Signal();
   992 	__COND_DEBUG_EVENT(r==KErrNone, EEventUpdateChunk, this);
   993 	return r;
   994 	}
   995 
   996 TInt DMemModelChunk::Lock(TInt aOffset, TInt aSize)
   997 	{
   998 	__KTRACE_OPT(KMMU,Kern::Printf("DMemModelChunk::Lock %x+%x",aOffset,aSize));
   999 	if (!(iAttributes&ECache))
  1000 		return KErrGeneral;
  1001 	if ((iAttributes & (EDoubleEnded|EDisconnected))!=EDisconnected)
  1002 		return KErrGeneral;
  1003 	if (aOffset<0 || aSize<0)
  1004 		return KErrArgument;
  1005 	if (aSize==0)
  1006 		return KErrNone;
  1007 	Mmu& m = Mmu::Get();
  1008 	aSize+=(aOffset & m.iPageMask);
  1009 	aOffset &= ~m.iPageMask;
  1010 	aSize=(aSize+m.iPageMask)&~m.iPageMask;
  1011 	if ((aOffset+aSize)>iMaxSize)
  1012 		return KErrArgument;
  1013 
  1014 	Mmu::Wait();
  1015 	TInt r=KErrNone;
  1016 	TInt i=aOffset>>m.iPageShift;
  1017 	TInt n=aSize>>m.iPageShift;
  1018 	if (iPageBitMap->NotAllocated(i,n))
  1019 		r=KErrNotFound;
  1020 	else
  1021 		{
  1022 #ifdef BTRACE_CHUNKS
  1023 		TUint oldFree = m.FreeRamInBytes();
  1024 #endif
  1025 		r=m.LockRamCachePages((TLinAddr)(iBase+aOffset),n,iOwningProcess);
  1026 #ifdef BTRACE_CHUNKS
  1027 		if(r==KErrNone)
  1028 			{
  1029 			TUint locked = oldFree-m.FreeRamInBytes();
  1030 			if(locked)
  1031 				BTraceContext12(BTrace::EChunks,BTrace::EChunkMemoryAllocated,this,aOffset,locked);
  1032 			}
  1033 #endif
  1034 		}
  1035 	if(r!=KErrNone)
  1036 		{
  1037 		// decommit memory on error...
  1038 		__KTRACE_OPT(KMMU,Kern::Printf("Calling SelectiveFree(%d,%d)",i,n));
  1039 		TUint oldAvail = iPageBitMap->iAvail;
  1040 		iPageBitMap->SelectiveFree(i,n);	// free those positions which are actually allocated
  1041 		TUint oldSize = iSize;
  1042 
  1043 		DoDecommit(aOffset,aSize);
  1044 
  1045 		// Use the bit map to adjust the size of the chunk as unlocked and reclaimed pages
  1046 		// will have been unmapped but not removed from the bit map as DoDecommit() only 
  1047 		// decommits the mapped pages.
  1048 		TUint actualFreedPages = iPageBitMap->iAvail - oldAvail;
  1049 		iSize = oldSize - (actualFreedPages << KPageShift);
  1050 		}
  1051 
  1052 	Mmu::Signal();
  1053 	__COND_DEBUG_EVENT(r==KErrNone, EEventUpdateChunk, this);
  1054 	return r;
  1055 	}
  1056 
  1057 TInt DMemModelChunk::AllocateAddress()
  1058 	{
  1059 	__KTRACE_OPT(KMMU,Kern::Printf("Chunk %O AllocateAddress()",this));
  1060 	TLinearSection* s=LinearSection();
  1061 	if (!s)
  1062 		return KErrNone;				// chunk has fixed preallocated address
  1063 
  1064 	Mmu& m=Mmu::Get();
  1065 	TUint32 required=iMaxSize>>m.iChunkShift;
  1066 	__KTRACE_OPT(KMMU,Kern::Printf("Searching from low to high addresses"));
  1067 	TInt r=s->iAllocator.AllocConsecutive(required, EFalse);
  1068 	if (r<0)
  1069 		return KErrNoMemory;
  1070 	s->iAllocator.Alloc(r, required);
  1071 	iBase=(TUint8*)(s->iBase + (r<<m.iChunkShift));
  1072 	__KTRACE_OPT(KMMU,Kern::Printf("Address %08x allocated",iBase));
  1073 	return KErrNone;
  1074 	}
  1075 
  1076 void DMemModelChunk::ApplyPermissions(TInt aOffset, TInt aSize, TPte aPtePerm)
  1077 	{
  1078 	__KTRACE_OPT(KMMU,Kern::Printf("Chunk %O ApplyPermissions(%x+%x,%08x)",this,aOffset,aSize,aPtePerm));
  1079 	__ASSERT_ALWAYS(aOffset>=0 && aSize>=0, MM::Panic(MM::EChunkApplyPermissions1));
  1080 	if (aSize==0)
  1081 		return;
  1082 	Mmu& m=Mmu::Get();
  1083 	aOffset &= ~m.iPageMask;
  1084 	aSize=(aSize+m.iPageMask)&~m.iPageMask;
  1085 	TInt endOffset=aOffset+aSize;
  1086 	__ASSERT_ALWAYS(endOffset<=iMaxSize, MM::Panic(MM::EChunkApplyPermissions2));
  1087 
  1088 	Mmu::Wait();
  1089 	while(aOffset<endOffset)
  1090 		{
  1091 		TInt ptid=iPageTables[aOffset>>m.iChunkShift];
  1092 		TInt pdeEnd=(aOffset+m.iChunkSize)&~m.iChunkMask;
  1093 		if (ptid==0xffff)
  1094 			{
  1095 			aOffset=pdeEnd;
  1096 			continue;
  1097 			}
  1098 		TInt np=(endOffset-aOffset)>>m.iPageShift;		// number of pages remaining to process
  1099 		TInt npEnd=(pdeEnd-aOffset)>>m.iPageShift;		// number of pages to end of page table
  1100 		if (np>npEnd)
  1101 			np=npEnd;									// limit to single page table
  1102 		if (np>MM::MaxPagesInOneGo)
  1103 			np=MM::MaxPagesInOneGo;						// limit
  1104 		m.ApplyPagePermissions(ptid, (aOffset&m.iChunkMask)>>m.iPageShift, np, aPtePerm);
  1105 		aOffset+=(np<<m.iPageShift);
  1106 		}
  1107 	Mmu::Signal();
  1108 	}
  1109 
  1110 TInt DMemModelChunkHw::Close(TAny*)
  1111 	{
  1112 	__KTRACE_OPT(KOBJECT,Kern::Printf("DMemModelChunkHw::Close %d %O",AccessCount(),this));
  1113 	TInt r=Dec();
  1114 	if (r==1)
  1115 		{
  1116 		if (iLinAddr)
  1117 			{
  1118 			// Save data for cache maintenance before beind destroyed by DeallocateLinearAddress
  1119 			TPhysAddr pa = iPhysAddr;
  1120 			TLinAddr la = iLinAddr;
  1121 			TInt size = iSize;
  1122 			TUint attr = iAttribs;
  1123 			
  1124 			MmuBase& m=*MmuBase::TheMmu;
  1125 			MmuBase::Wait();
  1126 			m.Unmap(iLinAddr,iSize);
  1127 			MmuBase::Signal();
  1128 			DeallocateLinearAddress();
  1129 
  1130 			// Physical memory has to be evicted from cache(s).
  1131 			// Must be preserved as it can still be in use by the driver.
  1132 			MmuBase::Wait();
  1133 			m.CacheMaintenanceOnPreserve(pa, size ,la ,attr);
  1134 			MmuBase::Signal();
  1135 			}
  1136 		K::ObjDelete(this);
  1137 		}
  1138 	return r;
  1139 	}
  1140 
  1141 TInt DMemModelChunk::CheckAccess()
  1142 	{
  1143 	DProcess* pP=TheCurrentThread->iOwningProcess;
  1144 	if (iAttributes&EPrivate)
  1145 		{
  1146 		if (iOwningProcess && iOwningProcess!=pP && pP!=K::TheKernelProcess)
  1147 			return KErrAccessDenied;
  1148 		}
  1149 	return KErrNone;
  1150 	}
  1151 
  1152 
  1153 void DMemModelChunk::BTracePrime(TInt aCategory)
  1154 	{
  1155 	DChunk::BTracePrime(aCategory);
  1156 	
  1157 #ifdef BTRACE_CHUNKS
  1158 	if (aCategory == BTrace::EChunks || aCategory == -1)
  1159 		{
  1160 		MmuBase::Wait();
  1161 
  1162 		TBool memoryOwned = !(iAttributes&EMemoryNotOwned);
  1163 		MmuBase& m=*MmuBase::TheMmu;
  1164 		TInt committedBase = -1;
  1165 
  1166 		// look at each page table in this chunk...
  1167 		TUint chunkEndIndex = iMaxSize>>KChunkShift;
  1168 		for(TUint chunkIndex=0; chunkIndex<chunkEndIndex; ++chunkIndex)
  1169 			{
  1170 			TInt ptid = iPageTables[chunkIndex];
  1171 			if(ptid==0xffff)
  1172 				{
  1173 				// no page table...
  1174 				if(committedBase!=-1)
  1175 					{
  1176 					TUint committedEnd = chunkIndex*KChunkSize;
  1177 					BTrace12(BTrace::EChunks, memoryOwned?BTrace::EChunkMemoryAllocated:BTrace::EChunkMemoryAdded,this,committedBase,committedEnd-committedBase);
  1178 					committedBase = -1;
  1179 					}
  1180 				continue;
  1181 				}
  1182 
  1183 			TPte* pPte=(TPte*)m.PageTableLinAddr(ptid);
  1184 
  1185 			// look at each page in page table...
  1186 			NKern::LockSystem();
  1187 			for(TUint pageIndex=0; pageIndex<KChunkSize/KPageSize; ++pageIndex)
  1188 				{
  1189 				TBool committed = false;
  1190 				TPhysAddr phys = m.PtePhysAddr(pPte[pageIndex], pageIndex);
  1191 				if(phys!=KPhysAddrInvalid)
  1192 					{
  1193 					// we have a page...
  1194 					if(!memoryOwned)
  1195 						committed = true;
  1196 					else
  1197 						{
  1198 						// make sure we own the page...
  1199 						SPageInfo* pi = SPageInfo::SafeFromPhysAddr(phys);
  1200 						if(pi && pi->Type()==SPageInfo::EChunk && pi->Owner()==this)
  1201 							committed = true;
  1202 						}
  1203 					}
  1204 
  1205 				if(committed)
  1206 					{
  1207 					if(committedBase==-1)
  1208 						committedBase = chunkIndex*KChunkSize+pageIndex*KPageSize; // start of new region
  1209 					}
  1210 				else
  1211 					{
  1212 					if(committedBase!=-1)
  1213 						{
  1214 						// generate trace for region...
  1215 						NKern::FlashSystem();
  1216 						TUint committedEnd = chunkIndex*KChunkSize+pageIndex*KPageSize;
  1217 						BTrace12(BTrace::EChunks, memoryOwned?BTrace::EChunkMemoryAllocated:BTrace::EChunkMemoryAdded,this,committedBase,committedEnd-committedBase);
  1218 						committedBase = -1;
  1219 						}
  1220 					}
  1221 
  1222 				if((pageIndex&15)==0)
  1223 					NKern::FlashSystem();
  1224 				}
  1225 
  1226 			NKern::UnlockSystem();
  1227 			}
  1228 
  1229 		if(committedBase!=-1)
  1230 			{
  1231 			TUint committedEnd = chunkEndIndex*KChunkSize;
  1232 			BTrace12(BTrace::EChunks, memoryOwned?BTrace::EChunkMemoryAllocated:BTrace::EChunkMemoryAdded,this,committedBase,committedEnd-committedBase);
  1233 			}
  1234 
  1235 		MmuBase::Signal();
  1236 		}
  1237 #endif
  1238 	}