1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/fts3.c Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,7212 @@
1.4 +/*
1.5 +** 2006 Oct 10
1.6 +**
1.7 +** The author disclaims copyright to this source code. In place of
1.8 +** a legal notice, here is a blessing:
1.9 +**
1.10 +** May you do good and not evil.
1.11 +** May you find forgiveness for yourself and forgive others.
1.12 +** May you share freely, never taking more than you give.
1.13 +**
1.14 +******************************************************************************
1.15 +**
1.16 +** This is an SQLite module implementing full-text search.
1.17 +*/
1.18 +
1.19 +/*
1.20 +** The code in this file is only compiled if:
1.21 +**
1.22 +** * The FTS3 module is being built as an extension
1.23 +** (in which case SQLITE_CORE is not defined), or
1.24 +**
1.25 +** * The FTS3 module is being built into the core of
1.26 +** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
1.27 +*/
1.28 +
1.29 +/* TODO(shess) Consider exporting this comment to an HTML file or the
1.30 +** wiki.
1.31 +*/
1.32 +/* The full-text index is stored in a series of b+tree (-like)
1.33 +** structures called segments which map terms to doclists. The
1.34 +** structures are like b+trees in layout, but are constructed from the
1.35 +** bottom up in optimal fashion and are not updatable. Since trees
1.36 +** are built from the bottom up, things will be described from the
1.37 +** bottom up.
1.38 +**
1.39 +**
1.40 +**** Varints ****
1.41 +** The basic unit of encoding is a variable-length integer called a
1.42 +** varint. We encode variable-length integers in little-endian order
1.43 +** using seven bits * per byte as follows:
1.44 +**
1.45 +** KEY:
1.46 +** A = 0xxxxxxx 7 bits of data and one flag bit
1.47 +** B = 1xxxxxxx 7 bits of data and one flag bit
1.48 +**
1.49 +** 7 bits - A
1.50 +** 14 bits - BA
1.51 +** 21 bits - BBA
1.52 +** and so on.
1.53 +**
1.54 +** This is identical to how sqlite encodes varints (see util.c).
1.55 +**
1.56 +**
1.57 +**** Document lists ****
1.58 +** A doclist (document list) holds a docid-sorted list of hits for a
1.59 +** given term. Doclists hold docids, and can optionally associate
1.60 +** token positions and offsets with docids.
1.61 +**
1.62 +** A DL_POSITIONS_OFFSETS doclist is stored like this:
1.63 +**
1.64 +** array {
1.65 +** varint docid;
1.66 +** array { (position list for column 0)
1.67 +** varint position; (delta from previous position plus POS_BASE)
1.68 +** varint startOffset; (delta from previous startOffset)
1.69 +** varint endOffset; (delta from startOffset)
1.70 +** }
1.71 +** array {
1.72 +** varint POS_COLUMN; (marks start of position list for new column)
1.73 +** varint column; (index of new column)
1.74 +** array {
1.75 +** varint position; (delta from previous position plus POS_BASE)
1.76 +** varint startOffset;(delta from previous startOffset)
1.77 +** varint endOffset; (delta from startOffset)
1.78 +** }
1.79 +** }
1.80 +** varint POS_END; (marks end of positions for this document.
1.81 +** }
1.82 +**
1.83 +** Here, array { X } means zero or more occurrences of X, adjacent in
1.84 +** memory. A "position" is an index of a token in the token stream
1.85 +** generated by the tokenizer, while an "offset" is a byte offset,
1.86 +** both based at 0. Note that POS_END and POS_COLUMN occur in the
1.87 +** same logical place as the position element, and act as sentinals
1.88 +** ending a position list array.
1.89 +**
1.90 +** A DL_POSITIONS doclist omits the startOffset and endOffset
1.91 +** information. A DL_DOCIDS doclist omits both the position and
1.92 +** offset information, becoming an array of varint-encoded docids.
1.93 +**
1.94 +** On-disk data is stored as type DL_DEFAULT, so we don't serialize
1.95 +** the type. Due to how deletion is implemented in the segmentation
1.96 +** system, on-disk doclists MUST store at least positions.
1.97 +**
1.98 +**
1.99 +**** Segment leaf nodes ****
1.100 +** Segment leaf nodes store terms and doclists, ordered by term. Leaf
1.101 +** nodes are written using LeafWriter, and read using LeafReader (to
1.102 +** iterate through a single leaf node's data) and LeavesReader (to
1.103 +** iterate through a segment's entire leaf layer). Leaf nodes have
1.104 +** the format:
1.105 +**
1.106 +** varint iHeight; (height from leaf level, always 0)
1.107 +** varint nTerm; (length of first term)
1.108 +** char pTerm[nTerm]; (content of first term)
1.109 +** varint nDoclist; (length of term's associated doclist)
1.110 +** char pDoclist[nDoclist]; (content of doclist)
1.111 +** array {
1.112 +** (further terms are delta-encoded)
1.113 +** varint nPrefix; (length of prefix shared with previous term)
1.114 +** varint nSuffix; (length of unshared suffix)
1.115 +** char pTermSuffix[nSuffix];(unshared suffix of next term)
1.116 +** varint nDoclist; (length of term's associated doclist)
1.117 +** char pDoclist[nDoclist]; (content of doclist)
1.118 +** }
1.119 +**
1.120 +** Here, array { X } means zero or more occurrences of X, adjacent in
1.121 +** memory.
1.122 +**
1.123 +** Leaf nodes are broken into blocks which are stored contiguously in
1.124 +** the %_segments table in sorted order. This means that when the end
1.125 +** of a node is reached, the next term is in the node with the next
1.126 +** greater node id.
1.127 +**
1.128 +** New data is spilled to a new leaf node when the current node
1.129 +** exceeds LEAF_MAX bytes (default 2048). New data which itself is
1.130 +** larger than STANDALONE_MIN (default 1024) is placed in a standalone
1.131 +** node (a leaf node with a single term and doclist). The goal of
1.132 +** these settings is to pack together groups of small doclists while
1.133 +** making it efficient to directly access large doclists. The
1.134 +** assumption is that large doclists represent terms which are more
1.135 +** likely to be query targets.
1.136 +**
1.137 +** TODO(shess) It may be useful for blocking decisions to be more
1.138 +** dynamic. For instance, it may make more sense to have a 2.5k leaf
1.139 +** node rather than splitting into 2k and .5k nodes. My intuition is
1.140 +** that this might extend through 2x or 4x the pagesize.
1.141 +**
1.142 +**
1.143 +**** Segment interior nodes ****
1.144 +** Segment interior nodes store blockids for subtree nodes and terms
1.145 +** to describe what data is stored by the each subtree. Interior
1.146 +** nodes are written using InteriorWriter, and read using
1.147 +** InteriorReader. InteriorWriters are created as needed when
1.148 +** SegmentWriter creates new leaf nodes, or when an interior node
1.149 +** itself grows too big and must be split. The format of interior
1.150 +** nodes:
1.151 +**
1.152 +** varint iHeight; (height from leaf level, always >0)
1.153 +** varint iBlockid; (block id of node's leftmost subtree)
1.154 +** optional {
1.155 +** varint nTerm; (length of first term)
1.156 +** char pTerm[nTerm]; (content of first term)
1.157 +** array {
1.158 +** (further terms are delta-encoded)
1.159 +** varint nPrefix; (length of shared prefix with previous term)
1.160 +** varint nSuffix; (length of unshared suffix)
1.161 +** char pTermSuffix[nSuffix]; (unshared suffix of next term)
1.162 +** }
1.163 +** }
1.164 +**
1.165 +** Here, optional { X } means an optional element, while array { X }
1.166 +** means zero or more occurrences of X, adjacent in memory.
1.167 +**
1.168 +** An interior node encodes n terms separating n+1 subtrees. The
1.169 +** subtree blocks are contiguous, so only the first subtree's blockid
1.170 +** is encoded. The subtree at iBlockid will contain all terms less
1.171 +** than the first term encoded (or all terms if no term is encoded).
1.172 +** Otherwise, for terms greater than or equal to pTerm[i] but less
1.173 +** than pTerm[i+1], the subtree for that term will be rooted at
1.174 +** iBlockid+i. Interior nodes only store enough term data to
1.175 +** distinguish adjacent children (if the rightmost term of the left
1.176 +** child is "something", and the leftmost term of the right child is
1.177 +** "wicked", only "w" is stored).
1.178 +**
1.179 +** New data is spilled to a new interior node at the same height when
1.180 +** the current node exceeds INTERIOR_MAX bytes (default 2048).
1.181 +** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
1.182 +** interior nodes and making the tree too skinny. The interior nodes
1.183 +** at a given height are naturally tracked by interior nodes at
1.184 +** height+1, and so on.
1.185 +**
1.186 +**
1.187 +**** Segment directory ****
1.188 +** The segment directory in table %_segdir stores meta-information for
1.189 +** merging and deleting segments, and also the root node of the
1.190 +** segment's tree.
1.191 +**
1.192 +** The root node is the top node of the segment's tree after encoding
1.193 +** the entire segment, restricted to ROOT_MAX bytes (default 1024).
1.194 +** This could be either a leaf node or an interior node. If the top
1.195 +** node requires more than ROOT_MAX bytes, it is flushed to %_segments
1.196 +** and a new root interior node is generated (which should always fit
1.197 +** within ROOT_MAX because it only needs space for 2 varints, the
1.198 +** height and the blockid of the previous root).
1.199 +**
1.200 +** The meta-information in the segment directory is:
1.201 +** level - segment level (see below)
1.202 +** idx - index within level
1.203 +** - (level,idx uniquely identify a segment)
1.204 +** start_block - first leaf node
1.205 +** leaves_end_block - last leaf node
1.206 +** end_block - last block (including interior nodes)
1.207 +** root - contents of root node
1.208 +**
1.209 +** If the root node is a leaf node, then start_block,
1.210 +** leaves_end_block, and end_block are all 0.
1.211 +**
1.212 +**
1.213 +**** Segment merging ****
1.214 +** To amortize update costs, segments are groups into levels and
1.215 +** merged in matches. Each increase in level represents exponentially
1.216 +** more documents.
1.217 +**
1.218 +** New documents (actually, document updates) are tokenized and
1.219 +** written individually (using LeafWriter) to a level 0 segment, with
1.220 +** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
1.221 +** level 0 segments are merged into a single level 1 segment. Level 1
1.222 +** is populated like level 0, and eventually MERGE_COUNT level 1
1.223 +** segments are merged to a single level 2 segment (representing
1.224 +** MERGE_COUNT^2 updates), and so on.
1.225 +**
1.226 +** A segment merge traverses all segments at a given level in
1.227 +** parallel, performing a straightforward sorted merge. Since segment
1.228 +** leaf nodes are written in to the %_segments table in order, this
1.229 +** merge traverses the underlying sqlite disk structures efficiently.
1.230 +** After the merge, all segment blocks from the merged level are
1.231 +** deleted.
1.232 +**
1.233 +** MERGE_COUNT controls how often we merge segments. 16 seems to be
1.234 +** somewhat of a sweet spot for insertion performance. 32 and 64 show
1.235 +** very similar performance numbers to 16 on insertion, though they're
1.236 +** a tiny bit slower (perhaps due to more overhead in merge-time
1.237 +** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
1.238 +** 16, 2 about 66% slower than 16.
1.239 +**
1.240 +** At query time, high MERGE_COUNT increases the number of segments
1.241 +** which need to be scanned and merged. For instance, with 100k docs
1.242 +** inserted:
1.243 +**
1.244 +** MERGE_COUNT segments
1.245 +** 16 25
1.246 +** 8 12
1.247 +** 4 10
1.248 +** 2 6
1.249 +**
1.250 +** This appears to have only a moderate impact on queries for very
1.251 +** frequent terms (which are somewhat dominated by segment merge
1.252 +** costs), and infrequent and non-existent terms still seem to be fast
1.253 +** even with many segments.
1.254 +**
1.255 +** TODO(shess) That said, it would be nice to have a better query-side
1.256 +** argument for MERGE_COUNT of 16. Also, it is possible/likely that
1.257 +** optimizations to things like doclist merging will swing the sweet
1.258 +** spot around.
1.259 +**
1.260 +**
1.261 +**
1.262 +**** Handling of deletions and updates ****
1.263 +** Since we're using a segmented structure, with no docid-oriented
1.264 +** index into the term index, we clearly cannot simply update the term
1.265 +** index when a document is deleted or updated. For deletions, we
1.266 +** write an empty doclist (varint(docid) varint(POS_END)), for updates
1.267 +** we simply write the new doclist. Segment merges overwrite older
1.268 +** data for a particular docid with newer data, so deletes or updates
1.269 +** will eventually overtake the earlier data and knock it out. The
1.270 +** query logic likewise merges doclists so that newer data knocks out
1.271 +** older data.
1.272 +**
1.273 +** TODO(shess) Provide a VACUUM type operation to clear out all
1.274 +** deletions and duplications. This would basically be a forced merge
1.275 +** into a single segment.
1.276 +*/
1.277 +
1.278 +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
1.279 +
1.280 +#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
1.281 +# define SQLITE_CORE 1
1.282 +#endif
1.283 +
1.284 +#include <assert.h>
1.285 +#include <stdlib.h>
1.286 +#include <stdio.h>
1.287 +#include <string.h>
1.288 +#include <ctype.h>
1.289 +
1.290 +#include "fts3.h"
1.291 +#include "fts3_hash.h"
1.292 +#include "fts3_tokenizer.h"
1.293 +#ifndef SQLITE_CORE
1.294 +# include "sqlite3ext.h"
1.295 + SQLITE_EXTENSION_INIT1
1.296 +#endif
1.297 +
1.298 +
1.299 +/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it
1.300 +** would be nice to order the file better, perhaps something along the
1.301 +** lines of:
1.302 +**
1.303 +** - utility functions
1.304 +** - table setup functions
1.305 +** - table update functions
1.306 +** - table query functions
1.307 +**
1.308 +** Put the query functions last because they're likely to reference
1.309 +** typedefs or functions from the table update section.
1.310 +*/
1.311 +
1.312 +#if 0
1.313 +# define FTSTRACE(A) printf A; fflush(stdout)
1.314 +#else
1.315 +# define FTSTRACE(A)
1.316 +#endif
1.317 +
1.318 +/*
1.319 +** Default span for NEAR operators.
1.320 +*/
1.321 +#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
1.322 +
1.323 +/* It is not safe to call isspace(), tolower(), or isalnum() on
1.324 +** hi-bit-set characters. This is the same solution used in the
1.325 +** tokenizer.
1.326 +*/
1.327 +/* TODO(shess) The snippet-generation code should be using the
1.328 +** tokenizer-generated tokens rather than doing its own local
1.329 +** tokenization.
1.330 +*/
1.331 +/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
1.332 +static int safe_isspace(char c){
1.333 + return (c&0x80)==0 ? isspace(c) : 0;
1.334 +}
1.335 +static int safe_tolower(char c){
1.336 + return (c&0x80)==0 ? tolower(c) : c;
1.337 +}
1.338 +static int safe_isalnum(char c){
1.339 + return (c&0x80)==0 ? isalnum(c) : 0;
1.340 +}
1.341 +
1.342 +typedef enum DocListType {
1.343 + DL_DOCIDS, /* docids only */
1.344 + DL_POSITIONS, /* docids + positions */
1.345 + DL_POSITIONS_OFFSETS /* docids + positions + offsets */
1.346 +} DocListType;
1.347 +
1.348 +/*
1.349 +** By default, only positions and not offsets are stored in the doclists.
1.350 +** To change this so that offsets are stored too, compile with
1.351 +**
1.352 +** -DDL_DEFAULT=DL_POSITIONS_OFFSETS
1.353 +**
1.354 +** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
1.355 +** into (no deletes or updates).
1.356 +*/
1.357 +#ifndef DL_DEFAULT
1.358 +# define DL_DEFAULT DL_POSITIONS
1.359 +#endif
1.360 +
1.361 +enum {
1.362 + POS_END = 0, /* end of this position list */
1.363 + POS_COLUMN, /* followed by new column number */
1.364 + POS_BASE
1.365 +};
1.366 +
1.367 +/* MERGE_COUNT controls how often we merge segments (see comment at
1.368 +** top of file).
1.369 +*/
1.370 +#define MERGE_COUNT 16
1.371 +
1.372 +/* utility functions */
1.373 +
1.374 +/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
1.375 +** record to prevent errors of the form:
1.376 +**
1.377 +** my_function(SomeType *b){
1.378 +** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b)
1.379 +** }
1.380 +*/
1.381 +/* TODO(shess) Obvious candidates for a header file. */
1.382 +#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
1.383 +
1.384 +#ifndef NDEBUG
1.385 +# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
1.386 +#else
1.387 +# define SCRAMBLE(b)
1.388 +#endif
1.389 +
1.390 +/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
1.391 +#define VARINT_MAX 10
1.392 +
1.393 +/* Write a 64-bit variable-length integer to memory starting at p[0].
1.394 + * The length of data written will be between 1 and VARINT_MAX bytes.
1.395 + * The number of bytes written is returned. */
1.396 +static int fts3PutVarint(char *p, sqlite_int64 v){
1.397 + unsigned char *q = (unsigned char *) p;
1.398 + sqlite_uint64 vu = v;
1.399 + do{
1.400 + *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
1.401 + vu >>= 7;
1.402 + }while( vu!=0 );
1.403 + q[-1] &= 0x7f; /* turn off high bit in final byte */
1.404 + assert( q - (unsigned char *)p <= VARINT_MAX );
1.405 + return (int) (q - (unsigned char *)p);
1.406 +}
1.407 +
1.408 +/* Read a 64-bit variable-length integer from memory starting at p[0].
1.409 + * Return the number of bytes read, or 0 on error.
1.410 + * The value is stored in *v. */
1.411 +static int fts3GetVarint(const char *p, sqlite_int64 *v){
1.412 + const unsigned char *q = (const unsigned char *) p;
1.413 + sqlite_uint64 x = 0, y = 1;
1.414 + while( (*q & 0x80) == 0x80 ){
1.415 + x += y * (*q++ & 0x7f);
1.416 + y <<= 7;
1.417 + if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */
1.418 + assert( 0 );
1.419 + return 0;
1.420 + }
1.421 + }
1.422 + x += y * (*q++);
1.423 + *v = (sqlite_int64) x;
1.424 + return (int) (q - (unsigned char *)p);
1.425 +}
1.426 +
1.427 +static int fts3GetVarint32(const char *p, int *pi){
1.428 + sqlite_int64 i;
1.429 + int ret = fts3GetVarint(p, &i);
1.430 + *pi = (int) i;
1.431 + assert( *pi==i );
1.432 + return ret;
1.433 +}
1.434 +
1.435 +/*******************************************************************/
1.436 +/* DataBuffer is used to collect data into a buffer in piecemeal
1.437 +** fashion. It implements the usual distinction between amount of
1.438 +** data currently stored (nData) and buffer capacity (nCapacity).
1.439 +**
1.440 +** dataBufferInit - create a buffer with given initial capacity.
1.441 +** dataBufferReset - forget buffer's data, retaining capacity.
1.442 +** dataBufferDestroy - free buffer's data.
1.443 +** dataBufferSwap - swap contents of two buffers.
1.444 +** dataBufferExpand - expand capacity without adding data.
1.445 +** dataBufferAppend - append data.
1.446 +** dataBufferAppend2 - append two pieces of data at once.
1.447 +** dataBufferReplace - replace buffer's data.
1.448 +*/
1.449 +typedef struct DataBuffer {
1.450 + char *pData; /* Pointer to malloc'ed buffer. */
1.451 + int nCapacity; /* Size of pData buffer. */
1.452 + int nData; /* End of data loaded into pData. */
1.453 +} DataBuffer;
1.454 +
1.455 +static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
1.456 + assert( nCapacity>=0 );
1.457 + pBuffer->nData = 0;
1.458 + pBuffer->nCapacity = nCapacity;
1.459 + pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
1.460 +}
1.461 +static void dataBufferReset(DataBuffer *pBuffer){
1.462 + pBuffer->nData = 0;
1.463 +}
1.464 +static void dataBufferDestroy(DataBuffer *pBuffer){
1.465 + if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
1.466 + SCRAMBLE(pBuffer);
1.467 +}
1.468 +static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
1.469 + DataBuffer tmp = *pBuffer1;
1.470 + *pBuffer1 = *pBuffer2;
1.471 + *pBuffer2 = tmp;
1.472 +}
1.473 +static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
1.474 + assert( nAddCapacity>0 );
1.475 + /* TODO(shess) Consider expanding more aggressively. Note that the
1.476 + ** underlying malloc implementation may take care of such things for
1.477 + ** us already.
1.478 + */
1.479 + if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
1.480 + pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
1.481 + pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
1.482 + }
1.483 +}
1.484 +static void dataBufferAppend(DataBuffer *pBuffer,
1.485 + const char *pSource, int nSource){
1.486 + assert( nSource>0 && pSource!=NULL );
1.487 + dataBufferExpand(pBuffer, nSource);
1.488 + memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
1.489 + pBuffer->nData += nSource;
1.490 +}
1.491 +static void dataBufferAppend2(DataBuffer *pBuffer,
1.492 + const char *pSource1, int nSource1,
1.493 + const char *pSource2, int nSource2){
1.494 + assert( nSource1>0 && pSource1!=NULL );
1.495 + assert( nSource2>0 && pSource2!=NULL );
1.496 + dataBufferExpand(pBuffer, nSource1+nSource2);
1.497 + memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
1.498 + memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
1.499 + pBuffer->nData += nSource1+nSource2;
1.500 +}
1.501 +static void dataBufferReplace(DataBuffer *pBuffer,
1.502 + const char *pSource, int nSource){
1.503 + dataBufferReset(pBuffer);
1.504 + dataBufferAppend(pBuffer, pSource, nSource);
1.505 +}
1.506 +
1.507 +/* StringBuffer is a null-terminated version of DataBuffer. */
1.508 +typedef struct StringBuffer {
1.509 + DataBuffer b; /* Includes null terminator. */
1.510 +} StringBuffer;
1.511 +
1.512 +static void initStringBuffer(StringBuffer *sb){
1.513 + dataBufferInit(&sb->b, 100);
1.514 + dataBufferReplace(&sb->b, "", 1);
1.515 +}
1.516 +static int stringBufferLength(StringBuffer *sb){
1.517 + return sb->b.nData-1;
1.518 +}
1.519 +static char *stringBufferData(StringBuffer *sb){
1.520 + return sb->b.pData;
1.521 +}
1.522 +static void stringBufferDestroy(StringBuffer *sb){
1.523 + dataBufferDestroy(&sb->b);
1.524 +}
1.525 +
1.526 +static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
1.527 + assert( sb->b.nData>0 );
1.528 + if( nFrom>0 ){
1.529 + sb->b.nData--;
1.530 + dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
1.531 + }
1.532 +}
1.533 +static void append(StringBuffer *sb, const char *zFrom){
1.534 + nappend(sb, zFrom, strlen(zFrom));
1.535 +}
1.536 +
1.537 +/* Append a list of strings separated by commas. */
1.538 +static void appendList(StringBuffer *sb, int nString, char **azString){
1.539 + int i;
1.540 + for(i=0; i<nString; ++i){
1.541 + if( i>0 ) append(sb, ", ");
1.542 + append(sb, azString[i]);
1.543 + }
1.544 +}
1.545 +
1.546 +static int endsInWhiteSpace(StringBuffer *p){
1.547 + return stringBufferLength(p)>0 &&
1.548 + safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
1.549 +}
1.550 +
1.551 +/* If the StringBuffer ends in something other than white space, add a
1.552 +** single space character to the end.
1.553 +*/
1.554 +static void appendWhiteSpace(StringBuffer *p){
1.555 + if( stringBufferLength(p)==0 ) return;
1.556 + if( !endsInWhiteSpace(p) ) append(p, " ");
1.557 +}
1.558 +
1.559 +/* Remove white space from the end of the StringBuffer */
1.560 +static void trimWhiteSpace(StringBuffer *p){
1.561 + while( endsInWhiteSpace(p) ){
1.562 + p->b.pData[--p->b.nData-1] = '\0';
1.563 + }
1.564 +}
1.565 +
1.566 +/*******************************************************************/
1.567 +/* DLReader is used to read document elements from a doclist. The
1.568 +** current docid is cached, so dlrDocid() is fast. DLReader does not
1.569 +** own the doclist buffer.
1.570 +**
1.571 +** dlrAtEnd - true if there's no more data to read.
1.572 +** dlrDocid - docid of current document.
1.573 +** dlrDocData - doclist data for current document (including docid).
1.574 +** dlrDocDataBytes - length of same.
1.575 +** dlrAllDataBytes - length of all remaining data.
1.576 +** dlrPosData - position data for current document.
1.577 +** dlrPosDataLen - length of pos data for current document (incl POS_END).
1.578 +** dlrStep - step to current document.
1.579 +** dlrInit - initial for doclist of given type against given data.
1.580 +** dlrDestroy - clean up.
1.581 +**
1.582 +** Expected usage is something like:
1.583 +**
1.584 +** DLReader reader;
1.585 +** dlrInit(&reader, pData, nData);
1.586 +** while( !dlrAtEnd(&reader) ){
1.587 +** // calls to dlrDocid() and kin.
1.588 +** dlrStep(&reader);
1.589 +** }
1.590 +** dlrDestroy(&reader);
1.591 +*/
1.592 +typedef struct DLReader {
1.593 + DocListType iType;
1.594 + const char *pData;
1.595 + int nData;
1.596 +
1.597 + sqlite_int64 iDocid;
1.598 + int nElement;
1.599 +} DLReader;
1.600 +
1.601 +static int dlrAtEnd(DLReader *pReader){
1.602 + assert( pReader->nData>=0 );
1.603 + return pReader->nData==0;
1.604 +}
1.605 +static sqlite_int64 dlrDocid(DLReader *pReader){
1.606 + assert( !dlrAtEnd(pReader) );
1.607 + return pReader->iDocid;
1.608 +}
1.609 +static const char *dlrDocData(DLReader *pReader){
1.610 + assert( !dlrAtEnd(pReader) );
1.611 + return pReader->pData;
1.612 +}
1.613 +static int dlrDocDataBytes(DLReader *pReader){
1.614 + assert( !dlrAtEnd(pReader) );
1.615 + return pReader->nElement;
1.616 +}
1.617 +static int dlrAllDataBytes(DLReader *pReader){
1.618 + assert( !dlrAtEnd(pReader) );
1.619 + return pReader->nData;
1.620 +}
1.621 +/* TODO(shess) Consider adding a field to track iDocid varint length
1.622 +** to make these two functions faster. This might matter (a tiny bit)
1.623 +** for queries.
1.624 +*/
1.625 +static const char *dlrPosData(DLReader *pReader){
1.626 + sqlite_int64 iDummy;
1.627 + int n = fts3GetVarint(pReader->pData, &iDummy);
1.628 + assert( !dlrAtEnd(pReader) );
1.629 + return pReader->pData+n;
1.630 +}
1.631 +static int dlrPosDataLen(DLReader *pReader){
1.632 + sqlite_int64 iDummy;
1.633 + int n = fts3GetVarint(pReader->pData, &iDummy);
1.634 + assert( !dlrAtEnd(pReader) );
1.635 + return pReader->nElement-n;
1.636 +}
1.637 +static void dlrStep(DLReader *pReader){
1.638 + assert( !dlrAtEnd(pReader) );
1.639 +
1.640 + /* Skip past current doclist element. */
1.641 + assert( pReader->nElement<=pReader->nData );
1.642 + pReader->pData += pReader->nElement;
1.643 + pReader->nData -= pReader->nElement;
1.644 +
1.645 + /* If there is more data, read the next doclist element. */
1.646 + if( pReader->nData!=0 ){
1.647 + sqlite_int64 iDocidDelta;
1.648 + int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
1.649 + pReader->iDocid += iDocidDelta;
1.650 + if( pReader->iType>=DL_POSITIONS ){
1.651 + assert( n<pReader->nData );
1.652 + while( 1 ){
1.653 + n += fts3GetVarint32(pReader->pData+n, &iDummy);
1.654 + assert( n<=pReader->nData );
1.655 + if( iDummy==POS_END ) break;
1.656 + if( iDummy==POS_COLUMN ){
1.657 + n += fts3GetVarint32(pReader->pData+n, &iDummy);
1.658 + assert( n<pReader->nData );
1.659 + }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
1.660 + n += fts3GetVarint32(pReader->pData+n, &iDummy);
1.661 + n += fts3GetVarint32(pReader->pData+n, &iDummy);
1.662 + assert( n<pReader->nData );
1.663 + }
1.664 + }
1.665 + }
1.666 + pReader->nElement = n;
1.667 + assert( pReader->nElement<=pReader->nData );
1.668 + }
1.669 +}
1.670 +static void dlrInit(DLReader *pReader, DocListType iType,
1.671 + const char *pData, int nData){
1.672 + assert( pData!=NULL && nData!=0 );
1.673 + pReader->iType = iType;
1.674 + pReader->pData = pData;
1.675 + pReader->nData = nData;
1.676 + pReader->nElement = 0;
1.677 + pReader->iDocid = 0;
1.678 +
1.679 + /* Load the first element's data. There must be a first element. */
1.680 + dlrStep(pReader);
1.681 +}
1.682 +static void dlrDestroy(DLReader *pReader){
1.683 + SCRAMBLE(pReader);
1.684 +}
1.685 +
1.686 +#ifndef NDEBUG
1.687 +/* Verify that the doclist can be validly decoded. Also returns the
1.688 +** last docid found because it is convenient in other assertions for
1.689 +** DLWriter.
1.690 +*/
1.691 +static void docListValidate(DocListType iType, const char *pData, int nData,
1.692 + sqlite_int64 *pLastDocid){
1.693 + sqlite_int64 iPrevDocid = 0;
1.694 + assert( nData>0 );
1.695 + assert( pData!=0 );
1.696 + assert( pData+nData>pData );
1.697 + while( nData!=0 ){
1.698 + sqlite_int64 iDocidDelta;
1.699 + int n = fts3GetVarint(pData, &iDocidDelta);
1.700 + iPrevDocid += iDocidDelta;
1.701 + if( iType>DL_DOCIDS ){
1.702 + int iDummy;
1.703 + while( 1 ){
1.704 + n += fts3GetVarint32(pData+n, &iDummy);
1.705 + if( iDummy==POS_END ) break;
1.706 + if( iDummy==POS_COLUMN ){
1.707 + n += fts3GetVarint32(pData+n, &iDummy);
1.708 + }else if( iType>DL_POSITIONS ){
1.709 + n += fts3GetVarint32(pData+n, &iDummy);
1.710 + n += fts3GetVarint32(pData+n, &iDummy);
1.711 + }
1.712 + assert( n<=nData );
1.713 + }
1.714 + }
1.715 + assert( n<=nData );
1.716 + pData += n;
1.717 + nData -= n;
1.718 + }
1.719 + if( pLastDocid ) *pLastDocid = iPrevDocid;
1.720 +}
1.721 +#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
1.722 +#else
1.723 +#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
1.724 +#endif
1.725 +
1.726 +/*******************************************************************/
1.727 +/* DLWriter is used to write doclist data to a DataBuffer. DLWriter
1.728 +** always appends to the buffer and does not own it.
1.729 +**
1.730 +** dlwInit - initialize to write a given type doclistto a buffer.
1.731 +** dlwDestroy - clear the writer's memory. Does not free buffer.
1.732 +** dlwAppend - append raw doclist data to buffer.
1.733 +** dlwCopy - copy next doclist from reader to writer.
1.734 +** dlwAdd - construct doclist element and append to buffer.
1.735 +** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
1.736 +*/
1.737 +typedef struct DLWriter {
1.738 + DocListType iType;
1.739 + DataBuffer *b;
1.740 + sqlite_int64 iPrevDocid;
1.741 +#ifndef NDEBUG
1.742 + int has_iPrevDocid;
1.743 +#endif
1.744 +} DLWriter;
1.745 +
1.746 +static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
1.747 + pWriter->b = b;
1.748 + pWriter->iType = iType;
1.749 + pWriter->iPrevDocid = 0;
1.750 +#ifndef NDEBUG
1.751 + pWriter->has_iPrevDocid = 0;
1.752 +#endif
1.753 +}
1.754 +static void dlwDestroy(DLWriter *pWriter){
1.755 + SCRAMBLE(pWriter);
1.756 +}
1.757 +/* iFirstDocid is the first docid in the doclist in pData. It is
1.758 +** needed because pData may point within a larger doclist, in which
1.759 +** case the first item would be delta-encoded.
1.760 +**
1.761 +** iLastDocid is the final docid in the doclist in pData. It is
1.762 +** needed to create the new iPrevDocid for future delta-encoding. The
1.763 +** code could decode the passed doclist to recreate iLastDocid, but
1.764 +** the only current user (docListMerge) already has decoded this
1.765 +** information.
1.766 +*/
1.767 +/* TODO(shess) This has become just a helper for docListMerge.
1.768 +** Consider a refactor to make this cleaner.
1.769 +*/
1.770 +static void dlwAppend(DLWriter *pWriter,
1.771 + const char *pData, int nData,
1.772 + sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
1.773 + sqlite_int64 iDocid = 0;
1.774 + char c[VARINT_MAX];
1.775 + int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */
1.776 +#ifndef NDEBUG
1.777 + sqlite_int64 iLastDocidDelta;
1.778 +#endif
1.779 +
1.780 + /* Recode the initial docid as delta from iPrevDocid. */
1.781 + nFirstOld = fts3GetVarint(pData, &iDocid);
1.782 + assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
1.783 + nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
1.784 +
1.785 + /* Verify that the incoming doclist is valid AND that it ends with
1.786 + ** the expected docid. This is essential because we'll trust this
1.787 + ** docid in future delta-encoding.
1.788 + */
1.789 + ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
1.790 + assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
1.791 +
1.792 + /* Append recoded initial docid and everything else. Rest of docids
1.793 + ** should have been delta-encoded from previous initial docid.
1.794 + */
1.795 + if( nFirstOld<nData ){
1.796 + dataBufferAppend2(pWriter->b, c, nFirstNew,
1.797 + pData+nFirstOld, nData-nFirstOld);
1.798 + }else{
1.799 + dataBufferAppend(pWriter->b, c, nFirstNew);
1.800 + }
1.801 + pWriter->iPrevDocid = iLastDocid;
1.802 +}
1.803 +static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
1.804 + dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
1.805 + dlrDocid(pReader), dlrDocid(pReader));
1.806 +}
1.807 +static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
1.808 + char c[VARINT_MAX];
1.809 + int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
1.810 +
1.811 + /* Docids must ascend. */
1.812 + assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
1.813 + assert( pWriter->iType==DL_DOCIDS );
1.814 +
1.815 + dataBufferAppend(pWriter->b, c, n);
1.816 + pWriter->iPrevDocid = iDocid;
1.817 +#ifndef NDEBUG
1.818 + pWriter->has_iPrevDocid = 1;
1.819 +#endif
1.820 +}
1.821 +
1.822 +/*******************************************************************/
1.823 +/* PLReader is used to read data from a document's position list. As
1.824 +** the caller steps through the list, data is cached so that varints
1.825 +** only need to be decoded once.
1.826 +**
1.827 +** plrInit, plrDestroy - create/destroy a reader.
1.828 +** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
1.829 +** plrAtEnd - at end of stream, only call plrDestroy once true.
1.830 +** plrStep - step to the next element.
1.831 +*/
1.832 +typedef struct PLReader {
1.833 + /* These refer to the next position's data. nData will reach 0 when
1.834 + ** reading the last position, so plrStep() signals EOF by setting
1.835 + ** pData to NULL.
1.836 + */
1.837 + const char *pData;
1.838 + int nData;
1.839 +
1.840 + DocListType iType;
1.841 + int iColumn; /* the last column read */
1.842 + int iPosition; /* the last position read */
1.843 + int iStartOffset; /* the last start offset read */
1.844 + int iEndOffset; /* the last end offset read */
1.845 +} PLReader;
1.846 +
1.847 +static int plrAtEnd(PLReader *pReader){
1.848 + return pReader->pData==NULL;
1.849 +}
1.850 +static int plrColumn(PLReader *pReader){
1.851 + assert( !plrAtEnd(pReader) );
1.852 + return pReader->iColumn;
1.853 +}
1.854 +static int plrPosition(PLReader *pReader){
1.855 + assert( !plrAtEnd(pReader) );
1.856 + return pReader->iPosition;
1.857 +}
1.858 +static int plrStartOffset(PLReader *pReader){
1.859 + assert( !plrAtEnd(pReader) );
1.860 + return pReader->iStartOffset;
1.861 +}
1.862 +static int plrEndOffset(PLReader *pReader){
1.863 + assert( !plrAtEnd(pReader) );
1.864 + return pReader->iEndOffset;
1.865 +}
1.866 +static void plrStep(PLReader *pReader){
1.867 + int i, n;
1.868 +
1.869 + assert( !plrAtEnd(pReader) );
1.870 +
1.871 + if( pReader->nData==0 ){
1.872 + pReader->pData = NULL;
1.873 + return;
1.874 + }
1.875 +
1.876 + n = fts3GetVarint32(pReader->pData, &i);
1.877 + if( i==POS_COLUMN ){
1.878 + n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
1.879 + pReader->iPosition = 0;
1.880 + pReader->iStartOffset = 0;
1.881 + n += fts3GetVarint32(pReader->pData+n, &i);
1.882 + }
1.883 + /* Should never see adjacent column changes. */
1.884 + assert( i!=POS_COLUMN );
1.885 +
1.886 + if( i==POS_END ){
1.887 + pReader->nData = 0;
1.888 + pReader->pData = NULL;
1.889 + return;
1.890 + }
1.891 +
1.892 + pReader->iPosition += i-POS_BASE;
1.893 + if( pReader->iType==DL_POSITIONS_OFFSETS ){
1.894 + n += fts3GetVarint32(pReader->pData+n, &i);
1.895 + pReader->iStartOffset += i;
1.896 + n += fts3GetVarint32(pReader->pData+n, &i);
1.897 + pReader->iEndOffset = pReader->iStartOffset+i;
1.898 + }
1.899 + assert( n<=pReader->nData );
1.900 + pReader->pData += n;
1.901 + pReader->nData -= n;
1.902 +}
1.903 +
1.904 +static void plrInit(PLReader *pReader, DLReader *pDLReader){
1.905 + pReader->pData = dlrPosData(pDLReader);
1.906 + pReader->nData = dlrPosDataLen(pDLReader);
1.907 + pReader->iType = pDLReader->iType;
1.908 + pReader->iColumn = 0;
1.909 + pReader->iPosition = 0;
1.910 + pReader->iStartOffset = 0;
1.911 + pReader->iEndOffset = 0;
1.912 + plrStep(pReader);
1.913 +}
1.914 +static void plrDestroy(PLReader *pReader){
1.915 + SCRAMBLE(pReader);
1.916 +}
1.917 +
1.918 +/*******************************************************************/
1.919 +/* PLWriter is used in constructing a document's position list. As a
1.920 +** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
1.921 +** PLWriter writes to the associated DLWriter's buffer.
1.922 +**
1.923 +** plwInit - init for writing a document's poslist.
1.924 +** plwDestroy - clear a writer.
1.925 +** plwAdd - append position and offset information.
1.926 +** plwCopy - copy next position's data from reader to writer.
1.927 +** plwTerminate - add any necessary doclist terminator.
1.928 +**
1.929 +** Calling plwAdd() after plwTerminate() may result in a corrupt
1.930 +** doclist.
1.931 +*/
1.932 +/* TODO(shess) Until we've written the second item, we can cache the
1.933 +** first item's information. Then we'd have three states:
1.934 +**
1.935 +** - initialized with docid, no positions.
1.936 +** - docid and one position.
1.937 +** - docid and multiple positions.
1.938 +**
1.939 +** Only the last state needs to actually write to dlw->b, which would
1.940 +** be an improvement in the DLCollector case.
1.941 +*/
1.942 +typedef struct PLWriter {
1.943 + DLWriter *dlw;
1.944 +
1.945 + int iColumn; /* the last column written */
1.946 + int iPos; /* the last position written */
1.947 + int iOffset; /* the last start offset written */
1.948 +} PLWriter;
1.949 +
1.950 +/* TODO(shess) In the case where the parent is reading these values
1.951 +** from a PLReader, we could optimize to a copy if that PLReader has
1.952 +** the same type as pWriter.
1.953 +*/
1.954 +static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
1.955 + int iStartOffset, int iEndOffset){
1.956 + /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
1.957 + ** iStartOffsetDelta, and iEndOffsetDelta.
1.958 + */
1.959 + char c[5*VARINT_MAX];
1.960 + int n = 0;
1.961 +
1.962 + /* Ban plwAdd() after plwTerminate(). */
1.963 + assert( pWriter->iPos!=-1 );
1.964 +
1.965 + if( pWriter->dlw->iType==DL_DOCIDS ) return;
1.966 +
1.967 + if( iColumn!=pWriter->iColumn ){
1.968 + n += fts3PutVarint(c+n, POS_COLUMN);
1.969 + n += fts3PutVarint(c+n, iColumn);
1.970 + pWriter->iColumn = iColumn;
1.971 + pWriter->iPos = 0;
1.972 + pWriter->iOffset = 0;
1.973 + }
1.974 + assert( iPos>=pWriter->iPos );
1.975 + n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
1.976 + pWriter->iPos = iPos;
1.977 + if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
1.978 + assert( iStartOffset>=pWriter->iOffset );
1.979 + n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
1.980 + pWriter->iOffset = iStartOffset;
1.981 + assert( iEndOffset>=iStartOffset );
1.982 + n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
1.983 + }
1.984 + dataBufferAppend(pWriter->dlw->b, c, n);
1.985 +}
1.986 +static void plwCopy(PLWriter *pWriter, PLReader *pReader){
1.987 + plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
1.988 + plrStartOffset(pReader), plrEndOffset(pReader));
1.989 +}
1.990 +static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
1.991 + char c[VARINT_MAX];
1.992 + int n;
1.993 +
1.994 + pWriter->dlw = dlw;
1.995 +
1.996 + /* Docids must ascend. */
1.997 + assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
1.998 + n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
1.999 + dataBufferAppend(pWriter->dlw->b, c, n);
1.1000 + pWriter->dlw->iPrevDocid = iDocid;
1.1001 +#ifndef NDEBUG
1.1002 + pWriter->dlw->has_iPrevDocid = 1;
1.1003 +#endif
1.1004 +
1.1005 + pWriter->iColumn = 0;
1.1006 + pWriter->iPos = 0;
1.1007 + pWriter->iOffset = 0;
1.1008 +}
1.1009 +/* TODO(shess) Should plwDestroy() also terminate the doclist? But
1.1010 +** then plwDestroy() would no longer be just a destructor, it would
1.1011 +** also be doing work, which isn't consistent with the overall idiom.
1.1012 +** Another option would be for plwAdd() to always append any necessary
1.1013 +** terminator, so that the output is always correct. But that would
1.1014 +** add incremental work to the common case with the only benefit being
1.1015 +** API elegance. Punt for now.
1.1016 +*/
1.1017 +static void plwTerminate(PLWriter *pWriter){
1.1018 + if( pWriter->dlw->iType>DL_DOCIDS ){
1.1019 + char c[VARINT_MAX];
1.1020 + int n = fts3PutVarint(c, POS_END);
1.1021 + dataBufferAppend(pWriter->dlw->b, c, n);
1.1022 + }
1.1023 +#ifndef NDEBUG
1.1024 + /* Mark as terminated for assert in plwAdd(). */
1.1025 + pWriter->iPos = -1;
1.1026 +#endif
1.1027 +}
1.1028 +static void plwDestroy(PLWriter *pWriter){
1.1029 + SCRAMBLE(pWriter);
1.1030 +}
1.1031 +
1.1032 +/*******************************************************************/
1.1033 +/* DLCollector wraps PLWriter and DLWriter to provide a
1.1034 +** dynamically-allocated doclist area to use during tokenization.
1.1035 +**
1.1036 +** dlcNew - malloc up and initialize a collector.
1.1037 +** dlcDelete - destroy a collector and all contained items.
1.1038 +** dlcAddPos - append position and offset information.
1.1039 +** dlcAddDoclist - add the collected doclist to the given buffer.
1.1040 +** dlcNext - terminate the current document and open another.
1.1041 +*/
1.1042 +typedef struct DLCollector {
1.1043 + DataBuffer b;
1.1044 + DLWriter dlw;
1.1045 + PLWriter plw;
1.1046 +} DLCollector;
1.1047 +
1.1048 +/* TODO(shess) This could also be done by calling plwTerminate() and
1.1049 +** dataBufferAppend(). I tried that, expecting nominal performance
1.1050 +** differences, but it seemed to pretty reliably be worth 1% to code
1.1051 +** it this way. I suspect it is the incremental malloc overhead (some
1.1052 +** percentage of the plwTerminate() calls will cause a realloc), so
1.1053 +** this might be worth revisiting if the DataBuffer implementation
1.1054 +** changes.
1.1055 +*/
1.1056 +static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
1.1057 + if( pCollector->dlw.iType>DL_DOCIDS ){
1.1058 + char c[VARINT_MAX];
1.1059 + int n = fts3PutVarint(c, POS_END);
1.1060 + dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
1.1061 + }else{
1.1062 + dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
1.1063 + }
1.1064 +}
1.1065 +static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
1.1066 + plwTerminate(&pCollector->plw);
1.1067 + plwDestroy(&pCollector->plw);
1.1068 + plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
1.1069 +}
1.1070 +static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
1.1071 + int iStartOffset, int iEndOffset){
1.1072 + plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
1.1073 +}
1.1074 +
1.1075 +static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
1.1076 + DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
1.1077 + dataBufferInit(&pCollector->b, 0);
1.1078 + dlwInit(&pCollector->dlw, iType, &pCollector->b);
1.1079 + plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
1.1080 + return pCollector;
1.1081 +}
1.1082 +static void dlcDelete(DLCollector *pCollector){
1.1083 + plwDestroy(&pCollector->plw);
1.1084 + dlwDestroy(&pCollector->dlw);
1.1085 + dataBufferDestroy(&pCollector->b);
1.1086 + SCRAMBLE(pCollector);
1.1087 + sqlite3_free(pCollector);
1.1088 +}
1.1089 +
1.1090 +
1.1091 +/* Copy the doclist data of iType in pData/nData into *out, trimming
1.1092 +** unnecessary data as we go. Only columns matching iColumn are
1.1093 +** copied, all columns copied if iColumn is -1. Elements with no
1.1094 +** matching columns are dropped. The output is an iOutType doclist.
1.1095 +*/
1.1096 +/* NOTE(shess) This code is only valid after all doclists are merged.
1.1097 +** If this is run before merges, then doclist items which represent
1.1098 +** deletion will be trimmed, and will thus not effect a deletion
1.1099 +** during the merge.
1.1100 +*/
1.1101 +static void docListTrim(DocListType iType, const char *pData, int nData,
1.1102 + int iColumn, DocListType iOutType, DataBuffer *out){
1.1103 + DLReader dlReader;
1.1104 + DLWriter dlWriter;
1.1105 +
1.1106 + assert( iOutType<=iType );
1.1107 +
1.1108 + dlrInit(&dlReader, iType, pData, nData);
1.1109 + dlwInit(&dlWriter, iOutType, out);
1.1110 +
1.1111 + while( !dlrAtEnd(&dlReader) ){
1.1112 + PLReader plReader;
1.1113 + PLWriter plWriter;
1.1114 + int match = 0;
1.1115 +
1.1116 + plrInit(&plReader, &dlReader);
1.1117 +
1.1118 + while( !plrAtEnd(&plReader) ){
1.1119 + if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
1.1120 + if( !match ){
1.1121 + plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
1.1122 + match = 1;
1.1123 + }
1.1124 + plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
1.1125 + plrStartOffset(&plReader), plrEndOffset(&plReader));
1.1126 + }
1.1127 + plrStep(&plReader);
1.1128 + }
1.1129 + if( match ){
1.1130 + plwTerminate(&plWriter);
1.1131 + plwDestroy(&plWriter);
1.1132 + }
1.1133 +
1.1134 + plrDestroy(&plReader);
1.1135 + dlrStep(&dlReader);
1.1136 + }
1.1137 + dlwDestroy(&dlWriter);
1.1138 + dlrDestroy(&dlReader);
1.1139 +}
1.1140 +
1.1141 +/* Used by docListMerge() to keep doclists in the ascending order by
1.1142 +** docid, then ascending order by age (so the newest comes first).
1.1143 +*/
1.1144 +typedef struct OrderedDLReader {
1.1145 + DLReader *pReader;
1.1146 +
1.1147 + /* TODO(shess) If we assume that docListMerge pReaders is ordered by
1.1148 + ** age (which we do), then we could use pReader comparisons to break
1.1149 + ** ties.
1.1150 + */
1.1151 + int idx;
1.1152 +} OrderedDLReader;
1.1153 +
1.1154 +/* Order eof to end, then by docid asc, idx desc. */
1.1155 +static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
1.1156 + if( dlrAtEnd(r1->pReader) ){
1.1157 + if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */
1.1158 + return 1; /* Only r1 atEnd(). */
1.1159 + }
1.1160 + if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */
1.1161 +
1.1162 + if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
1.1163 + if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
1.1164 +
1.1165 + /* Descending on idx. */
1.1166 + return r2->idx-r1->idx;
1.1167 +}
1.1168 +
1.1169 +/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that
1.1170 +** p[1..n-1] is already sorted.
1.1171 +*/
1.1172 +/* TODO(shess) Is this frequent enough to warrant a binary search?
1.1173 +** Before implementing that, instrument the code to check. In most
1.1174 +** current usage, I expect that p[0] will be less than p[1] a very
1.1175 +** high proportion of the time.
1.1176 +*/
1.1177 +static void orderedDLReaderReorder(OrderedDLReader *p, int n){
1.1178 + while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
1.1179 + OrderedDLReader tmp = p[0];
1.1180 + p[0] = p[1];
1.1181 + p[1] = tmp;
1.1182 + n--;
1.1183 + p++;
1.1184 + }
1.1185 +}
1.1186 +
1.1187 +/* Given an array of doclist readers, merge their doclist elements
1.1188 +** into out in sorted order (by docid), dropping elements from older
1.1189 +** readers when there is a duplicate docid. pReaders is assumed to be
1.1190 +** ordered by age, oldest first.
1.1191 +*/
1.1192 +/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably
1.1193 +** be fixed.
1.1194 +*/
1.1195 +static void docListMerge(DataBuffer *out,
1.1196 + DLReader *pReaders, int nReaders){
1.1197 + OrderedDLReader readers[MERGE_COUNT];
1.1198 + DLWriter writer;
1.1199 + int i, n;
1.1200 + const char *pStart = 0;
1.1201 + int nStart = 0;
1.1202 + sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
1.1203 +
1.1204 + assert( nReaders>0 );
1.1205 + if( nReaders==1 ){
1.1206 + dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
1.1207 + return;
1.1208 + }
1.1209 +
1.1210 + assert( nReaders<=MERGE_COUNT );
1.1211 + n = 0;
1.1212 + for(i=0; i<nReaders; i++){
1.1213 + assert( pReaders[i].iType==pReaders[0].iType );
1.1214 + readers[i].pReader = pReaders+i;
1.1215 + readers[i].idx = i;
1.1216 + n += dlrAllDataBytes(&pReaders[i]);
1.1217 + }
1.1218 + /* Conservatively size output to sum of inputs. Output should end
1.1219 + ** up strictly smaller than input.
1.1220 + */
1.1221 + dataBufferExpand(out, n);
1.1222 +
1.1223 + /* Get the readers into sorted order. */
1.1224 + while( i-->0 ){
1.1225 + orderedDLReaderReorder(readers+i, nReaders-i);
1.1226 + }
1.1227 +
1.1228 + dlwInit(&writer, pReaders[0].iType, out);
1.1229 + while( !dlrAtEnd(readers[0].pReader) ){
1.1230 + sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
1.1231 +
1.1232 + /* If this is a continuation of the current buffer to copy, extend
1.1233 + ** that buffer. memcpy() seems to be more efficient if it has a
1.1234 + ** lots of data to copy.
1.1235 + */
1.1236 + if( dlrDocData(readers[0].pReader)==pStart+nStart ){
1.1237 + nStart += dlrDocDataBytes(readers[0].pReader);
1.1238 + }else{
1.1239 + if( pStart!=0 ){
1.1240 + dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
1.1241 + }
1.1242 + pStart = dlrDocData(readers[0].pReader);
1.1243 + nStart = dlrDocDataBytes(readers[0].pReader);
1.1244 + iFirstDocid = iDocid;
1.1245 + }
1.1246 + iLastDocid = iDocid;
1.1247 + dlrStep(readers[0].pReader);
1.1248 +
1.1249 + /* Drop all of the older elements with the same docid. */
1.1250 + for(i=1; i<nReaders &&
1.1251 + !dlrAtEnd(readers[i].pReader) &&
1.1252 + dlrDocid(readers[i].pReader)==iDocid; i++){
1.1253 + dlrStep(readers[i].pReader);
1.1254 + }
1.1255 +
1.1256 + /* Get the readers back into order. */
1.1257 + while( i-->0 ){
1.1258 + orderedDLReaderReorder(readers+i, nReaders-i);
1.1259 + }
1.1260 + }
1.1261 +
1.1262 + /* Copy over any remaining elements. */
1.1263 + if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
1.1264 + dlwDestroy(&writer);
1.1265 +}
1.1266 +
1.1267 +/* Helper function for posListUnion(). Compares the current position
1.1268 +** between left and right, returning as standard C idiom of <0 if
1.1269 +** left<right, >0 if left>right, and 0 if left==right. "End" always
1.1270 +** compares greater.
1.1271 +*/
1.1272 +static int posListCmp(PLReader *pLeft, PLReader *pRight){
1.1273 + assert( pLeft->iType==pRight->iType );
1.1274 + if( pLeft->iType==DL_DOCIDS ) return 0;
1.1275 +
1.1276 + if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
1.1277 + if( plrAtEnd(pRight) ) return -1;
1.1278 +
1.1279 + if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
1.1280 + if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
1.1281 +
1.1282 + if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
1.1283 + if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
1.1284 + if( pLeft->iType==DL_POSITIONS ) return 0;
1.1285 +
1.1286 + if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
1.1287 + if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
1.1288 +
1.1289 + if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
1.1290 + if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
1.1291 +
1.1292 + return 0;
1.1293 +}
1.1294 +
1.1295 +/* Write the union of position lists in pLeft and pRight to pOut.
1.1296 +** "Union" in this case meaning "All unique position tuples". Should
1.1297 +** work with any doclist type, though both inputs and the output
1.1298 +** should be the same type.
1.1299 +*/
1.1300 +static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
1.1301 + PLReader left, right;
1.1302 + PLWriter writer;
1.1303 +
1.1304 + assert( dlrDocid(pLeft)==dlrDocid(pRight) );
1.1305 + assert( pLeft->iType==pRight->iType );
1.1306 + assert( pLeft->iType==pOut->iType );
1.1307 +
1.1308 + plrInit(&left, pLeft);
1.1309 + plrInit(&right, pRight);
1.1310 + plwInit(&writer, pOut, dlrDocid(pLeft));
1.1311 +
1.1312 + while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
1.1313 + int c = posListCmp(&left, &right);
1.1314 + if( c<0 ){
1.1315 + plwCopy(&writer, &left);
1.1316 + plrStep(&left);
1.1317 + }else if( c>0 ){
1.1318 + plwCopy(&writer, &right);
1.1319 + plrStep(&right);
1.1320 + }else{
1.1321 + plwCopy(&writer, &left);
1.1322 + plrStep(&left);
1.1323 + plrStep(&right);
1.1324 + }
1.1325 + }
1.1326 +
1.1327 + plwTerminate(&writer);
1.1328 + plwDestroy(&writer);
1.1329 + plrDestroy(&left);
1.1330 + plrDestroy(&right);
1.1331 +}
1.1332 +
1.1333 +/* Write the union of doclists in pLeft and pRight to pOut. For
1.1334 +** docids in common between the inputs, the union of the position
1.1335 +** lists is written. Inputs and outputs are always type DL_DEFAULT.
1.1336 +*/
1.1337 +static void docListUnion(
1.1338 + const char *pLeft, int nLeft,
1.1339 + const char *pRight, int nRight,
1.1340 + DataBuffer *pOut /* Write the combined doclist here */
1.1341 +){
1.1342 + DLReader left, right;
1.1343 + DLWriter writer;
1.1344 +
1.1345 + if( nLeft==0 ){
1.1346 + if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
1.1347 + return;
1.1348 + }
1.1349 + if( nRight==0 ){
1.1350 + dataBufferAppend(pOut, pLeft, nLeft);
1.1351 + return;
1.1352 + }
1.1353 +
1.1354 + dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
1.1355 + dlrInit(&right, DL_DEFAULT, pRight, nRight);
1.1356 + dlwInit(&writer, DL_DEFAULT, pOut);
1.1357 +
1.1358 + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
1.1359 + if( dlrAtEnd(&right) ){
1.1360 + dlwCopy(&writer, &left);
1.1361 + dlrStep(&left);
1.1362 + }else if( dlrAtEnd(&left) ){
1.1363 + dlwCopy(&writer, &right);
1.1364 + dlrStep(&right);
1.1365 + }else if( dlrDocid(&left)<dlrDocid(&right) ){
1.1366 + dlwCopy(&writer, &left);
1.1367 + dlrStep(&left);
1.1368 + }else if( dlrDocid(&left)>dlrDocid(&right) ){
1.1369 + dlwCopy(&writer, &right);
1.1370 + dlrStep(&right);
1.1371 + }else{
1.1372 + posListUnion(&left, &right, &writer);
1.1373 + dlrStep(&left);
1.1374 + dlrStep(&right);
1.1375 + }
1.1376 + }
1.1377 +
1.1378 + dlrDestroy(&left);
1.1379 + dlrDestroy(&right);
1.1380 + dlwDestroy(&writer);
1.1381 +}
1.1382 +
1.1383 +/*
1.1384 +** This function is used as part of the implementation of phrase and
1.1385 +** NEAR matching.
1.1386 +**
1.1387 +** pLeft and pRight are DLReaders positioned to the same docid in
1.1388 +** lists of type DL_POSITION. This function writes an entry to the
1.1389 +** DLWriter pOut for each position in pRight that is less than
1.1390 +** (nNear+1) greater (but not equal to or smaller) than a position
1.1391 +** in pLeft. For example, if nNear is 0, and the positions contained
1.1392 +** by pLeft and pRight are:
1.1393 +**
1.1394 +** pLeft: 5 10 15 20
1.1395 +** pRight: 6 9 17 21
1.1396 +**
1.1397 +** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
1.1398 +** then a positionids "6" and "21" are also added to pOut.
1.1399 +**
1.1400 +** If boolean argument isSaveLeft is true, then positionids are copied
1.1401 +** from pLeft instead of pRight. In the example above, the positions "5"
1.1402 +** and "20" would be added instead of "6" and "21".
1.1403 +*/
1.1404 +static void posListPhraseMerge(
1.1405 + DLReader *pLeft,
1.1406 + DLReader *pRight,
1.1407 + int nNear,
1.1408 + int isSaveLeft,
1.1409 + DLWriter *pOut
1.1410 +){
1.1411 + PLReader left, right;
1.1412 + PLWriter writer;
1.1413 + int match = 0;
1.1414 +
1.1415 + assert( dlrDocid(pLeft)==dlrDocid(pRight) );
1.1416 + assert( pOut->iType!=DL_POSITIONS_OFFSETS );
1.1417 +
1.1418 + plrInit(&left, pLeft);
1.1419 + plrInit(&right, pRight);
1.1420 +
1.1421 + while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
1.1422 + if( plrColumn(&left)<plrColumn(&right) ){
1.1423 + plrStep(&left);
1.1424 + }else if( plrColumn(&left)>plrColumn(&right) ){
1.1425 + plrStep(&right);
1.1426 + }else if( plrPosition(&left)>=plrPosition(&right) ){
1.1427 + plrStep(&right);
1.1428 + }else{
1.1429 + if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
1.1430 + if( !match ){
1.1431 + plwInit(&writer, pOut, dlrDocid(pLeft));
1.1432 + match = 1;
1.1433 + }
1.1434 + if( !isSaveLeft ){
1.1435 + plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
1.1436 + }else{
1.1437 + plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
1.1438 + }
1.1439 + plrStep(&right);
1.1440 + }else{
1.1441 + plrStep(&left);
1.1442 + }
1.1443 + }
1.1444 + }
1.1445 +
1.1446 + if( match ){
1.1447 + plwTerminate(&writer);
1.1448 + plwDestroy(&writer);
1.1449 + }
1.1450 +
1.1451 + plrDestroy(&left);
1.1452 + plrDestroy(&right);
1.1453 +}
1.1454 +
1.1455 +/*
1.1456 +** Compare the values pointed to by the PLReaders passed as arguments.
1.1457 +** Return -1 if the value pointed to by pLeft is considered less than
1.1458 +** the value pointed to by pRight, +1 if it is considered greater
1.1459 +** than it, or 0 if it is equal. i.e.
1.1460 +**
1.1461 +** (*pLeft - *pRight)
1.1462 +**
1.1463 +** A PLReader that is in the EOF condition is considered greater than
1.1464 +** any other. If neither argument is in EOF state, the return value of
1.1465 +** plrColumn() is used. If the plrColumn() values are equal, the
1.1466 +** comparison is on the basis of plrPosition().
1.1467 +*/
1.1468 +static int plrCompare(PLReader *pLeft, PLReader *pRight){
1.1469 + assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
1.1470 +
1.1471 + if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
1.1472 + return (plrAtEnd(pRight) ? -1 : 1);
1.1473 + }
1.1474 + if( plrColumn(pLeft)!=plrColumn(pRight) ){
1.1475 + return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
1.1476 + }
1.1477 + if( plrPosition(pLeft)!=plrPosition(pRight) ){
1.1478 + return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
1.1479 + }
1.1480 + return 0;
1.1481 +}
1.1482 +
1.1483 +/* We have two doclists with positions: pLeft and pRight. Depending
1.1484 +** on the value of the nNear parameter, perform either a phrase
1.1485 +** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
1.1486 +** and write the results into pOut.
1.1487 +**
1.1488 +** A phrase intersection means that two documents only match
1.1489 +** if pLeft.iPos+1==pRight.iPos.
1.1490 +**
1.1491 +** A NEAR intersection means that two documents only match if
1.1492 +** (abs(pLeft.iPos-pRight.iPos)<nNear).
1.1493 +**
1.1494 +** If a NEAR intersection is requested, then the nPhrase argument should
1.1495 +** be passed the number of tokens in the two operands to the NEAR operator
1.1496 +** combined. For example:
1.1497 +**
1.1498 +** Query syntax nPhrase
1.1499 +** ------------------------------------
1.1500 +** "A B C" NEAR "D E" 5
1.1501 +** A NEAR B 2
1.1502 +**
1.1503 +** iType controls the type of data written to pOut. If iType is
1.1504 +** DL_POSITIONS, the positions are those from pRight.
1.1505 +*/
1.1506 +static void docListPhraseMerge(
1.1507 + const char *pLeft, int nLeft,
1.1508 + const char *pRight, int nRight,
1.1509 + int nNear, /* 0 for a phrase merge, non-zero for a NEAR merge */
1.1510 + int nPhrase, /* Number of tokens in left+right operands to NEAR */
1.1511 + DocListType iType, /* Type of doclist to write to pOut */
1.1512 + DataBuffer *pOut /* Write the combined doclist here */
1.1513 +){
1.1514 + DLReader left, right;
1.1515 + DLWriter writer;
1.1516 +
1.1517 + if( nLeft==0 || nRight==0 ) return;
1.1518 +
1.1519 + assert( iType!=DL_POSITIONS_OFFSETS );
1.1520 +
1.1521 + dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
1.1522 + dlrInit(&right, DL_POSITIONS, pRight, nRight);
1.1523 + dlwInit(&writer, iType, pOut);
1.1524 +
1.1525 + while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
1.1526 + if( dlrDocid(&left)<dlrDocid(&right) ){
1.1527 + dlrStep(&left);
1.1528 + }else if( dlrDocid(&right)<dlrDocid(&left) ){
1.1529 + dlrStep(&right);
1.1530 + }else{
1.1531 + if( nNear==0 ){
1.1532 + posListPhraseMerge(&left, &right, 0, 0, &writer);
1.1533 + }else{
1.1534 + /* This case occurs when two terms (simple terms or phrases) are
1.1535 + * connected by a NEAR operator, span (nNear+1). i.e.
1.1536 + *
1.1537 + * '"terrible company" NEAR widget'
1.1538 + */
1.1539 + DataBuffer one = {0, 0, 0};
1.1540 + DataBuffer two = {0, 0, 0};
1.1541 +
1.1542 + DLWriter dlwriter2;
1.1543 + DLReader dr1 = {0, 0, 0, 0, 0};
1.1544 + DLReader dr2 = {0, 0, 0, 0, 0};
1.1545 +
1.1546 + dlwInit(&dlwriter2, iType, &one);
1.1547 + posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
1.1548 + dlwInit(&dlwriter2, iType, &two);
1.1549 + posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
1.1550 +
1.1551 + if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
1.1552 + if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
1.1553 +
1.1554 + if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
1.1555 + PLReader pr1 = {0};
1.1556 + PLReader pr2 = {0};
1.1557 +
1.1558 + PLWriter plwriter;
1.1559 + plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
1.1560 +
1.1561 + if( one.nData ) plrInit(&pr1, &dr1);
1.1562 + if( two.nData ) plrInit(&pr2, &dr2);
1.1563 + while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
1.1564 + int iCompare = plrCompare(&pr1, &pr2);
1.1565 + switch( iCompare ){
1.1566 + case -1:
1.1567 + plwCopy(&plwriter, &pr1);
1.1568 + plrStep(&pr1);
1.1569 + break;
1.1570 + case 1:
1.1571 + plwCopy(&plwriter, &pr2);
1.1572 + plrStep(&pr2);
1.1573 + break;
1.1574 + case 0:
1.1575 + plwCopy(&plwriter, &pr1);
1.1576 + plrStep(&pr1);
1.1577 + plrStep(&pr2);
1.1578 + break;
1.1579 + }
1.1580 + }
1.1581 + plwTerminate(&plwriter);
1.1582 + }
1.1583 + dataBufferDestroy(&one);
1.1584 + dataBufferDestroy(&two);
1.1585 + }
1.1586 + dlrStep(&left);
1.1587 + dlrStep(&right);
1.1588 + }
1.1589 + }
1.1590 +
1.1591 + dlrDestroy(&left);
1.1592 + dlrDestroy(&right);
1.1593 + dlwDestroy(&writer);
1.1594 +}
1.1595 +
1.1596 +/* We have two DL_DOCIDS doclists: pLeft and pRight.
1.1597 +** Write the intersection of these two doclists into pOut as a
1.1598 +** DL_DOCIDS doclist.
1.1599 +*/
1.1600 +static void docListAndMerge(
1.1601 + const char *pLeft, int nLeft,
1.1602 + const char *pRight, int nRight,
1.1603 + DataBuffer *pOut /* Write the combined doclist here */
1.1604 +){
1.1605 + DLReader left, right;
1.1606 + DLWriter writer;
1.1607 +
1.1608 + if( nLeft==0 || nRight==0 ) return;
1.1609 +
1.1610 + dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1.1611 + dlrInit(&right, DL_DOCIDS, pRight, nRight);
1.1612 + dlwInit(&writer, DL_DOCIDS, pOut);
1.1613 +
1.1614 + while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
1.1615 + if( dlrDocid(&left)<dlrDocid(&right) ){
1.1616 + dlrStep(&left);
1.1617 + }else if( dlrDocid(&right)<dlrDocid(&left) ){
1.1618 + dlrStep(&right);
1.1619 + }else{
1.1620 + dlwAdd(&writer, dlrDocid(&left));
1.1621 + dlrStep(&left);
1.1622 + dlrStep(&right);
1.1623 + }
1.1624 + }
1.1625 +
1.1626 + dlrDestroy(&left);
1.1627 + dlrDestroy(&right);
1.1628 + dlwDestroy(&writer);
1.1629 +}
1.1630 +
1.1631 +/* We have two DL_DOCIDS doclists: pLeft and pRight.
1.1632 +** Write the union of these two doclists into pOut as a
1.1633 +** DL_DOCIDS doclist.
1.1634 +*/
1.1635 +static void docListOrMerge(
1.1636 + const char *pLeft, int nLeft,
1.1637 + const char *pRight, int nRight,
1.1638 + DataBuffer *pOut /* Write the combined doclist here */
1.1639 +){
1.1640 + DLReader left, right;
1.1641 + DLWriter writer;
1.1642 +
1.1643 + if( nLeft==0 ){
1.1644 + if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
1.1645 + return;
1.1646 + }
1.1647 + if( nRight==0 ){
1.1648 + dataBufferAppend(pOut, pLeft, nLeft);
1.1649 + return;
1.1650 + }
1.1651 +
1.1652 + dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1.1653 + dlrInit(&right, DL_DOCIDS, pRight, nRight);
1.1654 + dlwInit(&writer, DL_DOCIDS, pOut);
1.1655 +
1.1656 + while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
1.1657 + if( dlrAtEnd(&right) ){
1.1658 + dlwAdd(&writer, dlrDocid(&left));
1.1659 + dlrStep(&left);
1.1660 + }else if( dlrAtEnd(&left) ){
1.1661 + dlwAdd(&writer, dlrDocid(&right));
1.1662 + dlrStep(&right);
1.1663 + }else if( dlrDocid(&left)<dlrDocid(&right) ){
1.1664 + dlwAdd(&writer, dlrDocid(&left));
1.1665 + dlrStep(&left);
1.1666 + }else if( dlrDocid(&right)<dlrDocid(&left) ){
1.1667 + dlwAdd(&writer, dlrDocid(&right));
1.1668 + dlrStep(&right);
1.1669 + }else{
1.1670 + dlwAdd(&writer, dlrDocid(&left));
1.1671 + dlrStep(&left);
1.1672 + dlrStep(&right);
1.1673 + }
1.1674 + }
1.1675 +
1.1676 + dlrDestroy(&left);
1.1677 + dlrDestroy(&right);
1.1678 + dlwDestroy(&writer);
1.1679 +}
1.1680 +
1.1681 +/* We have two DL_DOCIDS doclists: pLeft and pRight.
1.1682 +** Write into pOut as DL_DOCIDS doclist containing all documents that
1.1683 +** occur in pLeft but not in pRight.
1.1684 +*/
1.1685 +static void docListExceptMerge(
1.1686 + const char *pLeft, int nLeft,
1.1687 + const char *pRight, int nRight,
1.1688 + DataBuffer *pOut /* Write the combined doclist here */
1.1689 +){
1.1690 + DLReader left, right;
1.1691 + DLWriter writer;
1.1692 +
1.1693 + if( nLeft==0 ) return;
1.1694 + if( nRight==0 ){
1.1695 + dataBufferAppend(pOut, pLeft, nLeft);
1.1696 + return;
1.1697 + }
1.1698 +
1.1699 + dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
1.1700 + dlrInit(&right, DL_DOCIDS, pRight, nRight);
1.1701 + dlwInit(&writer, DL_DOCIDS, pOut);
1.1702 +
1.1703 + while( !dlrAtEnd(&left) ){
1.1704 + while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
1.1705 + dlrStep(&right);
1.1706 + }
1.1707 + if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
1.1708 + dlwAdd(&writer, dlrDocid(&left));
1.1709 + }
1.1710 + dlrStep(&left);
1.1711 + }
1.1712 +
1.1713 + dlrDestroy(&left);
1.1714 + dlrDestroy(&right);
1.1715 + dlwDestroy(&writer);
1.1716 +}
1.1717 +
1.1718 +static char *string_dup_n(const char *s, int n){
1.1719 + char *str = sqlite3_malloc(n + 1);
1.1720 + memcpy(str, s, n);
1.1721 + str[n] = '\0';
1.1722 + return str;
1.1723 +}
1.1724 +
1.1725 +/* Duplicate a string; the caller must free() the returned string.
1.1726 + * (We don't use strdup() since it is not part of the standard C library and
1.1727 + * may not be available everywhere.) */
1.1728 +static char *string_dup(const char *s){
1.1729 + return string_dup_n(s, strlen(s));
1.1730 +}
1.1731 +
1.1732 +/* Format a string, replacing each occurrence of the % character with
1.1733 + * zDb.zName. This may be more convenient than sqlite_mprintf()
1.1734 + * when one string is used repeatedly in a format string.
1.1735 + * The caller must free() the returned string. */
1.1736 +static char *string_format(const char *zFormat,
1.1737 + const char *zDb, const char *zName){
1.1738 + const char *p;
1.1739 + size_t len = 0;
1.1740 + size_t nDb = strlen(zDb);
1.1741 + size_t nName = strlen(zName);
1.1742 + size_t nFullTableName = nDb+1+nName;
1.1743 + char *result;
1.1744 + char *r;
1.1745 +
1.1746 + /* first compute length needed */
1.1747 + for(p = zFormat ; *p ; ++p){
1.1748 + len += (*p=='%' ? nFullTableName : 1);
1.1749 + }
1.1750 + len += 1; /* for null terminator */
1.1751 +
1.1752 + r = result = sqlite3_malloc(len);
1.1753 + for(p = zFormat; *p; ++p){
1.1754 + if( *p=='%' ){
1.1755 + memcpy(r, zDb, nDb);
1.1756 + r += nDb;
1.1757 + *r++ = '.';
1.1758 + memcpy(r, zName, nName);
1.1759 + r += nName;
1.1760 + } else {
1.1761 + *r++ = *p;
1.1762 + }
1.1763 + }
1.1764 + *r++ = '\0';
1.1765 + assert( r == result + len );
1.1766 + return result;
1.1767 +}
1.1768 +
1.1769 +static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
1.1770 + const char *zFormat){
1.1771 + char *zCommand = string_format(zFormat, zDb, zName);
1.1772 + int rc;
1.1773 + FTSTRACE(("FTS3 sql: %s\n", zCommand));
1.1774 + rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
1.1775 + sqlite3_free(zCommand);
1.1776 + return rc;
1.1777 +}
1.1778 +
1.1779 +static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
1.1780 + sqlite3_stmt **ppStmt, const char *zFormat){
1.1781 + char *zCommand = string_format(zFormat, zDb, zName);
1.1782 + int rc;
1.1783 + FTSTRACE(("FTS3 prepare: %s\n", zCommand));
1.1784 + rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
1.1785 + sqlite3_free(zCommand);
1.1786 + return rc;
1.1787 +}
1.1788 +
1.1789 +/* end utility functions */
1.1790 +
1.1791 +/* Forward reference */
1.1792 +typedef struct fulltext_vtab fulltext_vtab;
1.1793 +
1.1794 +/* A single term in a query is represented by an instances of
1.1795 +** the following structure. Each word which may match against
1.1796 +** document content is a term. Operators, like NEAR or OR, are
1.1797 +** not terms. Query terms are organized as a flat list stored
1.1798 +** in the Query.pTerms array.
1.1799 +**
1.1800 +** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
1.1801 +** is the first in a contiguous string of terms that are either part
1.1802 +** of the same phrase, or connected by the NEAR operator.
1.1803 +**
1.1804 +** If the QueryTerm.nNear variable is non-zero, then the token is followed
1.1805 +** by a NEAR operator with span set to (nNear-1). For example, the
1.1806 +** following query:
1.1807 +**
1.1808 +** The QueryTerm.iPhrase variable stores the index of the token within
1.1809 +** its phrase, indexed starting at 1, or 1 if the token is not part
1.1810 +** of any phrase.
1.1811 +**
1.1812 +** For example, the data structure used to represent the following query:
1.1813 +**
1.1814 +** ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
1.1815 +**
1.1816 +** is:
1.1817 +**
1.1818 +** {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
1.1819 +** {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
1.1820 +** {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
1.1821 +** {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
1.1822 +**
1.1823 +** compiling the FTS3 syntax to Query structures is done by the parseQuery()
1.1824 +** function.
1.1825 +*/
1.1826 +typedef struct QueryTerm {
1.1827 + short int nPhrase; /* How many following terms are part of the same phrase */
1.1828 + short int iPhrase; /* This is the i-th term of a phrase. */
1.1829 + short int iColumn; /* Column of the index that must match this term */
1.1830 + short int nNear; /* term followed by a NEAR operator with span=(nNear-1) */
1.1831 + signed char isOr; /* this term is preceded by "OR" */
1.1832 + signed char isNot; /* this term is preceded by "-" */
1.1833 + signed char isPrefix; /* this term is followed by "*" */
1.1834 + char *pTerm; /* text of the term. '\000' terminated. malloced */
1.1835 + int nTerm; /* Number of bytes in pTerm[] */
1.1836 +} QueryTerm;
1.1837 +
1.1838 +
1.1839 +/* A query string is parsed into a Query structure.
1.1840 + *
1.1841 + * We could, in theory, allow query strings to be complicated
1.1842 + * nested expressions with precedence determined by parentheses.
1.1843 + * But none of the major search engines do this. (Perhaps the
1.1844 + * feeling is that an parenthesized expression is two complex of
1.1845 + * an idea for the average user to grasp.) Taking our lead from
1.1846 + * the major search engines, we will allow queries to be a list
1.1847 + * of terms (with an implied AND operator) or phrases in double-quotes,
1.1848 + * with a single optional "-" before each non-phrase term to designate
1.1849 + * negation and an optional OR connector.
1.1850 + *
1.1851 + * OR binds more tightly than the implied AND, which is what the
1.1852 + * major search engines seem to do. So, for example:
1.1853 + *
1.1854 + * [one two OR three] ==> one AND (two OR three)
1.1855 + * [one OR two three] ==> (one OR two) AND three
1.1856 + *
1.1857 + * A "-" before a term matches all entries that lack that term.
1.1858 + * The "-" must occur immediately before the term with in intervening
1.1859 + * space. This is how the search engines do it.
1.1860 + *
1.1861 + * A NOT term cannot be the right-hand operand of an OR. If this
1.1862 + * occurs in the query string, the NOT is ignored:
1.1863 + *
1.1864 + * [one OR -two] ==> one OR two
1.1865 + *
1.1866 + */
1.1867 +typedef struct Query {
1.1868 + fulltext_vtab *pFts; /* The full text index */
1.1869 + int nTerms; /* Number of terms in the query */
1.1870 + QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */
1.1871 + int nextIsOr; /* Set the isOr flag on the next inserted term */
1.1872 + int nextIsNear; /* Set the isOr flag on the next inserted term */
1.1873 + int nextColumn; /* Next word parsed must be in this column */
1.1874 + int dfltColumn; /* The default column */
1.1875 +} Query;
1.1876 +
1.1877 +
1.1878 +/*
1.1879 +** An instance of the following structure keeps track of generated
1.1880 +** matching-word offset information and snippets.
1.1881 +*/
1.1882 +typedef struct Snippet {
1.1883 + int nMatch; /* Total number of matches */
1.1884 + int nAlloc; /* Space allocated for aMatch[] */
1.1885 + struct snippetMatch { /* One entry for each matching term */
1.1886 + char snStatus; /* Status flag for use while constructing snippets */
1.1887 + short int iCol; /* The column that contains the match */
1.1888 + short int iTerm; /* The index in Query.pTerms[] of the matching term */
1.1889 + int iToken; /* The index of the matching document token */
1.1890 + short int nByte; /* Number of bytes in the term */
1.1891 + int iStart; /* The offset to the first character of the term */
1.1892 + } *aMatch; /* Points to space obtained from malloc */
1.1893 + char *zOffset; /* Text rendering of aMatch[] */
1.1894 + int nOffset; /* strlen(zOffset) */
1.1895 + char *zSnippet; /* Snippet text */
1.1896 + int nSnippet; /* strlen(zSnippet) */
1.1897 +} Snippet;
1.1898 +
1.1899 +
1.1900 +typedef enum QueryType {
1.1901 + QUERY_GENERIC, /* table scan */
1.1902 + QUERY_DOCID, /* lookup by docid */
1.1903 + QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
1.1904 +} QueryType;
1.1905 +
1.1906 +typedef enum fulltext_statement {
1.1907 + CONTENT_INSERT_STMT,
1.1908 + CONTENT_SELECT_STMT,
1.1909 + CONTENT_UPDATE_STMT,
1.1910 + CONTENT_DELETE_STMT,
1.1911 + CONTENT_EXISTS_STMT,
1.1912 +
1.1913 + BLOCK_INSERT_STMT,
1.1914 + BLOCK_SELECT_STMT,
1.1915 + BLOCK_DELETE_STMT,
1.1916 + BLOCK_DELETE_ALL_STMT,
1.1917 +
1.1918 + SEGDIR_MAX_INDEX_STMT,
1.1919 + SEGDIR_SET_STMT,
1.1920 + SEGDIR_SELECT_LEVEL_STMT,
1.1921 + SEGDIR_SPAN_STMT,
1.1922 + SEGDIR_DELETE_STMT,
1.1923 + SEGDIR_SELECT_SEGMENT_STMT,
1.1924 + SEGDIR_SELECT_ALL_STMT,
1.1925 + SEGDIR_DELETE_ALL_STMT,
1.1926 + SEGDIR_COUNT_STMT,
1.1927 +
1.1928 + MAX_STMT /* Always at end! */
1.1929 +} fulltext_statement;
1.1930 +
1.1931 +/* These must exactly match the enum above. */
1.1932 +/* TODO(shess): Is there some risk that a statement will be used in two
1.1933 +** cursors at once, e.g. if a query joins a virtual table to itself?
1.1934 +** If so perhaps we should move some of these to the cursor object.
1.1935 +*/
1.1936 +static const char *const fulltext_zStatement[MAX_STMT] = {
1.1937 + /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */
1.1938 + /* CONTENT_SELECT */ NULL, /* generated in contentSelectStatement() */
1.1939 + /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */
1.1940 + /* CONTENT_DELETE */ "delete from %_content where docid = ?",
1.1941 + /* CONTENT_EXISTS */ "select docid from %_content limit 1",
1.1942 +
1.1943 + /* BLOCK_INSERT */
1.1944 + "insert into %_segments (blockid, block) values (null, ?)",
1.1945 + /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
1.1946 + /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
1.1947 + /* BLOCK_DELETE_ALL */ "delete from %_segments",
1.1948 +
1.1949 + /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
1.1950 + /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
1.1951 + /* SEGDIR_SELECT_LEVEL */
1.1952 + "select start_block, leaves_end_block, root from %_segdir "
1.1953 + " where level = ? order by idx",
1.1954 + /* SEGDIR_SPAN */
1.1955 + "select min(start_block), max(end_block) from %_segdir "
1.1956 + " where level = ? and start_block <> 0",
1.1957 + /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
1.1958 +
1.1959 + /* NOTE(shess): The first three results of the following two
1.1960 + ** statements must match.
1.1961 + */
1.1962 + /* SEGDIR_SELECT_SEGMENT */
1.1963 + "select start_block, leaves_end_block, root from %_segdir "
1.1964 + " where level = ? and idx = ?",
1.1965 + /* SEGDIR_SELECT_ALL */
1.1966 + "select start_block, leaves_end_block, root from %_segdir "
1.1967 + " order by level desc, idx asc",
1.1968 + /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
1.1969 + /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
1.1970 +};
1.1971 +
1.1972 +/*
1.1973 +** A connection to a fulltext index is an instance of the following
1.1974 +** structure. The xCreate and xConnect methods create an instance
1.1975 +** of this structure and xDestroy and xDisconnect free that instance.
1.1976 +** All other methods receive a pointer to the structure as one of their
1.1977 +** arguments.
1.1978 +*/
1.1979 +struct fulltext_vtab {
1.1980 + sqlite3_vtab base; /* Base class used by SQLite core */
1.1981 + sqlite3 *db; /* The database connection */
1.1982 + const char *zDb; /* logical database name */
1.1983 + const char *zName; /* virtual table name */
1.1984 + int nColumn; /* number of columns in virtual table */
1.1985 + char **azColumn; /* column names. malloced */
1.1986 + char **azContentColumn; /* column names in content table; malloced */
1.1987 + sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */
1.1988 +
1.1989 + /* Precompiled statements which we keep as long as the table is
1.1990 + ** open.
1.1991 + */
1.1992 + sqlite3_stmt *pFulltextStatements[MAX_STMT];
1.1993 +
1.1994 + /* Precompiled statements used for segment merges. We run a
1.1995 + ** separate select across the leaf level of each tree being merged.
1.1996 + */
1.1997 + sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
1.1998 + /* The statement used to prepare pLeafSelectStmts. */
1.1999 +#define LEAF_SELECT \
1.2000 + "select block from %_segments where blockid between ? and ? order by blockid"
1.2001 +
1.2002 + /* These buffer pending index updates during transactions.
1.2003 + ** nPendingData estimates the memory size of the pending data. It
1.2004 + ** doesn't include the hash-bucket overhead, nor any malloc
1.2005 + ** overhead. When nPendingData exceeds kPendingThreshold, the
1.2006 + ** buffer is flushed even before the transaction closes.
1.2007 + ** pendingTerms stores the data, and is only valid when nPendingData
1.2008 + ** is >=0 (nPendingData<0 means pendingTerms has not been
1.2009 + ** initialized). iPrevDocid is the last docid written, used to make
1.2010 + ** certain we're inserting in sorted order.
1.2011 + */
1.2012 + int nPendingData;
1.2013 +#define kPendingThreshold (1*1024*1024)
1.2014 + sqlite_int64 iPrevDocid;
1.2015 + fts3Hash pendingTerms;
1.2016 +};
1.2017 +
1.2018 +/*
1.2019 +** When the core wants to do a query, it create a cursor using a
1.2020 +** call to xOpen. This structure is an instance of a cursor. It
1.2021 +** is destroyed by xClose.
1.2022 +*/
1.2023 +typedef struct fulltext_cursor {
1.2024 + sqlite3_vtab_cursor base; /* Base class used by SQLite core */
1.2025 + QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */
1.2026 + sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */
1.2027 + int eof; /* True if at End Of Results */
1.2028 + Query q; /* Parsed query string */
1.2029 + Snippet snippet; /* Cached snippet for the current row */
1.2030 + int iColumn; /* Column being searched */
1.2031 + DataBuffer result; /* Doclist results from fulltextQuery */
1.2032 + DLReader reader; /* Result reader if result not empty */
1.2033 +} fulltext_cursor;
1.2034 +
1.2035 +static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
1.2036 + return (fulltext_vtab *) c->base.pVtab;
1.2037 +}
1.2038 +
1.2039 +static const sqlite3_module fts3Module; /* forward declaration */
1.2040 +
1.2041 +/* Return a dynamically generated statement of the form
1.2042 + * insert into %_content (docid, ...) values (?, ...)
1.2043 + */
1.2044 +static const char *contentInsertStatement(fulltext_vtab *v){
1.2045 + StringBuffer sb;
1.2046 + int i;
1.2047 +
1.2048 + initStringBuffer(&sb);
1.2049 + append(&sb, "insert into %_content (docid, ");
1.2050 + appendList(&sb, v->nColumn, v->azContentColumn);
1.2051 + append(&sb, ") values (?");
1.2052 + for(i=0; i<v->nColumn; ++i)
1.2053 + append(&sb, ", ?");
1.2054 + append(&sb, ")");
1.2055 + return stringBufferData(&sb);
1.2056 +}
1.2057 +
1.2058 +/* Return a dynamically generated statement of the form
1.2059 + * select <content columns> from %_content where docid = ?
1.2060 + */
1.2061 +static const char *contentSelectStatement(fulltext_vtab *v){
1.2062 + StringBuffer sb;
1.2063 + initStringBuffer(&sb);
1.2064 + append(&sb, "SELECT ");
1.2065 + appendList(&sb, v->nColumn, v->azContentColumn);
1.2066 + append(&sb, " FROM %_content WHERE docid = ?");
1.2067 + return stringBufferData(&sb);
1.2068 +}
1.2069 +
1.2070 +/* Return a dynamically generated statement of the form
1.2071 + * update %_content set [col_0] = ?, [col_1] = ?, ...
1.2072 + * where docid = ?
1.2073 + */
1.2074 +static const char *contentUpdateStatement(fulltext_vtab *v){
1.2075 + StringBuffer sb;
1.2076 + int i;
1.2077 +
1.2078 + initStringBuffer(&sb);
1.2079 + append(&sb, "update %_content set ");
1.2080 + for(i=0; i<v->nColumn; ++i) {
1.2081 + if( i>0 ){
1.2082 + append(&sb, ", ");
1.2083 + }
1.2084 + append(&sb, v->azContentColumn[i]);
1.2085 + append(&sb, " = ?");
1.2086 + }
1.2087 + append(&sb, " where docid = ?");
1.2088 + return stringBufferData(&sb);
1.2089 +}
1.2090 +
1.2091 +/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
1.2092 +** If the indicated statement has never been prepared, it is prepared
1.2093 +** and cached, otherwise the cached version is reset.
1.2094 +*/
1.2095 +static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
1.2096 + sqlite3_stmt **ppStmt){
1.2097 + assert( iStmt<MAX_STMT );
1.2098 + if( v->pFulltextStatements[iStmt]==NULL ){
1.2099 + const char *zStmt;
1.2100 + int rc;
1.2101 + switch( iStmt ){
1.2102 + case CONTENT_INSERT_STMT:
1.2103 + zStmt = contentInsertStatement(v); break;
1.2104 + case CONTENT_SELECT_STMT:
1.2105 + zStmt = contentSelectStatement(v); break;
1.2106 + case CONTENT_UPDATE_STMT:
1.2107 + zStmt = contentUpdateStatement(v); break;
1.2108 + default:
1.2109 + zStmt = fulltext_zStatement[iStmt];
1.2110 + }
1.2111 + rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
1.2112 + zStmt);
1.2113 + if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
1.2114 + if( rc!=SQLITE_OK ) return rc;
1.2115 + } else {
1.2116 + int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
1.2117 + if( rc!=SQLITE_OK ) return rc;
1.2118 + }
1.2119 +
1.2120 + *ppStmt = v->pFulltextStatements[iStmt];
1.2121 + return SQLITE_OK;
1.2122 +}
1.2123 +
1.2124 +/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
1.2125 +** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE,
1.2126 +** where we expect no results.
1.2127 +*/
1.2128 +static int sql_single_step(sqlite3_stmt *s){
1.2129 + int rc = sqlite3_step(s);
1.2130 + return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
1.2131 +}
1.2132 +
1.2133 +/* Like sql_get_statement(), but for special replicated LEAF_SELECT
1.2134 +** statements. idx -1 is a special case for an uncached version of
1.2135 +** the statement (used in the optimize implementation).
1.2136 +*/
1.2137 +/* TODO(shess) Write version for generic statements and then share
1.2138 +** that between the cached-statement functions.
1.2139 +*/
1.2140 +static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
1.2141 + sqlite3_stmt **ppStmt){
1.2142 + assert( idx>=-1 && idx<MERGE_COUNT );
1.2143 + if( idx==-1 ){
1.2144 + return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
1.2145 + }else if( v->pLeafSelectStmts[idx]==NULL ){
1.2146 + int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
1.2147 + LEAF_SELECT);
1.2148 + if( rc!=SQLITE_OK ) return rc;
1.2149 + }else{
1.2150 + int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
1.2151 + if( rc!=SQLITE_OK ) return rc;
1.2152 + }
1.2153 +
1.2154 + *ppStmt = v->pLeafSelectStmts[idx];
1.2155 + return SQLITE_OK;
1.2156 +}
1.2157 +
1.2158 +/* insert into %_content (docid, ...) values ([docid], [pValues])
1.2159 +** If the docid contains SQL NULL, then a unique docid will be
1.2160 +** generated.
1.2161 +*/
1.2162 +static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
1.2163 + sqlite3_value **pValues){
1.2164 + sqlite3_stmt *s;
1.2165 + int i;
1.2166 + int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
1.2167 + if( rc!=SQLITE_OK ) return rc;
1.2168 +
1.2169 + rc = sqlite3_bind_value(s, 1, docid);
1.2170 + if( rc!=SQLITE_OK ) return rc;
1.2171 +
1.2172 + for(i=0; i<v->nColumn; ++i){
1.2173 + rc = sqlite3_bind_value(s, 2+i, pValues[i]);
1.2174 + if( rc!=SQLITE_OK ) return rc;
1.2175 + }
1.2176 +
1.2177 + return sql_single_step(s);
1.2178 +}
1.2179 +
1.2180 +/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
1.2181 + * where docid = [iDocid] */
1.2182 +static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
1.2183 + sqlite_int64 iDocid){
1.2184 + sqlite3_stmt *s;
1.2185 + int i;
1.2186 + int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
1.2187 + if( rc!=SQLITE_OK ) return rc;
1.2188 +
1.2189 + for(i=0; i<v->nColumn; ++i){
1.2190 + rc = sqlite3_bind_value(s, 1+i, pValues[i]);
1.2191 + if( rc!=SQLITE_OK ) return rc;
1.2192 + }
1.2193 +
1.2194 + rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
1.2195 + if( rc!=SQLITE_OK ) return rc;
1.2196 +
1.2197 + return sql_single_step(s);
1.2198 +}
1.2199 +
1.2200 +static void freeStringArray(int nString, const char **pString){
1.2201 + int i;
1.2202 +
1.2203 + for (i=0 ; i < nString ; ++i) {
1.2204 + if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
1.2205 + }
1.2206 + sqlite3_free((void *) pString);
1.2207 +}
1.2208 +
1.2209 +/* select * from %_content where docid = [iDocid]
1.2210 + * The caller must delete the returned array and all strings in it.
1.2211 + * null fields will be NULL in the returned array.
1.2212 + *
1.2213 + * TODO: Perhaps we should return pointer/length strings here for consistency
1.2214 + * with other code which uses pointer/length. */
1.2215 +static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
1.2216 + const char ***pValues){
1.2217 + sqlite3_stmt *s;
1.2218 + const char **values;
1.2219 + int i;
1.2220 + int rc;
1.2221 +
1.2222 + *pValues = NULL;
1.2223 +
1.2224 + rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
1.2225 + if( rc!=SQLITE_OK ) return rc;
1.2226 +
1.2227 + rc = sqlite3_bind_int64(s, 1, iDocid);
1.2228 + if( rc!=SQLITE_OK ) return rc;
1.2229 +
1.2230 + rc = sqlite3_step(s);
1.2231 + if( rc!=SQLITE_ROW ) return rc;
1.2232 +
1.2233 + values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
1.2234 + for(i=0; i<v->nColumn; ++i){
1.2235 + if( sqlite3_column_type(s, i)==SQLITE_NULL ){
1.2236 + values[i] = NULL;
1.2237 + }else{
1.2238 + values[i] = string_dup((char*)sqlite3_column_text(s, i));
1.2239 + }
1.2240 + }
1.2241 +
1.2242 + /* We expect only one row. We must execute another sqlite3_step()
1.2243 + * to complete the iteration; otherwise the table will remain locked. */
1.2244 + rc = sqlite3_step(s);
1.2245 + if( rc==SQLITE_DONE ){
1.2246 + *pValues = values;
1.2247 + return SQLITE_OK;
1.2248 + }
1.2249 +
1.2250 + freeStringArray(v->nColumn, values);
1.2251 + return rc;
1.2252 +}
1.2253 +
1.2254 +/* delete from %_content where docid = [iDocid ] */
1.2255 +static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
1.2256 + sqlite3_stmt *s;
1.2257 + int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
1.2258 + if( rc!=SQLITE_OK ) return rc;
1.2259 +
1.2260 + rc = sqlite3_bind_int64(s, 1, iDocid);
1.2261 + if( rc!=SQLITE_OK ) return rc;
1.2262 +
1.2263 + return sql_single_step(s);
1.2264 +}
1.2265 +
1.2266 +/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
1.2267 +** no rows exist, and any error in case of failure.
1.2268 +*/
1.2269 +static int content_exists(fulltext_vtab *v){
1.2270 + sqlite3_stmt *s;
1.2271 + int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
1.2272 + if( rc!=SQLITE_OK ) return rc;
1.2273 +
1.2274 + rc = sqlite3_step(s);
1.2275 + if( rc!=SQLITE_ROW ) return rc;
1.2276 +
1.2277 + /* We expect only one row. We must execute another sqlite3_step()
1.2278 + * to complete the iteration; otherwise the table will remain locked. */
1.2279 + rc = sqlite3_step(s);
1.2280 + if( rc==SQLITE_DONE ) return SQLITE_ROW;
1.2281 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.2282 + return rc;
1.2283 +}
1.2284 +
1.2285 +/* insert into %_segments values ([pData])
1.2286 +** returns assigned blockid in *piBlockid
1.2287 +*/
1.2288 +static int block_insert(fulltext_vtab *v, const char *pData, int nData,
1.2289 + sqlite_int64 *piBlockid){
1.2290 + sqlite3_stmt *s;
1.2291 + int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
1.2292 + if( rc!=SQLITE_OK ) return rc;
1.2293 +
1.2294 + rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
1.2295 + if( rc!=SQLITE_OK ) return rc;
1.2296 +
1.2297 + rc = sqlite3_step(s);
1.2298 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.2299 + if( rc!=SQLITE_DONE ) return rc;
1.2300 +
1.2301 + /* blockid column is an alias for rowid. */
1.2302 + *piBlockid = sqlite3_last_insert_rowid(v->db);
1.2303 + return SQLITE_OK;
1.2304 +}
1.2305 +
1.2306 +/* delete from %_segments
1.2307 +** where blockid between [iStartBlockid] and [iEndBlockid]
1.2308 +**
1.2309 +** Deletes the range of blocks, inclusive, used to delete the blocks
1.2310 +** which form a segment.
1.2311 +*/
1.2312 +static int block_delete(fulltext_vtab *v,
1.2313 + sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
1.2314 + sqlite3_stmt *s;
1.2315 + int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
1.2316 + if( rc!=SQLITE_OK ) return rc;
1.2317 +
1.2318 + rc = sqlite3_bind_int64(s, 1, iStartBlockid);
1.2319 + if( rc!=SQLITE_OK ) return rc;
1.2320 +
1.2321 + rc = sqlite3_bind_int64(s, 2, iEndBlockid);
1.2322 + if( rc!=SQLITE_OK ) return rc;
1.2323 +
1.2324 + return sql_single_step(s);
1.2325 +}
1.2326 +
1.2327 +/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
1.2328 +** at iLevel. Returns SQLITE_DONE if there are no segments at
1.2329 +** iLevel. Otherwise returns an error.
1.2330 +*/
1.2331 +static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
1.2332 + sqlite3_stmt *s;
1.2333 + int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
1.2334 + if( rc!=SQLITE_OK ) return rc;
1.2335 +
1.2336 + rc = sqlite3_bind_int(s, 1, iLevel);
1.2337 + if( rc!=SQLITE_OK ) return rc;
1.2338 +
1.2339 + rc = sqlite3_step(s);
1.2340 + /* Should always get at least one row due to how max() works. */
1.2341 + if( rc==SQLITE_DONE ) return SQLITE_DONE;
1.2342 + if( rc!=SQLITE_ROW ) return rc;
1.2343 +
1.2344 + /* NULL means that there were no inputs to max(). */
1.2345 + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
1.2346 + rc = sqlite3_step(s);
1.2347 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.2348 + return rc;
1.2349 + }
1.2350 +
1.2351 + *pidx = sqlite3_column_int(s, 0);
1.2352 +
1.2353 + /* We expect only one row. We must execute another sqlite3_step()
1.2354 + * to complete the iteration; otherwise the table will remain locked. */
1.2355 + rc = sqlite3_step(s);
1.2356 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.2357 + if( rc!=SQLITE_DONE ) return rc;
1.2358 + return SQLITE_ROW;
1.2359 +}
1.2360 +
1.2361 +/* insert into %_segdir values (
1.2362 +** [iLevel], [idx],
1.2363 +** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
1.2364 +** [pRootData]
1.2365 +** )
1.2366 +*/
1.2367 +static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
1.2368 + sqlite_int64 iStartBlockid,
1.2369 + sqlite_int64 iLeavesEndBlockid,
1.2370 + sqlite_int64 iEndBlockid,
1.2371 + const char *pRootData, int nRootData){
1.2372 + sqlite3_stmt *s;
1.2373 + int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
1.2374 + if( rc!=SQLITE_OK ) return rc;
1.2375 +
1.2376 + rc = sqlite3_bind_int(s, 1, iLevel);
1.2377 + if( rc!=SQLITE_OK ) return rc;
1.2378 +
1.2379 + rc = sqlite3_bind_int(s, 2, idx);
1.2380 + if( rc!=SQLITE_OK ) return rc;
1.2381 +
1.2382 + rc = sqlite3_bind_int64(s, 3, iStartBlockid);
1.2383 + if( rc!=SQLITE_OK ) return rc;
1.2384 +
1.2385 + rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
1.2386 + if( rc!=SQLITE_OK ) return rc;
1.2387 +
1.2388 + rc = sqlite3_bind_int64(s, 5, iEndBlockid);
1.2389 + if( rc!=SQLITE_OK ) return rc;
1.2390 +
1.2391 + rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
1.2392 + if( rc!=SQLITE_OK ) return rc;
1.2393 +
1.2394 + return sql_single_step(s);
1.2395 +}
1.2396 +
1.2397 +/* Queries %_segdir for the block span of the segments in level
1.2398 +** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel,
1.2399 +** SQLITE_ROW if there are blocks, else an error.
1.2400 +*/
1.2401 +static int segdir_span(fulltext_vtab *v, int iLevel,
1.2402 + sqlite_int64 *piStartBlockid,
1.2403 + sqlite_int64 *piEndBlockid){
1.2404 + sqlite3_stmt *s;
1.2405 + int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
1.2406 + if( rc!=SQLITE_OK ) return rc;
1.2407 +
1.2408 + rc = sqlite3_bind_int(s, 1, iLevel);
1.2409 + if( rc!=SQLITE_OK ) return rc;
1.2410 +
1.2411 + rc = sqlite3_step(s);
1.2412 + if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */
1.2413 + if( rc!=SQLITE_ROW ) return rc;
1.2414 +
1.2415 + /* This happens if all segments at this level are entirely inline. */
1.2416 + if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
1.2417 + /* We expect only one row. We must execute another sqlite3_step()
1.2418 + * to complete the iteration; otherwise the table will remain locked. */
1.2419 + int rc2 = sqlite3_step(s);
1.2420 + if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
1.2421 + return rc2;
1.2422 + }
1.2423 +
1.2424 + *piStartBlockid = sqlite3_column_int64(s, 0);
1.2425 + *piEndBlockid = sqlite3_column_int64(s, 1);
1.2426 +
1.2427 + /* We expect only one row. We must execute another sqlite3_step()
1.2428 + * to complete the iteration; otherwise the table will remain locked. */
1.2429 + rc = sqlite3_step(s);
1.2430 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.2431 + if( rc!=SQLITE_DONE ) return rc;
1.2432 + return SQLITE_ROW;
1.2433 +}
1.2434 +
1.2435 +/* Delete the segment blocks and segment directory records for all
1.2436 +** segments at iLevel.
1.2437 +*/
1.2438 +static int segdir_delete(fulltext_vtab *v, int iLevel){
1.2439 + sqlite3_stmt *s;
1.2440 + sqlite_int64 iStartBlockid, iEndBlockid;
1.2441 + int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
1.2442 + if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
1.2443 +
1.2444 + if( rc==SQLITE_ROW ){
1.2445 + rc = block_delete(v, iStartBlockid, iEndBlockid);
1.2446 + if( rc!=SQLITE_OK ) return rc;
1.2447 + }
1.2448 +
1.2449 + /* Delete the segment directory itself. */
1.2450 + rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
1.2451 + if( rc!=SQLITE_OK ) return rc;
1.2452 +
1.2453 + rc = sqlite3_bind_int64(s, 1, iLevel);
1.2454 + if( rc!=SQLITE_OK ) return rc;
1.2455 +
1.2456 + return sql_single_step(s);
1.2457 +}
1.2458 +
1.2459 +/* Delete entire fts index, SQLITE_OK on success, relevant error on
1.2460 +** failure.
1.2461 +*/
1.2462 +static int segdir_delete_all(fulltext_vtab *v){
1.2463 + sqlite3_stmt *s;
1.2464 + int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
1.2465 + if( rc!=SQLITE_OK ) return rc;
1.2466 +
1.2467 + rc = sql_single_step(s);
1.2468 + if( rc!=SQLITE_OK ) return rc;
1.2469 +
1.2470 + rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
1.2471 + if( rc!=SQLITE_OK ) return rc;
1.2472 +
1.2473 + return sql_single_step(s);
1.2474 +}
1.2475 +
1.2476 +/* Returns SQLITE_OK with *pnSegments set to the number of entries in
1.2477 +** %_segdir and *piMaxLevel set to the highest level which has a
1.2478 +** segment. Otherwise returns the SQLite error which caused failure.
1.2479 +*/
1.2480 +static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
1.2481 + sqlite3_stmt *s;
1.2482 + int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
1.2483 + if( rc!=SQLITE_OK ) return rc;
1.2484 +
1.2485 + rc = sqlite3_step(s);
1.2486 + /* TODO(shess): This case should not be possible? Should stronger
1.2487 + ** measures be taken if it happens?
1.2488 + */
1.2489 + if( rc==SQLITE_DONE ){
1.2490 + *pnSegments = 0;
1.2491 + *piMaxLevel = 0;
1.2492 + return SQLITE_OK;
1.2493 + }
1.2494 + if( rc!=SQLITE_ROW ) return rc;
1.2495 +
1.2496 + *pnSegments = sqlite3_column_int(s, 0);
1.2497 + *piMaxLevel = sqlite3_column_int(s, 1);
1.2498 +
1.2499 + /* We expect only one row. We must execute another sqlite3_step()
1.2500 + * to complete the iteration; otherwise the table will remain locked. */
1.2501 + rc = sqlite3_step(s);
1.2502 + if( rc==SQLITE_DONE ) return SQLITE_OK;
1.2503 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.2504 + return rc;
1.2505 +}
1.2506 +
1.2507 +/* TODO(shess) clearPendingTerms() is far down the file because
1.2508 +** writeZeroSegment() is far down the file because LeafWriter is far
1.2509 +** down the file. Consider refactoring the code to move the non-vtab
1.2510 +** code above the vtab code so that we don't need this forward
1.2511 +** reference.
1.2512 +*/
1.2513 +static int clearPendingTerms(fulltext_vtab *v);
1.2514 +
1.2515 +/*
1.2516 +** Free the memory used to contain a fulltext_vtab structure.
1.2517 +*/
1.2518 +static void fulltext_vtab_destroy(fulltext_vtab *v){
1.2519 + int iStmt, i;
1.2520 +
1.2521 + FTSTRACE(("FTS3 Destroy %p\n", v));
1.2522 + for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
1.2523 + if( v->pFulltextStatements[iStmt]!=NULL ){
1.2524 + sqlite3_finalize(v->pFulltextStatements[iStmt]);
1.2525 + v->pFulltextStatements[iStmt] = NULL;
1.2526 + }
1.2527 + }
1.2528 +
1.2529 + for( i=0; i<MERGE_COUNT; i++ ){
1.2530 + if( v->pLeafSelectStmts[i]!=NULL ){
1.2531 + sqlite3_finalize(v->pLeafSelectStmts[i]);
1.2532 + v->pLeafSelectStmts[i] = NULL;
1.2533 + }
1.2534 + }
1.2535 +
1.2536 + if( v->pTokenizer!=NULL ){
1.2537 + v->pTokenizer->pModule->xDestroy(v->pTokenizer);
1.2538 + v->pTokenizer = NULL;
1.2539 + }
1.2540 +
1.2541 + clearPendingTerms(v);
1.2542 +
1.2543 + sqlite3_free(v->azColumn);
1.2544 + for(i = 0; i < v->nColumn; ++i) {
1.2545 + sqlite3_free(v->azContentColumn[i]);
1.2546 + }
1.2547 + sqlite3_free(v->azContentColumn);
1.2548 + sqlite3_free(v);
1.2549 +}
1.2550 +
1.2551 +/*
1.2552 +** Token types for parsing the arguments to xConnect or xCreate.
1.2553 +*/
1.2554 +#define TOKEN_EOF 0 /* End of file */
1.2555 +#define TOKEN_SPACE 1 /* Any kind of whitespace */
1.2556 +#define TOKEN_ID 2 /* An identifier */
1.2557 +#define TOKEN_STRING 3 /* A string literal */
1.2558 +#define TOKEN_PUNCT 4 /* A single punctuation character */
1.2559 +
1.2560 +/*
1.2561 +** If X is a character that can be used in an identifier then
1.2562 +** ftsIdChar(X) will be true. Otherwise it is false.
1.2563 +**
1.2564 +** For ASCII, any character with the high-order bit set is
1.2565 +** allowed in an identifier. For 7-bit characters,
1.2566 +** isFtsIdChar[X] must be 1.
1.2567 +**
1.2568 +** Ticket #1066. the SQL standard does not allow '$' in the
1.2569 +** middle of identfiers. But many SQL implementations do.
1.2570 +** SQLite will allow '$' in identifiers for compatibility.
1.2571 +** But the feature is undocumented.
1.2572 +*/
1.2573 +static const char isFtsIdChar[] = {
1.2574 +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
1.2575 + 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */
1.2576 + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
1.2577 + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
1.2578 + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
1.2579 + 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
1.2580 + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
1.2581 +};
1.2582 +#define ftsIdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
1.2583 +
1.2584 +
1.2585 +/*
1.2586 +** Return the length of the token that begins at z[0].
1.2587 +** Store the token type in *tokenType before returning.
1.2588 +*/
1.2589 +static int ftsGetToken(const char *z, int *tokenType){
1.2590 + int i, c;
1.2591 + switch( *z ){
1.2592 + case 0: {
1.2593 + *tokenType = TOKEN_EOF;
1.2594 + return 0;
1.2595 + }
1.2596 + case ' ': case '\t': case '\n': case '\f': case '\r': {
1.2597 + for(i=1; safe_isspace(z[i]); i++){}
1.2598 + *tokenType = TOKEN_SPACE;
1.2599 + return i;
1.2600 + }
1.2601 + case '`':
1.2602 + case '\'':
1.2603 + case '"': {
1.2604 + int delim = z[0];
1.2605 + for(i=1; (c=z[i])!=0; i++){
1.2606 + if( c==delim ){
1.2607 + if( z[i+1]==delim ){
1.2608 + i++;
1.2609 + }else{
1.2610 + break;
1.2611 + }
1.2612 + }
1.2613 + }
1.2614 + *tokenType = TOKEN_STRING;
1.2615 + return i + (c!=0);
1.2616 + }
1.2617 + case '[': {
1.2618 + for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
1.2619 + *tokenType = TOKEN_ID;
1.2620 + return i;
1.2621 + }
1.2622 + default: {
1.2623 + if( !ftsIdChar(*z) ){
1.2624 + break;
1.2625 + }
1.2626 + for(i=1; ftsIdChar(z[i]); i++){}
1.2627 + *tokenType = TOKEN_ID;
1.2628 + return i;
1.2629 + }
1.2630 + }
1.2631 + *tokenType = TOKEN_PUNCT;
1.2632 + return 1;
1.2633 +}
1.2634 +
1.2635 +/*
1.2636 +** A token extracted from a string is an instance of the following
1.2637 +** structure.
1.2638 +*/
1.2639 +typedef struct FtsToken {
1.2640 + const char *z; /* Pointer to token text. Not '\000' terminated */
1.2641 + short int n; /* Length of the token text in bytes. */
1.2642 +} FtsToken;
1.2643 +
1.2644 +/*
1.2645 +** Given a input string (which is really one of the argv[] parameters
1.2646 +** passed into xConnect or xCreate) split the string up into tokens.
1.2647 +** Return an array of pointers to '\000' terminated strings, one string
1.2648 +** for each non-whitespace token.
1.2649 +**
1.2650 +** The returned array is terminated by a single NULL pointer.
1.2651 +**
1.2652 +** Space to hold the returned array is obtained from a single
1.2653 +** malloc and should be freed by passing the return value to free().
1.2654 +** The individual strings within the token list are all a part of
1.2655 +** the single memory allocation and will all be freed at once.
1.2656 +*/
1.2657 +static char **tokenizeString(const char *z, int *pnToken){
1.2658 + int nToken = 0;
1.2659 + FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
1.2660 + int n = 1;
1.2661 + int e, i;
1.2662 + int totalSize = 0;
1.2663 + char **azToken;
1.2664 + char *zCopy;
1.2665 + while( n>0 ){
1.2666 + n = ftsGetToken(z, &e);
1.2667 + if( e!=TOKEN_SPACE ){
1.2668 + aToken[nToken].z = z;
1.2669 + aToken[nToken].n = n;
1.2670 + nToken++;
1.2671 + totalSize += n+1;
1.2672 + }
1.2673 + z += n;
1.2674 + }
1.2675 + azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
1.2676 + zCopy = (char*)&azToken[nToken];
1.2677 + nToken--;
1.2678 + for(i=0; i<nToken; i++){
1.2679 + azToken[i] = zCopy;
1.2680 + n = aToken[i].n;
1.2681 + memcpy(zCopy, aToken[i].z, n);
1.2682 + zCopy[n] = 0;
1.2683 + zCopy += n+1;
1.2684 + }
1.2685 + azToken[nToken] = 0;
1.2686 + sqlite3_free(aToken);
1.2687 + *pnToken = nToken;
1.2688 + return azToken;
1.2689 +}
1.2690 +
1.2691 +/*
1.2692 +** Convert an SQL-style quoted string into a normal string by removing
1.2693 +** the quote characters. The conversion is done in-place. If the
1.2694 +** input does not begin with a quote character, then this routine
1.2695 +** is a no-op.
1.2696 +**
1.2697 +** Examples:
1.2698 +**
1.2699 +** "abc" becomes abc
1.2700 +** 'xyz' becomes xyz
1.2701 +** [pqr] becomes pqr
1.2702 +** `mno` becomes mno
1.2703 +*/
1.2704 +static void dequoteString(char *z){
1.2705 + int quote;
1.2706 + int i, j;
1.2707 + if( z==0 ) return;
1.2708 + quote = z[0];
1.2709 + switch( quote ){
1.2710 + case '\'': break;
1.2711 + case '"': break;
1.2712 + case '`': break; /* For MySQL compatibility */
1.2713 + case '[': quote = ']'; break; /* For MS SqlServer compatibility */
1.2714 + default: return;
1.2715 + }
1.2716 + for(i=1, j=0; z[i]; i++){
1.2717 + if( z[i]==quote ){
1.2718 + if( z[i+1]==quote ){
1.2719 + z[j++] = quote;
1.2720 + i++;
1.2721 + }else{
1.2722 + z[j++] = 0;
1.2723 + break;
1.2724 + }
1.2725 + }else{
1.2726 + z[j++] = z[i];
1.2727 + }
1.2728 + }
1.2729 +}
1.2730 +
1.2731 +/*
1.2732 +** The input azIn is a NULL-terminated list of tokens. Remove the first
1.2733 +** token and all punctuation tokens. Remove the quotes from
1.2734 +** around string literal tokens.
1.2735 +**
1.2736 +** Example:
1.2737 +**
1.2738 +** input: tokenize chinese ( 'simplifed' , 'mixed' )
1.2739 +** output: chinese simplifed mixed
1.2740 +**
1.2741 +** Another example:
1.2742 +**
1.2743 +** input: delimiters ( '[' , ']' , '...' )
1.2744 +** output: [ ] ...
1.2745 +*/
1.2746 +static void tokenListToIdList(char **azIn){
1.2747 + int i, j;
1.2748 + if( azIn ){
1.2749 + for(i=0, j=-1; azIn[i]; i++){
1.2750 + if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
1.2751 + dequoteString(azIn[i]);
1.2752 + if( j>=0 ){
1.2753 + azIn[j] = azIn[i];
1.2754 + }
1.2755 + j++;
1.2756 + }
1.2757 + }
1.2758 + azIn[j] = 0;
1.2759 + }
1.2760 +}
1.2761 +
1.2762 +
1.2763 +/*
1.2764 +** Find the first alphanumeric token in the string zIn. Null-terminate
1.2765 +** this token. Remove any quotation marks. And return a pointer to
1.2766 +** the result.
1.2767 +*/
1.2768 +static char *firstToken(char *zIn, char **pzTail){
1.2769 + int n, ttype;
1.2770 + while(1){
1.2771 + n = ftsGetToken(zIn, &ttype);
1.2772 + if( ttype==TOKEN_SPACE ){
1.2773 + zIn += n;
1.2774 + }else if( ttype==TOKEN_EOF ){
1.2775 + *pzTail = zIn;
1.2776 + return 0;
1.2777 + }else{
1.2778 + zIn[n] = 0;
1.2779 + *pzTail = &zIn[1];
1.2780 + dequoteString(zIn);
1.2781 + return zIn;
1.2782 + }
1.2783 + }
1.2784 + /*NOTREACHED*/
1.2785 +}
1.2786 +
1.2787 +/* Return true if...
1.2788 +**
1.2789 +** * s begins with the string t, ignoring case
1.2790 +** * s is longer than t
1.2791 +** * The first character of s beyond t is not a alphanumeric
1.2792 +**
1.2793 +** Ignore leading space in *s.
1.2794 +**
1.2795 +** To put it another way, return true if the first token of
1.2796 +** s[] is t[].
1.2797 +*/
1.2798 +static int startsWith(const char *s, const char *t){
1.2799 + while( safe_isspace(*s) ){ s++; }
1.2800 + while( *t ){
1.2801 + if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
1.2802 + }
1.2803 + return *s!='_' && !safe_isalnum(*s);
1.2804 +}
1.2805 +
1.2806 +/*
1.2807 +** An instance of this structure defines the "spec" of a
1.2808 +** full text index. This structure is populated by parseSpec
1.2809 +** and use by fulltextConnect and fulltextCreate.
1.2810 +*/
1.2811 +typedef struct TableSpec {
1.2812 + const char *zDb; /* Logical database name */
1.2813 + const char *zName; /* Name of the full-text index */
1.2814 + int nColumn; /* Number of columns to be indexed */
1.2815 + char **azColumn; /* Original names of columns to be indexed */
1.2816 + char **azContentColumn; /* Column names for %_content */
1.2817 + char **azTokenizer; /* Name of tokenizer and its arguments */
1.2818 +} TableSpec;
1.2819 +
1.2820 +/*
1.2821 +** Reclaim all of the memory used by a TableSpec
1.2822 +*/
1.2823 +static void clearTableSpec(TableSpec *p) {
1.2824 + sqlite3_free(p->azColumn);
1.2825 + sqlite3_free(p->azContentColumn);
1.2826 + sqlite3_free(p->azTokenizer);
1.2827 +}
1.2828 +
1.2829 +/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
1.2830 + *
1.2831 + * CREATE VIRTUAL TABLE email
1.2832 + * USING fts3(subject, body, tokenize mytokenizer(myarg))
1.2833 + *
1.2834 + * We return parsed information in a TableSpec structure.
1.2835 + *
1.2836 + */
1.2837 +static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
1.2838 + char**pzErr){
1.2839 + int i, n;
1.2840 + char *z, *zDummy;
1.2841 + char **azArg;
1.2842 + const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */
1.2843 +
1.2844 + assert( argc>=3 );
1.2845 + /* Current interface:
1.2846 + ** argv[0] - module name
1.2847 + ** argv[1] - database name
1.2848 + ** argv[2] - table name
1.2849 + ** argv[3..] - columns, optionally followed by tokenizer specification
1.2850 + ** and snippet delimiters specification.
1.2851 + */
1.2852 +
1.2853 + /* Make a copy of the complete argv[][] array in a single allocation.
1.2854 + ** The argv[][] array is read-only and transient. We can write to the
1.2855 + ** copy in order to modify things and the copy is persistent.
1.2856 + */
1.2857 + CLEAR(pSpec);
1.2858 + for(i=n=0; i<argc; i++){
1.2859 + n += strlen(argv[i]) + 1;
1.2860 + }
1.2861 + azArg = sqlite3_malloc( sizeof(char*)*argc + n );
1.2862 + if( azArg==0 ){
1.2863 + return SQLITE_NOMEM;
1.2864 + }
1.2865 + z = (char*)&azArg[argc];
1.2866 + for(i=0; i<argc; i++){
1.2867 + azArg[i] = z;
1.2868 + strcpy(z, argv[i]);
1.2869 + z += strlen(z)+1;
1.2870 + }
1.2871 +
1.2872 + /* Identify the column names and the tokenizer and delimiter arguments
1.2873 + ** in the argv[][] array.
1.2874 + */
1.2875 + pSpec->zDb = azArg[1];
1.2876 + pSpec->zName = azArg[2];
1.2877 + pSpec->nColumn = 0;
1.2878 + pSpec->azColumn = azArg;
1.2879 + zTokenizer = "tokenize simple";
1.2880 + for(i=3; i<argc; ++i){
1.2881 + if( startsWith(azArg[i],"tokenize") ){
1.2882 + zTokenizer = azArg[i];
1.2883 + }else{
1.2884 + z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
1.2885 + pSpec->nColumn++;
1.2886 + }
1.2887 + }
1.2888 + if( pSpec->nColumn==0 ){
1.2889 + azArg[0] = "content";
1.2890 + pSpec->nColumn = 1;
1.2891 + }
1.2892 +
1.2893 + /*
1.2894 + ** Construct the list of content column names.
1.2895 + **
1.2896 + ** Each content column name will be of the form cNNAAAA
1.2897 + ** where NN is the column number and AAAA is the sanitized
1.2898 + ** column name. "sanitized" means that special characters are
1.2899 + ** converted to "_". The cNN prefix guarantees that all column
1.2900 + ** names are unique.
1.2901 + **
1.2902 + ** The AAAA suffix is not strictly necessary. It is included
1.2903 + ** for the convenience of people who might examine the generated
1.2904 + ** %_content table and wonder what the columns are used for.
1.2905 + */
1.2906 + pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
1.2907 + if( pSpec->azContentColumn==0 ){
1.2908 + clearTableSpec(pSpec);
1.2909 + return SQLITE_NOMEM;
1.2910 + }
1.2911 + for(i=0; i<pSpec->nColumn; i++){
1.2912 + char *p;
1.2913 + pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
1.2914 + for (p = pSpec->azContentColumn[i]; *p ; ++p) {
1.2915 + if( !safe_isalnum(*p) ) *p = '_';
1.2916 + }
1.2917 + }
1.2918 +
1.2919 + /*
1.2920 + ** Parse the tokenizer specification string.
1.2921 + */
1.2922 + pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
1.2923 + tokenListToIdList(pSpec->azTokenizer);
1.2924 +
1.2925 + return SQLITE_OK;
1.2926 +}
1.2927 +
1.2928 +/*
1.2929 +** Generate a CREATE TABLE statement that describes the schema of
1.2930 +** the virtual table. Return a pointer to this schema string.
1.2931 +**
1.2932 +** Space is obtained from sqlite3_mprintf() and should be freed
1.2933 +** using sqlite3_free().
1.2934 +*/
1.2935 +static char *fulltextSchema(
1.2936 + int nColumn, /* Number of columns */
1.2937 + const char *const* azColumn, /* List of columns */
1.2938 + const char *zTableName /* Name of the table */
1.2939 +){
1.2940 + int i;
1.2941 + char *zSchema, *zNext;
1.2942 + const char *zSep = "(";
1.2943 + zSchema = sqlite3_mprintf("CREATE TABLE x");
1.2944 + for(i=0; i<nColumn; i++){
1.2945 + zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
1.2946 + sqlite3_free(zSchema);
1.2947 + zSchema = zNext;
1.2948 + zSep = ",";
1.2949 + }
1.2950 + zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
1.2951 + sqlite3_free(zSchema);
1.2952 + zSchema = zNext;
1.2953 + zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
1.2954 + sqlite3_free(zSchema);
1.2955 + return zNext;
1.2956 +}
1.2957 +
1.2958 +/*
1.2959 +** Build a new sqlite3_vtab structure that will describe the
1.2960 +** fulltext index defined by spec.
1.2961 +*/
1.2962 +static int constructVtab(
1.2963 + sqlite3 *db, /* The SQLite database connection */
1.2964 + fts3Hash *pHash, /* Hash table containing tokenizers */
1.2965 + TableSpec *spec, /* Parsed spec information from parseSpec() */
1.2966 + sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
1.2967 + char **pzErr /* Write any error message here */
1.2968 +){
1.2969 + int rc;
1.2970 + int n;
1.2971 + fulltext_vtab *v = 0;
1.2972 + const sqlite3_tokenizer_module *m = NULL;
1.2973 + char *schema;
1.2974 +
1.2975 + char const *zTok; /* Name of tokenizer to use for this fts table */
1.2976 + int nTok; /* Length of zTok, including nul terminator */
1.2977 +
1.2978 + v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
1.2979 + if( v==0 ) return SQLITE_NOMEM;
1.2980 + CLEAR(v);
1.2981 + /* sqlite will initialize v->base */
1.2982 + v->db = db;
1.2983 + v->zDb = spec->zDb; /* Freed when azColumn is freed */
1.2984 + v->zName = spec->zName; /* Freed when azColumn is freed */
1.2985 + v->nColumn = spec->nColumn;
1.2986 + v->azContentColumn = spec->azContentColumn;
1.2987 + spec->azContentColumn = 0;
1.2988 + v->azColumn = spec->azColumn;
1.2989 + spec->azColumn = 0;
1.2990 +
1.2991 + if( spec->azTokenizer==0 ){
1.2992 + return SQLITE_NOMEM;
1.2993 + }
1.2994 +
1.2995 + zTok = spec->azTokenizer[0];
1.2996 + if( !zTok ){
1.2997 + zTok = "simple";
1.2998 + }
1.2999 + nTok = strlen(zTok)+1;
1.3000 +
1.3001 + m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
1.3002 + if( !m ){
1.3003 + *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
1.3004 + rc = SQLITE_ERROR;
1.3005 + goto err;
1.3006 + }
1.3007 +
1.3008 + for(n=0; spec->azTokenizer[n]; n++){}
1.3009 + if( n ){
1.3010 + rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
1.3011 + &v->pTokenizer);
1.3012 + }else{
1.3013 + rc = m->xCreate(0, 0, &v->pTokenizer);
1.3014 + }
1.3015 + if( rc!=SQLITE_OK ) goto err;
1.3016 + v->pTokenizer->pModule = m;
1.3017 +
1.3018 + /* TODO: verify the existence of backing tables foo_content, foo_term */
1.3019 +
1.3020 + schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
1.3021 + spec->zName);
1.3022 + rc = sqlite3_declare_vtab(db, schema);
1.3023 + sqlite3_free(schema);
1.3024 + if( rc!=SQLITE_OK ) goto err;
1.3025 +
1.3026 + memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
1.3027 +
1.3028 + /* Indicate that the buffer is not live. */
1.3029 + v->nPendingData = -1;
1.3030 +
1.3031 + *ppVTab = &v->base;
1.3032 + FTSTRACE(("FTS3 Connect %p\n", v));
1.3033 +
1.3034 + return rc;
1.3035 +
1.3036 +err:
1.3037 + fulltext_vtab_destroy(v);
1.3038 + return rc;
1.3039 +}
1.3040 +
1.3041 +static int fulltextConnect(
1.3042 + sqlite3 *db,
1.3043 + void *pAux,
1.3044 + int argc, const char *const*argv,
1.3045 + sqlite3_vtab **ppVTab,
1.3046 + char **pzErr
1.3047 +){
1.3048 + TableSpec spec;
1.3049 + int rc = parseSpec(&spec, argc, argv, pzErr);
1.3050 + if( rc!=SQLITE_OK ) return rc;
1.3051 +
1.3052 + rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
1.3053 + clearTableSpec(&spec);
1.3054 + return rc;
1.3055 +}
1.3056 +
1.3057 +/* The %_content table holds the text of each document, with
1.3058 +** the docid column exposed as the SQLite rowid for the table.
1.3059 +*/
1.3060 +/* TODO(shess) This comment needs elaboration to match the updated
1.3061 +** code. Work it into the top-of-file comment at that time.
1.3062 +*/
1.3063 +static int fulltextCreate(sqlite3 *db, void *pAux,
1.3064 + int argc, const char * const *argv,
1.3065 + sqlite3_vtab **ppVTab, char **pzErr){
1.3066 + int rc;
1.3067 + TableSpec spec;
1.3068 + StringBuffer schema;
1.3069 + FTSTRACE(("FTS3 Create\n"));
1.3070 +
1.3071 + rc = parseSpec(&spec, argc, argv, pzErr);
1.3072 + if( rc!=SQLITE_OK ) return rc;
1.3073 +
1.3074 + initStringBuffer(&schema);
1.3075 + append(&schema, "CREATE TABLE %_content(");
1.3076 + append(&schema, " docid INTEGER PRIMARY KEY,");
1.3077 + appendList(&schema, spec.nColumn, spec.azContentColumn);
1.3078 + append(&schema, ")");
1.3079 + rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
1.3080 + stringBufferDestroy(&schema);
1.3081 + if( rc!=SQLITE_OK ) goto out;
1.3082 +
1.3083 + rc = sql_exec(db, spec.zDb, spec.zName,
1.3084 + "create table %_segments("
1.3085 + " blockid INTEGER PRIMARY KEY,"
1.3086 + " block blob"
1.3087 + ");"
1.3088 + );
1.3089 + if( rc!=SQLITE_OK ) goto out;
1.3090 +
1.3091 + rc = sql_exec(db, spec.zDb, spec.zName,
1.3092 + "create table %_segdir("
1.3093 + " level integer,"
1.3094 + " idx integer,"
1.3095 + " start_block integer,"
1.3096 + " leaves_end_block integer,"
1.3097 + " end_block integer,"
1.3098 + " root blob,"
1.3099 + " primary key(level, idx)"
1.3100 + ");");
1.3101 + if( rc!=SQLITE_OK ) goto out;
1.3102 +
1.3103 + rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
1.3104 +
1.3105 +out:
1.3106 + clearTableSpec(&spec);
1.3107 + return rc;
1.3108 +}
1.3109 +
1.3110 +/* Decide how to handle an SQL query. */
1.3111 +static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1.3112 + fulltext_vtab *v = (fulltext_vtab *)pVTab;
1.3113 + int i;
1.3114 + FTSTRACE(("FTS3 BestIndex\n"));
1.3115 +
1.3116 + for(i=0; i<pInfo->nConstraint; ++i){
1.3117 + const struct sqlite3_index_constraint *pConstraint;
1.3118 + pConstraint = &pInfo->aConstraint[i];
1.3119 + if( pConstraint->usable ) {
1.3120 + if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
1.3121 + pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
1.3122 + pInfo->idxNum = QUERY_DOCID; /* lookup by docid */
1.3123 + FTSTRACE(("FTS3 QUERY_DOCID\n"));
1.3124 + } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
1.3125 + pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1.3126 + /* full-text search */
1.3127 + pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
1.3128 + FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
1.3129 + } else continue;
1.3130 +
1.3131 + pInfo->aConstraintUsage[i].argvIndex = 1;
1.3132 + pInfo->aConstraintUsage[i].omit = 1;
1.3133 +
1.3134 + /* An arbitrary value for now.
1.3135 + * TODO: Perhaps docid matches should be considered cheaper than
1.3136 + * full-text searches. */
1.3137 + pInfo->estimatedCost = 1.0;
1.3138 +
1.3139 + return SQLITE_OK;
1.3140 + }
1.3141 + }
1.3142 + pInfo->idxNum = QUERY_GENERIC;
1.3143 + return SQLITE_OK;
1.3144 +}
1.3145 +
1.3146 +static int fulltextDisconnect(sqlite3_vtab *pVTab){
1.3147 + FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
1.3148 + fulltext_vtab_destroy((fulltext_vtab *)pVTab);
1.3149 + return SQLITE_OK;
1.3150 +}
1.3151 +
1.3152 +static int fulltextDestroy(sqlite3_vtab *pVTab){
1.3153 + fulltext_vtab *v = (fulltext_vtab *)pVTab;
1.3154 + int rc;
1.3155 +
1.3156 + FTSTRACE(("FTS3 Destroy %p\n", pVTab));
1.3157 + rc = sql_exec(v->db, v->zDb, v->zName,
1.3158 + "drop table if exists %_content;"
1.3159 + "drop table if exists %_segments;"
1.3160 + "drop table if exists %_segdir;"
1.3161 + );
1.3162 + if( rc!=SQLITE_OK ) return rc;
1.3163 +
1.3164 + fulltext_vtab_destroy((fulltext_vtab *)pVTab);
1.3165 + return SQLITE_OK;
1.3166 +}
1.3167 +
1.3168 +static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
1.3169 + fulltext_cursor *c;
1.3170 +
1.3171 + c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
1.3172 + if( c ){
1.3173 + memset(c, 0, sizeof(fulltext_cursor));
1.3174 + /* sqlite will initialize c->base */
1.3175 + *ppCursor = &c->base;
1.3176 + FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
1.3177 + return SQLITE_OK;
1.3178 + }else{
1.3179 + return SQLITE_NOMEM;
1.3180 + }
1.3181 +}
1.3182 +
1.3183 +
1.3184 +/* Free all of the dynamically allocated memory held by *q
1.3185 +*/
1.3186 +static void queryClear(Query *q){
1.3187 + int i;
1.3188 + for(i = 0; i < q->nTerms; ++i){
1.3189 + sqlite3_free(q->pTerms[i].pTerm);
1.3190 + }
1.3191 + sqlite3_free(q->pTerms);
1.3192 + CLEAR(q);
1.3193 +}
1.3194 +
1.3195 +/* Free all of the dynamically allocated memory held by the
1.3196 +** Snippet
1.3197 +*/
1.3198 +static void snippetClear(Snippet *p){
1.3199 + sqlite3_free(p->aMatch);
1.3200 + sqlite3_free(p->zOffset);
1.3201 + sqlite3_free(p->zSnippet);
1.3202 + CLEAR(p);
1.3203 +}
1.3204 +/*
1.3205 +** Append a single entry to the p->aMatch[] log.
1.3206 +*/
1.3207 +static void snippetAppendMatch(
1.3208 + Snippet *p, /* Append the entry to this snippet */
1.3209 + int iCol, int iTerm, /* The column and query term */
1.3210 + int iToken, /* Matching token in document */
1.3211 + int iStart, int nByte /* Offset and size of the match */
1.3212 +){
1.3213 + int i;
1.3214 + struct snippetMatch *pMatch;
1.3215 + if( p->nMatch+1>=p->nAlloc ){
1.3216 + p->nAlloc = p->nAlloc*2 + 10;
1.3217 + p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
1.3218 + if( p->aMatch==0 ){
1.3219 + p->nMatch = 0;
1.3220 + p->nAlloc = 0;
1.3221 + return;
1.3222 + }
1.3223 + }
1.3224 + i = p->nMatch++;
1.3225 + pMatch = &p->aMatch[i];
1.3226 + pMatch->iCol = iCol;
1.3227 + pMatch->iTerm = iTerm;
1.3228 + pMatch->iToken = iToken;
1.3229 + pMatch->iStart = iStart;
1.3230 + pMatch->nByte = nByte;
1.3231 +}
1.3232 +
1.3233 +/*
1.3234 +** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
1.3235 +*/
1.3236 +#define FTS3_ROTOR_SZ (32)
1.3237 +#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
1.3238 +
1.3239 +/*
1.3240 +** Add entries to pSnippet->aMatch[] for every match that occurs against
1.3241 +** document zDoc[0..nDoc-1] which is stored in column iColumn.
1.3242 +*/
1.3243 +static void snippetOffsetsOfColumn(
1.3244 + Query *pQuery,
1.3245 + Snippet *pSnippet,
1.3246 + int iColumn,
1.3247 + const char *zDoc,
1.3248 + int nDoc
1.3249 +){
1.3250 + const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */
1.3251 + sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */
1.3252 + sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */
1.3253 + fulltext_vtab *pVtab; /* The full text index */
1.3254 + int nColumn; /* Number of columns in the index */
1.3255 + const QueryTerm *aTerm; /* Query string terms */
1.3256 + int nTerm; /* Number of query string terms */
1.3257 + int i, j; /* Loop counters */
1.3258 + int rc; /* Return code */
1.3259 + unsigned int match, prevMatch; /* Phrase search bitmasks */
1.3260 + const char *zToken; /* Next token from the tokenizer */
1.3261 + int nToken; /* Size of zToken */
1.3262 + int iBegin, iEnd, iPos; /* Offsets of beginning and end */
1.3263 +
1.3264 + /* The following variables keep a circular buffer of the last
1.3265 + ** few tokens */
1.3266 + unsigned int iRotor = 0; /* Index of current token */
1.3267 + int iRotorBegin[FTS3_ROTOR_SZ]; /* Beginning offset of token */
1.3268 + int iRotorLen[FTS3_ROTOR_SZ]; /* Length of token */
1.3269 +
1.3270 + pVtab = pQuery->pFts;
1.3271 + nColumn = pVtab->nColumn;
1.3272 + pTokenizer = pVtab->pTokenizer;
1.3273 + pTModule = pTokenizer->pModule;
1.3274 + rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
1.3275 + if( rc ) return;
1.3276 + pTCursor->pTokenizer = pTokenizer;
1.3277 + aTerm = pQuery->pTerms;
1.3278 + nTerm = pQuery->nTerms;
1.3279 + if( nTerm>=FTS3_ROTOR_SZ ){
1.3280 + nTerm = FTS3_ROTOR_SZ - 1;
1.3281 + }
1.3282 + prevMatch = 0;
1.3283 + while(1){
1.3284 + rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
1.3285 + if( rc ) break;
1.3286 + iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
1.3287 + iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
1.3288 + match = 0;
1.3289 + for(i=0; i<nTerm; i++){
1.3290 + int iCol;
1.3291 + iCol = aTerm[i].iColumn;
1.3292 + if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
1.3293 + if( aTerm[i].nTerm>nToken ) continue;
1.3294 + if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
1.3295 + assert( aTerm[i].nTerm<=nToken );
1.3296 + if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
1.3297 + if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
1.3298 + match |= 1<<i;
1.3299 + if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
1.3300 + for(j=aTerm[i].iPhrase-1; j>=0; j--){
1.3301 + int k = (iRotor-j) & FTS3_ROTOR_MASK;
1.3302 + snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
1.3303 + iRotorBegin[k], iRotorLen[k]);
1.3304 + }
1.3305 + }
1.3306 + }
1.3307 + prevMatch = match<<1;
1.3308 + iRotor++;
1.3309 + }
1.3310 + pTModule->xClose(pTCursor);
1.3311 +}
1.3312 +
1.3313 +/*
1.3314 +** Remove entries from the pSnippet structure to account for the NEAR
1.3315 +** operator. When this is called, pSnippet contains the list of token
1.3316 +** offsets produced by treating all NEAR operators as AND operators.
1.3317 +** This function removes any entries that should not be present after
1.3318 +** accounting for the NEAR restriction. For example, if the queried
1.3319 +** document is:
1.3320 +**
1.3321 +** "A B C D E A"
1.3322 +**
1.3323 +** and the query is:
1.3324 +**
1.3325 +** A NEAR/0 E
1.3326 +**
1.3327 +** then when this function is called the Snippet contains token offsets
1.3328 +** 0, 4 and 5. This function removes the "0" entry (because the first A
1.3329 +** is not near enough to an E).
1.3330 +*/
1.3331 +static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
1.3332 + int ii;
1.3333 + int iDir = 1;
1.3334 +
1.3335 + while(iDir>-2) {
1.3336 + assert( iDir==1 || iDir==-1 );
1.3337 + for(ii=0; ii<pSnippet->nMatch; ii++){
1.3338 + int jj;
1.3339 + int nNear;
1.3340 + struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
1.3341 + QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
1.3342 +
1.3343 + if( (pMatch->iTerm+iDir)<0
1.3344 + || (pMatch->iTerm+iDir)>=pQuery->nTerms
1.3345 + ){
1.3346 + continue;
1.3347 + }
1.3348 +
1.3349 + nNear = pQueryTerm->nNear;
1.3350 + if( iDir<0 ){
1.3351 + nNear = pQueryTerm[-1].nNear;
1.3352 + }
1.3353 +
1.3354 + if( pMatch->iTerm>=0 && nNear ){
1.3355 + int isOk = 0;
1.3356 + int iNextTerm = pMatch->iTerm+iDir;
1.3357 + int iPrevTerm = iNextTerm;
1.3358 +
1.3359 + int iEndToken;
1.3360 + int iStartToken;
1.3361 +
1.3362 + if( iDir<0 ){
1.3363 + int nPhrase = 1;
1.3364 + iStartToken = pMatch->iToken;
1.3365 + while( (pMatch->iTerm+nPhrase)<pQuery->nTerms
1.3366 + && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1
1.3367 + ){
1.3368 + nPhrase++;
1.3369 + }
1.3370 + iEndToken = iStartToken + nPhrase - 1;
1.3371 + }else{
1.3372 + iEndToken = pMatch->iToken;
1.3373 + iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
1.3374 + }
1.3375 +
1.3376 + while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
1.3377 + iNextTerm--;
1.3378 + }
1.3379 + while( (iPrevTerm+1)<pQuery->nTerms &&
1.3380 + pQuery->pTerms[iPrevTerm+1].iPhrase>1
1.3381 + ){
1.3382 + iPrevTerm++;
1.3383 + }
1.3384 +
1.3385 + for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
1.3386 + struct snippetMatch *p = &pSnippet->aMatch[jj];
1.3387 + if( p->iCol==pMatch->iCol && ((
1.3388 + p->iTerm==iNextTerm &&
1.3389 + p->iToken>iEndToken &&
1.3390 + p->iToken<=iEndToken+nNear
1.3391 + ) || (
1.3392 + p->iTerm==iPrevTerm &&
1.3393 + p->iToken<iStartToken &&
1.3394 + p->iToken>=iStartToken-nNear
1.3395 + ))){
1.3396 + isOk = 1;
1.3397 + }
1.3398 + }
1.3399 + if( !isOk ){
1.3400 + for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
1.3401 + pMatch[jj].iTerm = -1;
1.3402 + }
1.3403 + ii = -1;
1.3404 + iDir = 1;
1.3405 + }
1.3406 + }
1.3407 + }
1.3408 + iDir -= 2;
1.3409 + }
1.3410 +}
1.3411 +
1.3412 +/*
1.3413 +** Compute all offsets for the current row of the query.
1.3414 +** If the offsets have already been computed, this routine is a no-op.
1.3415 +*/
1.3416 +static void snippetAllOffsets(fulltext_cursor *p){
1.3417 + int nColumn;
1.3418 + int iColumn, i;
1.3419 + int iFirst, iLast;
1.3420 + fulltext_vtab *pFts;
1.3421 +
1.3422 + if( p->snippet.nMatch ) return;
1.3423 + if( p->q.nTerms==0 ) return;
1.3424 + pFts = p->q.pFts;
1.3425 + nColumn = pFts->nColumn;
1.3426 + iColumn = (p->iCursorType - QUERY_FULLTEXT);
1.3427 + if( iColumn<0 || iColumn>=nColumn ){
1.3428 + iFirst = 0;
1.3429 + iLast = nColumn-1;
1.3430 + }else{
1.3431 + iFirst = iColumn;
1.3432 + iLast = iColumn;
1.3433 + }
1.3434 + for(i=iFirst; i<=iLast; i++){
1.3435 + const char *zDoc;
1.3436 + int nDoc;
1.3437 + zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
1.3438 + nDoc = sqlite3_column_bytes(p->pStmt, i+1);
1.3439 + snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
1.3440 + }
1.3441 +
1.3442 + trimSnippetOffsetsForNear(&p->q, &p->snippet);
1.3443 +}
1.3444 +
1.3445 +/*
1.3446 +** Convert the information in the aMatch[] array of the snippet
1.3447 +** into the string zOffset[0..nOffset-1].
1.3448 +*/
1.3449 +static void snippetOffsetText(Snippet *p){
1.3450 + int i;
1.3451 + int cnt = 0;
1.3452 + StringBuffer sb;
1.3453 + char zBuf[200];
1.3454 + if( p->zOffset ) return;
1.3455 + initStringBuffer(&sb);
1.3456 + for(i=0; i<p->nMatch; i++){
1.3457 + struct snippetMatch *pMatch = &p->aMatch[i];
1.3458 + if( pMatch->iTerm>=0 ){
1.3459 + /* If snippetMatch.iTerm is less than 0, then the match was
1.3460 + ** discarded as part of processing the NEAR operator (see the
1.3461 + ** trimSnippetOffsetsForNear() function for details). Ignore
1.3462 + ** it in this case
1.3463 + */
1.3464 + zBuf[0] = ' ';
1.3465 + sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
1.3466 + pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
1.3467 + append(&sb, zBuf);
1.3468 + cnt++;
1.3469 + }
1.3470 + }
1.3471 + p->zOffset = stringBufferData(&sb);
1.3472 + p->nOffset = stringBufferLength(&sb);
1.3473 +}
1.3474 +
1.3475 +/*
1.3476 +** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set
1.3477 +** of matching words some of which might be in zDoc. zDoc is column
1.3478 +** number iCol.
1.3479 +**
1.3480 +** iBreak is suggested spot in zDoc where we could begin or end an
1.3481 +** excerpt. Return a value similar to iBreak but possibly adjusted
1.3482 +** to be a little left or right so that the break point is better.
1.3483 +*/
1.3484 +static int wordBoundary(
1.3485 + int iBreak, /* The suggested break point */
1.3486 + const char *zDoc, /* Document text */
1.3487 + int nDoc, /* Number of bytes in zDoc[] */
1.3488 + struct snippetMatch *aMatch, /* Matching words */
1.3489 + int nMatch, /* Number of entries in aMatch[] */
1.3490 + int iCol /* The column number for zDoc[] */
1.3491 +){
1.3492 + int i;
1.3493 + if( iBreak<=10 ){
1.3494 + return 0;
1.3495 + }
1.3496 + if( iBreak>=nDoc-10 ){
1.3497 + return nDoc;
1.3498 + }
1.3499 + for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
1.3500 + while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
1.3501 + if( i<nMatch ){
1.3502 + if( aMatch[i].iStart<iBreak+10 ){
1.3503 + return aMatch[i].iStart;
1.3504 + }
1.3505 + if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
1.3506 + return aMatch[i-1].iStart;
1.3507 + }
1.3508 + }
1.3509 + for(i=1; i<=10; i++){
1.3510 + if( safe_isspace(zDoc[iBreak-i]) ){
1.3511 + return iBreak - i + 1;
1.3512 + }
1.3513 + if( safe_isspace(zDoc[iBreak+i]) ){
1.3514 + return iBreak + i + 1;
1.3515 + }
1.3516 + }
1.3517 + return iBreak;
1.3518 +}
1.3519 +
1.3520 +
1.3521 +
1.3522 +/*
1.3523 +** Allowed values for Snippet.aMatch[].snStatus
1.3524 +*/
1.3525 +#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */
1.3526 +#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */
1.3527 +
1.3528 +/*
1.3529 +** Generate the text of a snippet.
1.3530 +*/
1.3531 +static void snippetText(
1.3532 + fulltext_cursor *pCursor, /* The cursor we need the snippet for */
1.3533 + const char *zStartMark, /* Markup to appear before each match */
1.3534 + const char *zEndMark, /* Markup to appear after each match */
1.3535 + const char *zEllipsis /* Ellipsis mark */
1.3536 +){
1.3537 + int i, j;
1.3538 + struct snippetMatch *aMatch;
1.3539 + int nMatch;
1.3540 + int nDesired;
1.3541 + StringBuffer sb;
1.3542 + int tailCol;
1.3543 + int tailOffset;
1.3544 + int iCol;
1.3545 + int nDoc;
1.3546 + const char *zDoc;
1.3547 + int iStart, iEnd;
1.3548 + int tailEllipsis = 0;
1.3549 + int iMatch;
1.3550 +
1.3551 +
1.3552 + sqlite3_free(pCursor->snippet.zSnippet);
1.3553 + pCursor->snippet.zSnippet = 0;
1.3554 + aMatch = pCursor->snippet.aMatch;
1.3555 + nMatch = pCursor->snippet.nMatch;
1.3556 + initStringBuffer(&sb);
1.3557 +
1.3558 + for(i=0; i<nMatch; i++){
1.3559 + aMatch[i].snStatus = SNIPPET_IGNORE;
1.3560 + }
1.3561 + nDesired = 0;
1.3562 + for(i=0; i<pCursor->q.nTerms; i++){
1.3563 + for(j=0; j<nMatch; j++){
1.3564 + if( aMatch[j].iTerm==i ){
1.3565 + aMatch[j].snStatus = SNIPPET_DESIRED;
1.3566 + nDesired++;
1.3567 + break;
1.3568 + }
1.3569 + }
1.3570 + }
1.3571 +
1.3572 + iMatch = 0;
1.3573 + tailCol = -1;
1.3574 + tailOffset = 0;
1.3575 + for(i=0; i<nMatch && nDesired>0; i++){
1.3576 + if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
1.3577 + nDesired--;
1.3578 + iCol = aMatch[i].iCol;
1.3579 + zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
1.3580 + nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
1.3581 + iStart = aMatch[i].iStart - 40;
1.3582 + iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
1.3583 + if( iStart<=10 ){
1.3584 + iStart = 0;
1.3585 + }
1.3586 + if( iCol==tailCol && iStart<=tailOffset+20 ){
1.3587 + iStart = tailOffset;
1.3588 + }
1.3589 + if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
1.3590 + trimWhiteSpace(&sb);
1.3591 + appendWhiteSpace(&sb);
1.3592 + append(&sb, zEllipsis);
1.3593 + appendWhiteSpace(&sb);
1.3594 + }
1.3595 + iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
1.3596 + iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
1.3597 + if( iEnd>=nDoc-10 ){
1.3598 + iEnd = nDoc;
1.3599 + tailEllipsis = 0;
1.3600 + }else{
1.3601 + tailEllipsis = 1;
1.3602 + }
1.3603 + while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
1.3604 + while( iStart<iEnd ){
1.3605 + while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
1.3606 + && aMatch[iMatch].iCol<=iCol ){
1.3607 + iMatch++;
1.3608 + }
1.3609 + if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
1.3610 + && aMatch[iMatch].iCol==iCol ){
1.3611 + nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
1.3612 + iStart = aMatch[iMatch].iStart;
1.3613 + append(&sb, zStartMark);
1.3614 + nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
1.3615 + append(&sb, zEndMark);
1.3616 + iStart += aMatch[iMatch].nByte;
1.3617 + for(j=iMatch+1; j<nMatch; j++){
1.3618 + if( aMatch[j].iTerm==aMatch[iMatch].iTerm
1.3619 + && aMatch[j].snStatus==SNIPPET_DESIRED ){
1.3620 + nDesired--;
1.3621 + aMatch[j].snStatus = SNIPPET_IGNORE;
1.3622 + }
1.3623 + }
1.3624 + }else{
1.3625 + nappend(&sb, &zDoc[iStart], iEnd - iStart);
1.3626 + iStart = iEnd;
1.3627 + }
1.3628 + }
1.3629 + tailCol = iCol;
1.3630 + tailOffset = iEnd;
1.3631 + }
1.3632 + trimWhiteSpace(&sb);
1.3633 + if( tailEllipsis ){
1.3634 + appendWhiteSpace(&sb);
1.3635 + append(&sb, zEllipsis);
1.3636 + }
1.3637 + pCursor->snippet.zSnippet = stringBufferData(&sb);
1.3638 + pCursor->snippet.nSnippet = stringBufferLength(&sb);
1.3639 +}
1.3640 +
1.3641 +
1.3642 +/*
1.3643 +** Close the cursor. For additional information see the documentation
1.3644 +** on the xClose method of the virtual table interface.
1.3645 +*/
1.3646 +static int fulltextClose(sqlite3_vtab_cursor *pCursor){
1.3647 + fulltext_cursor *c = (fulltext_cursor *) pCursor;
1.3648 + FTSTRACE(("FTS3 Close %p\n", c));
1.3649 + sqlite3_finalize(c->pStmt);
1.3650 + queryClear(&c->q);
1.3651 + snippetClear(&c->snippet);
1.3652 + if( c->result.nData!=0 ) dlrDestroy(&c->reader);
1.3653 + dataBufferDestroy(&c->result);
1.3654 + sqlite3_free(c);
1.3655 + return SQLITE_OK;
1.3656 +}
1.3657 +
1.3658 +static int fulltextNext(sqlite3_vtab_cursor *pCursor){
1.3659 + fulltext_cursor *c = (fulltext_cursor *) pCursor;
1.3660 + int rc;
1.3661 +
1.3662 + FTSTRACE(("FTS3 Next %p\n", pCursor));
1.3663 + snippetClear(&c->snippet);
1.3664 + if( c->iCursorType < QUERY_FULLTEXT ){
1.3665 + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
1.3666 + rc = sqlite3_step(c->pStmt);
1.3667 + switch( rc ){
1.3668 + case SQLITE_ROW:
1.3669 + c->eof = 0;
1.3670 + return SQLITE_OK;
1.3671 + case SQLITE_DONE:
1.3672 + c->eof = 1;
1.3673 + return SQLITE_OK;
1.3674 + default:
1.3675 + c->eof = 1;
1.3676 + return rc;
1.3677 + }
1.3678 + } else { /* full-text query */
1.3679 + rc = sqlite3_reset(c->pStmt);
1.3680 + if( rc!=SQLITE_OK ) return rc;
1.3681 +
1.3682 + if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
1.3683 + c->eof = 1;
1.3684 + return SQLITE_OK;
1.3685 + }
1.3686 + rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
1.3687 + dlrStep(&c->reader);
1.3688 + if( rc!=SQLITE_OK ) return rc;
1.3689 + /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
1.3690 + rc = sqlite3_step(c->pStmt);
1.3691 + if( rc==SQLITE_ROW ){ /* the case we expect */
1.3692 + c->eof = 0;
1.3693 + return SQLITE_OK;
1.3694 + }
1.3695 + /* an error occurred; abort */
1.3696 + return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
1.3697 + }
1.3698 +}
1.3699 +
1.3700 +
1.3701 +/* TODO(shess) If we pushed LeafReader to the top of the file, or to
1.3702 +** another file, term_select() could be pushed above
1.3703 +** docListOfTerm().
1.3704 +*/
1.3705 +static int termSelect(fulltext_vtab *v, int iColumn,
1.3706 + const char *pTerm, int nTerm, int isPrefix,
1.3707 + DocListType iType, DataBuffer *out);
1.3708 +
1.3709 +/* Return a DocList corresponding to the query term *pTerm. If *pTerm
1.3710 +** is the first term of a phrase query, go ahead and evaluate the phrase
1.3711 +** query and return the doclist for the entire phrase query.
1.3712 +**
1.3713 +** The resulting DL_DOCIDS doclist is stored in pResult, which is
1.3714 +** overwritten.
1.3715 +*/
1.3716 +static int docListOfTerm(
1.3717 + fulltext_vtab *v, /* The full text index */
1.3718 + int iColumn, /* column to restrict to. No restriction if >=nColumn */
1.3719 + QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */
1.3720 + DataBuffer *pResult /* Write the result here */
1.3721 +){
1.3722 + DataBuffer left, right, new;
1.3723 + int i, rc;
1.3724 +
1.3725 + /* No phrase search if no position info. */
1.3726 + assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
1.3727 +
1.3728 + /* This code should never be called with buffered updates. */
1.3729 + assert( v->nPendingData<0 );
1.3730 +
1.3731 + dataBufferInit(&left, 0);
1.3732 + rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
1.3733 + (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
1.3734 + if( rc ) return rc;
1.3735 + for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
1.3736 + /* If this token is connected to the next by a NEAR operator, and
1.3737 + ** the next token is the start of a phrase, then set nPhraseRight
1.3738 + ** to the number of tokens in the phrase. Otherwise leave it at 1.
1.3739 + */
1.3740 + int nPhraseRight = 1;
1.3741 + while( (i+nPhraseRight)<=pQTerm->nPhrase
1.3742 + && pQTerm[i+nPhraseRight].nNear==0
1.3743 + ){
1.3744 + nPhraseRight++;
1.3745 + }
1.3746 +
1.3747 + dataBufferInit(&right, 0);
1.3748 + rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
1.3749 + pQTerm[i].isPrefix, DL_POSITIONS, &right);
1.3750 + if( rc ){
1.3751 + dataBufferDestroy(&left);
1.3752 + return rc;
1.3753 + }
1.3754 + dataBufferInit(&new, 0);
1.3755 + docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
1.3756 + pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
1.3757 + ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
1.3758 + &new);
1.3759 + dataBufferDestroy(&left);
1.3760 + dataBufferDestroy(&right);
1.3761 + left = new;
1.3762 + }
1.3763 + *pResult = left;
1.3764 + return SQLITE_OK;
1.3765 +}
1.3766 +
1.3767 +/* Add a new term pTerm[0..nTerm-1] to the query *q.
1.3768 +*/
1.3769 +static void queryAdd(Query *q, const char *pTerm, int nTerm){
1.3770 + QueryTerm *t;
1.3771 + ++q->nTerms;
1.3772 + q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
1.3773 + if( q->pTerms==0 ){
1.3774 + q->nTerms = 0;
1.3775 + return;
1.3776 + }
1.3777 + t = &q->pTerms[q->nTerms - 1];
1.3778 + CLEAR(t);
1.3779 + t->pTerm = sqlite3_malloc(nTerm+1);
1.3780 + memcpy(t->pTerm, pTerm, nTerm);
1.3781 + t->pTerm[nTerm] = 0;
1.3782 + t->nTerm = nTerm;
1.3783 + t->isOr = q->nextIsOr;
1.3784 + t->isPrefix = 0;
1.3785 + q->nextIsOr = 0;
1.3786 + t->iColumn = q->nextColumn;
1.3787 + q->nextColumn = q->dfltColumn;
1.3788 +}
1.3789 +
1.3790 +/*
1.3791 +** Check to see if the string zToken[0...nToken-1] matches any
1.3792 +** column name in the virtual table. If it does,
1.3793 +** return the zero-indexed column number. If not, return -1.
1.3794 +*/
1.3795 +static int checkColumnSpecifier(
1.3796 + fulltext_vtab *pVtab, /* The virtual table */
1.3797 + const char *zToken, /* Text of the token */
1.3798 + int nToken /* Number of characters in the token */
1.3799 +){
1.3800 + int i;
1.3801 + for(i=0; i<pVtab->nColumn; i++){
1.3802 + if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
1.3803 + && pVtab->azColumn[i][nToken]==0 ){
1.3804 + return i;
1.3805 + }
1.3806 + }
1.3807 + return -1;
1.3808 +}
1.3809 +
1.3810 +/*
1.3811 +** Parse the text at zSegment[0..nSegment-1]. Add additional terms
1.3812 +** to the query being assemblied in pQuery.
1.3813 +**
1.3814 +** inPhrase is true if zSegment[0..nSegement-1] is contained within
1.3815 +** double-quotes. If inPhrase is true, then the first term
1.3816 +** is marked with the number of terms in the phrase less one and
1.3817 +** OR and "-" syntax is ignored. If inPhrase is false, then every
1.3818 +** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
1.3819 +*/
1.3820 +static int tokenizeSegment(
1.3821 + sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */
1.3822 + const char *zSegment, int nSegment, /* Query expression being parsed */
1.3823 + int inPhrase, /* True if within "..." */
1.3824 + Query *pQuery /* Append results here */
1.3825 +){
1.3826 + const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
1.3827 + sqlite3_tokenizer_cursor *pCursor;
1.3828 + int firstIndex = pQuery->nTerms;
1.3829 + int iCol;
1.3830 + int nTerm = 1;
1.3831 +
1.3832 + int rc = pModule->xOpen(pTokenizer, zSegment, nSegment, &pCursor);
1.3833 + if( rc!=SQLITE_OK ) return rc;
1.3834 + pCursor->pTokenizer = pTokenizer;
1.3835 +
1.3836 + while( 1 ){
1.3837 + const char *zToken;
1.3838 + int nToken, iBegin, iEnd, iPos;
1.3839 +
1.3840 + rc = pModule->xNext(pCursor,
1.3841 + &zToken, &nToken,
1.3842 + &iBegin, &iEnd, &iPos);
1.3843 + if( rc!=SQLITE_OK ) break;
1.3844 + if( !inPhrase &&
1.3845 + zSegment[iEnd]==':' &&
1.3846 + (iCol = checkColumnSpecifier(pQuery->pFts, zToken, nToken))>=0 ){
1.3847 + pQuery->nextColumn = iCol;
1.3848 + continue;
1.3849 + }
1.3850 + if( !inPhrase && pQuery->nTerms>0 && nToken==2
1.3851 + && zSegment[iBegin+0]=='O'
1.3852 + && zSegment[iBegin+1]=='R'
1.3853 + ){
1.3854 + pQuery->nextIsOr = 1;
1.3855 + continue;
1.3856 + }
1.3857 + if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4
1.3858 + && memcmp(&zSegment[iBegin], "NEAR", 4)==0
1.3859 + ){
1.3860 + QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
1.3861 + if( (iBegin+6)<nSegment
1.3862 + && zSegment[iBegin+4] == '/'
1.3863 + && isdigit(zSegment[iBegin+5])
1.3864 + ){
1.3865 + int k;
1.3866 + pTerm->nNear = 0;
1.3867 + for(k=5; (iBegin+k)<=nSegment && isdigit(zSegment[iBegin+k]); k++){
1.3868 + pTerm->nNear = pTerm->nNear*10 + (zSegment[iBegin+k] - '0');
1.3869 + }
1.3870 + pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
1.3871 + } else {
1.3872 + pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
1.3873 + }
1.3874 + pTerm->nNear++;
1.3875 + continue;
1.3876 + }
1.3877 +
1.3878 + queryAdd(pQuery, zToken, nToken);
1.3879 + if( !inPhrase && iBegin>0 && zSegment[iBegin-1]=='-' ){
1.3880 + pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
1.3881 + }
1.3882 + if( iEnd<nSegment && zSegment[iEnd]=='*' ){
1.3883 + pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
1.3884 + }
1.3885 + pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
1.3886 + if( inPhrase ){
1.3887 + nTerm++;
1.3888 + }
1.3889 + }
1.3890 +
1.3891 + if( inPhrase && pQuery->nTerms>firstIndex ){
1.3892 + pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
1.3893 + }
1.3894 +
1.3895 + return pModule->xClose(pCursor);
1.3896 +}
1.3897 +
1.3898 +/* Parse a query string, yielding a Query object pQuery.
1.3899 +**
1.3900 +** The calling function will need to queryClear() to clean up
1.3901 +** the dynamically allocated memory held by pQuery.
1.3902 +*/
1.3903 +static int parseQuery(
1.3904 + fulltext_vtab *v, /* The fulltext index */
1.3905 + const char *zInput, /* Input text of the query string */
1.3906 + int nInput, /* Size of the input text */
1.3907 + int dfltColumn, /* Default column of the index to match against */
1.3908 + Query *pQuery /* Write the parse results here. */
1.3909 +){
1.3910 + int iInput, inPhrase = 0;
1.3911 + int ii;
1.3912 + QueryTerm *aTerm;
1.3913 +
1.3914 + if( zInput==0 ) nInput = 0;
1.3915 + if( nInput<0 ) nInput = strlen(zInput);
1.3916 + pQuery->nTerms = 0;
1.3917 + pQuery->pTerms = NULL;
1.3918 + pQuery->nextIsOr = 0;
1.3919 + pQuery->nextColumn = dfltColumn;
1.3920 + pQuery->dfltColumn = dfltColumn;
1.3921 + pQuery->pFts = v;
1.3922 +
1.3923 + for(iInput=0; iInput<nInput; ++iInput){
1.3924 + int i;
1.3925 + for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
1.3926 + if( i>iInput ){
1.3927 + tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
1.3928 + pQuery);
1.3929 + }
1.3930 + iInput = i;
1.3931 + if( i<nInput ){
1.3932 + assert( zInput[i]=='"' );
1.3933 + inPhrase = !inPhrase;
1.3934 + }
1.3935 + }
1.3936 +
1.3937 + if( inPhrase ){
1.3938 + /* unmatched quote */
1.3939 + queryClear(pQuery);
1.3940 + return SQLITE_ERROR;
1.3941 + }
1.3942 +
1.3943 + /* Modify the values of the QueryTerm.nPhrase variables to account for
1.3944 + ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
1.3945 + ** and tokens connected by the NEAR operator are handled as a single
1.3946 + ** phrase. See comments above the QueryTerm structure for details.
1.3947 + */
1.3948 + aTerm = pQuery->pTerms;
1.3949 + for(ii=0; ii<pQuery->nTerms; ii++){
1.3950 + if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
1.3951 + while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
1.3952 + aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
1.3953 + }
1.3954 + }
1.3955 + }
1.3956 +
1.3957 + return SQLITE_OK;
1.3958 +}
1.3959 +
1.3960 +/* TODO(shess) Refactor the code to remove this forward decl. */
1.3961 +static int flushPendingTerms(fulltext_vtab *v);
1.3962 +
1.3963 +/* Perform a full-text query using the search expression in
1.3964 +** zInput[0..nInput-1]. Return a list of matching documents
1.3965 +** in pResult.
1.3966 +**
1.3967 +** Queries must match column iColumn. Or if iColumn>=nColumn
1.3968 +** they are allowed to match against any column.
1.3969 +*/
1.3970 +static int fulltextQuery(
1.3971 + fulltext_vtab *v, /* The full text index */
1.3972 + int iColumn, /* Match against this column by default */
1.3973 + const char *zInput, /* The query string */
1.3974 + int nInput, /* Number of bytes in zInput[] */
1.3975 + DataBuffer *pResult, /* Write the result doclist here */
1.3976 + Query *pQuery /* Put parsed query string here */
1.3977 +){
1.3978 + int i, iNext, rc;
1.3979 + DataBuffer left, right, or, new;
1.3980 + int nNot = 0;
1.3981 + QueryTerm *aTerm;
1.3982 +
1.3983 + /* TODO(shess) Instead of flushing pendingTerms, we could query for
1.3984 + ** the relevant term and merge the doclist into what we receive from
1.3985 + ** the database. Wait and see if this is a common issue, first.
1.3986 + **
1.3987 + ** A good reason not to flush is to not generate update-related
1.3988 + ** error codes from here.
1.3989 + */
1.3990 +
1.3991 + /* Flush any buffered updates before executing the query. */
1.3992 + rc = flushPendingTerms(v);
1.3993 + if( rc!=SQLITE_OK ) return rc;
1.3994 +
1.3995 + /* TODO(shess) I think that the queryClear() calls below are not
1.3996 + ** necessary, because fulltextClose() already clears the query.
1.3997 + */
1.3998 + rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
1.3999 + if( rc!=SQLITE_OK ) return rc;
1.4000 +
1.4001 + /* Empty or NULL queries return no results. */
1.4002 + if( pQuery->nTerms==0 ){
1.4003 + dataBufferInit(pResult, 0);
1.4004 + return SQLITE_OK;
1.4005 + }
1.4006 +
1.4007 + /* Merge AND terms. */
1.4008 + /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
1.4009 + aTerm = pQuery->pTerms;
1.4010 + for(i = 0; i<pQuery->nTerms; i=iNext){
1.4011 + if( aTerm[i].isNot ){
1.4012 + /* Handle all NOT terms in a separate pass */
1.4013 + nNot++;
1.4014 + iNext = i + aTerm[i].nPhrase+1;
1.4015 + continue;
1.4016 + }
1.4017 + iNext = i + aTerm[i].nPhrase + 1;
1.4018 + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
1.4019 + if( rc ){
1.4020 + if( i!=nNot ) dataBufferDestroy(&left);
1.4021 + queryClear(pQuery);
1.4022 + return rc;
1.4023 + }
1.4024 + while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
1.4025 + rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
1.4026 + iNext += aTerm[iNext].nPhrase + 1;
1.4027 + if( rc ){
1.4028 + if( i!=nNot ) dataBufferDestroy(&left);
1.4029 + dataBufferDestroy(&right);
1.4030 + queryClear(pQuery);
1.4031 + return rc;
1.4032 + }
1.4033 + dataBufferInit(&new, 0);
1.4034 + docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
1.4035 + dataBufferDestroy(&right);
1.4036 + dataBufferDestroy(&or);
1.4037 + right = new;
1.4038 + }
1.4039 + if( i==nNot ){ /* first term processed. */
1.4040 + left = right;
1.4041 + }else{
1.4042 + dataBufferInit(&new, 0);
1.4043 + docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
1.4044 + dataBufferDestroy(&right);
1.4045 + dataBufferDestroy(&left);
1.4046 + left = new;
1.4047 + }
1.4048 + }
1.4049 +
1.4050 + if( nNot==pQuery->nTerms ){
1.4051 + /* We do not yet know how to handle a query of only NOT terms */
1.4052 + return SQLITE_ERROR;
1.4053 + }
1.4054 +
1.4055 + /* Do the EXCEPT terms */
1.4056 + for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){
1.4057 + if( !aTerm[i].isNot ) continue;
1.4058 + rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
1.4059 + if( rc ){
1.4060 + queryClear(pQuery);
1.4061 + dataBufferDestroy(&left);
1.4062 + return rc;
1.4063 + }
1.4064 + dataBufferInit(&new, 0);
1.4065 + docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
1.4066 + dataBufferDestroy(&right);
1.4067 + dataBufferDestroy(&left);
1.4068 + left = new;
1.4069 + }
1.4070 +
1.4071 + *pResult = left;
1.4072 + return rc;
1.4073 +}
1.4074 +
1.4075 +/*
1.4076 +** This is the xFilter interface for the virtual table. See
1.4077 +** the virtual table xFilter method documentation for additional
1.4078 +** information.
1.4079 +**
1.4080 +** If idxNum==QUERY_GENERIC then do a full table scan against
1.4081 +** the %_content table.
1.4082 +**
1.4083 +** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
1.4084 +** in the %_content table.
1.4085 +**
1.4086 +** If idxNum>=QUERY_FULLTEXT then use the full text index. The
1.4087 +** column on the left-hand side of the MATCH operator is column
1.4088 +** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand
1.4089 +** side of the MATCH operator.
1.4090 +*/
1.4091 +/* TODO(shess) Upgrade the cursor initialization and destruction to
1.4092 +** account for fulltextFilter() being called multiple times on the
1.4093 +** same cursor. The current solution is very fragile. Apply fix to
1.4094 +** fts3 as appropriate.
1.4095 +*/
1.4096 +static int fulltextFilter(
1.4097 + sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
1.4098 + int idxNum, const char *idxStr, /* Which indexing scheme to use */
1.4099 + int argc, sqlite3_value **argv /* Arguments for the indexing scheme */
1.4100 +){
1.4101 + fulltext_cursor *c = (fulltext_cursor *) pCursor;
1.4102 + fulltext_vtab *v = cursor_vtab(c);
1.4103 + int rc;
1.4104 +
1.4105 + FTSTRACE(("FTS3 Filter %p\n",pCursor));
1.4106 +
1.4107 + /* If the cursor has a statement that was not prepared according to
1.4108 + ** idxNum, clear it. I believe all calls to fulltextFilter with a
1.4109 + ** given cursor will have the same idxNum , but in this case it's
1.4110 + ** easy to be safe.
1.4111 + */
1.4112 + if( c->pStmt && c->iCursorType!=idxNum ){
1.4113 + sqlite3_finalize(c->pStmt);
1.4114 + c->pStmt = NULL;
1.4115 + }
1.4116 +
1.4117 + /* Get a fresh statement appropriate to idxNum. */
1.4118 + /* TODO(shess): Add a prepared-statement cache in the vt structure.
1.4119 + ** The cache must handle multiple open cursors. Easier to cache the
1.4120 + ** statement variants at the vt to reduce malloc/realloc/free here.
1.4121 + ** Or we could have a StringBuffer variant which allowed stack
1.4122 + ** construction for small values.
1.4123 + */
1.4124 + if( !c->pStmt ){
1.4125 + StringBuffer sb;
1.4126 + initStringBuffer(&sb);
1.4127 + append(&sb, "SELECT docid, ");
1.4128 + appendList(&sb, v->nColumn, v->azContentColumn);
1.4129 + append(&sb, " FROM %_content");
1.4130 + if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
1.4131 + rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt,
1.4132 + stringBufferData(&sb));
1.4133 + stringBufferDestroy(&sb);
1.4134 + if( rc!=SQLITE_OK ) return rc;
1.4135 + c->iCursorType = idxNum;
1.4136 + }else{
1.4137 + sqlite3_reset(c->pStmt);
1.4138 + assert( c->iCursorType==idxNum );
1.4139 + }
1.4140 +
1.4141 + switch( idxNum ){
1.4142 + case QUERY_GENERIC:
1.4143 + break;
1.4144 +
1.4145 + case QUERY_DOCID:
1.4146 + rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
1.4147 + if( rc!=SQLITE_OK ) return rc;
1.4148 + break;
1.4149 +
1.4150 + default: /* full-text search */
1.4151 + {
1.4152 + const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
1.4153 + assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
1.4154 + assert( argc==1 );
1.4155 + queryClear(&c->q);
1.4156 + if( c->result.nData!=0 ){
1.4157 + /* This case happens if the same cursor is used repeatedly. */
1.4158 + dlrDestroy(&c->reader);
1.4159 + dataBufferReset(&c->result);
1.4160 + }else{
1.4161 + dataBufferInit(&c->result, 0);
1.4162 + }
1.4163 + rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
1.4164 + if( rc!=SQLITE_OK ) return rc;
1.4165 + if( c->result.nData!=0 ){
1.4166 + dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
1.4167 + }
1.4168 + break;
1.4169 + }
1.4170 + }
1.4171 +
1.4172 + return fulltextNext(pCursor);
1.4173 +}
1.4174 +
1.4175 +/* This is the xEof method of the virtual table. The SQLite core
1.4176 +** calls this routine to find out if it has reached the end of
1.4177 +** a query's results set.
1.4178 +*/
1.4179 +static int fulltextEof(sqlite3_vtab_cursor *pCursor){
1.4180 + fulltext_cursor *c = (fulltext_cursor *) pCursor;
1.4181 + return c->eof;
1.4182 +}
1.4183 +
1.4184 +/* This is the xColumn method of the virtual table. The SQLite
1.4185 +** core calls this method during a query when it needs the value
1.4186 +** of a column from the virtual table. This method needs to use
1.4187 +** one of the sqlite3_result_*() routines to store the requested
1.4188 +** value back in the pContext.
1.4189 +*/
1.4190 +static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
1.4191 + sqlite3_context *pContext, int idxCol){
1.4192 + fulltext_cursor *c = (fulltext_cursor *) pCursor;
1.4193 + fulltext_vtab *v = cursor_vtab(c);
1.4194 +
1.4195 + if( idxCol<v->nColumn ){
1.4196 + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
1.4197 + sqlite3_result_value(pContext, pVal);
1.4198 + }else if( idxCol==v->nColumn ){
1.4199 + /* The extra column whose name is the same as the table.
1.4200 + ** Return a blob which is a pointer to the cursor
1.4201 + */
1.4202 + sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
1.4203 + }else if( idxCol==v->nColumn+1 ){
1.4204 + /* The docid column, which is an alias for rowid. */
1.4205 + sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
1.4206 + sqlite3_result_value(pContext, pVal);
1.4207 + }
1.4208 + return SQLITE_OK;
1.4209 +}
1.4210 +
1.4211 +/* This is the xRowid method. The SQLite core calls this routine to
1.4212 +** retrieve the rowid for the current row of the result set. fts3
1.4213 +** exposes %_content.docid as the rowid for the virtual table. The
1.4214 +** rowid should be written to *pRowid.
1.4215 +*/
1.4216 +static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
1.4217 + fulltext_cursor *c = (fulltext_cursor *) pCursor;
1.4218 +
1.4219 + *pRowid = sqlite3_column_int64(c->pStmt, 0);
1.4220 + return SQLITE_OK;
1.4221 +}
1.4222 +
1.4223 +/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0,
1.4224 +** we also store positions and offsets in the hash table using that
1.4225 +** column number.
1.4226 +*/
1.4227 +static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
1.4228 + const char *zText, int iColumn){
1.4229 + sqlite3_tokenizer *pTokenizer = v->pTokenizer;
1.4230 + sqlite3_tokenizer_cursor *pCursor;
1.4231 + const char *pToken;
1.4232 + int nTokenBytes;
1.4233 + int iStartOffset, iEndOffset, iPosition;
1.4234 + int rc;
1.4235 +
1.4236 + rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
1.4237 + if( rc!=SQLITE_OK ) return rc;
1.4238 +
1.4239 + pCursor->pTokenizer = pTokenizer;
1.4240 + while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
1.4241 + &pToken, &nTokenBytes,
1.4242 + &iStartOffset, &iEndOffset,
1.4243 + &iPosition)) ){
1.4244 + DLCollector *p;
1.4245 + int nData; /* Size of doclist before our update. */
1.4246 +
1.4247 + /* Positions can't be negative; we use -1 as a terminator
1.4248 + * internally. Token can't be NULL or empty. */
1.4249 + if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
1.4250 + rc = SQLITE_ERROR;
1.4251 + break;
1.4252 + }
1.4253 +
1.4254 + p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
1.4255 + if( p==NULL ){
1.4256 + nData = 0;
1.4257 + p = dlcNew(iDocid, DL_DEFAULT);
1.4258 + fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
1.4259 +
1.4260 + /* Overhead for our hash table entry, the key, and the value. */
1.4261 + v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
1.4262 + }else{
1.4263 + nData = p->b.nData;
1.4264 + if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
1.4265 + }
1.4266 + if( iColumn>=0 ){
1.4267 + dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
1.4268 + }
1.4269 +
1.4270 + /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
1.4271 + v->nPendingData += p->b.nData-nData;
1.4272 + }
1.4273 +
1.4274 + /* TODO(shess) Check return? Should this be able to cause errors at
1.4275 + ** this point? Actually, same question about sqlite3_finalize(),
1.4276 + ** though one could argue that failure there means that the data is
1.4277 + ** not durable. *ponder*
1.4278 + */
1.4279 + pTokenizer->pModule->xClose(pCursor);
1.4280 + if( SQLITE_DONE == rc ) return SQLITE_OK;
1.4281 + return rc;
1.4282 +}
1.4283 +
1.4284 +/* Add doclists for all terms in [pValues] to pendingTerms table. */
1.4285 +static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
1.4286 + sqlite3_value **pValues){
1.4287 + int i;
1.4288 + for(i = 0; i < v->nColumn ; ++i){
1.4289 + char *zText = (char*)sqlite3_value_text(pValues[i]);
1.4290 + int rc = buildTerms(v, iDocid, zText, i);
1.4291 + if( rc!=SQLITE_OK ) return rc;
1.4292 + }
1.4293 + return SQLITE_OK;
1.4294 +}
1.4295 +
1.4296 +/* Add empty doclists for all terms in the given row's content to
1.4297 +** pendingTerms.
1.4298 +*/
1.4299 +static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
1.4300 + const char **pValues;
1.4301 + int i, rc;
1.4302 +
1.4303 + /* TODO(shess) Should we allow such tables at all? */
1.4304 + if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
1.4305 +
1.4306 + rc = content_select(v, iDocid, &pValues);
1.4307 + if( rc!=SQLITE_OK ) return rc;
1.4308 +
1.4309 + for(i = 0 ; i < v->nColumn; ++i) {
1.4310 + rc = buildTerms(v, iDocid, pValues[i], -1);
1.4311 + if( rc!=SQLITE_OK ) break;
1.4312 + }
1.4313 +
1.4314 + freeStringArray(v->nColumn, pValues);
1.4315 + return SQLITE_OK;
1.4316 +}
1.4317 +
1.4318 +/* TODO(shess) Refactor the code to remove this forward decl. */
1.4319 +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
1.4320 +
1.4321 +/* Insert a row into the %_content table; set *piDocid to be the ID of the
1.4322 +** new row. Add doclists for terms to pendingTerms.
1.4323 +*/
1.4324 +static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
1.4325 + sqlite3_value **pValues, sqlite_int64 *piDocid){
1.4326 + int rc;
1.4327 +
1.4328 + rc = content_insert(v, pRequestDocid, pValues); /* execute an SQL INSERT */
1.4329 + if( rc!=SQLITE_OK ) return rc;
1.4330 +
1.4331 + /* docid column is an alias for rowid. */
1.4332 + *piDocid = sqlite3_last_insert_rowid(v->db);
1.4333 + rc = initPendingTerms(v, *piDocid);
1.4334 + if( rc!=SQLITE_OK ) return rc;
1.4335 +
1.4336 + return insertTerms(v, *piDocid, pValues);
1.4337 +}
1.4338 +
1.4339 +/* Delete a row from the %_content table; add empty doclists for terms
1.4340 +** to pendingTerms.
1.4341 +*/
1.4342 +static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
1.4343 + int rc = initPendingTerms(v, iRow);
1.4344 + if( rc!=SQLITE_OK ) return rc;
1.4345 +
1.4346 + rc = deleteTerms(v, iRow);
1.4347 + if( rc!=SQLITE_OK ) return rc;
1.4348 +
1.4349 + return content_delete(v, iRow); /* execute an SQL DELETE */
1.4350 +}
1.4351 +
1.4352 +/* Update a row in the %_content table; add delete doclists to
1.4353 +** pendingTerms for old terms not in the new data, add insert doclists
1.4354 +** to pendingTerms for terms in the new data.
1.4355 +*/
1.4356 +static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
1.4357 + sqlite3_value **pValues){
1.4358 + int rc = initPendingTerms(v, iRow);
1.4359 + if( rc!=SQLITE_OK ) return rc;
1.4360 +
1.4361 + /* Generate an empty doclist for each term that previously appeared in this
1.4362 + * row. */
1.4363 + rc = deleteTerms(v, iRow);
1.4364 + if( rc!=SQLITE_OK ) return rc;
1.4365 +
1.4366 + rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */
1.4367 + if( rc!=SQLITE_OK ) return rc;
1.4368 +
1.4369 + /* Now add positions for terms which appear in the updated row. */
1.4370 + return insertTerms(v, iRow, pValues);
1.4371 +}
1.4372 +
1.4373 +/*******************************************************************/
1.4374 +/* InteriorWriter is used to collect terms and block references into
1.4375 +** interior nodes in %_segments. See commentary at top of file for
1.4376 +** format.
1.4377 +*/
1.4378 +
1.4379 +/* How large interior nodes can grow. */
1.4380 +#define INTERIOR_MAX 2048
1.4381 +
1.4382 +/* Minimum number of terms per interior node (except the root). This
1.4383 +** prevents large terms from making the tree too skinny - must be >0
1.4384 +** so that the tree always makes progress. Note that the min tree
1.4385 +** fanout will be INTERIOR_MIN_TERMS+1.
1.4386 +*/
1.4387 +#define INTERIOR_MIN_TERMS 7
1.4388 +#if INTERIOR_MIN_TERMS<1
1.4389 +# error INTERIOR_MIN_TERMS must be greater than 0.
1.4390 +#endif
1.4391 +
1.4392 +/* ROOT_MAX controls how much data is stored inline in the segment
1.4393 +** directory.
1.4394 +*/
1.4395 +/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's
1.4396 +** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
1.4397 +** can both see it, but if the caller passed it in, we wouldn't even
1.4398 +** need a define.
1.4399 +*/
1.4400 +#define ROOT_MAX 1024
1.4401 +#if ROOT_MAX<VARINT_MAX*2
1.4402 +# error ROOT_MAX must have enough space for a header.
1.4403 +#endif
1.4404 +
1.4405 +/* InteriorBlock stores a linked-list of interior blocks while a lower
1.4406 +** layer is being constructed.
1.4407 +*/
1.4408 +typedef struct InteriorBlock {
1.4409 + DataBuffer term; /* Leftmost term in block's subtree. */
1.4410 + DataBuffer data; /* Accumulated data for the block. */
1.4411 + struct InteriorBlock *next;
1.4412 +} InteriorBlock;
1.4413 +
1.4414 +static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
1.4415 + const char *pTerm, int nTerm){
1.4416 + InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
1.4417 + char c[VARINT_MAX+VARINT_MAX];
1.4418 + int n;
1.4419 +
1.4420 + if( block ){
1.4421 + memset(block, 0, sizeof(*block));
1.4422 + dataBufferInit(&block->term, 0);
1.4423 + dataBufferReplace(&block->term, pTerm, nTerm);
1.4424 +
1.4425 + n = fts3PutVarint(c, iHeight);
1.4426 + n += fts3PutVarint(c+n, iChildBlock);
1.4427 + dataBufferInit(&block->data, INTERIOR_MAX);
1.4428 + dataBufferReplace(&block->data, c, n);
1.4429 + }
1.4430 + return block;
1.4431 +}
1.4432 +
1.4433 +#ifndef NDEBUG
1.4434 +/* Verify that the data is readable as an interior node. */
1.4435 +static void interiorBlockValidate(InteriorBlock *pBlock){
1.4436 + const char *pData = pBlock->data.pData;
1.4437 + int nData = pBlock->data.nData;
1.4438 + int n, iDummy;
1.4439 + sqlite_int64 iBlockid;
1.4440 +
1.4441 + assert( nData>0 );
1.4442 + assert( pData!=0 );
1.4443 + assert( pData+nData>pData );
1.4444 +
1.4445 + /* Must lead with height of node as a varint(n), n>0 */
1.4446 + n = fts3GetVarint32(pData, &iDummy);
1.4447 + assert( n>0 );
1.4448 + assert( iDummy>0 );
1.4449 + assert( n<nData );
1.4450 + pData += n;
1.4451 + nData -= n;
1.4452 +
1.4453 + /* Must contain iBlockid. */
1.4454 + n = fts3GetVarint(pData, &iBlockid);
1.4455 + assert( n>0 );
1.4456 + assert( n<=nData );
1.4457 + pData += n;
1.4458 + nData -= n;
1.4459 +
1.4460 + /* Zero or more terms of positive length */
1.4461 + if( nData!=0 ){
1.4462 + /* First term is not delta-encoded. */
1.4463 + n = fts3GetVarint32(pData, &iDummy);
1.4464 + assert( n>0 );
1.4465 + assert( iDummy>0 );
1.4466 + assert( n+iDummy>0);
1.4467 + assert( n+iDummy<=nData );
1.4468 + pData += n+iDummy;
1.4469 + nData -= n+iDummy;
1.4470 +
1.4471 + /* Following terms delta-encoded. */
1.4472 + while( nData!=0 ){
1.4473 + /* Length of shared prefix. */
1.4474 + n = fts3GetVarint32(pData, &iDummy);
1.4475 + assert( n>0 );
1.4476 + assert( iDummy>=0 );
1.4477 + assert( n<nData );
1.4478 + pData += n;
1.4479 + nData -= n;
1.4480 +
1.4481 + /* Length and data of distinct suffix. */
1.4482 + n = fts3GetVarint32(pData, &iDummy);
1.4483 + assert( n>0 );
1.4484 + assert( iDummy>0 );
1.4485 + assert( n+iDummy>0);
1.4486 + assert( n+iDummy<=nData );
1.4487 + pData += n+iDummy;
1.4488 + nData -= n+iDummy;
1.4489 + }
1.4490 + }
1.4491 +}
1.4492 +#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
1.4493 +#else
1.4494 +#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
1.4495 +#endif
1.4496 +
1.4497 +typedef struct InteriorWriter {
1.4498 + int iHeight; /* from 0 at leaves. */
1.4499 + InteriorBlock *first, *last;
1.4500 + struct InteriorWriter *parentWriter;
1.4501 +
1.4502 + DataBuffer term; /* Last term written to block "last". */
1.4503 + sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
1.4504 +#ifndef NDEBUG
1.4505 + sqlite_int64 iLastChildBlock; /* for consistency checks. */
1.4506 +#endif
1.4507 +} InteriorWriter;
1.4508 +
1.4509 +/* Initialize an interior node where pTerm[nTerm] marks the leftmost
1.4510 +** term in the tree. iChildBlock is the leftmost child block at the
1.4511 +** next level down the tree.
1.4512 +*/
1.4513 +static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
1.4514 + sqlite_int64 iChildBlock,
1.4515 + InteriorWriter *pWriter){
1.4516 + InteriorBlock *block;
1.4517 + assert( iHeight>0 );
1.4518 + CLEAR(pWriter);
1.4519 +
1.4520 + pWriter->iHeight = iHeight;
1.4521 + pWriter->iOpeningChildBlock = iChildBlock;
1.4522 +#ifndef NDEBUG
1.4523 + pWriter->iLastChildBlock = iChildBlock;
1.4524 +#endif
1.4525 + block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
1.4526 + pWriter->last = pWriter->first = block;
1.4527 + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
1.4528 + dataBufferInit(&pWriter->term, 0);
1.4529 +}
1.4530 +
1.4531 +/* Append the child node rooted at iChildBlock to the interior node,
1.4532 +** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
1.4533 +*/
1.4534 +static void interiorWriterAppend(InteriorWriter *pWriter,
1.4535 + const char *pTerm, int nTerm,
1.4536 + sqlite_int64 iChildBlock){
1.4537 + char c[VARINT_MAX+VARINT_MAX];
1.4538 + int n, nPrefix = 0;
1.4539 +
1.4540 + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
1.4541 +
1.4542 + /* The first term written into an interior node is actually
1.4543 + ** associated with the second child added (the first child was added
1.4544 + ** in interiorWriterInit, or in the if clause at the bottom of this
1.4545 + ** function). That term gets encoded straight up, with nPrefix left
1.4546 + ** at 0.
1.4547 + */
1.4548 + if( pWriter->term.nData==0 ){
1.4549 + n = fts3PutVarint(c, nTerm);
1.4550 + }else{
1.4551 + while( nPrefix<pWriter->term.nData &&
1.4552 + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
1.4553 + nPrefix++;
1.4554 + }
1.4555 +
1.4556 + n = fts3PutVarint(c, nPrefix);
1.4557 + n += fts3PutVarint(c+n, nTerm-nPrefix);
1.4558 + }
1.4559 +
1.4560 +#ifndef NDEBUG
1.4561 + pWriter->iLastChildBlock++;
1.4562 +#endif
1.4563 + assert( pWriter->iLastChildBlock==iChildBlock );
1.4564 +
1.4565 + /* Overflow to a new block if the new term makes the current block
1.4566 + ** too big, and the current block already has enough terms.
1.4567 + */
1.4568 + if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
1.4569 + iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
1.4570 + pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
1.4571 + pTerm, nTerm);
1.4572 + pWriter->last = pWriter->last->next;
1.4573 + pWriter->iOpeningChildBlock = iChildBlock;
1.4574 + dataBufferReset(&pWriter->term);
1.4575 + }else{
1.4576 + dataBufferAppend2(&pWriter->last->data, c, n,
1.4577 + pTerm+nPrefix, nTerm-nPrefix);
1.4578 + dataBufferReplace(&pWriter->term, pTerm, nTerm);
1.4579 + }
1.4580 + ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
1.4581 +}
1.4582 +
1.4583 +/* Free the space used by pWriter, including the linked-list of
1.4584 +** InteriorBlocks, and parentWriter, if present.
1.4585 +*/
1.4586 +static int interiorWriterDestroy(InteriorWriter *pWriter){
1.4587 + InteriorBlock *block = pWriter->first;
1.4588 +
1.4589 + while( block!=NULL ){
1.4590 + InteriorBlock *b = block;
1.4591 + block = block->next;
1.4592 + dataBufferDestroy(&b->term);
1.4593 + dataBufferDestroy(&b->data);
1.4594 + sqlite3_free(b);
1.4595 + }
1.4596 + if( pWriter->parentWriter!=NULL ){
1.4597 + interiorWriterDestroy(pWriter->parentWriter);
1.4598 + sqlite3_free(pWriter->parentWriter);
1.4599 + }
1.4600 + dataBufferDestroy(&pWriter->term);
1.4601 + SCRAMBLE(pWriter);
1.4602 + return SQLITE_OK;
1.4603 +}
1.4604 +
1.4605 +/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
1.4606 +** directly, leaving *piEndBlockid unchanged. Otherwise, flush
1.4607 +** pWriter to %_segments, building a new layer of interior nodes, and
1.4608 +** recursively ask for their root into.
1.4609 +*/
1.4610 +static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
1.4611 + char **ppRootInfo, int *pnRootInfo,
1.4612 + sqlite_int64 *piEndBlockid){
1.4613 + InteriorBlock *block = pWriter->first;
1.4614 + sqlite_int64 iBlockid = 0;
1.4615 + int rc;
1.4616 +
1.4617 + /* If we can fit the segment inline */
1.4618 + if( block==pWriter->last && block->data.nData<ROOT_MAX ){
1.4619 + *ppRootInfo = block->data.pData;
1.4620 + *pnRootInfo = block->data.nData;
1.4621 + return SQLITE_OK;
1.4622 + }
1.4623 +
1.4624 + /* Flush the first block to %_segments, and create a new level of
1.4625 + ** interior node.
1.4626 + */
1.4627 + ASSERT_VALID_INTERIOR_BLOCK(block);
1.4628 + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
1.4629 + if( rc!=SQLITE_OK ) return rc;
1.4630 + *piEndBlockid = iBlockid;
1.4631 +
1.4632 + pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
1.4633 + interiorWriterInit(pWriter->iHeight+1,
1.4634 + block->term.pData, block->term.nData,
1.4635 + iBlockid, pWriter->parentWriter);
1.4636 +
1.4637 + /* Flush additional blocks and append to the higher interior
1.4638 + ** node.
1.4639 + */
1.4640 + for(block=block->next; block!=NULL; block=block->next){
1.4641 + ASSERT_VALID_INTERIOR_BLOCK(block);
1.4642 + rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
1.4643 + if( rc!=SQLITE_OK ) return rc;
1.4644 + *piEndBlockid = iBlockid;
1.4645 +
1.4646 + interiorWriterAppend(pWriter->parentWriter,
1.4647 + block->term.pData, block->term.nData, iBlockid);
1.4648 + }
1.4649 +
1.4650 + /* Parent node gets the chance to be the root. */
1.4651 + return interiorWriterRootInfo(v, pWriter->parentWriter,
1.4652 + ppRootInfo, pnRootInfo, piEndBlockid);
1.4653 +}
1.4654 +
1.4655 +/****************************************************************/
1.4656 +/* InteriorReader is used to read off the data from an interior node
1.4657 +** (see comment at top of file for the format).
1.4658 +*/
1.4659 +typedef struct InteriorReader {
1.4660 + const char *pData;
1.4661 + int nData;
1.4662 +
1.4663 + DataBuffer term; /* previous term, for decoding term delta. */
1.4664 +
1.4665 + sqlite_int64 iBlockid;
1.4666 +} InteriorReader;
1.4667 +
1.4668 +static void interiorReaderDestroy(InteriorReader *pReader){
1.4669 + dataBufferDestroy(&pReader->term);
1.4670 + SCRAMBLE(pReader);
1.4671 +}
1.4672 +
1.4673 +/* TODO(shess) The assertions are great, but what if we're in NDEBUG
1.4674 +** and the blob is empty or otherwise contains suspect data?
1.4675 +*/
1.4676 +static void interiorReaderInit(const char *pData, int nData,
1.4677 + InteriorReader *pReader){
1.4678 + int n, nTerm;
1.4679 +
1.4680 + /* Require at least the leading flag byte */
1.4681 + assert( nData>0 );
1.4682 + assert( pData[0]!='\0' );
1.4683 +
1.4684 + CLEAR(pReader);
1.4685 +
1.4686 + /* Decode the base blockid, and set the cursor to the first term. */
1.4687 + n = fts3GetVarint(pData+1, &pReader->iBlockid);
1.4688 + assert( 1+n<=nData );
1.4689 + pReader->pData = pData+1+n;
1.4690 + pReader->nData = nData-(1+n);
1.4691 +
1.4692 + /* A single-child interior node (such as when a leaf node was too
1.4693 + ** large for the segment directory) won't have any terms.
1.4694 + ** Otherwise, decode the first term.
1.4695 + */
1.4696 + if( pReader->nData==0 ){
1.4697 + dataBufferInit(&pReader->term, 0);
1.4698 + }else{
1.4699 + n = fts3GetVarint32(pReader->pData, &nTerm);
1.4700 + dataBufferInit(&pReader->term, nTerm);
1.4701 + dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
1.4702 + assert( n+nTerm<=pReader->nData );
1.4703 + pReader->pData += n+nTerm;
1.4704 + pReader->nData -= n+nTerm;
1.4705 + }
1.4706 +}
1.4707 +
1.4708 +static int interiorReaderAtEnd(InteriorReader *pReader){
1.4709 + return pReader->term.nData==0;
1.4710 +}
1.4711 +
1.4712 +static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
1.4713 + return pReader->iBlockid;
1.4714 +}
1.4715 +
1.4716 +static int interiorReaderTermBytes(InteriorReader *pReader){
1.4717 + assert( !interiorReaderAtEnd(pReader) );
1.4718 + return pReader->term.nData;
1.4719 +}
1.4720 +static const char *interiorReaderTerm(InteriorReader *pReader){
1.4721 + assert( !interiorReaderAtEnd(pReader) );
1.4722 + return pReader->term.pData;
1.4723 +}
1.4724 +
1.4725 +/* Step forward to the next term in the node. */
1.4726 +static void interiorReaderStep(InteriorReader *pReader){
1.4727 + assert( !interiorReaderAtEnd(pReader) );
1.4728 +
1.4729 + /* If the last term has been read, signal eof, else construct the
1.4730 + ** next term.
1.4731 + */
1.4732 + if( pReader->nData==0 ){
1.4733 + dataBufferReset(&pReader->term);
1.4734 + }else{
1.4735 + int n, nPrefix, nSuffix;
1.4736 +
1.4737 + n = fts3GetVarint32(pReader->pData, &nPrefix);
1.4738 + n += fts3GetVarint32(pReader->pData+n, &nSuffix);
1.4739 +
1.4740 + /* Truncate the current term and append suffix data. */
1.4741 + pReader->term.nData = nPrefix;
1.4742 + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
1.4743 +
1.4744 + assert( n+nSuffix<=pReader->nData );
1.4745 + pReader->pData += n+nSuffix;
1.4746 + pReader->nData -= n+nSuffix;
1.4747 + }
1.4748 + pReader->iBlockid++;
1.4749 +}
1.4750 +
1.4751 +/* Compare the current term to pTerm[nTerm], returning strcmp-style
1.4752 +** results. If isPrefix, equality means equal through nTerm bytes.
1.4753 +*/
1.4754 +static int interiorReaderTermCmp(InteriorReader *pReader,
1.4755 + const char *pTerm, int nTerm, int isPrefix){
1.4756 + const char *pReaderTerm = interiorReaderTerm(pReader);
1.4757 + int nReaderTerm = interiorReaderTermBytes(pReader);
1.4758 + int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
1.4759 +
1.4760 + if( n==0 ){
1.4761 + if( nReaderTerm>0 ) return -1;
1.4762 + if( nTerm>0 ) return 1;
1.4763 + return 0;
1.4764 + }
1.4765 +
1.4766 + c = memcmp(pReaderTerm, pTerm, n);
1.4767 + if( c!=0 ) return c;
1.4768 + if( isPrefix && n==nTerm ) return 0;
1.4769 + return nReaderTerm - nTerm;
1.4770 +}
1.4771 +
1.4772 +/****************************************************************/
1.4773 +/* LeafWriter is used to collect terms and associated doclist data
1.4774 +** into leaf blocks in %_segments (see top of file for format info).
1.4775 +** Expected usage is:
1.4776 +**
1.4777 +** LeafWriter writer;
1.4778 +** leafWriterInit(0, 0, &writer);
1.4779 +** while( sorted_terms_left_to_process ){
1.4780 +** // data is doclist data for that term.
1.4781 +** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
1.4782 +** if( rc!=SQLITE_OK ) goto err;
1.4783 +** }
1.4784 +** rc = leafWriterFinalize(v, &writer);
1.4785 +**err:
1.4786 +** leafWriterDestroy(&writer);
1.4787 +** return rc;
1.4788 +**
1.4789 +** leafWriterStep() may write a collected leaf out to %_segments.
1.4790 +** leafWriterFinalize() finishes writing any buffered data and stores
1.4791 +** a root node in %_segdir. leafWriterDestroy() frees all buffers and
1.4792 +** InteriorWriters allocated as part of writing this segment.
1.4793 +**
1.4794 +** TODO(shess) Document leafWriterStepMerge().
1.4795 +*/
1.4796 +
1.4797 +/* Put terms with data this big in their own block. */
1.4798 +#define STANDALONE_MIN 1024
1.4799 +
1.4800 +/* Keep leaf blocks below this size. */
1.4801 +#define LEAF_MAX 2048
1.4802 +
1.4803 +typedef struct LeafWriter {
1.4804 + int iLevel;
1.4805 + int idx;
1.4806 + sqlite_int64 iStartBlockid; /* needed to create the root info */
1.4807 + sqlite_int64 iEndBlockid; /* when we're done writing. */
1.4808 +
1.4809 + DataBuffer term; /* previous encoded term */
1.4810 + DataBuffer data; /* encoding buffer */
1.4811 +
1.4812 + /* bytes of first term in the current node which distinguishes that
1.4813 + ** term from the last term of the previous node.
1.4814 + */
1.4815 + int nTermDistinct;
1.4816 +
1.4817 + InteriorWriter parentWriter; /* if we overflow */
1.4818 + int has_parent;
1.4819 +} LeafWriter;
1.4820 +
1.4821 +static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
1.4822 + CLEAR(pWriter);
1.4823 + pWriter->iLevel = iLevel;
1.4824 + pWriter->idx = idx;
1.4825 +
1.4826 + dataBufferInit(&pWriter->term, 32);
1.4827 +
1.4828 + /* Start out with a reasonably sized block, though it can grow. */
1.4829 + dataBufferInit(&pWriter->data, LEAF_MAX);
1.4830 +}
1.4831 +
1.4832 +#ifndef NDEBUG
1.4833 +/* Verify that the data is readable as a leaf node. */
1.4834 +static void leafNodeValidate(const char *pData, int nData){
1.4835 + int n, iDummy;
1.4836 +
1.4837 + if( nData==0 ) return;
1.4838 + assert( nData>0 );
1.4839 + assert( pData!=0 );
1.4840 + assert( pData+nData>pData );
1.4841 +
1.4842 + /* Must lead with a varint(0) */
1.4843 + n = fts3GetVarint32(pData, &iDummy);
1.4844 + assert( iDummy==0 );
1.4845 + assert( n>0 );
1.4846 + assert( n<nData );
1.4847 + pData += n;
1.4848 + nData -= n;
1.4849 +
1.4850 + /* Leading term length and data must fit in buffer. */
1.4851 + n = fts3GetVarint32(pData, &iDummy);
1.4852 + assert( n>0 );
1.4853 + assert( iDummy>0 );
1.4854 + assert( n+iDummy>0 );
1.4855 + assert( n+iDummy<nData );
1.4856 + pData += n+iDummy;
1.4857 + nData -= n+iDummy;
1.4858 +
1.4859 + /* Leading term's doclist length and data must fit. */
1.4860 + n = fts3GetVarint32(pData, &iDummy);
1.4861 + assert( n>0 );
1.4862 + assert( iDummy>0 );
1.4863 + assert( n+iDummy>0 );
1.4864 + assert( n+iDummy<=nData );
1.4865 + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
1.4866 + pData += n+iDummy;
1.4867 + nData -= n+iDummy;
1.4868 +
1.4869 + /* Verify that trailing terms and doclists also are readable. */
1.4870 + while( nData!=0 ){
1.4871 + n = fts3GetVarint32(pData, &iDummy);
1.4872 + assert( n>0 );
1.4873 + assert( iDummy>=0 );
1.4874 + assert( n<nData );
1.4875 + pData += n;
1.4876 + nData -= n;
1.4877 + n = fts3GetVarint32(pData, &iDummy);
1.4878 + assert( n>0 );
1.4879 + assert( iDummy>0 );
1.4880 + assert( n+iDummy>0 );
1.4881 + assert( n+iDummy<nData );
1.4882 + pData += n+iDummy;
1.4883 + nData -= n+iDummy;
1.4884 +
1.4885 + n = fts3GetVarint32(pData, &iDummy);
1.4886 + assert( n>0 );
1.4887 + assert( iDummy>0 );
1.4888 + assert( n+iDummy>0 );
1.4889 + assert( n+iDummy<=nData );
1.4890 + ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
1.4891 + pData += n+iDummy;
1.4892 + nData -= n+iDummy;
1.4893 + }
1.4894 +}
1.4895 +#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
1.4896 +#else
1.4897 +#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
1.4898 +#endif
1.4899 +
1.4900 +/* Flush the current leaf node to %_segments, and adding the resulting
1.4901 +** blockid and the starting term to the interior node which will
1.4902 +** contain it.
1.4903 +*/
1.4904 +static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
1.4905 + int iData, int nData){
1.4906 + sqlite_int64 iBlockid = 0;
1.4907 + const char *pStartingTerm;
1.4908 + int nStartingTerm, rc, n;
1.4909 +
1.4910 + /* Must have the leading varint(0) flag, plus at least some
1.4911 + ** valid-looking data.
1.4912 + */
1.4913 + assert( nData>2 );
1.4914 + assert( iData>=0 );
1.4915 + assert( iData+nData<=pWriter->data.nData );
1.4916 + ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
1.4917 +
1.4918 + rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
1.4919 + if( rc!=SQLITE_OK ) return rc;
1.4920 + assert( iBlockid!=0 );
1.4921 +
1.4922 + /* Reconstruct the first term in the leaf for purposes of building
1.4923 + ** the interior node.
1.4924 + */
1.4925 + n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
1.4926 + pStartingTerm = pWriter->data.pData+iData+1+n;
1.4927 + assert( pWriter->data.nData>iData+1+n+nStartingTerm );
1.4928 + assert( pWriter->nTermDistinct>0 );
1.4929 + assert( pWriter->nTermDistinct<=nStartingTerm );
1.4930 + nStartingTerm = pWriter->nTermDistinct;
1.4931 +
1.4932 + if( pWriter->has_parent ){
1.4933 + interiorWriterAppend(&pWriter->parentWriter,
1.4934 + pStartingTerm, nStartingTerm, iBlockid);
1.4935 + }else{
1.4936 + interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
1.4937 + &pWriter->parentWriter);
1.4938 + pWriter->has_parent = 1;
1.4939 + }
1.4940 +
1.4941 + /* Track the span of this segment's leaf nodes. */
1.4942 + if( pWriter->iEndBlockid==0 ){
1.4943 + pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
1.4944 + }else{
1.4945 + pWriter->iEndBlockid++;
1.4946 + assert( iBlockid==pWriter->iEndBlockid );
1.4947 + }
1.4948 +
1.4949 + return SQLITE_OK;
1.4950 +}
1.4951 +static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
1.4952 + int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
1.4953 + if( rc!=SQLITE_OK ) return rc;
1.4954 +
1.4955 + /* Re-initialize the output buffer. */
1.4956 + dataBufferReset(&pWriter->data);
1.4957 +
1.4958 + return SQLITE_OK;
1.4959 +}
1.4960 +
1.4961 +/* Fetch the root info for the segment. If the entire leaf fits
1.4962 +** within ROOT_MAX, then it will be returned directly, otherwise it
1.4963 +** will be flushed and the root info will be returned from the
1.4964 +** interior node. *piEndBlockid is set to the blockid of the last
1.4965 +** interior or leaf node written to disk (0 if none are written at
1.4966 +** all).
1.4967 +*/
1.4968 +static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
1.4969 + char **ppRootInfo, int *pnRootInfo,
1.4970 + sqlite_int64 *piEndBlockid){
1.4971 + /* we can fit the segment entirely inline */
1.4972 + if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
1.4973 + *ppRootInfo = pWriter->data.pData;
1.4974 + *pnRootInfo = pWriter->data.nData;
1.4975 + *piEndBlockid = 0;
1.4976 + return SQLITE_OK;
1.4977 + }
1.4978 +
1.4979 + /* Flush remaining leaf data. */
1.4980 + if( pWriter->data.nData>0 ){
1.4981 + int rc = leafWriterFlush(v, pWriter);
1.4982 + if( rc!=SQLITE_OK ) return rc;
1.4983 + }
1.4984 +
1.4985 + /* We must have flushed a leaf at some point. */
1.4986 + assert( pWriter->has_parent );
1.4987 +
1.4988 + /* Tenatively set the end leaf blockid as the end blockid. If the
1.4989 + ** interior node can be returned inline, this will be the final
1.4990 + ** blockid, otherwise it will be overwritten by
1.4991 + ** interiorWriterRootInfo().
1.4992 + */
1.4993 + *piEndBlockid = pWriter->iEndBlockid;
1.4994 +
1.4995 + return interiorWriterRootInfo(v, &pWriter->parentWriter,
1.4996 + ppRootInfo, pnRootInfo, piEndBlockid);
1.4997 +}
1.4998 +
1.4999 +/* Collect the rootInfo data and store it into the segment directory.
1.5000 +** This has the effect of flushing the segment's leaf data to
1.5001 +** %_segments, and also flushing any interior nodes to %_segments.
1.5002 +*/
1.5003 +static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
1.5004 + sqlite_int64 iEndBlockid;
1.5005 + char *pRootInfo;
1.5006 + int rc, nRootInfo;
1.5007 +
1.5008 + rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
1.5009 + if( rc!=SQLITE_OK ) return rc;
1.5010 +
1.5011 + /* Don't bother storing an entirely empty segment. */
1.5012 + if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
1.5013 +
1.5014 + return segdir_set(v, pWriter->iLevel, pWriter->idx,
1.5015 + pWriter->iStartBlockid, pWriter->iEndBlockid,
1.5016 + iEndBlockid, pRootInfo, nRootInfo);
1.5017 +}
1.5018 +
1.5019 +static void leafWriterDestroy(LeafWriter *pWriter){
1.5020 + if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
1.5021 + dataBufferDestroy(&pWriter->term);
1.5022 + dataBufferDestroy(&pWriter->data);
1.5023 +}
1.5024 +
1.5025 +/* Encode a term into the leafWriter, delta-encoding as appropriate.
1.5026 +** Returns the length of the new term which distinguishes it from the
1.5027 +** previous term, which can be used to set nTermDistinct when a node
1.5028 +** boundary is crossed.
1.5029 +*/
1.5030 +static int leafWriterEncodeTerm(LeafWriter *pWriter,
1.5031 + const char *pTerm, int nTerm){
1.5032 + char c[VARINT_MAX+VARINT_MAX];
1.5033 + int n, nPrefix = 0;
1.5034 +
1.5035 + assert( nTerm>0 );
1.5036 + while( nPrefix<pWriter->term.nData &&
1.5037 + pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
1.5038 + nPrefix++;
1.5039 + /* Failing this implies that the terms weren't in order. */
1.5040 + assert( nPrefix<nTerm );
1.5041 + }
1.5042 +
1.5043 + if( pWriter->data.nData==0 ){
1.5044 + /* Encode the node header and leading term as:
1.5045 + ** varint(0)
1.5046 + ** varint(nTerm)
1.5047 + ** char pTerm[nTerm]
1.5048 + */
1.5049 + n = fts3PutVarint(c, '\0');
1.5050 + n += fts3PutVarint(c+n, nTerm);
1.5051 + dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
1.5052 + }else{
1.5053 + /* Delta-encode the term as:
1.5054 + ** varint(nPrefix)
1.5055 + ** varint(nSuffix)
1.5056 + ** char pTermSuffix[nSuffix]
1.5057 + */
1.5058 + n = fts3PutVarint(c, nPrefix);
1.5059 + n += fts3PutVarint(c+n, nTerm-nPrefix);
1.5060 + dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
1.5061 + }
1.5062 + dataBufferReplace(&pWriter->term, pTerm, nTerm);
1.5063 +
1.5064 + return nPrefix+1;
1.5065 +}
1.5066 +
1.5067 +/* Used to avoid a memmove when a large amount of doclist data is in
1.5068 +** the buffer. This constructs a node and term header before
1.5069 +** iDoclistData and flushes the resulting complete node using
1.5070 +** leafWriterInternalFlush().
1.5071 +*/
1.5072 +static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
1.5073 + const char *pTerm, int nTerm,
1.5074 + int iDoclistData){
1.5075 + char c[VARINT_MAX+VARINT_MAX];
1.5076 + int iData, n = fts3PutVarint(c, 0);
1.5077 + n += fts3PutVarint(c+n, nTerm);
1.5078 +
1.5079 + /* There should always be room for the header. Even if pTerm shared
1.5080 + ** a substantial prefix with the previous term, the entire prefix
1.5081 + ** could be constructed from earlier data in the doclist, so there
1.5082 + ** should be room.
1.5083 + */
1.5084 + assert( iDoclistData>=n+nTerm );
1.5085 +
1.5086 + iData = iDoclistData-(n+nTerm);
1.5087 + memcpy(pWriter->data.pData+iData, c, n);
1.5088 + memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
1.5089 +
1.5090 + return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
1.5091 +}
1.5092 +
1.5093 +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
1.5094 +** %_segments.
1.5095 +*/
1.5096 +static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
1.5097 + const char *pTerm, int nTerm,
1.5098 + DLReader *pReaders, int nReaders){
1.5099 + char c[VARINT_MAX+VARINT_MAX];
1.5100 + int iTermData = pWriter->data.nData, iDoclistData;
1.5101 + int i, nData, n, nActualData, nActual, rc, nTermDistinct;
1.5102 +
1.5103 + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
1.5104 + nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
1.5105 +
1.5106 + /* Remember nTermDistinct if opening a new node. */
1.5107 + if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
1.5108 +
1.5109 + iDoclistData = pWriter->data.nData;
1.5110 +
1.5111 + /* Estimate the length of the merged doclist so we can leave space
1.5112 + ** to encode it.
1.5113 + */
1.5114 + for(i=0, nData=0; i<nReaders; i++){
1.5115 + nData += dlrAllDataBytes(&pReaders[i]);
1.5116 + }
1.5117 + n = fts3PutVarint(c, nData);
1.5118 + dataBufferAppend(&pWriter->data, c, n);
1.5119 +
1.5120 + docListMerge(&pWriter->data, pReaders, nReaders);
1.5121 + ASSERT_VALID_DOCLIST(DL_DEFAULT,
1.5122 + pWriter->data.pData+iDoclistData+n,
1.5123 + pWriter->data.nData-iDoclistData-n, NULL);
1.5124 +
1.5125 + /* The actual amount of doclist data at this point could be smaller
1.5126 + ** than the length we encoded. Additionally, the space required to
1.5127 + ** encode this length could be smaller. For small doclists, this is
1.5128 + ** not a big deal, we can just use memmove() to adjust things.
1.5129 + */
1.5130 + nActualData = pWriter->data.nData-(iDoclistData+n);
1.5131 + nActual = fts3PutVarint(c, nActualData);
1.5132 + assert( nActualData<=nData );
1.5133 + assert( nActual<=n );
1.5134 +
1.5135 + /* If the new doclist is big enough for force a standalone leaf
1.5136 + ** node, we can immediately flush it inline without doing the
1.5137 + ** memmove().
1.5138 + */
1.5139 + /* TODO(shess) This test matches leafWriterStep(), which does this
1.5140 + ** test before it knows the cost to varint-encode the term and
1.5141 + ** doclist lengths. At some point, change to
1.5142 + ** pWriter->data.nData-iTermData>STANDALONE_MIN.
1.5143 + */
1.5144 + if( nTerm+nActualData>STANDALONE_MIN ){
1.5145 + /* Push leaf node from before this term. */
1.5146 + if( iTermData>0 ){
1.5147 + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
1.5148 + if( rc!=SQLITE_OK ) return rc;
1.5149 +
1.5150 + pWriter->nTermDistinct = nTermDistinct;
1.5151 + }
1.5152 +
1.5153 + /* Fix the encoded doclist length. */
1.5154 + iDoclistData += n - nActual;
1.5155 + memcpy(pWriter->data.pData+iDoclistData, c, nActual);
1.5156 +
1.5157 + /* Push the standalone leaf node. */
1.5158 + rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
1.5159 + if( rc!=SQLITE_OK ) return rc;
1.5160 +
1.5161 + /* Leave the node empty. */
1.5162 + dataBufferReset(&pWriter->data);
1.5163 +
1.5164 + return rc;
1.5165 + }
1.5166 +
1.5167 + /* At this point, we know that the doclist was small, so do the
1.5168 + ** memmove if indicated.
1.5169 + */
1.5170 + if( nActual<n ){
1.5171 + memmove(pWriter->data.pData+iDoclistData+nActual,
1.5172 + pWriter->data.pData+iDoclistData+n,
1.5173 + pWriter->data.nData-(iDoclistData+n));
1.5174 + pWriter->data.nData -= n-nActual;
1.5175 + }
1.5176 +
1.5177 + /* Replace written length with actual length. */
1.5178 + memcpy(pWriter->data.pData+iDoclistData, c, nActual);
1.5179 +
1.5180 + /* If the node is too large, break things up. */
1.5181 + /* TODO(shess) This test matches leafWriterStep(), which does this
1.5182 + ** test before it knows the cost to varint-encode the term and
1.5183 + ** doclist lengths. At some point, change to
1.5184 + ** pWriter->data.nData>LEAF_MAX.
1.5185 + */
1.5186 + if( iTermData+nTerm+nActualData>LEAF_MAX ){
1.5187 + /* Flush out the leading data as a node */
1.5188 + rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
1.5189 + if( rc!=SQLITE_OK ) return rc;
1.5190 +
1.5191 + pWriter->nTermDistinct = nTermDistinct;
1.5192 +
1.5193 + /* Rebuild header using the current term */
1.5194 + n = fts3PutVarint(pWriter->data.pData, 0);
1.5195 + n += fts3PutVarint(pWriter->data.pData+n, nTerm);
1.5196 + memcpy(pWriter->data.pData+n, pTerm, nTerm);
1.5197 + n += nTerm;
1.5198 +
1.5199 + /* There should always be room, because the previous encoding
1.5200 + ** included all data necessary to construct the term.
1.5201 + */
1.5202 + assert( n<iDoclistData );
1.5203 + /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
1.5204 + ** following memcpy() is safe (as opposed to needing a memmove).
1.5205 + */
1.5206 + assert( 2*STANDALONE_MIN<=LEAF_MAX );
1.5207 + assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
1.5208 + memcpy(pWriter->data.pData+n,
1.5209 + pWriter->data.pData+iDoclistData,
1.5210 + pWriter->data.nData-iDoclistData);
1.5211 + pWriter->data.nData -= iDoclistData-n;
1.5212 + }
1.5213 + ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
1.5214 +
1.5215 + return SQLITE_OK;
1.5216 +}
1.5217 +
1.5218 +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
1.5219 +** %_segments.
1.5220 +*/
1.5221 +/* TODO(shess) Revise writeZeroSegment() so that doclists are
1.5222 +** constructed directly in pWriter->data.
1.5223 +*/
1.5224 +static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
1.5225 + const char *pTerm, int nTerm,
1.5226 + const char *pData, int nData){
1.5227 + int rc;
1.5228 + DLReader reader;
1.5229 +
1.5230 + dlrInit(&reader, DL_DEFAULT, pData, nData);
1.5231 + rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
1.5232 + dlrDestroy(&reader);
1.5233 +
1.5234 + return rc;
1.5235 +}
1.5236 +
1.5237 +
1.5238 +/****************************************************************/
1.5239 +/* LeafReader is used to iterate over an individual leaf node. */
1.5240 +typedef struct LeafReader {
1.5241 + DataBuffer term; /* copy of current term. */
1.5242 +
1.5243 + const char *pData; /* data for current term. */
1.5244 + int nData;
1.5245 +} LeafReader;
1.5246 +
1.5247 +static void leafReaderDestroy(LeafReader *pReader){
1.5248 + dataBufferDestroy(&pReader->term);
1.5249 + SCRAMBLE(pReader);
1.5250 +}
1.5251 +
1.5252 +static int leafReaderAtEnd(LeafReader *pReader){
1.5253 + return pReader->nData<=0;
1.5254 +}
1.5255 +
1.5256 +/* Access the current term. */
1.5257 +static int leafReaderTermBytes(LeafReader *pReader){
1.5258 + return pReader->term.nData;
1.5259 +}
1.5260 +static const char *leafReaderTerm(LeafReader *pReader){
1.5261 + assert( pReader->term.nData>0 );
1.5262 + return pReader->term.pData;
1.5263 +}
1.5264 +
1.5265 +/* Access the doclist data for the current term. */
1.5266 +static int leafReaderDataBytes(LeafReader *pReader){
1.5267 + int nData;
1.5268 + assert( pReader->term.nData>0 );
1.5269 + fts3GetVarint32(pReader->pData, &nData);
1.5270 + return nData;
1.5271 +}
1.5272 +static const char *leafReaderData(LeafReader *pReader){
1.5273 + int n, nData;
1.5274 + assert( pReader->term.nData>0 );
1.5275 + n = fts3GetVarint32(pReader->pData, &nData);
1.5276 + return pReader->pData+n;
1.5277 +}
1.5278 +
1.5279 +static void leafReaderInit(const char *pData, int nData,
1.5280 + LeafReader *pReader){
1.5281 + int nTerm, n;
1.5282 +
1.5283 + assert( nData>0 );
1.5284 + assert( pData[0]=='\0' );
1.5285 +
1.5286 + CLEAR(pReader);
1.5287 +
1.5288 + /* Read the first term, skipping the header byte. */
1.5289 + n = fts3GetVarint32(pData+1, &nTerm);
1.5290 + dataBufferInit(&pReader->term, nTerm);
1.5291 + dataBufferReplace(&pReader->term, pData+1+n, nTerm);
1.5292 +
1.5293 + /* Position after the first term. */
1.5294 + assert( 1+n+nTerm<nData );
1.5295 + pReader->pData = pData+1+n+nTerm;
1.5296 + pReader->nData = nData-1-n-nTerm;
1.5297 +}
1.5298 +
1.5299 +/* Step the reader forward to the next term. */
1.5300 +static void leafReaderStep(LeafReader *pReader){
1.5301 + int n, nData, nPrefix, nSuffix;
1.5302 + assert( !leafReaderAtEnd(pReader) );
1.5303 +
1.5304 + /* Skip previous entry's data block. */
1.5305 + n = fts3GetVarint32(pReader->pData, &nData);
1.5306 + assert( n+nData<=pReader->nData );
1.5307 + pReader->pData += n+nData;
1.5308 + pReader->nData -= n+nData;
1.5309 +
1.5310 + if( !leafReaderAtEnd(pReader) ){
1.5311 + /* Construct the new term using a prefix from the old term plus a
1.5312 + ** suffix from the leaf data.
1.5313 + */
1.5314 + n = fts3GetVarint32(pReader->pData, &nPrefix);
1.5315 + n += fts3GetVarint32(pReader->pData+n, &nSuffix);
1.5316 + assert( n+nSuffix<pReader->nData );
1.5317 + pReader->term.nData = nPrefix;
1.5318 + dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
1.5319 +
1.5320 + pReader->pData += n+nSuffix;
1.5321 + pReader->nData -= n+nSuffix;
1.5322 + }
1.5323 +}
1.5324 +
1.5325 +/* strcmp-style comparison of pReader's current term against pTerm.
1.5326 +** If isPrefix, equality means equal through nTerm bytes.
1.5327 +*/
1.5328 +static int leafReaderTermCmp(LeafReader *pReader,
1.5329 + const char *pTerm, int nTerm, int isPrefix){
1.5330 + int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
1.5331 + if( n==0 ){
1.5332 + if( pReader->term.nData>0 ) return -1;
1.5333 + if(nTerm>0 ) return 1;
1.5334 + return 0;
1.5335 + }
1.5336 +
1.5337 + c = memcmp(pReader->term.pData, pTerm, n);
1.5338 + if( c!=0 ) return c;
1.5339 + if( isPrefix && n==nTerm ) return 0;
1.5340 + return pReader->term.nData - nTerm;
1.5341 +}
1.5342 +
1.5343 +
1.5344 +/****************************************************************/
1.5345 +/* LeavesReader wraps LeafReader to allow iterating over the entire
1.5346 +** leaf layer of the tree.
1.5347 +*/
1.5348 +typedef struct LeavesReader {
1.5349 + int idx; /* Index within the segment. */
1.5350 +
1.5351 + sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */
1.5352 + int eof; /* we've seen SQLITE_DONE from pStmt. */
1.5353 +
1.5354 + LeafReader leafReader; /* reader for the current leaf. */
1.5355 + DataBuffer rootData; /* root data for inline. */
1.5356 +} LeavesReader;
1.5357 +
1.5358 +/* Access the current term. */
1.5359 +static int leavesReaderTermBytes(LeavesReader *pReader){
1.5360 + assert( !pReader->eof );
1.5361 + return leafReaderTermBytes(&pReader->leafReader);
1.5362 +}
1.5363 +static const char *leavesReaderTerm(LeavesReader *pReader){
1.5364 + assert( !pReader->eof );
1.5365 + return leafReaderTerm(&pReader->leafReader);
1.5366 +}
1.5367 +
1.5368 +/* Access the doclist data for the current term. */
1.5369 +static int leavesReaderDataBytes(LeavesReader *pReader){
1.5370 + assert( !pReader->eof );
1.5371 + return leafReaderDataBytes(&pReader->leafReader);
1.5372 +}
1.5373 +static const char *leavesReaderData(LeavesReader *pReader){
1.5374 + assert( !pReader->eof );
1.5375 + return leafReaderData(&pReader->leafReader);
1.5376 +}
1.5377 +
1.5378 +static int leavesReaderAtEnd(LeavesReader *pReader){
1.5379 + return pReader->eof;
1.5380 +}
1.5381 +
1.5382 +/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
1.5383 +** leaving the statement handle open, which locks the table.
1.5384 +*/
1.5385 +/* TODO(shess) This "solution" is not satisfactory. Really, there
1.5386 +** should be check-in function for all statement handles which
1.5387 +** arranges to call sqlite3_reset(). This most likely will require
1.5388 +** modification to control flow all over the place, though, so for now
1.5389 +** just punt.
1.5390 +**
1.5391 +** Note the the current system assumes that segment merges will run to
1.5392 +** completion, which is why this particular probably hasn't arisen in
1.5393 +** this case. Probably a brittle assumption.
1.5394 +*/
1.5395 +static int leavesReaderReset(LeavesReader *pReader){
1.5396 + return sqlite3_reset(pReader->pStmt);
1.5397 +}
1.5398 +
1.5399 +static void leavesReaderDestroy(LeavesReader *pReader){
1.5400 + /* If idx is -1, that means we're using a non-cached statement
1.5401 + ** handle in the optimize() case, so we need to release it.
1.5402 + */
1.5403 + if( pReader->pStmt!=NULL && pReader->idx==-1 ){
1.5404 + sqlite3_finalize(pReader->pStmt);
1.5405 + }
1.5406 + leafReaderDestroy(&pReader->leafReader);
1.5407 + dataBufferDestroy(&pReader->rootData);
1.5408 + SCRAMBLE(pReader);
1.5409 +}
1.5410 +
1.5411 +/* Initialize pReader with the given root data (if iStartBlockid==0
1.5412 +** the leaf data was entirely contained in the root), or from the
1.5413 +** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
1.5414 +*/
1.5415 +static int leavesReaderInit(fulltext_vtab *v,
1.5416 + int idx,
1.5417 + sqlite_int64 iStartBlockid,
1.5418 + sqlite_int64 iEndBlockid,
1.5419 + const char *pRootData, int nRootData,
1.5420 + LeavesReader *pReader){
1.5421 + CLEAR(pReader);
1.5422 + pReader->idx = idx;
1.5423 +
1.5424 + dataBufferInit(&pReader->rootData, 0);
1.5425 + if( iStartBlockid==0 ){
1.5426 + /* Entire leaf level fit in root data. */
1.5427 + dataBufferReplace(&pReader->rootData, pRootData, nRootData);
1.5428 + leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
1.5429 + &pReader->leafReader);
1.5430 + }else{
1.5431 + sqlite3_stmt *s;
1.5432 + int rc = sql_get_leaf_statement(v, idx, &s);
1.5433 + if( rc!=SQLITE_OK ) return rc;
1.5434 +
1.5435 + rc = sqlite3_bind_int64(s, 1, iStartBlockid);
1.5436 + if( rc!=SQLITE_OK ) return rc;
1.5437 +
1.5438 + rc = sqlite3_bind_int64(s, 2, iEndBlockid);
1.5439 + if( rc!=SQLITE_OK ) return rc;
1.5440 +
1.5441 + rc = sqlite3_step(s);
1.5442 + if( rc==SQLITE_DONE ){
1.5443 + pReader->eof = 1;
1.5444 + return SQLITE_OK;
1.5445 + }
1.5446 + if( rc!=SQLITE_ROW ) return rc;
1.5447 +
1.5448 + pReader->pStmt = s;
1.5449 + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
1.5450 + sqlite3_column_bytes(pReader->pStmt, 0),
1.5451 + &pReader->leafReader);
1.5452 + }
1.5453 + return SQLITE_OK;
1.5454 +}
1.5455 +
1.5456 +/* Step the current leaf forward to the next term. If we reach the
1.5457 +** end of the current leaf, step forward to the next leaf block.
1.5458 +*/
1.5459 +static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
1.5460 + assert( !leavesReaderAtEnd(pReader) );
1.5461 + leafReaderStep(&pReader->leafReader);
1.5462 +
1.5463 + if( leafReaderAtEnd(&pReader->leafReader) ){
1.5464 + int rc;
1.5465 + if( pReader->rootData.pData ){
1.5466 + pReader->eof = 1;
1.5467 + return SQLITE_OK;
1.5468 + }
1.5469 + rc = sqlite3_step(pReader->pStmt);
1.5470 + if( rc!=SQLITE_ROW ){
1.5471 + pReader->eof = 1;
1.5472 + return rc==SQLITE_DONE ? SQLITE_OK : rc;
1.5473 + }
1.5474 + leafReaderDestroy(&pReader->leafReader);
1.5475 + leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
1.5476 + sqlite3_column_bytes(pReader->pStmt, 0),
1.5477 + &pReader->leafReader);
1.5478 + }
1.5479 + return SQLITE_OK;
1.5480 +}
1.5481 +
1.5482 +/* Order LeavesReaders by their term, ignoring idx. Readers at eof
1.5483 +** always sort to the end.
1.5484 +*/
1.5485 +static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
1.5486 + if( leavesReaderAtEnd(lr1) ){
1.5487 + if( leavesReaderAtEnd(lr2) ) return 0;
1.5488 + return 1;
1.5489 + }
1.5490 + if( leavesReaderAtEnd(lr2) ) return -1;
1.5491 +
1.5492 + return leafReaderTermCmp(&lr1->leafReader,
1.5493 + leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
1.5494 + 0);
1.5495 +}
1.5496 +
1.5497 +/* Similar to leavesReaderTermCmp(), with additional ordering by idx
1.5498 +** so that older segments sort before newer segments.
1.5499 +*/
1.5500 +static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
1.5501 + int c = leavesReaderTermCmp(lr1, lr2);
1.5502 + if( c!=0 ) return c;
1.5503 + return lr1->idx-lr2->idx;
1.5504 +}
1.5505 +
1.5506 +/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its
1.5507 +** sorted position.
1.5508 +*/
1.5509 +static void leavesReaderReorder(LeavesReader *pLr, int nLr){
1.5510 + while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
1.5511 + LeavesReader tmp = pLr[0];
1.5512 + pLr[0] = pLr[1];
1.5513 + pLr[1] = tmp;
1.5514 + nLr--;
1.5515 + pLr++;
1.5516 + }
1.5517 +}
1.5518 +
1.5519 +/* Initializes pReaders with the segments from level iLevel, returning
1.5520 +** the number of segments in *piReaders. Leaves pReaders in sorted
1.5521 +** order.
1.5522 +*/
1.5523 +static int leavesReadersInit(fulltext_vtab *v, int iLevel,
1.5524 + LeavesReader *pReaders, int *piReaders){
1.5525 + sqlite3_stmt *s;
1.5526 + int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
1.5527 + if( rc!=SQLITE_OK ) return rc;
1.5528 +
1.5529 + rc = sqlite3_bind_int(s, 1, iLevel);
1.5530 + if( rc!=SQLITE_OK ) return rc;
1.5531 +
1.5532 + i = 0;
1.5533 + while( (rc = sqlite3_step(s))==SQLITE_ROW ){
1.5534 + sqlite_int64 iStart = sqlite3_column_int64(s, 0);
1.5535 + sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
1.5536 + const char *pRootData = sqlite3_column_blob(s, 2);
1.5537 + int nRootData = sqlite3_column_bytes(s, 2);
1.5538 +
1.5539 + assert( i<MERGE_COUNT );
1.5540 + rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
1.5541 + &pReaders[i]);
1.5542 + if( rc!=SQLITE_OK ) break;
1.5543 +
1.5544 + i++;
1.5545 + }
1.5546 + if( rc!=SQLITE_DONE ){
1.5547 + while( i-->0 ){
1.5548 + leavesReaderDestroy(&pReaders[i]);
1.5549 + }
1.5550 + return rc;
1.5551 + }
1.5552 +
1.5553 + *piReaders = i;
1.5554 +
1.5555 + /* Leave our results sorted by term, then age. */
1.5556 + while( i-- ){
1.5557 + leavesReaderReorder(pReaders+i, *piReaders-i);
1.5558 + }
1.5559 + return SQLITE_OK;
1.5560 +}
1.5561 +
1.5562 +/* Merge doclists from pReaders[nReaders] into a single doclist, which
1.5563 +** is written to pWriter. Assumes pReaders is ordered oldest to
1.5564 +** newest.
1.5565 +*/
1.5566 +/* TODO(shess) Consider putting this inline in segmentMerge(). */
1.5567 +static int leavesReadersMerge(fulltext_vtab *v,
1.5568 + LeavesReader *pReaders, int nReaders,
1.5569 + LeafWriter *pWriter){
1.5570 + DLReader dlReaders[MERGE_COUNT];
1.5571 + const char *pTerm = leavesReaderTerm(pReaders);
1.5572 + int i, nTerm = leavesReaderTermBytes(pReaders);
1.5573 +
1.5574 + assert( nReaders<=MERGE_COUNT );
1.5575 +
1.5576 + for(i=0; i<nReaders; i++){
1.5577 + dlrInit(&dlReaders[i], DL_DEFAULT,
1.5578 + leavesReaderData(pReaders+i),
1.5579 + leavesReaderDataBytes(pReaders+i));
1.5580 + }
1.5581 +
1.5582 + return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
1.5583 +}
1.5584 +
1.5585 +/* Forward ref due to mutual recursion with segdirNextIndex(). */
1.5586 +static int segmentMerge(fulltext_vtab *v, int iLevel);
1.5587 +
1.5588 +/* Put the next available index at iLevel into *pidx. If iLevel
1.5589 +** already has MERGE_COUNT segments, they are merged to a higher
1.5590 +** level to make room.
1.5591 +*/
1.5592 +static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
1.5593 + int rc = segdir_max_index(v, iLevel, pidx);
1.5594 + if( rc==SQLITE_DONE ){ /* No segments at iLevel. */
1.5595 + *pidx = 0;
1.5596 + }else if( rc==SQLITE_ROW ){
1.5597 + if( *pidx==(MERGE_COUNT-1) ){
1.5598 + rc = segmentMerge(v, iLevel);
1.5599 + if( rc!=SQLITE_OK ) return rc;
1.5600 + *pidx = 0;
1.5601 + }else{
1.5602 + (*pidx)++;
1.5603 + }
1.5604 + }else{
1.5605 + return rc;
1.5606 + }
1.5607 + return SQLITE_OK;
1.5608 +}
1.5609 +
1.5610 +/* Merge MERGE_COUNT segments at iLevel into a new segment at
1.5611 +** iLevel+1. If iLevel+1 is already full of segments, those will be
1.5612 +** merged to make room.
1.5613 +*/
1.5614 +static int segmentMerge(fulltext_vtab *v, int iLevel){
1.5615 + LeafWriter writer;
1.5616 + LeavesReader lrs[MERGE_COUNT];
1.5617 + int i, rc, idx = 0;
1.5618 +
1.5619 + /* Determine the next available segment index at the next level,
1.5620 + ** merging as necessary.
1.5621 + */
1.5622 + rc = segdirNextIndex(v, iLevel+1, &idx);
1.5623 + if( rc!=SQLITE_OK ) return rc;
1.5624 +
1.5625 + /* TODO(shess) This assumes that we'll always see exactly
1.5626 + ** MERGE_COUNT segments to merge at a given level. That will be
1.5627 + ** broken if we allow the developer to request preemptive or
1.5628 + ** deferred merging.
1.5629 + */
1.5630 + memset(&lrs, '\0', sizeof(lrs));
1.5631 + rc = leavesReadersInit(v, iLevel, lrs, &i);
1.5632 + if( rc!=SQLITE_OK ) return rc;
1.5633 + assert( i==MERGE_COUNT );
1.5634 +
1.5635 + leafWriterInit(iLevel+1, idx, &writer);
1.5636 +
1.5637 + /* Since leavesReaderReorder() pushes readers at eof to the end,
1.5638 + ** when the first reader is empty, all will be empty.
1.5639 + */
1.5640 + while( !leavesReaderAtEnd(lrs) ){
1.5641 + /* Figure out how many readers share their next term. */
1.5642 + for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
1.5643 + if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
1.5644 + }
1.5645 +
1.5646 + rc = leavesReadersMerge(v, lrs, i, &writer);
1.5647 + if( rc!=SQLITE_OK ) goto err;
1.5648 +
1.5649 + /* Step forward those that were merged. */
1.5650 + while( i-->0 ){
1.5651 + rc = leavesReaderStep(v, lrs+i);
1.5652 + if( rc!=SQLITE_OK ) goto err;
1.5653 +
1.5654 + /* Reorder by term, then by age. */
1.5655 + leavesReaderReorder(lrs+i, MERGE_COUNT-i);
1.5656 + }
1.5657 + }
1.5658 +
1.5659 + for(i=0; i<MERGE_COUNT; i++){
1.5660 + leavesReaderDestroy(&lrs[i]);
1.5661 + }
1.5662 +
1.5663 + rc = leafWriterFinalize(v, &writer);
1.5664 + leafWriterDestroy(&writer);
1.5665 + if( rc!=SQLITE_OK ) return rc;
1.5666 +
1.5667 + /* Delete the merged segment data. */
1.5668 + return segdir_delete(v, iLevel);
1.5669 +
1.5670 + err:
1.5671 + for(i=0; i<MERGE_COUNT; i++){
1.5672 + leavesReaderDestroy(&lrs[i]);
1.5673 + }
1.5674 + leafWriterDestroy(&writer);
1.5675 + return rc;
1.5676 +}
1.5677 +
1.5678 +/* Accumulate the union of *acc and *pData into *acc. */
1.5679 +static void docListAccumulateUnion(DataBuffer *acc,
1.5680 + const char *pData, int nData) {
1.5681 + DataBuffer tmp = *acc;
1.5682 + dataBufferInit(acc, tmp.nData+nData);
1.5683 + docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
1.5684 + dataBufferDestroy(&tmp);
1.5685 +}
1.5686 +
1.5687 +/* TODO(shess) It might be interesting to explore different merge
1.5688 +** strategies, here. For instance, since this is a sorted merge, we
1.5689 +** could easily merge many doclists in parallel. With some
1.5690 +** comprehension of the storage format, we could merge all of the
1.5691 +** doclists within a leaf node directly from the leaf node's storage.
1.5692 +** It may be worthwhile to merge smaller doclists before larger
1.5693 +** doclists, since they can be traversed more quickly - but the
1.5694 +** results may have less overlap, making them more expensive in a
1.5695 +** different way.
1.5696 +*/
1.5697 +
1.5698 +/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
1.5699 +** *out (any doclists with duplicate docids overwrite those in *out).
1.5700 +** Internal function for loadSegmentLeaf().
1.5701 +*/
1.5702 +static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
1.5703 + const char *pTerm, int nTerm, int isPrefix,
1.5704 + DataBuffer *out){
1.5705 + /* doclist data is accumulated into pBuffers similar to how one does
1.5706 + ** increment in binary arithmetic. If index 0 is empty, the data is
1.5707 + ** stored there. If there is data there, it is merged and the
1.5708 + ** results carried into position 1, with further merge-and-carry
1.5709 + ** until an empty position is found.
1.5710 + */
1.5711 + DataBuffer *pBuffers = NULL;
1.5712 + int nBuffers = 0, nMaxBuffers = 0, rc;
1.5713 +
1.5714 + assert( nTerm>0 );
1.5715 +
1.5716 + for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
1.5717 + rc=leavesReaderStep(v, pReader)){
1.5718 + /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
1.5719 + ** already taken to compare the terms of two LeavesReaders. Think
1.5720 + ** on a better name. [Meanwhile, break encapsulation rather than
1.5721 + ** use a confusing name.]
1.5722 + */
1.5723 + int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
1.5724 + if( c>0 ) break; /* Past any possible matches. */
1.5725 + if( c==0 ){
1.5726 + const char *pData = leavesReaderData(pReader);
1.5727 + int iBuffer, nData = leavesReaderDataBytes(pReader);
1.5728 +
1.5729 + /* Find the first empty buffer. */
1.5730 + for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
1.5731 + if( 0==pBuffers[iBuffer].nData ) break;
1.5732 + }
1.5733 +
1.5734 + /* Out of buffers, add an empty one. */
1.5735 + if( iBuffer==nBuffers ){
1.5736 + if( nBuffers==nMaxBuffers ){
1.5737 + DataBuffer *p;
1.5738 + nMaxBuffers += 20;
1.5739 +
1.5740 + /* Manual realloc so we can handle NULL appropriately. */
1.5741 + p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
1.5742 + if( p==NULL ){
1.5743 + rc = SQLITE_NOMEM;
1.5744 + break;
1.5745 + }
1.5746 +
1.5747 + if( nBuffers>0 ){
1.5748 + assert(pBuffers!=NULL);
1.5749 + memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
1.5750 + sqlite3_free(pBuffers);
1.5751 + }
1.5752 + pBuffers = p;
1.5753 + }
1.5754 + dataBufferInit(&(pBuffers[nBuffers]), 0);
1.5755 + nBuffers++;
1.5756 + }
1.5757 +
1.5758 + /* At this point, must have an empty at iBuffer. */
1.5759 + assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
1.5760 +
1.5761 + /* If empty was first buffer, no need for merge logic. */
1.5762 + if( iBuffer==0 ){
1.5763 + dataBufferReplace(&(pBuffers[0]), pData, nData);
1.5764 + }else{
1.5765 + /* pAcc is the empty buffer the merged data will end up in. */
1.5766 + DataBuffer *pAcc = &(pBuffers[iBuffer]);
1.5767 + DataBuffer *p = &(pBuffers[0]);
1.5768 +
1.5769 + /* Handle position 0 specially to avoid need to prime pAcc
1.5770 + ** with pData/nData.
1.5771 + */
1.5772 + dataBufferSwap(p, pAcc);
1.5773 + docListAccumulateUnion(pAcc, pData, nData);
1.5774 +
1.5775 + /* Accumulate remaining doclists into pAcc. */
1.5776 + for(++p; p<pAcc; ++p){
1.5777 + docListAccumulateUnion(pAcc, p->pData, p->nData);
1.5778 +
1.5779 + /* dataBufferReset() could allow a large doclist to blow up
1.5780 + ** our memory requirements.
1.5781 + */
1.5782 + if( p->nCapacity<1024 ){
1.5783 + dataBufferReset(p);
1.5784 + }else{
1.5785 + dataBufferDestroy(p);
1.5786 + dataBufferInit(p, 0);
1.5787 + }
1.5788 + }
1.5789 + }
1.5790 + }
1.5791 + }
1.5792 +
1.5793 + /* Union all the doclists together into *out. */
1.5794 + /* TODO(shess) What if *out is big? Sigh. */
1.5795 + if( rc==SQLITE_OK && nBuffers>0 ){
1.5796 + int iBuffer;
1.5797 + for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
1.5798 + if( pBuffers[iBuffer].nData>0 ){
1.5799 + if( out->nData==0 ){
1.5800 + dataBufferSwap(out, &(pBuffers[iBuffer]));
1.5801 + }else{
1.5802 + docListAccumulateUnion(out, pBuffers[iBuffer].pData,
1.5803 + pBuffers[iBuffer].nData);
1.5804 + }
1.5805 + }
1.5806 + }
1.5807 + }
1.5808 +
1.5809 + while( nBuffers-- ){
1.5810 + dataBufferDestroy(&(pBuffers[nBuffers]));
1.5811 + }
1.5812 + if( pBuffers!=NULL ) sqlite3_free(pBuffers);
1.5813 +
1.5814 + return rc;
1.5815 +}
1.5816 +
1.5817 +/* Call loadSegmentLeavesInt() with pData/nData as input. */
1.5818 +static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
1.5819 + const char *pTerm, int nTerm, int isPrefix,
1.5820 + DataBuffer *out){
1.5821 + LeavesReader reader;
1.5822 + int rc;
1.5823 +
1.5824 + assert( nData>1 );
1.5825 + assert( *pData=='\0' );
1.5826 + rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
1.5827 + if( rc!=SQLITE_OK ) return rc;
1.5828 +
1.5829 + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
1.5830 + leavesReaderReset(&reader);
1.5831 + leavesReaderDestroy(&reader);
1.5832 + return rc;
1.5833 +}
1.5834 +
1.5835 +/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
1.5836 +** iEndLeaf (inclusive) as input, and merge the resulting doclist into
1.5837 +** out.
1.5838 +*/
1.5839 +static int loadSegmentLeaves(fulltext_vtab *v,
1.5840 + sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
1.5841 + const char *pTerm, int nTerm, int isPrefix,
1.5842 + DataBuffer *out){
1.5843 + int rc;
1.5844 + LeavesReader reader;
1.5845 +
1.5846 + assert( iStartLeaf<=iEndLeaf );
1.5847 + rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
1.5848 + if( rc!=SQLITE_OK ) return rc;
1.5849 +
1.5850 + rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
1.5851 + leavesReaderReset(&reader);
1.5852 + leavesReaderDestroy(&reader);
1.5853 + return rc;
1.5854 +}
1.5855 +
1.5856 +/* Taking pData/nData as an interior node, find the sequence of child
1.5857 +** nodes which could include pTerm/nTerm/isPrefix. Note that the
1.5858 +** interior node terms logically come between the blocks, so there is
1.5859 +** one more blockid than there are terms (that block contains terms >=
1.5860 +** the last interior-node term).
1.5861 +*/
1.5862 +/* TODO(shess) The calling code may already know that the end child is
1.5863 +** not worth calculating, because the end may be in a later sibling
1.5864 +** node. Consider whether breaking symmetry is worthwhile. I suspect
1.5865 +** it is not worthwhile.
1.5866 +*/
1.5867 +static void getChildrenContaining(const char *pData, int nData,
1.5868 + const char *pTerm, int nTerm, int isPrefix,
1.5869 + sqlite_int64 *piStartChild,
1.5870 + sqlite_int64 *piEndChild){
1.5871 + InteriorReader reader;
1.5872 +
1.5873 + assert( nData>1 );
1.5874 + assert( *pData!='\0' );
1.5875 + interiorReaderInit(pData, nData, &reader);
1.5876 +
1.5877 + /* Scan for the first child which could contain pTerm/nTerm. */
1.5878 + while( !interiorReaderAtEnd(&reader) ){
1.5879 + if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
1.5880 + interiorReaderStep(&reader);
1.5881 + }
1.5882 + *piStartChild = interiorReaderCurrentBlockid(&reader);
1.5883 +
1.5884 + /* Keep scanning to find a term greater than our term, using prefix
1.5885 + ** comparison if indicated. If isPrefix is false, this will be the
1.5886 + ** same blockid as the starting block.
1.5887 + */
1.5888 + while( !interiorReaderAtEnd(&reader) ){
1.5889 + if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
1.5890 + interiorReaderStep(&reader);
1.5891 + }
1.5892 + *piEndChild = interiorReaderCurrentBlockid(&reader);
1.5893 +
1.5894 + interiorReaderDestroy(&reader);
1.5895 +
1.5896 + /* Children must ascend, and if !prefix, both must be the same. */
1.5897 + assert( *piEndChild>=*piStartChild );
1.5898 + assert( isPrefix || *piStartChild==*piEndChild );
1.5899 +}
1.5900 +
1.5901 +/* Read block at iBlockid and pass it with other params to
1.5902 +** getChildrenContaining().
1.5903 +*/
1.5904 +static int loadAndGetChildrenContaining(
1.5905 + fulltext_vtab *v,
1.5906 + sqlite_int64 iBlockid,
1.5907 + const char *pTerm, int nTerm, int isPrefix,
1.5908 + sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
1.5909 +){
1.5910 + sqlite3_stmt *s = NULL;
1.5911 + int rc;
1.5912 +
1.5913 + assert( iBlockid!=0 );
1.5914 + assert( pTerm!=NULL );
1.5915 + assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */
1.5916 + assert( piStartChild!=NULL );
1.5917 + assert( piEndChild!=NULL );
1.5918 +
1.5919 + rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
1.5920 + if( rc!=SQLITE_OK ) return rc;
1.5921 +
1.5922 + rc = sqlite3_bind_int64(s, 1, iBlockid);
1.5923 + if( rc!=SQLITE_OK ) return rc;
1.5924 +
1.5925 + rc = sqlite3_step(s);
1.5926 + if( rc==SQLITE_DONE ) return SQLITE_ERROR;
1.5927 + if( rc!=SQLITE_ROW ) return rc;
1.5928 +
1.5929 + getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
1.5930 + pTerm, nTerm, isPrefix, piStartChild, piEndChild);
1.5931 +
1.5932 + /* We expect only one row. We must execute another sqlite3_step()
1.5933 + * to complete the iteration; otherwise the table will remain
1.5934 + * locked. */
1.5935 + rc = sqlite3_step(s);
1.5936 + if( rc==SQLITE_ROW ) return SQLITE_ERROR;
1.5937 + if( rc!=SQLITE_DONE ) return rc;
1.5938 +
1.5939 + return SQLITE_OK;
1.5940 +}
1.5941 +
1.5942 +/* Traverse the tree represented by pData[nData] looking for
1.5943 +** pTerm[nTerm], placing its doclist into *out. This is internal to
1.5944 +** loadSegment() to make error-handling cleaner.
1.5945 +*/
1.5946 +static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
1.5947 + sqlite_int64 iLeavesEnd,
1.5948 + const char *pTerm, int nTerm, int isPrefix,
1.5949 + DataBuffer *out){
1.5950 + /* Special case where root is a leaf. */
1.5951 + if( *pData=='\0' ){
1.5952 + return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
1.5953 + }else{
1.5954 + int rc;
1.5955 + sqlite_int64 iStartChild, iEndChild;
1.5956 +
1.5957 + /* Process pData as an interior node, then loop down the tree
1.5958 + ** until we find the set of leaf nodes to scan for the term.
1.5959 + */
1.5960 + getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
1.5961 + &iStartChild, &iEndChild);
1.5962 + while( iStartChild>iLeavesEnd ){
1.5963 + sqlite_int64 iNextStart, iNextEnd;
1.5964 + rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
1.5965 + &iNextStart, &iNextEnd);
1.5966 + if( rc!=SQLITE_OK ) return rc;
1.5967 +
1.5968 + /* If we've branched, follow the end branch, too. */
1.5969 + if( iStartChild!=iEndChild ){
1.5970 + sqlite_int64 iDummy;
1.5971 + rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
1.5972 + &iDummy, &iNextEnd);
1.5973 + if( rc!=SQLITE_OK ) return rc;
1.5974 + }
1.5975 +
1.5976 + assert( iNextStart<=iNextEnd );
1.5977 + iStartChild = iNextStart;
1.5978 + iEndChild = iNextEnd;
1.5979 + }
1.5980 + assert( iStartChild<=iLeavesEnd );
1.5981 + assert( iEndChild<=iLeavesEnd );
1.5982 +
1.5983 + /* Scan through the leaf segments for doclists. */
1.5984 + return loadSegmentLeaves(v, iStartChild, iEndChild,
1.5985 + pTerm, nTerm, isPrefix, out);
1.5986 + }
1.5987 +}
1.5988 +
1.5989 +/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
1.5990 +** merge its doclist over *out (any duplicate doclists read from the
1.5991 +** segment rooted at pData will overwrite those in *out).
1.5992 +*/
1.5993 +/* TODO(shess) Consider changing this to determine the depth of the
1.5994 +** leaves using either the first characters of interior nodes (when
1.5995 +** ==1, we're one level above the leaves), or the first character of
1.5996 +** the root (which will describe the height of the tree directly).
1.5997 +** Either feels somewhat tricky to me.
1.5998 +*/
1.5999 +/* TODO(shess) The current merge is likely to be slow for large
1.6000 +** doclists (though it should process from newest/smallest to
1.6001 +** oldest/largest, so it may not be that bad). It might be useful to
1.6002 +** modify things to allow for N-way merging. This could either be
1.6003 +** within a segment, with pairwise merges across segments, or across
1.6004 +** all segments at once.
1.6005 +*/
1.6006 +static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
1.6007 + sqlite_int64 iLeavesEnd,
1.6008 + const char *pTerm, int nTerm, int isPrefix,
1.6009 + DataBuffer *out){
1.6010 + DataBuffer result;
1.6011 + int rc;
1.6012 +
1.6013 + assert( nData>1 );
1.6014 +
1.6015 + /* This code should never be called with buffered updates. */
1.6016 + assert( v->nPendingData<0 );
1.6017 +
1.6018 + dataBufferInit(&result, 0);
1.6019 + rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
1.6020 + pTerm, nTerm, isPrefix, &result);
1.6021 + if( rc==SQLITE_OK && result.nData>0 ){
1.6022 + if( out->nData==0 ){
1.6023 + DataBuffer tmp = *out;
1.6024 + *out = result;
1.6025 + result = tmp;
1.6026 + }else{
1.6027 + DataBuffer merged;
1.6028 + DLReader readers[2];
1.6029 +
1.6030 + dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
1.6031 + dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
1.6032 + dataBufferInit(&merged, out->nData+result.nData);
1.6033 + docListMerge(&merged, readers, 2);
1.6034 + dataBufferDestroy(out);
1.6035 + *out = merged;
1.6036 + dlrDestroy(&readers[0]);
1.6037 + dlrDestroy(&readers[1]);
1.6038 + }
1.6039 + }
1.6040 + dataBufferDestroy(&result);
1.6041 + return rc;
1.6042 +}
1.6043 +
1.6044 +/* Scan the database and merge together the posting lists for the term
1.6045 +** into *out.
1.6046 +*/
1.6047 +static int termSelect(fulltext_vtab *v, int iColumn,
1.6048 + const char *pTerm, int nTerm, int isPrefix,
1.6049 + DocListType iType, DataBuffer *out){
1.6050 + DataBuffer doclist;
1.6051 + sqlite3_stmt *s;
1.6052 + int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
1.6053 + if( rc!=SQLITE_OK ) return rc;
1.6054 +
1.6055 + /* This code should never be called with buffered updates. */
1.6056 + assert( v->nPendingData<0 );
1.6057 +
1.6058 + dataBufferInit(&doclist, 0);
1.6059 +
1.6060 + /* Traverse the segments from oldest to newest so that newer doclist
1.6061 + ** elements for given docids overwrite older elements.
1.6062 + */
1.6063 + while( (rc = sqlite3_step(s))==SQLITE_ROW ){
1.6064 + const char *pData = sqlite3_column_blob(s, 2);
1.6065 + const int nData = sqlite3_column_bytes(s, 2);
1.6066 + const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
1.6067 + rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
1.6068 + &doclist);
1.6069 + if( rc!=SQLITE_OK ) goto err;
1.6070 + }
1.6071 + if( rc==SQLITE_DONE ){
1.6072 + if( doclist.nData!=0 ){
1.6073 + /* TODO(shess) The old term_select_all() code applied the column
1.6074 + ** restrict as we merged segments, leading to smaller buffers.
1.6075 + ** This is probably worthwhile to bring back, once the new storage
1.6076 + ** system is checked in.
1.6077 + */
1.6078 + if( iColumn==v->nColumn) iColumn = -1;
1.6079 + docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
1.6080 + iColumn, iType, out);
1.6081 + }
1.6082 + rc = SQLITE_OK;
1.6083 + }
1.6084 +
1.6085 + err:
1.6086 + dataBufferDestroy(&doclist);
1.6087 + return rc;
1.6088 +}
1.6089 +
1.6090 +/****************************************************************/
1.6091 +/* Used to hold hashtable data for sorting. */
1.6092 +typedef struct TermData {
1.6093 + const char *pTerm;
1.6094 + int nTerm;
1.6095 + DLCollector *pCollector;
1.6096 +} TermData;
1.6097 +
1.6098 +/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
1.6099 +** for equal, >0 for greater-than).
1.6100 +*/
1.6101 +static int termDataCmp(const void *av, const void *bv){
1.6102 + const TermData *a = (const TermData *)av;
1.6103 + const TermData *b = (const TermData *)bv;
1.6104 + int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
1.6105 + int c = memcmp(a->pTerm, b->pTerm, n);
1.6106 + if( c!=0 ) return c;
1.6107 + return a->nTerm-b->nTerm;
1.6108 +}
1.6109 +
1.6110 +/* Order pTerms data by term, then write a new level 0 segment using
1.6111 +** LeafWriter.
1.6112 +*/
1.6113 +static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
1.6114 + fts3HashElem *e;
1.6115 + int idx, rc, i, n;
1.6116 + TermData *pData;
1.6117 + LeafWriter writer;
1.6118 + DataBuffer dl;
1.6119 +
1.6120 + /* Determine the next index at level 0, merging as necessary. */
1.6121 + rc = segdirNextIndex(v, 0, &idx);
1.6122 + if( rc!=SQLITE_OK ) return rc;
1.6123 +
1.6124 + n = fts3HashCount(pTerms);
1.6125 + pData = sqlite3_malloc(n*sizeof(TermData));
1.6126 +
1.6127 + for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
1.6128 + assert( i<n );
1.6129 + pData[i].pTerm = fts3HashKey(e);
1.6130 + pData[i].nTerm = fts3HashKeysize(e);
1.6131 + pData[i].pCollector = fts3HashData(e);
1.6132 + }
1.6133 + assert( i==n );
1.6134 +
1.6135 + /* TODO(shess) Should we allow user-defined collation sequences,
1.6136 + ** here? I think we only need that once we support prefix searches.
1.6137 + */
1.6138 + if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
1.6139 +
1.6140 + /* TODO(shess) Refactor so that we can write directly to the segment
1.6141 + ** DataBuffer, as happens for segment merges.
1.6142 + */
1.6143 + leafWriterInit(0, idx, &writer);
1.6144 + dataBufferInit(&dl, 0);
1.6145 + for(i=0; i<n; i++){
1.6146 + dataBufferReset(&dl);
1.6147 + dlcAddDoclist(pData[i].pCollector, &dl);
1.6148 + rc = leafWriterStep(v, &writer,
1.6149 + pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
1.6150 + if( rc!=SQLITE_OK ) goto err;
1.6151 + }
1.6152 + rc = leafWriterFinalize(v, &writer);
1.6153 +
1.6154 + err:
1.6155 + dataBufferDestroy(&dl);
1.6156 + sqlite3_free(pData);
1.6157 + leafWriterDestroy(&writer);
1.6158 + return rc;
1.6159 +}
1.6160 +
1.6161 +/* If pendingTerms has data, free it. */
1.6162 +static int clearPendingTerms(fulltext_vtab *v){
1.6163 + if( v->nPendingData>=0 ){
1.6164 + fts3HashElem *e;
1.6165 + for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
1.6166 + dlcDelete(fts3HashData(e));
1.6167 + }
1.6168 + fts3HashClear(&v->pendingTerms);
1.6169 + v->nPendingData = -1;
1.6170 + }
1.6171 + return SQLITE_OK;
1.6172 +}
1.6173 +
1.6174 +/* If pendingTerms has data, flush it to a level-zero segment, and
1.6175 +** free it.
1.6176 +*/
1.6177 +static int flushPendingTerms(fulltext_vtab *v){
1.6178 + if( v->nPendingData>=0 ){
1.6179 + int rc = writeZeroSegment(v, &v->pendingTerms);
1.6180 + if( rc==SQLITE_OK ) clearPendingTerms(v);
1.6181 + return rc;
1.6182 + }
1.6183 + return SQLITE_OK;
1.6184 +}
1.6185 +
1.6186 +/* If pendingTerms is "too big", or docid is out of order, flush it.
1.6187 +** Regardless, be certain that pendingTerms is initialized for use.
1.6188 +*/
1.6189 +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
1.6190 + /* TODO(shess) Explore whether partially flushing the buffer on
1.6191 + ** forced-flush would provide better performance. I suspect that if
1.6192 + ** we ordered the doclists by size and flushed the largest until the
1.6193 + ** buffer was half empty, that would let the less frequent terms
1.6194 + ** generate longer doclists.
1.6195 + */
1.6196 + if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
1.6197 + int rc = flushPendingTerms(v);
1.6198 + if( rc!=SQLITE_OK ) return rc;
1.6199 + }
1.6200 + if( v->nPendingData<0 ){
1.6201 + fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
1.6202 + v->nPendingData = 0;
1.6203 + }
1.6204 + v->iPrevDocid = iDocid;
1.6205 + return SQLITE_OK;
1.6206 +}
1.6207 +
1.6208 +/* This function implements the xUpdate callback; it is the top-level entry
1.6209 + * point for inserting, deleting or updating a row in a full-text table. */
1.6210 +static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
1.6211 + sqlite_int64 *pRowid){
1.6212 + fulltext_vtab *v = (fulltext_vtab *) pVtab;
1.6213 + int rc;
1.6214 +
1.6215 + FTSTRACE(("FTS3 Update %p\n", pVtab));
1.6216 +
1.6217 + if( nArg<2 ){
1.6218 + rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
1.6219 + if( rc==SQLITE_OK ){
1.6220 + /* If we just deleted the last row in the table, clear out the
1.6221 + ** index data.
1.6222 + */
1.6223 + rc = content_exists(v);
1.6224 + if( rc==SQLITE_ROW ){
1.6225 + rc = SQLITE_OK;
1.6226 + }else if( rc==SQLITE_DONE ){
1.6227 + /* Clear the pending terms so we don't flush a useless level-0
1.6228 + ** segment when the transaction closes.
1.6229 + */
1.6230 + rc = clearPendingTerms(v);
1.6231 + if( rc==SQLITE_OK ){
1.6232 + rc = segdir_delete_all(v);
1.6233 + }
1.6234 + }
1.6235 + }
1.6236 + } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
1.6237 + /* An update:
1.6238 + * ppArg[0] = old rowid
1.6239 + * ppArg[1] = new rowid
1.6240 + * ppArg[2..2+v->nColumn-1] = values
1.6241 + * ppArg[2+v->nColumn] = value for magic column (we ignore this)
1.6242 + * ppArg[2+v->nColumn+1] = value for docid
1.6243 + */
1.6244 + sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
1.6245 + if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
1.6246 + sqlite3_value_int64(ppArg[1]) != rowid ){
1.6247 + rc = SQLITE_ERROR; /* we don't allow changing the rowid */
1.6248 + }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
1.6249 + sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
1.6250 + rc = SQLITE_ERROR; /* we don't allow changing the docid */
1.6251 + }else{
1.6252 + assert( nArg==2+v->nColumn+2);
1.6253 + rc = index_update(v, rowid, &ppArg[2]);
1.6254 + }
1.6255 + } else {
1.6256 + /* An insert:
1.6257 + * ppArg[1] = requested rowid
1.6258 + * ppArg[2..2+v->nColumn-1] = values
1.6259 + * ppArg[2+v->nColumn] = value for magic column (we ignore this)
1.6260 + * ppArg[2+v->nColumn+1] = value for docid
1.6261 + */
1.6262 + sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
1.6263 + assert( nArg==2+v->nColumn+2);
1.6264 + if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
1.6265 + SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
1.6266 + /* TODO(shess) Consider allowing this to work if the values are
1.6267 + ** identical. I'm inclined to discourage that usage, though,
1.6268 + ** given that both rowid and docid are special columns. Better
1.6269 + ** would be to define one or the other as the default winner,
1.6270 + ** but should it be fts3-centric (docid) or SQLite-centric
1.6271 + ** (rowid)?
1.6272 + */
1.6273 + rc = SQLITE_ERROR;
1.6274 + }else{
1.6275 + if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
1.6276 + pRequestDocid = ppArg[1];
1.6277 + }
1.6278 + rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
1.6279 + }
1.6280 + }
1.6281 +
1.6282 + return rc;
1.6283 +}
1.6284 +
1.6285 +static int fulltextSync(sqlite3_vtab *pVtab){
1.6286 + FTSTRACE(("FTS3 xSync()\n"));
1.6287 + return flushPendingTerms((fulltext_vtab *)pVtab);
1.6288 +}
1.6289 +
1.6290 +static int fulltextBegin(sqlite3_vtab *pVtab){
1.6291 + fulltext_vtab *v = (fulltext_vtab *) pVtab;
1.6292 + FTSTRACE(("FTS3 xBegin()\n"));
1.6293 +
1.6294 + /* Any buffered updates should have been cleared by the previous
1.6295 + ** transaction.
1.6296 + */
1.6297 + assert( v->nPendingData<0 );
1.6298 + return clearPendingTerms(v);
1.6299 +}
1.6300 +
1.6301 +static int fulltextCommit(sqlite3_vtab *pVtab){
1.6302 + fulltext_vtab *v = (fulltext_vtab *) pVtab;
1.6303 + FTSTRACE(("FTS3 xCommit()\n"));
1.6304 +
1.6305 + /* Buffered updates should have been cleared by fulltextSync(). */
1.6306 + assert( v->nPendingData<0 );
1.6307 + return clearPendingTerms(v);
1.6308 +}
1.6309 +
1.6310 +static int fulltextRollback(sqlite3_vtab *pVtab){
1.6311 + FTSTRACE(("FTS3 xRollback()\n"));
1.6312 + return clearPendingTerms((fulltext_vtab *)pVtab);
1.6313 +}
1.6314 +
1.6315 +/*
1.6316 +** Implementation of the snippet() function for FTS3
1.6317 +*/
1.6318 +static void snippetFunc(
1.6319 + sqlite3_context *pContext,
1.6320 + int argc,
1.6321 + sqlite3_value **argv
1.6322 +){
1.6323 + fulltext_cursor *pCursor;
1.6324 + if( argc<1 ) return;
1.6325 + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
1.6326 + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
1.6327 + sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
1.6328 + }else{
1.6329 + const char *zStart = "<b>";
1.6330 + const char *zEnd = "</b>";
1.6331 + const char *zEllipsis = "<b>...</b>";
1.6332 + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
1.6333 + if( argc>=2 ){
1.6334 + zStart = (const char*)sqlite3_value_text(argv[1]);
1.6335 + if( argc>=3 ){
1.6336 + zEnd = (const char*)sqlite3_value_text(argv[2]);
1.6337 + if( argc>=4 ){
1.6338 + zEllipsis = (const char*)sqlite3_value_text(argv[3]);
1.6339 + }
1.6340 + }
1.6341 + }
1.6342 + snippetAllOffsets(pCursor);
1.6343 + snippetText(pCursor, zStart, zEnd, zEllipsis);
1.6344 + sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
1.6345 + pCursor->snippet.nSnippet, SQLITE_STATIC);
1.6346 + }
1.6347 +}
1.6348 +
1.6349 +/*
1.6350 +** Implementation of the offsets() function for FTS3
1.6351 +*/
1.6352 +static void snippetOffsetsFunc(
1.6353 + sqlite3_context *pContext,
1.6354 + int argc,
1.6355 + sqlite3_value **argv
1.6356 +){
1.6357 + fulltext_cursor *pCursor;
1.6358 + if( argc<1 ) return;
1.6359 + if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
1.6360 + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
1.6361 + sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
1.6362 + }else{
1.6363 + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
1.6364 + snippetAllOffsets(pCursor);
1.6365 + snippetOffsetText(&pCursor->snippet);
1.6366 + sqlite3_result_text(pContext,
1.6367 + pCursor->snippet.zOffset, pCursor->snippet.nOffset,
1.6368 + SQLITE_STATIC);
1.6369 + }
1.6370 +}
1.6371 +
1.6372 +/* OptLeavesReader is nearly identical to LeavesReader, except that
1.6373 +** where LeavesReader is geared towards the merging of complete
1.6374 +** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
1.6375 +** is geared towards implementation of the optimize() function, and
1.6376 +** can merge all segments simultaneously. This version may be
1.6377 +** somewhat less efficient than LeavesReader because it merges into an
1.6378 +** accumulator rather than doing an N-way merge, but since segment
1.6379 +** size grows exponentially (so segment count logrithmically) this is
1.6380 +** probably not an immediate problem.
1.6381 +*/
1.6382 +/* TODO(shess): Prove that assertion, or extend the merge code to
1.6383 +** merge tree fashion (like the prefix-searching code does).
1.6384 +*/
1.6385 +/* TODO(shess): OptLeavesReader and LeavesReader could probably be
1.6386 +** merged with little or no loss of performance for LeavesReader. The
1.6387 +** merged code would need to handle >MERGE_COUNT segments, and would
1.6388 +** also need to be able to optionally optimize away deletes.
1.6389 +*/
1.6390 +typedef struct OptLeavesReader {
1.6391 + /* Segment number, to order readers by age. */
1.6392 + int segment;
1.6393 + LeavesReader reader;
1.6394 +} OptLeavesReader;
1.6395 +
1.6396 +static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
1.6397 + return leavesReaderAtEnd(&pReader->reader);
1.6398 +}
1.6399 +static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
1.6400 + return leavesReaderTermBytes(&pReader->reader);
1.6401 +}
1.6402 +static const char *optLeavesReaderData(OptLeavesReader *pReader){
1.6403 + return leavesReaderData(&pReader->reader);
1.6404 +}
1.6405 +static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
1.6406 + return leavesReaderDataBytes(&pReader->reader);
1.6407 +}
1.6408 +static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
1.6409 + return leavesReaderTerm(&pReader->reader);
1.6410 +}
1.6411 +static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
1.6412 + return leavesReaderStep(v, &pReader->reader);
1.6413 +}
1.6414 +static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
1.6415 + return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
1.6416 +}
1.6417 +/* Order by term ascending, segment ascending (oldest to newest), with
1.6418 +** exhausted readers to the end.
1.6419 +*/
1.6420 +static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
1.6421 + int c = optLeavesReaderTermCmp(lr1, lr2);
1.6422 + if( c!=0 ) return c;
1.6423 + return lr1->segment-lr2->segment;
1.6424 +}
1.6425 +/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that
1.6426 +** pLr[1..nLr-1] is already sorted.
1.6427 +*/
1.6428 +static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
1.6429 + while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
1.6430 + OptLeavesReader tmp = pLr[0];
1.6431 + pLr[0] = pLr[1];
1.6432 + pLr[1] = tmp;
1.6433 + nLr--;
1.6434 + pLr++;
1.6435 + }
1.6436 +}
1.6437 +
1.6438 +/* optimize() helper function. Put the readers in order and iterate
1.6439 +** through them, merging doclists for matching terms into pWriter.
1.6440 +** Returns SQLITE_OK on success, or the SQLite error code which
1.6441 +** prevented success.
1.6442 +*/
1.6443 +static int optimizeInternal(fulltext_vtab *v,
1.6444 + OptLeavesReader *readers, int nReaders,
1.6445 + LeafWriter *pWriter){
1.6446 + int i, rc = SQLITE_OK;
1.6447 + DataBuffer doclist, merged, tmp;
1.6448 +
1.6449 + /* Order the readers. */
1.6450 + i = nReaders;
1.6451 + while( i-- > 0 ){
1.6452 + optLeavesReaderReorder(&readers[i], nReaders-i);
1.6453 + }
1.6454 +
1.6455 + dataBufferInit(&doclist, LEAF_MAX);
1.6456 + dataBufferInit(&merged, LEAF_MAX);
1.6457 +
1.6458 + /* Exhausted readers bubble to the end, so when the first reader is
1.6459 + ** at eof, all are at eof.
1.6460 + */
1.6461 + while( !optLeavesReaderAtEnd(&readers[0]) ){
1.6462 +
1.6463 + /* Figure out how many readers share the next term. */
1.6464 + for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
1.6465 + if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
1.6466 + }
1.6467 +
1.6468 + /* Special-case for no merge. */
1.6469 + if( i==1 ){
1.6470 + /* Trim deletions from the doclist. */
1.6471 + dataBufferReset(&merged);
1.6472 + docListTrim(DL_DEFAULT,
1.6473 + optLeavesReaderData(&readers[0]),
1.6474 + optLeavesReaderDataBytes(&readers[0]),
1.6475 + -1, DL_DEFAULT, &merged);
1.6476 + }else{
1.6477 + DLReader dlReaders[MERGE_COUNT];
1.6478 + int iReader, nReaders;
1.6479 +
1.6480 + /* Prime the pipeline with the first reader's doclist. After
1.6481 + ** one pass index 0 will reference the accumulated doclist.
1.6482 + */
1.6483 + dlrInit(&dlReaders[0], DL_DEFAULT,
1.6484 + optLeavesReaderData(&readers[0]),
1.6485 + optLeavesReaderDataBytes(&readers[0]));
1.6486 + iReader = 1;
1.6487 +
1.6488 + assert( iReader<i ); /* Must execute the loop at least once. */
1.6489 + while( iReader<i ){
1.6490 + /* Merge 16 inputs per pass. */
1.6491 + for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
1.6492 + iReader++, nReaders++ ){
1.6493 + dlrInit(&dlReaders[nReaders], DL_DEFAULT,
1.6494 + optLeavesReaderData(&readers[iReader]),
1.6495 + optLeavesReaderDataBytes(&readers[iReader]));
1.6496 + }
1.6497 +
1.6498 + /* Merge doclists and swap result into accumulator. */
1.6499 + dataBufferReset(&merged);
1.6500 + docListMerge(&merged, dlReaders, nReaders);
1.6501 + tmp = merged;
1.6502 + merged = doclist;
1.6503 + doclist = tmp;
1.6504 +
1.6505 + while( nReaders-- > 0 ){
1.6506 + dlrDestroy(&dlReaders[nReaders]);
1.6507 + }
1.6508 +
1.6509 + /* Accumulated doclist to reader 0 for next pass. */
1.6510 + dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
1.6511 + }
1.6512 +
1.6513 + /* Destroy reader that was left in the pipeline. */
1.6514 + dlrDestroy(&dlReaders[0]);
1.6515 +
1.6516 + /* Trim deletions from the doclist. */
1.6517 + dataBufferReset(&merged);
1.6518 + docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
1.6519 + -1, DL_DEFAULT, &merged);
1.6520 + }
1.6521 +
1.6522 + /* Only pass doclists with hits (skip if all hits deleted). */
1.6523 + if( merged.nData>0 ){
1.6524 + rc = leafWriterStep(v, pWriter,
1.6525 + optLeavesReaderTerm(&readers[0]),
1.6526 + optLeavesReaderTermBytes(&readers[0]),
1.6527 + merged.pData, merged.nData);
1.6528 + if( rc!=SQLITE_OK ) goto err;
1.6529 + }
1.6530 +
1.6531 + /* Step merged readers to next term and reorder. */
1.6532 + while( i-- > 0 ){
1.6533 + rc = optLeavesReaderStep(v, &readers[i]);
1.6534 + if( rc!=SQLITE_OK ) goto err;
1.6535 +
1.6536 + optLeavesReaderReorder(&readers[i], nReaders-i);
1.6537 + }
1.6538 + }
1.6539 +
1.6540 + err:
1.6541 + dataBufferDestroy(&doclist);
1.6542 + dataBufferDestroy(&merged);
1.6543 + return rc;
1.6544 +}
1.6545 +
1.6546 +/* Implement optimize() function for FTS3. optimize(t) merges all
1.6547 +** segments in the fts index into a single segment. 't' is the magic
1.6548 +** table-named column.
1.6549 +*/
1.6550 +static void optimizeFunc(sqlite3_context *pContext,
1.6551 + int argc, sqlite3_value **argv){
1.6552 + fulltext_cursor *pCursor;
1.6553 + if( argc>1 ){
1.6554 + sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
1.6555 + }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
1.6556 + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
1.6557 + sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
1.6558 + }else{
1.6559 + fulltext_vtab *v;
1.6560 + int i, rc, iMaxLevel;
1.6561 + OptLeavesReader *readers;
1.6562 + int nReaders;
1.6563 + LeafWriter writer;
1.6564 + sqlite3_stmt *s;
1.6565 +
1.6566 + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
1.6567 + v = cursor_vtab(pCursor);
1.6568 +
1.6569 + /* Flush any buffered updates before optimizing. */
1.6570 + rc = flushPendingTerms(v);
1.6571 + if( rc!=SQLITE_OK ) goto err;
1.6572 +
1.6573 + rc = segdir_count(v, &nReaders, &iMaxLevel);
1.6574 + if( rc!=SQLITE_OK ) goto err;
1.6575 + if( nReaders==0 || nReaders==1 ){
1.6576 + sqlite3_result_text(pContext, "Index already optimal", -1,
1.6577 + SQLITE_STATIC);
1.6578 + return;
1.6579 + }
1.6580 +
1.6581 + rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
1.6582 + if( rc!=SQLITE_OK ) goto err;
1.6583 +
1.6584 + readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
1.6585 + if( readers==NULL ) goto err;
1.6586 +
1.6587 + /* Note that there will already be a segment at this position
1.6588 + ** until we call segdir_delete() on iMaxLevel.
1.6589 + */
1.6590 + leafWriterInit(iMaxLevel, 0, &writer);
1.6591 +
1.6592 + i = 0;
1.6593 + while( (rc = sqlite3_step(s))==SQLITE_ROW ){
1.6594 + sqlite_int64 iStart = sqlite3_column_int64(s, 0);
1.6595 + sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
1.6596 + const char *pRootData = sqlite3_column_blob(s, 2);
1.6597 + int nRootData = sqlite3_column_bytes(s, 2);
1.6598 +
1.6599 + assert( i<nReaders );
1.6600 + rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
1.6601 + &readers[i].reader);
1.6602 + if( rc!=SQLITE_OK ) break;
1.6603 +
1.6604 + readers[i].segment = i;
1.6605 + i++;
1.6606 + }
1.6607 +
1.6608 + /* If we managed to succesfully read them all, optimize them. */
1.6609 + if( rc==SQLITE_DONE ){
1.6610 + assert( i==nReaders );
1.6611 + rc = optimizeInternal(v, readers, nReaders, &writer);
1.6612 + }
1.6613 +
1.6614 + while( i-- > 0 ){
1.6615 + leavesReaderDestroy(&readers[i].reader);
1.6616 + }
1.6617 + sqlite3_free(readers);
1.6618 +
1.6619 + /* If we've successfully gotten to here, delete the old segments
1.6620 + ** and flush the interior structure of the new segment.
1.6621 + */
1.6622 + if( rc==SQLITE_OK ){
1.6623 + for( i=0; i<=iMaxLevel; i++ ){
1.6624 + rc = segdir_delete(v, i);
1.6625 + if( rc!=SQLITE_OK ) break;
1.6626 + }
1.6627 +
1.6628 + if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
1.6629 + }
1.6630 +
1.6631 + leafWriterDestroy(&writer);
1.6632 +
1.6633 + if( rc!=SQLITE_OK ) goto err;
1.6634 +
1.6635 + sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
1.6636 + return;
1.6637 +
1.6638 + /* TODO(shess): Error-handling needs to be improved along the
1.6639 + ** lines of the dump_ functions.
1.6640 + */
1.6641 + err:
1.6642 + {
1.6643 + char buf[512];
1.6644 + sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
1.6645 + sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
1.6646 + sqlite3_result_error(pContext, buf, -1);
1.6647 + }
1.6648 + }
1.6649 +}
1.6650 +
1.6651 +#ifdef SQLITE_TEST
1.6652 +/* Generate an error of the form "<prefix>: <msg>". If msg is NULL,
1.6653 +** pull the error from the context's db handle.
1.6654 +*/
1.6655 +static void generateError(sqlite3_context *pContext,
1.6656 + const char *prefix, const char *msg){
1.6657 + char buf[512];
1.6658 + if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
1.6659 + sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
1.6660 + sqlite3_result_error(pContext, buf, -1);
1.6661 +}
1.6662 +
1.6663 +/* Helper function to collect the set of terms in the segment into
1.6664 +** pTerms. The segment is defined by the leaf nodes between
1.6665 +** iStartBlockid and iEndBlockid, inclusive, or by the contents of
1.6666 +** pRootData if iStartBlockid is 0 (in which case the entire segment
1.6667 +** fit in a leaf).
1.6668 +*/
1.6669 +static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
1.6670 + fts3Hash *pTerms){
1.6671 + const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
1.6672 + const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
1.6673 + const char *pRootData = sqlite3_column_blob(s, 2);
1.6674 + const int nRootData = sqlite3_column_bytes(s, 2);
1.6675 + LeavesReader reader;
1.6676 + int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
1.6677 + pRootData, nRootData, &reader);
1.6678 + if( rc!=SQLITE_OK ) return rc;
1.6679 +
1.6680 + while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
1.6681 + const char *pTerm = leavesReaderTerm(&reader);
1.6682 + const int nTerm = leavesReaderTermBytes(&reader);
1.6683 + void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm);
1.6684 + void *newValue = (void *)((char *)oldValue+1);
1.6685 +
1.6686 + /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c,
1.6687 + ** the data value passed is returned in case of malloc failure.
1.6688 + */
1.6689 + if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){
1.6690 + rc = SQLITE_NOMEM;
1.6691 + }else{
1.6692 + rc = leavesReaderStep(v, &reader);
1.6693 + }
1.6694 + }
1.6695 +
1.6696 + leavesReaderDestroy(&reader);
1.6697 + return rc;
1.6698 +}
1.6699 +
1.6700 +/* Helper function to build the result string for dump_terms(). */
1.6701 +static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){
1.6702 + int iTerm, nTerms, nResultBytes, iByte;
1.6703 + char *result;
1.6704 + TermData *pData;
1.6705 + fts3HashElem *e;
1.6706 +
1.6707 + /* Iterate pTerms to generate an array of terms in pData for
1.6708 + ** sorting.
1.6709 + */
1.6710 + nTerms = fts3HashCount(pTerms);
1.6711 + assert( nTerms>0 );
1.6712 + pData = sqlite3_malloc(nTerms*sizeof(TermData));
1.6713 + if( pData==NULL ) return SQLITE_NOMEM;
1.6714 +
1.6715 + nResultBytes = 0;
1.6716 + for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){
1.6717 + nResultBytes += fts3HashKeysize(e)+1; /* Term plus trailing space */
1.6718 + assert( iTerm<nTerms );
1.6719 + pData[iTerm].pTerm = fts3HashKey(e);
1.6720 + pData[iTerm].nTerm = fts3HashKeysize(e);
1.6721 + pData[iTerm].pCollector = fts3HashData(e); /* unused */
1.6722 + }
1.6723 + assert( iTerm==nTerms );
1.6724 +
1.6725 + assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */
1.6726 + result = sqlite3_malloc(nResultBytes);
1.6727 + if( result==NULL ){
1.6728 + sqlite3_free(pData);
1.6729 + return SQLITE_NOMEM;
1.6730 + }
1.6731 +
1.6732 + if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
1.6733 +
1.6734 + /* Read the terms in order to build the result. */
1.6735 + iByte = 0;
1.6736 + for(iTerm=0; iTerm<nTerms; ++iTerm){
1.6737 + memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
1.6738 + iByte += pData[iTerm].nTerm;
1.6739 + result[iByte++] = ' ';
1.6740 + }
1.6741 + assert( iByte==nResultBytes );
1.6742 + assert( result[nResultBytes-1]==' ' );
1.6743 + result[nResultBytes-1] = '\0';
1.6744 +
1.6745 + /* Passes away ownership of result. */
1.6746 + sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
1.6747 + sqlite3_free(pData);
1.6748 + return SQLITE_OK;
1.6749 +}
1.6750 +
1.6751 +/* Implements dump_terms() for use in inspecting the fts3 index from
1.6752 +** tests. TEXT result containing the ordered list of terms joined by
1.6753 +** spaces. dump_terms(t, level, idx) dumps the terms for the segment
1.6754 +** specified by level, idx (in %_segdir), while dump_terms(t) dumps
1.6755 +** all terms in the index. In both cases t is the fts table's magic
1.6756 +** table-named column.
1.6757 +*/
1.6758 +static void dumpTermsFunc(
1.6759 + sqlite3_context *pContext,
1.6760 + int argc, sqlite3_value **argv
1.6761 +){
1.6762 + fulltext_cursor *pCursor;
1.6763 + if( argc!=3 && argc!=1 ){
1.6764 + generateError(pContext, "dump_terms", "incorrect arguments");
1.6765 + }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
1.6766 + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
1.6767 + generateError(pContext, "dump_terms", "illegal first argument");
1.6768 + }else{
1.6769 + fulltext_vtab *v;
1.6770 + fts3Hash terms;
1.6771 + sqlite3_stmt *s = NULL;
1.6772 + int rc;
1.6773 +
1.6774 + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
1.6775 + v = cursor_vtab(pCursor);
1.6776 +
1.6777 + /* If passed only the cursor column, get all segments. Otherwise
1.6778 + ** get the segment described by the following two arguments.
1.6779 + */
1.6780 + if( argc==1 ){
1.6781 + rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
1.6782 + }else{
1.6783 + rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
1.6784 + if( rc==SQLITE_OK ){
1.6785 + rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
1.6786 + if( rc==SQLITE_OK ){
1.6787 + rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
1.6788 + }
1.6789 + }
1.6790 + }
1.6791 +
1.6792 + if( rc!=SQLITE_OK ){
1.6793 + generateError(pContext, "dump_terms", NULL);
1.6794 + return;
1.6795 + }
1.6796 +
1.6797 + /* Collect the terms for each segment. */
1.6798 + sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1);
1.6799 + while( (rc = sqlite3_step(s))==SQLITE_ROW ){
1.6800 + rc = collectSegmentTerms(v, s, &terms);
1.6801 + if( rc!=SQLITE_OK ) break;
1.6802 + }
1.6803 +
1.6804 + if( rc!=SQLITE_DONE ){
1.6805 + sqlite3_reset(s);
1.6806 + generateError(pContext, "dump_terms", NULL);
1.6807 + }else{
1.6808 + const int nTerms = fts3HashCount(&terms);
1.6809 + if( nTerms>0 ){
1.6810 + rc = generateTermsResult(pContext, &terms);
1.6811 + if( rc==SQLITE_NOMEM ){
1.6812 + generateError(pContext, "dump_terms", "out of memory");
1.6813 + }else{
1.6814 + assert( rc==SQLITE_OK );
1.6815 + }
1.6816 + }else if( argc==3 ){
1.6817 + /* The specific segment asked for could not be found. */
1.6818 + generateError(pContext, "dump_terms", "segment not found");
1.6819 + }else{
1.6820 + /* No segments found. */
1.6821 + /* TODO(shess): It should be impossible to reach this. This
1.6822 + ** case can only happen for an empty table, in which case
1.6823 + ** SQLite has no rows to call this function on.
1.6824 + */
1.6825 + sqlite3_result_null(pContext);
1.6826 + }
1.6827 + }
1.6828 + sqlite3Fts3HashClear(&terms);
1.6829 + }
1.6830 +}
1.6831 +
1.6832 +/* Expand the DL_DEFAULT doclist in pData into a text result in
1.6833 +** pContext.
1.6834 +*/
1.6835 +static void createDoclistResult(sqlite3_context *pContext,
1.6836 + const char *pData, int nData){
1.6837 + DataBuffer dump;
1.6838 + DLReader dlReader;
1.6839 +
1.6840 + assert( pData!=NULL && nData>0 );
1.6841 +
1.6842 + dataBufferInit(&dump, 0);
1.6843 + dlrInit(&dlReader, DL_DEFAULT, pData, nData);
1.6844 + for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
1.6845 + char buf[256];
1.6846 + PLReader plReader;
1.6847 +
1.6848 + plrInit(&plReader, &dlReader);
1.6849 + if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
1.6850 + sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
1.6851 + dataBufferAppend(&dump, buf, strlen(buf));
1.6852 + }else{
1.6853 + int iColumn = plrColumn(&plReader);
1.6854 +
1.6855 + sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
1.6856 + dlrDocid(&dlReader), iColumn);
1.6857 + dataBufferAppend(&dump, buf, strlen(buf));
1.6858 +
1.6859 + for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
1.6860 + if( plrColumn(&plReader)!=iColumn ){
1.6861 + iColumn = plrColumn(&plReader);
1.6862 + sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
1.6863 + assert( dump.nData>0 );
1.6864 + dump.nData--; /* Overwrite trailing space. */
1.6865 + assert( dump.pData[dump.nData]==' ');
1.6866 + dataBufferAppend(&dump, buf, strlen(buf));
1.6867 + }
1.6868 + if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
1.6869 + sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
1.6870 + plrPosition(&plReader),
1.6871 + plrStartOffset(&plReader), plrEndOffset(&plReader));
1.6872 + }else if( DL_DEFAULT==DL_POSITIONS ){
1.6873 + sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
1.6874 + }else{
1.6875 + assert( NULL=="Unhandled DL_DEFAULT value");
1.6876 + }
1.6877 + dataBufferAppend(&dump, buf, strlen(buf));
1.6878 + }
1.6879 + plrDestroy(&plReader);
1.6880 +
1.6881 + assert( dump.nData>0 );
1.6882 + dump.nData--; /* Overwrite trailing space. */
1.6883 + assert( dump.pData[dump.nData]==' ');
1.6884 + dataBufferAppend(&dump, "]] ", 3);
1.6885 + }
1.6886 + }
1.6887 + dlrDestroy(&dlReader);
1.6888 +
1.6889 + assert( dump.nData>0 );
1.6890 + dump.nData--; /* Overwrite trailing space. */
1.6891 + assert( dump.pData[dump.nData]==' ');
1.6892 + dump.pData[dump.nData] = '\0';
1.6893 + assert( dump.nData>0 );
1.6894 +
1.6895 + /* Passes ownership of dump's buffer to pContext. */
1.6896 + sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
1.6897 + dump.pData = NULL;
1.6898 + dump.nData = dump.nCapacity = 0;
1.6899 +}
1.6900 +
1.6901 +/* Implements dump_doclist() for use in inspecting the fts3 index from
1.6902 +** tests. TEXT result containing a string representation of the
1.6903 +** doclist for the indicated term. dump_doclist(t, term, level, idx)
1.6904 +** dumps the doclist for term from the segment specified by level, idx
1.6905 +** (in %_segdir), while dump_doclist(t, term) dumps the logical
1.6906 +** doclist for the term across all segments. The per-segment doclist
1.6907 +** can contain deletions, while the full-index doclist will not
1.6908 +** (deletions are omitted).
1.6909 +**
1.6910 +** Result formats differ with the setting of DL_DEFAULTS. Examples:
1.6911 +**
1.6912 +** DL_DOCIDS: [1] [3] [7]
1.6913 +** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
1.6914 +** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
1.6915 +**
1.6916 +** In each case the number after the outer '[' is the docid. In the
1.6917 +** latter two cases, the number before the inner '[' is the column
1.6918 +** associated with the values within. For DL_POSITIONS the numbers
1.6919 +** within are the positions, for DL_POSITIONS_OFFSETS they are the
1.6920 +** position, the start offset, and the end offset.
1.6921 +*/
1.6922 +static void dumpDoclistFunc(
1.6923 + sqlite3_context *pContext,
1.6924 + int argc, sqlite3_value **argv
1.6925 +){
1.6926 + fulltext_cursor *pCursor;
1.6927 + if( argc!=2 && argc!=4 ){
1.6928 + generateError(pContext, "dump_doclist", "incorrect arguments");
1.6929 + }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
1.6930 + sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
1.6931 + generateError(pContext, "dump_doclist", "illegal first argument");
1.6932 + }else if( sqlite3_value_text(argv[1])==NULL ||
1.6933 + sqlite3_value_text(argv[1])[0]=='\0' ){
1.6934 + generateError(pContext, "dump_doclist", "empty second argument");
1.6935 + }else{
1.6936 + const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
1.6937 + const int nTerm = strlen(pTerm);
1.6938 + fulltext_vtab *v;
1.6939 + int rc;
1.6940 + DataBuffer doclist;
1.6941 +
1.6942 + memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
1.6943 + v = cursor_vtab(pCursor);
1.6944 +
1.6945 + dataBufferInit(&doclist, 0);
1.6946 +
1.6947 + /* termSelect() yields the same logical doclist that queries are
1.6948 + ** run against.
1.6949 + */
1.6950 + if( argc==2 ){
1.6951 + rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
1.6952 + }else{
1.6953 + sqlite3_stmt *s = NULL;
1.6954 +
1.6955 + /* Get our specific segment's information. */
1.6956 + rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
1.6957 + if( rc==SQLITE_OK ){
1.6958 + rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
1.6959 + if( rc==SQLITE_OK ){
1.6960 + rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
1.6961 + }
1.6962 + }
1.6963 +
1.6964 + if( rc==SQLITE_OK ){
1.6965 + rc = sqlite3_step(s);
1.6966 +
1.6967 + if( rc==SQLITE_DONE ){
1.6968 + dataBufferDestroy(&doclist);
1.6969 + generateError(pContext, "dump_doclist", "segment not found");
1.6970 + return;
1.6971 + }
1.6972 +
1.6973 + /* Found a segment, load it into doclist. */
1.6974 + if( rc==SQLITE_ROW ){
1.6975 + const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
1.6976 + const char *pData = sqlite3_column_blob(s, 2);
1.6977 + const int nData = sqlite3_column_bytes(s, 2);
1.6978 +
1.6979 + /* loadSegment() is used by termSelect() to load each
1.6980 + ** segment's data.
1.6981 + */
1.6982 + rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
1.6983 + &doclist);
1.6984 + if( rc==SQLITE_OK ){
1.6985 + rc = sqlite3_step(s);
1.6986 +
1.6987 + /* Should not have more than one matching segment. */
1.6988 + if( rc!=SQLITE_DONE ){
1.6989 + sqlite3_reset(s);
1.6990 + dataBufferDestroy(&doclist);
1.6991 + generateError(pContext, "dump_doclist", "invalid segdir");
1.6992 + return;
1.6993 + }
1.6994 + rc = SQLITE_OK;
1.6995 + }
1.6996 + }
1.6997 + }
1.6998 +
1.6999 + sqlite3_reset(s);
1.7000 + }
1.7001 +
1.7002 + if( rc==SQLITE_OK ){
1.7003 + if( doclist.nData>0 ){
1.7004 + createDoclistResult(pContext, doclist.pData, doclist.nData);
1.7005 + }else{
1.7006 + /* TODO(shess): This can happen if the term is not present, or
1.7007 + ** if all instances of the term have been deleted and this is
1.7008 + ** an all-index dump. It may be interesting to distinguish
1.7009 + ** these cases.
1.7010 + */
1.7011 + sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
1.7012 + }
1.7013 + }else if( rc==SQLITE_NOMEM ){
1.7014 + /* Handle out-of-memory cases specially because if they are
1.7015 + ** generated in fts3 code they may not be reflected in the db
1.7016 + ** handle.
1.7017 + */
1.7018 + /* TODO(shess): Handle this more comprehensively.
1.7019 + ** sqlite3ErrStr() has what I need, but is internal.
1.7020 + */
1.7021 + generateError(pContext, "dump_doclist", "out of memory");
1.7022 + }else{
1.7023 + generateError(pContext, "dump_doclist", NULL);
1.7024 + }
1.7025 +
1.7026 + dataBufferDestroy(&doclist);
1.7027 + }
1.7028 +}
1.7029 +#endif
1.7030 +
1.7031 +/*
1.7032 +** This routine implements the xFindFunction method for the FTS3
1.7033 +** virtual table.
1.7034 +*/
1.7035 +static int fulltextFindFunction(
1.7036 + sqlite3_vtab *pVtab,
1.7037 + int nArg,
1.7038 + const char *zName,
1.7039 + void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
1.7040 + void **ppArg
1.7041 +){
1.7042 + if( strcmp(zName,"snippet")==0 ){
1.7043 + *pxFunc = snippetFunc;
1.7044 + return 1;
1.7045 + }else if( strcmp(zName,"offsets")==0 ){
1.7046 + *pxFunc = snippetOffsetsFunc;
1.7047 + return 1;
1.7048 + }else if( strcmp(zName,"optimize")==0 ){
1.7049 + *pxFunc = optimizeFunc;
1.7050 + return 1;
1.7051 +#ifdef SQLITE_TEST
1.7052 + /* NOTE(shess): These functions are present only for testing
1.7053 + ** purposes. No particular effort is made to optimize their
1.7054 + ** execution or how they build their results.
1.7055 + */
1.7056 + }else if( strcmp(zName,"dump_terms")==0 ){
1.7057 + /* fprintf(stderr, "Found dump_terms\n"); */
1.7058 + *pxFunc = dumpTermsFunc;
1.7059 + return 1;
1.7060 + }else if( strcmp(zName,"dump_doclist")==0 ){
1.7061 + /* fprintf(stderr, "Found dump_doclist\n"); */
1.7062 + *pxFunc = dumpDoclistFunc;
1.7063 + return 1;
1.7064 +#endif
1.7065 + }
1.7066 + return 0;
1.7067 +}
1.7068 +
1.7069 +/*
1.7070 +** Rename an fts3 table.
1.7071 +*/
1.7072 +static int fulltextRename(
1.7073 + sqlite3_vtab *pVtab,
1.7074 + const char *zName
1.7075 +){
1.7076 + fulltext_vtab *p = (fulltext_vtab *)pVtab;
1.7077 + int rc = SQLITE_NOMEM;
1.7078 + char *zSql = sqlite3_mprintf(
1.7079 + "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';"
1.7080 + "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
1.7081 + "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';"
1.7082 + , p->zDb, p->zName, zName
1.7083 + , p->zDb, p->zName, zName
1.7084 + , p->zDb, p->zName, zName
1.7085 + );
1.7086 + if( zSql ){
1.7087 + rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
1.7088 + sqlite3_free(zSql);
1.7089 + }
1.7090 + return rc;
1.7091 +}
1.7092 +
1.7093 +static const sqlite3_module fts3Module = {
1.7094 + /* iVersion */ 0,
1.7095 + /* xCreate */ fulltextCreate,
1.7096 + /* xConnect */ fulltextConnect,
1.7097 + /* xBestIndex */ fulltextBestIndex,
1.7098 + /* xDisconnect */ fulltextDisconnect,
1.7099 + /* xDestroy */ fulltextDestroy,
1.7100 + /* xOpen */ fulltextOpen,
1.7101 + /* xClose */ fulltextClose,
1.7102 + /* xFilter */ fulltextFilter,
1.7103 + /* xNext */ fulltextNext,
1.7104 + /* xEof */ fulltextEof,
1.7105 + /* xColumn */ fulltextColumn,
1.7106 + /* xRowid */ fulltextRowid,
1.7107 + /* xUpdate */ fulltextUpdate,
1.7108 + /* xBegin */ fulltextBegin,
1.7109 + /* xSync */ fulltextSync,
1.7110 + /* xCommit */ fulltextCommit,
1.7111 + /* xRollback */ fulltextRollback,
1.7112 + /* xFindFunction */ fulltextFindFunction,
1.7113 + /* xRename */ fulltextRename,
1.7114 +};
1.7115 +
1.7116 +static void hashDestroy(void *p){
1.7117 + fts3Hash *pHash = (fts3Hash *)p;
1.7118 + sqlite3Fts3HashClear(pHash);
1.7119 + sqlite3_free(pHash);
1.7120 +}
1.7121 +
1.7122 +/*
1.7123 +** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
1.7124 +** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
1.7125 +** two forward declarations are for functions declared in these files
1.7126 +** used to retrieve the respective implementations.
1.7127 +**
1.7128 +** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
1.7129 +** to by the argument to point a the "simple" tokenizer implementation.
1.7130 +** Function ...PorterTokenizerModule() sets *pModule to point to the
1.7131 +** porter tokenizer/stemmer implementation.
1.7132 +*/
1.7133 +void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
1.7134 +void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
1.7135 +void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
1.7136 +
1.7137 +int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
1.7138 +
1.7139 +/*
1.7140 +** Initialise the fts3 extension. If this extension is built as part
1.7141 +** of the sqlite library, then this function is called directly by
1.7142 +** SQLite. If fts3 is built as a dynamically loadable extension, this
1.7143 +** function is called by the sqlite3_extension_init() entry point.
1.7144 +*/
1.7145 +int sqlite3Fts3Init(sqlite3 *db){
1.7146 + int rc = SQLITE_OK;
1.7147 + fts3Hash *pHash = 0;
1.7148 + const sqlite3_tokenizer_module *pSimple = 0;
1.7149 + const sqlite3_tokenizer_module *pPorter = 0;
1.7150 + const sqlite3_tokenizer_module *pIcu = 0;
1.7151 +
1.7152 + sqlite3Fts3SimpleTokenizerModule(&pSimple);
1.7153 + sqlite3Fts3PorterTokenizerModule(&pPorter);
1.7154 +#ifdef SQLITE_ENABLE_ICU
1.7155 + sqlite3Fts3IcuTokenizerModule(&pIcu);
1.7156 +#endif
1.7157 +
1.7158 + /* Allocate and initialise the hash-table used to store tokenizers. */
1.7159 + pHash = sqlite3_malloc(sizeof(fts3Hash));
1.7160 + if( !pHash ){
1.7161 + rc = SQLITE_NOMEM;
1.7162 + }else{
1.7163 + sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
1.7164 + }
1.7165 +
1.7166 + /* Load the built-in tokenizers into the hash table */
1.7167 + if( rc==SQLITE_OK ){
1.7168 + if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
1.7169 + || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
1.7170 + || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
1.7171 + ){
1.7172 + rc = SQLITE_NOMEM;
1.7173 + }
1.7174 + }
1.7175 +
1.7176 + /* Create the virtual table wrapper around the hash-table and overload
1.7177 + ** the two scalar functions. If this is successful, register the
1.7178 + ** module with sqlite.
1.7179 + */
1.7180 + if( SQLITE_OK==rc
1.7181 + && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
1.7182 + && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
1.7183 + && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
1.7184 + && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
1.7185 +#ifdef SQLITE_TEST
1.7186 + && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
1.7187 + && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
1.7188 +#endif
1.7189 + ){
1.7190 + return sqlite3_create_module_v2(
1.7191 + db, "fts3", &fts3Module, (void *)pHash, hashDestroy
1.7192 + );
1.7193 + }
1.7194 +
1.7195 + /* An error has occured. Delete the hash table and return the error code. */
1.7196 + assert( rc!=SQLITE_OK );
1.7197 + if( pHash ){
1.7198 + sqlite3Fts3HashClear(pHash);
1.7199 + sqlite3_free(pHash);
1.7200 + }
1.7201 + return rc;
1.7202 +}
1.7203 +
1.7204 +#if !SQLITE_CORE
1.7205 +int sqlite3_extension_init(
1.7206 + sqlite3 *db,
1.7207 + char **pzErrMsg,
1.7208 + const sqlite3_api_routines *pApi
1.7209 +){
1.7210 + SQLITE_EXTENSION_INIT2(pApi)
1.7211 + return sqlite3Fts3Init(db);
1.7212 +}
1.7213 +#endif
1.7214 +
1.7215 +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */