os/persistentdata/persistentstorage/sqlite3api/SQLite/hash.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/hash.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,423 @@
     1.4 +/*
     1.5 +** 2001 September 22
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** This is the implementation of generic hash-tables
    1.16 +** used in SQLite.
    1.17 +**
    1.18 +** $Id: hash.c,v 1.30 2008/06/20 14:59:51 danielk1977 Exp $
    1.19 +*/
    1.20 +#include "sqliteInt.h"
    1.21 +#include <assert.h>
    1.22 +
    1.23 +/* Turn bulk memory into a hash table object by initializing the
    1.24 +** fields of the Hash structure.
    1.25 +**
    1.26 +** "pNew" is a pointer to the hash table that is to be initialized.
    1.27 +** keyClass is one of the constants SQLITE_HASH_INT, SQLITE_HASH_POINTER,
    1.28 +** SQLITE_HASH_BINARY, or SQLITE_HASH_STRING.  The value of keyClass 
    1.29 +** determines what kind of key the hash table will use.  "copyKey" is
    1.30 +** true if the hash table should make its own private copy of keys and
    1.31 +** false if it should just use the supplied pointer.  CopyKey only makes
    1.32 +** sense for SQLITE_HASH_STRING and SQLITE_HASH_BINARY and is ignored
    1.33 +** for other key classes.
    1.34 +*/
    1.35 +void sqlite3HashInit(Hash *pNew, int keyClass, int copyKey){
    1.36 +  assert( pNew!=0 );
    1.37 +  assert( keyClass>=SQLITE_HASH_STRING && keyClass<=SQLITE_HASH_BINARY );
    1.38 +  pNew->keyClass = keyClass;
    1.39 +#if 0
    1.40 +  if( keyClass==SQLITE_HASH_POINTER || keyClass==SQLITE_HASH_INT ) copyKey = 0;
    1.41 +#endif
    1.42 +  pNew->copyKey = copyKey;
    1.43 +  pNew->first = 0;
    1.44 +  pNew->count = 0;
    1.45 +  pNew->htsize = 0;
    1.46 +  pNew->ht = 0;
    1.47 +}
    1.48 +
    1.49 +/* Remove all entries from a hash table.  Reclaim all memory.
    1.50 +** Call this routine to delete a hash table or to reset a hash table
    1.51 +** to the empty state.
    1.52 +*/
    1.53 +void sqlite3HashClear(Hash *pH){
    1.54 +  HashElem *elem;         /* For looping over all elements of the table */
    1.55 +
    1.56 +  assert( pH!=0 );
    1.57 +  elem = pH->first;
    1.58 +  pH->first = 0;
    1.59 +  sqlite3_free(pH->ht);
    1.60 +  pH->ht = 0;
    1.61 +  pH->htsize = 0;
    1.62 +  while( elem ){
    1.63 +    HashElem *next_elem = elem->next;
    1.64 +    if( pH->copyKey && elem->pKey ){
    1.65 +      sqlite3_free(elem->pKey);
    1.66 +    }
    1.67 +    sqlite3_free(elem);
    1.68 +    elem = next_elem;
    1.69 +  }
    1.70 +  pH->count = 0;
    1.71 +}
    1.72 +
    1.73 +#if 0 /* NOT USED */
    1.74 +/*
    1.75 +** Hash and comparison functions when the mode is SQLITE_HASH_INT
    1.76 +*/
    1.77 +static int intHash(const void *pKey, int nKey){
    1.78 +  return nKey ^ (nKey<<8) ^ (nKey>>8);
    1.79 +}
    1.80 +static int intCompare(const void *pKey1, int n1, const void *pKey2, int n2){
    1.81 +  return n2 - n1;
    1.82 +}
    1.83 +#endif
    1.84 +
    1.85 +#if 0 /* NOT USED */
    1.86 +/*
    1.87 +** Hash and comparison functions when the mode is SQLITE_HASH_POINTER
    1.88 +*/
    1.89 +static int ptrHash(const void *pKey, int nKey){
    1.90 +  uptr x = Addr(pKey);
    1.91 +  return x ^ (x<<8) ^ (x>>8);
    1.92 +}
    1.93 +static int ptrCompare(const void *pKey1, int n1, const void *pKey2, int n2){
    1.94 +  if( pKey1==pKey2 ) return 0;
    1.95 +  if( pKey1<pKey2 ) return -1;
    1.96 +  return 1;
    1.97 +}
    1.98 +#endif
    1.99 +
   1.100 +/*
   1.101 +** Hash and comparison functions when the mode is SQLITE_HASH_STRING
   1.102 +*/
   1.103 +static int strHash(const void *pKey, int nKey){
   1.104 +  const char *z = (const char *)pKey;
   1.105 +  int h = 0;
   1.106 +  if( nKey<=0 ) nKey = strlen(z);
   1.107 +  while( nKey > 0  ){
   1.108 +    h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++];
   1.109 +    nKey--;
   1.110 +  }
   1.111 +  return h & 0x7fffffff;
   1.112 +}
   1.113 +static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
   1.114 +  if( n1!=n2 ) return 1;
   1.115 +  return sqlite3StrNICmp((const char*)pKey1,(const char*)pKey2,n1);
   1.116 +}
   1.117 +
   1.118 +/*
   1.119 +** Hash and comparison functions when the mode is SQLITE_HASH_BINARY
   1.120 +*/
   1.121 +static int binHash(const void *pKey, int nKey){
   1.122 +  int h = 0;
   1.123 +  const char *z = (const char *)pKey;
   1.124 +  while( nKey-- > 0 ){
   1.125 +    h = (h<<3) ^ h ^ *(z++);
   1.126 +  }
   1.127 +  return h & 0x7fffffff;
   1.128 +}
   1.129 +static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
   1.130 +  if( n1!=n2 ) return 1;
   1.131 +  return memcmp(pKey1,pKey2,n1);
   1.132 +}
   1.133 +
   1.134 +/*
   1.135 +** Return a pointer to the appropriate hash function given the key class.
   1.136 +**
   1.137 +** The C syntax in this function definition may be unfamilar to some 
   1.138 +** programmers, so we provide the following additional explanation:
   1.139 +**
   1.140 +** The name of the function is "hashFunction".  The function takes a
   1.141 +** single parameter "keyClass".  The return value of hashFunction()
   1.142 +** is a pointer to another function.  Specifically, the return value
   1.143 +** of hashFunction() is a pointer to a function that takes two parameters
   1.144 +** with types "const void*" and "int" and returns an "int".
   1.145 +*/
   1.146 +static int (*hashFunction(int keyClass))(const void*,int){
   1.147 +#if 0  /* HASH_INT and HASH_POINTER are never used */
   1.148 +  switch( keyClass ){
   1.149 +    case SQLITE_HASH_INT:     return &intHash;
   1.150 +    case SQLITE_HASH_POINTER: return &ptrHash;
   1.151 +    case SQLITE_HASH_STRING:  return &strHash;
   1.152 +    case SQLITE_HASH_BINARY:  return &binHash;;
   1.153 +    default: break;
   1.154 +  }
   1.155 +  return 0;
   1.156 +#else
   1.157 +  if( keyClass==SQLITE_HASH_STRING ){
   1.158 +    return &strHash;
   1.159 +  }else{
   1.160 +    assert( keyClass==SQLITE_HASH_BINARY );
   1.161 +    return &binHash;
   1.162 +  }
   1.163 +#endif
   1.164 +}
   1.165 +
   1.166 +/*
   1.167 +** Return a pointer to the appropriate hash function given the key class.
   1.168 +**
   1.169 +** For help in interpreted the obscure C code in the function definition,
   1.170 +** see the header comment on the previous function.
   1.171 +*/
   1.172 +static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
   1.173 +#if 0 /* HASH_INT and HASH_POINTER are never used */
   1.174 +  switch( keyClass ){
   1.175 +    case SQLITE_HASH_INT:     return &intCompare;
   1.176 +    case SQLITE_HASH_POINTER: return &ptrCompare;
   1.177 +    case SQLITE_HASH_STRING:  return &strCompare;
   1.178 +    case SQLITE_HASH_BINARY:  return &binCompare;
   1.179 +    default: break;
   1.180 +  }
   1.181 +  return 0;
   1.182 +#else
   1.183 +  if( keyClass==SQLITE_HASH_STRING ){
   1.184 +    return &strCompare;
   1.185 +  }else{
   1.186 +    assert( keyClass==SQLITE_HASH_BINARY );
   1.187 +    return &binCompare;
   1.188 +  }
   1.189 +#endif
   1.190 +}
   1.191 +
   1.192 +/* Link an element into the hash table
   1.193 +*/
   1.194 +static void insertElement(
   1.195 +  Hash *pH,              /* The complete hash table */
   1.196 +  struct _ht *pEntry,    /* The entry into which pNew is inserted */
   1.197 +  HashElem *pNew         /* The element to be inserted */
   1.198 +){
   1.199 +  HashElem *pHead;       /* First element already in pEntry */
   1.200 +  pHead = pEntry->chain;
   1.201 +  if( pHead ){
   1.202 +    pNew->next = pHead;
   1.203 +    pNew->prev = pHead->prev;
   1.204 +    if( pHead->prev ){ pHead->prev->next = pNew; }
   1.205 +    else             { pH->first = pNew; }
   1.206 +    pHead->prev = pNew;
   1.207 +  }else{
   1.208 +    pNew->next = pH->first;
   1.209 +    if( pH->first ){ pH->first->prev = pNew; }
   1.210 +    pNew->prev = 0;
   1.211 +    pH->first = pNew;
   1.212 +  }
   1.213 +  pEntry->count++;
   1.214 +  pEntry->chain = pNew;
   1.215 +}
   1.216 +
   1.217 +
   1.218 +/* Resize the hash table so that it cantains "new_size" buckets.
   1.219 +** "new_size" must be a power of 2.  The hash table might fail 
   1.220 +** to resize if sqlite3_malloc() fails.
   1.221 +*/
   1.222 +static void rehash(Hash *pH, int new_size){
   1.223 +  struct _ht *new_ht;            /* The new hash table */
   1.224 +  HashElem *elem, *next_elem;    /* For looping over existing elements */
   1.225 +  int (*xHash)(const void*,int); /* The hash function */
   1.226 +
   1.227 +#ifdef SQLITE_MALLOC_SOFT_LIMIT
   1.228 +  if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){
   1.229 +    new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
   1.230 +  }
   1.231 +  if( new_size==pH->htsize ) return;
   1.232 +#endif
   1.233 +
   1.234 +  /* There is a call to sqlite3_malloc() inside rehash(). If there is
   1.235 +  ** already an allocation at pH->ht, then if this malloc() fails it
   1.236 +  ** is benign (since failing to resize a hash table is a performance
   1.237 +  ** hit only, not a fatal error).
   1.238 +  */
   1.239 +  if( pH->htsize>0 ) sqlite3BeginBenignMalloc();
   1.240 +  new_ht = (struct _ht *)sqlite3MallocZero( new_size*sizeof(struct _ht) );
   1.241 +  if( pH->htsize>0 ) sqlite3EndBenignMalloc();
   1.242 +
   1.243 +  if( new_ht==0 ) return;
   1.244 +  sqlite3_free(pH->ht);
   1.245 +  pH->ht = new_ht;
   1.246 +  pH->htsize = new_size;
   1.247 +  xHash = hashFunction(pH->keyClass);
   1.248 +  for(elem=pH->first, pH->first=0; elem; elem = next_elem){
   1.249 +    int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
   1.250 +    next_elem = elem->next;
   1.251 +    insertElement(pH, &new_ht[h], elem);
   1.252 +  }
   1.253 +}
   1.254 +
   1.255 +/* This function (for internal use only) locates an element in an
   1.256 +** hash table that matches the given key.  The hash for this key has
   1.257 +** already been computed and is passed as the 4th parameter.
   1.258 +*/
   1.259 +static HashElem *findElementGivenHash(
   1.260 +  const Hash *pH,     /* The pH to be searched */
   1.261 +  const void *pKey,   /* The key we are searching for */
   1.262 +  int nKey,
   1.263 +  int h               /* The hash for this key. */
   1.264 +){
   1.265 +  HashElem *elem;                /* Used to loop thru the element list */
   1.266 +  int count;                     /* Number of elements left to test */
   1.267 +  int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
   1.268 +
   1.269 +  if( pH->ht ){
   1.270 +    struct _ht *pEntry = &pH->ht[h];
   1.271 +    elem = pEntry->chain;
   1.272 +    count = pEntry->count;
   1.273 +    xCompare = compareFunction(pH->keyClass);
   1.274 +    while( count-- && elem ){
   1.275 +      if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){ 
   1.276 +        return elem;
   1.277 +      }
   1.278 +      elem = elem->next;
   1.279 +    }
   1.280 +  }
   1.281 +  return 0;
   1.282 +}
   1.283 +
   1.284 +/* Remove a single entry from the hash table given a pointer to that
   1.285 +** element and a hash on the element's key.
   1.286 +*/
   1.287 +static void removeElementGivenHash(
   1.288 +  Hash *pH,         /* The pH containing "elem" */
   1.289 +  HashElem* elem,   /* The element to be removed from the pH */
   1.290 +  int h             /* Hash value for the element */
   1.291 +){
   1.292 +  struct _ht *pEntry;
   1.293 +  if( elem->prev ){
   1.294 +    elem->prev->next = elem->next; 
   1.295 +  }else{
   1.296 +    pH->first = elem->next;
   1.297 +  }
   1.298 +  if( elem->next ){
   1.299 +    elem->next->prev = elem->prev;
   1.300 +  }
   1.301 +  pEntry = &pH->ht[h];
   1.302 +  if( pEntry->chain==elem ){
   1.303 +    pEntry->chain = elem->next;
   1.304 +  }
   1.305 +  pEntry->count--;
   1.306 +  if( pEntry->count<=0 ){
   1.307 +    pEntry->chain = 0;
   1.308 +  }
   1.309 +  if( pH->copyKey ){
   1.310 +    sqlite3_free(elem->pKey);
   1.311 +  }
   1.312 +  sqlite3_free( elem );
   1.313 +  pH->count--;
   1.314 +  if( pH->count<=0 ){
   1.315 +    assert( pH->first==0 );
   1.316 +    assert( pH->count==0 );
   1.317 +    sqlite3HashClear(pH);
   1.318 +  }
   1.319 +}
   1.320 +
   1.321 +/* Attempt to locate an element of the hash table pH with a key
   1.322 +** that matches pKey,nKey.  Return a pointer to the corresponding 
   1.323 +** HashElem structure for this element if it is found, or NULL
   1.324 +** otherwise.
   1.325 +*/
   1.326 +HashElem *sqlite3HashFindElem(const Hash *pH, const void *pKey, int nKey){
   1.327 +  int h;             /* A hash on key */
   1.328 +  HashElem *elem;    /* The element that matches key */
   1.329 +  int (*xHash)(const void*,int);  /* The hash function */
   1.330 +
   1.331 +  if( pH==0 || pH->ht==0 ) return 0;
   1.332 +  xHash = hashFunction(pH->keyClass);
   1.333 +  assert( xHash!=0 );
   1.334 +  h = (*xHash)(pKey,nKey);
   1.335 +  elem = findElementGivenHash(pH,pKey,nKey, h % pH->htsize);
   1.336 +  return elem;
   1.337 +}
   1.338 +
   1.339 +/* Attempt to locate an element of the hash table pH with a key
   1.340 +** that matches pKey,nKey.  Return the data for this element if it is
   1.341 +** found, or NULL if there is no match.
   1.342 +*/
   1.343 +void *sqlite3HashFind(const Hash *pH, const void *pKey, int nKey){
   1.344 +  HashElem *elem;    /* The element that matches key */
   1.345 +  elem = sqlite3HashFindElem(pH, pKey, nKey);
   1.346 +  return elem ? elem->data : 0;
   1.347 +}
   1.348 +
   1.349 +/* Insert an element into the hash table pH.  The key is pKey,nKey
   1.350 +** and the data is "data".
   1.351 +**
   1.352 +** If no element exists with a matching key, then a new
   1.353 +** element is created.  A copy of the key is made if the copyKey
   1.354 +** flag is set.  NULL is returned.
   1.355 +**
   1.356 +** If another element already exists with the same key, then the
   1.357 +** new data replaces the old data and the old data is returned.
   1.358 +** The key is not copied in this instance.  If a malloc fails, then
   1.359 +** the new data is returned and the hash table is unchanged.
   1.360 +**
   1.361 +** If the "data" parameter to this function is NULL, then the
   1.362 +** element corresponding to "key" is removed from the hash table.
   1.363 +*/
   1.364 +void *sqlite3HashInsert(Hash *pH, const void *pKey, int nKey, void *data){
   1.365 +  int hraw;             /* Raw hash value of the key */
   1.366 +  int h;                /* the hash of the key modulo hash table size */
   1.367 +  HashElem *elem;       /* Used to loop thru the element list */
   1.368 +  HashElem *new_elem;   /* New element added to the pH */
   1.369 +  int (*xHash)(const void*,int);  /* The hash function */
   1.370 +
   1.371 +  assert( pH!=0 );
   1.372 +  xHash = hashFunction(pH->keyClass);
   1.373 +  assert( xHash!=0 );
   1.374 +  hraw = (*xHash)(pKey, nKey);
   1.375 +  if( pH->htsize ){
   1.376 +    h = hraw % pH->htsize;
   1.377 +    elem = findElementGivenHash(pH,pKey,nKey,h);
   1.378 +    if( elem ){
   1.379 +      void *old_data = elem->data;
   1.380 +      if( data==0 ){
   1.381 +        removeElementGivenHash(pH,elem,h);
   1.382 +      }else{
   1.383 +        elem->data = data;
   1.384 +        if( !pH->copyKey ){
   1.385 +          elem->pKey = (void *)pKey;
   1.386 +        }
   1.387 +        assert(nKey==elem->nKey);
   1.388 +      }
   1.389 +      return old_data;
   1.390 +    }
   1.391 +  }
   1.392 +  if( data==0 ) return 0;
   1.393 +  new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) );
   1.394 +  if( new_elem==0 ) return data;
   1.395 +  if( pH->copyKey && pKey!=0 ){
   1.396 +    new_elem->pKey = sqlite3Malloc( nKey );
   1.397 +    if( new_elem->pKey==0 ){
   1.398 +      sqlite3_free(new_elem);
   1.399 +      return data;
   1.400 +    }
   1.401 +    memcpy((void*)new_elem->pKey, pKey, nKey);
   1.402 +  }else{
   1.403 +    new_elem->pKey = (void*)pKey;
   1.404 +  }
   1.405 +  new_elem->nKey = nKey;
   1.406 +  pH->count++;
   1.407 +  if( pH->htsize==0 ){
   1.408 +    rehash(pH, 128/sizeof(pH->ht[0]));
   1.409 +    if( pH->htsize==0 ){
   1.410 +      pH->count = 0;
   1.411 +      if( pH->copyKey ){
   1.412 +        sqlite3_free(new_elem->pKey);
   1.413 +      }
   1.414 +      sqlite3_free(new_elem);
   1.415 +      return data;
   1.416 +    }
   1.417 +  }
   1.418 +  if( pH->count > pH->htsize ){
   1.419 +    rehash(pH,pH->htsize*2);
   1.420 +  }
   1.421 +  assert( pH->htsize>0 );
   1.422 +  h = hraw % pH->htsize;
   1.423 +  insertElement(pH, &pH->ht[h], new_elem);
   1.424 +  new_elem->data = data;
   1.425 +  return 0;
   1.426 +}