os/kernelhwsrv/bsptemplate/asspandvariant/template_variant/specific/power.cpp
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
     1 // Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // template\template_variant\specific\power.cpp
    15 // Template Power Management
    16 // (see also variant.cpp for a discussion on Sleep modes and xyin.cpp for example
    17 // of usage of Resource Manager and Peripheral self power down and interaction
    18 // with Power Controller for Wakeup Events)
    19 // 
    20 //
    21 
    22 #include "template_power.h"
    23 
    24 static TemplateResourceManager TheResourceManager;
    25 
    26 DTemplatePowerController* TTemplatePowerController::iPowerController;
    27 
    28 
    29 //-/-/-/-/-/-/-/-/-/ class DTemplatePowerController /-/-/-/-/-/-/-/-/-/
    30 
    31 DTemplatePowerController::DTemplatePowerController()
    32 	{
    33 	Register();			// register Power Controller with Power Manager
    34 	TTemplatePowerController::RegisterPowerController(this);
    35 	}
    36 
    37 void DTemplatePowerController::CpuIdle()
    38 	{
    39 	Arch::TheAsic()->Idle();
    40 	}
    41 
    42 void DTemplatePowerController::EnableWakeupEvents()
    43 	{
    44 	//
    45 	// TO DO: (mandatory)
    46 	//
    47 	// Enable tracking of wake-up events directly in hardware. If the hardware is controlled by a Driver
    48 	// or Extension, may need to disable interrupts and preemption around the code that accesses the hardware
    49 	// and set up a flag which the Driver/Extension code need to read before modifying the state of that piece
    50 	// of hardware. Note in that case the Driver/Extension may need to link to this Library.
    51 	//
    52 
    53 	//
    54 	// EXAMPLE ONLY
    55 	// In this example we simply assume that the driver will call the Power Controller every time a 
    56 	// wakeup event occurr. It is up to the Power Controller to know if it is tracking them or not.
    57 	// We also assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
    58 	// bring it back from that state.
    59 	iWakeupEventsOn = ETrue;	// start tracking wakeup events
    60 	}
    61 
    62 void DTemplatePowerController::DisableWakeupEvents()
    63 	{
    64 	//
    65 	// TO DO: (mandatory)
    66 	//
    67 	// Disable tracking of wake-up events directly in hardware or if the hardware is controlled by a Driver or
    68 	// Extension need to set up a flag which the Driver/Extension reads whenever the event occurs, in order to
    69 	// find out if it needs to deliver notification to the Power Controller
    70 	//
    71 	iWakeupEventsOn = EFalse;	// stop tracking wakeup events
    72 	}
    73 
    74 void DTemplatePowerController::AbsoluteTimerExpired()
    75 	{
    76 	if (iTargetState == EPwStandby && iWakeupEventsOn)
    77 		{
    78 		iWakeupEventsOn = EFalse;		// one occurred, no longer track wakeup events
    79 		WakeupEvent();
    80 		}
    81 	}
    82 
    83 void DTemplatePowerController::PowerDown(TTimeK aWakeupST)	
    84 	{
    85 	if (iTargetState == EPwStandby)
    86 		{
    87 		//
    88 		// TO DO: (mandatory)
    89 		//
    90 		// Converts between the Wakeup time in System Time units as passed in to this function and a Wakeup
    91 		// time in RTC units. The following code is given as an example how to convert between System time units
    92 		// RTC time units on a system with a 32 bit RTC timer and which is incremented on a second interval:
    93 		//
    94 		TUint32 wakeupRTC;
    95 		if (aWakeupST)
    96 			{
    97 			TUint32 nowRTC = TTemplate::RtcData();
    98 			TTimeK nowST = Kern::SystemTime();
    99 			__KTRACE_OPT(KPOWER,Kern::Printf("system time: now = 0x%lx(us) wakeup = 0x%lx(us)", nowST, aWakeupST));
   100 			if (aWakeupST < nowST)
   101 				return;
   102 			Int64 deltaSecs = (aWakeupST - nowST) / 1000000;
   103 			if (deltaSecs <= 0)
   104 				return;
   105 			if (deltaSecs + (Int64)nowRTC > (Int64)(KMaxTInt - 2))
   106 				wakeupRTC = (KMaxTInt - 2); // RTC can't wrap around during standby
   107 			else
   108 				wakeupRTC = nowRTC + deltaSecs;
   109 			__KTRACE_OPT(KPOWER,Kern::Printf("RTC: now = %d(s) wakeup = %d(s)", nowRTC, wakeupRTC));
   110 			}
   111 		else
   112 			wakeupRTC = 0;
   113 		//
   114 		// TO DO: (optional)
   115 		//
   116 		// It then uses the calculated value to program the RTC to wakeup the System at the Wakeup
   117 		// time ans sets the CPU and remaining hardware to go to the correponding low power mode. When the 
   118 		// state of the Core and Core Peripherals is not preserved in this mode the following is usually 
   119 		// required:
   120 		//	- save current Core state (current Mode, banked registers for each Mode and Stack Pointer for 
   121 		//	  both current and User Modes
   122 		//	- save MMU state: Control Register, TTB and Domain Access Control
   123 		//	- Flush Dta Cache and drain Write Buffer
   124 		//	- save Core Peripherals state: Interrupt Controller, Pin Function, Bus State and Clock settings
   125 		// SDRAM should be put in self refresh mode. Peripheral devices involved in detection of Wakeup events
   126 		// should be left powered.
   127 		// The Tick timer should be disabled and the current count of this and other System timers shall be
   128 		// saved.
   129 		// On wakeing up the state should be restored from the save state as above. SDRAM shall be brought back
   130 		// under CPU control, The Tick count shall be restored and timers re-enabled.
   131 
   132 		// We assume that if a wakeup event occurrs when the CPU is in Standby, this will automatically
   133 		// bring it back from that state. Therefore we stop tracking wakeup events as the Power Manager will
   134 		// complete any pending notifications anyway. When the driver delivers its notification, we just ignore
   135 		// it.
   136 		iWakeupEventsOn = EFalse;		// tracking of wakeup events is now done in hardware
   137 		}
   138 	else
   139 		{
   140 		Kern::Restart(0x80000000);
   141 		}
   142 	}
   143 
   144 //-/-/-/-/-/-/-/-/-/ class TTemplatePowerController /-/-/-/-/-/-/-/-/-/
   145 
   146 EXPORT_C TemplateResourceManager* TTemplatePowerController::ResourceManager()
   147 	{
   148 	return &TheResourceManager;
   149 	}
   150 
   151 
   152 EXPORT_C void TTemplatePowerController::WakeupEvent()
   153 	{
   154 	if(!iPowerController)
   155 		__PM_PANIC("Power Controller not present");
   156 	else if(iPowerController->iWakeupEventsOn)
   157 		{
   158 		iPowerController->iWakeupEventsOn=EFalse;		// one occurred, no longer track wakeup events
   159 		iPowerController->WakeupEvent();
   160 		}
   161 	}
   162 
   163 //-/-/-/-/-/-/-/-/-/ class TemplateResourceManager /-/-/-/-/-/-/-/-/-/
   164 
   165 void TemplateResourceManager::InitResources()
   166 	{
   167 	//
   168 	// TO DO: (optional)
   169 	//
   170 	// Initialise any power resources required by the platform and not initialised in the Bootstrap
   171 	//
   172 	}
   173 
   174 //-/-/-/-/-/-/-/-/-/ interface for shared resources /-/-/-/-/-/-/-/-/-/
   175 
   176 void SharedBinaryResource1::Use()
   177 	{
   178 	NKern::Lock();		// lock Kernel as shared resource is likely to be modified from different threads
   179 	if (iCount++ == 0)
   180 		{
   181 		//
   182 		// TO DO: (optional)
   183 		//
   184 		// Modify hardware register bit or bits to switch the resource On. If the resource
   185 		// can be accessed from an ISR need to disable/enable interrupts around it.
   186 		//
   187 		NKern::Unlock();
   188 		//
   189 		// TO DO: (optional)
   190 		//
   191 		// If the resource is asynchronous may need to sleep or block the thread until the change is complete
   192 		//
   193 		}
   194 	else
   195 		NKern::Unlock();
   196 	}
   197 
   198 void SharedBinaryResource1::Release()
   199 	{
   200 	NKern::Lock();
   201 	__PM_ASSERT(iCount);
   202 	if (--iCount == 0)
   203 		{
   204 		//
   205 		// TO DO: (optional)
   206 		//
   207 		// Modify hardware register bit or bits to switch the resource Off. If the resource
   208 		// can be accessed from an ISR need to disable/enable interrupts around it.
   209 		//
   210 		NKern::Unlock();
   211 		//
   212 		// TO DO: (optional)
   213 		//
   214 		// If the resource is asynchronous may need to sleep or block the thread until the change is complete
   215 		//
   216 		}
   217 	else
   218 		NKern::Unlock();
   219 	}
   220 
   221 TUint SharedBinaryResource1::GetCount()
   222 	{
   223 	return iCount;
   224 	}
   225 
   226 SharedMultilevelResource1::SharedMultilevelResource1()
   227 	//
   228 	// TO DO: (optional)
   229 	//
   230 	// May need to initialise current level and the Id of its owner if these have been initialised in the Bootstrap
   231 	//
   232 	// : iCurrentLevel(/* a level for this resource as initialised in the Bootstrap */),
   233 	//	 iCurrentLevelOwnerId(/* the Id of the requester of this resource that requires the initial value */)
   234 	{
   235 	}
   236 
   237 void SharedMultilevelResource1::IncreaseToLevel(TUint aLevel, TInt aRequester)
   238 	{
   239 	//
   240 	// Drivers should use this API if they wish to request a level higher than the previous level they required 
   241 	// Drivers should keep track of the level they require and be disciplined
   242 	//
   243 	NKern::Lock();
   244 	__PM_ASSERT(aLevel<Levels[aRequester]);
   245 	Levels[aRequester]=aLevel;
   246 	if(aLevel > iCurrentLevel)			// need to increase the level
   247 		{
   248 		// if(aLevel <= MAXLEVEL)
   249 		//	aLevel = MAXLEVEL;
   250 		iCurrentLevel = aLevel;
   251 		iCurrentLevelOwnerId = aRequester;
   252 		//
   253 		// TO DO: (optional)
   254 		//
   255 		// Modify hardware register bits to set the level of the resource to aLevel
   256 		NKern::Unlock();
   257 		//
   258 		// TO DO: (optional)
   259 		//
   260 		// If the resource is asynchronous may need to sleep or block the thread until the change is complete
   261 		//
   262 		}
   263 	else
   264 		NKern::Unlock();
   265 	}
   266 
   267 void SharedMultilevelResource1::ReduceToLevel(TUint aLevel, TInt aRequester)
   268 	{
   269 	//
   270 	// Drivers should use this API if they wish to request a level higher than the previous level they required 
   271 	//
   272 	NKern::Lock();
   273 	__PM_ASSERT(aLevel>Levels[aRequester]);
   274 
   275 	Levels[aRequester]=aLevel;
   276 	if(aLevel < iCurrentLevel && aRequester == iCurrentLevelOwnerId)	// the holder of the current level as lowered its request
   277 		{
   278 		FindMaxLevel(&iCurrentLevel, &iCurrentLevelOwnerId);			// find max level required and the ID of its holder
   279 		//
   280 		// TO DO: (optional)
   281 		//
   282 		// Modify hardware register bits to set the level of the resource to iCurrentLevel
   283 		NKern::Unlock();
   284 		//
   285 		// TO DO: (optional)
   286 		//
   287 		// If the resource is asynchronous may need to sleep or block the thread until the change is complete
   288 		//
   289 		}
   290 	else
   291 		NKern::Unlock();
   292 	}
   293 
   294 TUint SharedMultilevelResource1::GetResourceLevel()
   295 	{
   296 	return iCurrentLevel;
   297 	}
   298 
   299 void SharedMultilevelResource1::FindMaxLevel(TUint* aLevel, TInt* aId)
   300 	{
   301 	//
   302 	// TO DO: (optional)
   303 	//
   304 	// Place your clever array search algorithm here...
   305 	// return max level and id of owner
   306 	}
   307 
   308 TInt BinaryPowerInit();		// the Symbian example Battery Monitor and Power HAL handling
   309 
   310 GLDEF_C TInt KernelModuleEntry(TInt aReason)
   311 	{
   312 	if(aReason==KModuleEntryReasonVariantInit0)
   313 		{
   314 		//
   315 		// TO DO: (optional)
   316 		//
   317 		// Start the Resource Manager earlier so that Variant and other extension could make use of Power Resources
   318 		//
   319 		__KTRACE_OPT(KPOWER, Kern::Printf("Starting Template Resource controller"));
   320 		new(&TheResourceManager)TemplateResourceManager;
   321 		TheResourceManager.InitResources();
   322 		return KErrNone;
   323 		}
   324 	else if(aReason==KModuleEntryReasonExtensionInit0)
   325 		{
   326 		__KTRACE_OPT(KPOWER, Kern::Printf("Starting Template power controller"));
   327 		//
   328 		// TO DO: (optional)
   329 		//
   330 		// Start the Kernel-side Battery Monitor and hook a Power HAL handling function.
   331 		// Symbian provides example code for both of the above in \e32\include\driver\binpower.h
   332 		// You may want to write your own versions.
   333 		// The call below starts the example Battery Monitor and hooks the example Power HAL handling function
   334 		// At the end we return an error to make sure that the entry point is not called again with
   335 		// KModuleEntryReasonExtensionInit1 (which would call the constructor of TheResourceManager again)
   336 		//
   337 		TInt r = BinaryPowerInit();
   338 		if (r!= KErrNone)
   339 			__PM_PANIC("Can't initialise Binary Power model");
   340 		DTemplatePowerController* c = new DTemplatePowerController();
   341 		if(c)
   342 			return KErrGeneral;
   343 		else
   344 			__PM_PANIC("Can't create Power Controller");
   345 		}
   346 	else if(aReason==KModuleEntryReasonExtensionInit1)
   347 		{
   348 		// does not get called...
   349 		}
   350 	return KErrArgument;
   351 	}