1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/TEST/TclScript/malloc3.test Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,666 @@
1.4 +# 2005 November 30
1.5 +#
1.6 +# The author disclaims copyright to this source code. In place of
1.7 +# a legal notice, here is a blessing:
1.8 +#
1.9 +# May you do good and not evil.
1.10 +# May you find forgiveness for yourself and forgive others.
1.11 +# May you share freely, never taking more than you give.
1.12 +#
1.13 +#***********************************************************************
1.14 +#
1.15 +# This file contains tests to ensure that the library handles malloc() failures
1.16 +# correctly. The emphasis of these tests are the _prepare(), _step() and
1.17 +# _finalize() calls.
1.18 +#
1.19 +# $Id: malloc3.test,v 1.23 2008/05/13 19:41:54 shane Exp $
1.20 +
1.21 +set testdir [file dirname $argv0]
1.22 +source $testdir/tester.tcl
1.23 +source $testdir/malloc_common.tcl
1.24 +
1.25 +# Only run these tests if memory debugging is turned on.
1.26 +#
1.27 +if {!$MEMDEBUG} {
1.28 + puts "Skipping malloc3 tests: not compiled with -DSQLITE_MEMDEBUG..."
1.29 + finish_test
1.30 + return
1.31 +}
1.32 +
1.33 +#--------------------------------------------------------------------------
1.34 +# NOTES ON RECOVERING FROM A MALLOC FAILURE
1.35 +#
1.36 +# The tests in this file test the behaviours described in the following
1.37 +# paragraphs. These tests test the behaviour of the system when malloc() fails
1.38 +# inside of a call to _prepare(), _step(), _finalize() or _reset(). The
1.39 +# handling of malloc() failures within ancillary procedures is tested
1.40 +# elsewhere.
1.41 +#
1.42 +# Overview:
1.43 +#
1.44 +# Executing a statement is done in three stages (prepare, step and finalize). A
1.45 +# malloc() failure may occur within any stage. If a memory allocation fails
1.46 +# during statement preparation, no statement handle is returned. From the users
1.47 +# point of view the system state is as if _prepare() had never been called.
1.48 +#
1.49 +# If the memory allocation fails during the _step() or _finalize() calls, then
1.50 +# the database may be left in one of two states (after finalize() has been
1.51 +# called):
1.52 +#
1.53 +# * As if the neither _step() nor _finalize() had ever been called on
1.54 +# the statement handle (i.e. any changes made by the statement are
1.55 +# rolled back).
1.56 +# * The current transaction may be rolled back. In this case a hot-journal
1.57 +# may or may not actually be present in the filesystem.
1.58 +#
1.59 +# The caller can tell the difference between these two scenarios by invoking
1.60 +# _get_autocommit().
1.61 +#
1.62 +#
1.63 +# Handling of sqlite3_reset():
1.64 +#
1.65 +# If a malloc() fails while executing an sqlite3_reset() call, this is handled
1.66 +# in the same way as a failure within _finalize(). The statement handle
1.67 +# is not deleted and must be passed to _finalize() for resource deallocation.
1.68 +# Attempting to _step() or _reset() the statement after a failed _reset() will
1.69 +# always return SQLITE_NOMEM.
1.70 +#
1.71 +#
1.72 +# Other active SQL statements:
1.73 +#
1.74 +# The effect of a malloc failure on concurrently executing SQL statements,
1.75 +# particularly when the statement is executing with READ_UNCOMMITTED set and
1.76 +# the malloc() failure mandates statement rollback only. Currently, if
1.77 +# transaction rollback is required, all other vdbe's are aborted.
1.78 +#
1.79 +# Non-transient mallocs in btree.c:
1.80 +# * The Btree structure itself
1.81 +# * Each BtCursor structure
1.82 +#
1.83 +# Mallocs in pager.c:
1.84 +# readMasterJournal() - Space to read the master journal name
1.85 +# pager_delmaster() - Space for the entire master journal file
1.86 +#
1.87 +# sqlite3pager_open() - The pager structure itself
1.88 +# sqlite3_pagerget() - Space for a new page
1.89 +# pager_open_journal() - Pager.aInJournal[] bitmap
1.90 +# sqlite3pager_write() - For in-memory databases only: history page and
1.91 +# statement history page.
1.92 +# pager_stmt_begin() - Pager.aInStmt[] bitmap
1.93 +#
1.94 +# None of the above are a huge problem. The most troublesome failures are the
1.95 +# transient malloc() calls in btree.c, which can occur during the tree-balance
1.96 +# operation. This means the tree being balanced will be internally inconsistent
1.97 +# after the malloc() fails. To avoid the corrupt tree being read by a
1.98 +# READ_UNCOMMITTED query, we have to make sure the transaction or statement
1.99 +# rollback occurs before sqlite3_step() returns, not during a subsequent
1.100 +# sqlite3_finalize().
1.101 +#--------------------------------------------------------------------------
1.102 +
1.103 +#--------------------------------------------------------------------------
1.104 +# NOTES ON TEST IMPLEMENTATION
1.105 +#
1.106 +# The tests in this file are implemented differently from those in other
1.107 +# files. Instead, tests are specified using three primitives: SQL, PREP and
1.108 +# TEST. Each primitive has a single argument. Primitives are processed in
1.109 +# the order they are specified in the file.
1.110 +#
1.111 +# A TEST primitive specifies a TCL script as its argument. When a TEST
1.112 +# directive is encountered the Tcl script is evaluated. Usually, this Tcl
1.113 +# script contains one or more calls to [do_test].
1.114 +#
1.115 +# A PREP primitive specifies an SQL script as its argument. When a PREP
1.116 +# directive is encountered the SQL is evaluated using database connection
1.117 +# [db].
1.118 +#
1.119 +# The SQL primitives are where the action happens. An SQL primitive must
1.120 +# contain a single, valid SQL statement as its argument. When an SQL
1.121 +# primitive is encountered, it is evaluated one or more times to test the
1.122 +# behaviour of the system when malloc() fails during preparation or
1.123 +# execution of said statement. The Nth time the statement is executed,
1.124 +# the Nth malloc is said to fail. The statement is executed until it
1.125 +# succeeds, i.e. (M+1) times, where M is the number of mallocs() required
1.126 +# to prepare and execute the statement.
1.127 +#
1.128 +# Each time an SQL statement fails, the driver program (see proc [run_test]
1.129 +# below) figures out if a transaction has been automatically rolled back.
1.130 +# If not, it executes any TEST block immediately proceeding the SQL
1.131 +# statement, then reexecutes the SQL statement with the next value of N.
1.132 +#
1.133 +# If a transaction has been automatically rolled back, then the driver
1.134 +# program executes all the SQL specified as part of SQL or PREP primitives
1.135 +# between the current SQL statement and the most recent "BEGIN". Any
1.136 +# TEST block immediately proceeding the SQL statement is evaluated, and
1.137 +# then the SQL statement reexecuted with the incremented N value.
1.138 +#
1.139 +# That make any sense? If not, read the code in [run_test] and it might.
1.140 +#
1.141 +# Extra restriction imposed by the implementation:
1.142 +#
1.143 +# * If a PREP block starts a transaction, it must finish it.
1.144 +# * A PREP block may not close a transaction it did not start.
1.145 +#
1.146 +#--------------------------------------------------------------------------
1.147 +
1.148 +# These procs are used to build up a "program" in global variable
1.149 +# ::run_test_script. At the end of this file, the proc [run_test] is used
1.150 +# to execute the program (and all test cases contained therein).
1.151 +#
1.152 +set ::run_test_script [list]
1.153 +proc TEST {id t} {lappend ::run_test_script -test [list $id $t]}
1.154 +proc PREP {p} {lappend ::run_test_script -prep [string trim $p]}
1.155 +proc DEBUG {s} {lappend ::run_test_script -debug $s}
1.156 +
1.157 +# SQL --
1.158 +#
1.159 +# SQL ?-norollback? <sql-text>
1.160 +#
1.161 +# Add an 'SQL' primitive to the program (see notes above). If the -norollback
1.162 +# switch is present, then the statement is not allowed to automatically roll
1.163 +# back any active transaction if malloc() fails. It must rollback the statement
1.164 +# transaction only.
1.165 +#
1.166 +proc SQL {a1 {a2 ""}} {
1.167 + # An SQL primitive parameter is a list of two elements, a boolean value
1.168 + # indicating if the statement may cause transaction rollback when malloc()
1.169 + # fails, and the sql statement itself.
1.170 + if {$a2 == ""} {
1.171 + lappend ::run_test_script -sql [list true [string trim $a1]]
1.172 + } else {
1.173 + lappend ::run_test_script -sql [list false [string trim $a2]]
1.174 + }
1.175 +}
1.176 +
1.177 +# TEST_AUTOCOMMIT --
1.178 +#
1.179 +# A shorthand test to see if a transaction is active or not. The first
1.180 +# argument - $id - is the integer number of the test case. The second
1.181 +# argument is either 1 or 0, the expected value of the auto-commit flag.
1.182 +#
1.183 +proc TEST_AUTOCOMMIT {id a} {
1.184 + TEST $id "do_test \$testid { sqlite3_get_autocommit \$::DB } {$a}"
1.185 +}
1.186 +
1.187 +#--------------------------------------------------------------------------
1.188 +# Start of test program declaration
1.189 +#
1.190 +
1.191 +
1.192 +# Warm body test. A malloc() fails in the middle of a CREATE TABLE statement
1.193 +# in a single-statement transaction on an empty database. Not too much can go
1.194 +# wrong here.
1.195 +#
1.196 +TEST 1 {
1.197 + do_test $testid {
1.198 + execsql {SELECT tbl_name FROM sqlite_master;}
1.199 + } {}
1.200 +}
1.201 +SQL {
1.202 + CREATE TABLE abc(a, b, c);
1.203 +}
1.204 +TEST 2 {
1.205 + do_test $testid.1 {
1.206 + execsql {SELECT tbl_name FROM sqlite_master;}
1.207 + } {abc}
1.208 +}
1.209 +
1.210 +# Insert a couple of rows into the table. each insert is in its own
1.211 +# transaction. test that the table is unpopulated before running the inserts
1.212 +# (and hence after each failure of the first insert), and that it has been
1.213 +# populated correctly after the final insert succeeds.
1.214 +#
1.215 +TEST 3 {
1.216 + do_test $testid.2 {
1.217 + execsql {SELECT * FROM abc}
1.218 + } {}
1.219 +}
1.220 +SQL {INSERT INTO abc VALUES(1, 2, 3);}
1.221 +SQL {INSERT INTO abc VALUES(4, 5, 6);}
1.222 +SQL {INSERT INTO abc VALUES(7, 8, 9);}
1.223 +TEST 4 {
1.224 + do_test $testid {
1.225 + execsql {SELECT * FROM abc}
1.226 + } {1 2 3 4 5 6 7 8 9}
1.227 +}
1.228 +
1.229 +# Test a CREATE INDEX statement. Because the table 'abc' is so small, the index
1.230 +# will all fit on a single page, so this doesn't test too much that the CREATE
1.231 +# TABLE statement didn't test. A few of the transient malloc()s in btree.c
1.232 +# perhaps.
1.233 +#
1.234 +SQL {CREATE INDEX abc_i ON abc(a, b, c);}
1.235 +TEST 4 {
1.236 + do_test $testid {
1.237 + execsql {
1.238 + SELECT * FROM abc ORDER BY a DESC;
1.239 + }
1.240 + } {7 8 9 4 5 6 1 2 3}
1.241 +}
1.242 +
1.243 +# Test a DELETE statement. Also create a trigger and a view, just to make sure
1.244 +# these statements don't have any obvious malloc() related bugs in them. Note
1.245 +# that the test above will be executed each time the DELETE fails, so we're
1.246 +# also testing rollback of a DELETE from a table with an index on it.
1.247 +#
1.248 +SQL {DELETE FROM abc WHERE a > 2;}
1.249 +SQL {CREATE TRIGGER abc_t AFTER INSERT ON abc BEGIN SELECT 'trigger!'; END;}
1.250 +SQL {CREATE VIEW abc_v AS SELECT * FROM abc;}
1.251 +TEST 5 {
1.252 + do_test $testid {
1.253 + execsql {
1.254 + SELECT name, tbl_name FROM sqlite_master ORDER BY name;
1.255 + SELECT * FROM abc;
1.256 + }
1.257 + } {abc abc abc_i abc abc_t abc abc_v abc_v 1 2 3}
1.258 +}
1.259 +
1.260 +set sql {
1.261 + BEGIN;DELETE FROM abc;
1.262 +}
1.263 +for {set i 1} {$i < 15} {incr i} {
1.264 + set a $i
1.265 + set b "String value $i"
1.266 + set c [string repeat X $i]
1.267 + append sql "INSERT INTO abc VALUES ($a, '$b', '$c');"
1.268 +}
1.269 +append sql {COMMIT;}
1.270 +PREP $sql
1.271 +
1.272 +SQL {
1.273 + DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5);
1.274 +}
1.275 +TEST 6 {
1.276 + do_test $testid.1 {
1.277 + execsql {SELECT count(*) FROM abc}
1.278 + } {94}
1.279 + do_test $testid.2 {
1.280 + execsql {
1.281 + SELECT min(
1.282 + (oid == a) AND 'String value ' || a == b AND a == length(c)
1.283 + ) FROM abc;
1.284 + }
1.285 + } {1}
1.286 +}
1.287 +SQL {
1.288 + DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5);
1.289 +}
1.290 +TEST 7 {
1.291 + do_test $testid {
1.292 + execsql {SELECT count(*) FROM abc}
1.293 + } {89}
1.294 + do_test $testid {
1.295 + execsql {
1.296 + SELECT min(
1.297 + (oid == a) AND 'String value ' || a == b AND a == length(c)
1.298 + ) FROM abc;
1.299 + }
1.300 + } {1}
1.301 +}
1.302 +SQL {
1.303 + DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5);
1.304 +}
1.305 +TEST 9 {
1.306 + do_test $testid {
1.307 + execsql {SELECT count(*) FROM abc}
1.308 + } {84}
1.309 + do_test $testid {
1.310 + execsql {
1.311 + SELECT min(
1.312 + (oid == a) AND 'String value ' || a == b AND a == length(c)
1.313 + ) FROM abc;
1.314 + }
1.315 + } {1}
1.316 +}
1.317 +
1.318 +set padding [string repeat X 500]
1.319 +PREP [subst {
1.320 + DROP TABLE abc;
1.321 + CREATE TABLE abc(a PRIMARY KEY, padding, b, c);
1.322 + INSERT INTO abc VALUES(0, '$padding', 2, 2);
1.323 + INSERT INTO abc VALUES(3, '$padding', 5, 5);
1.324 + INSERT INTO abc VALUES(6, '$padding', 8, 8);
1.325 +}]
1.326 +
1.327 +TEST 10 {
1.328 + do_test $testid {
1.329 + execsql {SELECT a, b, c FROM abc}
1.330 + } {0 2 2 3 5 5 6 8 8}
1.331 +}
1.332 +
1.333 +SQL {BEGIN;}
1.334 +SQL {INSERT INTO abc VALUES(9, 'XXXXX', 11, 12);}
1.335 +TEST_AUTOCOMMIT 11 0
1.336 +SQL -norollback {UPDATE abc SET a = a + 1, c = c + 1;}
1.337 +TEST_AUTOCOMMIT 12 0
1.338 +SQL {DELETE FROM abc WHERE a = 10;}
1.339 +TEST_AUTOCOMMIT 13 0
1.340 +SQL {COMMIT;}
1.341 +
1.342 +TEST 14 {
1.343 + do_test $testid.1 {
1.344 + sqlite3_get_autocommit $::DB
1.345 + } {1}
1.346 + do_test $testid.2 {
1.347 + execsql {SELECT a, b, c FROM abc}
1.348 + } {1 2 3 4 5 6 7 8 9}
1.349 +}
1.350 +
1.351 +PREP [subst {
1.352 + DROP TABLE abc;
1.353 + CREATE TABLE abc(a, padding, b, c);
1.354 + INSERT INTO abc VALUES(1, '$padding', 2, 3);
1.355 + INSERT INTO abc VALUES(4, '$padding', 5, 6);
1.356 + INSERT INTO abc VALUES(7, '$padding', 8, 9);
1.357 + CREATE INDEX abc_i ON abc(a, padding, b, c);
1.358 +}]
1.359 +
1.360 +TEST 15 {
1.361 + db eval {PRAGMA cache_size = 10}
1.362 +}
1.363 +
1.364 +SQL {BEGIN;}
1.365 +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc}
1.366 +TEST 16 {
1.367 + do_test $testid {
1.368 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.369 + } {1 2 4 2 7 2}
1.370 +}
1.371 +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc}
1.372 +TEST 17 {
1.373 + do_test $testid {
1.374 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.375 + } {1 4 4 4 7 4}
1.376 +}
1.377 +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc}
1.378 +TEST 18 {
1.379 + do_test $testid {
1.380 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.381 + } {1 8 4 8 7 8}
1.382 +}
1.383 +SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc}
1.384 +TEST 19 {
1.385 + do_test $testid {
1.386 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.387 + } {1 16 4 16 7 16}
1.388 +}
1.389 +SQL {COMMIT;}
1.390 +TEST 21 {
1.391 + do_test $testid {
1.392 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.393 + } {1 16 4 16 7 16}
1.394 +}
1.395 +
1.396 +SQL {BEGIN;}
1.397 +SQL {DELETE FROM abc WHERE oid %2}
1.398 +TEST 22 {
1.399 + do_test $testid {
1.400 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.401 + } {1 8 4 8 7 8}
1.402 +}
1.403 +SQL {DELETE FROM abc}
1.404 +TEST 23 {
1.405 + do_test $testid {
1.406 + execsql {SELECT * FROM abc}
1.407 + } {}
1.408 +}
1.409 +SQL {ROLLBACK;}
1.410 +TEST 24 {
1.411 + do_test $testid {
1.412 + execsql {SELECT a, count(*) FROM abc GROUP BY a;}
1.413 + } {1 16 4 16 7 16}
1.414 +}
1.415 +
1.416 +# Test some schema modifications inside of a transaction. These should all
1.417 +# cause transaction rollback if they fail. Also query a view, to cover a bit
1.418 +# more code.
1.419 +#
1.420 +PREP {DROP VIEW abc_v;}
1.421 +TEST 25 {
1.422 + do_test $testid {
1.423 + execsql {
1.424 + SELECT name, tbl_name FROM sqlite_master;
1.425 + }
1.426 + } {abc abc abc_i abc}
1.427 +}
1.428 +SQL {BEGIN;}
1.429 +SQL {CREATE TABLE def(d, e, f);}
1.430 +SQL {CREATE TABLE ghi(g, h, i);}
1.431 +TEST 26 {
1.432 + do_test $testid {
1.433 + execsql {
1.434 + SELECT name, tbl_name FROM sqlite_master;
1.435 + }
1.436 + } {abc abc abc_i abc def def ghi ghi}
1.437 +}
1.438 +SQL {CREATE VIEW v1 AS SELECT * FROM def, ghi}
1.439 +SQL {CREATE UNIQUE INDEX ghi_i1 ON ghi(g);}
1.440 +TEST 27 {
1.441 + do_test $testid {
1.442 + execsql {
1.443 + SELECT name, tbl_name FROM sqlite_master;
1.444 + }
1.445 + } {abc abc abc_i abc def def ghi ghi v1 v1 ghi_i1 ghi}
1.446 +}
1.447 +SQL {INSERT INTO def VALUES('a', 'b', 'c')}
1.448 +SQL {INSERT INTO def VALUES(1, 2, 3)}
1.449 +SQL -norollback {INSERT INTO ghi SELECT * FROM def}
1.450 +TEST 28 {
1.451 + do_test $testid {
1.452 + execsql {
1.453 + SELECT * FROM def, ghi WHERE d = g;
1.454 + }
1.455 + } {a b c a b c 1 2 3 1 2 3}
1.456 +}
1.457 +SQL {COMMIT}
1.458 +TEST 29 {
1.459 + do_test $testid {
1.460 + execsql {
1.461 + SELECT * FROM v1 WHERE d = g;
1.462 + }
1.463 + } {a b c a b c 1 2 3 1 2 3}
1.464 +}
1.465 +
1.466 +# Test a simple multi-file transaction
1.467 +#
1.468 +file delete -force test2.db
1.469 +ifcapable attach {
1.470 + SQL {ATTACH 'test2.db' AS aux;}
1.471 + SQL {BEGIN}
1.472 + SQL {CREATE TABLE aux.tbl2(x, y, z)}
1.473 + SQL {INSERT INTO tbl2 VALUES(1, 2, 3)}
1.474 + SQL {INSERT INTO def VALUES(4, 5, 6)}
1.475 + TEST 30 {
1.476 + do_test $testid {
1.477 + execsql {
1.478 + SELECT * FROM tbl2, def WHERE d = x;
1.479 + }
1.480 + } {1 2 3 1 2 3}
1.481 + }
1.482 + SQL {COMMIT}
1.483 + TEST 31 {
1.484 + do_test $testid {
1.485 + execsql {
1.486 + SELECT * FROM tbl2, def WHERE d = x;
1.487 + }
1.488 + } {1 2 3 1 2 3}
1.489 + }
1.490 +}
1.491 +
1.492 +# Test what happens when a malloc() fails while there are other active
1.493 +# statements. This changes the way sqlite3VdbeHalt() works.
1.494 +TEST 32 {
1.495 + if {![info exists ::STMT32]} {
1.496 + set sql "SELECT name FROM sqlite_master"
1.497 + set ::STMT32 [sqlite3_prepare $::DB $sql -1 DUMMY]
1.498 + do_test $testid {
1.499 + sqlite3_step $::STMT32
1.500 + } {SQLITE_ROW}
1.501 + }
1.502 +}
1.503 +SQL BEGIN
1.504 +TEST 33 {
1.505 + do_test $testid {
1.506 + execsql {SELECT * FROM ghi}
1.507 + } {a b c 1 2 3}
1.508 +}
1.509 +SQL -norollback {
1.510 + -- There is a unique index on ghi(g), so this statement may not cause
1.511 + -- an automatic ROLLBACK. Hence the "-norollback" switch.
1.512 + INSERT INTO ghi SELECT '2'||g, h, i FROM ghi;
1.513 +}
1.514 +TEST 34 {
1.515 + if {[info exists ::STMT32]} {
1.516 + do_test $testid {
1.517 + sqlite3_finalize $::STMT32
1.518 + } {SQLITE_OK}
1.519 + unset ::STMT32
1.520 + }
1.521 +}
1.522 +SQL COMMIT
1.523 +
1.524 +#
1.525 +# End of test program declaration
1.526 +#--------------------------------------------------------------------------
1.527 +
1.528 +proc run_test {arglist iRepeat {pcstart 0} {iFailStart 1}} {
1.529 + if {[llength $arglist] %2} {
1.530 + error "Uneven number of arguments to TEST"
1.531 + }
1.532 +
1.533 + for {set i 0} {$i < $pcstart} {incr i} {
1.534 + set k2 [lindex $arglist [expr 2 * $i]]
1.535 + set v2 [lindex $arglist [expr 2 * $i + 1]]
1.536 + set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit
1.537 + switch -- $k2 {
1.538 + -sql {db eval [lindex $v2 1]}
1.539 + -prep {db eval $v2}
1.540 + }
1.541 + set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit
1.542 + if {$ac && !$nac} {set begin_pc $i}
1.543 + }
1.544 +
1.545 + db rollback_hook [list incr ::rollback_hook_count]
1.546 +
1.547 + set iFail $iFailStart
1.548 + set pc $pcstart
1.549 + while {$pc*2 < [llength $arglist]} {
1.550 +
1.551 + # Id of this iteration:
1.552 + set k [lindex $arglist [expr 2 * $pc]]
1.553 + set iterid "pc=$pc.iFail=$iFail$k"
1.554 + set v [lindex $arglist [expr 2 * $pc + 1]]
1.555 +
1.556 + puts $iterid
1.557 + flush stdout
1.558 +
1.559 + switch -- $k {
1.560 +
1.561 + -test {
1.562 + foreach {id script} $v {}
1.563 + incr pc
1.564 + }
1.565 +
1.566 + -sql {
1.567 + set ::rollback_hook_count 0
1.568 +
1.569 + set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit
1.570 + sqlite3_memdebug_fail $iFail -repeat 0
1.571 + set rc [catch {db eval [lindex $v 1]} msg] ;# True error occurs
1.572 + set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit
1.573 +
1.574 + if {$rc != 0 && $nac && !$ac} {
1.575 + # Before [db eval] the auto-commit flag was clear. Now it
1.576 + # is set. Since an error occured we assume this was not a
1.577 + # commit - therefore a rollback occured. Check that the
1.578 + # rollback-hook was invoked.
1.579 + do_test malloc3-rollback_hook.$iterid {
1.580 + set ::rollback_hook_count
1.581 + } {1}
1.582 + }
1.583 +
1.584 + set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign]
1.585 + if {$rc == 0} {
1.586 + # Successful execution of sql. The number of failed malloc()
1.587 + # calls should be equal to the number of benign failures.
1.588 + # Otherwise a malloc() failed and the error was not reported.
1.589 + #
1.590 + if {$nFail!=$nBenign} {
1.591 + error "Unreported malloc() failure"
1.592 + }
1.593 +
1.594 + if {$ac && !$nac} {
1.595 + # Before the [db eval] the auto-commit flag was set, now it
1.596 + # is clear. We can deduce that a "BEGIN" statement has just
1.597 + # been successfully executed.
1.598 + set begin_pc $pc
1.599 + }
1.600 +
1.601 + incr pc
1.602 + set iFail 1
1.603 + integrity_check "malloc3-(integrity).$iterid"
1.604 + } elseif {[regexp {.*out of memory} $msg] || [db errorcode] == 3082} {
1.605 + # Out of memory error, as expected.
1.606 + #
1.607 + integrity_check "malloc3-(integrity).$iterid"
1.608 + incr iFail
1.609 + if {$nac && !$ac} {
1.610 +
1.611 + if {![lindex $v 0] && [db errorcode] != 3082} {
1.612 + # error "Statement \"[lindex $v 1]\" caused a rollback"
1.613 + }
1.614 +
1.615 + for {set i $begin_pc} {$i < $pc} {incr i} {
1.616 + set k2 [lindex $arglist [expr 2 * $i]]
1.617 + set v2 [lindex $arglist [expr 2 * $i + 1]]
1.618 + set catchupsql ""
1.619 + switch -- $k2 {
1.620 + -sql {set catchupsql [lindex $v2 1]}
1.621 + -prep {set catchupsql $v2}
1.622 + }
1.623 + db eval $catchupsql
1.624 + }
1.625 + }
1.626 + } else {
1.627 + error $msg
1.628 + }
1.629 +
1.630 + while {[lindex $arglist [expr 2 * ($pc -1)]] == "-test"} {
1.631 + incr pc -1
1.632 + }
1.633 + }
1.634 +
1.635 + -prep {
1.636 + db eval $v
1.637 + incr pc
1.638 + }
1.639 +
1.640 + -debug {
1.641 + eval $v
1.642 + incr pc
1.643 + }
1.644 +
1.645 + default { error "Unknown switch: $k" }
1.646 + }
1.647 + }
1.648 +}
1.649 +
1.650 +# Turn of the Tcl interface's prepared statement caching facility. Then
1.651 +# run the tests with "persistent" malloc failures.
1.652 +sqlite3_extended_result_codes db 1
1.653 +db cache size 0
1.654 +run_test $::run_test_script 1
1.655 +
1.656 +# Close and reopen the db.
1.657 +db close
1.658 +file delete -force test.db test.db-journal test2.db test2.db-journal
1.659 +sqlite3 db test.db
1.660 +sqlite3_extended_result_codes db 1
1.661 +set ::DB [sqlite3_connection_pointer db]
1.662 +
1.663 +# Turn of the Tcl interface's prepared statement caching facility in
1.664 +# the new connnection. Then run the tests with "transient" malloc failures.
1.665 +db cache size 0
1.666 +run_test $::run_test_script 0
1.667 +
1.668 +sqlite3_memdebug_fail -1
1.669 +finish_test