os/kernelhwsrv/kernel/eka/euser/maths/um_exp.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 // Copyright (c) 1995-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // e32\euser\maths\um_exp.cpp
    15 // Floating point exponentiation
    16 // 
    17 //
    18 
    19 #include "um_std.h"
    20 
    21 #if defined(__USE_VFP_MATH) && !defined(__CPU_HAS_VFP)
    22 #error	__USE_VFP_MATH was defined but not __CPU_HAS_VFP - impossible combination, check variant.mmh 
    23 #endif
    24 
    25 #ifndef __USE_VFP_MATH
    26 
    27 LOCAL_D const TUint32 ExpCoeffs[] =
    28 	{
    29 	0x00000000,0x80000000,0x7FFF0000,	// polynomial approximation to 2^(x/8)
    30 	0xD1CF79AC,0xB17217F7,0x7FFB0000,	// for 0<=x<=1
    31 	0x1591EF2B,0xF5FDEFFC,0x7FF60000,
    32 	0x23B940A9,0xE35846B9,0x7FF10000,
    33 	0xDD73C23F,0x9D955ADE,0x7FEC0000,
    34 	0x8728EBE7,0xAEC4616C,0x7FE60000,
    35 	0xAF177130,0xA1646F7D,0x7FE00000,
    36 	0xC44EAC22,0x8542C46E,0x7FDA0000
    37 	};
    38 
    39 LOCAL_D const TUint32 TwoToNover8[] =
    40 	{
    41 	0xEA8BD6E7,0x8B95C1E3,0x7FFF0000,	// 2^0.125
    42 	0x8DB8A96F,0x9837F051,0x7FFF0000,	// 2^0.250
    43 	0xB15138EA,0xA5FED6A9,0x7FFF0000,	// 2^0.375
    44 	0xF9DE6484,0xB504F333,0x7FFF0000,	// 2^0.500
    45 	0x5506DADD,0xC5672A11,0x7FFF0000,	// 2^0.625
    46 	0xD69D6AF4,0xD744FCCA,0x7FFF0000,	// 2^0.750
    47 	0xDD24392F,0xEAC0C6E7,0x7FFF0000	// 2^0.875
    48 	};
    49 
    50 LOCAL_D const TUint32 EightLog2edata[] = {0x5C17F0BC,0xB8AA3B29,0x80020000};	// 8/ln2
    51 
    52 
    53 
    54 
    55 EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
    56 /**
    57 Calculates the value of e to the power of x.
    58 
    59 @param aTrg A reference containing the result. 
    60 @param aSrc The power to which e is to be raised. 
    61 
    62 @return KErrNone if successful, otherwise another of
    63         the system-wide error codes. 
    64 */	
    65 	{
    66 	// Calculate exp(aSrc) and write result to aTrg
    67 	// Algorithm:
    68 	//		Let x=aSrc/ln2 and calculate 2^x
    69 	//		2^x = 2^int(x).2^frac(x)
    70 	//		2^int(x) just adds int(x) to the final result exponent
    71 	//		Reduce frac(x) to the range [0,0.125] (modulo 0.125)
    72 	//		Use polynomial to calculate 2^x for 0<=x<=0.125
    73 	//		Multiply by 2^(n/8) for n=0,1,2,3,4,5,6,7 to give 2^frac(x)
    74 
    75 	const TRealX& EightLog2e=*(const TRealX*)EightLog2edata;
    76 
    77 	TRealX x;
    78 	TRealX y;
    79 	TInt r=x.Set(aSrc);
    80 	if (r==KErrNone)
    81 		{
    82 		x*=EightLog2e;
    83 		TInt n=(TInt)x;
    84 		if (n<16384 && n>-16384)
    85 			{
    86 			if (x.iSign&1)
    87 				n--;
    88 			x-=TRealX(n);
    89 			PolyX(y,x,7,(const TRealX*)ExpCoeffs);
    90 			y.iExp=TUint16(TInt(y.iExp)+(n>>3));
    91 			n&=7;
    92 			if (n)
    93 				y*= (*(const TRealX*)(TwoToNover8+3*n-3));
    94 			return y.GetTReal(aTrg);
    95 			}
    96 		else
    97 			{
    98 			if (n<0)
    99 				{
   100 				SetZero(aTrg);
   101 				r=KErrUnderflow;
   102 				}
   103 			else
   104 				{
   105 				SetInfinite(aTrg,0);
   106 				r=KErrOverflow;
   107 				}
   108 			return r;
   109 			}
   110 		}
   111 	else
   112 		{
   113 		if (r==KErrArgument)
   114 			SetNaN(aTrg);
   115 		if (r==KErrOverflow)
   116 			{
   117 			if (x.iSign&1)
   118 				{
   119 				SetZero(aTrg);
   120 				r=KErrUnderflow;
   121 				}
   122 			else
   123 				{
   124 				SetInfinite(aTrg,0);
   125 				}
   126 			}
   127 		return r;
   128 		}
   129 	}
   130 
   131 #else // __USE_VFP_MATH
   132 
   133 // definitions come from RVCT math library
   134 extern "C" TReal exp(TReal);
   135 
   136 EXPORT_C TInt Math::Exp(TReal& aTrg, const TReal& aSrc)
   137 	{
   138 	aTrg = exp(aSrc);
   139 	if (Math::IsZero(aTrg))
   140 		return KErrUnderflow;
   141 	if (Math::IsFinite(aTrg))
   142 		return KErrNone;
   143 	if (Math::IsInfinite(aTrg))
   144 		return KErrOverflow;
   145 	SetNaN(aTrg);
   146 	return KErrArgument;
   147 	}
   148 
   149 #endif