os/security/crypto/weakcryptospi/source/bigint/rinteger.cpp
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/security/crypto/weakcryptospi/source/bigint/rinteger.cpp	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,262 @@
     1.4 +/*
     1.5 +* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
     1.6 +* All rights reserved.
     1.7 +* This component and the accompanying materials are made available
     1.8 +* under the terms of the License "Eclipse Public License v1.0"
     1.9 +* which accompanies this distribution, and is available
    1.10 +* at the URL "http://www.eclipse.org/legal/epl-v10.html".
    1.11 +*
    1.12 +* Initial Contributors:
    1.13 +* Nokia Corporation - initial contribution.
    1.14 +*
    1.15 +* Contributors:
    1.16 +*
    1.17 +* Description: 
    1.18 +*
    1.19 +*/
    1.20 +
    1.21 +
    1.22 +#include <bigint.h>
    1.23 +#include <e32std.h>
    1.24 +#include <random.h>
    1.25 +#include "../common/inlines.h"
    1.26 +
    1.27 +
    1.28 +/** 
    1.29 + * Copy constructor
    1.30 + *
    1.31 + * This function performs a shallow copy, 
    1.32 + * i.e. the memory holding the integer is not copied.
    1.33 + */
    1.34 +EXPORT_C RInteger::RInteger(const RInteger& aInteger)
    1.35 +	{
    1.36 +	*this = aInteger;
    1.37 +	}
    1.38 +
    1.39 +/** 
    1.40 + * Assignment operator
    1.41 + * 
    1.42 + * This function performs a shallow copy, 
    1.43 + * i.e. the memory holding the integer is not copied.
    1.44 + */
    1.45 +EXPORT_C RInteger& RInteger::operator=(const RInteger& aInteger)
    1.46 +	{
    1.47 +	iSize = aInteger.iSize;
    1.48 +	iPtr = aInteger.iPtr;
    1.49 +	return *this;
    1.50 +	}
    1.51 +
    1.52 +
    1.53 +/** 
    1.54 + * Creates a new integer representing 0.
    1.55 + * 
    1.56 + * @return	An RInteger by value.
    1.57 + */
    1.58 +EXPORT_C RInteger RInteger::NewL(void)
    1.59 +	{
    1.60 +	return NewL(TInteger::Zero());
    1.61 +	}
    1.62 +
    1.63 +/** 
    1.64 + * Creates a new integer object representing a specified value.
    1.65 + * 
    1.66 + * @param aValue	A descriptor containing the big-endian binary
    1.67 + * 					representation of the value.
    1.68 + * @return			An RInteger object representing the value.
    1.69 + */
    1.70 +EXPORT_C RInteger RInteger::NewL(const TDesC8& aValue)
    1.71 +	{
    1.72 +	RInteger self;
    1.73 +	//Construct zero's memory beyond the size of aValue after construction
    1.74 +	self.CreateNewL(BytesToWords(aValue.Size()));
    1.75 +	self.Construct(aValue);
    1.76 +	return self;
    1.77 +	}
    1.78 +
    1.79 +/** 
    1.80 + * Creates an exact copy of an \c aInteger object.
    1.81 + * 
    1.82 + * @param aInteger	The integer you wish to copy
    1.83 + * @return			An RInteger object representing an exact copy of 
    1.84 + *					aInteger by value.
    1.85 + */
    1.86 +EXPORT_C RInteger RInteger::NewL(const TInteger& aInteger)
    1.87 +	{
    1.88 +	RInteger self;
    1.89 +	//don't need to CleanNewL as we'll copy straight from aInteger
    1.90 +	self.CreateNewL(aInteger.Size());
    1.91 +	self.Construct(aInteger);
    1.92 +	return self;
    1.93 +	}
    1.94 +
    1.95 +/** 
    1.96 + * Creates a random integer uniformly distributed over [0, 2^aBits].
    1.97 + * 
    1.98 + * @param aBits	The number of bits you wish to randomly select.
    1.99 + * @param aAttr	Enum specifying whether specific bits in the random number should
   1.100 + *				be set.  See TRandomAttribute for more information.
   1.101 + * @return		A random RInteger object in the range specified.
   1.102 + */
   1.103 +EXPORT_C RInteger RInteger::NewRandomL(TUint aBits, TRandomAttribute aAttr)
   1.104 +	{
   1.105 +	RInteger self;
   1.106 +	self.CleanNewL(BitsToWords(aBits));
   1.107 +	CleanupStack::PushL(self);
   1.108 +	self.RandomizeL(aBits, aAttr);
   1.109 +	CleanupStack::Pop(&self); 
   1.110 +	return self;
   1.111 +	}
   1.112 +
   1.113 +/** 
   1.114 + * Creates a random integer uniformly distributed over [x | min <= x <= max].
   1.115 + * 
   1.116 + * @param aMin	The smallest possible value for the random integer (inclusive).
   1.117 + * @param aMax	The largest possible value for the random integer (inclusive).
   1.118 + * @return		A random RInteger object in the range specified.
   1.119 + */
   1.120 +EXPORT_C RInteger RInteger::NewRandomL(const TInteger& aMin,
   1.121 +	const TInteger& aMax)
   1.122 +	{
   1.123 +	RInteger self;
   1.124 +	self.CleanNewL(aMax.Size());
   1.125 +	CleanupStack::PushL(self);
   1.126 +	self.RandomizeL(aMin, aMax);
   1.127 +	CleanupStack::Pop(&self);
   1.128 +	return self;
   1.129 +	}
   1.130 +
   1.131 +/** 
   1.132 + * Finds a random prime integer in the range of [2, 2^aBits].
   1.133 + *
   1.134 + * This is done by picking a random integer and using that as a starting point
   1.135 + * for a sequential search for a prime.  To verify the primality of number, 
   1.136 + * this algorithm uses a probablistic primality test.  This means that it is
   1.137 + * possible, although extremely improbable, that the number returned is a pseudoprime.
   1.138 + *
   1.139 + * @param aBits	The number of bits you wish to randomly select your prime from.
   1.140 + * @param aAttr	Enum specifying whether specific bits in the random number should
   1.141 + *				be set.  See TRandomAttribute for more information.
   1.142 + * @return		A random RInteger representing a probable prime (with very high
   1.143 + *				probablity) in the range specified.
   1.144 + */
   1.145 +EXPORT_C RInteger RInteger::NewPrimeL(TUint aBits, TRandomAttribute aAttr)
   1.146 +	{
   1.147 +	RInteger self;
   1.148 +	self.CleanNewL(BitsToWords(aBits));
   1.149 +	CleanupStack::PushL(self);
   1.150 +	self.PrimeRandomizeL(aBits, aAttr);
   1.151 +	CleanupStack::Pop(&self);
   1.152 +	return self;
   1.153 +	}
   1.154 +
   1.155 +/** 
   1.156 + * Creates a new integer from the value represented by \c aInteger.
   1.157 + * 
   1.158 + * @param aInteger	A signed word sized integer.
   1.159 + * @return			An RInteger representation of aInteger by value.
   1.160 + */
   1.161 +EXPORT_C RInteger RInteger::NewL(TInt aInteger)
   1.162 +	{
   1.163 +	RInteger self;
   1.164 +	self.CreateNewL(2);
   1.165 +	self.Construct(aInteger);
   1.166 +	return self;
   1.167 +	}
   1.168 +
   1.169 +/** 
   1.170 + * Creates a new integer with a preallocated internal storage of \c aNumWords all
   1.171 + * initialised to zero.
   1.172 + *
   1.173 + * The resulting RInteger object is logically equivalent to RInteger::NewL(0).
   1.174 + * The only difference is that the internal storage requirements have been 
   1.175 + * specified to be larger than the default. This is useful if you are about 
   1.176 + * to perform an operation on this integer, that you know the resulting size
   1.177 + * requirements of, and wish to avoid a heap resize.
   1.178 + *
   1.179 + * @param aNumWords	The number of words for to preallocated and zero fill.
   1.180 + * @return			An RInteger object representing 0 with a preallocated 
   1.181 + *					zero-filled internal storage of aNumWords.
   1.182 + */
   1.183 +EXPORT_C RInteger RInteger::NewEmptyL(TUint aNumWords)
   1.184 +	{
   1.185 +	RInteger self;
   1.186 +	self.CleanNewL(aNumWords);
   1.187 +	//There's no construct as there isn't anything to do
   1.188 +	return self;
   1.189 +	}
   1.190 +
   1.191 +/**
   1.192 + * Creates an RInteger object with no associated internal (heap) storage.
   1.193 + * 
   1.194 + * All data members are initialised to zero.  It is safe (although not strictly necessary)
   1.195 + * to push such an RInteger object onto the CleanupStack.  This is useful, for example, if
   1.196 + * you want to pass an RInteger object by reference into a function and have it create
   1.197 + * the representation of the actual integer for you.  
   1.198 + *
   1.199 + * Note that performing any operation on such an RInteger object other than the default
   1.200 + * assignment operator or copy constructor will panic your code.
   1.201 + * 
   1.202 + * @return	A stack based class that has no associated internal storage and thus
   1.203 + *			does not represent any number.
   1.204 + */
   1.205 +EXPORT_C RInteger::RInteger(void)  
   1.206 +	{
   1.207 +	}
   1.208 +
   1.209 +/** 
   1.210 + * An overloaded TCleanupItem() allowing the RIntegers to be pushed,
   1.211 + * popped, and destroyed via the CleanupStack like any other CBase derived object.
   1.212 + */
   1.213 +EXPORT_C RInteger::operator TCleanupItem(void)
   1.214 +	{
   1.215 +	return TCleanupItem(&RInteger::CallClose, this);
   1.216 +	}
   1.217 +
   1.218 +/** 
   1.219 + * Helper function registered with the cleanup stack that just calls Close() for
   1.220 + * this RInteger object.
   1.221 + * 
   1.222 + * @param aPtr	A pointer to the object for which clean-up is to be performed. 
   1.223 + */
   1.224 +EXPORT_C void RInteger::CallClose(TAny* aPtr)
   1.225 +	{
   1.226 +	((RInteger*)aPtr)->Close();	
   1.227 +	}
   1.228 +
   1.229 +/** 
   1.230 + * Zeros and then frees any memory owned by this RInteger object.
   1.231 + *  
   1.232 + * An RInteger object that has been closed can safely fall off the stack.
   1.233 + */
   1.234 +EXPORT_C void RInteger::Close(void)
   1.235 +	{
   1.236 +	if (iPtr)
   1.237 +		{
   1.238 +		Mem::FillZ(Ptr(), Size()*4);
   1.239 +		User::Free(Ptr());
   1.240 +		iSize = 0;
   1.241 +		iPtr = NULL;
   1.242 +		}
   1.243 +	}
   1.244 +
   1.245 +// Method is excluded from coverage due to the problem with BullsEye on ONB.
   1.246 +// Manually verified that this method is functionally covered.
   1.247 +#ifdef _BullseyeCoverage
   1.248 +#pragma suppress_warnings on
   1.249 +#pragma BullseyeCoverage off
   1.250 +#pragma suppress_warnings off
   1.251 +#endif
   1.252 +
   1.253 +/** 
   1.254 + * Creates a new integer from the value represented by \c aInteger.
   1.255 + *
   1.256 + * @param aInteger	An unsigned word sized integer.
   1.257 + * @return			An RInteger representation of aInteger by value.
   1.258 + */
   1.259 +EXPORT_C RInteger RInteger::NewL(TUint aInteger)
   1.260 +	{
   1.261 +	RInteger self;
   1.262 +	self.CreateNewL(2);
   1.263 +	self.Construct(aInteger);
   1.264 +	return self;
   1.265 +	}