os/persistentdata/persistentstorage/sqlite3api/SQLite/vdbemem.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/vdbemem.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,1042 @@
     1.4 +/*
     1.5 +** 2004 May 26
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +**
    1.16 +** This file contains code use to manipulate "Mem" structure.  A "Mem"
    1.17 +** stores a single value in the VDBE.  Mem is an opaque structure visible
    1.18 +** only within the VDBE.  Interface routines refer to a Mem using the
    1.19 +** name sqlite_value
    1.20 +**
    1.21 +** $Id: vdbemem.c,v 1.123 2008/09/16 12:06:08 danielk1977 Exp $
    1.22 +*/
    1.23 +#include "sqliteInt.h"
    1.24 +#include <ctype.h>
    1.25 +#include "vdbeInt.h"
    1.26 +
    1.27 +/*
    1.28 +** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
    1.29 +** P if required.
    1.30 +*/
    1.31 +#define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
    1.32 +
    1.33 +/*
    1.34 +** If pMem is an object with a valid string representation, this routine
    1.35 +** ensures the internal encoding for the string representation is
    1.36 +** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
    1.37 +**
    1.38 +** If pMem is not a string object, or the encoding of the string
    1.39 +** representation is already stored using the requested encoding, then this
    1.40 +** routine is a no-op.
    1.41 +**
    1.42 +** SQLITE_OK is returned if the conversion is successful (or not required).
    1.43 +** SQLITE_NOMEM may be returned if a malloc() fails during conversion
    1.44 +** between formats.
    1.45 +*/
    1.46 +int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
    1.47 +  int rc;
    1.48 +  if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
    1.49 +    return SQLITE_OK;
    1.50 +  }
    1.51 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
    1.52 +#ifdef SQLITE_OMIT_UTF16
    1.53 +  return SQLITE_ERROR;
    1.54 +#else
    1.55 +
    1.56 +  /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
    1.57 +  ** then the encoding of the value may not have changed.
    1.58 +  */
    1.59 +  rc = sqlite3VdbeMemTranslate(pMem, desiredEnc);
    1.60 +  assert(rc==SQLITE_OK    || rc==SQLITE_NOMEM);
    1.61 +  assert(rc==SQLITE_OK    || pMem->enc!=desiredEnc);
    1.62 +  assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
    1.63 +  return rc;
    1.64 +#endif
    1.65 +}
    1.66 +
    1.67 +/*
    1.68 +** Make sure pMem->z points to a writable allocation of at least 
    1.69 +** n bytes.
    1.70 +**
    1.71 +** If the memory cell currently contains string or blob data
    1.72 +** and the third argument passed to this function is true, the 
    1.73 +** current content of the cell is preserved. Otherwise, it may
    1.74 +** be discarded.  
    1.75 +**
    1.76 +** This function sets the MEM_Dyn flag and clears any xDel callback.
    1.77 +** It also clears MEM_Ephem and MEM_Static. If the preserve flag is 
    1.78 +** not set, Mem.n is zeroed.
    1.79 +*/
    1.80 +int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
    1.81 +  assert( 1 >=
    1.82 +    ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
    1.83 +    (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + 
    1.84 +    ((pMem->flags&MEM_Ephem) ? 1 : 0) + 
    1.85 +    ((pMem->flags&MEM_Static) ? 1 : 0)
    1.86 +  );
    1.87 +
    1.88 +  if( n<32 ) n = 32;
    1.89 +  if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
    1.90 +    if( preserve && pMem->z==pMem->zMalloc ){
    1.91 +      pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
    1.92 +      if( !pMem->z ){
    1.93 +        pMem->flags = MEM_Null;
    1.94 +      }
    1.95 +      preserve = 0;
    1.96 +    }else{
    1.97 +      sqlite3DbFree(pMem->db, pMem->zMalloc);
    1.98 +      pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
    1.99 +    }
   1.100 +  }
   1.101 +
   1.102 +  if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
   1.103 +    memcpy(pMem->zMalloc, pMem->z, pMem->n);
   1.104 +  }
   1.105 +  if( pMem->flags&MEM_Dyn && pMem->xDel ){
   1.106 +    pMem->xDel((void *)(pMem->z));
   1.107 +  }
   1.108 +
   1.109 +  pMem->z = pMem->zMalloc;
   1.110 +  pMem->flags &= ~(MEM_Ephem|MEM_Static);
   1.111 +  pMem->xDel = 0;
   1.112 +  return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
   1.113 +}
   1.114 +
   1.115 +/*
   1.116 +** Make the given Mem object MEM_Dyn.  In other words, make it so
   1.117 +** that any TEXT or BLOB content is stored in memory obtained from
   1.118 +** malloc().  In this way, we know that the memory is safe to be
   1.119 +** overwritten or altered.
   1.120 +**
   1.121 +** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
   1.122 +*/
   1.123 +int sqlite3VdbeMemMakeWriteable(Mem *pMem){
   1.124 +  int f;
   1.125 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.126 +  expandBlob(pMem);
   1.127 +  f = pMem->flags;
   1.128 +  if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
   1.129 +    if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
   1.130 +      return SQLITE_NOMEM;
   1.131 +    }
   1.132 +    pMem->z[pMem->n] = 0;
   1.133 +    pMem->z[pMem->n+1] = 0;
   1.134 +    pMem->flags |= MEM_Term;
   1.135 +  }
   1.136 +
   1.137 +  return SQLITE_OK;
   1.138 +}
   1.139 +
   1.140 +/*
   1.141 +** If the given Mem* has a zero-filled tail, turn it into an ordinary
   1.142 +** blob stored in dynamically allocated space.
   1.143 +*/
   1.144 +#ifndef SQLITE_OMIT_INCRBLOB
   1.145 +int sqlite3VdbeMemExpandBlob(Mem *pMem){
   1.146 +  if( pMem->flags & MEM_Zero ){
   1.147 +    int nByte;
   1.148 +    assert( pMem->flags&MEM_Blob );
   1.149 +    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.150 +
   1.151 +    /* Set nByte to the number of bytes required to store the expanded blob. */
   1.152 +    nByte = pMem->n + pMem->u.i;
   1.153 +    if( nByte<=0 ){
   1.154 +      nByte = 1;
   1.155 +    }
   1.156 +    if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
   1.157 +      return SQLITE_NOMEM;
   1.158 +    }
   1.159 +
   1.160 +    memset(&pMem->z[pMem->n], 0, pMem->u.i);
   1.161 +    pMem->n += pMem->u.i;
   1.162 +    pMem->flags &= ~(MEM_Zero|MEM_Term);
   1.163 +  }
   1.164 +  return SQLITE_OK;
   1.165 +}
   1.166 +#endif
   1.167 +
   1.168 +
   1.169 +/*
   1.170 +** Make sure the given Mem is \u0000 terminated.
   1.171 +*/
   1.172 +int sqlite3VdbeMemNulTerminate(Mem *pMem){
   1.173 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.174 +  if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
   1.175 +    return SQLITE_OK;   /* Nothing to do */
   1.176 +  }
   1.177 +  if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
   1.178 +    return SQLITE_NOMEM;
   1.179 +  }
   1.180 +  pMem->z[pMem->n] = 0;
   1.181 +  pMem->z[pMem->n+1] = 0;
   1.182 +  pMem->flags |= MEM_Term;
   1.183 +  return SQLITE_OK;
   1.184 +}
   1.185 +
   1.186 +/*
   1.187 +** Add MEM_Str to the set of representations for the given Mem.  Numbers
   1.188 +** are converted using sqlite3_snprintf().  Converting a BLOB to a string
   1.189 +** is a no-op.
   1.190 +**
   1.191 +** Existing representations MEM_Int and MEM_Real are *not* invalidated.
   1.192 +**
   1.193 +** A MEM_Null value will never be passed to this function. This function is
   1.194 +** used for converting values to text for returning to the user (i.e. via
   1.195 +** sqlite3_value_text()), or for ensuring that values to be used as btree
   1.196 +** keys are strings. In the former case a NULL pointer is returned the
   1.197 +** user and the later is an internal programming error.
   1.198 +*/
   1.199 +int sqlite3VdbeMemStringify(Mem *pMem, int enc){
   1.200 +  int rc = SQLITE_OK;
   1.201 +  int fg = pMem->flags;
   1.202 +  const int nByte = 32;
   1.203 +
   1.204 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.205 +  assert( !(fg&MEM_Zero) );
   1.206 +  assert( !(fg&(MEM_Str|MEM_Blob)) );
   1.207 +  assert( fg&(MEM_Int|MEM_Real) );
   1.208 +
   1.209 +  if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
   1.210 +    return SQLITE_NOMEM;
   1.211 +  }
   1.212 +
   1.213 +  /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
   1.214 +  ** string representation of the value. Then, if the required encoding
   1.215 +  ** is UTF-16le or UTF-16be do a translation.
   1.216 +  ** 
   1.217 +  ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
   1.218 +  */
   1.219 +  if( fg & MEM_Int ){
   1.220 +    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
   1.221 +  }else{
   1.222 +    assert( fg & MEM_Real );
   1.223 +    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
   1.224 +  }
   1.225 +  pMem->n = strlen(pMem->z);
   1.226 +  pMem->enc = SQLITE_UTF8;
   1.227 +  pMem->flags |= MEM_Str|MEM_Term;
   1.228 +  sqlite3VdbeChangeEncoding(pMem, enc);
   1.229 +  return rc;
   1.230 +}
   1.231 +
   1.232 +/*
   1.233 +** Memory cell pMem contains the context of an aggregate function.
   1.234 +** This routine calls the finalize method for that function.  The
   1.235 +** result of the aggregate is stored back into pMem.
   1.236 +**
   1.237 +** Return SQLITE_ERROR if the finalizer reports an error.  SQLITE_OK
   1.238 +** otherwise.
   1.239 +*/
   1.240 +int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
   1.241 +  int rc = SQLITE_OK;
   1.242 +  if( pFunc && pFunc->xFinalize ){
   1.243 +    sqlite3_context ctx;
   1.244 +    assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
   1.245 +    assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.246 +    memset(&ctx, 0, sizeof(ctx));
   1.247 +    ctx.s.flags = MEM_Null;
   1.248 +    ctx.s.db = pMem->db;
   1.249 +    ctx.pMem = pMem;
   1.250 +    ctx.pFunc = pFunc;
   1.251 +    pFunc->xFinalize(&ctx);
   1.252 +    assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
   1.253 +    sqlite3DbFree(pMem->db, pMem->zMalloc);
   1.254 +    *pMem = ctx.s;
   1.255 +    rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK);
   1.256 +  }
   1.257 +  return rc;
   1.258 +}
   1.259 +
   1.260 +/*
   1.261 +** If the memory cell contains a string value that must be freed by
   1.262 +** invoking an external callback, free it now. Calling this function
   1.263 +** does not free any Mem.zMalloc buffer.
   1.264 +*/
   1.265 +void sqlite3VdbeMemReleaseExternal(Mem *p){
   1.266 +  assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
   1.267 +  if( p->flags&MEM_Agg ){
   1.268 +    sqlite3VdbeMemFinalize(p, p->u.pDef);
   1.269 +    assert( (p->flags & MEM_Agg)==0 );
   1.270 +    sqlite3VdbeMemRelease(p);
   1.271 +  }else if( p->flags&MEM_Dyn && p->xDel ){
   1.272 +    p->xDel((void *)p->z);
   1.273 +    p->xDel = 0;
   1.274 +  }
   1.275 +}
   1.276 +
   1.277 +/*
   1.278 +** Release any memory held by the Mem. This may leave the Mem in an
   1.279 +** inconsistent state, for example with (Mem.z==0) and
   1.280 +** (Mem.type==SQLITE_TEXT).
   1.281 +*/
   1.282 +void sqlite3VdbeMemRelease(Mem *p){
   1.283 +  sqlite3VdbeMemReleaseExternal(p);
   1.284 +  sqlite3DbFree(p->db, p->zMalloc);
   1.285 +  p->z = 0;
   1.286 +  p->zMalloc = 0;
   1.287 +  p->xDel = 0;
   1.288 +}
   1.289 +
   1.290 +/*
   1.291 +** Convert a 64-bit IEEE double into a 64-bit signed integer.
   1.292 +** If the double is too large, return 0x8000000000000000.
   1.293 +**
   1.294 +** Most systems appear to do this simply by assigning
   1.295 +** variables and without the extra range tests.  But
   1.296 +** there are reports that windows throws an expection
   1.297 +** if the floating point value is out of range. (See ticket #2880.)
   1.298 +** Because we do not completely understand the problem, we will
   1.299 +** take the conservative approach and always do range tests
   1.300 +** before attempting the conversion.
   1.301 +*/
   1.302 +static i64 doubleToInt64(double r){
   1.303 +  /*
   1.304 +  ** Many compilers we encounter do not define constants for the
   1.305 +  ** minimum and maximum 64-bit integers, or they define them
   1.306 +  ** inconsistently.  And many do not understand the "LL" notation.
   1.307 +  ** So we define our own static constants here using nothing
   1.308 +  ** larger than a 32-bit integer constant.
   1.309 +  */
   1.310 +  static const i64 maxInt = LARGEST_INT64;
   1.311 +  static const i64 minInt = SMALLEST_INT64;
   1.312 +
   1.313 +  if( r<(double)minInt ){
   1.314 +    return minInt;
   1.315 +  }else if( r>(double)maxInt ){
   1.316 +    return minInt;
   1.317 +  }else{
   1.318 +    return (i64)r;
   1.319 +  }
   1.320 +}
   1.321 +
   1.322 +/*
   1.323 +** Return some kind of integer value which is the best we can do
   1.324 +** at representing the value that *pMem describes as an integer.
   1.325 +** If pMem is an integer, then the value is exact.  If pMem is
   1.326 +** a floating-point then the value returned is the integer part.
   1.327 +** If pMem is a string or blob, then we make an attempt to convert
   1.328 +** it into a integer and return that.  If pMem is NULL, return 0.
   1.329 +**
   1.330 +** If pMem is a string, its encoding might be changed.
   1.331 +*/
   1.332 +i64 sqlite3VdbeIntValue(Mem *pMem){
   1.333 +  int flags;
   1.334 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.335 +  flags = pMem->flags;
   1.336 +  if( flags & MEM_Int ){
   1.337 +    return pMem->u.i;
   1.338 +  }else if( flags & MEM_Real ){
   1.339 +    return doubleToInt64(pMem->r);
   1.340 +  }else if( flags & (MEM_Str|MEM_Blob) ){
   1.341 +    i64 value;
   1.342 +    pMem->flags |= MEM_Str;
   1.343 +    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
   1.344 +       || sqlite3VdbeMemNulTerminate(pMem) ){
   1.345 +      return 0;
   1.346 +    }
   1.347 +    assert( pMem->z );
   1.348 +    sqlite3Atoi64(pMem->z, &value);
   1.349 +    return value;
   1.350 +  }else{
   1.351 +    return 0;
   1.352 +  }
   1.353 +}
   1.354 +
   1.355 +/*
   1.356 +** Return the best representation of pMem that we can get into a
   1.357 +** double.  If pMem is already a double or an integer, return its
   1.358 +** value.  If it is a string or blob, try to convert it to a double.
   1.359 +** If it is a NULL, return 0.0.
   1.360 +*/
   1.361 +double sqlite3VdbeRealValue(Mem *pMem){
   1.362 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.363 +  if( pMem->flags & MEM_Real ){
   1.364 +    return pMem->r;
   1.365 +  }else if( pMem->flags & MEM_Int ){
   1.366 +    return (double)pMem->u.i;
   1.367 +  }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
   1.368 +    double val = 0.0;
   1.369 +    pMem->flags |= MEM_Str;
   1.370 +    if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8)
   1.371 +       || sqlite3VdbeMemNulTerminate(pMem) ){
   1.372 +      return 0.0;
   1.373 +    }
   1.374 +    assert( pMem->z );
   1.375 +    sqlite3AtoF(pMem->z, &val);
   1.376 +    return val;
   1.377 +  }else{
   1.378 +    return 0.0;
   1.379 +  }
   1.380 +}
   1.381 +
   1.382 +/*
   1.383 +** The MEM structure is already a MEM_Real.  Try to also make it a
   1.384 +** MEM_Int if we can.
   1.385 +*/
   1.386 +void sqlite3VdbeIntegerAffinity(Mem *pMem){
   1.387 +  assert( pMem->flags & MEM_Real );
   1.388 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.389 +
   1.390 +  pMem->u.i = doubleToInt64(pMem->r);
   1.391 +  if( pMem->r==(double)pMem->u.i ){
   1.392 +    pMem->flags |= MEM_Int;
   1.393 +  }
   1.394 +}
   1.395 +
   1.396 +static void setTypeFlag(Mem *pMem, int f){
   1.397 +  MemSetTypeFlag(pMem, f);
   1.398 +}
   1.399 +
   1.400 +/*
   1.401 +** Convert pMem to type integer.  Invalidate any prior representations.
   1.402 +*/
   1.403 +int sqlite3VdbeMemIntegerify(Mem *pMem){
   1.404 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.405 +  pMem->u.i = sqlite3VdbeIntValue(pMem);
   1.406 +  setTypeFlag(pMem, MEM_Int);
   1.407 +  return SQLITE_OK;
   1.408 +}
   1.409 +
   1.410 +/*
   1.411 +** Convert pMem so that it is of type MEM_Real.
   1.412 +** Invalidate any prior representations.
   1.413 +*/
   1.414 +int sqlite3VdbeMemRealify(Mem *pMem){
   1.415 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.416 +  pMem->r = sqlite3VdbeRealValue(pMem);
   1.417 +  setTypeFlag(pMem, MEM_Real);
   1.418 +  return SQLITE_OK;
   1.419 +}
   1.420 +
   1.421 +/*
   1.422 +** Convert pMem so that it has types MEM_Real or MEM_Int or both.
   1.423 +** Invalidate any prior representations.
   1.424 +*/
   1.425 +int sqlite3VdbeMemNumerify(Mem *pMem){
   1.426 +  double r1, r2;
   1.427 +  i64 i;
   1.428 +  assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 );
   1.429 +  assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
   1.430 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.431 +  r1 = sqlite3VdbeRealValue(pMem);
   1.432 +  i = doubleToInt64(r1);
   1.433 +  r2 = (double)i;
   1.434 +  if( r1==r2 ){
   1.435 +    sqlite3VdbeMemIntegerify(pMem);
   1.436 +  }else{
   1.437 +    pMem->r = r1;
   1.438 +    setTypeFlag(pMem, MEM_Real);
   1.439 +  }
   1.440 +  return SQLITE_OK;
   1.441 +}
   1.442 +
   1.443 +/*
   1.444 +** Delete any previous value and set the value stored in *pMem to NULL.
   1.445 +*/
   1.446 +void sqlite3VdbeMemSetNull(Mem *pMem){
   1.447 +  setTypeFlag(pMem, MEM_Null);
   1.448 +  pMem->type = SQLITE_NULL;
   1.449 +}
   1.450 +
   1.451 +/*
   1.452 +** Delete any previous value and set the value to be a BLOB of length
   1.453 +** n containing all zeros.
   1.454 +*/
   1.455 +void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
   1.456 +  sqlite3VdbeMemRelease(pMem);
   1.457 +  setTypeFlag(pMem, MEM_Blob);
   1.458 +  pMem->flags = MEM_Blob|MEM_Zero;
   1.459 +  pMem->type = SQLITE_BLOB;
   1.460 +  pMem->n = 0;
   1.461 +  if( n<0 ) n = 0;
   1.462 +  pMem->u.i = n;
   1.463 +  pMem->enc = SQLITE_UTF8;
   1.464 +}
   1.465 +
   1.466 +/*
   1.467 +** Delete any previous value and set the value stored in *pMem to val,
   1.468 +** manifest type INTEGER.
   1.469 +*/
   1.470 +void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
   1.471 +  sqlite3VdbeMemRelease(pMem);
   1.472 +  pMem->u.i = val;
   1.473 +  pMem->flags = MEM_Int;
   1.474 +  pMem->type = SQLITE_INTEGER;
   1.475 +}
   1.476 +
   1.477 +/*
   1.478 +** Delete any previous value and set the value stored in *pMem to val,
   1.479 +** manifest type REAL.
   1.480 +*/
   1.481 +void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
   1.482 +  if( sqlite3IsNaN(val) ){
   1.483 +    sqlite3VdbeMemSetNull(pMem);
   1.484 +  }else{
   1.485 +    sqlite3VdbeMemRelease(pMem);
   1.486 +    pMem->r = val;
   1.487 +    pMem->flags = MEM_Real;
   1.488 +    pMem->type = SQLITE_FLOAT;
   1.489 +  }
   1.490 +}
   1.491 +
   1.492 +/*
   1.493 +** Return true if the Mem object contains a TEXT or BLOB that is
   1.494 +** too large - whose size exceeds SQLITE_MAX_LENGTH.
   1.495 +*/
   1.496 +int sqlite3VdbeMemTooBig(Mem *p){
   1.497 +  assert( p->db!=0 );
   1.498 +  if( p->flags & (MEM_Str|MEM_Blob) ){
   1.499 +    int n = p->n;
   1.500 +    if( p->flags & MEM_Zero ){
   1.501 +      n += p->u.i;
   1.502 +    }
   1.503 +    return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
   1.504 +  }
   1.505 +  return 0; 
   1.506 +}
   1.507 +
   1.508 +/*
   1.509 +** Size of struct Mem not including the Mem.zMalloc member.
   1.510 +*/
   1.511 +#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
   1.512 +
   1.513 +/*
   1.514 +** Make an shallow copy of pFrom into pTo.  Prior contents of
   1.515 +** pTo are freed.  The pFrom->z field is not duplicated.  If
   1.516 +** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
   1.517 +** and flags gets srcType (either MEM_Ephem or MEM_Static).
   1.518 +*/
   1.519 +void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
   1.520 +  sqlite3VdbeMemReleaseExternal(pTo);
   1.521 +  memcpy(pTo, pFrom, MEMCELLSIZE);
   1.522 +  pTo->xDel = 0;
   1.523 +  if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){
   1.524 +    pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
   1.525 +    assert( srcType==MEM_Ephem || srcType==MEM_Static );
   1.526 +    pTo->flags |= srcType;
   1.527 +  }
   1.528 +}
   1.529 +
   1.530 +/*
   1.531 +** Make a full copy of pFrom into pTo.  Prior contents of pTo are
   1.532 +** freed before the copy is made.
   1.533 +*/
   1.534 +int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
   1.535 +  int rc = SQLITE_OK;
   1.536 +
   1.537 +  sqlite3VdbeMemReleaseExternal(pTo);
   1.538 +  memcpy(pTo, pFrom, MEMCELLSIZE);
   1.539 +  pTo->flags &= ~MEM_Dyn;
   1.540 +
   1.541 +  if( pTo->flags&(MEM_Str|MEM_Blob) ){
   1.542 +    if( 0==(pFrom->flags&MEM_Static) ){
   1.543 +      pTo->flags |= MEM_Ephem;
   1.544 +      rc = sqlite3VdbeMemMakeWriteable(pTo);
   1.545 +    }
   1.546 +  }
   1.547 +
   1.548 +  return rc;
   1.549 +}
   1.550 +
   1.551 +/*
   1.552 +** Transfer the contents of pFrom to pTo. Any existing value in pTo is
   1.553 +** freed. If pFrom contains ephemeral data, a copy is made.
   1.554 +**
   1.555 +** pFrom contains an SQL NULL when this routine returns.
   1.556 +*/
   1.557 +void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
   1.558 +  assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
   1.559 +  assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
   1.560 +  assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
   1.561 +
   1.562 +  sqlite3VdbeMemRelease(pTo);
   1.563 +  memcpy(pTo, pFrom, sizeof(Mem));
   1.564 +  pFrom->flags = MEM_Null;
   1.565 +  pFrom->xDel = 0;
   1.566 +  pFrom->zMalloc = 0;
   1.567 +}
   1.568 +
   1.569 +/*
   1.570 +** Change the value of a Mem to be a string or a BLOB.
   1.571 +**
   1.572 +** The memory management strategy depends on the value of the xDel
   1.573 +** parameter. If the value passed is SQLITE_TRANSIENT, then the 
   1.574 +** string is copied into a (possibly existing) buffer managed by the 
   1.575 +** Mem structure. Otherwise, any existing buffer is freed and the
   1.576 +** pointer copied.
   1.577 +*/
   1.578 +int sqlite3VdbeMemSetStr(
   1.579 +  Mem *pMem,          /* Memory cell to set to string value */
   1.580 +  const char *z,      /* String pointer */
   1.581 +  int n,              /* Bytes in string, or negative */
   1.582 +  u8 enc,             /* Encoding of z.  0 for BLOBs */
   1.583 +  void (*xDel)(void*) /* Destructor function */
   1.584 +){
   1.585 +  int nByte = n;      /* New value for pMem->n */
   1.586 +  int iLimit;         /* Maximum allowed string or blob size */
   1.587 +  int flags = 0;      /* New value for pMem->flags */
   1.588 +
   1.589 +  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
   1.590 +
   1.591 +  /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
   1.592 +  if( !z ){
   1.593 +    sqlite3VdbeMemSetNull(pMem);
   1.594 +    return SQLITE_OK;
   1.595 +  }
   1.596 +
   1.597 +  if( pMem->db ){
   1.598 +    iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
   1.599 +  }else{
   1.600 +    iLimit = SQLITE_MAX_LENGTH;
   1.601 +  }
   1.602 +  flags = (enc==0?MEM_Blob:MEM_Str);
   1.603 +  if( nByte<0 ){
   1.604 +    assert( enc!=0 );
   1.605 +    if( enc==SQLITE_UTF8 ){
   1.606 +      for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
   1.607 +    }else{
   1.608 +      for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
   1.609 +    }
   1.610 +    flags |= MEM_Term;
   1.611 +  }
   1.612 +  if( nByte>iLimit ){
   1.613 +    return SQLITE_TOOBIG;
   1.614 +  }
   1.615 +
   1.616 +  /* The following block sets the new values of Mem.z and Mem.xDel. It
   1.617 +  ** also sets a flag in local variable "flags" to indicate the memory
   1.618 +  ** management (one of MEM_Dyn or MEM_Static).
   1.619 +  */
   1.620 +  if( xDel==SQLITE_TRANSIENT ){
   1.621 +    int nAlloc = nByte;
   1.622 +    if( flags&MEM_Term ){
   1.623 +      nAlloc += (enc==SQLITE_UTF8?1:2);
   1.624 +    }
   1.625 +    if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
   1.626 +      return SQLITE_NOMEM;
   1.627 +    }
   1.628 +    memcpy(pMem->z, z, nAlloc);
   1.629 +  }else if( xDel==SQLITE_DYNAMIC ){
   1.630 +    sqlite3VdbeMemRelease(pMem);
   1.631 +    pMem->zMalloc = pMem->z = (char *)z;
   1.632 +    pMem->xDel = 0;
   1.633 +  }else{
   1.634 +    sqlite3VdbeMemRelease(pMem);
   1.635 +    pMem->z = (char *)z;
   1.636 +    pMem->xDel = xDel;
   1.637 +    flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
   1.638 +  }
   1.639 +
   1.640 +  pMem->n = nByte;
   1.641 +  pMem->flags = flags;
   1.642 +  pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
   1.643 +  pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
   1.644 +
   1.645 +#ifndef SQLITE_OMIT_UTF16
   1.646 +  if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
   1.647 +    return SQLITE_NOMEM;
   1.648 +  }
   1.649 +#endif
   1.650 +
   1.651 +  return SQLITE_OK;
   1.652 +}
   1.653 +
   1.654 +/*
   1.655 +** Compare the values contained by the two memory cells, returning
   1.656 +** negative, zero or positive if pMem1 is less than, equal to, or greater
   1.657 +** than pMem2. Sorting order is NULL's first, followed by numbers (integers
   1.658 +** and reals) sorted numerically, followed by text ordered by the collating
   1.659 +** sequence pColl and finally blob's ordered by memcmp().
   1.660 +**
   1.661 +** Two NULL values are considered equal by this function.
   1.662 +*/
   1.663 +int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
   1.664 +  int rc;
   1.665 +  int f1, f2;
   1.666 +  int combined_flags;
   1.667 +
   1.668 +  /* Interchange pMem1 and pMem2 if the collating sequence specifies
   1.669 +  ** DESC order.
   1.670 +  */
   1.671 +  f1 = pMem1->flags;
   1.672 +  f2 = pMem2->flags;
   1.673 +  combined_flags = f1|f2;
   1.674 + 
   1.675 +  /* If one value is NULL, it is less than the other. If both values
   1.676 +  ** are NULL, return 0.
   1.677 +  */
   1.678 +  if( combined_flags&MEM_Null ){
   1.679 +    return (f2&MEM_Null) - (f1&MEM_Null);
   1.680 +  }
   1.681 +
   1.682 +  /* If one value is a number and the other is not, the number is less.
   1.683 +  ** If both are numbers, compare as reals if one is a real, or as integers
   1.684 +  ** if both values are integers.
   1.685 +  */
   1.686 +  if( combined_flags&(MEM_Int|MEM_Real) ){
   1.687 +    if( !(f1&(MEM_Int|MEM_Real)) ){
   1.688 +      return 1;
   1.689 +    }
   1.690 +    if( !(f2&(MEM_Int|MEM_Real)) ){
   1.691 +      return -1;
   1.692 +    }
   1.693 +    if( (f1 & f2 & MEM_Int)==0 ){
   1.694 +      double r1, r2;
   1.695 +      if( (f1&MEM_Real)==0 ){
   1.696 +        r1 = pMem1->u.i;
   1.697 +      }else{
   1.698 +        r1 = pMem1->r;
   1.699 +      }
   1.700 +      if( (f2&MEM_Real)==0 ){
   1.701 +        r2 = pMem2->u.i;
   1.702 +      }else{
   1.703 +        r2 = pMem2->r;
   1.704 +      }
   1.705 +      if( r1<r2 ) return -1;
   1.706 +      if( r1>r2 ) return 1;
   1.707 +      return 0;
   1.708 +    }else{
   1.709 +      assert( f1&MEM_Int );
   1.710 +      assert( f2&MEM_Int );
   1.711 +      if( pMem1->u.i < pMem2->u.i ) return -1;
   1.712 +      if( pMem1->u.i > pMem2->u.i ) return 1;
   1.713 +      return 0;
   1.714 +    }
   1.715 +  }
   1.716 +
   1.717 +  /* If one value is a string and the other is a blob, the string is less.
   1.718 +  ** If both are strings, compare using the collating functions.
   1.719 +  */
   1.720 +  if( combined_flags&MEM_Str ){
   1.721 +    if( (f1 & MEM_Str)==0 ){
   1.722 +      return 1;
   1.723 +    }
   1.724 +    if( (f2 & MEM_Str)==0 ){
   1.725 +      return -1;
   1.726 +    }
   1.727 +
   1.728 +    assert( pMem1->enc==pMem2->enc );
   1.729 +    assert( pMem1->enc==SQLITE_UTF8 || 
   1.730 +            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
   1.731 +
   1.732 +    /* The collation sequence must be defined at this point, even if
   1.733 +    ** the user deletes the collation sequence after the vdbe program is
   1.734 +    ** compiled (this was not always the case).
   1.735 +    */
   1.736 +    assert( !pColl || pColl->xCmp );
   1.737 +
   1.738 +    if( pColl ){
   1.739 +      if( pMem1->enc==pColl->enc ){
   1.740 +        /* The strings are already in the correct encoding.  Call the
   1.741 +        ** comparison function directly */
   1.742 +        return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
   1.743 +      }else{
   1.744 +        const void *v1, *v2;
   1.745 +        int n1, n2;
   1.746 +        Mem c1;
   1.747 +        Mem c2;
   1.748 +        memset(&c1, 0, sizeof(c1));
   1.749 +        memset(&c2, 0, sizeof(c2));
   1.750 +        sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
   1.751 +        sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
   1.752 +        v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
   1.753 +        n1 = v1==0 ? 0 : c1.n;
   1.754 +        v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
   1.755 +        n2 = v2==0 ? 0 : c2.n;
   1.756 +        rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
   1.757 +        sqlite3VdbeMemRelease(&c1);
   1.758 +        sqlite3VdbeMemRelease(&c2);
   1.759 +        return rc;
   1.760 +      }
   1.761 +    }
   1.762 +    /* If a NULL pointer was passed as the collate function, fall through
   1.763 +    ** to the blob case and use memcmp().  */
   1.764 +  }
   1.765 + 
   1.766 +  /* Both values must be blobs.  Compare using memcmp().  */
   1.767 +  rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
   1.768 +  if( rc==0 ){
   1.769 +    rc = pMem1->n - pMem2->n;
   1.770 +  }
   1.771 +  return rc;
   1.772 +}
   1.773 +
   1.774 +/*
   1.775 +** Move data out of a btree key or data field and into a Mem structure.
   1.776 +** The data or key is taken from the entry that pCur is currently pointing
   1.777 +** to.  offset and amt determine what portion of the data or key to retrieve.
   1.778 +** key is true to get the key or false to get data.  The result is written
   1.779 +** into the pMem element.
   1.780 +**
   1.781 +** The pMem structure is assumed to be uninitialized.  Any prior content
   1.782 +** is overwritten without being freed.
   1.783 +**
   1.784 +** If this routine fails for any reason (malloc returns NULL or unable
   1.785 +** to read from the disk) then the pMem is left in an inconsistent state.
   1.786 +*/
   1.787 +int sqlite3VdbeMemFromBtree(
   1.788 +  BtCursor *pCur,   /* Cursor pointing at record to retrieve. */
   1.789 +  int offset,       /* Offset from the start of data to return bytes from. */
   1.790 +  int amt,          /* Number of bytes to return. */
   1.791 +  int key,          /* If true, retrieve from the btree key, not data. */
   1.792 +  Mem *pMem         /* OUT: Return data in this Mem structure. */
   1.793 +){
   1.794 +  char *zData;       /* Data from the btree layer */
   1.795 +  int available = 0; /* Number of bytes available on the local btree page */
   1.796 +  sqlite3 *db;       /* Database connection */
   1.797 +  int rc = SQLITE_OK;
   1.798 +
   1.799 +  db = sqlite3BtreeCursorDb(pCur);
   1.800 +  assert( sqlite3_mutex_held(db->mutex) );
   1.801 +  if( key ){
   1.802 +    zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
   1.803 +  }else{
   1.804 +    zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
   1.805 +  }
   1.806 +  assert( zData!=0 );
   1.807 +
   1.808 +  if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){
   1.809 +    sqlite3VdbeMemRelease(pMem);
   1.810 +    pMem->z = &zData[offset];
   1.811 +    pMem->flags = MEM_Blob|MEM_Ephem;
   1.812 +  }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
   1.813 +    pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
   1.814 +    pMem->enc = 0;
   1.815 +    pMem->type = SQLITE_BLOB;
   1.816 +    if( key ){
   1.817 +      rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
   1.818 +    }else{
   1.819 +      rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
   1.820 +    }
   1.821 +    pMem->z[amt] = 0;
   1.822 +    pMem->z[amt+1] = 0;
   1.823 +    if( rc!=SQLITE_OK ){
   1.824 +      sqlite3VdbeMemRelease(pMem);
   1.825 +    }
   1.826 +  }
   1.827 +  pMem->n = amt;
   1.828 +
   1.829 +  return rc;
   1.830 +}
   1.831 +
   1.832 +#if 0
   1.833 +/*
   1.834 +** Perform various checks on the memory cell pMem. An assert() will
   1.835 +** fail if pMem is internally inconsistent.
   1.836 +*/
   1.837 +void sqlite3VdbeMemSanity(Mem *pMem){
   1.838 +  int flags = pMem->flags;
   1.839 +  assert( flags!=0 );  /* Must define some type */
   1.840 +  if( flags & (MEM_Str|MEM_Blob) ){
   1.841 +    int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short);
   1.842 +    assert( x!=0 );            /* Strings must define a string subtype */
   1.843 +    assert( (x & (x-1))==0 );  /* Only one string subtype can be defined */
   1.844 +    assert( pMem->z!=0 );      /* Strings must have a value */
   1.845 +    /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */
   1.846 +    assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort );
   1.847 +    assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort );
   1.848 +    /* No destructor unless there is MEM_Dyn */
   1.849 +    assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 );
   1.850 +
   1.851 +    if( (flags & MEM_Str) ){
   1.852 +      assert( pMem->enc==SQLITE_UTF8 || 
   1.853 +              pMem->enc==SQLITE_UTF16BE ||
   1.854 +              pMem->enc==SQLITE_UTF16LE 
   1.855 +      );
   1.856 +      /* If the string is UTF-8 encoded and nul terminated, then pMem->n
   1.857 +      ** must be the length of the string.  (Later:)  If the database file
   1.858 +      ** has been corrupted, '\000' characters might have been inserted
   1.859 +      ** into the middle of the string.  In that case, the strlen() might
   1.860 +      ** be less.
   1.861 +      */
   1.862 +      if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ 
   1.863 +        assert( strlen(pMem->z)<=pMem->n );
   1.864 +        assert( pMem->z[pMem->n]==0 );
   1.865 +      }
   1.866 +    }
   1.867 +  }else{
   1.868 +    /* Cannot define a string subtype for non-string objects */
   1.869 +    assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 );
   1.870 +    assert( pMem->xDel==0 );
   1.871 +  }
   1.872 +  /* MEM_Null excludes all other types */
   1.873 +  assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0
   1.874 +          || (pMem->flags&MEM_Null)==0 );
   1.875 +  /* If the MEM is both real and integer, the values are equal */
   1.876 +  assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) 
   1.877 +          || pMem->r==pMem->u.i );
   1.878 +}
   1.879 +#endif
   1.880 +
   1.881 +/* This function is only available internally, it is not part of the
   1.882 +** external API. It works in a similar way to sqlite3_value_text(),
   1.883 +** except the data returned is in the encoding specified by the second
   1.884 +** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
   1.885 +** SQLITE_UTF8.
   1.886 +**
   1.887 +** (2006-02-16:)  The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
   1.888 +** If that is the case, then the result must be aligned on an even byte
   1.889 +** boundary.
   1.890 +*/
   1.891 +const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
   1.892 +  if( !pVal ) return 0;
   1.893 +
   1.894 +  assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
   1.895 +  assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
   1.896 +
   1.897 +  if( pVal->flags&MEM_Null ){
   1.898 +    return 0;
   1.899 +  }
   1.900 +  assert( (MEM_Blob>>3) == MEM_Str );
   1.901 +  pVal->flags |= (pVal->flags & MEM_Blob)>>3;
   1.902 +  expandBlob(pVal);
   1.903 +  if( pVal->flags&MEM_Str ){
   1.904 +    sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
   1.905 +    if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
   1.906 +      assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
   1.907 +      if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
   1.908 +        return 0;
   1.909 +      }
   1.910 +    }
   1.911 +    sqlite3VdbeMemNulTerminate(pVal);
   1.912 +  }else{
   1.913 +    assert( (pVal->flags&MEM_Blob)==0 );
   1.914 +    sqlite3VdbeMemStringify(pVal, enc);
   1.915 +    assert( 0==(1&(int)pVal->z) );
   1.916 +  }
   1.917 +  assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
   1.918 +              || pVal->db->mallocFailed );
   1.919 +  if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
   1.920 +    return pVal->z;
   1.921 +  }else{
   1.922 +    return 0;
   1.923 +  }
   1.924 +}
   1.925 +
   1.926 +/*
   1.927 +** Create a new sqlite3_value object.
   1.928 +*/
   1.929 +sqlite3_value *sqlite3ValueNew(sqlite3 *db){
   1.930 +  Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
   1.931 +  if( p ){
   1.932 +    p->flags = MEM_Null;
   1.933 +    p->type = SQLITE_NULL;
   1.934 +    p->db = db;
   1.935 +  }
   1.936 +  return p;
   1.937 +}
   1.938 +
   1.939 +/*
   1.940 +** Create a new sqlite3_value object, containing the value of pExpr.
   1.941 +**
   1.942 +** This only works for very simple expressions that consist of one constant
   1.943 +** token (i.e. "5", "5.1", "'a string'"). If the expression can
   1.944 +** be converted directly into a value, then the value is allocated and
   1.945 +** a pointer written to *ppVal. The caller is responsible for deallocating
   1.946 +** the value by passing it to sqlite3ValueFree() later on. If the expression
   1.947 +** cannot be converted to a value, then *ppVal is set to NULL.
   1.948 +*/
   1.949 +int sqlite3ValueFromExpr(
   1.950 +  sqlite3 *db,              /* The database connection */
   1.951 +  Expr *pExpr,              /* The expression to evaluate */
   1.952 +  u8 enc,                   /* Encoding to use */
   1.953 +  u8 affinity,              /* Affinity to use */
   1.954 +  sqlite3_value **ppVal     /* Write the new value here */
   1.955 +){
   1.956 +  int op;
   1.957 +  char *zVal = 0;
   1.958 +  sqlite3_value *pVal = 0;
   1.959 +
   1.960 +  if( !pExpr ){
   1.961 +    *ppVal = 0;
   1.962 +    return SQLITE_OK;
   1.963 +  }
   1.964 +  op = pExpr->op;
   1.965 +
   1.966 +  if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
   1.967 +    zVal = sqlite3DbStrNDup(db, (char*)pExpr->token.z, pExpr->token.n);
   1.968 +    pVal = sqlite3ValueNew(db);
   1.969 +    if( !zVal || !pVal ) goto no_mem;
   1.970 +    sqlite3Dequote(zVal);
   1.971 +    sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
   1.972 +    if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
   1.973 +      sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc);
   1.974 +    }else{
   1.975 +      sqlite3ValueApplyAffinity(pVal, affinity, enc);
   1.976 +    }
   1.977 +  }else if( op==TK_UMINUS ) {
   1.978 +    if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
   1.979 +      pVal->u.i = -1 * pVal->u.i;
   1.980 +      pVal->r = -1.0 * pVal->r;
   1.981 +    }
   1.982 +  }
   1.983 +#ifndef SQLITE_OMIT_BLOB_LITERAL
   1.984 +  else if( op==TK_BLOB ){
   1.985 +    int nVal;
   1.986 +    assert( pExpr->token.n>=3 );
   1.987 +    assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' );
   1.988 +    assert( pExpr->token.z[1]=='\'' );
   1.989 +    assert( pExpr->token.z[pExpr->token.n-1]=='\'' );
   1.990 +    pVal = sqlite3ValueNew(db);
   1.991 +    nVal = pExpr->token.n - 3;
   1.992 +    zVal = (char*)pExpr->token.z + 2;
   1.993 +    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
   1.994 +                         0, SQLITE_DYNAMIC);
   1.995 +  }
   1.996 +#endif
   1.997 +
   1.998 +  *ppVal = pVal;
   1.999 +  return SQLITE_OK;
  1.1000 +
  1.1001 +no_mem:
  1.1002 +  db->mallocFailed = 1;
  1.1003 +  sqlite3DbFree(db, zVal);
  1.1004 +  sqlite3ValueFree(pVal);
  1.1005 +  *ppVal = 0;
  1.1006 +  return SQLITE_NOMEM;
  1.1007 +}
  1.1008 +
  1.1009 +/*
  1.1010 +** Change the string value of an sqlite3_value object
  1.1011 +*/
  1.1012 +void sqlite3ValueSetStr(
  1.1013 +  sqlite3_value *v,     /* Value to be set */
  1.1014 +  int n,                /* Length of string z */
  1.1015 +  const void *z,        /* Text of the new string */
  1.1016 +  u8 enc,               /* Encoding to use */
  1.1017 +  void (*xDel)(void*)   /* Destructor for the string */
  1.1018 +){
  1.1019 +  if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
  1.1020 +}
  1.1021 +
  1.1022 +/*
  1.1023 +** Free an sqlite3_value object
  1.1024 +*/
  1.1025 +void sqlite3ValueFree(sqlite3_value *v){
  1.1026 +  if( !v ) return;
  1.1027 +  sqlite3VdbeMemRelease((Mem *)v);
  1.1028 +  sqlite3DbFree(((Mem*)v)->db, v);
  1.1029 +}
  1.1030 +
  1.1031 +/*
  1.1032 +** Return the number of bytes in the sqlite3_value object assuming
  1.1033 +** that it uses the encoding "enc"
  1.1034 +*/
  1.1035 +int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
  1.1036 +  Mem *p = (Mem*)pVal;
  1.1037 +  if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
  1.1038 +    if( p->flags & MEM_Zero ){
  1.1039 +      return p->n+p->u.i;
  1.1040 +    }else{
  1.1041 +      return p->n;
  1.1042 +    }
  1.1043 +  }
  1.1044 +  return 0;
  1.1045 +}