os/persistentdata/persistentstorage/sqlite3api/SQLite/fts3.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sqlite3api/SQLite/fts3.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,7212 @@
     1.4 +/*
     1.5 +** 2006 Oct 10
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +******************************************************************************
    1.15 +**
    1.16 +** This is an SQLite module implementing full-text search.
    1.17 +*/
    1.18 +
    1.19 +/*
    1.20 +** The code in this file is only compiled if:
    1.21 +**
    1.22 +**     * The FTS3 module is being built as an extension
    1.23 +**       (in which case SQLITE_CORE is not defined), or
    1.24 +**
    1.25 +**     * The FTS3 module is being built into the core of
    1.26 +**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
    1.27 +*/
    1.28 +
    1.29 +/* TODO(shess) Consider exporting this comment to an HTML file or the
    1.30 +** wiki.
    1.31 +*/
    1.32 +/* The full-text index is stored in a series of b+tree (-like)
    1.33 +** structures called segments which map terms to doclists.  The
    1.34 +** structures are like b+trees in layout, but are constructed from the
    1.35 +** bottom up in optimal fashion and are not updatable.  Since trees
    1.36 +** are built from the bottom up, things will be described from the
    1.37 +** bottom up.
    1.38 +**
    1.39 +**
    1.40 +**** Varints ****
    1.41 +** The basic unit of encoding is a variable-length integer called a
    1.42 +** varint.  We encode variable-length integers in little-endian order
    1.43 +** using seven bits * per byte as follows:
    1.44 +**
    1.45 +** KEY:
    1.46 +**         A = 0xxxxxxx    7 bits of data and one flag bit
    1.47 +**         B = 1xxxxxxx    7 bits of data and one flag bit
    1.48 +**
    1.49 +**  7 bits - A
    1.50 +** 14 bits - BA
    1.51 +** 21 bits - BBA
    1.52 +** and so on.
    1.53 +**
    1.54 +** This is identical to how sqlite encodes varints (see util.c).
    1.55 +**
    1.56 +**
    1.57 +**** Document lists ****
    1.58 +** A doclist (document list) holds a docid-sorted list of hits for a
    1.59 +** given term.  Doclists hold docids, and can optionally associate
    1.60 +** token positions and offsets with docids.
    1.61 +**
    1.62 +** A DL_POSITIONS_OFFSETS doclist is stored like this:
    1.63 +**
    1.64 +** array {
    1.65 +**   varint docid;
    1.66 +**   array {                (position list for column 0)
    1.67 +**     varint position;     (delta from previous position plus POS_BASE)
    1.68 +**     varint startOffset;  (delta from previous startOffset)
    1.69 +**     varint endOffset;    (delta from startOffset)
    1.70 +**   }
    1.71 +**   array {
    1.72 +**     varint POS_COLUMN;   (marks start of position list for new column)
    1.73 +**     varint column;       (index of new column)
    1.74 +**     array {
    1.75 +**       varint position;   (delta from previous position plus POS_BASE)
    1.76 +**       varint startOffset;(delta from previous startOffset)
    1.77 +**       varint endOffset;  (delta from startOffset)
    1.78 +**     }
    1.79 +**   }
    1.80 +**   varint POS_END;        (marks end of positions for this document.
    1.81 +** }
    1.82 +**
    1.83 +** Here, array { X } means zero or more occurrences of X, adjacent in
    1.84 +** memory.  A "position" is an index of a token in the token stream
    1.85 +** generated by the tokenizer, while an "offset" is a byte offset,
    1.86 +** both based at 0.  Note that POS_END and POS_COLUMN occur in the
    1.87 +** same logical place as the position element, and act as sentinals
    1.88 +** ending a position list array.
    1.89 +**
    1.90 +** A DL_POSITIONS doclist omits the startOffset and endOffset
    1.91 +** information.  A DL_DOCIDS doclist omits both the position and
    1.92 +** offset information, becoming an array of varint-encoded docids.
    1.93 +**
    1.94 +** On-disk data is stored as type DL_DEFAULT, so we don't serialize
    1.95 +** the type.  Due to how deletion is implemented in the segmentation
    1.96 +** system, on-disk doclists MUST store at least positions.
    1.97 +**
    1.98 +**
    1.99 +**** Segment leaf nodes ****
   1.100 +** Segment leaf nodes store terms and doclists, ordered by term.  Leaf
   1.101 +** nodes are written using LeafWriter, and read using LeafReader (to
   1.102 +** iterate through a single leaf node's data) and LeavesReader (to
   1.103 +** iterate through a segment's entire leaf layer).  Leaf nodes have
   1.104 +** the format:
   1.105 +**
   1.106 +** varint iHeight;             (height from leaf level, always 0)
   1.107 +** varint nTerm;               (length of first term)
   1.108 +** char pTerm[nTerm];          (content of first term)
   1.109 +** varint nDoclist;            (length of term's associated doclist)
   1.110 +** char pDoclist[nDoclist];    (content of doclist)
   1.111 +** array {
   1.112 +**                             (further terms are delta-encoded)
   1.113 +**   varint nPrefix;           (length of prefix shared with previous term)
   1.114 +**   varint nSuffix;           (length of unshared suffix)
   1.115 +**   char pTermSuffix[nSuffix];(unshared suffix of next term)
   1.116 +**   varint nDoclist;          (length of term's associated doclist)
   1.117 +**   char pDoclist[nDoclist];  (content of doclist)
   1.118 +** }
   1.119 +**
   1.120 +** Here, array { X } means zero or more occurrences of X, adjacent in
   1.121 +** memory.
   1.122 +**
   1.123 +** Leaf nodes are broken into blocks which are stored contiguously in
   1.124 +** the %_segments table in sorted order.  This means that when the end
   1.125 +** of a node is reached, the next term is in the node with the next
   1.126 +** greater node id.
   1.127 +**
   1.128 +** New data is spilled to a new leaf node when the current node
   1.129 +** exceeds LEAF_MAX bytes (default 2048).  New data which itself is
   1.130 +** larger than STANDALONE_MIN (default 1024) is placed in a standalone
   1.131 +** node (a leaf node with a single term and doclist).  The goal of
   1.132 +** these settings is to pack together groups of small doclists while
   1.133 +** making it efficient to directly access large doclists.  The
   1.134 +** assumption is that large doclists represent terms which are more
   1.135 +** likely to be query targets.
   1.136 +**
   1.137 +** TODO(shess) It may be useful for blocking decisions to be more
   1.138 +** dynamic.  For instance, it may make more sense to have a 2.5k leaf
   1.139 +** node rather than splitting into 2k and .5k nodes.  My intuition is
   1.140 +** that this might extend through 2x or 4x the pagesize.
   1.141 +**
   1.142 +**
   1.143 +**** Segment interior nodes ****
   1.144 +** Segment interior nodes store blockids for subtree nodes and terms
   1.145 +** to describe what data is stored by the each subtree.  Interior
   1.146 +** nodes are written using InteriorWriter, and read using
   1.147 +** InteriorReader.  InteriorWriters are created as needed when
   1.148 +** SegmentWriter creates new leaf nodes, or when an interior node
   1.149 +** itself grows too big and must be split.  The format of interior
   1.150 +** nodes:
   1.151 +**
   1.152 +** varint iHeight;           (height from leaf level, always >0)
   1.153 +** varint iBlockid;          (block id of node's leftmost subtree)
   1.154 +** optional {
   1.155 +**   varint nTerm;           (length of first term)
   1.156 +**   char pTerm[nTerm];      (content of first term)
   1.157 +**   array {
   1.158 +**                                (further terms are delta-encoded)
   1.159 +**     varint nPrefix;            (length of shared prefix with previous term)
   1.160 +**     varint nSuffix;            (length of unshared suffix)
   1.161 +**     char pTermSuffix[nSuffix]; (unshared suffix of next term)
   1.162 +**   }
   1.163 +** }
   1.164 +**
   1.165 +** Here, optional { X } means an optional element, while array { X }
   1.166 +** means zero or more occurrences of X, adjacent in memory.
   1.167 +**
   1.168 +** An interior node encodes n terms separating n+1 subtrees.  The
   1.169 +** subtree blocks are contiguous, so only the first subtree's blockid
   1.170 +** is encoded.  The subtree at iBlockid will contain all terms less
   1.171 +** than the first term encoded (or all terms if no term is encoded).
   1.172 +** Otherwise, for terms greater than or equal to pTerm[i] but less
   1.173 +** than pTerm[i+1], the subtree for that term will be rooted at
   1.174 +** iBlockid+i.  Interior nodes only store enough term data to
   1.175 +** distinguish adjacent children (if the rightmost term of the left
   1.176 +** child is "something", and the leftmost term of the right child is
   1.177 +** "wicked", only "w" is stored).
   1.178 +**
   1.179 +** New data is spilled to a new interior node at the same height when
   1.180 +** the current node exceeds INTERIOR_MAX bytes (default 2048).
   1.181 +** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
   1.182 +** interior nodes and making the tree too skinny.  The interior nodes
   1.183 +** at a given height are naturally tracked by interior nodes at
   1.184 +** height+1, and so on.
   1.185 +**
   1.186 +**
   1.187 +**** Segment directory ****
   1.188 +** The segment directory in table %_segdir stores meta-information for
   1.189 +** merging and deleting segments, and also the root node of the
   1.190 +** segment's tree.
   1.191 +**
   1.192 +** The root node is the top node of the segment's tree after encoding
   1.193 +** the entire segment, restricted to ROOT_MAX bytes (default 1024).
   1.194 +** This could be either a leaf node or an interior node.  If the top
   1.195 +** node requires more than ROOT_MAX bytes, it is flushed to %_segments
   1.196 +** and a new root interior node is generated (which should always fit
   1.197 +** within ROOT_MAX because it only needs space for 2 varints, the
   1.198 +** height and the blockid of the previous root).
   1.199 +**
   1.200 +** The meta-information in the segment directory is:
   1.201 +**   level               - segment level (see below)
   1.202 +**   idx                 - index within level
   1.203 +**                       - (level,idx uniquely identify a segment)
   1.204 +**   start_block         - first leaf node
   1.205 +**   leaves_end_block    - last leaf node
   1.206 +**   end_block           - last block (including interior nodes)
   1.207 +**   root                - contents of root node
   1.208 +**
   1.209 +** If the root node is a leaf node, then start_block,
   1.210 +** leaves_end_block, and end_block are all 0.
   1.211 +**
   1.212 +**
   1.213 +**** Segment merging ****
   1.214 +** To amortize update costs, segments are groups into levels and
   1.215 +** merged in matches.  Each increase in level represents exponentially
   1.216 +** more documents.
   1.217 +**
   1.218 +** New documents (actually, document updates) are tokenized and
   1.219 +** written individually (using LeafWriter) to a level 0 segment, with
   1.220 +** incrementing idx.  When idx reaches MERGE_COUNT (default 16), all
   1.221 +** level 0 segments are merged into a single level 1 segment.  Level 1
   1.222 +** is populated like level 0, and eventually MERGE_COUNT level 1
   1.223 +** segments are merged to a single level 2 segment (representing
   1.224 +** MERGE_COUNT^2 updates), and so on.
   1.225 +**
   1.226 +** A segment merge traverses all segments at a given level in
   1.227 +** parallel, performing a straightforward sorted merge.  Since segment
   1.228 +** leaf nodes are written in to the %_segments table in order, this
   1.229 +** merge traverses the underlying sqlite disk structures efficiently.
   1.230 +** After the merge, all segment blocks from the merged level are
   1.231 +** deleted.
   1.232 +**
   1.233 +** MERGE_COUNT controls how often we merge segments.  16 seems to be
   1.234 +** somewhat of a sweet spot for insertion performance.  32 and 64 show
   1.235 +** very similar performance numbers to 16 on insertion, though they're
   1.236 +** a tiny bit slower (perhaps due to more overhead in merge-time
   1.237 +** sorting).  8 is about 20% slower than 16, 4 about 50% slower than
   1.238 +** 16, 2 about 66% slower than 16.
   1.239 +**
   1.240 +** At query time, high MERGE_COUNT increases the number of segments
   1.241 +** which need to be scanned and merged.  For instance, with 100k docs
   1.242 +** inserted:
   1.243 +**
   1.244 +**    MERGE_COUNT   segments
   1.245 +**       16           25
   1.246 +**        8           12
   1.247 +**        4           10
   1.248 +**        2            6
   1.249 +**
   1.250 +** This appears to have only a moderate impact on queries for very
   1.251 +** frequent terms (which are somewhat dominated by segment merge
   1.252 +** costs), and infrequent and non-existent terms still seem to be fast
   1.253 +** even with many segments.
   1.254 +**
   1.255 +** TODO(shess) That said, it would be nice to have a better query-side
   1.256 +** argument for MERGE_COUNT of 16.  Also, it is possible/likely that
   1.257 +** optimizations to things like doclist merging will swing the sweet
   1.258 +** spot around.
   1.259 +**
   1.260 +**
   1.261 +**
   1.262 +**** Handling of deletions and updates ****
   1.263 +** Since we're using a segmented structure, with no docid-oriented
   1.264 +** index into the term index, we clearly cannot simply update the term
   1.265 +** index when a document is deleted or updated.  For deletions, we
   1.266 +** write an empty doclist (varint(docid) varint(POS_END)), for updates
   1.267 +** we simply write the new doclist.  Segment merges overwrite older
   1.268 +** data for a particular docid with newer data, so deletes or updates
   1.269 +** will eventually overtake the earlier data and knock it out.  The
   1.270 +** query logic likewise merges doclists so that newer data knocks out
   1.271 +** older data.
   1.272 +**
   1.273 +** TODO(shess) Provide a VACUUM type operation to clear out all
   1.274 +** deletions and duplications.  This would basically be a forced merge
   1.275 +** into a single segment.
   1.276 +*/
   1.277 +
   1.278 +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
   1.279 +
   1.280 +#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
   1.281 +# define SQLITE_CORE 1
   1.282 +#endif
   1.283 +
   1.284 +#include <assert.h>
   1.285 +#include <stdlib.h>
   1.286 +#include <stdio.h>
   1.287 +#include <string.h>
   1.288 +#include <ctype.h>
   1.289 +
   1.290 +#include "fts3.h"
   1.291 +#include "fts3_hash.h"
   1.292 +#include "fts3_tokenizer.h"
   1.293 +#ifndef SQLITE_CORE 
   1.294 +# include "sqlite3ext.h"
   1.295 +  SQLITE_EXTENSION_INIT1
   1.296 +#endif
   1.297 +
   1.298 +
   1.299 +/* TODO(shess) MAN, this thing needs some refactoring.  At minimum, it
   1.300 +** would be nice to order the file better, perhaps something along the
   1.301 +** lines of:
   1.302 +**
   1.303 +**  - utility functions
   1.304 +**  - table setup functions
   1.305 +**  - table update functions
   1.306 +**  - table query functions
   1.307 +**
   1.308 +** Put the query functions last because they're likely to reference
   1.309 +** typedefs or functions from the table update section.
   1.310 +*/
   1.311 +
   1.312 +#if 0
   1.313 +# define FTSTRACE(A)  printf A; fflush(stdout)
   1.314 +#else
   1.315 +# define FTSTRACE(A)
   1.316 +#endif
   1.317 +
   1.318 +/*
   1.319 +** Default span for NEAR operators.
   1.320 +*/
   1.321 +#define SQLITE_FTS3_DEFAULT_NEAR_PARAM 10
   1.322 +
   1.323 +/* It is not safe to call isspace(), tolower(), or isalnum() on
   1.324 +** hi-bit-set characters.  This is the same solution used in the
   1.325 +** tokenizer.
   1.326 +*/
   1.327 +/* TODO(shess) The snippet-generation code should be using the
   1.328 +** tokenizer-generated tokens rather than doing its own local
   1.329 +** tokenization.
   1.330 +*/
   1.331 +/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */
   1.332 +static int safe_isspace(char c){
   1.333 +  return (c&0x80)==0 ? isspace(c) : 0;
   1.334 +}
   1.335 +static int safe_tolower(char c){
   1.336 +  return (c&0x80)==0 ? tolower(c) : c;
   1.337 +}
   1.338 +static int safe_isalnum(char c){
   1.339 +  return (c&0x80)==0 ? isalnum(c) : 0;
   1.340 +}
   1.341 +
   1.342 +typedef enum DocListType {
   1.343 +  DL_DOCIDS,              /* docids only */
   1.344 +  DL_POSITIONS,           /* docids + positions */
   1.345 +  DL_POSITIONS_OFFSETS    /* docids + positions + offsets */
   1.346 +} DocListType;
   1.347 +
   1.348 +/*
   1.349 +** By default, only positions and not offsets are stored in the doclists.
   1.350 +** To change this so that offsets are stored too, compile with
   1.351 +**
   1.352 +**          -DDL_DEFAULT=DL_POSITIONS_OFFSETS
   1.353 +**
   1.354 +** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted
   1.355 +** into (no deletes or updates).
   1.356 +*/
   1.357 +#ifndef DL_DEFAULT
   1.358 +# define DL_DEFAULT DL_POSITIONS
   1.359 +#endif
   1.360 +
   1.361 +enum {
   1.362 +  POS_END = 0,        /* end of this position list */
   1.363 +  POS_COLUMN,         /* followed by new column number */
   1.364 +  POS_BASE
   1.365 +};
   1.366 +
   1.367 +/* MERGE_COUNT controls how often we merge segments (see comment at
   1.368 +** top of file).
   1.369 +*/
   1.370 +#define MERGE_COUNT 16
   1.371 +
   1.372 +/* utility functions */
   1.373 +
   1.374 +/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single
   1.375 +** record to prevent errors of the form:
   1.376 +**
   1.377 +** my_function(SomeType *b){
   1.378 +**   memset(b, '\0', sizeof(b));  // sizeof(b)!=sizeof(*b)
   1.379 +** }
   1.380 +*/
   1.381 +/* TODO(shess) Obvious candidates for a header file. */
   1.382 +#define CLEAR(b) memset(b, '\0', sizeof(*(b)))
   1.383 +
   1.384 +#ifndef NDEBUG
   1.385 +#  define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b)))
   1.386 +#else
   1.387 +#  define SCRAMBLE(b)
   1.388 +#endif
   1.389 +
   1.390 +/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */
   1.391 +#define VARINT_MAX 10
   1.392 +
   1.393 +/* Write a 64-bit variable-length integer to memory starting at p[0].
   1.394 + * The length of data written will be between 1 and VARINT_MAX bytes.
   1.395 + * The number of bytes written is returned. */
   1.396 +static int fts3PutVarint(char *p, sqlite_int64 v){
   1.397 +  unsigned char *q = (unsigned char *) p;
   1.398 +  sqlite_uint64 vu = v;
   1.399 +  do{
   1.400 +    *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
   1.401 +    vu >>= 7;
   1.402 +  }while( vu!=0 );
   1.403 +  q[-1] &= 0x7f;  /* turn off high bit in final byte */
   1.404 +  assert( q - (unsigned char *)p <= VARINT_MAX );
   1.405 +  return (int) (q - (unsigned char *)p);
   1.406 +}
   1.407 +
   1.408 +/* Read a 64-bit variable-length integer from memory starting at p[0].
   1.409 + * Return the number of bytes read, or 0 on error.
   1.410 + * The value is stored in *v. */
   1.411 +static int fts3GetVarint(const char *p, sqlite_int64 *v){
   1.412 +  const unsigned char *q = (const unsigned char *) p;
   1.413 +  sqlite_uint64 x = 0, y = 1;
   1.414 +  while( (*q & 0x80) == 0x80 ){
   1.415 +    x += y * (*q++ & 0x7f);
   1.416 +    y <<= 7;
   1.417 +    if( q - (unsigned char *)p >= VARINT_MAX ){  /* bad data */
   1.418 +      assert( 0 );
   1.419 +      return 0;
   1.420 +    }
   1.421 +  }
   1.422 +  x += y * (*q++);
   1.423 +  *v = (sqlite_int64) x;
   1.424 +  return (int) (q - (unsigned char *)p);
   1.425 +}
   1.426 +
   1.427 +static int fts3GetVarint32(const char *p, int *pi){
   1.428 + sqlite_int64 i;
   1.429 + int ret = fts3GetVarint(p, &i);
   1.430 + *pi = (int) i;
   1.431 + assert( *pi==i );
   1.432 + return ret;
   1.433 +}
   1.434 +
   1.435 +/*******************************************************************/
   1.436 +/* DataBuffer is used to collect data into a buffer in piecemeal
   1.437 +** fashion.  It implements the usual distinction between amount of
   1.438 +** data currently stored (nData) and buffer capacity (nCapacity).
   1.439 +**
   1.440 +** dataBufferInit - create a buffer with given initial capacity.
   1.441 +** dataBufferReset - forget buffer's data, retaining capacity.
   1.442 +** dataBufferDestroy - free buffer's data.
   1.443 +** dataBufferSwap - swap contents of two buffers.
   1.444 +** dataBufferExpand - expand capacity without adding data.
   1.445 +** dataBufferAppend - append data.
   1.446 +** dataBufferAppend2 - append two pieces of data at once.
   1.447 +** dataBufferReplace - replace buffer's data.
   1.448 +*/
   1.449 +typedef struct DataBuffer {
   1.450 +  char *pData;          /* Pointer to malloc'ed buffer. */
   1.451 +  int nCapacity;        /* Size of pData buffer. */
   1.452 +  int nData;            /* End of data loaded into pData. */
   1.453 +} DataBuffer;
   1.454 +
   1.455 +static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){
   1.456 +  assert( nCapacity>=0 );
   1.457 +  pBuffer->nData = 0;
   1.458 +  pBuffer->nCapacity = nCapacity;
   1.459 +  pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity);
   1.460 +}
   1.461 +static void dataBufferReset(DataBuffer *pBuffer){
   1.462 +  pBuffer->nData = 0;
   1.463 +}
   1.464 +static void dataBufferDestroy(DataBuffer *pBuffer){
   1.465 +  if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData);
   1.466 +  SCRAMBLE(pBuffer);
   1.467 +}
   1.468 +static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){
   1.469 +  DataBuffer tmp = *pBuffer1;
   1.470 +  *pBuffer1 = *pBuffer2;
   1.471 +  *pBuffer2 = tmp;
   1.472 +}
   1.473 +static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){
   1.474 +  assert( nAddCapacity>0 );
   1.475 +  /* TODO(shess) Consider expanding more aggressively.  Note that the
   1.476 +  ** underlying malloc implementation may take care of such things for
   1.477 +  ** us already.
   1.478 +  */
   1.479 +  if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){
   1.480 +    pBuffer->nCapacity = pBuffer->nData+nAddCapacity;
   1.481 +    pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity);
   1.482 +  }
   1.483 +}
   1.484 +static void dataBufferAppend(DataBuffer *pBuffer,
   1.485 +                             const char *pSource, int nSource){
   1.486 +  assert( nSource>0 && pSource!=NULL );
   1.487 +  dataBufferExpand(pBuffer, nSource);
   1.488 +  memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource);
   1.489 +  pBuffer->nData += nSource;
   1.490 +}
   1.491 +static void dataBufferAppend2(DataBuffer *pBuffer,
   1.492 +                              const char *pSource1, int nSource1,
   1.493 +                              const char *pSource2, int nSource2){
   1.494 +  assert( nSource1>0 && pSource1!=NULL );
   1.495 +  assert( nSource2>0 && pSource2!=NULL );
   1.496 +  dataBufferExpand(pBuffer, nSource1+nSource2);
   1.497 +  memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1);
   1.498 +  memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2);
   1.499 +  pBuffer->nData += nSource1+nSource2;
   1.500 +}
   1.501 +static void dataBufferReplace(DataBuffer *pBuffer,
   1.502 +                              const char *pSource, int nSource){
   1.503 +  dataBufferReset(pBuffer);
   1.504 +  dataBufferAppend(pBuffer, pSource, nSource);
   1.505 +}
   1.506 +
   1.507 +/* StringBuffer is a null-terminated version of DataBuffer. */
   1.508 +typedef struct StringBuffer {
   1.509 +  DataBuffer b;            /* Includes null terminator. */
   1.510 +} StringBuffer;
   1.511 +
   1.512 +static void initStringBuffer(StringBuffer *sb){
   1.513 +  dataBufferInit(&sb->b, 100);
   1.514 +  dataBufferReplace(&sb->b, "", 1);
   1.515 +}
   1.516 +static int stringBufferLength(StringBuffer *sb){
   1.517 +  return sb->b.nData-1;
   1.518 +}
   1.519 +static char *stringBufferData(StringBuffer *sb){
   1.520 +  return sb->b.pData;
   1.521 +}
   1.522 +static void stringBufferDestroy(StringBuffer *sb){
   1.523 +  dataBufferDestroy(&sb->b);
   1.524 +}
   1.525 +
   1.526 +static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){
   1.527 +  assert( sb->b.nData>0 );
   1.528 +  if( nFrom>0 ){
   1.529 +    sb->b.nData--;
   1.530 +    dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1);
   1.531 +  }
   1.532 +}
   1.533 +static void append(StringBuffer *sb, const char *zFrom){
   1.534 +  nappend(sb, zFrom, strlen(zFrom));
   1.535 +}
   1.536 +
   1.537 +/* Append a list of strings separated by commas. */
   1.538 +static void appendList(StringBuffer *sb, int nString, char **azString){
   1.539 +  int i;
   1.540 +  for(i=0; i<nString; ++i){
   1.541 +    if( i>0 ) append(sb, ", ");
   1.542 +    append(sb, azString[i]);
   1.543 +  }
   1.544 +}
   1.545 +
   1.546 +static int endsInWhiteSpace(StringBuffer *p){
   1.547 +  return stringBufferLength(p)>0 &&
   1.548 +    safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]);
   1.549 +}
   1.550 +
   1.551 +/* If the StringBuffer ends in something other than white space, add a
   1.552 +** single space character to the end.
   1.553 +*/
   1.554 +static void appendWhiteSpace(StringBuffer *p){
   1.555 +  if( stringBufferLength(p)==0 ) return;
   1.556 +  if( !endsInWhiteSpace(p) ) append(p, " ");
   1.557 +}
   1.558 +
   1.559 +/* Remove white space from the end of the StringBuffer */
   1.560 +static void trimWhiteSpace(StringBuffer *p){
   1.561 +  while( endsInWhiteSpace(p) ){
   1.562 +    p->b.pData[--p->b.nData-1] = '\0';
   1.563 +  }
   1.564 +}
   1.565 +
   1.566 +/*******************************************************************/
   1.567 +/* DLReader is used to read document elements from a doclist.  The
   1.568 +** current docid is cached, so dlrDocid() is fast.  DLReader does not
   1.569 +** own the doclist buffer.
   1.570 +**
   1.571 +** dlrAtEnd - true if there's no more data to read.
   1.572 +** dlrDocid - docid of current document.
   1.573 +** dlrDocData - doclist data for current document (including docid).
   1.574 +** dlrDocDataBytes - length of same.
   1.575 +** dlrAllDataBytes - length of all remaining data.
   1.576 +** dlrPosData - position data for current document.
   1.577 +** dlrPosDataLen - length of pos data for current document (incl POS_END).
   1.578 +** dlrStep - step to current document.
   1.579 +** dlrInit - initial for doclist of given type against given data.
   1.580 +** dlrDestroy - clean up.
   1.581 +**
   1.582 +** Expected usage is something like:
   1.583 +**
   1.584 +**   DLReader reader;
   1.585 +**   dlrInit(&reader, pData, nData);
   1.586 +**   while( !dlrAtEnd(&reader) ){
   1.587 +**     // calls to dlrDocid() and kin.
   1.588 +**     dlrStep(&reader);
   1.589 +**   }
   1.590 +**   dlrDestroy(&reader);
   1.591 +*/
   1.592 +typedef struct DLReader {
   1.593 +  DocListType iType;
   1.594 +  const char *pData;
   1.595 +  int nData;
   1.596 +
   1.597 +  sqlite_int64 iDocid;
   1.598 +  int nElement;
   1.599 +} DLReader;
   1.600 +
   1.601 +static int dlrAtEnd(DLReader *pReader){
   1.602 +  assert( pReader->nData>=0 );
   1.603 +  return pReader->nData==0;
   1.604 +}
   1.605 +static sqlite_int64 dlrDocid(DLReader *pReader){
   1.606 +  assert( !dlrAtEnd(pReader) );
   1.607 +  return pReader->iDocid;
   1.608 +}
   1.609 +static const char *dlrDocData(DLReader *pReader){
   1.610 +  assert( !dlrAtEnd(pReader) );
   1.611 +  return pReader->pData;
   1.612 +}
   1.613 +static int dlrDocDataBytes(DLReader *pReader){
   1.614 +  assert( !dlrAtEnd(pReader) );
   1.615 +  return pReader->nElement;
   1.616 +}
   1.617 +static int dlrAllDataBytes(DLReader *pReader){
   1.618 +  assert( !dlrAtEnd(pReader) );
   1.619 +  return pReader->nData;
   1.620 +}
   1.621 +/* TODO(shess) Consider adding a field to track iDocid varint length
   1.622 +** to make these two functions faster.  This might matter (a tiny bit)
   1.623 +** for queries.
   1.624 +*/
   1.625 +static const char *dlrPosData(DLReader *pReader){
   1.626 +  sqlite_int64 iDummy;
   1.627 +  int n = fts3GetVarint(pReader->pData, &iDummy);
   1.628 +  assert( !dlrAtEnd(pReader) );
   1.629 +  return pReader->pData+n;
   1.630 +}
   1.631 +static int dlrPosDataLen(DLReader *pReader){
   1.632 +  sqlite_int64 iDummy;
   1.633 +  int n = fts3GetVarint(pReader->pData, &iDummy);
   1.634 +  assert( !dlrAtEnd(pReader) );
   1.635 +  return pReader->nElement-n;
   1.636 +}
   1.637 +static void dlrStep(DLReader *pReader){
   1.638 +  assert( !dlrAtEnd(pReader) );
   1.639 +
   1.640 +  /* Skip past current doclist element. */
   1.641 +  assert( pReader->nElement<=pReader->nData );
   1.642 +  pReader->pData += pReader->nElement;
   1.643 +  pReader->nData -= pReader->nElement;
   1.644 +
   1.645 +  /* If there is more data, read the next doclist element. */
   1.646 +  if( pReader->nData!=0 ){
   1.647 +    sqlite_int64 iDocidDelta;
   1.648 +    int iDummy, n = fts3GetVarint(pReader->pData, &iDocidDelta);
   1.649 +    pReader->iDocid += iDocidDelta;
   1.650 +    if( pReader->iType>=DL_POSITIONS ){
   1.651 +      assert( n<pReader->nData );
   1.652 +      while( 1 ){
   1.653 +        n += fts3GetVarint32(pReader->pData+n, &iDummy);
   1.654 +        assert( n<=pReader->nData );
   1.655 +        if( iDummy==POS_END ) break;
   1.656 +        if( iDummy==POS_COLUMN ){
   1.657 +          n += fts3GetVarint32(pReader->pData+n, &iDummy);
   1.658 +          assert( n<pReader->nData );
   1.659 +        }else if( pReader->iType==DL_POSITIONS_OFFSETS ){
   1.660 +          n += fts3GetVarint32(pReader->pData+n, &iDummy);
   1.661 +          n += fts3GetVarint32(pReader->pData+n, &iDummy);
   1.662 +          assert( n<pReader->nData );
   1.663 +        }
   1.664 +      }
   1.665 +    }
   1.666 +    pReader->nElement = n;
   1.667 +    assert( pReader->nElement<=pReader->nData );
   1.668 +  }
   1.669 +}
   1.670 +static void dlrInit(DLReader *pReader, DocListType iType,
   1.671 +                    const char *pData, int nData){
   1.672 +  assert( pData!=NULL && nData!=0 );
   1.673 +  pReader->iType = iType;
   1.674 +  pReader->pData = pData;
   1.675 +  pReader->nData = nData;
   1.676 +  pReader->nElement = 0;
   1.677 +  pReader->iDocid = 0;
   1.678 +
   1.679 +  /* Load the first element's data.  There must be a first element. */
   1.680 +  dlrStep(pReader);
   1.681 +}
   1.682 +static void dlrDestroy(DLReader *pReader){
   1.683 +  SCRAMBLE(pReader);
   1.684 +}
   1.685 +
   1.686 +#ifndef NDEBUG
   1.687 +/* Verify that the doclist can be validly decoded.  Also returns the
   1.688 +** last docid found because it is convenient in other assertions for
   1.689 +** DLWriter.
   1.690 +*/
   1.691 +static void docListValidate(DocListType iType, const char *pData, int nData,
   1.692 +                            sqlite_int64 *pLastDocid){
   1.693 +  sqlite_int64 iPrevDocid = 0;
   1.694 +  assert( nData>0 );
   1.695 +  assert( pData!=0 );
   1.696 +  assert( pData+nData>pData );
   1.697 +  while( nData!=0 ){
   1.698 +    sqlite_int64 iDocidDelta;
   1.699 +    int n = fts3GetVarint(pData, &iDocidDelta);
   1.700 +    iPrevDocid += iDocidDelta;
   1.701 +    if( iType>DL_DOCIDS ){
   1.702 +      int iDummy;
   1.703 +      while( 1 ){
   1.704 +        n += fts3GetVarint32(pData+n, &iDummy);
   1.705 +        if( iDummy==POS_END ) break;
   1.706 +        if( iDummy==POS_COLUMN ){
   1.707 +          n += fts3GetVarint32(pData+n, &iDummy);
   1.708 +        }else if( iType>DL_POSITIONS ){
   1.709 +          n += fts3GetVarint32(pData+n, &iDummy);
   1.710 +          n += fts3GetVarint32(pData+n, &iDummy);
   1.711 +        }
   1.712 +        assert( n<=nData );
   1.713 +      }
   1.714 +    }
   1.715 +    assert( n<=nData );
   1.716 +    pData += n;
   1.717 +    nData -= n;
   1.718 +  }
   1.719 +  if( pLastDocid ) *pLastDocid = iPrevDocid;
   1.720 +}
   1.721 +#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o)
   1.722 +#else
   1.723 +#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 )
   1.724 +#endif
   1.725 +
   1.726 +/*******************************************************************/
   1.727 +/* DLWriter is used to write doclist data to a DataBuffer.  DLWriter
   1.728 +** always appends to the buffer and does not own it.
   1.729 +**
   1.730 +** dlwInit - initialize to write a given type doclistto a buffer.
   1.731 +** dlwDestroy - clear the writer's memory.  Does not free buffer.
   1.732 +** dlwAppend - append raw doclist data to buffer.
   1.733 +** dlwCopy - copy next doclist from reader to writer.
   1.734 +** dlwAdd - construct doclist element and append to buffer.
   1.735 +**    Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter).
   1.736 +*/
   1.737 +typedef struct DLWriter {
   1.738 +  DocListType iType;
   1.739 +  DataBuffer *b;
   1.740 +  sqlite_int64 iPrevDocid;
   1.741 +#ifndef NDEBUG
   1.742 +  int has_iPrevDocid;
   1.743 +#endif
   1.744 +} DLWriter;
   1.745 +
   1.746 +static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){
   1.747 +  pWriter->b = b;
   1.748 +  pWriter->iType = iType;
   1.749 +  pWriter->iPrevDocid = 0;
   1.750 +#ifndef NDEBUG
   1.751 +  pWriter->has_iPrevDocid = 0;
   1.752 +#endif
   1.753 +}
   1.754 +static void dlwDestroy(DLWriter *pWriter){
   1.755 +  SCRAMBLE(pWriter);
   1.756 +}
   1.757 +/* iFirstDocid is the first docid in the doclist in pData.  It is
   1.758 +** needed because pData may point within a larger doclist, in which
   1.759 +** case the first item would be delta-encoded.
   1.760 +**
   1.761 +** iLastDocid is the final docid in the doclist in pData.  It is
   1.762 +** needed to create the new iPrevDocid for future delta-encoding.  The
   1.763 +** code could decode the passed doclist to recreate iLastDocid, but
   1.764 +** the only current user (docListMerge) already has decoded this
   1.765 +** information.
   1.766 +*/
   1.767 +/* TODO(shess) This has become just a helper for docListMerge.
   1.768 +** Consider a refactor to make this cleaner.
   1.769 +*/
   1.770 +static void dlwAppend(DLWriter *pWriter,
   1.771 +                      const char *pData, int nData,
   1.772 +                      sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){
   1.773 +  sqlite_int64 iDocid = 0;
   1.774 +  char c[VARINT_MAX];
   1.775 +  int nFirstOld, nFirstNew;     /* Old and new varint len of first docid. */
   1.776 +#ifndef NDEBUG
   1.777 +  sqlite_int64 iLastDocidDelta;
   1.778 +#endif
   1.779 +
   1.780 +  /* Recode the initial docid as delta from iPrevDocid. */
   1.781 +  nFirstOld = fts3GetVarint(pData, &iDocid);
   1.782 +  assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) );
   1.783 +  nFirstNew = fts3PutVarint(c, iFirstDocid-pWriter->iPrevDocid);
   1.784 +
   1.785 +  /* Verify that the incoming doclist is valid AND that it ends with
   1.786 +  ** the expected docid.  This is essential because we'll trust this
   1.787 +  ** docid in future delta-encoding.
   1.788 +  */
   1.789 +  ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta);
   1.790 +  assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta );
   1.791 +
   1.792 +  /* Append recoded initial docid and everything else.  Rest of docids
   1.793 +  ** should have been delta-encoded from previous initial docid.
   1.794 +  */
   1.795 +  if( nFirstOld<nData ){
   1.796 +    dataBufferAppend2(pWriter->b, c, nFirstNew,
   1.797 +                      pData+nFirstOld, nData-nFirstOld);
   1.798 +  }else{
   1.799 +    dataBufferAppend(pWriter->b, c, nFirstNew);
   1.800 +  }
   1.801 +  pWriter->iPrevDocid = iLastDocid;
   1.802 +}
   1.803 +static void dlwCopy(DLWriter *pWriter, DLReader *pReader){
   1.804 +  dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader),
   1.805 +            dlrDocid(pReader), dlrDocid(pReader));
   1.806 +}
   1.807 +static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){
   1.808 +  char c[VARINT_MAX];
   1.809 +  int n = fts3PutVarint(c, iDocid-pWriter->iPrevDocid);
   1.810 +
   1.811 +  /* Docids must ascend. */
   1.812 +  assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid );
   1.813 +  assert( pWriter->iType==DL_DOCIDS );
   1.814 +
   1.815 +  dataBufferAppend(pWriter->b, c, n);
   1.816 +  pWriter->iPrevDocid = iDocid;
   1.817 +#ifndef NDEBUG
   1.818 +  pWriter->has_iPrevDocid = 1;
   1.819 +#endif
   1.820 +}
   1.821 +
   1.822 +/*******************************************************************/
   1.823 +/* PLReader is used to read data from a document's position list.  As
   1.824 +** the caller steps through the list, data is cached so that varints
   1.825 +** only need to be decoded once.
   1.826 +**
   1.827 +** plrInit, plrDestroy - create/destroy a reader.
   1.828 +** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors
   1.829 +** plrAtEnd - at end of stream, only call plrDestroy once true.
   1.830 +** plrStep - step to the next element.
   1.831 +*/
   1.832 +typedef struct PLReader {
   1.833 +  /* These refer to the next position's data.  nData will reach 0 when
   1.834 +  ** reading the last position, so plrStep() signals EOF by setting
   1.835 +  ** pData to NULL.
   1.836 +  */
   1.837 +  const char *pData;
   1.838 +  int nData;
   1.839 +
   1.840 +  DocListType iType;
   1.841 +  int iColumn;         /* the last column read */
   1.842 +  int iPosition;       /* the last position read */
   1.843 +  int iStartOffset;    /* the last start offset read */
   1.844 +  int iEndOffset;      /* the last end offset read */
   1.845 +} PLReader;
   1.846 +
   1.847 +static int plrAtEnd(PLReader *pReader){
   1.848 +  return pReader->pData==NULL;
   1.849 +}
   1.850 +static int plrColumn(PLReader *pReader){
   1.851 +  assert( !plrAtEnd(pReader) );
   1.852 +  return pReader->iColumn;
   1.853 +}
   1.854 +static int plrPosition(PLReader *pReader){
   1.855 +  assert( !plrAtEnd(pReader) );
   1.856 +  return pReader->iPosition;
   1.857 +}
   1.858 +static int plrStartOffset(PLReader *pReader){
   1.859 +  assert( !plrAtEnd(pReader) );
   1.860 +  return pReader->iStartOffset;
   1.861 +}
   1.862 +static int plrEndOffset(PLReader *pReader){
   1.863 +  assert( !plrAtEnd(pReader) );
   1.864 +  return pReader->iEndOffset;
   1.865 +}
   1.866 +static void plrStep(PLReader *pReader){
   1.867 +  int i, n;
   1.868 +
   1.869 +  assert( !plrAtEnd(pReader) );
   1.870 +
   1.871 +  if( pReader->nData==0 ){
   1.872 +    pReader->pData = NULL;
   1.873 +    return;
   1.874 +  }
   1.875 +
   1.876 +  n = fts3GetVarint32(pReader->pData, &i);
   1.877 +  if( i==POS_COLUMN ){
   1.878 +    n += fts3GetVarint32(pReader->pData+n, &pReader->iColumn);
   1.879 +    pReader->iPosition = 0;
   1.880 +    pReader->iStartOffset = 0;
   1.881 +    n += fts3GetVarint32(pReader->pData+n, &i);
   1.882 +  }
   1.883 +  /* Should never see adjacent column changes. */
   1.884 +  assert( i!=POS_COLUMN );
   1.885 +
   1.886 +  if( i==POS_END ){
   1.887 +    pReader->nData = 0;
   1.888 +    pReader->pData = NULL;
   1.889 +    return;
   1.890 +  }
   1.891 +
   1.892 +  pReader->iPosition += i-POS_BASE;
   1.893 +  if( pReader->iType==DL_POSITIONS_OFFSETS ){
   1.894 +    n += fts3GetVarint32(pReader->pData+n, &i);
   1.895 +    pReader->iStartOffset += i;
   1.896 +    n += fts3GetVarint32(pReader->pData+n, &i);
   1.897 +    pReader->iEndOffset = pReader->iStartOffset+i;
   1.898 +  }
   1.899 +  assert( n<=pReader->nData );
   1.900 +  pReader->pData += n;
   1.901 +  pReader->nData -= n;
   1.902 +}
   1.903 +
   1.904 +static void plrInit(PLReader *pReader, DLReader *pDLReader){
   1.905 +  pReader->pData = dlrPosData(pDLReader);
   1.906 +  pReader->nData = dlrPosDataLen(pDLReader);
   1.907 +  pReader->iType = pDLReader->iType;
   1.908 +  pReader->iColumn = 0;
   1.909 +  pReader->iPosition = 0;
   1.910 +  pReader->iStartOffset = 0;
   1.911 +  pReader->iEndOffset = 0;
   1.912 +  plrStep(pReader);
   1.913 +}
   1.914 +static void plrDestroy(PLReader *pReader){
   1.915 +  SCRAMBLE(pReader);
   1.916 +}
   1.917 +
   1.918 +/*******************************************************************/
   1.919 +/* PLWriter is used in constructing a document's position list.  As a
   1.920 +** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op.
   1.921 +** PLWriter writes to the associated DLWriter's buffer.
   1.922 +**
   1.923 +** plwInit - init for writing a document's poslist.
   1.924 +** plwDestroy - clear a writer.
   1.925 +** plwAdd - append position and offset information.
   1.926 +** plwCopy - copy next position's data from reader to writer.
   1.927 +** plwTerminate - add any necessary doclist terminator.
   1.928 +**
   1.929 +** Calling plwAdd() after plwTerminate() may result in a corrupt
   1.930 +** doclist.
   1.931 +*/
   1.932 +/* TODO(shess) Until we've written the second item, we can cache the
   1.933 +** first item's information.  Then we'd have three states:
   1.934 +**
   1.935 +** - initialized with docid, no positions.
   1.936 +** - docid and one position.
   1.937 +** - docid and multiple positions.
   1.938 +**
   1.939 +** Only the last state needs to actually write to dlw->b, which would
   1.940 +** be an improvement in the DLCollector case.
   1.941 +*/
   1.942 +typedef struct PLWriter {
   1.943 +  DLWriter *dlw;
   1.944 +
   1.945 +  int iColumn;    /* the last column written */
   1.946 +  int iPos;       /* the last position written */
   1.947 +  int iOffset;    /* the last start offset written */
   1.948 +} PLWriter;
   1.949 +
   1.950 +/* TODO(shess) In the case where the parent is reading these values
   1.951 +** from a PLReader, we could optimize to a copy if that PLReader has
   1.952 +** the same type as pWriter.
   1.953 +*/
   1.954 +static void plwAdd(PLWriter *pWriter, int iColumn, int iPos,
   1.955 +                   int iStartOffset, int iEndOffset){
   1.956 +  /* Worst-case space for POS_COLUMN, iColumn, iPosDelta,
   1.957 +  ** iStartOffsetDelta, and iEndOffsetDelta.
   1.958 +  */
   1.959 +  char c[5*VARINT_MAX];
   1.960 +  int n = 0;
   1.961 +
   1.962 +  /* Ban plwAdd() after plwTerminate(). */
   1.963 +  assert( pWriter->iPos!=-1 );
   1.964 +
   1.965 +  if( pWriter->dlw->iType==DL_DOCIDS ) return;
   1.966 +
   1.967 +  if( iColumn!=pWriter->iColumn ){
   1.968 +    n += fts3PutVarint(c+n, POS_COLUMN);
   1.969 +    n += fts3PutVarint(c+n, iColumn);
   1.970 +    pWriter->iColumn = iColumn;
   1.971 +    pWriter->iPos = 0;
   1.972 +    pWriter->iOffset = 0;
   1.973 +  }
   1.974 +  assert( iPos>=pWriter->iPos );
   1.975 +  n += fts3PutVarint(c+n, POS_BASE+(iPos-pWriter->iPos));
   1.976 +  pWriter->iPos = iPos;
   1.977 +  if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){
   1.978 +    assert( iStartOffset>=pWriter->iOffset );
   1.979 +    n += fts3PutVarint(c+n, iStartOffset-pWriter->iOffset);
   1.980 +    pWriter->iOffset = iStartOffset;
   1.981 +    assert( iEndOffset>=iStartOffset );
   1.982 +    n += fts3PutVarint(c+n, iEndOffset-iStartOffset);
   1.983 +  }
   1.984 +  dataBufferAppend(pWriter->dlw->b, c, n);
   1.985 +}
   1.986 +static void plwCopy(PLWriter *pWriter, PLReader *pReader){
   1.987 +  plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader),
   1.988 +         plrStartOffset(pReader), plrEndOffset(pReader));
   1.989 +}
   1.990 +static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){
   1.991 +  char c[VARINT_MAX];
   1.992 +  int n;
   1.993 +
   1.994 +  pWriter->dlw = dlw;
   1.995 +
   1.996 +  /* Docids must ascend. */
   1.997 +  assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid );
   1.998 +  n = fts3PutVarint(c, iDocid-pWriter->dlw->iPrevDocid);
   1.999 +  dataBufferAppend(pWriter->dlw->b, c, n);
  1.1000 +  pWriter->dlw->iPrevDocid = iDocid;
  1.1001 +#ifndef NDEBUG
  1.1002 +  pWriter->dlw->has_iPrevDocid = 1;
  1.1003 +#endif
  1.1004 +
  1.1005 +  pWriter->iColumn = 0;
  1.1006 +  pWriter->iPos = 0;
  1.1007 +  pWriter->iOffset = 0;
  1.1008 +}
  1.1009 +/* TODO(shess) Should plwDestroy() also terminate the doclist?  But
  1.1010 +** then plwDestroy() would no longer be just a destructor, it would
  1.1011 +** also be doing work, which isn't consistent with the overall idiom.
  1.1012 +** Another option would be for plwAdd() to always append any necessary
  1.1013 +** terminator, so that the output is always correct.  But that would
  1.1014 +** add incremental work to the common case with the only benefit being
  1.1015 +** API elegance.  Punt for now.
  1.1016 +*/
  1.1017 +static void plwTerminate(PLWriter *pWriter){
  1.1018 +  if( pWriter->dlw->iType>DL_DOCIDS ){
  1.1019 +    char c[VARINT_MAX];
  1.1020 +    int n = fts3PutVarint(c, POS_END);
  1.1021 +    dataBufferAppend(pWriter->dlw->b, c, n);
  1.1022 +  }
  1.1023 +#ifndef NDEBUG
  1.1024 +  /* Mark as terminated for assert in plwAdd(). */
  1.1025 +  pWriter->iPos = -1;
  1.1026 +#endif
  1.1027 +}
  1.1028 +static void plwDestroy(PLWriter *pWriter){
  1.1029 +  SCRAMBLE(pWriter);
  1.1030 +}
  1.1031 +
  1.1032 +/*******************************************************************/
  1.1033 +/* DLCollector wraps PLWriter and DLWriter to provide a
  1.1034 +** dynamically-allocated doclist area to use during tokenization.
  1.1035 +**
  1.1036 +** dlcNew - malloc up and initialize a collector.
  1.1037 +** dlcDelete - destroy a collector and all contained items.
  1.1038 +** dlcAddPos - append position and offset information.
  1.1039 +** dlcAddDoclist - add the collected doclist to the given buffer.
  1.1040 +** dlcNext - terminate the current document and open another.
  1.1041 +*/
  1.1042 +typedef struct DLCollector {
  1.1043 +  DataBuffer b;
  1.1044 +  DLWriter dlw;
  1.1045 +  PLWriter plw;
  1.1046 +} DLCollector;
  1.1047 +
  1.1048 +/* TODO(shess) This could also be done by calling plwTerminate() and
  1.1049 +** dataBufferAppend().  I tried that, expecting nominal performance
  1.1050 +** differences, but it seemed to pretty reliably be worth 1% to code
  1.1051 +** it this way.  I suspect it is the incremental malloc overhead (some
  1.1052 +** percentage of the plwTerminate() calls will cause a realloc), so
  1.1053 +** this might be worth revisiting if the DataBuffer implementation
  1.1054 +** changes.
  1.1055 +*/
  1.1056 +static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){
  1.1057 +  if( pCollector->dlw.iType>DL_DOCIDS ){
  1.1058 +    char c[VARINT_MAX];
  1.1059 +    int n = fts3PutVarint(c, POS_END);
  1.1060 +    dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n);
  1.1061 +  }else{
  1.1062 +    dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData);
  1.1063 +  }
  1.1064 +}
  1.1065 +static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){
  1.1066 +  plwTerminate(&pCollector->plw);
  1.1067 +  plwDestroy(&pCollector->plw);
  1.1068 +  plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
  1.1069 +}
  1.1070 +static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos,
  1.1071 +                      int iStartOffset, int iEndOffset){
  1.1072 +  plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset);
  1.1073 +}
  1.1074 +
  1.1075 +static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){
  1.1076 +  DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector));
  1.1077 +  dataBufferInit(&pCollector->b, 0);
  1.1078 +  dlwInit(&pCollector->dlw, iType, &pCollector->b);
  1.1079 +  plwInit(&pCollector->plw, &pCollector->dlw, iDocid);
  1.1080 +  return pCollector;
  1.1081 +}
  1.1082 +static void dlcDelete(DLCollector *pCollector){
  1.1083 +  plwDestroy(&pCollector->plw);
  1.1084 +  dlwDestroy(&pCollector->dlw);
  1.1085 +  dataBufferDestroy(&pCollector->b);
  1.1086 +  SCRAMBLE(pCollector);
  1.1087 +  sqlite3_free(pCollector);
  1.1088 +}
  1.1089 +
  1.1090 +
  1.1091 +/* Copy the doclist data of iType in pData/nData into *out, trimming
  1.1092 +** unnecessary data as we go.  Only columns matching iColumn are
  1.1093 +** copied, all columns copied if iColumn is -1.  Elements with no
  1.1094 +** matching columns are dropped.  The output is an iOutType doclist.
  1.1095 +*/
  1.1096 +/* NOTE(shess) This code is only valid after all doclists are merged.
  1.1097 +** If this is run before merges, then doclist items which represent
  1.1098 +** deletion will be trimmed, and will thus not effect a deletion
  1.1099 +** during the merge.
  1.1100 +*/
  1.1101 +static void docListTrim(DocListType iType, const char *pData, int nData,
  1.1102 +                        int iColumn, DocListType iOutType, DataBuffer *out){
  1.1103 +  DLReader dlReader;
  1.1104 +  DLWriter dlWriter;
  1.1105 +
  1.1106 +  assert( iOutType<=iType );
  1.1107 +
  1.1108 +  dlrInit(&dlReader, iType, pData, nData);
  1.1109 +  dlwInit(&dlWriter, iOutType, out);
  1.1110 +
  1.1111 +  while( !dlrAtEnd(&dlReader) ){
  1.1112 +    PLReader plReader;
  1.1113 +    PLWriter plWriter;
  1.1114 +    int match = 0;
  1.1115 +
  1.1116 +    plrInit(&plReader, &dlReader);
  1.1117 +
  1.1118 +    while( !plrAtEnd(&plReader) ){
  1.1119 +      if( iColumn==-1 || plrColumn(&plReader)==iColumn ){
  1.1120 +        if( !match ){
  1.1121 +          plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader));
  1.1122 +          match = 1;
  1.1123 +        }
  1.1124 +        plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader),
  1.1125 +               plrStartOffset(&plReader), plrEndOffset(&plReader));
  1.1126 +      }
  1.1127 +      plrStep(&plReader);
  1.1128 +    }
  1.1129 +    if( match ){
  1.1130 +      plwTerminate(&plWriter);
  1.1131 +      plwDestroy(&plWriter);
  1.1132 +    }
  1.1133 +
  1.1134 +    plrDestroy(&plReader);
  1.1135 +    dlrStep(&dlReader);
  1.1136 +  }
  1.1137 +  dlwDestroy(&dlWriter);
  1.1138 +  dlrDestroy(&dlReader);
  1.1139 +}
  1.1140 +
  1.1141 +/* Used by docListMerge() to keep doclists in the ascending order by
  1.1142 +** docid, then ascending order by age (so the newest comes first).
  1.1143 +*/
  1.1144 +typedef struct OrderedDLReader {
  1.1145 +  DLReader *pReader;
  1.1146 +
  1.1147 +  /* TODO(shess) If we assume that docListMerge pReaders is ordered by
  1.1148 +  ** age (which we do), then we could use pReader comparisons to break
  1.1149 +  ** ties.
  1.1150 +  */
  1.1151 +  int idx;
  1.1152 +} OrderedDLReader;
  1.1153 +
  1.1154 +/* Order eof to end, then by docid asc, idx desc. */
  1.1155 +static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){
  1.1156 +  if( dlrAtEnd(r1->pReader) ){
  1.1157 +    if( dlrAtEnd(r2->pReader) ) return 0;  /* Both atEnd(). */
  1.1158 +    return 1;                              /* Only r1 atEnd(). */
  1.1159 +  }
  1.1160 +  if( dlrAtEnd(r2->pReader) ) return -1;   /* Only r2 atEnd(). */
  1.1161 +
  1.1162 +  if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1;
  1.1163 +  if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1;
  1.1164 +
  1.1165 +  /* Descending on idx. */
  1.1166 +  return r2->idx-r1->idx;
  1.1167 +}
  1.1168 +
  1.1169 +/* Bubble p[0] to appropriate place in p[1..n-1].  Assumes that
  1.1170 +** p[1..n-1] is already sorted.
  1.1171 +*/
  1.1172 +/* TODO(shess) Is this frequent enough to warrant a binary search?
  1.1173 +** Before implementing that, instrument the code to check.  In most
  1.1174 +** current usage, I expect that p[0] will be less than p[1] a very
  1.1175 +** high proportion of the time.
  1.1176 +*/
  1.1177 +static void orderedDLReaderReorder(OrderedDLReader *p, int n){
  1.1178 +  while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){
  1.1179 +    OrderedDLReader tmp = p[0];
  1.1180 +    p[0] = p[1];
  1.1181 +    p[1] = tmp;
  1.1182 +    n--;
  1.1183 +    p++;
  1.1184 +  }
  1.1185 +}
  1.1186 +
  1.1187 +/* Given an array of doclist readers, merge their doclist elements
  1.1188 +** into out in sorted order (by docid), dropping elements from older
  1.1189 +** readers when there is a duplicate docid.  pReaders is assumed to be
  1.1190 +** ordered by age, oldest first.
  1.1191 +*/
  1.1192 +/* TODO(shess) nReaders must be <= MERGE_COUNT.  This should probably
  1.1193 +** be fixed.
  1.1194 +*/
  1.1195 +static void docListMerge(DataBuffer *out,
  1.1196 +                         DLReader *pReaders, int nReaders){
  1.1197 +  OrderedDLReader readers[MERGE_COUNT];
  1.1198 +  DLWriter writer;
  1.1199 +  int i, n;
  1.1200 +  const char *pStart = 0;
  1.1201 +  int nStart = 0;
  1.1202 +  sqlite_int64 iFirstDocid = 0, iLastDocid = 0;
  1.1203 +
  1.1204 +  assert( nReaders>0 );
  1.1205 +  if( nReaders==1 ){
  1.1206 +    dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders));
  1.1207 +    return;
  1.1208 +  }
  1.1209 +
  1.1210 +  assert( nReaders<=MERGE_COUNT );
  1.1211 +  n = 0;
  1.1212 +  for(i=0; i<nReaders; i++){
  1.1213 +    assert( pReaders[i].iType==pReaders[0].iType );
  1.1214 +    readers[i].pReader = pReaders+i;
  1.1215 +    readers[i].idx = i;
  1.1216 +    n += dlrAllDataBytes(&pReaders[i]);
  1.1217 +  }
  1.1218 +  /* Conservatively size output to sum of inputs.  Output should end
  1.1219 +  ** up strictly smaller than input.
  1.1220 +  */
  1.1221 +  dataBufferExpand(out, n);
  1.1222 +
  1.1223 +  /* Get the readers into sorted order. */
  1.1224 +  while( i-->0 ){
  1.1225 +    orderedDLReaderReorder(readers+i, nReaders-i);
  1.1226 +  }
  1.1227 +
  1.1228 +  dlwInit(&writer, pReaders[0].iType, out);
  1.1229 +  while( !dlrAtEnd(readers[0].pReader) ){
  1.1230 +    sqlite_int64 iDocid = dlrDocid(readers[0].pReader);
  1.1231 +
  1.1232 +    /* If this is a continuation of the current buffer to copy, extend
  1.1233 +    ** that buffer.  memcpy() seems to be more efficient if it has a
  1.1234 +    ** lots of data to copy.
  1.1235 +    */
  1.1236 +    if( dlrDocData(readers[0].pReader)==pStart+nStart ){
  1.1237 +      nStart += dlrDocDataBytes(readers[0].pReader);
  1.1238 +    }else{
  1.1239 +      if( pStart!=0 ){
  1.1240 +        dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
  1.1241 +      }
  1.1242 +      pStart = dlrDocData(readers[0].pReader);
  1.1243 +      nStart = dlrDocDataBytes(readers[0].pReader);
  1.1244 +      iFirstDocid = iDocid;
  1.1245 +    }
  1.1246 +    iLastDocid = iDocid;
  1.1247 +    dlrStep(readers[0].pReader);
  1.1248 +
  1.1249 +    /* Drop all of the older elements with the same docid. */
  1.1250 +    for(i=1; i<nReaders &&
  1.1251 +             !dlrAtEnd(readers[i].pReader) &&
  1.1252 +             dlrDocid(readers[i].pReader)==iDocid; i++){
  1.1253 +      dlrStep(readers[i].pReader);
  1.1254 +    }
  1.1255 +
  1.1256 +    /* Get the readers back into order. */
  1.1257 +    while( i-->0 ){
  1.1258 +      orderedDLReaderReorder(readers+i, nReaders-i);
  1.1259 +    }
  1.1260 +  }
  1.1261 +
  1.1262 +  /* Copy over any remaining elements. */
  1.1263 +  if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid);
  1.1264 +  dlwDestroy(&writer);
  1.1265 +}
  1.1266 +
  1.1267 +/* Helper function for posListUnion().  Compares the current position
  1.1268 +** between left and right, returning as standard C idiom of <0 if
  1.1269 +** left<right, >0 if left>right, and 0 if left==right.  "End" always
  1.1270 +** compares greater.
  1.1271 +*/
  1.1272 +static int posListCmp(PLReader *pLeft, PLReader *pRight){
  1.1273 +  assert( pLeft->iType==pRight->iType );
  1.1274 +  if( pLeft->iType==DL_DOCIDS ) return 0;
  1.1275 +
  1.1276 +  if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1;
  1.1277 +  if( plrAtEnd(pRight) ) return -1;
  1.1278 +
  1.1279 +  if( plrColumn(pLeft)<plrColumn(pRight) ) return -1;
  1.1280 +  if( plrColumn(pLeft)>plrColumn(pRight) ) return 1;
  1.1281 +
  1.1282 +  if( plrPosition(pLeft)<plrPosition(pRight) ) return -1;
  1.1283 +  if( plrPosition(pLeft)>plrPosition(pRight) ) return 1;
  1.1284 +  if( pLeft->iType==DL_POSITIONS ) return 0;
  1.1285 +
  1.1286 +  if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1;
  1.1287 +  if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1;
  1.1288 +
  1.1289 +  if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1;
  1.1290 +  if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1;
  1.1291 +
  1.1292 +  return 0;
  1.1293 +}
  1.1294 +
  1.1295 +/* Write the union of position lists in pLeft and pRight to pOut.
  1.1296 +** "Union" in this case meaning "All unique position tuples".  Should
  1.1297 +** work with any doclist type, though both inputs and the output
  1.1298 +** should be the same type.
  1.1299 +*/
  1.1300 +static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){
  1.1301 +  PLReader left, right;
  1.1302 +  PLWriter writer;
  1.1303 +
  1.1304 +  assert( dlrDocid(pLeft)==dlrDocid(pRight) );
  1.1305 +  assert( pLeft->iType==pRight->iType );
  1.1306 +  assert( pLeft->iType==pOut->iType );
  1.1307 +
  1.1308 +  plrInit(&left, pLeft);
  1.1309 +  plrInit(&right, pRight);
  1.1310 +  plwInit(&writer, pOut, dlrDocid(pLeft));
  1.1311 +
  1.1312 +  while( !plrAtEnd(&left) || !plrAtEnd(&right) ){
  1.1313 +    int c = posListCmp(&left, &right);
  1.1314 +    if( c<0 ){
  1.1315 +      plwCopy(&writer, &left);
  1.1316 +      plrStep(&left);
  1.1317 +    }else if( c>0 ){
  1.1318 +      plwCopy(&writer, &right);
  1.1319 +      plrStep(&right);
  1.1320 +    }else{
  1.1321 +      plwCopy(&writer, &left);
  1.1322 +      plrStep(&left);
  1.1323 +      plrStep(&right);
  1.1324 +    }
  1.1325 +  }
  1.1326 +
  1.1327 +  plwTerminate(&writer);
  1.1328 +  plwDestroy(&writer);
  1.1329 +  plrDestroy(&left);
  1.1330 +  plrDestroy(&right);
  1.1331 +}
  1.1332 +
  1.1333 +/* Write the union of doclists in pLeft and pRight to pOut.  For
  1.1334 +** docids in common between the inputs, the union of the position
  1.1335 +** lists is written.  Inputs and outputs are always type DL_DEFAULT.
  1.1336 +*/
  1.1337 +static void docListUnion(
  1.1338 +  const char *pLeft, int nLeft,
  1.1339 +  const char *pRight, int nRight,
  1.1340 +  DataBuffer *pOut      /* Write the combined doclist here */
  1.1341 +){
  1.1342 +  DLReader left, right;
  1.1343 +  DLWriter writer;
  1.1344 +
  1.1345 +  if( nLeft==0 ){
  1.1346 +    if( nRight!=0) dataBufferAppend(pOut, pRight, nRight);
  1.1347 +    return;
  1.1348 +  }
  1.1349 +  if( nRight==0 ){
  1.1350 +    dataBufferAppend(pOut, pLeft, nLeft);
  1.1351 +    return;
  1.1352 +  }
  1.1353 +
  1.1354 +  dlrInit(&left, DL_DEFAULT, pLeft, nLeft);
  1.1355 +  dlrInit(&right, DL_DEFAULT, pRight, nRight);
  1.1356 +  dlwInit(&writer, DL_DEFAULT, pOut);
  1.1357 +
  1.1358 +  while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
  1.1359 +    if( dlrAtEnd(&right) ){
  1.1360 +      dlwCopy(&writer, &left);
  1.1361 +      dlrStep(&left);
  1.1362 +    }else if( dlrAtEnd(&left) ){
  1.1363 +      dlwCopy(&writer, &right);
  1.1364 +      dlrStep(&right);
  1.1365 +    }else if( dlrDocid(&left)<dlrDocid(&right) ){
  1.1366 +      dlwCopy(&writer, &left);
  1.1367 +      dlrStep(&left);
  1.1368 +    }else if( dlrDocid(&left)>dlrDocid(&right) ){
  1.1369 +      dlwCopy(&writer, &right);
  1.1370 +      dlrStep(&right);
  1.1371 +    }else{
  1.1372 +      posListUnion(&left, &right, &writer);
  1.1373 +      dlrStep(&left);
  1.1374 +      dlrStep(&right);
  1.1375 +    }
  1.1376 +  }
  1.1377 +
  1.1378 +  dlrDestroy(&left);
  1.1379 +  dlrDestroy(&right);
  1.1380 +  dlwDestroy(&writer);
  1.1381 +}
  1.1382 +
  1.1383 +/* 
  1.1384 +** This function is used as part of the implementation of phrase and
  1.1385 +** NEAR matching.
  1.1386 +**
  1.1387 +** pLeft and pRight are DLReaders positioned to the same docid in
  1.1388 +** lists of type DL_POSITION. This function writes an entry to the
  1.1389 +** DLWriter pOut for each position in pRight that is less than
  1.1390 +** (nNear+1) greater (but not equal to or smaller) than a position 
  1.1391 +** in pLeft. For example, if nNear is 0, and the positions contained
  1.1392 +** by pLeft and pRight are:
  1.1393 +**
  1.1394 +**    pLeft:  5 10 15 20
  1.1395 +**    pRight: 6  9 17 21
  1.1396 +**
  1.1397 +** then the docid is added to pOut. If pOut is of type DL_POSITIONS,
  1.1398 +** then a positionids "6" and "21" are also added to pOut.
  1.1399 +**
  1.1400 +** If boolean argument isSaveLeft is true, then positionids are copied
  1.1401 +** from pLeft instead of pRight. In the example above, the positions "5"
  1.1402 +** and "20" would be added instead of "6" and "21".
  1.1403 +*/
  1.1404 +static void posListPhraseMerge(
  1.1405 +  DLReader *pLeft, 
  1.1406 +  DLReader *pRight,
  1.1407 +  int nNear,
  1.1408 +  int isSaveLeft,
  1.1409 +  DLWriter *pOut
  1.1410 +){
  1.1411 +  PLReader left, right;
  1.1412 +  PLWriter writer;
  1.1413 +  int match = 0;
  1.1414 +
  1.1415 +  assert( dlrDocid(pLeft)==dlrDocid(pRight) );
  1.1416 +  assert( pOut->iType!=DL_POSITIONS_OFFSETS );
  1.1417 +
  1.1418 +  plrInit(&left, pLeft);
  1.1419 +  plrInit(&right, pRight);
  1.1420 +
  1.1421 +  while( !plrAtEnd(&left) && !plrAtEnd(&right) ){
  1.1422 +    if( plrColumn(&left)<plrColumn(&right) ){
  1.1423 +      plrStep(&left);
  1.1424 +    }else if( plrColumn(&left)>plrColumn(&right) ){
  1.1425 +      plrStep(&right);
  1.1426 +    }else if( plrPosition(&left)>=plrPosition(&right) ){
  1.1427 +      plrStep(&right);
  1.1428 +    }else{
  1.1429 +      if( (plrPosition(&right)-plrPosition(&left))<=(nNear+1) ){
  1.1430 +        if( !match ){
  1.1431 +          plwInit(&writer, pOut, dlrDocid(pLeft));
  1.1432 +          match = 1;
  1.1433 +        }
  1.1434 +        if( !isSaveLeft ){
  1.1435 +          plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0);
  1.1436 +        }else{
  1.1437 +          plwAdd(&writer, plrColumn(&left), plrPosition(&left), 0, 0);
  1.1438 +        }
  1.1439 +        plrStep(&right);
  1.1440 +      }else{
  1.1441 +        plrStep(&left);
  1.1442 +      }
  1.1443 +    }
  1.1444 +  }
  1.1445 +
  1.1446 +  if( match ){
  1.1447 +    plwTerminate(&writer);
  1.1448 +    plwDestroy(&writer);
  1.1449 +  }
  1.1450 +
  1.1451 +  plrDestroy(&left);
  1.1452 +  plrDestroy(&right);
  1.1453 +}
  1.1454 +
  1.1455 +/*
  1.1456 +** Compare the values pointed to by the PLReaders passed as arguments. 
  1.1457 +** Return -1 if the value pointed to by pLeft is considered less than
  1.1458 +** the value pointed to by pRight, +1 if it is considered greater
  1.1459 +** than it, or 0 if it is equal. i.e.
  1.1460 +**
  1.1461 +**     (*pLeft - *pRight)
  1.1462 +**
  1.1463 +** A PLReader that is in the EOF condition is considered greater than
  1.1464 +** any other. If neither argument is in EOF state, the return value of
  1.1465 +** plrColumn() is used. If the plrColumn() values are equal, the
  1.1466 +** comparison is on the basis of plrPosition().
  1.1467 +*/
  1.1468 +static int plrCompare(PLReader *pLeft, PLReader *pRight){
  1.1469 +  assert(!plrAtEnd(pLeft) || !plrAtEnd(pRight));
  1.1470 +
  1.1471 +  if( plrAtEnd(pRight) || plrAtEnd(pLeft) ){
  1.1472 +    return (plrAtEnd(pRight) ? -1 : 1);
  1.1473 +  }
  1.1474 +  if( plrColumn(pLeft)!=plrColumn(pRight) ){
  1.1475 +    return ((plrColumn(pLeft)<plrColumn(pRight)) ? -1 : 1);
  1.1476 +  }
  1.1477 +  if( plrPosition(pLeft)!=plrPosition(pRight) ){
  1.1478 +    return ((plrPosition(pLeft)<plrPosition(pRight)) ? -1 : 1);
  1.1479 +  }
  1.1480 +  return 0;
  1.1481 +}
  1.1482 +
  1.1483 +/* We have two doclists with positions:  pLeft and pRight. Depending
  1.1484 +** on the value of the nNear parameter, perform either a phrase
  1.1485 +** intersection (if nNear==0) or a NEAR intersection (if nNear>0)
  1.1486 +** and write the results into pOut.
  1.1487 +**
  1.1488 +** A phrase intersection means that two documents only match
  1.1489 +** if pLeft.iPos+1==pRight.iPos.
  1.1490 +**
  1.1491 +** A NEAR intersection means that two documents only match if 
  1.1492 +** (abs(pLeft.iPos-pRight.iPos)<nNear).
  1.1493 +**
  1.1494 +** If a NEAR intersection is requested, then the nPhrase argument should
  1.1495 +** be passed the number of tokens in the two operands to the NEAR operator
  1.1496 +** combined. For example:
  1.1497 +**
  1.1498 +**       Query syntax               nPhrase
  1.1499 +**      ------------------------------------
  1.1500 +**       "A B C" NEAR "D E"         5
  1.1501 +**       A NEAR B                   2
  1.1502 +**
  1.1503 +** iType controls the type of data written to pOut.  If iType is
  1.1504 +** DL_POSITIONS, the positions are those from pRight.
  1.1505 +*/
  1.1506 +static void docListPhraseMerge(
  1.1507 +  const char *pLeft, int nLeft,
  1.1508 +  const char *pRight, int nRight,
  1.1509 +  int nNear,            /* 0 for a phrase merge, non-zero for a NEAR merge */
  1.1510 +  int nPhrase,          /* Number of tokens in left+right operands to NEAR */
  1.1511 +  DocListType iType,    /* Type of doclist to write to pOut */
  1.1512 +  DataBuffer *pOut      /* Write the combined doclist here */
  1.1513 +){
  1.1514 +  DLReader left, right;
  1.1515 +  DLWriter writer;
  1.1516 +
  1.1517 +  if( nLeft==0 || nRight==0 ) return;
  1.1518 +
  1.1519 +  assert( iType!=DL_POSITIONS_OFFSETS );
  1.1520 +
  1.1521 +  dlrInit(&left, DL_POSITIONS, pLeft, nLeft);
  1.1522 +  dlrInit(&right, DL_POSITIONS, pRight, nRight);
  1.1523 +  dlwInit(&writer, iType, pOut);
  1.1524 +
  1.1525 +  while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
  1.1526 +    if( dlrDocid(&left)<dlrDocid(&right) ){
  1.1527 +      dlrStep(&left);
  1.1528 +    }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1.1529 +      dlrStep(&right);
  1.1530 +    }else{
  1.1531 +      if( nNear==0 ){
  1.1532 +        posListPhraseMerge(&left, &right, 0, 0, &writer);
  1.1533 +      }else{
  1.1534 +        /* This case occurs when two terms (simple terms or phrases) are
  1.1535 +         * connected by a NEAR operator, span (nNear+1). i.e.
  1.1536 +         *
  1.1537 +         *     '"terrible company" NEAR widget'
  1.1538 +         */
  1.1539 +        DataBuffer one = {0, 0, 0};
  1.1540 +        DataBuffer two = {0, 0, 0};
  1.1541 +
  1.1542 +        DLWriter dlwriter2;
  1.1543 +        DLReader dr1 = {0, 0, 0, 0, 0}; 
  1.1544 +        DLReader dr2 = {0, 0, 0, 0, 0};
  1.1545 +
  1.1546 +        dlwInit(&dlwriter2, iType, &one);
  1.1547 +        posListPhraseMerge(&right, &left, nNear-3+nPhrase, 1, &dlwriter2);
  1.1548 +        dlwInit(&dlwriter2, iType, &two);
  1.1549 +        posListPhraseMerge(&left, &right, nNear-1, 0, &dlwriter2);
  1.1550 +
  1.1551 +        if( one.nData) dlrInit(&dr1, iType, one.pData, one.nData);
  1.1552 +        if( two.nData) dlrInit(&dr2, iType, two.pData, two.nData);
  1.1553 +
  1.1554 +        if( !dlrAtEnd(&dr1) || !dlrAtEnd(&dr2) ){
  1.1555 +          PLReader pr1 = {0};
  1.1556 +          PLReader pr2 = {0};
  1.1557 +
  1.1558 +          PLWriter plwriter;
  1.1559 +          plwInit(&plwriter, &writer, dlrDocid(dlrAtEnd(&dr1)?&dr2:&dr1));
  1.1560 +
  1.1561 +          if( one.nData ) plrInit(&pr1, &dr1);
  1.1562 +          if( two.nData ) plrInit(&pr2, &dr2);
  1.1563 +          while( !plrAtEnd(&pr1) || !plrAtEnd(&pr2) ){
  1.1564 +            int iCompare = plrCompare(&pr1, &pr2);
  1.1565 +            switch( iCompare ){
  1.1566 +              case -1:
  1.1567 +                plwCopy(&plwriter, &pr1);
  1.1568 +                plrStep(&pr1);
  1.1569 +                break;
  1.1570 +              case 1:
  1.1571 +                plwCopy(&plwriter, &pr2);
  1.1572 +                plrStep(&pr2);
  1.1573 +                break;
  1.1574 +              case 0:
  1.1575 +                plwCopy(&plwriter, &pr1);
  1.1576 +                plrStep(&pr1);
  1.1577 +                plrStep(&pr2);
  1.1578 +                break;
  1.1579 +            }
  1.1580 +          }
  1.1581 +          plwTerminate(&plwriter);
  1.1582 +        }
  1.1583 +        dataBufferDestroy(&one);
  1.1584 +        dataBufferDestroy(&two);
  1.1585 +      }
  1.1586 +      dlrStep(&left);
  1.1587 +      dlrStep(&right);
  1.1588 +    }
  1.1589 +  }
  1.1590 +
  1.1591 +  dlrDestroy(&left);
  1.1592 +  dlrDestroy(&right);
  1.1593 +  dlwDestroy(&writer);
  1.1594 +}
  1.1595 +
  1.1596 +/* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1.1597 +** Write the intersection of these two doclists into pOut as a
  1.1598 +** DL_DOCIDS doclist.
  1.1599 +*/
  1.1600 +static void docListAndMerge(
  1.1601 +  const char *pLeft, int nLeft,
  1.1602 +  const char *pRight, int nRight,
  1.1603 +  DataBuffer *pOut      /* Write the combined doclist here */
  1.1604 +){
  1.1605 +  DLReader left, right;
  1.1606 +  DLWriter writer;
  1.1607 +
  1.1608 +  if( nLeft==0 || nRight==0 ) return;
  1.1609 +
  1.1610 +  dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1.1611 +  dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1.1612 +  dlwInit(&writer, DL_DOCIDS, pOut);
  1.1613 +
  1.1614 +  while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){
  1.1615 +    if( dlrDocid(&left)<dlrDocid(&right) ){
  1.1616 +      dlrStep(&left);
  1.1617 +    }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1.1618 +      dlrStep(&right);
  1.1619 +    }else{
  1.1620 +      dlwAdd(&writer, dlrDocid(&left));
  1.1621 +      dlrStep(&left);
  1.1622 +      dlrStep(&right);
  1.1623 +    }
  1.1624 +  }
  1.1625 +
  1.1626 +  dlrDestroy(&left);
  1.1627 +  dlrDestroy(&right);
  1.1628 +  dlwDestroy(&writer);
  1.1629 +}
  1.1630 +
  1.1631 +/* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1.1632 +** Write the union of these two doclists into pOut as a
  1.1633 +** DL_DOCIDS doclist.
  1.1634 +*/
  1.1635 +static void docListOrMerge(
  1.1636 +  const char *pLeft, int nLeft,
  1.1637 +  const char *pRight, int nRight,
  1.1638 +  DataBuffer *pOut      /* Write the combined doclist here */
  1.1639 +){
  1.1640 +  DLReader left, right;
  1.1641 +  DLWriter writer;
  1.1642 +
  1.1643 +  if( nLeft==0 ){
  1.1644 +    if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight);
  1.1645 +    return;
  1.1646 +  }
  1.1647 +  if( nRight==0 ){
  1.1648 +    dataBufferAppend(pOut, pLeft, nLeft);
  1.1649 +    return;
  1.1650 +  }
  1.1651 +
  1.1652 +  dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1.1653 +  dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1.1654 +  dlwInit(&writer, DL_DOCIDS, pOut);
  1.1655 +
  1.1656 +  while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){
  1.1657 +    if( dlrAtEnd(&right) ){
  1.1658 +      dlwAdd(&writer, dlrDocid(&left));
  1.1659 +      dlrStep(&left);
  1.1660 +    }else if( dlrAtEnd(&left) ){
  1.1661 +      dlwAdd(&writer, dlrDocid(&right));
  1.1662 +      dlrStep(&right);
  1.1663 +    }else if( dlrDocid(&left)<dlrDocid(&right) ){
  1.1664 +      dlwAdd(&writer, dlrDocid(&left));
  1.1665 +      dlrStep(&left);
  1.1666 +    }else if( dlrDocid(&right)<dlrDocid(&left) ){
  1.1667 +      dlwAdd(&writer, dlrDocid(&right));
  1.1668 +      dlrStep(&right);
  1.1669 +    }else{
  1.1670 +      dlwAdd(&writer, dlrDocid(&left));
  1.1671 +      dlrStep(&left);
  1.1672 +      dlrStep(&right);
  1.1673 +    }
  1.1674 +  }
  1.1675 +
  1.1676 +  dlrDestroy(&left);
  1.1677 +  dlrDestroy(&right);
  1.1678 +  dlwDestroy(&writer);
  1.1679 +}
  1.1680 +
  1.1681 +/* We have two DL_DOCIDS doclists:  pLeft and pRight.
  1.1682 +** Write into pOut as DL_DOCIDS doclist containing all documents that
  1.1683 +** occur in pLeft but not in pRight.
  1.1684 +*/
  1.1685 +static void docListExceptMerge(
  1.1686 +  const char *pLeft, int nLeft,
  1.1687 +  const char *pRight, int nRight,
  1.1688 +  DataBuffer *pOut      /* Write the combined doclist here */
  1.1689 +){
  1.1690 +  DLReader left, right;
  1.1691 +  DLWriter writer;
  1.1692 +
  1.1693 +  if( nLeft==0 ) return;
  1.1694 +  if( nRight==0 ){
  1.1695 +    dataBufferAppend(pOut, pLeft, nLeft);
  1.1696 +    return;
  1.1697 +  }
  1.1698 +
  1.1699 +  dlrInit(&left, DL_DOCIDS, pLeft, nLeft);
  1.1700 +  dlrInit(&right, DL_DOCIDS, pRight, nRight);
  1.1701 +  dlwInit(&writer, DL_DOCIDS, pOut);
  1.1702 +
  1.1703 +  while( !dlrAtEnd(&left) ){
  1.1704 +    while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){
  1.1705 +      dlrStep(&right);
  1.1706 +    }
  1.1707 +    if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){
  1.1708 +      dlwAdd(&writer, dlrDocid(&left));
  1.1709 +    }
  1.1710 +    dlrStep(&left);
  1.1711 +  }
  1.1712 +
  1.1713 +  dlrDestroy(&left);
  1.1714 +  dlrDestroy(&right);
  1.1715 +  dlwDestroy(&writer);
  1.1716 +}
  1.1717 +
  1.1718 +static char *string_dup_n(const char *s, int n){
  1.1719 +  char *str = sqlite3_malloc(n + 1);
  1.1720 +  memcpy(str, s, n);
  1.1721 +  str[n] = '\0';
  1.1722 +  return str;
  1.1723 +}
  1.1724 +
  1.1725 +/* Duplicate a string; the caller must free() the returned string.
  1.1726 + * (We don't use strdup() since it is not part of the standard C library and
  1.1727 + * may not be available everywhere.) */
  1.1728 +static char *string_dup(const char *s){
  1.1729 +  return string_dup_n(s, strlen(s));
  1.1730 +}
  1.1731 +
  1.1732 +/* Format a string, replacing each occurrence of the % character with
  1.1733 + * zDb.zName.  This may be more convenient than sqlite_mprintf()
  1.1734 + * when one string is used repeatedly in a format string.
  1.1735 + * The caller must free() the returned string. */
  1.1736 +static char *string_format(const char *zFormat,
  1.1737 +                           const char *zDb, const char *zName){
  1.1738 +  const char *p;
  1.1739 +  size_t len = 0;
  1.1740 +  size_t nDb = strlen(zDb);
  1.1741 +  size_t nName = strlen(zName);
  1.1742 +  size_t nFullTableName = nDb+1+nName;
  1.1743 +  char *result;
  1.1744 +  char *r;
  1.1745 +
  1.1746 +  /* first compute length needed */
  1.1747 +  for(p = zFormat ; *p ; ++p){
  1.1748 +    len += (*p=='%' ? nFullTableName : 1);
  1.1749 +  }
  1.1750 +  len += 1;  /* for null terminator */
  1.1751 +
  1.1752 +  r = result = sqlite3_malloc(len);
  1.1753 +  for(p = zFormat; *p; ++p){
  1.1754 +    if( *p=='%' ){
  1.1755 +      memcpy(r, zDb, nDb);
  1.1756 +      r += nDb;
  1.1757 +      *r++ = '.';
  1.1758 +      memcpy(r, zName, nName);
  1.1759 +      r += nName;
  1.1760 +    } else {
  1.1761 +      *r++ = *p;
  1.1762 +    }
  1.1763 +  }
  1.1764 +  *r++ = '\0';
  1.1765 +  assert( r == result + len );
  1.1766 +  return result;
  1.1767 +}
  1.1768 +
  1.1769 +static int sql_exec(sqlite3 *db, const char *zDb, const char *zName,
  1.1770 +                    const char *zFormat){
  1.1771 +  char *zCommand = string_format(zFormat, zDb, zName);
  1.1772 +  int rc;
  1.1773 +  FTSTRACE(("FTS3 sql: %s\n", zCommand));
  1.1774 +  rc = sqlite3_exec(db, zCommand, NULL, 0, NULL);
  1.1775 +  sqlite3_free(zCommand);
  1.1776 +  return rc;
  1.1777 +}
  1.1778 +
  1.1779 +static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName,
  1.1780 +                       sqlite3_stmt **ppStmt, const char *zFormat){
  1.1781 +  char *zCommand = string_format(zFormat, zDb, zName);
  1.1782 +  int rc;
  1.1783 +  FTSTRACE(("FTS3 prepare: %s\n", zCommand));
  1.1784 +  rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL);
  1.1785 +  sqlite3_free(zCommand);
  1.1786 +  return rc;
  1.1787 +}
  1.1788 +
  1.1789 +/* end utility functions */
  1.1790 +
  1.1791 +/* Forward reference */
  1.1792 +typedef struct fulltext_vtab fulltext_vtab;
  1.1793 +
  1.1794 +/* A single term in a query is represented by an instances of
  1.1795 +** the following structure. Each word which may match against
  1.1796 +** document content is a term. Operators, like NEAR or OR, are
  1.1797 +** not terms. Query terms are organized as a flat list stored
  1.1798 +** in the Query.pTerms array.
  1.1799 +**
  1.1800 +** If the QueryTerm.nPhrase variable is non-zero, then the QueryTerm
  1.1801 +** is the first in a contiguous string of terms that are either part
  1.1802 +** of the same phrase, or connected by the NEAR operator.
  1.1803 +**
  1.1804 +** If the QueryTerm.nNear variable is non-zero, then the token is followed 
  1.1805 +** by a NEAR operator with span set to (nNear-1). For example, the 
  1.1806 +** following query:
  1.1807 +**
  1.1808 +** The QueryTerm.iPhrase variable stores the index of the token within
  1.1809 +** its phrase, indexed starting at 1, or 1 if the token is not part 
  1.1810 +** of any phrase.
  1.1811 +**
  1.1812 +** For example, the data structure used to represent the following query:
  1.1813 +**
  1.1814 +**     ... MATCH 'sqlite NEAR/5 google NEAR/2 "search engine"'
  1.1815 +**
  1.1816 +** is:
  1.1817 +**
  1.1818 +**     {nPhrase=4, iPhrase=1, nNear=6, pTerm="sqlite"},
  1.1819 +**     {nPhrase=0, iPhrase=1, nNear=3, pTerm="google"},
  1.1820 +**     {nPhrase=0, iPhrase=1, nNear=0, pTerm="search"},
  1.1821 +**     {nPhrase=0, iPhrase=2, nNear=0, pTerm="engine"},
  1.1822 +**
  1.1823 +** compiling the FTS3 syntax to Query structures is done by the parseQuery()
  1.1824 +** function.
  1.1825 +*/
  1.1826 +typedef struct QueryTerm {
  1.1827 +  short int nPhrase; /* How many following terms are part of the same phrase */
  1.1828 +  short int iPhrase; /* This is the i-th term of a phrase. */
  1.1829 +  short int iColumn; /* Column of the index that must match this term */
  1.1830 +  short int nNear;   /* term followed by a NEAR operator with span=(nNear-1) */
  1.1831 +  signed char isOr;  /* this term is preceded by "OR" */
  1.1832 +  signed char isNot; /* this term is preceded by "-" */
  1.1833 +  signed char isPrefix; /* this term is followed by "*" */
  1.1834 +  char *pTerm;       /* text of the term.  '\000' terminated.  malloced */
  1.1835 +  int nTerm;         /* Number of bytes in pTerm[] */
  1.1836 +} QueryTerm;
  1.1837 +
  1.1838 +
  1.1839 +/* A query string is parsed into a Query structure.
  1.1840 + *
  1.1841 + * We could, in theory, allow query strings to be complicated
  1.1842 + * nested expressions with precedence determined by parentheses.
  1.1843 + * But none of the major search engines do this.  (Perhaps the
  1.1844 + * feeling is that an parenthesized expression is two complex of
  1.1845 + * an idea for the average user to grasp.)  Taking our lead from
  1.1846 + * the major search engines, we will allow queries to be a list
  1.1847 + * of terms (with an implied AND operator) or phrases in double-quotes,
  1.1848 + * with a single optional "-" before each non-phrase term to designate
  1.1849 + * negation and an optional OR connector.
  1.1850 + *
  1.1851 + * OR binds more tightly than the implied AND, which is what the
  1.1852 + * major search engines seem to do.  So, for example:
  1.1853 + * 
  1.1854 + *    [one two OR three]     ==>    one AND (two OR three)
  1.1855 + *    [one OR two three]     ==>    (one OR two) AND three
  1.1856 + *
  1.1857 + * A "-" before a term matches all entries that lack that term.
  1.1858 + * The "-" must occur immediately before the term with in intervening
  1.1859 + * space.  This is how the search engines do it.
  1.1860 + *
  1.1861 + * A NOT term cannot be the right-hand operand of an OR.  If this
  1.1862 + * occurs in the query string, the NOT is ignored:
  1.1863 + *
  1.1864 + *    [one OR -two]          ==>    one OR two
  1.1865 + *
  1.1866 + */
  1.1867 +typedef struct Query {
  1.1868 +  fulltext_vtab *pFts;  /* The full text index */
  1.1869 +  int nTerms;           /* Number of terms in the query */
  1.1870 +  QueryTerm *pTerms;    /* Array of terms.  Space obtained from malloc() */
  1.1871 +  int nextIsOr;         /* Set the isOr flag on the next inserted term */
  1.1872 +  int nextIsNear;       /* Set the isOr flag on the next inserted term */
  1.1873 +  int nextColumn;       /* Next word parsed must be in this column */
  1.1874 +  int dfltColumn;       /* The default column */
  1.1875 +} Query;
  1.1876 +
  1.1877 +
  1.1878 +/*
  1.1879 +** An instance of the following structure keeps track of generated
  1.1880 +** matching-word offset information and snippets.
  1.1881 +*/
  1.1882 +typedef struct Snippet {
  1.1883 +  int nMatch;     /* Total number of matches */
  1.1884 +  int nAlloc;     /* Space allocated for aMatch[] */
  1.1885 +  struct snippetMatch { /* One entry for each matching term */
  1.1886 +    char snStatus;       /* Status flag for use while constructing snippets */
  1.1887 +    short int iCol;      /* The column that contains the match */
  1.1888 +    short int iTerm;     /* The index in Query.pTerms[] of the matching term */
  1.1889 +    int iToken;          /* The index of the matching document token */
  1.1890 +    short int nByte;     /* Number of bytes in the term */
  1.1891 +    int iStart;          /* The offset to the first character of the term */
  1.1892 +  } *aMatch;      /* Points to space obtained from malloc */
  1.1893 +  char *zOffset;  /* Text rendering of aMatch[] */
  1.1894 +  int nOffset;    /* strlen(zOffset) */
  1.1895 +  char *zSnippet; /* Snippet text */
  1.1896 +  int nSnippet;   /* strlen(zSnippet) */
  1.1897 +} Snippet;
  1.1898 +
  1.1899 +
  1.1900 +typedef enum QueryType {
  1.1901 +  QUERY_GENERIC,   /* table scan */
  1.1902 +  QUERY_DOCID,     /* lookup by docid */
  1.1903 +  QUERY_FULLTEXT   /* QUERY_FULLTEXT + [i] is a full-text search for column i*/
  1.1904 +} QueryType;
  1.1905 +
  1.1906 +typedef enum fulltext_statement {
  1.1907 +  CONTENT_INSERT_STMT,
  1.1908 +  CONTENT_SELECT_STMT,
  1.1909 +  CONTENT_UPDATE_STMT,
  1.1910 +  CONTENT_DELETE_STMT,
  1.1911 +  CONTENT_EXISTS_STMT,
  1.1912 +
  1.1913 +  BLOCK_INSERT_STMT,
  1.1914 +  BLOCK_SELECT_STMT,
  1.1915 +  BLOCK_DELETE_STMT,
  1.1916 +  BLOCK_DELETE_ALL_STMT,
  1.1917 +
  1.1918 +  SEGDIR_MAX_INDEX_STMT,
  1.1919 +  SEGDIR_SET_STMT,
  1.1920 +  SEGDIR_SELECT_LEVEL_STMT,
  1.1921 +  SEGDIR_SPAN_STMT,
  1.1922 +  SEGDIR_DELETE_STMT,
  1.1923 +  SEGDIR_SELECT_SEGMENT_STMT,
  1.1924 +  SEGDIR_SELECT_ALL_STMT,
  1.1925 +  SEGDIR_DELETE_ALL_STMT,
  1.1926 +  SEGDIR_COUNT_STMT,
  1.1927 +
  1.1928 +  MAX_STMT                     /* Always at end! */
  1.1929 +} fulltext_statement;
  1.1930 +
  1.1931 +/* These must exactly match the enum above. */
  1.1932 +/* TODO(shess): Is there some risk that a statement will be used in two
  1.1933 +** cursors at once, e.g.  if a query joins a virtual table to itself?
  1.1934 +** If so perhaps we should move some of these to the cursor object.
  1.1935 +*/
  1.1936 +static const char *const fulltext_zStatement[MAX_STMT] = {
  1.1937 +  /* CONTENT_INSERT */ NULL,  /* generated in contentInsertStatement() */
  1.1938 +  /* CONTENT_SELECT */ NULL,  /* generated in contentSelectStatement() */
  1.1939 +  /* CONTENT_UPDATE */ NULL,  /* generated in contentUpdateStatement() */
  1.1940 +  /* CONTENT_DELETE */ "delete from %_content where docid = ?",
  1.1941 +  /* CONTENT_EXISTS */ "select docid from %_content limit 1",
  1.1942 +
  1.1943 +  /* BLOCK_INSERT */
  1.1944 +  "insert into %_segments (blockid, block) values (null, ?)",
  1.1945 +  /* BLOCK_SELECT */ "select block from %_segments where blockid = ?",
  1.1946 +  /* BLOCK_DELETE */ "delete from %_segments where blockid between ? and ?",
  1.1947 +  /* BLOCK_DELETE_ALL */ "delete from %_segments",
  1.1948 +
  1.1949 +  /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?",
  1.1950 +  /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)",
  1.1951 +  /* SEGDIR_SELECT_LEVEL */
  1.1952 +  "select start_block, leaves_end_block, root from %_segdir "
  1.1953 +  " where level = ? order by idx",
  1.1954 +  /* SEGDIR_SPAN */
  1.1955 +  "select min(start_block), max(end_block) from %_segdir "
  1.1956 +  " where level = ? and start_block <> 0",
  1.1957 +  /* SEGDIR_DELETE */ "delete from %_segdir where level = ?",
  1.1958 +
  1.1959 +  /* NOTE(shess): The first three results of the following two
  1.1960 +  ** statements must match.
  1.1961 +  */
  1.1962 +  /* SEGDIR_SELECT_SEGMENT */
  1.1963 +  "select start_block, leaves_end_block, root from %_segdir "
  1.1964 +  " where level = ? and idx = ?",
  1.1965 +  /* SEGDIR_SELECT_ALL */
  1.1966 +  "select start_block, leaves_end_block, root from %_segdir "
  1.1967 +  " order by level desc, idx asc",
  1.1968 +  /* SEGDIR_DELETE_ALL */ "delete from %_segdir",
  1.1969 +  /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir",
  1.1970 +};
  1.1971 +
  1.1972 +/*
  1.1973 +** A connection to a fulltext index is an instance of the following
  1.1974 +** structure.  The xCreate and xConnect methods create an instance
  1.1975 +** of this structure and xDestroy and xDisconnect free that instance.
  1.1976 +** All other methods receive a pointer to the structure as one of their
  1.1977 +** arguments.
  1.1978 +*/
  1.1979 +struct fulltext_vtab {
  1.1980 +  sqlite3_vtab base;               /* Base class used by SQLite core */
  1.1981 +  sqlite3 *db;                     /* The database connection */
  1.1982 +  const char *zDb;                 /* logical database name */
  1.1983 +  const char *zName;               /* virtual table name */
  1.1984 +  int nColumn;                     /* number of columns in virtual table */
  1.1985 +  char **azColumn;                 /* column names.  malloced */
  1.1986 +  char **azContentColumn;          /* column names in content table; malloced */
  1.1987 +  sqlite3_tokenizer *pTokenizer;   /* tokenizer for inserts and queries */
  1.1988 +
  1.1989 +  /* Precompiled statements which we keep as long as the table is
  1.1990 +  ** open.
  1.1991 +  */
  1.1992 +  sqlite3_stmt *pFulltextStatements[MAX_STMT];
  1.1993 +
  1.1994 +  /* Precompiled statements used for segment merges.  We run a
  1.1995 +  ** separate select across the leaf level of each tree being merged.
  1.1996 +  */
  1.1997 +  sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT];
  1.1998 +  /* The statement used to prepare pLeafSelectStmts. */
  1.1999 +#define LEAF_SELECT \
  1.2000 +  "select block from %_segments where blockid between ? and ? order by blockid"
  1.2001 +
  1.2002 +  /* These buffer pending index updates during transactions.
  1.2003 +  ** nPendingData estimates the memory size of the pending data.  It
  1.2004 +  ** doesn't include the hash-bucket overhead, nor any malloc
  1.2005 +  ** overhead.  When nPendingData exceeds kPendingThreshold, the
  1.2006 +  ** buffer is flushed even before the transaction closes.
  1.2007 +  ** pendingTerms stores the data, and is only valid when nPendingData
  1.2008 +  ** is >=0 (nPendingData<0 means pendingTerms has not been
  1.2009 +  ** initialized).  iPrevDocid is the last docid written, used to make
  1.2010 +  ** certain we're inserting in sorted order.
  1.2011 +  */
  1.2012 +  int nPendingData;
  1.2013 +#define kPendingThreshold (1*1024*1024)
  1.2014 +  sqlite_int64 iPrevDocid;
  1.2015 +  fts3Hash pendingTerms;
  1.2016 +};
  1.2017 +
  1.2018 +/*
  1.2019 +** When the core wants to do a query, it create a cursor using a
  1.2020 +** call to xOpen.  This structure is an instance of a cursor.  It
  1.2021 +** is destroyed by xClose.
  1.2022 +*/
  1.2023 +typedef struct fulltext_cursor {
  1.2024 +  sqlite3_vtab_cursor base;        /* Base class used by SQLite core */
  1.2025 +  QueryType iCursorType;           /* Copy of sqlite3_index_info.idxNum */
  1.2026 +  sqlite3_stmt *pStmt;             /* Prepared statement in use by the cursor */
  1.2027 +  int eof;                         /* True if at End Of Results */
  1.2028 +  Query q;                         /* Parsed query string */
  1.2029 +  Snippet snippet;                 /* Cached snippet for the current row */
  1.2030 +  int iColumn;                     /* Column being searched */
  1.2031 +  DataBuffer result;               /* Doclist results from fulltextQuery */
  1.2032 +  DLReader reader;                 /* Result reader if result not empty */
  1.2033 +} fulltext_cursor;
  1.2034 +
  1.2035 +static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){
  1.2036 +  return (fulltext_vtab *) c->base.pVtab;
  1.2037 +}
  1.2038 +
  1.2039 +static const sqlite3_module fts3Module;   /* forward declaration */
  1.2040 +
  1.2041 +/* Return a dynamically generated statement of the form
  1.2042 + *   insert into %_content (docid, ...) values (?, ...)
  1.2043 + */
  1.2044 +static const char *contentInsertStatement(fulltext_vtab *v){
  1.2045 +  StringBuffer sb;
  1.2046 +  int i;
  1.2047 +
  1.2048 +  initStringBuffer(&sb);
  1.2049 +  append(&sb, "insert into %_content (docid, ");
  1.2050 +  appendList(&sb, v->nColumn, v->azContentColumn);
  1.2051 +  append(&sb, ") values (?");
  1.2052 +  for(i=0; i<v->nColumn; ++i)
  1.2053 +    append(&sb, ", ?");
  1.2054 +  append(&sb, ")");
  1.2055 +  return stringBufferData(&sb);
  1.2056 +}
  1.2057 +
  1.2058 +/* Return a dynamically generated statement of the form
  1.2059 + *   select <content columns> from %_content where docid = ?
  1.2060 + */
  1.2061 +static const char *contentSelectStatement(fulltext_vtab *v){
  1.2062 +  StringBuffer sb;
  1.2063 +  initStringBuffer(&sb);
  1.2064 +  append(&sb, "SELECT ");
  1.2065 +  appendList(&sb, v->nColumn, v->azContentColumn);
  1.2066 +  append(&sb, " FROM %_content WHERE docid = ?");
  1.2067 +  return stringBufferData(&sb);
  1.2068 +}
  1.2069 +
  1.2070 +/* Return a dynamically generated statement of the form
  1.2071 + *   update %_content set [col_0] = ?, [col_1] = ?, ...
  1.2072 + *                    where docid = ?
  1.2073 + */
  1.2074 +static const char *contentUpdateStatement(fulltext_vtab *v){
  1.2075 +  StringBuffer sb;
  1.2076 +  int i;
  1.2077 +
  1.2078 +  initStringBuffer(&sb);
  1.2079 +  append(&sb, "update %_content set ");
  1.2080 +  for(i=0; i<v->nColumn; ++i) {
  1.2081 +    if( i>0 ){
  1.2082 +      append(&sb, ", ");
  1.2083 +    }
  1.2084 +    append(&sb, v->azContentColumn[i]);
  1.2085 +    append(&sb, " = ?");
  1.2086 +  }
  1.2087 +  append(&sb, " where docid = ?");
  1.2088 +  return stringBufferData(&sb);
  1.2089 +}
  1.2090 +
  1.2091 +/* Puts a freshly-prepared statement determined by iStmt in *ppStmt.
  1.2092 +** If the indicated statement has never been prepared, it is prepared
  1.2093 +** and cached, otherwise the cached version is reset.
  1.2094 +*/
  1.2095 +static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt,
  1.2096 +                             sqlite3_stmt **ppStmt){
  1.2097 +  assert( iStmt<MAX_STMT );
  1.2098 +  if( v->pFulltextStatements[iStmt]==NULL ){
  1.2099 +    const char *zStmt;
  1.2100 +    int rc;
  1.2101 +    switch( iStmt ){
  1.2102 +      case CONTENT_INSERT_STMT:
  1.2103 +        zStmt = contentInsertStatement(v); break;
  1.2104 +      case CONTENT_SELECT_STMT:
  1.2105 +        zStmt = contentSelectStatement(v); break;
  1.2106 +      case CONTENT_UPDATE_STMT:
  1.2107 +        zStmt = contentUpdateStatement(v); break;
  1.2108 +      default:
  1.2109 +        zStmt = fulltext_zStatement[iStmt];
  1.2110 +    }
  1.2111 +    rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt],
  1.2112 +                         zStmt);
  1.2113 +    if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt);
  1.2114 +    if( rc!=SQLITE_OK ) return rc;
  1.2115 +  } else {
  1.2116 +    int rc = sqlite3_reset(v->pFulltextStatements[iStmt]);
  1.2117 +    if( rc!=SQLITE_OK ) return rc;
  1.2118 +  }
  1.2119 +
  1.2120 +  *ppStmt = v->pFulltextStatements[iStmt];
  1.2121 +  return SQLITE_OK;
  1.2122 +}
  1.2123 +
  1.2124 +/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and
  1.2125 +** SQLITE_ROW to SQLITE_ERROR.  Useful for statements like UPDATE,
  1.2126 +** where we expect no results.
  1.2127 +*/
  1.2128 +static int sql_single_step(sqlite3_stmt *s){
  1.2129 +  int rc = sqlite3_step(s);
  1.2130 +  return (rc==SQLITE_DONE) ? SQLITE_OK : rc;
  1.2131 +}
  1.2132 +
  1.2133 +/* Like sql_get_statement(), but for special replicated LEAF_SELECT
  1.2134 +** statements.  idx -1 is a special case for an uncached version of
  1.2135 +** the statement (used in the optimize implementation).
  1.2136 +*/
  1.2137 +/* TODO(shess) Write version for generic statements and then share
  1.2138 +** that between the cached-statement functions.
  1.2139 +*/
  1.2140 +static int sql_get_leaf_statement(fulltext_vtab *v, int idx,
  1.2141 +                                  sqlite3_stmt **ppStmt){
  1.2142 +  assert( idx>=-1 && idx<MERGE_COUNT );
  1.2143 +  if( idx==-1 ){
  1.2144 +    return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT);
  1.2145 +  }else if( v->pLeafSelectStmts[idx]==NULL ){
  1.2146 +    int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx],
  1.2147 +                         LEAF_SELECT);
  1.2148 +    if( rc!=SQLITE_OK ) return rc;
  1.2149 +  }else{
  1.2150 +    int rc = sqlite3_reset(v->pLeafSelectStmts[idx]);
  1.2151 +    if( rc!=SQLITE_OK ) return rc;
  1.2152 +  }
  1.2153 +
  1.2154 +  *ppStmt = v->pLeafSelectStmts[idx];
  1.2155 +  return SQLITE_OK;
  1.2156 +}
  1.2157 +
  1.2158 +/* insert into %_content (docid, ...) values ([docid], [pValues])
  1.2159 +** If the docid contains SQL NULL, then a unique docid will be
  1.2160 +** generated.
  1.2161 +*/
  1.2162 +static int content_insert(fulltext_vtab *v, sqlite3_value *docid,
  1.2163 +                          sqlite3_value **pValues){
  1.2164 +  sqlite3_stmt *s;
  1.2165 +  int i;
  1.2166 +  int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s);
  1.2167 +  if( rc!=SQLITE_OK ) return rc;
  1.2168 +
  1.2169 +  rc = sqlite3_bind_value(s, 1, docid);
  1.2170 +  if( rc!=SQLITE_OK ) return rc;
  1.2171 +
  1.2172 +  for(i=0; i<v->nColumn; ++i){
  1.2173 +    rc = sqlite3_bind_value(s, 2+i, pValues[i]);
  1.2174 +    if( rc!=SQLITE_OK ) return rc;
  1.2175 +  }
  1.2176 +
  1.2177 +  return sql_single_step(s);
  1.2178 +}
  1.2179 +
  1.2180 +/* update %_content set col0 = pValues[0], col1 = pValues[1], ...
  1.2181 + *                  where docid = [iDocid] */
  1.2182 +static int content_update(fulltext_vtab *v, sqlite3_value **pValues,
  1.2183 +                          sqlite_int64 iDocid){
  1.2184 +  sqlite3_stmt *s;
  1.2185 +  int i;
  1.2186 +  int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s);
  1.2187 +  if( rc!=SQLITE_OK ) return rc;
  1.2188 +
  1.2189 +  for(i=0; i<v->nColumn; ++i){
  1.2190 +    rc = sqlite3_bind_value(s, 1+i, pValues[i]);
  1.2191 +    if( rc!=SQLITE_OK ) return rc;
  1.2192 +  }
  1.2193 +
  1.2194 +  rc = sqlite3_bind_int64(s, 1+v->nColumn, iDocid);
  1.2195 +  if( rc!=SQLITE_OK ) return rc;
  1.2196 +
  1.2197 +  return sql_single_step(s);
  1.2198 +}
  1.2199 +
  1.2200 +static void freeStringArray(int nString, const char **pString){
  1.2201 +  int i;
  1.2202 +
  1.2203 +  for (i=0 ; i < nString ; ++i) {
  1.2204 +    if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]);
  1.2205 +  }
  1.2206 +  sqlite3_free((void *) pString);
  1.2207 +}
  1.2208 +
  1.2209 +/* select * from %_content where docid = [iDocid]
  1.2210 + * The caller must delete the returned array and all strings in it.
  1.2211 + * null fields will be NULL in the returned array.
  1.2212 + *
  1.2213 + * TODO: Perhaps we should return pointer/length strings here for consistency
  1.2214 + * with other code which uses pointer/length. */
  1.2215 +static int content_select(fulltext_vtab *v, sqlite_int64 iDocid,
  1.2216 +                          const char ***pValues){
  1.2217 +  sqlite3_stmt *s;
  1.2218 +  const char **values;
  1.2219 +  int i;
  1.2220 +  int rc;
  1.2221 +
  1.2222 +  *pValues = NULL;
  1.2223 +
  1.2224 +  rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s);
  1.2225 +  if( rc!=SQLITE_OK ) return rc;
  1.2226 +
  1.2227 +  rc = sqlite3_bind_int64(s, 1, iDocid);
  1.2228 +  if( rc!=SQLITE_OK ) return rc;
  1.2229 +
  1.2230 +  rc = sqlite3_step(s);
  1.2231 +  if( rc!=SQLITE_ROW ) return rc;
  1.2232 +
  1.2233 +  values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *));
  1.2234 +  for(i=0; i<v->nColumn; ++i){
  1.2235 +    if( sqlite3_column_type(s, i)==SQLITE_NULL ){
  1.2236 +      values[i] = NULL;
  1.2237 +    }else{
  1.2238 +      values[i] = string_dup((char*)sqlite3_column_text(s, i));
  1.2239 +    }
  1.2240 +  }
  1.2241 +
  1.2242 +  /* We expect only one row.  We must execute another sqlite3_step()
  1.2243 +   * to complete the iteration; otherwise the table will remain locked. */
  1.2244 +  rc = sqlite3_step(s);
  1.2245 +  if( rc==SQLITE_DONE ){
  1.2246 +    *pValues = values;
  1.2247 +    return SQLITE_OK;
  1.2248 +  }
  1.2249 +
  1.2250 +  freeStringArray(v->nColumn, values);
  1.2251 +  return rc;
  1.2252 +}
  1.2253 +
  1.2254 +/* delete from %_content where docid = [iDocid ] */
  1.2255 +static int content_delete(fulltext_vtab *v, sqlite_int64 iDocid){
  1.2256 +  sqlite3_stmt *s;
  1.2257 +  int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s);
  1.2258 +  if( rc!=SQLITE_OK ) return rc;
  1.2259 +
  1.2260 +  rc = sqlite3_bind_int64(s, 1, iDocid);
  1.2261 +  if( rc!=SQLITE_OK ) return rc;
  1.2262 +
  1.2263 +  return sql_single_step(s);
  1.2264 +}
  1.2265 +
  1.2266 +/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if
  1.2267 +** no rows exist, and any error in case of failure.
  1.2268 +*/
  1.2269 +static int content_exists(fulltext_vtab *v){
  1.2270 +  sqlite3_stmt *s;
  1.2271 +  int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s);
  1.2272 +  if( rc!=SQLITE_OK ) return rc;
  1.2273 +
  1.2274 +  rc = sqlite3_step(s);
  1.2275 +  if( rc!=SQLITE_ROW ) return rc;
  1.2276 +
  1.2277 +  /* We expect only one row.  We must execute another sqlite3_step()
  1.2278 +   * to complete the iteration; otherwise the table will remain locked. */
  1.2279 +  rc = sqlite3_step(s);
  1.2280 +  if( rc==SQLITE_DONE ) return SQLITE_ROW;
  1.2281 +  if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.2282 +  return rc;
  1.2283 +}
  1.2284 +
  1.2285 +/* insert into %_segments values ([pData])
  1.2286 +**   returns assigned blockid in *piBlockid
  1.2287 +*/
  1.2288 +static int block_insert(fulltext_vtab *v, const char *pData, int nData,
  1.2289 +                        sqlite_int64 *piBlockid){
  1.2290 +  sqlite3_stmt *s;
  1.2291 +  int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s);
  1.2292 +  if( rc!=SQLITE_OK ) return rc;
  1.2293 +
  1.2294 +  rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC);
  1.2295 +  if( rc!=SQLITE_OK ) return rc;
  1.2296 +
  1.2297 +  rc = sqlite3_step(s);
  1.2298 +  if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.2299 +  if( rc!=SQLITE_DONE ) return rc;
  1.2300 +
  1.2301 +  /* blockid column is an alias for rowid. */
  1.2302 +  *piBlockid = sqlite3_last_insert_rowid(v->db);
  1.2303 +  return SQLITE_OK;
  1.2304 +}
  1.2305 +
  1.2306 +/* delete from %_segments
  1.2307 +**   where blockid between [iStartBlockid] and [iEndBlockid]
  1.2308 +**
  1.2309 +** Deletes the range of blocks, inclusive, used to delete the blocks
  1.2310 +** which form a segment.
  1.2311 +*/
  1.2312 +static int block_delete(fulltext_vtab *v,
  1.2313 +                        sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){
  1.2314 +  sqlite3_stmt *s;
  1.2315 +  int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s);
  1.2316 +  if( rc!=SQLITE_OK ) return rc;
  1.2317 +
  1.2318 +  rc = sqlite3_bind_int64(s, 1, iStartBlockid);
  1.2319 +  if( rc!=SQLITE_OK ) return rc;
  1.2320 +
  1.2321 +  rc = sqlite3_bind_int64(s, 2, iEndBlockid);
  1.2322 +  if( rc!=SQLITE_OK ) return rc;
  1.2323 +
  1.2324 +  return sql_single_step(s);
  1.2325 +}
  1.2326 +
  1.2327 +/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found
  1.2328 +** at iLevel.  Returns SQLITE_DONE if there are no segments at
  1.2329 +** iLevel.  Otherwise returns an error.
  1.2330 +*/
  1.2331 +static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){
  1.2332 +  sqlite3_stmt *s;
  1.2333 +  int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s);
  1.2334 +  if( rc!=SQLITE_OK ) return rc;
  1.2335 +
  1.2336 +  rc = sqlite3_bind_int(s, 1, iLevel);
  1.2337 +  if( rc!=SQLITE_OK ) return rc;
  1.2338 +
  1.2339 +  rc = sqlite3_step(s);
  1.2340 +  /* Should always get at least one row due to how max() works. */
  1.2341 +  if( rc==SQLITE_DONE ) return SQLITE_DONE;
  1.2342 +  if( rc!=SQLITE_ROW ) return rc;
  1.2343 +
  1.2344 +  /* NULL means that there were no inputs to max(). */
  1.2345 +  if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
  1.2346 +    rc = sqlite3_step(s);
  1.2347 +    if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.2348 +    return rc;
  1.2349 +  }
  1.2350 +
  1.2351 +  *pidx = sqlite3_column_int(s, 0);
  1.2352 +
  1.2353 +  /* We expect only one row.  We must execute another sqlite3_step()
  1.2354 +   * to complete the iteration; otherwise the table will remain locked. */
  1.2355 +  rc = sqlite3_step(s);
  1.2356 +  if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.2357 +  if( rc!=SQLITE_DONE ) return rc;
  1.2358 +  return SQLITE_ROW;
  1.2359 +}
  1.2360 +
  1.2361 +/* insert into %_segdir values (
  1.2362 +**   [iLevel], [idx],
  1.2363 +**   [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid],
  1.2364 +**   [pRootData]
  1.2365 +** )
  1.2366 +*/
  1.2367 +static int segdir_set(fulltext_vtab *v, int iLevel, int idx,
  1.2368 +                      sqlite_int64 iStartBlockid,
  1.2369 +                      sqlite_int64 iLeavesEndBlockid,
  1.2370 +                      sqlite_int64 iEndBlockid,
  1.2371 +                      const char *pRootData, int nRootData){
  1.2372 +  sqlite3_stmt *s;
  1.2373 +  int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s);
  1.2374 +  if( rc!=SQLITE_OK ) return rc;
  1.2375 +
  1.2376 +  rc = sqlite3_bind_int(s, 1, iLevel);
  1.2377 +  if( rc!=SQLITE_OK ) return rc;
  1.2378 +
  1.2379 +  rc = sqlite3_bind_int(s, 2, idx);
  1.2380 +  if( rc!=SQLITE_OK ) return rc;
  1.2381 +
  1.2382 +  rc = sqlite3_bind_int64(s, 3, iStartBlockid);
  1.2383 +  if( rc!=SQLITE_OK ) return rc;
  1.2384 +
  1.2385 +  rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid);
  1.2386 +  if( rc!=SQLITE_OK ) return rc;
  1.2387 +
  1.2388 +  rc = sqlite3_bind_int64(s, 5, iEndBlockid);
  1.2389 +  if( rc!=SQLITE_OK ) return rc;
  1.2390 +
  1.2391 +  rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC);
  1.2392 +  if( rc!=SQLITE_OK ) return rc;
  1.2393 +
  1.2394 +  return sql_single_step(s);
  1.2395 +}
  1.2396 +
  1.2397 +/* Queries %_segdir for the block span of the segments in level
  1.2398 +** iLevel.  Returns SQLITE_DONE if there are no blocks for iLevel,
  1.2399 +** SQLITE_ROW if there are blocks, else an error.
  1.2400 +*/
  1.2401 +static int segdir_span(fulltext_vtab *v, int iLevel,
  1.2402 +                       sqlite_int64 *piStartBlockid,
  1.2403 +                       sqlite_int64 *piEndBlockid){
  1.2404 +  sqlite3_stmt *s;
  1.2405 +  int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s);
  1.2406 +  if( rc!=SQLITE_OK ) return rc;
  1.2407 +
  1.2408 +  rc = sqlite3_bind_int(s, 1, iLevel);
  1.2409 +  if( rc!=SQLITE_OK ) return rc;
  1.2410 +
  1.2411 +  rc = sqlite3_step(s);
  1.2412 +  if( rc==SQLITE_DONE ) return SQLITE_DONE;  /* Should never happen */
  1.2413 +  if( rc!=SQLITE_ROW ) return rc;
  1.2414 +
  1.2415 +  /* This happens if all segments at this level are entirely inline. */
  1.2416 +  if( SQLITE_NULL==sqlite3_column_type(s, 0) ){
  1.2417 +    /* We expect only one row.  We must execute another sqlite3_step()
  1.2418 +     * to complete the iteration; otherwise the table will remain locked. */
  1.2419 +    int rc2 = sqlite3_step(s);
  1.2420 +    if( rc2==SQLITE_ROW ) return SQLITE_ERROR;
  1.2421 +    return rc2;
  1.2422 +  }
  1.2423 +
  1.2424 +  *piStartBlockid = sqlite3_column_int64(s, 0);
  1.2425 +  *piEndBlockid = sqlite3_column_int64(s, 1);
  1.2426 +
  1.2427 +  /* We expect only one row.  We must execute another sqlite3_step()
  1.2428 +   * to complete the iteration; otherwise the table will remain locked. */
  1.2429 +  rc = sqlite3_step(s);
  1.2430 +  if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.2431 +  if( rc!=SQLITE_DONE ) return rc;
  1.2432 +  return SQLITE_ROW;
  1.2433 +}
  1.2434 +
  1.2435 +/* Delete the segment blocks and segment directory records for all
  1.2436 +** segments at iLevel.
  1.2437 +*/
  1.2438 +static int segdir_delete(fulltext_vtab *v, int iLevel){
  1.2439 +  sqlite3_stmt *s;
  1.2440 +  sqlite_int64 iStartBlockid, iEndBlockid;
  1.2441 +  int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid);
  1.2442 +  if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc;
  1.2443 +
  1.2444 +  if( rc==SQLITE_ROW ){
  1.2445 +    rc = block_delete(v, iStartBlockid, iEndBlockid);
  1.2446 +    if( rc!=SQLITE_OK ) return rc;
  1.2447 +  }
  1.2448 +
  1.2449 +  /* Delete the segment directory itself. */
  1.2450 +  rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s);
  1.2451 +  if( rc!=SQLITE_OK ) return rc;
  1.2452 +
  1.2453 +  rc = sqlite3_bind_int64(s, 1, iLevel);
  1.2454 +  if( rc!=SQLITE_OK ) return rc;
  1.2455 +
  1.2456 +  return sql_single_step(s);
  1.2457 +}
  1.2458 +
  1.2459 +/* Delete entire fts index, SQLITE_OK on success, relevant error on
  1.2460 +** failure.
  1.2461 +*/
  1.2462 +static int segdir_delete_all(fulltext_vtab *v){
  1.2463 +  sqlite3_stmt *s;
  1.2464 +  int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s);
  1.2465 +  if( rc!=SQLITE_OK ) return rc;
  1.2466 +
  1.2467 +  rc = sql_single_step(s);
  1.2468 +  if( rc!=SQLITE_OK ) return rc;
  1.2469 +
  1.2470 +  rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s);
  1.2471 +  if( rc!=SQLITE_OK ) return rc;
  1.2472 +
  1.2473 +  return sql_single_step(s);
  1.2474 +}
  1.2475 +
  1.2476 +/* Returns SQLITE_OK with *pnSegments set to the number of entries in
  1.2477 +** %_segdir and *piMaxLevel set to the highest level which has a
  1.2478 +** segment.  Otherwise returns the SQLite error which caused failure.
  1.2479 +*/
  1.2480 +static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){
  1.2481 +  sqlite3_stmt *s;
  1.2482 +  int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s);
  1.2483 +  if( rc!=SQLITE_OK ) return rc;
  1.2484 +
  1.2485 +  rc = sqlite3_step(s);
  1.2486 +  /* TODO(shess): This case should not be possible?  Should stronger
  1.2487 +  ** measures be taken if it happens?
  1.2488 +  */
  1.2489 +  if( rc==SQLITE_DONE ){
  1.2490 +    *pnSegments = 0;
  1.2491 +    *piMaxLevel = 0;
  1.2492 +    return SQLITE_OK;
  1.2493 +  }
  1.2494 +  if( rc!=SQLITE_ROW ) return rc;
  1.2495 +
  1.2496 +  *pnSegments = sqlite3_column_int(s, 0);
  1.2497 +  *piMaxLevel = sqlite3_column_int(s, 1);
  1.2498 +
  1.2499 +  /* We expect only one row.  We must execute another sqlite3_step()
  1.2500 +   * to complete the iteration; otherwise the table will remain locked. */
  1.2501 +  rc = sqlite3_step(s);
  1.2502 +  if( rc==SQLITE_DONE ) return SQLITE_OK;
  1.2503 +  if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.2504 +  return rc;
  1.2505 +}
  1.2506 +
  1.2507 +/* TODO(shess) clearPendingTerms() is far down the file because
  1.2508 +** writeZeroSegment() is far down the file because LeafWriter is far
  1.2509 +** down the file.  Consider refactoring the code to move the non-vtab
  1.2510 +** code above the vtab code so that we don't need this forward
  1.2511 +** reference.
  1.2512 +*/
  1.2513 +static int clearPendingTerms(fulltext_vtab *v);
  1.2514 +
  1.2515 +/*
  1.2516 +** Free the memory used to contain a fulltext_vtab structure.
  1.2517 +*/
  1.2518 +static void fulltext_vtab_destroy(fulltext_vtab *v){
  1.2519 +  int iStmt, i;
  1.2520 +
  1.2521 +  FTSTRACE(("FTS3 Destroy %p\n", v));
  1.2522 +  for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){
  1.2523 +    if( v->pFulltextStatements[iStmt]!=NULL ){
  1.2524 +      sqlite3_finalize(v->pFulltextStatements[iStmt]);
  1.2525 +      v->pFulltextStatements[iStmt] = NULL;
  1.2526 +    }
  1.2527 +  }
  1.2528 +
  1.2529 +  for( i=0; i<MERGE_COUNT; i++ ){
  1.2530 +    if( v->pLeafSelectStmts[i]!=NULL ){
  1.2531 +      sqlite3_finalize(v->pLeafSelectStmts[i]);
  1.2532 +      v->pLeafSelectStmts[i] = NULL;
  1.2533 +    }
  1.2534 +  }
  1.2535 +
  1.2536 +  if( v->pTokenizer!=NULL ){
  1.2537 +    v->pTokenizer->pModule->xDestroy(v->pTokenizer);
  1.2538 +    v->pTokenizer = NULL;
  1.2539 +  }
  1.2540 +
  1.2541 +  clearPendingTerms(v);
  1.2542 +
  1.2543 +  sqlite3_free(v->azColumn);
  1.2544 +  for(i = 0; i < v->nColumn; ++i) {
  1.2545 +    sqlite3_free(v->azContentColumn[i]);
  1.2546 +  }
  1.2547 +  sqlite3_free(v->azContentColumn);
  1.2548 +  sqlite3_free(v);
  1.2549 +}
  1.2550 +
  1.2551 +/*
  1.2552 +** Token types for parsing the arguments to xConnect or xCreate.
  1.2553 +*/
  1.2554 +#define TOKEN_EOF         0    /* End of file */
  1.2555 +#define TOKEN_SPACE       1    /* Any kind of whitespace */
  1.2556 +#define TOKEN_ID          2    /* An identifier */
  1.2557 +#define TOKEN_STRING      3    /* A string literal */
  1.2558 +#define TOKEN_PUNCT       4    /* A single punctuation character */
  1.2559 +
  1.2560 +/*
  1.2561 +** If X is a character that can be used in an identifier then
  1.2562 +** ftsIdChar(X) will be true.  Otherwise it is false.
  1.2563 +**
  1.2564 +** For ASCII, any character with the high-order bit set is
  1.2565 +** allowed in an identifier.  For 7-bit characters, 
  1.2566 +** isFtsIdChar[X] must be 1.
  1.2567 +**
  1.2568 +** Ticket #1066.  the SQL standard does not allow '$' in the
  1.2569 +** middle of identfiers.  But many SQL implementations do. 
  1.2570 +** SQLite will allow '$' in identifiers for compatibility.
  1.2571 +** But the feature is undocumented.
  1.2572 +*/
  1.2573 +static const char isFtsIdChar[] = {
  1.2574 +/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
  1.2575 +    0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  /* 2x */
  1.2576 +    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
  1.2577 +    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
  1.2578 +    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
  1.2579 +    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
  1.2580 +    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
  1.2581 +};
  1.2582 +#define ftsIdChar(C)  (((c=C)&0x80)!=0 || (c>0x1f && isFtsIdChar[c-0x20]))
  1.2583 +
  1.2584 +
  1.2585 +/*
  1.2586 +** Return the length of the token that begins at z[0]. 
  1.2587 +** Store the token type in *tokenType before returning.
  1.2588 +*/
  1.2589 +static int ftsGetToken(const char *z, int *tokenType){
  1.2590 +  int i, c;
  1.2591 +  switch( *z ){
  1.2592 +    case 0: {
  1.2593 +      *tokenType = TOKEN_EOF;
  1.2594 +      return 0;
  1.2595 +    }
  1.2596 +    case ' ': case '\t': case '\n': case '\f': case '\r': {
  1.2597 +      for(i=1; safe_isspace(z[i]); i++){}
  1.2598 +      *tokenType = TOKEN_SPACE;
  1.2599 +      return i;
  1.2600 +    }
  1.2601 +    case '`':
  1.2602 +    case '\'':
  1.2603 +    case '"': {
  1.2604 +      int delim = z[0];
  1.2605 +      for(i=1; (c=z[i])!=0; i++){
  1.2606 +        if( c==delim ){
  1.2607 +          if( z[i+1]==delim ){
  1.2608 +            i++;
  1.2609 +          }else{
  1.2610 +            break;
  1.2611 +          }
  1.2612 +        }
  1.2613 +      }
  1.2614 +      *tokenType = TOKEN_STRING;
  1.2615 +      return i + (c!=0);
  1.2616 +    }
  1.2617 +    case '[': {
  1.2618 +      for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){}
  1.2619 +      *tokenType = TOKEN_ID;
  1.2620 +      return i;
  1.2621 +    }
  1.2622 +    default: {
  1.2623 +      if( !ftsIdChar(*z) ){
  1.2624 +        break;
  1.2625 +      }
  1.2626 +      for(i=1; ftsIdChar(z[i]); i++){}
  1.2627 +      *tokenType = TOKEN_ID;
  1.2628 +      return i;
  1.2629 +    }
  1.2630 +  }
  1.2631 +  *tokenType = TOKEN_PUNCT;
  1.2632 +  return 1;
  1.2633 +}
  1.2634 +
  1.2635 +/*
  1.2636 +** A token extracted from a string is an instance of the following
  1.2637 +** structure.
  1.2638 +*/
  1.2639 +typedef struct FtsToken {
  1.2640 +  const char *z;       /* Pointer to token text.  Not '\000' terminated */
  1.2641 +  short int n;         /* Length of the token text in bytes. */
  1.2642 +} FtsToken;
  1.2643 +
  1.2644 +/*
  1.2645 +** Given a input string (which is really one of the argv[] parameters
  1.2646 +** passed into xConnect or xCreate) split the string up into tokens.
  1.2647 +** Return an array of pointers to '\000' terminated strings, one string
  1.2648 +** for each non-whitespace token.
  1.2649 +**
  1.2650 +** The returned array is terminated by a single NULL pointer.
  1.2651 +**
  1.2652 +** Space to hold the returned array is obtained from a single
  1.2653 +** malloc and should be freed by passing the return value to free().
  1.2654 +** The individual strings within the token list are all a part of
  1.2655 +** the single memory allocation and will all be freed at once.
  1.2656 +*/
  1.2657 +static char **tokenizeString(const char *z, int *pnToken){
  1.2658 +  int nToken = 0;
  1.2659 +  FtsToken *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) );
  1.2660 +  int n = 1;
  1.2661 +  int e, i;
  1.2662 +  int totalSize = 0;
  1.2663 +  char **azToken;
  1.2664 +  char *zCopy;
  1.2665 +  while( n>0 ){
  1.2666 +    n = ftsGetToken(z, &e);
  1.2667 +    if( e!=TOKEN_SPACE ){
  1.2668 +      aToken[nToken].z = z;
  1.2669 +      aToken[nToken].n = n;
  1.2670 +      nToken++;
  1.2671 +      totalSize += n+1;
  1.2672 +    }
  1.2673 +    z += n;
  1.2674 +  }
  1.2675 +  azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize );
  1.2676 +  zCopy = (char*)&azToken[nToken];
  1.2677 +  nToken--;
  1.2678 +  for(i=0; i<nToken; i++){
  1.2679 +    azToken[i] = zCopy;
  1.2680 +    n = aToken[i].n;
  1.2681 +    memcpy(zCopy, aToken[i].z, n);
  1.2682 +    zCopy[n] = 0;
  1.2683 +    zCopy += n+1;
  1.2684 +  }
  1.2685 +  azToken[nToken] = 0;
  1.2686 +  sqlite3_free(aToken);
  1.2687 +  *pnToken = nToken;
  1.2688 +  return azToken;
  1.2689 +}
  1.2690 +
  1.2691 +/*
  1.2692 +** Convert an SQL-style quoted string into a normal string by removing
  1.2693 +** the quote characters.  The conversion is done in-place.  If the
  1.2694 +** input does not begin with a quote character, then this routine
  1.2695 +** is a no-op.
  1.2696 +**
  1.2697 +** Examples:
  1.2698 +**
  1.2699 +**     "abc"   becomes   abc
  1.2700 +**     'xyz'   becomes   xyz
  1.2701 +**     [pqr]   becomes   pqr
  1.2702 +**     `mno`   becomes   mno
  1.2703 +*/
  1.2704 +static void dequoteString(char *z){
  1.2705 +  int quote;
  1.2706 +  int i, j;
  1.2707 +  if( z==0 ) return;
  1.2708 +  quote = z[0];
  1.2709 +  switch( quote ){
  1.2710 +    case '\'':  break;
  1.2711 +    case '"':   break;
  1.2712 +    case '`':   break;                /* For MySQL compatibility */
  1.2713 +    case '[':   quote = ']';  break;  /* For MS SqlServer compatibility */
  1.2714 +    default:    return;
  1.2715 +  }
  1.2716 +  for(i=1, j=0; z[i]; i++){
  1.2717 +    if( z[i]==quote ){
  1.2718 +      if( z[i+1]==quote ){
  1.2719 +        z[j++] = quote;
  1.2720 +        i++;
  1.2721 +      }else{
  1.2722 +        z[j++] = 0;
  1.2723 +        break;
  1.2724 +      }
  1.2725 +    }else{
  1.2726 +      z[j++] = z[i];
  1.2727 +    }
  1.2728 +  }
  1.2729 +}
  1.2730 +
  1.2731 +/*
  1.2732 +** The input azIn is a NULL-terminated list of tokens.  Remove the first
  1.2733 +** token and all punctuation tokens.  Remove the quotes from
  1.2734 +** around string literal tokens.
  1.2735 +**
  1.2736 +** Example:
  1.2737 +**
  1.2738 +**     input:      tokenize chinese ( 'simplifed' , 'mixed' )
  1.2739 +**     output:     chinese simplifed mixed
  1.2740 +**
  1.2741 +** Another example:
  1.2742 +**
  1.2743 +**     input:      delimiters ( '[' , ']' , '...' )
  1.2744 +**     output:     [ ] ...
  1.2745 +*/
  1.2746 +static void tokenListToIdList(char **azIn){
  1.2747 +  int i, j;
  1.2748 +  if( azIn ){
  1.2749 +    for(i=0, j=-1; azIn[i]; i++){
  1.2750 +      if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){
  1.2751 +        dequoteString(azIn[i]);
  1.2752 +        if( j>=0 ){
  1.2753 +          azIn[j] = azIn[i];
  1.2754 +        }
  1.2755 +        j++;
  1.2756 +      }
  1.2757 +    }
  1.2758 +    azIn[j] = 0;
  1.2759 +  }
  1.2760 +}
  1.2761 +
  1.2762 +
  1.2763 +/*
  1.2764 +** Find the first alphanumeric token in the string zIn.  Null-terminate
  1.2765 +** this token.  Remove any quotation marks.  And return a pointer to
  1.2766 +** the result.
  1.2767 +*/
  1.2768 +static char *firstToken(char *zIn, char **pzTail){
  1.2769 +  int n, ttype;
  1.2770 +  while(1){
  1.2771 +    n = ftsGetToken(zIn, &ttype);
  1.2772 +    if( ttype==TOKEN_SPACE ){
  1.2773 +      zIn += n;
  1.2774 +    }else if( ttype==TOKEN_EOF ){
  1.2775 +      *pzTail = zIn;
  1.2776 +      return 0;
  1.2777 +    }else{
  1.2778 +      zIn[n] = 0;
  1.2779 +      *pzTail = &zIn[1];
  1.2780 +      dequoteString(zIn);
  1.2781 +      return zIn;
  1.2782 +    }
  1.2783 +  }
  1.2784 +  /*NOTREACHED*/
  1.2785 +}
  1.2786 +
  1.2787 +/* Return true if...
  1.2788 +**
  1.2789 +**   *  s begins with the string t, ignoring case
  1.2790 +**   *  s is longer than t
  1.2791 +**   *  The first character of s beyond t is not a alphanumeric
  1.2792 +** 
  1.2793 +** Ignore leading space in *s.
  1.2794 +**
  1.2795 +** To put it another way, return true if the first token of
  1.2796 +** s[] is t[].
  1.2797 +*/
  1.2798 +static int startsWith(const char *s, const char *t){
  1.2799 +  while( safe_isspace(*s) ){ s++; }
  1.2800 +  while( *t ){
  1.2801 +    if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0;
  1.2802 +  }
  1.2803 +  return *s!='_' && !safe_isalnum(*s);
  1.2804 +}
  1.2805 +
  1.2806 +/*
  1.2807 +** An instance of this structure defines the "spec" of a
  1.2808 +** full text index.  This structure is populated by parseSpec
  1.2809 +** and use by fulltextConnect and fulltextCreate.
  1.2810 +*/
  1.2811 +typedef struct TableSpec {
  1.2812 +  const char *zDb;         /* Logical database name */
  1.2813 +  const char *zName;       /* Name of the full-text index */
  1.2814 +  int nColumn;             /* Number of columns to be indexed */
  1.2815 +  char **azColumn;         /* Original names of columns to be indexed */
  1.2816 +  char **azContentColumn;  /* Column names for %_content */
  1.2817 +  char **azTokenizer;      /* Name of tokenizer and its arguments */
  1.2818 +} TableSpec;
  1.2819 +
  1.2820 +/*
  1.2821 +** Reclaim all of the memory used by a TableSpec
  1.2822 +*/
  1.2823 +static void clearTableSpec(TableSpec *p) {
  1.2824 +  sqlite3_free(p->azColumn);
  1.2825 +  sqlite3_free(p->azContentColumn);
  1.2826 +  sqlite3_free(p->azTokenizer);
  1.2827 +}
  1.2828 +
  1.2829 +/* Parse a CREATE VIRTUAL TABLE statement, which looks like this:
  1.2830 + *
  1.2831 + * CREATE VIRTUAL TABLE email
  1.2832 + *        USING fts3(subject, body, tokenize mytokenizer(myarg))
  1.2833 + *
  1.2834 + * We return parsed information in a TableSpec structure.
  1.2835 + * 
  1.2836 + */
  1.2837 +static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv,
  1.2838 +                     char**pzErr){
  1.2839 +  int i, n;
  1.2840 +  char *z, *zDummy;
  1.2841 +  char **azArg;
  1.2842 +  const char *zTokenizer = 0;    /* argv[] entry describing the tokenizer */
  1.2843 +
  1.2844 +  assert( argc>=3 );
  1.2845 +  /* Current interface:
  1.2846 +  ** argv[0] - module name
  1.2847 +  ** argv[1] - database name
  1.2848 +  ** argv[2] - table name
  1.2849 +  ** argv[3..] - columns, optionally followed by tokenizer specification
  1.2850 +  **             and snippet delimiters specification.
  1.2851 +  */
  1.2852 +
  1.2853 +  /* Make a copy of the complete argv[][] array in a single allocation.
  1.2854 +  ** The argv[][] array is read-only and transient.  We can write to the
  1.2855 +  ** copy in order to modify things and the copy is persistent.
  1.2856 +  */
  1.2857 +  CLEAR(pSpec);
  1.2858 +  for(i=n=0; i<argc; i++){
  1.2859 +    n += strlen(argv[i]) + 1;
  1.2860 +  }
  1.2861 +  azArg = sqlite3_malloc( sizeof(char*)*argc + n );
  1.2862 +  if( azArg==0 ){
  1.2863 +    return SQLITE_NOMEM;
  1.2864 +  }
  1.2865 +  z = (char*)&azArg[argc];
  1.2866 +  for(i=0; i<argc; i++){
  1.2867 +    azArg[i] = z;
  1.2868 +    strcpy(z, argv[i]);
  1.2869 +    z += strlen(z)+1;
  1.2870 +  }
  1.2871 +
  1.2872 +  /* Identify the column names and the tokenizer and delimiter arguments
  1.2873 +  ** in the argv[][] array.
  1.2874 +  */
  1.2875 +  pSpec->zDb = azArg[1];
  1.2876 +  pSpec->zName = azArg[2];
  1.2877 +  pSpec->nColumn = 0;
  1.2878 +  pSpec->azColumn = azArg;
  1.2879 +  zTokenizer = "tokenize simple";
  1.2880 +  for(i=3; i<argc; ++i){
  1.2881 +    if( startsWith(azArg[i],"tokenize") ){
  1.2882 +      zTokenizer = azArg[i];
  1.2883 +    }else{
  1.2884 +      z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy);
  1.2885 +      pSpec->nColumn++;
  1.2886 +    }
  1.2887 +  }
  1.2888 +  if( pSpec->nColumn==0 ){
  1.2889 +    azArg[0] = "content";
  1.2890 +    pSpec->nColumn = 1;
  1.2891 +  }
  1.2892 +
  1.2893 +  /*
  1.2894 +  ** Construct the list of content column names.
  1.2895 +  **
  1.2896 +  ** Each content column name will be of the form cNNAAAA
  1.2897 +  ** where NN is the column number and AAAA is the sanitized
  1.2898 +  ** column name.  "sanitized" means that special characters are
  1.2899 +  ** converted to "_".  The cNN prefix guarantees that all column
  1.2900 +  ** names are unique.
  1.2901 +  **
  1.2902 +  ** The AAAA suffix is not strictly necessary.  It is included
  1.2903 +  ** for the convenience of people who might examine the generated
  1.2904 +  ** %_content table and wonder what the columns are used for.
  1.2905 +  */
  1.2906 +  pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) );
  1.2907 +  if( pSpec->azContentColumn==0 ){
  1.2908 +    clearTableSpec(pSpec);
  1.2909 +    return SQLITE_NOMEM;
  1.2910 +  }
  1.2911 +  for(i=0; i<pSpec->nColumn; i++){
  1.2912 +    char *p;
  1.2913 +    pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]);
  1.2914 +    for (p = pSpec->azContentColumn[i]; *p ; ++p) {
  1.2915 +      if( !safe_isalnum(*p) ) *p = '_';
  1.2916 +    }
  1.2917 +  }
  1.2918 +
  1.2919 +  /*
  1.2920 +  ** Parse the tokenizer specification string.
  1.2921 +  */
  1.2922 +  pSpec->azTokenizer = tokenizeString(zTokenizer, &n);
  1.2923 +  tokenListToIdList(pSpec->azTokenizer);
  1.2924 +
  1.2925 +  return SQLITE_OK;
  1.2926 +}
  1.2927 +
  1.2928 +/*
  1.2929 +** Generate a CREATE TABLE statement that describes the schema of
  1.2930 +** the virtual table.  Return a pointer to this schema string.
  1.2931 +**
  1.2932 +** Space is obtained from sqlite3_mprintf() and should be freed
  1.2933 +** using sqlite3_free().
  1.2934 +*/
  1.2935 +static char *fulltextSchema(
  1.2936 +  int nColumn,                  /* Number of columns */
  1.2937 +  const char *const* azColumn,  /* List of columns */
  1.2938 +  const char *zTableName        /* Name of the table */
  1.2939 +){
  1.2940 +  int i;
  1.2941 +  char *zSchema, *zNext;
  1.2942 +  const char *zSep = "(";
  1.2943 +  zSchema = sqlite3_mprintf("CREATE TABLE x");
  1.2944 +  for(i=0; i<nColumn; i++){
  1.2945 +    zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]);
  1.2946 +    sqlite3_free(zSchema);
  1.2947 +    zSchema = zNext;
  1.2948 +    zSep = ",";
  1.2949 +  }
  1.2950 +  zNext = sqlite3_mprintf("%s,%Q HIDDEN", zSchema, zTableName);
  1.2951 +  sqlite3_free(zSchema);
  1.2952 +  zSchema = zNext;
  1.2953 +  zNext = sqlite3_mprintf("%s,docid HIDDEN)", zSchema);
  1.2954 +  sqlite3_free(zSchema);
  1.2955 +  return zNext;
  1.2956 +}
  1.2957 +
  1.2958 +/*
  1.2959 +** Build a new sqlite3_vtab structure that will describe the
  1.2960 +** fulltext index defined by spec.
  1.2961 +*/
  1.2962 +static int constructVtab(
  1.2963 +  sqlite3 *db,              /* The SQLite database connection */
  1.2964 +  fts3Hash *pHash,          /* Hash table containing tokenizers */
  1.2965 +  TableSpec *spec,          /* Parsed spec information from parseSpec() */
  1.2966 +  sqlite3_vtab **ppVTab,    /* Write the resulting vtab structure here */
  1.2967 +  char **pzErr              /* Write any error message here */
  1.2968 +){
  1.2969 +  int rc;
  1.2970 +  int n;
  1.2971 +  fulltext_vtab *v = 0;
  1.2972 +  const sqlite3_tokenizer_module *m = NULL;
  1.2973 +  char *schema;
  1.2974 +
  1.2975 +  char const *zTok;         /* Name of tokenizer to use for this fts table */
  1.2976 +  int nTok;                 /* Length of zTok, including nul terminator */
  1.2977 +
  1.2978 +  v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab));
  1.2979 +  if( v==0 ) return SQLITE_NOMEM;
  1.2980 +  CLEAR(v);
  1.2981 +  /* sqlite will initialize v->base */
  1.2982 +  v->db = db;
  1.2983 +  v->zDb = spec->zDb;       /* Freed when azColumn is freed */
  1.2984 +  v->zName = spec->zName;   /* Freed when azColumn is freed */
  1.2985 +  v->nColumn = spec->nColumn;
  1.2986 +  v->azContentColumn = spec->azContentColumn;
  1.2987 +  spec->azContentColumn = 0;
  1.2988 +  v->azColumn = spec->azColumn;
  1.2989 +  spec->azColumn = 0;
  1.2990 +
  1.2991 +  if( spec->azTokenizer==0 ){
  1.2992 +    return SQLITE_NOMEM;
  1.2993 +  }
  1.2994 +
  1.2995 +  zTok = spec->azTokenizer[0]; 
  1.2996 +  if( !zTok ){
  1.2997 +    zTok = "simple";
  1.2998 +  }
  1.2999 +  nTok = strlen(zTok)+1;
  1.3000 +
  1.3001 +  m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash, zTok, nTok);
  1.3002 +  if( !m ){
  1.3003 +    *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]);
  1.3004 +    rc = SQLITE_ERROR;
  1.3005 +    goto err;
  1.3006 +  }
  1.3007 +
  1.3008 +  for(n=0; spec->azTokenizer[n]; n++){}
  1.3009 +  if( n ){
  1.3010 +    rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1],
  1.3011 +                    &v->pTokenizer);
  1.3012 +  }else{
  1.3013 +    rc = m->xCreate(0, 0, &v->pTokenizer);
  1.3014 +  }
  1.3015 +  if( rc!=SQLITE_OK ) goto err;
  1.3016 +  v->pTokenizer->pModule = m;
  1.3017 +
  1.3018 +  /* TODO: verify the existence of backing tables foo_content, foo_term */
  1.3019 +
  1.3020 +  schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn,
  1.3021 +                          spec->zName);
  1.3022 +  rc = sqlite3_declare_vtab(db, schema);
  1.3023 +  sqlite3_free(schema);
  1.3024 +  if( rc!=SQLITE_OK ) goto err;
  1.3025 +
  1.3026 +  memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements));
  1.3027 +
  1.3028 +  /* Indicate that the buffer is not live. */
  1.3029 +  v->nPendingData = -1;
  1.3030 +
  1.3031 +  *ppVTab = &v->base;
  1.3032 +  FTSTRACE(("FTS3 Connect %p\n", v));
  1.3033 +
  1.3034 +  return rc;
  1.3035 +
  1.3036 +err:
  1.3037 +  fulltext_vtab_destroy(v);
  1.3038 +  return rc;
  1.3039 +}
  1.3040 +
  1.3041 +static int fulltextConnect(
  1.3042 +  sqlite3 *db,
  1.3043 +  void *pAux,
  1.3044 +  int argc, const char *const*argv,
  1.3045 +  sqlite3_vtab **ppVTab,
  1.3046 +  char **pzErr
  1.3047 +){
  1.3048 +  TableSpec spec;
  1.3049 +  int rc = parseSpec(&spec, argc, argv, pzErr);
  1.3050 +  if( rc!=SQLITE_OK ) return rc;
  1.3051 +
  1.3052 +  rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
  1.3053 +  clearTableSpec(&spec);
  1.3054 +  return rc;
  1.3055 +}
  1.3056 +
  1.3057 +/* The %_content table holds the text of each document, with
  1.3058 +** the docid column exposed as the SQLite rowid for the table.
  1.3059 +*/
  1.3060 +/* TODO(shess) This comment needs elaboration to match the updated
  1.3061 +** code.  Work it into the top-of-file comment at that time.
  1.3062 +*/
  1.3063 +static int fulltextCreate(sqlite3 *db, void *pAux,
  1.3064 +                          int argc, const char * const *argv,
  1.3065 +                          sqlite3_vtab **ppVTab, char **pzErr){
  1.3066 +  int rc;
  1.3067 +  TableSpec spec;
  1.3068 +  StringBuffer schema;
  1.3069 +  FTSTRACE(("FTS3 Create\n"));
  1.3070 +
  1.3071 +  rc = parseSpec(&spec, argc, argv, pzErr);
  1.3072 +  if( rc!=SQLITE_OK ) return rc;
  1.3073 +
  1.3074 +  initStringBuffer(&schema);
  1.3075 +  append(&schema, "CREATE TABLE %_content(");
  1.3076 +  append(&schema, "  docid INTEGER PRIMARY KEY,");
  1.3077 +  appendList(&schema, spec.nColumn, spec.azContentColumn);
  1.3078 +  append(&schema, ")");
  1.3079 +  rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema));
  1.3080 +  stringBufferDestroy(&schema);
  1.3081 +  if( rc!=SQLITE_OK ) goto out;
  1.3082 +
  1.3083 +  rc = sql_exec(db, spec.zDb, spec.zName,
  1.3084 +                "create table %_segments("
  1.3085 +                "  blockid INTEGER PRIMARY KEY,"
  1.3086 +                "  block blob"
  1.3087 +                ");"
  1.3088 +                );
  1.3089 +  if( rc!=SQLITE_OK ) goto out;
  1.3090 +
  1.3091 +  rc = sql_exec(db, spec.zDb, spec.zName,
  1.3092 +                "create table %_segdir("
  1.3093 +                "  level integer,"
  1.3094 +                "  idx integer,"
  1.3095 +                "  start_block integer,"
  1.3096 +                "  leaves_end_block integer,"
  1.3097 +                "  end_block integer,"
  1.3098 +                "  root blob,"
  1.3099 +                "  primary key(level, idx)"
  1.3100 +                ");");
  1.3101 +  if( rc!=SQLITE_OK ) goto out;
  1.3102 +
  1.3103 +  rc = constructVtab(db, (fts3Hash *)pAux, &spec, ppVTab, pzErr);
  1.3104 +
  1.3105 +out:
  1.3106 +  clearTableSpec(&spec);
  1.3107 +  return rc;
  1.3108 +}
  1.3109 +
  1.3110 +/* Decide how to handle an SQL query. */
  1.3111 +static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
  1.3112 +  fulltext_vtab *v = (fulltext_vtab *)pVTab;
  1.3113 +  int i;
  1.3114 +  FTSTRACE(("FTS3 BestIndex\n"));
  1.3115 +
  1.3116 +  for(i=0; i<pInfo->nConstraint; ++i){
  1.3117 +    const struct sqlite3_index_constraint *pConstraint;
  1.3118 +    pConstraint = &pInfo->aConstraint[i];
  1.3119 +    if( pConstraint->usable ) {
  1.3120 +      if( (pConstraint->iColumn==-1 || pConstraint->iColumn==v->nColumn+1) &&
  1.3121 +          pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
  1.3122 +        pInfo->idxNum = QUERY_DOCID;      /* lookup by docid */
  1.3123 +        FTSTRACE(("FTS3 QUERY_DOCID\n"));
  1.3124 +      } else if( pConstraint->iColumn>=0 && pConstraint->iColumn<=v->nColumn &&
  1.3125 +                 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
  1.3126 +        /* full-text search */
  1.3127 +        pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn;
  1.3128 +        FTSTRACE(("FTS3 QUERY_FULLTEXT %d\n", pConstraint->iColumn));
  1.3129 +      } else continue;
  1.3130 +
  1.3131 +      pInfo->aConstraintUsage[i].argvIndex = 1;
  1.3132 +      pInfo->aConstraintUsage[i].omit = 1;
  1.3133 +
  1.3134 +      /* An arbitrary value for now.
  1.3135 +       * TODO: Perhaps docid matches should be considered cheaper than
  1.3136 +       * full-text searches. */
  1.3137 +      pInfo->estimatedCost = 1.0;   
  1.3138 +
  1.3139 +      return SQLITE_OK;
  1.3140 +    }
  1.3141 +  }
  1.3142 +  pInfo->idxNum = QUERY_GENERIC;
  1.3143 +  return SQLITE_OK;
  1.3144 +}
  1.3145 +
  1.3146 +static int fulltextDisconnect(sqlite3_vtab *pVTab){
  1.3147 +  FTSTRACE(("FTS3 Disconnect %p\n", pVTab));
  1.3148 +  fulltext_vtab_destroy((fulltext_vtab *)pVTab);
  1.3149 +  return SQLITE_OK;
  1.3150 +}
  1.3151 +
  1.3152 +static int fulltextDestroy(sqlite3_vtab *pVTab){
  1.3153 +  fulltext_vtab *v = (fulltext_vtab *)pVTab;
  1.3154 +  int rc;
  1.3155 +
  1.3156 +  FTSTRACE(("FTS3 Destroy %p\n", pVTab));
  1.3157 +  rc = sql_exec(v->db, v->zDb, v->zName,
  1.3158 +                "drop table if exists %_content;"
  1.3159 +                "drop table if exists %_segments;"
  1.3160 +                "drop table if exists %_segdir;"
  1.3161 +                );
  1.3162 +  if( rc!=SQLITE_OK ) return rc;
  1.3163 +
  1.3164 +  fulltext_vtab_destroy((fulltext_vtab *)pVTab);
  1.3165 +  return SQLITE_OK;
  1.3166 +}
  1.3167 +
  1.3168 +static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  1.3169 +  fulltext_cursor *c;
  1.3170 +
  1.3171 +  c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor));
  1.3172 +  if( c ){
  1.3173 +    memset(c, 0, sizeof(fulltext_cursor));
  1.3174 +    /* sqlite will initialize c->base */
  1.3175 +    *ppCursor = &c->base;
  1.3176 +    FTSTRACE(("FTS3 Open %p: %p\n", pVTab, c));
  1.3177 +    return SQLITE_OK;
  1.3178 +  }else{
  1.3179 +    return SQLITE_NOMEM;
  1.3180 +  }
  1.3181 +}
  1.3182 +
  1.3183 +
  1.3184 +/* Free all of the dynamically allocated memory held by *q
  1.3185 +*/
  1.3186 +static void queryClear(Query *q){
  1.3187 +  int i;
  1.3188 +  for(i = 0; i < q->nTerms; ++i){
  1.3189 +    sqlite3_free(q->pTerms[i].pTerm);
  1.3190 +  }
  1.3191 +  sqlite3_free(q->pTerms);
  1.3192 +  CLEAR(q);
  1.3193 +}
  1.3194 +
  1.3195 +/* Free all of the dynamically allocated memory held by the
  1.3196 +** Snippet
  1.3197 +*/
  1.3198 +static void snippetClear(Snippet *p){
  1.3199 +  sqlite3_free(p->aMatch);
  1.3200 +  sqlite3_free(p->zOffset);
  1.3201 +  sqlite3_free(p->zSnippet);
  1.3202 +  CLEAR(p);
  1.3203 +}
  1.3204 +/*
  1.3205 +** Append a single entry to the p->aMatch[] log.
  1.3206 +*/
  1.3207 +static void snippetAppendMatch(
  1.3208 +  Snippet *p,               /* Append the entry to this snippet */
  1.3209 +  int iCol, int iTerm,      /* The column and query term */
  1.3210 +  int iToken,               /* Matching token in document */
  1.3211 +  int iStart, int nByte     /* Offset and size of the match */
  1.3212 +){
  1.3213 +  int i;
  1.3214 +  struct snippetMatch *pMatch;
  1.3215 +  if( p->nMatch+1>=p->nAlloc ){
  1.3216 +    p->nAlloc = p->nAlloc*2 + 10;
  1.3217 +    p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) );
  1.3218 +    if( p->aMatch==0 ){
  1.3219 +      p->nMatch = 0;
  1.3220 +      p->nAlloc = 0;
  1.3221 +      return;
  1.3222 +    }
  1.3223 +  }
  1.3224 +  i = p->nMatch++;
  1.3225 +  pMatch = &p->aMatch[i];
  1.3226 +  pMatch->iCol = iCol;
  1.3227 +  pMatch->iTerm = iTerm;
  1.3228 +  pMatch->iToken = iToken;
  1.3229 +  pMatch->iStart = iStart;
  1.3230 +  pMatch->nByte = nByte;
  1.3231 +}
  1.3232 +
  1.3233 +/*
  1.3234 +** Sizing information for the circular buffer used in snippetOffsetsOfColumn()
  1.3235 +*/
  1.3236 +#define FTS3_ROTOR_SZ   (32)
  1.3237 +#define FTS3_ROTOR_MASK (FTS3_ROTOR_SZ-1)
  1.3238 +
  1.3239 +/*
  1.3240 +** Add entries to pSnippet->aMatch[] for every match that occurs against
  1.3241 +** document zDoc[0..nDoc-1] which is stored in column iColumn.
  1.3242 +*/
  1.3243 +static void snippetOffsetsOfColumn(
  1.3244 +  Query *pQuery,
  1.3245 +  Snippet *pSnippet,
  1.3246 +  int iColumn,
  1.3247 +  const char *zDoc,
  1.3248 +  int nDoc
  1.3249 +){
  1.3250 +  const sqlite3_tokenizer_module *pTModule;  /* The tokenizer module */
  1.3251 +  sqlite3_tokenizer *pTokenizer;             /* The specific tokenizer */
  1.3252 +  sqlite3_tokenizer_cursor *pTCursor;        /* Tokenizer cursor */
  1.3253 +  fulltext_vtab *pVtab;                /* The full text index */
  1.3254 +  int nColumn;                         /* Number of columns in the index */
  1.3255 +  const QueryTerm *aTerm;              /* Query string terms */
  1.3256 +  int nTerm;                           /* Number of query string terms */  
  1.3257 +  int i, j;                            /* Loop counters */
  1.3258 +  int rc;                              /* Return code */
  1.3259 +  unsigned int match, prevMatch;       /* Phrase search bitmasks */
  1.3260 +  const char *zToken;                  /* Next token from the tokenizer */
  1.3261 +  int nToken;                          /* Size of zToken */
  1.3262 +  int iBegin, iEnd, iPos;              /* Offsets of beginning and end */
  1.3263 +
  1.3264 +  /* The following variables keep a circular buffer of the last
  1.3265 +  ** few tokens */
  1.3266 +  unsigned int iRotor = 0;             /* Index of current token */
  1.3267 +  int iRotorBegin[FTS3_ROTOR_SZ];      /* Beginning offset of token */
  1.3268 +  int iRotorLen[FTS3_ROTOR_SZ];        /* Length of token */
  1.3269 +
  1.3270 +  pVtab = pQuery->pFts;
  1.3271 +  nColumn = pVtab->nColumn;
  1.3272 +  pTokenizer = pVtab->pTokenizer;
  1.3273 +  pTModule = pTokenizer->pModule;
  1.3274 +  rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor);
  1.3275 +  if( rc ) return;
  1.3276 +  pTCursor->pTokenizer = pTokenizer;
  1.3277 +  aTerm = pQuery->pTerms;
  1.3278 +  nTerm = pQuery->nTerms;
  1.3279 +  if( nTerm>=FTS3_ROTOR_SZ ){
  1.3280 +    nTerm = FTS3_ROTOR_SZ - 1;
  1.3281 +  }
  1.3282 +  prevMatch = 0;
  1.3283 +  while(1){
  1.3284 +    rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
  1.3285 +    if( rc ) break;
  1.3286 +    iRotorBegin[iRotor&FTS3_ROTOR_MASK] = iBegin;
  1.3287 +    iRotorLen[iRotor&FTS3_ROTOR_MASK] = iEnd-iBegin;
  1.3288 +    match = 0;
  1.3289 +    for(i=0; i<nTerm; i++){
  1.3290 +      int iCol;
  1.3291 +      iCol = aTerm[i].iColumn;
  1.3292 +      if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue;
  1.3293 +      if( aTerm[i].nTerm>nToken ) continue;
  1.3294 +      if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue;
  1.3295 +      assert( aTerm[i].nTerm<=nToken );
  1.3296 +      if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue;
  1.3297 +      if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue;
  1.3298 +      match |= 1<<i;
  1.3299 +      if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){
  1.3300 +        for(j=aTerm[i].iPhrase-1; j>=0; j--){
  1.3301 +          int k = (iRotor-j) & FTS3_ROTOR_MASK;
  1.3302 +          snippetAppendMatch(pSnippet, iColumn, i-j, iPos-j,
  1.3303 +                iRotorBegin[k], iRotorLen[k]);
  1.3304 +        }
  1.3305 +      }
  1.3306 +    }
  1.3307 +    prevMatch = match<<1;
  1.3308 +    iRotor++;
  1.3309 +  }
  1.3310 +  pTModule->xClose(pTCursor);  
  1.3311 +}
  1.3312 +
  1.3313 +/*
  1.3314 +** Remove entries from the pSnippet structure to account for the NEAR
  1.3315 +** operator. When this is called, pSnippet contains the list of token 
  1.3316 +** offsets produced by treating all NEAR operators as AND operators.
  1.3317 +** This function removes any entries that should not be present after
  1.3318 +** accounting for the NEAR restriction. For example, if the queried
  1.3319 +** document is:
  1.3320 +**
  1.3321 +**     "A B C D E A"
  1.3322 +**
  1.3323 +** and the query is:
  1.3324 +** 
  1.3325 +**     A NEAR/0 E
  1.3326 +**
  1.3327 +** then when this function is called the Snippet contains token offsets
  1.3328 +** 0, 4 and 5. This function removes the "0" entry (because the first A
  1.3329 +** is not near enough to an E).
  1.3330 +*/
  1.3331 +static void trimSnippetOffsetsForNear(Query *pQuery, Snippet *pSnippet){
  1.3332 +  int ii;
  1.3333 +  int iDir = 1;
  1.3334 +
  1.3335 +  while(iDir>-2) {
  1.3336 +    assert( iDir==1 || iDir==-1 );
  1.3337 +    for(ii=0; ii<pSnippet->nMatch; ii++){
  1.3338 +      int jj;
  1.3339 +      int nNear;
  1.3340 +      struct snippetMatch *pMatch = &pSnippet->aMatch[ii];
  1.3341 +      QueryTerm *pQueryTerm = &pQuery->pTerms[pMatch->iTerm];
  1.3342 +
  1.3343 +      if( (pMatch->iTerm+iDir)<0 
  1.3344 +       || (pMatch->iTerm+iDir)>=pQuery->nTerms
  1.3345 +      ){
  1.3346 +        continue;
  1.3347 +      }
  1.3348 +     
  1.3349 +      nNear = pQueryTerm->nNear;
  1.3350 +      if( iDir<0 ){
  1.3351 +        nNear = pQueryTerm[-1].nNear;
  1.3352 +      }
  1.3353 +  
  1.3354 +      if( pMatch->iTerm>=0 && nNear ){
  1.3355 +        int isOk = 0;
  1.3356 +        int iNextTerm = pMatch->iTerm+iDir;
  1.3357 +        int iPrevTerm = iNextTerm;
  1.3358 +
  1.3359 +        int iEndToken;
  1.3360 +        int iStartToken;
  1.3361 +
  1.3362 +        if( iDir<0 ){
  1.3363 +          int nPhrase = 1;
  1.3364 +          iStartToken = pMatch->iToken;
  1.3365 +          while( (pMatch->iTerm+nPhrase)<pQuery->nTerms 
  1.3366 +              && pQuery->pTerms[pMatch->iTerm+nPhrase].iPhrase>1 
  1.3367 +          ){
  1.3368 +            nPhrase++;
  1.3369 +          }
  1.3370 +          iEndToken = iStartToken + nPhrase - 1;
  1.3371 +        }else{
  1.3372 +          iEndToken   = pMatch->iToken;
  1.3373 +          iStartToken = pMatch->iToken+1-pQueryTerm->iPhrase;
  1.3374 +        }
  1.3375 +
  1.3376 +        while( pQuery->pTerms[iNextTerm].iPhrase>1 ){
  1.3377 +          iNextTerm--;
  1.3378 +        }
  1.3379 +        while( (iPrevTerm+1)<pQuery->nTerms && 
  1.3380 +               pQuery->pTerms[iPrevTerm+1].iPhrase>1 
  1.3381 +        ){
  1.3382 +          iPrevTerm++;
  1.3383 +        }
  1.3384 +  
  1.3385 +        for(jj=0; isOk==0 && jj<pSnippet->nMatch; jj++){
  1.3386 +          struct snippetMatch *p = &pSnippet->aMatch[jj];
  1.3387 +          if( p->iCol==pMatch->iCol && ((
  1.3388 +               p->iTerm==iNextTerm && 
  1.3389 +               p->iToken>iEndToken && 
  1.3390 +               p->iToken<=iEndToken+nNear
  1.3391 +          ) || (
  1.3392 +               p->iTerm==iPrevTerm && 
  1.3393 +               p->iToken<iStartToken && 
  1.3394 +               p->iToken>=iStartToken-nNear
  1.3395 +          ))){
  1.3396 +            isOk = 1;
  1.3397 +          }
  1.3398 +        }
  1.3399 +        if( !isOk ){
  1.3400 +          for(jj=1-pQueryTerm->iPhrase; jj<=0; jj++){
  1.3401 +            pMatch[jj].iTerm = -1;
  1.3402 +          }
  1.3403 +          ii = -1;
  1.3404 +          iDir = 1;
  1.3405 +        }
  1.3406 +      }
  1.3407 +    }
  1.3408 +    iDir -= 2;
  1.3409 +  }
  1.3410 +}
  1.3411 +
  1.3412 +/*
  1.3413 +** Compute all offsets for the current row of the query.  
  1.3414 +** If the offsets have already been computed, this routine is a no-op.
  1.3415 +*/
  1.3416 +static void snippetAllOffsets(fulltext_cursor *p){
  1.3417 +  int nColumn;
  1.3418 +  int iColumn, i;
  1.3419 +  int iFirst, iLast;
  1.3420 +  fulltext_vtab *pFts;
  1.3421 +
  1.3422 +  if( p->snippet.nMatch ) return;
  1.3423 +  if( p->q.nTerms==0 ) return;
  1.3424 +  pFts = p->q.pFts;
  1.3425 +  nColumn = pFts->nColumn;
  1.3426 +  iColumn = (p->iCursorType - QUERY_FULLTEXT);
  1.3427 +  if( iColumn<0 || iColumn>=nColumn ){
  1.3428 +    iFirst = 0;
  1.3429 +    iLast = nColumn-1;
  1.3430 +  }else{
  1.3431 +    iFirst = iColumn;
  1.3432 +    iLast = iColumn;
  1.3433 +  }
  1.3434 +  for(i=iFirst; i<=iLast; i++){
  1.3435 +    const char *zDoc;
  1.3436 +    int nDoc;
  1.3437 +    zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1);
  1.3438 +    nDoc = sqlite3_column_bytes(p->pStmt, i+1);
  1.3439 +    snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc);
  1.3440 +  }
  1.3441 +
  1.3442 +  trimSnippetOffsetsForNear(&p->q, &p->snippet);
  1.3443 +}
  1.3444 +
  1.3445 +/*
  1.3446 +** Convert the information in the aMatch[] array of the snippet
  1.3447 +** into the string zOffset[0..nOffset-1].
  1.3448 +*/
  1.3449 +static void snippetOffsetText(Snippet *p){
  1.3450 +  int i;
  1.3451 +  int cnt = 0;
  1.3452 +  StringBuffer sb;
  1.3453 +  char zBuf[200];
  1.3454 +  if( p->zOffset ) return;
  1.3455 +  initStringBuffer(&sb);
  1.3456 +  for(i=0; i<p->nMatch; i++){
  1.3457 +    struct snippetMatch *pMatch = &p->aMatch[i];
  1.3458 +    if( pMatch->iTerm>=0 ){
  1.3459 +      /* If snippetMatch.iTerm is less than 0, then the match was 
  1.3460 +      ** discarded as part of processing the NEAR operator (see the 
  1.3461 +      ** trimSnippetOffsetsForNear() function for details). Ignore 
  1.3462 +      ** it in this case
  1.3463 +      */
  1.3464 +      zBuf[0] = ' ';
  1.3465 +      sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d",
  1.3466 +          pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte);
  1.3467 +      append(&sb, zBuf);
  1.3468 +      cnt++;
  1.3469 +    }
  1.3470 +  }
  1.3471 +  p->zOffset = stringBufferData(&sb);
  1.3472 +  p->nOffset = stringBufferLength(&sb);
  1.3473 +}
  1.3474 +
  1.3475 +/*
  1.3476 +** zDoc[0..nDoc-1] is phrase of text.  aMatch[0..nMatch-1] are a set
  1.3477 +** of matching words some of which might be in zDoc.  zDoc is column
  1.3478 +** number iCol.
  1.3479 +**
  1.3480 +** iBreak is suggested spot in zDoc where we could begin or end an
  1.3481 +** excerpt.  Return a value similar to iBreak but possibly adjusted
  1.3482 +** to be a little left or right so that the break point is better.
  1.3483 +*/
  1.3484 +static int wordBoundary(
  1.3485 +  int iBreak,                   /* The suggested break point */
  1.3486 +  const char *zDoc,             /* Document text */
  1.3487 +  int nDoc,                     /* Number of bytes in zDoc[] */
  1.3488 +  struct snippetMatch *aMatch,  /* Matching words */
  1.3489 +  int nMatch,                   /* Number of entries in aMatch[] */
  1.3490 +  int iCol                      /* The column number for zDoc[] */
  1.3491 +){
  1.3492 +  int i;
  1.3493 +  if( iBreak<=10 ){
  1.3494 +    return 0;
  1.3495 +  }
  1.3496 +  if( iBreak>=nDoc-10 ){
  1.3497 +    return nDoc;
  1.3498 +  }
  1.3499 +  for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){}
  1.3500 +  while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; }
  1.3501 +  if( i<nMatch ){
  1.3502 +    if( aMatch[i].iStart<iBreak+10 ){
  1.3503 +      return aMatch[i].iStart;
  1.3504 +    }
  1.3505 +    if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){
  1.3506 +      return aMatch[i-1].iStart;
  1.3507 +    }
  1.3508 +  }
  1.3509 +  for(i=1; i<=10; i++){
  1.3510 +    if( safe_isspace(zDoc[iBreak-i]) ){
  1.3511 +      return iBreak - i + 1;
  1.3512 +    }
  1.3513 +    if( safe_isspace(zDoc[iBreak+i]) ){
  1.3514 +      return iBreak + i + 1;
  1.3515 +    }
  1.3516 +  }
  1.3517 +  return iBreak;
  1.3518 +}
  1.3519 +
  1.3520 +
  1.3521 +
  1.3522 +/*
  1.3523 +** Allowed values for Snippet.aMatch[].snStatus
  1.3524 +*/
  1.3525 +#define SNIPPET_IGNORE  0   /* It is ok to omit this match from the snippet */
  1.3526 +#define SNIPPET_DESIRED 1   /* We want to include this match in the snippet */
  1.3527 +
  1.3528 +/*
  1.3529 +** Generate the text of a snippet.
  1.3530 +*/
  1.3531 +static void snippetText(
  1.3532 +  fulltext_cursor *pCursor,   /* The cursor we need the snippet for */
  1.3533 +  const char *zStartMark,     /* Markup to appear before each match */
  1.3534 +  const char *zEndMark,       /* Markup to appear after each match */
  1.3535 +  const char *zEllipsis       /* Ellipsis mark */
  1.3536 +){
  1.3537 +  int i, j;
  1.3538 +  struct snippetMatch *aMatch;
  1.3539 +  int nMatch;
  1.3540 +  int nDesired;
  1.3541 +  StringBuffer sb;
  1.3542 +  int tailCol;
  1.3543 +  int tailOffset;
  1.3544 +  int iCol;
  1.3545 +  int nDoc;
  1.3546 +  const char *zDoc;
  1.3547 +  int iStart, iEnd;
  1.3548 +  int tailEllipsis = 0;
  1.3549 +  int iMatch;
  1.3550 +  
  1.3551 +
  1.3552 +  sqlite3_free(pCursor->snippet.zSnippet);
  1.3553 +  pCursor->snippet.zSnippet = 0;
  1.3554 +  aMatch = pCursor->snippet.aMatch;
  1.3555 +  nMatch = pCursor->snippet.nMatch;
  1.3556 +  initStringBuffer(&sb);
  1.3557 +
  1.3558 +  for(i=0; i<nMatch; i++){
  1.3559 +    aMatch[i].snStatus = SNIPPET_IGNORE;
  1.3560 +  }
  1.3561 +  nDesired = 0;
  1.3562 +  for(i=0; i<pCursor->q.nTerms; i++){
  1.3563 +    for(j=0; j<nMatch; j++){
  1.3564 +      if( aMatch[j].iTerm==i ){
  1.3565 +        aMatch[j].snStatus = SNIPPET_DESIRED;
  1.3566 +        nDesired++;
  1.3567 +        break;
  1.3568 +      }
  1.3569 +    }
  1.3570 +  }
  1.3571 +
  1.3572 +  iMatch = 0;
  1.3573 +  tailCol = -1;
  1.3574 +  tailOffset = 0;
  1.3575 +  for(i=0; i<nMatch && nDesired>0; i++){
  1.3576 +    if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue;
  1.3577 +    nDesired--;
  1.3578 +    iCol = aMatch[i].iCol;
  1.3579 +    zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1);
  1.3580 +    nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1);
  1.3581 +    iStart = aMatch[i].iStart - 40;
  1.3582 +    iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol);
  1.3583 +    if( iStart<=10 ){
  1.3584 +      iStart = 0;
  1.3585 +    }
  1.3586 +    if( iCol==tailCol && iStart<=tailOffset+20 ){
  1.3587 +      iStart = tailOffset;
  1.3588 +    }
  1.3589 +    if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){
  1.3590 +      trimWhiteSpace(&sb);
  1.3591 +      appendWhiteSpace(&sb);
  1.3592 +      append(&sb, zEllipsis);
  1.3593 +      appendWhiteSpace(&sb);
  1.3594 +    }
  1.3595 +    iEnd = aMatch[i].iStart + aMatch[i].nByte + 40;
  1.3596 +    iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol);
  1.3597 +    if( iEnd>=nDoc-10 ){
  1.3598 +      iEnd = nDoc;
  1.3599 +      tailEllipsis = 0;
  1.3600 +    }else{
  1.3601 +      tailEllipsis = 1;
  1.3602 +    }
  1.3603 +    while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; }
  1.3604 +    while( iStart<iEnd ){
  1.3605 +      while( iMatch<nMatch && aMatch[iMatch].iStart<iStart
  1.3606 +             && aMatch[iMatch].iCol<=iCol ){
  1.3607 +        iMatch++;
  1.3608 +      }
  1.3609 +      if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd
  1.3610 +             && aMatch[iMatch].iCol==iCol ){
  1.3611 +        nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart);
  1.3612 +        iStart = aMatch[iMatch].iStart;
  1.3613 +        append(&sb, zStartMark);
  1.3614 +        nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte);
  1.3615 +        append(&sb, zEndMark);
  1.3616 +        iStart += aMatch[iMatch].nByte;
  1.3617 +        for(j=iMatch+1; j<nMatch; j++){
  1.3618 +          if( aMatch[j].iTerm==aMatch[iMatch].iTerm
  1.3619 +              && aMatch[j].snStatus==SNIPPET_DESIRED ){
  1.3620 +            nDesired--;
  1.3621 +            aMatch[j].snStatus = SNIPPET_IGNORE;
  1.3622 +          }
  1.3623 +        }
  1.3624 +      }else{
  1.3625 +        nappend(&sb, &zDoc[iStart], iEnd - iStart);
  1.3626 +        iStart = iEnd;
  1.3627 +      }
  1.3628 +    }
  1.3629 +    tailCol = iCol;
  1.3630 +    tailOffset = iEnd;
  1.3631 +  }
  1.3632 +  trimWhiteSpace(&sb);
  1.3633 +  if( tailEllipsis ){
  1.3634 +    appendWhiteSpace(&sb);
  1.3635 +    append(&sb, zEllipsis);
  1.3636 +  }
  1.3637 +  pCursor->snippet.zSnippet = stringBufferData(&sb);
  1.3638 +  pCursor->snippet.nSnippet = stringBufferLength(&sb);
  1.3639 +}
  1.3640 +
  1.3641 +
  1.3642 +/*
  1.3643 +** Close the cursor.  For additional information see the documentation
  1.3644 +** on the xClose method of the virtual table interface.
  1.3645 +*/
  1.3646 +static int fulltextClose(sqlite3_vtab_cursor *pCursor){
  1.3647 +  fulltext_cursor *c = (fulltext_cursor *) pCursor;
  1.3648 +  FTSTRACE(("FTS3 Close %p\n", c));
  1.3649 +  sqlite3_finalize(c->pStmt);
  1.3650 +  queryClear(&c->q);
  1.3651 +  snippetClear(&c->snippet);
  1.3652 +  if( c->result.nData!=0 ) dlrDestroy(&c->reader);
  1.3653 +  dataBufferDestroy(&c->result);
  1.3654 +  sqlite3_free(c);
  1.3655 +  return SQLITE_OK;
  1.3656 +}
  1.3657 +
  1.3658 +static int fulltextNext(sqlite3_vtab_cursor *pCursor){
  1.3659 +  fulltext_cursor *c = (fulltext_cursor *) pCursor;
  1.3660 +  int rc;
  1.3661 +
  1.3662 +  FTSTRACE(("FTS3 Next %p\n", pCursor));
  1.3663 +  snippetClear(&c->snippet);
  1.3664 +  if( c->iCursorType < QUERY_FULLTEXT ){
  1.3665 +    /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
  1.3666 +    rc = sqlite3_step(c->pStmt);
  1.3667 +    switch( rc ){
  1.3668 +      case SQLITE_ROW:
  1.3669 +        c->eof = 0;
  1.3670 +        return SQLITE_OK;
  1.3671 +      case SQLITE_DONE:
  1.3672 +        c->eof = 1;
  1.3673 +        return SQLITE_OK;
  1.3674 +      default:
  1.3675 +        c->eof = 1;
  1.3676 +        return rc;
  1.3677 +    }
  1.3678 +  } else {  /* full-text query */
  1.3679 +    rc = sqlite3_reset(c->pStmt);
  1.3680 +    if( rc!=SQLITE_OK ) return rc;
  1.3681 +
  1.3682 +    if( c->result.nData==0 || dlrAtEnd(&c->reader) ){
  1.3683 +      c->eof = 1;
  1.3684 +      return SQLITE_OK;
  1.3685 +    }
  1.3686 +    rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader));
  1.3687 +    dlrStep(&c->reader);
  1.3688 +    if( rc!=SQLITE_OK ) return rc;
  1.3689 +    /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */
  1.3690 +    rc = sqlite3_step(c->pStmt);
  1.3691 +    if( rc==SQLITE_ROW ){   /* the case we expect */
  1.3692 +      c->eof = 0;
  1.3693 +      return SQLITE_OK;
  1.3694 +    }
  1.3695 +    /* an error occurred; abort */
  1.3696 +    return rc==SQLITE_DONE ? SQLITE_ERROR : rc;
  1.3697 +  }
  1.3698 +}
  1.3699 +
  1.3700 +
  1.3701 +/* TODO(shess) If we pushed LeafReader to the top of the file, or to
  1.3702 +** another file, term_select() could be pushed above
  1.3703 +** docListOfTerm().
  1.3704 +*/
  1.3705 +static int termSelect(fulltext_vtab *v, int iColumn,
  1.3706 +                      const char *pTerm, int nTerm, int isPrefix,
  1.3707 +                      DocListType iType, DataBuffer *out);
  1.3708 +
  1.3709 +/* Return a DocList corresponding to the query term *pTerm.  If *pTerm
  1.3710 +** is the first term of a phrase query, go ahead and evaluate the phrase
  1.3711 +** query and return the doclist for the entire phrase query.
  1.3712 +**
  1.3713 +** The resulting DL_DOCIDS doclist is stored in pResult, which is
  1.3714 +** overwritten.
  1.3715 +*/
  1.3716 +static int docListOfTerm(
  1.3717 +  fulltext_vtab *v,    /* The full text index */
  1.3718 +  int iColumn,         /* column to restrict to.  No restriction if >=nColumn */
  1.3719 +  QueryTerm *pQTerm,   /* Term we are looking for, or 1st term of a phrase */
  1.3720 +  DataBuffer *pResult  /* Write the result here */
  1.3721 +){
  1.3722 +  DataBuffer left, right, new;
  1.3723 +  int i, rc;
  1.3724 +
  1.3725 +  /* No phrase search if no position info. */
  1.3726 +  assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS );
  1.3727 +
  1.3728 +  /* This code should never be called with buffered updates. */
  1.3729 +  assert( v->nPendingData<0 );
  1.3730 +
  1.3731 +  dataBufferInit(&left, 0);
  1.3732 +  rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix,
  1.3733 +                  (0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS), &left);
  1.3734 +  if( rc ) return rc;
  1.3735 +  for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){
  1.3736 +    /* If this token is connected to the next by a NEAR operator, and
  1.3737 +    ** the next token is the start of a phrase, then set nPhraseRight
  1.3738 +    ** to the number of tokens in the phrase. Otherwise leave it at 1.
  1.3739 +    */
  1.3740 +    int nPhraseRight = 1;
  1.3741 +    while( (i+nPhraseRight)<=pQTerm->nPhrase 
  1.3742 +        && pQTerm[i+nPhraseRight].nNear==0 
  1.3743 +    ){
  1.3744 +      nPhraseRight++;
  1.3745 +    }
  1.3746 +
  1.3747 +    dataBufferInit(&right, 0);
  1.3748 +    rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm,
  1.3749 +                    pQTerm[i].isPrefix, DL_POSITIONS, &right);
  1.3750 +    if( rc ){
  1.3751 +      dataBufferDestroy(&left);
  1.3752 +      return rc;
  1.3753 +    }
  1.3754 +    dataBufferInit(&new, 0);
  1.3755 +    docListPhraseMerge(left.pData, left.nData, right.pData, right.nData,
  1.3756 +                       pQTerm[i-1].nNear, pQTerm[i-1].iPhrase + nPhraseRight,
  1.3757 +                       ((i<pQTerm->nPhrase) ? DL_POSITIONS : DL_DOCIDS),
  1.3758 +                       &new);
  1.3759 +    dataBufferDestroy(&left);
  1.3760 +    dataBufferDestroy(&right);
  1.3761 +    left = new;
  1.3762 +  }
  1.3763 +  *pResult = left;
  1.3764 +  return SQLITE_OK;
  1.3765 +}
  1.3766 +
  1.3767 +/* Add a new term pTerm[0..nTerm-1] to the query *q.
  1.3768 +*/
  1.3769 +static void queryAdd(Query *q, const char *pTerm, int nTerm){
  1.3770 +  QueryTerm *t;
  1.3771 +  ++q->nTerms;
  1.3772 +  q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0]));
  1.3773 +  if( q->pTerms==0 ){
  1.3774 +    q->nTerms = 0;
  1.3775 +    return;
  1.3776 +  }
  1.3777 +  t = &q->pTerms[q->nTerms - 1];
  1.3778 +  CLEAR(t);
  1.3779 +  t->pTerm = sqlite3_malloc(nTerm+1);
  1.3780 +  memcpy(t->pTerm, pTerm, nTerm);
  1.3781 +  t->pTerm[nTerm] = 0;
  1.3782 +  t->nTerm = nTerm;
  1.3783 +  t->isOr = q->nextIsOr;
  1.3784 +  t->isPrefix = 0;
  1.3785 +  q->nextIsOr = 0;
  1.3786 +  t->iColumn = q->nextColumn;
  1.3787 +  q->nextColumn = q->dfltColumn;
  1.3788 +}
  1.3789 +
  1.3790 +/*
  1.3791 +** Check to see if the string zToken[0...nToken-1] matches any
  1.3792 +** column name in the virtual table.   If it does,
  1.3793 +** return the zero-indexed column number.  If not, return -1.
  1.3794 +*/
  1.3795 +static int checkColumnSpecifier(
  1.3796 +  fulltext_vtab *pVtab,    /* The virtual table */
  1.3797 +  const char *zToken,      /* Text of the token */
  1.3798 +  int nToken               /* Number of characters in the token */
  1.3799 +){
  1.3800 +  int i;
  1.3801 +  for(i=0; i<pVtab->nColumn; i++){
  1.3802 +    if( memcmp(pVtab->azColumn[i], zToken, nToken)==0
  1.3803 +        && pVtab->azColumn[i][nToken]==0 ){
  1.3804 +      return i;
  1.3805 +    }
  1.3806 +  }
  1.3807 +  return -1;
  1.3808 +}
  1.3809 +
  1.3810 +/*
  1.3811 +** Parse the text at zSegment[0..nSegment-1].  Add additional terms
  1.3812 +** to the query being assemblied in pQuery.
  1.3813 +**
  1.3814 +** inPhrase is true if zSegment[0..nSegement-1] is contained within
  1.3815 +** double-quotes.  If inPhrase is true, then the first term
  1.3816 +** is marked with the number of terms in the phrase less one and
  1.3817 +** OR and "-" syntax is ignored.  If inPhrase is false, then every
  1.3818 +** term found is marked with nPhrase=0 and OR and "-" syntax is significant.
  1.3819 +*/
  1.3820 +static int tokenizeSegment(
  1.3821 +  sqlite3_tokenizer *pTokenizer,          /* The tokenizer to use */
  1.3822 +  const char *zSegment, int nSegment,     /* Query expression being parsed */
  1.3823 +  int inPhrase,                           /* True if within "..." */
  1.3824 +  Query *pQuery                           /* Append results here */
  1.3825 +){
  1.3826 +  const sqlite3_tokenizer_module *pModule = pTokenizer->pModule;
  1.3827 +  sqlite3_tokenizer_cursor *pCursor;
  1.3828 +  int firstIndex = pQuery->nTerms;
  1.3829 +  int iCol;
  1.3830 +  int nTerm = 1;
  1.3831 +  
  1.3832 +  int rc = pModule->xOpen(pTokenizer, zSegment, nSegment, &pCursor);
  1.3833 +  if( rc!=SQLITE_OK ) return rc;
  1.3834 +  pCursor->pTokenizer = pTokenizer;
  1.3835 +
  1.3836 +  while( 1 ){
  1.3837 +    const char *zToken;
  1.3838 +    int nToken, iBegin, iEnd, iPos;
  1.3839 +
  1.3840 +    rc = pModule->xNext(pCursor,
  1.3841 +                        &zToken, &nToken,
  1.3842 +                        &iBegin, &iEnd, &iPos);
  1.3843 +    if( rc!=SQLITE_OK ) break;
  1.3844 +    if( !inPhrase &&
  1.3845 +        zSegment[iEnd]==':' &&
  1.3846 +         (iCol = checkColumnSpecifier(pQuery->pFts, zToken, nToken))>=0 ){
  1.3847 +      pQuery->nextColumn = iCol;
  1.3848 +      continue;
  1.3849 +    }
  1.3850 +    if( !inPhrase && pQuery->nTerms>0 && nToken==2 
  1.3851 +     && zSegment[iBegin+0]=='O'
  1.3852 +     && zSegment[iBegin+1]=='R' 
  1.3853 +    ){
  1.3854 +      pQuery->nextIsOr = 1;
  1.3855 +      continue;
  1.3856 +    }
  1.3857 +    if( !inPhrase && pQuery->nTerms>0 && !pQuery->nextIsOr && nToken==4 
  1.3858 +      && memcmp(&zSegment[iBegin], "NEAR", 4)==0
  1.3859 +    ){
  1.3860 +      QueryTerm *pTerm = &pQuery->pTerms[pQuery->nTerms-1];
  1.3861 +      if( (iBegin+6)<nSegment 
  1.3862 +       && zSegment[iBegin+4] == '/'
  1.3863 +       && isdigit(zSegment[iBegin+5])
  1.3864 +      ){
  1.3865 +        int k;
  1.3866 +        pTerm->nNear = 0;
  1.3867 +        for(k=5; (iBegin+k)<=nSegment && isdigit(zSegment[iBegin+k]); k++){
  1.3868 +          pTerm->nNear = pTerm->nNear*10 + (zSegment[iBegin+k] - '0');
  1.3869 +        }
  1.3870 +        pModule->xNext(pCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos);
  1.3871 +      } else {
  1.3872 +        pTerm->nNear = SQLITE_FTS3_DEFAULT_NEAR_PARAM;
  1.3873 +      }
  1.3874 +      pTerm->nNear++;
  1.3875 +      continue;
  1.3876 +    }
  1.3877 +
  1.3878 +    queryAdd(pQuery, zToken, nToken);
  1.3879 +    if( !inPhrase && iBegin>0 && zSegment[iBegin-1]=='-' ){
  1.3880 +      pQuery->pTerms[pQuery->nTerms-1].isNot = 1;
  1.3881 +    }
  1.3882 +    if( iEnd<nSegment && zSegment[iEnd]=='*' ){
  1.3883 +      pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1;
  1.3884 +    }
  1.3885 +    pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm;
  1.3886 +    if( inPhrase ){
  1.3887 +      nTerm++;
  1.3888 +    }
  1.3889 +  }
  1.3890 +
  1.3891 +  if( inPhrase && pQuery->nTerms>firstIndex ){
  1.3892 +    pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1;
  1.3893 +  }
  1.3894 +
  1.3895 +  return pModule->xClose(pCursor);
  1.3896 +}
  1.3897 +
  1.3898 +/* Parse a query string, yielding a Query object pQuery.
  1.3899 +**
  1.3900 +** The calling function will need to queryClear() to clean up
  1.3901 +** the dynamically allocated memory held by pQuery.
  1.3902 +*/
  1.3903 +static int parseQuery(
  1.3904 +  fulltext_vtab *v,        /* The fulltext index */
  1.3905 +  const char *zInput,      /* Input text of the query string */
  1.3906 +  int nInput,              /* Size of the input text */
  1.3907 +  int dfltColumn,          /* Default column of the index to match against */
  1.3908 +  Query *pQuery            /* Write the parse results here. */
  1.3909 +){
  1.3910 +  int iInput, inPhrase = 0;
  1.3911 +  int ii;
  1.3912 +  QueryTerm *aTerm;
  1.3913 +
  1.3914 +  if( zInput==0 ) nInput = 0;
  1.3915 +  if( nInput<0 ) nInput = strlen(zInput);
  1.3916 +  pQuery->nTerms = 0;
  1.3917 +  pQuery->pTerms = NULL;
  1.3918 +  pQuery->nextIsOr = 0;
  1.3919 +  pQuery->nextColumn = dfltColumn;
  1.3920 +  pQuery->dfltColumn = dfltColumn;
  1.3921 +  pQuery->pFts = v;
  1.3922 +
  1.3923 +  for(iInput=0; iInput<nInput; ++iInput){
  1.3924 +    int i;
  1.3925 +    for(i=iInput; i<nInput && zInput[i]!='"'; ++i){}
  1.3926 +    if( i>iInput ){
  1.3927 +      tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase,
  1.3928 +                       pQuery);
  1.3929 +    }
  1.3930 +    iInput = i;
  1.3931 +    if( i<nInput ){
  1.3932 +      assert( zInput[i]=='"' );
  1.3933 +      inPhrase = !inPhrase;
  1.3934 +    }
  1.3935 +  }
  1.3936 +
  1.3937 +  if( inPhrase ){
  1.3938 +    /* unmatched quote */
  1.3939 +    queryClear(pQuery);
  1.3940 +    return SQLITE_ERROR;
  1.3941 +  }
  1.3942 +
  1.3943 +  /* Modify the values of the QueryTerm.nPhrase variables to account for
  1.3944 +  ** the NEAR operator. For the purposes of QueryTerm.nPhrase, phrases
  1.3945 +  ** and tokens connected by the NEAR operator are handled as a single
  1.3946 +  ** phrase. See comments above the QueryTerm structure for details.
  1.3947 +  */
  1.3948 +  aTerm = pQuery->pTerms;
  1.3949 +  for(ii=0; ii<pQuery->nTerms; ii++){
  1.3950 +    if( aTerm[ii].nNear || aTerm[ii].nPhrase ){
  1.3951 +      while (aTerm[ii+aTerm[ii].nPhrase].nNear) {
  1.3952 +        aTerm[ii].nPhrase += (1 + aTerm[ii+aTerm[ii].nPhrase+1].nPhrase);
  1.3953 +      }
  1.3954 +    }
  1.3955 +  }
  1.3956 +
  1.3957 +  return SQLITE_OK;
  1.3958 +}
  1.3959 +
  1.3960 +/* TODO(shess) Refactor the code to remove this forward decl. */
  1.3961 +static int flushPendingTerms(fulltext_vtab *v);
  1.3962 +
  1.3963 +/* Perform a full-text query using the search expression in
  1.3964 +** zInput[0..nInput-1].  Return a list of matching documents
  1.3965 +** in pResult.
  1.3966 +**
  1.3967 +** Queries must match column iColumn.  Or if iColumn>=nColumn
  1.3968 +** they are allowed to match against any column.
  1.3969 +*/
  1.3970 +static int fulltextQuery(
  1.3971 +  fulltext_vtab *v,      /* The full text index */
  1.3972 +  int iColumn,           /* Match against this column by default */
  1.3973 +  const char *zInput,    /* The query string */
  1.3974 +  int nInput,            /* Number of bytes in zInput[] */
  1.3975 +  DataBuffer *pResult,   /* Write the result doclist here */
  1.3976 +  Query *pQuery          /* Put parsed query string here */
  1.3977 +){
  1.3978 +  int i, iNext, rc;
  1.3979 +  DataBuffer left, right, or, new;
  1.3980 +  int nNot = 0;
  1.3981 +  QueryTerm *aTerm;
  1.3982 +
  1.3983 +  /* TODO(shess) Instead of flushing pendingTerms, we could query for
  1.3984 +  ** the relevant term and merge the doclist into what we receive from
  1.3985 +  ** the database.  Wait and see if this is a common issue, first.
  1.3986 +  **
  1.3987 +  ** A good reason not to flush is to not generate update-related
  1.3988 +  ** error codes from here.
  1.3989 +  */
  1.3990 +
  1.3991 +  /* Flush any buffered updates before executing the query. */
  1.3992 +  rc = flushPendingTerms(v);
  1.3993 +  if( rc!=SQLITE_OK ) return rc;
  1.3994 +
  1.3995 +  /* TODO(shess) I think that the queryClear() calls below are not
  1.3996 +  ** necessary, because fulltextClose() already clears the query.
  1.3997 +  */
  1.3998 +  rc = parseQuery(v, zInput, nInput, iColumn, pQuery);
  1.3999 +  if( rc!=SQLITE_OK ) return rc;
  1.4000 +
  1.4001 +  /* Empty or NULL queries return no results. */
  1.4002 +  if( pQuery->nTerms==0 ){
  1.4003 +    dataBufferInit(pResult, 0);
  1.4004 +    return SQLITE_OK;
  1.4005 +  }
  1.4006 +
  1.4007 +  /* Merge AND terms. */
  1.4008 +  /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */
  1.4009 +  aTerm = pQuery->pTerms;
  1.4010 +  for(i = 0; i<pQuery->nTerms; i=iNext){
  1.4011 +    if( aTerm[i].isNot ){
  1.4012 +      /* Handle all NOT terms in a separate pass */
  1.4013 +      nNot++;
  1.4014 +      iNext = i + aTerm[i].nPhrase+1;
  1.4015 +      continue;
  1.4016 +    }
  1.4017 +    iNext = i + aTerm[i].nPhrase + 1;
  1.4018 +    rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
  1.4019 +    if( rc ){
  1.4020 +      if( i!=nNot ) dataBufferDestroy(&left);
  1.4021 +      queryClear(pQuery);
  1.4022 +      return rc;
  1.4023 +    }
  1.4024 +    while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){
  1.4025 +      rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or);
  1.4026 +      iNext += aTerm[iNext].nPhrase + 1;
  1.4027 +      if( rc ){
  1.4028 +        if( i!=nNot ) dataBufferDestroy(&left);
  1.4029 +        dataBufferDestroy(&right);
  1.4030 +        queryClear(pQuery);
  1.4031 +        return rc;
  1.4032 +      }
  1.4033 +      dataBufferInit(&new, 0);
  1.4034 +      docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new);
  1.4035 +      dataBufferDestroy(&right);
  1.4036 +      dataBufferDestroy(&or);
  1.4037 +      right = new;
  1.4038 +    }
  1.4039 +    if( i==nNot ){           /* first term processed. */
  1.4040 +      left = right;
  1.4041 +    }else{
  1.4042 +      dataBufferInit(&new, 0);
  1.4043 +      docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new);
  1.4044 +      dataBufferDestroy(&right);
  1.4045 +      dataBufferDestroy(&left);
  1.4046 +      left = new;
  1.4047 +    }
  1.4048 +  }
  1.4049 +
  1.4050 +  if( nNot==pQuery->nTerms ){
  1.4051 +    /* We do not yet know how to handle a query of only NOT terms */
  1.4052 +    return SQLITE_ERROR;
  1.4053 +  }
  1.4054 +
  1.4055 +  /* Do the EXCEPT terms */
  1.4056 +  for(i=0; i<pQuery->nTerms;  i += aTerm[i].nPhrase + 1){
  1.4057 +    if( !aTerm[i].isNot ) continue;
  1.4058 +    rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right);
  1.4059 +    if( rc ){
  1.4060 +      queryClear(pQuery);
  1.4061 +      dataBufferDestroy(&left);
  1.4062 +      return rc;
  1.4063 +    }
  1.4064 +    dataBufferInit(&new, 0);
  1.4065 +    docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new);
  1.4066 +    dataBufferDestroy(&right);
  1.4067 +    dataBufferDestroy(&left);
  1.4068 +    left = new;
  1.4069 +  }
  1.4070 +
  1.4071 +  *pResult = left;
  1.4072 +  return rc;
  1.4073 +}
  1.4074 +
  1.4075 +/*
  1.4076 +** This is the xFilter interface for the virtual table.  See
  1.4077 +** the virtual table xFilter method documentation for additional
  1.4078 +** information.
  1.4079 +**
  1.4080 +** If idxNum==QUERY_GENERIC then do a full table scan against
  1.4081 +** the %_content table.
  1.4082 +**
  1.4083 +** If idxNum==QUERY_DOCID then do a docid lookup for a single entry
  1.4084 +** in the %_content table.
  1.4085 +**
  1.4086 +** If idxNum>=QUERY_FULLTEXT then use the full text index.  The
  1.4087 +** column on the left-hand side of the MATCH operator is column
  1.4088 +** number idxNum-QUERY_FULLTEXT, 0 indexed.  argv[0] is the right-hand
  1.4089 +** side of the MATCH operator.
  1.4090 +*/
  1.4091 +/* TODO(shess) Upgrade the cursor initialization and destruction to
  1.4092 +** account for fulltextFilter() being called multiple times on the
  1.4093 +** same cursor.  The current solution is very fragile.  Apply fix to
  1.4094 +** fts3 as appropriate.
  1.4095 +*/
  1.4096 +static int fulltextFilter(
  1.4097 +  sqlite3_vtab_cursor *pCursor,     /* The cursor used for this query */
  1.4098 +  int idxNum, const char *idxStr,   /* Which indexing scheme to use */
  1.4099 +  int argc, sqlite3_value **argv    /* Arguments for the indexing scheme */
  1.4100 +){
  1.4101 +  fulltext_cursor *c = (fulltext_cursor *) pCursor;
  1.4102 +  fulltext_vtab *v = cursor_vtab(c);
  1.4103 +  int rc;
  1.4104 +
  1.4105 +  FTSTRACE(("FTS3 Filter %p\n",pCursor));
  1.4106 +
  1.4107 +  /* If the cursor has a statement that was not prepared according to
  1.4108 +  ** idxNum, clear it.  I believe all calls to fulltextFilter with a
  1.4109 +  ** given cursor will have the same idxNum , but in this case it's
  1.4110 +  ** easy to be safe.
  1.4111 +  */
  1.4112 +  if( c->pStmt && c->iCursorType!=idxNum ){
  1.4113 +    sqlite3_finalize(c->pStmt);
  1.4114 +    c->pStmt = NULL;
  1.4115 +  }
  1.4116 +
  1.4117 +  /* Get a fresh statement appropriate to idxNum. */
  1.4118 +  /* TODO(shess): Add a prepared-statement cache in the vt structure.
  1.4119 +  ** The cache must handle multiple open cursors.  Easier to cache the
  1.4120 +  ** statement variants at the vt to reduce malloc/realloc/free here.
  1.4121 +  ** Or we could have a StringBuffer variant which allowed stack
  1.4122 +  ** construction for small values.
  1.4123 +  */
  1.4124 +  if( !c->pStmt ){
  1.4125 +    StringBuffer sb;
  1.4126 +    initStringBuffer(&sb);
  1.4127 +    append(&sb, "SELECT docid, ");
  1.4128 +    appendList(&sb, v->nColumn, v->azContentColumn);
  1.4129 +    append(&sb, " FROM %_content");
  1.4130 +    if( idxNum!=QUERY_GENERIC ) append(&sb, " WHERE docid = ?");
  1.4131 +    rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt,
  1.4132 +                     stringBufferData(&sb));
  1.4133 +    stringBufferDestroy(&sb);
  1.4134 +    if( rc!=SQLITE_OK ) return rc;
  1.4135 +    c->iCursorType = idxNum;
  1.4136 +  }else{
  1.4137 +    sqlite3_reset(c->pStmt);
  1.4138 +    assert( c->iCursorType==idxNum );
  1.4139 +  }
  1.4140 +
  1.4141 +  switch( idxNum ){
  1.4142 +    case QUERY_GENERIC:
  1.4143 +      break;
  1.4144 +
  1.4145 +    case QUERY_DOCID:
  1.4146 +      rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0]));
  1.4147 +      if( rc!=SQLITE_OK ) return rc;
  1.4148 +      break;
  1.4149 +
  1.4150 +    default:   /* full-text search */
  1.4151 +    {
  1.4152 +      const char *zQuery = (const char *)sqlite3_value_text(argv[0]);
  1.4153 +      assert( idxNum<=QUERY_FULLTEXT+v->nColumn);
  1.4154 +      assert( argc==1 );
  1.4155 +      queryClear(&c->q);
  1.4156 +      if( c->result.nData!=0 ){
  1.4157 +        /* This case happens if the same cursor is used repeatedly. */
  1.4158 +        dlrDestroy(&c->reader);
  1.4159 +        dataBufferReset(&c->result);
  1.4160 +      }else{
  1.4161 +        dataBufferInit(&c->result, 0);
  1.4162 +      }
  1.4163 +      rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q);
  1.4164 +      if( rc!=SQLITE_OK ) return rc;
  1.4165 +      if( c->result.nData!=0 ){
  1.4166 +        dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData);
  1.4167 +      }
  1.4168 +      break;
  1.4169 +    }
  1.4170 +  }
  1.4171 +
  1.4172 +  return fulltextNext(pCursor);
  1.4173 +}
  1.4174 +
  1.4175 +/* This is the xEof method of the virtual table.  The SQLite core
  1.4176 +** calls this routine to find out if it has reached the end of
  1.4177 +** a query's results set.
  1.4178 +*/
  1.4179 +static int fulltextEof(sqlite3_vtab_cursor *pCursor){
  1.4180 +  fulltext_cursor *c = (fulltext_cursor *) pCursor;
  1.4181 +  return c->eof;
  1.4182 +}
  1.4183 +
  1.4184 +/* This is the xColumn method of the virtual table.  The SQLite
  1.4185 +** core calls this method during a query when it needs the value
  1.4186 +** of a column from the virtual table.  This method needs to use
  1.4187 +** one of the sqlite3_result_*() routines to store the requested
  1.4188 +** value back in the pContext.
  1.4189 +*/
  1.4190 +static int fulltextColumn(sqlite3_vtab_cursor *pCursor,
  1.4191 +                          sqlite3_context *pContext, int idxCol){
  1.4192 +  fulltext_cursor *c = (fulltext_cursor *) pCursor;
  1.4193 +  fulltext_vtab *v = cursor_vtab(c);
  1.4194 +
  1.4195 +  if( idxCol<v->nColumn ){
  1.4196 +    sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1);
  1.4197 +    sqlite3_result_value(pContext, pVal);
  1.4198 +  }else if( idxCol==v->nColumn ){
  1.4199 +    /* The extra column whose name is the same as the table.
  1.4200 +    ** Return a blob which is a pointer to the cursor
  1.4201 +    */
  1.4202 +    sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT);
  1.4203 +  }else if( idxCol==v->nColumn+1 ){
  1.4204 +    /* The docid column, which is an alias for rowid. */
  1.4205 +    sqlite3_value *pVal = sqlite3_column_value(c->pStmt, 0);
  1.4206 +    sqlite3_result_value(pContext, pVal);
  1.4207 +  }
  1.4208 +  return SQLITE_OK;
  1.4209 +}
  1.4210 +
  1.4211 +/* This is the xRowid method.  The SQLite core calls this routine to
  1.4212 +** retrieve the rowid for the current row of the result set.  fts3
  1.4213 +** exposes %_content.docid as the rowid for the virtual table.  The
  1.4214 +** rowid should be written to *pRowid.
  1.4215 +*/
  1.4216 +static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  1.4217 +  fulltext_cursor *c = (fulltext_cursor *) pCursor;
  1.4218 +
  1.4219 +  *pRowid = sqlite3_column_int64(c->pStmt, 0);
  1.4220 +  return SQLITE_OK;
  1.4221 +}
  1.4222 +
  1.4223 +/* Add all terms in [zText] to pendingTerms table.  If [iColumn] > 0,
  1.4224 +** we also store positions and offsets in the hash table using that
  1.4225 +** column number.
  1.4226 +*/
  1.4227 +static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid,
  1.4228 +                      const char *zText, int iColumn){
  1.4229 +  sqlite3_tokenizer *pTokenizer = v->pTokenizer;
  1.4230 +  sqlite3_tokenizer_cursor *pCursor;
  1.4231 +  const char *pToken;
  1.4232 +  int nTokenBytes;
  1.4233 +  int iStartOffset, iEndOffset, iPosition;
  1.4234 +  int rc;
  1.4235 +
  1.4236 +  rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor);
  1.4237 +  if( rc!=SQLITE_OK ) return rc;
  1.4238 +
  1.4239 +  pCursor->pTokenizer = pTokenizer;
  1.4240 +  while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor,
  1.4241 +                                                   &pToken, &nTokenBytes,
  1.4242 +                                                   &iStartOffset, &iEndOffset,
  1.4243 +                                                   &iPosition)) ){
  1.4244 +    DLCollector *p;
  1.4245 +    int nData;                   /* Size of doclist before our update. */
  1.4246 +
  1.4247 +    /* Positions can't be negative; we use -1 as a terminator
  1.4248 +     * internally.  Token can't be NULL or empty. */
  1.4249 +    if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){
  1.4250 +      rc = SQLITE_ERROR;
  1.4251 +      break;
  1.4252 +    }
  1.4253 +
  1.4254 +    p = fts3HashFind(&v->pendingTerms, pToken, nTokenBytes);
  1.4255 +    if( p==NULL ){
  1.4256 +      nData = 0;
  1.4257 +      p = dlcNew(iDocid, DL_DEFAULT);
  1.4258 +      fts3HashInsert(&v->pendingTerms, pToken, nTokenBytes, p);
  1.4259 +
  1.4260 +      /* Overhead for our hash table entry, the key, and the value. */
  1.4261 +      v->nPendingData += sizeof(struct fts3HashElem)+sizeof(*p)+nTokenBytes;
  1.4262 +    }else{
  1.4263 +      nData = p->b.nData;
  1.4264 +      if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid);
  1.4265 +    }
  1.4266 +    if( iColumn>=0 ){
  1.4267 +      dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset);
  1.4268 +    }
  1.4269 +
  1.4270 +    /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */
  1.4271 +    v->nPendingData += p->b.nData-nData;
  1.4272 +  }
  1.4273 +
  1.4274 +  /* TODO(shess) Check return?  Should this be able to cause errors at
  1.4275 +  ** this point?  Actually, same question about sqlite3_finalize(),
  1.4276 +  ** though one could argue that failure there means that the data is
  1.4277 +  ** not durable.  *ponder*
  1.4278 +  */
  1.4279 +  pTokenizer->pModule->xClose(pCursor);
  1.4280 +  if( SQLITE_DONE == rc ) return SQLITE_OK;
  1.4281 +  return rc;
  1.4282 +}
  1.4283 +
  1.4284 +/* Add doclists for all terms in [pValues] to pendingTerms table. */
  1.4285 +static int insertTerms(fulltext_vtab *v, sqlite_int64 iDocid,
  1.4286 +                       sqlite3_value **pValues){
  1.4287 +  int i;
  1.4288 +  for(i = 0; i < v->nColumn ; ++i){
  1.4289 +    char *zText = (char*)sqlite3_value_text(pValues[i]);
  1.4290 +    int rc = buildTerms(v, iDocid, zText, i);
  1.4291 +    if( rc!=SQLITE_OK ) return rc;
  1.4292 +  }
  1.4293 +  return SQLITE_OK;
  1.4294 +}
  1.4295 +
  1.4296 +/* Add empty doclists for all terms in the given row's content to
  1.4297 +** pendingTerms.
  1.4298 +*/
  1.4299 +static int deleteTerms(fulltext_vtab *v, sqlite_int64 iDocid){
  1.4300 +  const char **pValues;
  1.4301 +  int i, rc;
  1.4302 +
  1.4303 +  /* TODO(shess) Should we allow such tables at all? */
  1.4304 +  if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR;
  1.4305 +
  1.4306 +  rc = content_select(v, iDocid, &pValues);
  1.4307 +  if( rc!=SQLITE_OK ) return rc;
  1.4308 +
  1.4309 +  for(i = 0 ; i < v->nColumn; ++i) {
  1.4310 +    rc = buildTerms(v, iDocid, pValues[i], -1);
  1.4311 +    if( rc!=SQLITE_OK ) break;
  1.4312 +  }
  1.4313 +
  1.4314 +  freeStringArray(v->nColumn, pValues);
  1.4315 +  return SQLITE_OK;
  1.4316 +}
  1.4317 +
  1.4318 +/* TODO(shess) Refactor the code to remove this forward decl. */
  1.4319 +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid);
  1.4320 +
  1.4321 +/* Insert a row into the %_content table; set *piDocid to be the ID of the
  1.4322 +** new row.  Add doclists for terms to pendingTerms.
  1.4323 +*/
  1.4324 +static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestDocid,
  1.4325 +                        sqlite3_value **pValues, sqlite_int64 *piDocid){
  1.4326 +  int rc;
  1.4327 +
  1.4328 +  rc = content_insert(v, pRequestDocid, pValues);  /* execute an SQL INSERT */
  1.4329 +  if( rc!=SQLITE_OK ) return rc;
  1.4330 +
  1.4331 +  /* docid column is an alias for rowid. */
  1.4332 +  *piDocid = sqlite3_last_insert_rowid(v->db);
  1.4333 +  rc = initPendingTerms(v, *piDocid);
  1.4334 +  if( rc!=SQLITE_OK ) return rc;
  1.4335 +
  1.4336 +  return insertTerms(v, *piDocid, pValues);
  1.4337 +}
  1.4338 +
  1.4339 +/* Delete a row from the %_content table; add empty doclists for terms
  1.4340 +** to pendingTerms.
  1.4341 +*/
  1.4342 +static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){
  1.4343 +  int rc = initPendingTerms(v, iRow);
  1.4344 +  if( rc!=SQLITE_OK ) return rc;
  1.4345 +
  1.4346 +  rc = deleteTerms(v, iRow);
  1.4347 +  if( rc!=SQLITE_OK ) return rc;
  1.4348 +
  1.4349 +  return content_delete(v, iRow);  /* execute an SQL DELETE */
  1.4350 +}
  1.4351 +
  1.4352 +/* Update a row in the %_content table; add delete doclists to
  1.4353 +** pendingTerms for old terms not in the new data, add insert doclists
  1.4354 +** to pendingTerms for terms in the new data.
  1.4355 +*/
  1.4356 +static int index_update(fulltext_vtab *v, sqlite_int64 iRow,
  1.4357 +                        sqlite3_value **pValues){
  1.4358 +  int rc = initPendingTerms(v, iRow);
  1.4359 +  if( rc!=SQLITE_OK ) return rc;
  1.4360 +
  1.4361 +  /* Generate an empty doclist for each term that previously appeared in this
  1.4362 +   * row. */
  1.4363 +  rc = deleteTerms(v, iRow);
  1.4364 +  if( rc!=SQLITE_OK ) return rc;
  1.4365 +
  1.4366 +  rc = content_update(v, pValues, iRow);  /* execute an SQL UPDATE */
  1.4367 +  if( rc!=SQLITE_OK ) return rc;
  1.4368 +
  1.4369 +  /* Now add positions for terms which appear in the updated row. */
  1.4370 +  return insertTerms(v, iRow, pValues);
  1.4371 +}
  1.4372 +
  1.4373 +/*******************************************************************/
  1.4374 +/* InteriorWriter is used to collect terms and block references into
  1.4375 +** interior nodes in %_segments.  See commentary at top of file for
  1.4376 +** format.
  1.4377 +*/
  1.4378 +
  1.4379 +/* How large interior nodes can grow. */
  1.4380 +#define INTERIOR_MAX 2048
  1.4381 +
  1.4382 +/* Minimum number of terms per interior node (except the root). This
  1.4383 +** prevents large terms from making the tree too skinny - must be >0
  1.4384 +** so that the tree always makes progress.  Note that the min tree
  1.4385 +** fanout will be INTERIOR_MIN_TERMS+1.
  1.4386 +*/
  1.4387 +#define INTERIOR_MIN_TERMS 7
  1.4388 +#if INTERIOR_MIN_TERMS<1
  1.4389 +# error INTERIOR_MIN_TERMS must be greater than 0.
  1.4390 +#endif
  1.4391 +
  1.4392 +/* ROOT_MAX controls how much data is stored inline in the segment
  1.4393 +** directory.
  1.4394 +*/
  1.4395 +/* TODO(shess) Push ROOT_MAX down to whoever is writing things.  It's
  1.4396 +** only here so that interiorWriterRootInfo() and leafWriterRootInfo()
  1.4397 +** can both see it, but if the caller passed it in, we wouldn't even
  1.4398 +** need a define.
  1.4399 +*/
  1.4400 +#define ROOT_MAX 1024
  1.4401 +#if ROOT_MAX<VARINT_MAX*2
  1.4402 +# error ROOT_MAX must have enough space for a header.
  1.4403 +#endif
  1.4404 +
  1.4405 +/* InteriorBlock stores a linked-list of interior blocks while a lower
  1.4406 +** layer is being constructed.
  1.4407 +*/
  1.4408 +typedef struct InteriorBlock {
  1.4409 +  DataBuffer term;           /* Leftmost term in block's subtree. */
  1.4410 +  DataBuffer data;           /* Accumulated data for the block. */
  1.4411 +  struct InteriorBlock *next;
  1.4412 +} InteriorBlock;
  1.4413 +
  1.4414 +static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock,
  1.4415 +                                       const char *pTerm, int nTerm){
  1.4416 +  InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock));
  1.4417 +  char c[VARINT_MAX+VARINT_MAX];
  1.4418 +  int n;
  1.4419 +
  1.4420 +  if( block ){
  1.4421 +    memset(block, 0, sizeof(*block));
  1.4422 +    dataBufferInit(&block->term, 0);
  1.4423 +    dataBufferReplace(&block->term, pTerm, nTerm);
  1.4424 +
  1.4425 +    n = fts3PutVarint(c, iHeight);
  1.4426 +    n += fts3PutVarint(c+n, iChildBlock);
  1.4427 +    dataBufferInit(&block->data, INTERIOR_MAX);
  1.4428 +    dataBufferReplace(&block->data, c, n);
  1.4429 +  }
  1.4430 +  return block;
  1.4431 +}
  1.4432 +
  1.4433 +#ifndef NDEBUG
  1.4434 +/* Verify that the data is readable as an interior node. */
  1.4435 +static void interiorBlockValidate(InteriorBlock *pBlock){
  1.4436 +  const char *pData = pBlock->data.pData;
  1.4437 +  int nData = pBlock->data.nData;
  1.4438 +  int n, iDummy;
  1.4439 +  sqlite_int64 iBlockid;
  1.4440 +
  1.4441 +  assert( nData>0 );
  1.4442 +  assert( pData!=0 );
  1.4443 +  assert( pData+nData>pData );
  1.4444 +
  1.4445 +  /* Must lead with height of node as a varint(n), n>0 */
  1.4446 +  n = fts3GetVarint32(pData, &iDummy);
  1.4447 +  assert( n>0 );
  1.4448 +  assert( iDummy>0 );
  1.4449 +  assert( n<nData );
  1.4450 +  pData += n;
  1.4451 +  nData -= n;
  1.4452 +
  1.4453 +  /* Must contain iBlockid. */
  1.4454 +  n = fts3GetVarint(pData, &iBlockid);
  1.4455 +  assert( n>0 );
  1.4456 +  assert( n<=nData );
  1.4457 +  pData += n;
  1.4458 +  nData -= n;
  1.4459 +
  1.4460 +  /* Zero or more terms of positive length */
  1.4461 +  if( nData!=0 ){
  1.4462 +    /* First term is not delta-encoded. */
  1.4463 +    n = fts3GetVarint32(pData, &iDummy);
  1.4464 +    assert( n>0 );
  1.4465 +    assert( iDummy>0 );
  1.4466 +    assert( n+iDummy>0);
  1.4467 +    assert( n+iDummy<=nData );
  1.4468 +    pData += n+iDummy;
  1.4469 +    nData -= n+iDummy;
  1.4470 +
  1.4471 +    /* Following terms delta-encoded. */
  1.4472 +    while( nData!=0 ){
  1.4473 +      /* Length of shared prefix. */
  1.4474 +      n = fts3GetVarint32(pData, &iDummy);
  1.4475 +      assert( n>0 );
  1.4476 +      assert( iDummy>=0 );
  1.4477 +      assert( n<nData );
  1.4478 +      pData += n;
  1.4479 +      nData -= n;
  1.4480 +
  1.4481 +      /* Length and data of distinct suffix. */
  1.4482 +      n = fts3GetVarint32(pData, &iDummy);
  1.4483 +      assert( n>0 );
  1.4484 +      assert( iDummy>0 );
  1.4485 +      assert( n+iDummy>0);
  1.4486 +      assert( n+iDummy<=nData );
  1.4487 +      pData += n+iDummy;
  1.4488 +      nData -= n+iDummy;
  1.4489 +    }
  1.4490 +  }
  1.4491 +}
  1.4492 +#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x)
  1.4493 +#else
  1.4494 +#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 )
  1.4495 +#endif
  1.4496 +
  1.4497 +typedef struct InteriorWriter {
  1.4498 +  int iHeight;                   /* from 0 at leaves. */
  1.4499 +  InteriorBlock *first, *last;
  1.4500 +  struct InteriorWriter *parentWriter;
  1.4501 +
  1.4502 +  DataBuffer term;               /* Last term written to block "last". */
  1.4503 +  sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */
  1.4504 +#ifndef NDEBUG
  1.4505 +  sqlite_int64 iLastChildBlock;  /* for consistency checks. */
  1.4506 +#endif
  1.4507 +} InteriorWriter;
  1.4508 +
  1.4509 +/* Initialize an interior node where pTerm[nTerm] marks the leftmost
  1.4510 +** term in the tree.  iChildBlock is the leftmost child block at the
  1.4511 +** next level down the tree.
  1.4512 +*/
  1.4513 +static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm,
  1.4514 +                               sqlite_int64 iChildBlock,
  1.4515 +                               InteriorWriter *pWriter){
  1.4516 +  InteriorBlock *block;
  1.4517 +  assert( iHeight>0 );
  1.4518 +  CLEAR(pWriter);
  1.4519 +
  1.4520 +  pWriter->iHeight = iHeight;
  1.4521 +  pWriter->iOpeningChildBlock = iChildBlock;
  1.4522 +#ifndef NDEBUG
  1.4523 +  pWriter->iLastChildBlock = iChildBlock;
  1.4524 +#endif
  1.4525 +  block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm);
  1.4526 +  pWriter->last = pWriter->first = block;
  1.4527 +  ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  1.4528 +  dataBufferInit(&pWriter->term, 0);
  1.4529 +}
  1.4530 +
  1.4531 +/* Append the child node rooted at iChildBlock to the interior node,
  1.4532 +** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree.
  1.4533 +*/
  1.4534 +static void interiorWriterAppend(InteriorWriter *pWriter,
  1.4535 +                                 const char *pTerm, int nTerm,
  1.4536 +                                 sqlite_int64 iChildBlock){
  1.4537 +  char c[VARINT_MAX+VARINT_MAX];
  1.4538 +  int n, nPrefix = 0;
  1.4539 +
  1.4540 +  ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  1.4541 +
  1.4542 +  /* The first term written into an interior node is actually
  1.4543 +  ** associated with the second child added (the first child was added
  1.4544 +  ** in interiorWriterInit, or in the if clause at the bottom of this
  1.4545 +  ** function).  That term gets encoded straight up, with nPrefix left
  1.4546 +  ** at 0.
  1.4547 +  */
  1.4548 +  if( pWriter->term.nData==0 ){
  1.4549 +    n = fts3PutVarint(c, nTerm);
  1.4550 +  }else{
  1.4551 +    while( nPrefix<pWriter->term.nData &&
  1.4552 +           pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
  1.4553 +      nPrefix++;
  1.4554 +    }
  1.4555 +
  1.4556 +    n = fts3PutVarint(c, nPrefix);
  1.4557 +    n += fts3PutVarint(c+n, nTerm-nPrefix);
  1.4558 +  }
  1.4559 +
  1.4560 +#ifndef NDEBUG
  1.4561 +  pWriter->iLastChildBlock++;
  1.4562 +#endif
  1.4563 +  assert( pWriter->iLastChildBlock==iChildBlock );
  1.4564 +
  1.4565 +  /* Overflow to a new block if the new term makes the current block
  1.4566 +  ** too big, and the current block already has enough terms.
  1.4567 +  */
  1.4568 +  if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX &&
  1.4569 +      iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){
  1.4570 +    pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock,
  1.4571 +                                           pTerm, nTerm);
  1.4572 +    pWriter->last = pWriter->last->next;
  1.4573 +    pWriter->iOpeningChildBlock = iChildBlock;
  1.4574 +    dataBufferReset(&pWriter->term);
  1.4575 +  }else{
  1.4576 +    dataBufferAppend2(&pWriter->last->data, c, n,
  1.4577 +                      pTerm+nPrefix, nTerm-nPrefix);
  1.4578 +    dataBufferReplace(&pWriter->term, pTerm, nTerm);
  1.4579 +  }
  1.4580 +  ASSERT_VALID_INTERIOR_BLOCK(pWriter->last);
  1.4581 +}
  1.4582 +
  1.4583 +/* Free the space used by pWriter, including the linked-list of
  1.4584 +** InteriorBlocks, and parentWriter, if present.
  1.4585 +*/
  1.4586 +static int interiorWriterDestroy(InteriorWriter *pWriter){
  1.4587 +  InteriorBlock *block = pWriter->first;
  1.4588 +
  1.4589 +  while( block!=NULL ){
  1.4590 +    InteriorBlock *b = block;
  1.4591 +    block = block->next;
  1.4592 +    dataBufferDestroy(&b->term);
  1.4593 +    dataBufferDestroy(&b->data);
  1.4594 +    sqlite3_free(b);
  1.4595 +  }
  1.4596 +  if( pWriter->parentWriter!=NULL ){
  1.4597 +    interiorWriterDestroy(pWriter->parentWriter);
  1.4598 +    sqlite3_free(pWriter->parentWriter);
  1.4599 +  }
  1.4600 +  dataBufferDestroy(&pWriter->term);
  1.4601 +  SCRAMBLE(pWriter);
  1.4602 +  return SQLITE_OK;
  1.4603 +}
  1.4604 +
  1.4605 +/* If pWriter can fit entirely in ROOT_MAX, return it as the root info
  1.4606 +** directly, leaving *piEndBlockid unchanged.  Otherwise, flush
  1.4607 +** pWriter to %_segments, building a new layer of interior nodes, and
  1.4608 +** recursively ask for their root into.
  1.4609 +*/
  1.4610 +static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter,
  1.4611 +                                  char **ppRootInfo, int *pnRootInfo,
  1.4612 +                                  sqlite_int64 *piEndBlockid){
  1.4613 +  InteriorBlock *block = pWriter->first;
  1.4614 +  sqlite_int64 iBlockid = 0;
  1.4615 +  int rc;
  1.4616 +
  1.4617 +  /* If we can fit the segment inline */
  1.4618 +  if( block==pWriter->last && block->data.nData<ROOT_MAX ){
  1.4619 +    *ppRootInfo = block->data.pData;
  1.4620 +    *pnRootInfo = block->data.nData;
  1.4621 +    return SQLITE_OK;
  1.4622 +  }
  1.4623 +
  1.4624 +  /* Flush the first block to %_segments, and create a new level of
  1.4625 +  ** interior node.
  1.4626 +  */
  1.4627 +  ASSERT_VALID_INTERIOR_BLOCK(block);
  1.4628 +  rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
  1.4629 +  if( rc!=SQLITE_OK ) return rc;
  1.4630 +  *piEndBlockid = iBlockid;
  1.4631 +
  1.4632 +  pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter));
  1.4633 +  interiorWriterInit(pWriter->iHeight+1,
  1.4634 +                     block->term.pData, block->term.nData,
  1.4635 +                     iBlockid, pWriter->parentWriter);
  1.4636 +
  1.4637 +  /* Flush additional blocks and append to the higher interior
  1.4638 +  ** node.
  1.4639 +  */
  1.4640 +  for(block=block->next; block!=NULL; block=block->next){
  1.4641 +    ASSERT_VALID_INTERIOR_BLOCK(block);
  1.4642 +    rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid);
  1.4643 +    if( rc!=SQLITE_OK ) return rc;
  1.4644 +    *piEndBlockid = iBlockid;
  1.4645 +
  1.4646 +    interiorWriterAppend(pWriter->parentWriter,
  1.4647 +                         block->term.pData, block->term.nData, iBlockid);
  1.4648 +  }
  1.4649 +
  1.4650 +  /* Parent node gets the chance to be the root. */
  1.4651 +  return interiorWriterRootInfo(v, pWriter->parentWriter,
  1.4652 +                                ppRootInfo, pnRootInfo, piEndBlockid);
  1.4653 +}
  1.4654 +
  1.4655 +/****************************************************************/
  1.4656 +/* InteriorReader is used to read off the data from an interior node
  1.4657 +** (see comment at top of file for the format).
  1.4658 +*/
  1.4659 +typedef struct InteriorReader {
  1.4660 +  const char *pData;
  1.4661 +  int nData;
  1.4662 +
  1.4663 +  DataBuffer term;          /* previous term, for decoding term delta. */
  1.4664 +
  1.4665 +  sqlite_int64 iBlockid;
  1.4666 +} InteriorReader;
  1.4667 +
  1.4668 +static void interiorReaderDestroy(InteriorReader *pReader){
  1.4669 +  dataBufferDestroy(&pReader->term);
  1.4670 +  SCRAMBLE(pReader);
  1.4671 +}
  1.4672 +
  1.4673 +/* TODO(shess) The assertions are great, but what if we're in NDEBUG
  1.4674 +** and the blob is empty or otherwise contains suspect data?
  1.4675 +*/
  1.4676 +static void interiorReaderInit(const char *pData, int nData,
  1.4677 +                               InteriorReader *pReader){
  1.4678 +  int n, nTerm;
  1.4679 +
  1.4680 +  /* Require at least the leading flag byte */
  1.4681 +  assert( nData>0 );
  1.4682 +  assert( pData[0]!='\0' );
  1.4683 +
  1.4684 +  CLEAR(pReader);
  1.4685 +
  1.4686 +  /* Decode the base blockid, and set the cursor to the first term. */
  1.4687 +  n = fts3GetVarint(pData+1, &pReader->iBlockid);
  1.4688 +  assert( 1+n<=nData );
  1.4689 +  pReader->pData = pData+1+n;
  1.4690 +  pReader->nData = nData-(1+n);
  1.4691 +
  1.4692 +  /* A single-child interior node (such as when a leaf node was too
  1.4693 +  ** large for the segment directory) won't have any terms.
  1.4694 +  ** Otherwise, decode the first term.
  1.4695 +  */
  1.4696 +  if( pReader->nData==0 ){
  1.4697 +    dataBufferInit(&pReader->term, 0);
  1.4698 +  }else{
  1.4699 +    n = fts3GetVarint32(pReader->pData, &nTerm);
  1.4700 +    dataBufferInit(&pReader->term, nTerm);
  1.4701 +    dataBufferReplace(&pReader->term, pReader->pData+n, nTerm);
  1.4702 +    assert( n+nTerm<=pReader->nData );
  1.4703 +    pReader->pData += n+nTerm;
  1.4704 +    pReader->nData -= n+nTerm;
  1.4705 +  }
  1.4706 +}
  1.4707 +
  1.4708 +static int interiorReaderAtEnd(InteriorReader *pReader){
  1.4709 +  return pReader->term.nData==0;
  1.4710 +}
  1.4711 +
  1.4712 +static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){
  1.4713 +  return pReader->iBlockid;
  1.4714 +}
  1.4715 +
  1.4716 +static int interiorReaderTermBytes(InteriorReader *pReader){
  1.4717 +  assert( !interiorReaderAtEnd(pReader) );
  1.4718 +  return pReader->term.nData;
  1.4719 +}
  1.4720 +static const char *interiorReaderTerm(InteriorReader *pReader){
  1.4721 +  assert( !interiorReaderAtEnd(pReader) );
  1.4722 +  return pReader->term.pData;
  1.4723 +}
  1.4724 +
  1.4725 +/* Step forward to the next term in the node. */
  1.4726 +static void interiorReaderStep(InteriorReader *pReader){
  1.4727 +  assert( !interiorReaderAtEnd(pReader) );
  1.4728 +
  1.4729 +  /* If the last term has been read, signal eof, else construct the
  1.4730 +  ** next term.
  1.4731 +  */
  1.4732 +  if( pReader->nData==0 ){
  1.4733 +    dataBufferReset(&pReader->term);
  1.4734 +  }else{
  1.4735 +    int n, nPrefix, nSuffix;
  1.4736 +
  1.4737 +    n = fts3GetVarint32(pReader->pData, &nPrefix);
  1.4738 +    n += fts3GetVarint32(pReader->pData+n, &nSuffix);
  1.4739 +
  1.4740 +    /* Truncate the current term and append suffix data. */
  1.4741 +    pReader->term.nData = nPrefix;
  1.4742 +    dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
  1.4743 +
  1.4744 +    assert( n+nSuffix<=pReader->nData );
  1.4745 +    pReader->pData += n+nSuffix;
  1.4746 +    pReader->nData -= n+nSuffix;
  1.4747 +  }
  1.4748 +  pReader->iBlockid++;
  1.4749 +}
  1.4750 +
  1.4751 +/* Compare the current term to pTerm[nTerm], returning strcmp-style
  1.4752 +** results.  If isPrefix, equality means equal through nTerm bytes.
  1.4753 +*/
  1.4754 +static int interiorReaderTermCmp(InteriorReader *pReader,
  1.4755 +                                 const char *pTerm, int nTerm, int isPrefix){
  1.4756 +  const char *pReaderTerm = interiorReaderTerm(pReader);
  1.4757 +  int nReaderTerm = interiorReaderTermBytes(pReader);
  1.4758 +  int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm;
  1.4759 +
  1.4760 +  if( n==0 ){
  1.4761 +    if( nReaderTerm>0 ) return -1;
  1.4762 +    if( nTerm>0 ) return 1;
  1.4763 +    return 0;
  1.4764 +  }
  1.4765 +
  1.4766 +  c = memcmp(pReaderTerm, pTerm, n);
  1.4767 +  if( c!=0 ) return c;
  1.4768 +  if( isPrefix && n==nTerm ) return 0;
  1.4769 +  return nReaderTerm - nTerm;
  1.4770 +}
  1.4771 +
  1.4772 +/****************************************************************/
  1.4773 +/* LeafWriter is used to collect terms and associated doclist data
  1.4774 +** into leaf blocks in %_segments (see top of file for format info).
  1.4775 +** Expected usage is:
  1.4776 +**
  1.4777 +** LeafWriter writer;
  1.4778 +** leafWriterInit(0, 0, &writer);
  1.4779 +** while( sorted_terms_left_to_process ){
  1.4780 +**   // data is doclist data for that term.
  1.4781 +**   rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData);
  1.4782 +**   if( rc!=SQLITE_OK ) goto err;
  1.4783 +** }
  1.4784 +** rc = leafWriterFinalize(v, &writer);
  1.4785 +**err:
  1.4786 +** leafWriterDestroy(&writer);
  1.4787 +** return rc;
  1.4788 +**
  1.4789 +** leafWriterStep() may write a collected leaf out to %_segments.
  1.4790 +** leafWriterFinalize() finishes writing any buffered data and stores
  1.4791 +** a root node in %_segdir.  leafWriterDestroy() frees all buffers and
  1.4792 +** InteriorWriters allocated as part of writing this segment.
  1.4793 +**
  1.4794 +** TODO(shess) Document leafWriterStepMerge().
  1.4795 +*/
  1.4796 +
  1.4797 +/* Put terms with data this big in their own block. */
  1.4798 +#define STANDALONE_MIN 1024
  1.4799 +
  1.4800 +/* Keep leaf blocks below this size. */
  1.4801 +#define LEAF_MAX 2048
  1.4802 +
  1.4803 +typedef struct LeafWriter {
  1.4804 +  int iLevel;
  1.4805 +  int idx;
  1.4806 +  sqlite_int64 iStartBlockid;     /* needed to create the root info */
  1.4807 +  sqlite_int64 iEndBlockid;       /* when we're done writing. */
  1.4808 +
  1.4809 +  DataBuffer term;                /* previous encoded term */
  1.4810 +  DataBuffer data;                /* encoding buffer */
  1.4811 +
  1.4812 +  /* bytes of first term in the current node which distinguishes that
  1.4813 +  ** term from the last term of the previous node.
  1.4814 +  */
  1.4815 +  int nTermDistinct;
  1.4816 +
  1.4817 +  InteriorWriter parentWriter;    /* if we overflow */
  1.4818 +  int has_parent;
  1.4819 +} LeafWriter;
  1.4820 +
  1.4821 +static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){
  1.4822 +  CLEAR(pWriter);
  1.4823 +  pWriter->iLevel = iLevel;
  1.4824 +  pWriter->idx = idx;
  1.4825 +
  1.4826 +  dataBufferInit(&pWriter->term, 32);
  1.4827 +
  1.4828 +  /* Start out with a reasonably sized block, though it can grow. */
  1.4829 +  dataBufferInit(&pWriter->data, LEAF_MAX);
  1.4830 +}
  1.4831 +
  1.4832 +#ifndef NDEBUG
  1.4833 +/* Verify that the data is readable as a leaf node. */
  1.4834 +static void leafNodeValidate(const char *pData, int nData){
  1.4835 +  int n, iDummy;
  1.4836 +
  1.4837 +  if( nData==0 ) return;
  1.4838 +  assert( nData>0 );
  1.4839 +  assert( pData!=0 );
  1.4840 +  assert( pData+nData>pData );
  1.4841 +
  1.4842 +  /* Must lead with a varint(0) */
  1.4843 +  n = fts3GetVarint32(pData, &iDummy);
  1.4844 +  assert( iDummy==0 );
  1.4845 +  assert( n>0 );
  1.4846 +  assert( n<nData );
  1.4847 +  pData += n;
  1.4848 +  nData -= n;
  1.4849 +
  1.4850 +  /* Leading term length and data must fit in buffer. */
  1.4851 +  n = fts3GetVarint32(pData, &iDummy);
  1.4852 +  assert( n>0 );
  1.4853 +  assert( iDummy>0 );
  1.4854 +  assert( n+iDummy>0 );
  1.4855 +  assert( n+iDummy<nData );
  1.4856 +  pData += n+iDummy;
  1.4857 +  nData -= n+iDummy;
  1.4858 +
  1.4859 +  /* Leading term's doclist length and data must fit. */
  1.4860 +  n = fts3GetVarint32(pData, &iDummy);
  1.4861 +  assert( n>0 );
  1.4862 +  assert( iDummy>0 );
  1.4863 +  assert( n+iDummy>0 );
  1.4864 +  assert( n+iDummy<=nData );
  1.4865 +  ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
  1.4866 +  pData += n+iDummy;
  1.4867 +  nData -= n+iDummy;
  1.4868 +
  1.4869 +  /* Verify that trailing terms and doclists also are readable. */
  1.4870 +  while( nData!=0 ){
  1.4871 +    n = fts3GetVarint32(pData, &iDummy);
  1.4872 +    assert( n>0 );
  1.4873 +    assert( iDummy>=0 );
  1.4874 +    assert( n<nData );
  1.4875 +    pData += n;
  1.4876 +    nData -= n;
  1.4877 +    n = fts3GetVarint32(pData, &iDummy);
  1.4878 +    assert( n>0 );
  1.4879 +    assert( iDummy>0 );
  1.4880 +    assert( n+iDummy>0 );
  1.4881 +    assert( n+iDummy<nData );
  1.4882 +    pData += n+iDummy;
  1.4883 +    nData -= n+iDummy;
  1.4884 +
  1.4885 +    n = fts3GetVarint32(pData, &iDummy);
  1.4886 +    assert( n>0 );
  1.4887 +    assert( iDummy>0 );
  1.4888 +    assert( n+iDummy>0 );
  1.4889 +    assert( n+iDummy<=nData );
  1.4890 +    ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL);
  1.4891 +    pData += n+iDummy;
  1.4892 +    nData -= n+iDummy;
  1.4893 +  }
  1.4894 +}
  1.4895 +#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n)
  1.4896 +#else
  1.4897 +#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 )
  1.4898 +#endif
  1.4899 +
  1.4900 +/* Flush the current leaf node to %_segments, and adding the resulting
  1.4901 +** blockid and the starting term to the interior node which will
  1.4902 +** contain it.
  1.4903 +*/
  1.4904 +static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter,
  1.4905 +                                   int iData, int nData){
  1.4906 +  sqlite_int64 iBlockid = 0;
  1.4907 +  const char *pStartingTerm;
  1.4908 +  int nStartingTerm, rc, n;
  1.4909 +
  1.4910 +  /* Must have the leading varint(0) flag, plus at least some
  1.4911 +  ** valid-looking data.
  1.4912 +  */
  1.4913 +  assert( nData>2 );
  1.4914 +  assert( iData>=0 );
  1.4915 +  assert( iData+nData<=pWriter->data.nData );
  1.4916 +  ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData);
  1.4917 +
  1.4918 +  rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid);
  1.4919 +  if( rc!=SQLITE_OK ) return rc;
  1.4920 +  assert( iBlockid!=0 );
  1.4921 +
  1.4922 +  /* Reconstruct the first term in the leaf for purposes of building
  1.4923 +  ** the interior node.
  1.4924 +  */
  1.4925 +  n = fts3GetVarint32(pWriter->data.pData+iData+1, &nStartingTerm);
  1.4926 +  pStartingTerm = pWriter->data.pData+iData+1+n;
  1.4927 +  assert( pWriter->data.nData>iData+1+n+nStartingTerm );
  1.4928 +  assert( pWriter->nTermDistinct>0 );
  1.4929 +  assert( pWriter->nTermDistinct<=nStartingTerm );
  1.4930 +  nStartingTerm = pWriter->nTermDistinct;
  1.4931 +
  1.4932 +  if( pWriter->has_parent ){
  1.4933 +    interiorWriterAppend(&pWriter->parentWriter,
  1.4934 +                         pStartingTerm, nStartingTerm, iBlockid);
  1.4935 +  }else{
  1.4936 +    interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid,
  1.4937 +                       &pWriter->parentWriter);
  1.4938 +    pWriter->has_parent = 1;
  1.4939 +  }
  1.4940 +
  1.4941 +  /* Track the span of this segment's leaf nodes. */
  1.4942 +  if( pWriter->iEndBlockid==0 ){
  1.4943 +    pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid;
  1.4944 +  }else{
  1.4945 +    pWriter->iEndBlockid++;
  1.4946 +    assert( iBlockid==pWriter->iEndBlockid );
  1.4947 +  }
  1.4948 +
  1.4949 +  return SQLITE_OK;
  1.4950 +}
  1.4951 +static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){
  1.4952 +  int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData);
  1.4953 +  if( rc!=SQLITE_OK ) return rc;
  1.4954 +
  1.4955 +  /* Re-initialize the output buffer. */
  1.4956 +  dataBufferReset(&pWriter->data);
  1.4957 +
  1.4958 +  return SQLITE_OK;
  1.4959 +}
  1.4960 +
  1.4961 +/* Fetch the root info for the segment.  If the entire leaf fits
  1.4962 +** within ROOT_MAX, then it will be returned directly, otherwise it
  1.4963 +** will be flushed and the root info will be returned from the
  1.4964 +** interior node.  *piEndBlockid is set to the blockid of the last
  1.4965 +** interior or leaf node written to disk (0 if none are written at
  1.4966 +** all).
  1.4967 +*/
  1.4968 +static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter,
  1.4969 +                              char **ppRootInfo, int *pnRootInfo,
  1.4970 +                              sqlite_int64 *piEndBlockid){
  1.4971 +  /* we can fit the segment entirely inline */
  1.4972 +  if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){
  1.4973 +    *ppRootInfo = pWriter->data.pData;
  1.4974 +    *pnRootInfo = pWriter->data.nData;
  1.4975 +    *piEndBlockid = 0;
  1.4976 +    return SQLITE_OK;
  1.4977 +  }
  1.4978 +
  1.4979 +  /* Flush remaining leaf data. */
  1.4980 +  if( pWriter->data.nData>0 ){
  1.4981 +    int rc = leafWriterFlush(v, pWriter);
  1.4982 +    if( rc!=SQLITE_OK ) return rc;
  1.4983 +  }
  1.4984 +
  1.4985 +  /* We must have flushed a leaf at some point. */
  1.4986 +  assert( pWriter->has_parent );
  1.4987 +
  1.4988 +  /* Tenatively set the end leaf blockid as the end blockid.  If the
  1.4989 +  ** interior node can be returned inline, this will be the final
  1.4990 +  ** blockid, otherwise it will be overwritten by
  1.4991 +  ** interiorWriterRootInfo().
  1.4992 +  */
  1.4993 +  *piEndBlockid = pWriter->iEndBlockid;
  1.4994 +
  1.4995 +  return interiorWriterRootInfo(v, &pWriter->parentWriter,
  1.4996 +                                ppRootInfo, pnRootInfo, piEndBlockid);
  1.4997 +}
  1.4998 +
  1.4999 +/* Collect the rootInfo data and store it into the segment directory.
  1.5000 +** This has the effect of flushing the segment's leaf data to
  1.5001 +** %_segments, and also flushing any interior nodes to %_segments.
  1.5002 +*/
  1.5003 +static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){
  1.5004 +  sqlite_int64 iEndBlockid;
  1.5005 +  char *pRootInfo;
  1.5006 +  int rc, nRootInfo;
  1.5007 +
  1.5008 +  rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid);
  1.5009 +  if( rc!=SQLITE_OK ) return rc;
  1.5010 +
  1.5011 +  /* Don't bother storing an entirely empty segment. */
  1.5012 +  if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK;
  1.5013 +
  1.5014 +  return segdir_set(v, pWriter->iLevel, pWriter->idx,
  1.5015 +                    pWriter->iStartBlockid, pWriter->iEndBlockid,
  1.5016 +                    iEndBlockid, pRootInfo, nRootInfo);
  1.5017 +}
  1.5018 +
  1.5019 +static void leafWriterDestroy(LeafWriter *pWriter){
  1.5020 +  if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter);
  1.5021 +  dataBufferDestroy(&pWriter->term);
  1.5022 +  dataBufferDestroy(&pWriter->data);
  1.5023 +}
  1.5024 +
  1.5025 +/* Encode a term into the leafWriter, delta-encoding as appropriate.
  1.5026 +** Returns the length of the new term which distinguishes it from the
  1.5027 +** previous term, which can be used to set nTermDistinct when a node
  1.5028 +** boundary is crossed.
  1.5029 +*/
  1.5030 +static int leafWriterEncodeTerm(LeafWriter *pWriter,
  1.5031 +                                const char *pTerm, int nTerm){
  1.5032 +  char c[VARINT_MAX+VARINT_MAX];
  1.5033 +  int n, nPrefix = 0;
  1.5034 +
  1.5035 +  assert( nTerm>0 );
  1.5036 +  while( nPrefix<pWriter->term.nData &&
  1.5037 +         pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){
  1.5038 +    nPrefix++;
  1.5039 +    /* Failing this implies that the terms weren't in order. */
  1.5040 +    assert( nPrefix<nTerm );
  1.5041 +  }
  1.5042 +
  1.5043 +  if( pWriter->data.nData==0 ){
  1.5044 +    /* Encode the node header and leading term as:
  1.5045 +    **  varint(0)
  1.5046 +    **  varint(nTerm)
  1.5047 +    **  char pTerm[nTerm]
  1.5048 +    */
  1.5049 +    n = fts3PutVarint(c, '\0');
  1.5050 +    n += fts3PutVarint(c+n, nTerm);
  1.5051 +    dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm);
  1.5052 +  }else{
  1.5053 +    /* Delta-encode the term as:
  1.5054 +    **  varint(nPrefix)
  1.5055 +    **  varint(nSuffix)
  1.5056 +    **  char pTermSuffix[nSuffix]
  1.5057 +    */
  1.5058 +    n = fts3PutVarint(c, nPrefix);
  1.5059 +    n += fts3PutVarint(c+n, nTerm-nPrefix);
  1.5060 +    dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix);
  1.5061 +  }
  1.5062 +  dataBufferReplace(&pWriter->term, pTerm, nTerm);
  1.5063 +
  1.5064 +  return nPrefix+1;
  1.5065 +}
  1.5066 +
  1.5067 +/* Used to avoid a memmove when a large amount of doclist data is in
  1.5068 +** the buffer.  This constructs a node and term header before
  1.5069 +** iDoclistData and flushes the resulting complete node using
  1.5070 +** leafWriterInternalFlush().
  1.5071 +*/
  1.5072 +static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter,
  1.5073 +                                 const char *pTerm, int nTerm,
  1.5074 +                                 int iDoclistData){
  1.5075 +  char c[VARINT_MAX+VARINT_MAX];
  1.5076 +  int iData, n = fts3PutVarint(c, 0);
  1.5077 +  n += fts3PutVarint(c+n, nTerm);
  1.5078 +
  1.5079 +  /* There should always be room for the header.  Even if pTerm shared
  1.5080 +  ** a substantial prefix with the previous term, the entire prefix
  1.5081 +  ** could be constructed from earlier data in the doclist, so there
  1.5082 +  ** should be room.
  1.5083 +  */
  1.5084 +  assert( iDoclistData>=n+nTerm );
  1.5085 +
  1.5086 +  iData = iDoclistData-(n+nTerm);
  1.5087 +  memcpy(pWriter->data.pData+iData, c, n);
  1.5088 +  memcpy(pWriter->data.pData+iData+n, pTerm, nTerm);
  1.5089 +
  1.5090 +  return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData);
  1.5091 +}
  1.5092 +
  1.5093 +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
  1.5094 +** %_segments.
  1.5095 +*/
  1.5096 +static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter,
  1.5097 +                               const char *pTerm, int nTerm,
  1.5098 +                               DLReader *pReaders, int nReaders){
  1.5099 +  char c[VARINT_MAX+VARINT_MAX];
  1.5100 +  int iTermData = pWriter->data.nData, iDoclistData;
  1.5101 +  int i, nData, n, nActualData, nActual, rc, nTermDistinct;
  1.5102 +
  1.5103 +  ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
  1.5104 +  nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm);
  1.5105 +
  1.5106 +  /* Remember nTermDistinct if opening a new node. */
  1.5107 +  if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct;
  1.5108 +
  1.5109 +  iDoclistData = pWriter->data.nData;
  1.5110 +
  1.5111 +  /* Estimate the length of the merged doclist so we can leave space
  1.5112 +  ** to encode it.
  1.5113 +  */
  1.5114 +  for(i=0, nData=0; i<nReaders; i++){
  1.5115 +    nData += dlrAllDataBytes(&pReaders[i]);
  1.5116 +  }
  1.5117 +  n = fts3PutVarint(c, nData);
  1.5118 +  dataBufferAppend(&pWriter->data, c, n);
  1.5119 +
  1.5120 +  docListMerge(&pWriter->data, pReaders, nReaders);
  1.5121 +  ASSERT_VALID_DOCLIST(DL_DEFAULT,
  1.5122 +                       pWriter->data.pData+iDoclistData+n,
  1.5123 +                       pWriter->data.nData-iDoclistData-n, NULL);
  1.5124 +
  1.5125 +  /* The actual amount of doclist data at this point could be smaller
  1.5126 +  ** than the length we encoded.  Additionally, the space required to
  1.5127 +  ** encode this length could be smaller.  For small doclists, this is
  1.5128 +  ** not a big deal, we can just use memmove() to adjust things.
  1.5129 +  */
  1.5130 +  nActualData = pWriter->data.nData-(iDoclistData+n);
  1.5131 +  nActual = fts3PutVarint(c, nActualData);
  1.5132 +  assert( nActualData<=nData );
  1.5133 +  assert( nActual<=n );
  1.5134 +
  1.5135 +  /* If the new doclist is big enough for force a standalone leaf
  1.5136 +  ** node, we can immediately flush it inline without doing the
  1.5137 +  ** memmove().
  1.5138 +  */
  1.5139 +  /* TODO(shess) This test matches leafWriterStep(), which does this
  1.5140 +  ** test before it knows the cost to varint-encode the term and
  1.5141 +  ** doclist lengths.  At some point, change to
  1.5142 +  ** pWriter->data.nData-iTermData>STANDALONE_MIN.
  1.5143 +  */
  1.5144 +  if( nTerm+nActualData>STANDALONE_MIN ){
  1.5145 +    /* Push leaf node from before this term. */
  1.5146 +    if( iTermData>0 ){
  1.5147 +      rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
  1.5148 +      if( rc!=SQLITE_OK ) return rc;
  1.5149 +
  1.5150 +      pWriter->nTermDistinct = nTermDistinct;
  1.5151 +    }
  1.5152 +
  1.5153 +    /* Fix the encoded doclist length. */
  1.5154 +    iDoclistData += n - nActual;
  1.5155 +    memcpy(pWriter->data.pData+iDoclistData, c, nActual);
  1.5156 +
  1.5157 +    /* Push the standalone leaf node. */
  1.5158 +    rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData);
  1.5159 +    if( rc!=SQLITE_OK ) return rc;
  1.5160 +
  1.5161 +    /* Leave the node empty. */
  1.5162 +    dataBufferReset(&pWriter->data);
  1.5163 +
  1.5164 +    return rc;
  1.5165 +  }
  1.5166 +
  1.5167 +  /* At this point, we know that the doclist was small, so do the
  1.5168 +  ** memmove if indicated.
  1.5169 +  */
  1.5170 +  if( nActual<n ){
  1.5171 +    memmove(pWriter->data.pData+iDoclistData+nActual,
  1.5172 +            pWriter->data.pData+iDoclistData+n,
  1.5173 +            pWriter->data.nData-(iDoclistData+n));
  1.5174 +    pWriter->data.nData -= n-nActual;
  1.5175 +  }
  1.5176 +
  1.5177 +  /* Replace written length with actual length. */
  1.5178 +  memcpy(pWriter->data.pData+iDoclistData, c, nActual);
  1.5179 +
  1.5180 +  /* If the node is too large, break things up. */
  1.5181 +  /* TODO(shess) This test matches leafWriterStep(), which does this
  1.5182 +  ** test before it knows the cost to varint-encode the term and
  1.5183 +  ** doclist lengths.  At some point, change to
  1.5184 +  ** pWriter->data.nData>LEAF_MAX.
  1.5185 +  */
  1.5186 +  if( iTermData+nTerm+nActualData>LEAF_MAX ){
  1.5187 +    /* Flush out the leading data as a node */
  1.5188 +    rc = leafWriterInternalFlush(v, pWriter, 0, iTermData);
  1.5189 +    if( rc!=SQLITE_OK ) return rc;
  1.5190 +
  1.5191 +    pWriter->nTermDistinct = nTermDistinct;
  1.5192 +
  1.5193 +    /* Rebuild header using the current term */
  1.5194 +    n = fts3PutVarint(pWriter->data.pData, 0);
  1.5195 +    n += fts3PutVarint(pWriter->data.pData+n, nTerm);
  1.5196 +    memcpy(pWriter->data.pData+n, pTerm, nTerm);
  1.5197 +    n += nTerm;
  1.5198 +
  1.5199 +    /* There should always be room, because the previous encoding
  1.5200 +    ** included all data necessary to construct the term.
  1.5201 +    */
  1.5202 +    assert( n<iDoclistData );
  1.5203 +    /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the
  1.5204 +    ** following memcpy() is safe (as opposed to needing a memmove).
  1.5205 +    */
  1.5206 +    assert( 2*STANDALONE_MIN<=LEAF_MAX );
  1.5207 +    assert( n+pWriter->data.nData-iDoclistData<iDoclistData );
  1.5208 +    memcpy(pWriter->data.pData+n,
  1.5209 +           pWriter->data.pData+iDoclistData,
  1.5210 +           pWriter->data.nData-iDoclistData);
  1.5211 +    pWriter->data.nData -= iDoclistData-n;
  1.5212 +  }
  1.5213 +  ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData);
  1.5214 +
  1.5215 +  return SQLITE_OK;
  1.5216 +}
  1.5217 +
  1.5218 +/* Push pTerm[nTerm] along with the doclist data to the leaf layer of
  1.5219 +** %_segments.
  1.5220 +*/
  1.5221 +/* TODO(shess) Revise writeZeroSegment() so that doclists are
  1.5222 +** constructed directly in pWriter->data.
  1.5223 +*/
  1.5224 +static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter,
  1.5225 +                          const char *pTerm, int nTerm,
  1.5226 +                          const char *pData, int nData){
  1.5227 +  int rc;
  1.5228 +  DLReader reader;
  1.5229 +
  1.5230 +  dlrInit(&reader, DL_DEFAULT, pData, nData);
  1.5231 +  rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1);
  1.5232 +  dlrDestroy(&reader);
  1.5233 +
  1.5234 +  return rc;
  1.5235 +}
  1.5236 +
  1.5237 +
  1.5238 +/****************************************************************/
  1.5239 +/* LeafReader is used to iterate over an individual leaf node. */
  1.5240 +typedef struct LeafReader {
  1.5241 +  DataBuffer term;          /* copy of current term. */
  1.5242 +
  1.5243 +  const char *pData;        /* data for current term. */
  1.5244 +  int nData;
  1.5245 +} LeafReader;
  1.5246 +
  1.5247 +static void leafReaderDestroy(LeafReader *pReader){
  1.5248 +  dataBufferDestroy(&pReader->term);
  1.5249 +  SCRAMBLE(pReader);
  1.5250 +}
  1.5251 +
  1.5252 +static int leafReaderAtEnd(LeafReader *pReader){
  1.5253 +  return pReader->nData<=0;
  1.5254 +}
  1.5255 +
  1.5256 +/* Access the current term. */
  1.5257 +static int leafReaderTermBytes(LeafReader *pReader){
  1.5258 +  return pReader->term.nData;
  1.5259 +}
  1.5260 +static const char *leafReaderTerm(LeafReader *pReader){
  1.5261 +  assert( pReader->term.nData>0 );
  1.5262 +  return pReader->term.pData;
  1.5263 +}
  1.5264 +
  1.5265 +/* Access the doclist data for the current term. */
  1.5266 +static int leafReaderDataBytes(LeafReader *pReader){
  1.5267 +  int nData;
  1.5268 +  assert( pReader->term.nData>0 );
  1.5269 +  fts3GetVarint32(pReader->pData, &nData);
  1.5270 +  return nData;
  1.5271 +}
  1.5272 +static const char *leafReaderData(LeafReader *pReader){
  1.5273 +  int n, nData;
  1.5274 +  assert( pReader->term.nData>0 );
  1.5275 +  n = fts3GetVarint32(pReader->pData, &nData);
  1.5276 +  return pReader->pData+n;
  1.5277 +}
  1.5278 +
  1.5279 +static void leafReaderInit(const char *pData, int nData,
  1.5280 +                           LeafReader *pReader){
  1.5281 +  int nTerm, n;
  1.5282 +
  1.5283 +  assert( nData>0 );
  1.5284 +  assert( pData[0]=='\0' );
  1.5285 +
  1.5286 +  CLEAR(pReader);
  1.5287 +
  1.5288 +  /* Read the first term, skipping the header byte. */
  1.5289 +  n = fts3GetVarint32(pData+1, &nTerm);
  1.5290 +  dataBufferInit(&pReader->term, nTerm);
  1.5291 +  dataBufferReplace(&pReader->term, pData+1+n, nTerm);
  1.5292 +
  1.5293 +  /* Position after the first term. */
  1.5294 +  assert( 1+n+nTerm<nData );
  1.5295 +  pReader->pData = pData+1+n+nTerm;
  1.5296 +  pReader->nData = nData-1-n-nTerm;
  1.5297 +}
  1.5298 +
  1.5299 +/* Step the reader forward to the next term. */
  1.5300 +static void leafReaderStep(LeafReader *pReader){
  1.5301 +  int n, nData, nPrefix, nSuffix;
  1.5302 +  assert( !leafReaderAtEnd(pReader) );
  1.5303 +
  1.5304 +  /* Skip previous entry's data block. */
  1.5305 +  n = fts3GetVarint32(pReader->pData, &nData);
  1.5306 +  assert( n+nData<=pReader->nData );
  1.5307 +  pReader->pData += n+nData;
  1.5308 +  pReader->nData -= n+nData;
  1.5309 +
  1.5310 +  if( !leafReaderAtEnd(pReader) ){
  1.5311 +    /* Construct the new term using a prefix from the old term plus a
  1.5312 +    ** suffix from the leaf data.
  1.5313 +    */
  1.5314 +    n = fts3GetVarint32(pReader->pData, &nPrefix);
  1.5315 +    n += fts3GetVarint32(pReader->pData+n, &nSuffix);
  1.5316 +    assert( n+nSuffix<pReader->nData );
  1.5317 +    pReader->term.nData = nPrefix;
  1.5318 +    dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix);
  1.5319 +
  1.5320 +    pReader->pData += n+nSuffix;
  1.5321 +    pReader->nData -= n+nSuffix;
  1.5322 +  }
  1.5323 +}
  1.5324 +
  1.5325 +/* strcmp-style comparison of pReader's current term against pTerm.
  1.5326 +** If isPrefix, equality means equal through nTerm bytes.
  1.5327 +*/
  1.5328 +static int leafReaderTermCmp(LeafReader *pReader,
  1.5329 +                             const char *pTerm, int nTerm, int isPrefix){
  1.5330 +  int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm;
  1.5331 +  if( n==0 ){
  1.5332 +    if( pReader->term.nData>0 ) return -1;
  1.5333 +    if(nTerm>0 ) return 1;
  1.5334 +    return 0;
  1.5335 +  }
  1.5336 +
  1.5337 +  c = memcmp(pReader->term.pData, pTerm, n);
  1.5338 +  if( c!=0 ) return c;
  1.5339 +  if( isPrefix && n==nTerm ) return 0;
  1.5340 +  return pReader->term.nData - nTerm;
  1.5341 +}
  1.5342 +
  1.5343 +
  1.5344 +/****************************************************************/
  1.5345 +/* LeavesReader wraps LeafReader to allow iterating over the entire
  1.5346 +** leaf layer of the tree.
  1.5347 +*/
  1.5348 +typedef struct LeavesReader {
  1.5349 +  int idx;                  /* Index within the segment. */
  1.5350 +
  1.5351 +  sqlite3_stmt *pStmt;      /* Statement we're streaming leaves from. */
  1.5352 +  int eof;                  /* we've seen SQLITE_DONE from pStmt. */
  1.5353 +
  1.5354 +  LeafReader leafReader;    /* reader for the current leaf. */
  1.5355 +  DataBuffer rootData;      /* root data for inline. */
  1.5356 +} LeavesReader;
  1.5357 +
  1.5358 +/* Access the current term. */
  1.5359 +static int leavesReaderTermBytes(LeavesReader *pReader){
  1.5360 +  assert( !pReader->eof );
  1.5361 +  return leafReaderTermBytes(&pReader->leafReader);
  1.5362 +}
  1.5363 +static const char *leavesReaderTerm(LeavesReader *pReader){
  1.5364 +  assert( !pReader->eof );
  1.5365 +  return leafReaderTerm(&pReader->leafReader);
  1.5366 +}
  1.5367 +
  1.5368 +/* Access the doclist data for the current term. */
  1.5369 +static int leavesReaderDataBytes(LeavesReader *pReader){
  1.5370 +  assert( !pReader->eof );
  1.5371 +  return leafReaderDataBytes(&pReader->leafReader);
  1.5372 +}
  1.5373 +static const char *leavesReaderData(LeavesReader *pReader){
  1.5374 +  assert( !pReader->eof );
  1.5375 +  return leafReaderData(&pReader->leafReader);
  1.5376 +}
  1.5377 +
  1.5378 +static int leavesReaderAtEnd(LeavesReader *pReader){
  1.5379 +  return pReader->eof;
  1.5380 +}
  1.5381 +
  1.5382 +/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus
  1.5383 +** leaving the statement handle open, which locks the table.
  1.5384 +*/
  1.5385 +/* TODO(shess) This "solution" is not satisfactory.  Really, there
  1.5386 +** should be check-in function for all statement handles which
  1.5387 +** arranges to call sqlite3_reset().  This most likely will require
  1.5388 +** modification to control flow all over the place, though, so for now
  1.5389 +** just punt.
  1.5390 +**
  1.5391 +** Note the the current system assumes that segment merges will run to
  1.5392 +** completion, which is why this particular probably hasn't arisen in
  1.5393 +** this case.  Probably a brittle assumption.
  1.5394 +*/
  1.5395 +static int leavesReaderReset(LeavesReader *pReader){
  1.5396 +  return sqlite3_reset(pReader->pStmt);
  1.5397 +}
  1.5398 +
  1.5399 +static void leavesReaderDestroy(LeavesReader *pReader){
  1.5400 +  /* If idx is -1, that means we're using a non-cached statement
  1.5401 +  ** handle in the optimize() case, so we need to release it.
  1.5402 +  */
  1.5403 +  if( pReader->pStmt!=NULL && pReader->idx==-1 ){
  1.5404 +    sqlite3_finalize(pReader->pStmt);
  1.5405 +  }
  1.5406 +  leafReaderDestroy(&pReader->leafReader);
  1.5407 +  dataBufferDestroy(&pReader->rootData);
  1.5408 +  SCRAMBLE(pReader);
  1.5409 +}
  1.5410 +
  1.5411 +/* Initialize pReader with the given root data (if iStartBlockid==0
  1.5412 +** the leaf data was entirely contained in the root), or from the
  1.5413 +** stream of blocks between iStartBlockid and iEndBlockid, inclusive.
  1.5414 +*/
  1.5415 +static int leavesReaderInit(fulltext_vtab *v,
  1.5416 +                            int idx,
  1.5417 +                            sqlite_int64 iStartBlockid,
  1.5418 +                            sqlite_int64 iEndBlockid,
  1.5419 +                            const char *pRootData, int nRootData,
  1.5420 +                            LeavesReader *pReader){
  1.5421 +  CLEAR(pReader);
  1.5422 +  pReader->idx = idx;
  1.5423 +
  1.5424 +  dataBufferInit(&pReader->rootData, 0);
  1.5425 +  if( iStartBlockid==0 ){
  1.5426 +    /* Entire leaf level fit in root data. */
  1.5427 +    dataBufferReplace(&pReader->rootData, pRootData, nRootData);
  1.5428 +    leafReaderInit(pReader->rootData.pData, pReader->rootData.nData,
  1.5429 +                   &pReader->leafReader);
  1.5430 +  }else{
  1.5431 +    sqlite3_stmt *s;
  1.5432 +    int rc = sql_get_leaf_statement(v, idx, &s);
  1.5433 +    if( rc!=SQLITE_OK ) return rc;
  1.5434 +
  1.5435 +    rc = sqlite3_bind_int64(s, 1, iStartBlockid);
  1.5436 +    if( rc!=SQLITE_OK ) return rc;
  1.5437 +
  1.5438 +    rc = sqlite3_bind_int64(s, 2, iEndBlockid);
  1.5439 +    if( rc!=SQLITE_OK ) return rc;
  1.5440 +
  1.5441 +    rc = sqlite3_step(s);
  1.5442 +    if( rc==SQLITE_DONE ){
  1.5443 +      pReader->eof = 1;
  1.5444 +      return SQLITE_OK;
  1.5445 +    }
  1.5446 +    if( rc!=SQLITE_ROW ) return rc;
  1.5447 +
  1.5448 +    pReader->pStmt = s;
  1.5449 +    leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
  1.5450 +                   sqlite3_column_bytes(pReader->pStmt, 0),
  1.5451 +                   &pReader->leafReader);
  1.5452 +  }
  1.5453 +  return SQLITE_OK;
  1.5454 +}
  1.5455 +
  1.5456 +/* Step the current leaf forward to the next term.  If we reach the
  1.5457 +** end of the current leaf, step forward to the next leaf block.
  1.5458 +*/
  1.5459 +static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){
  1.5460 +  assert( !leavesReaderAtEnd(pReader) );
  1.5461 +  leafReaderStep(&pReader->leafReader);
  1.5462 +
  1.5463 +  if( leafReaderAtEnd(&pReader->leafReader) ){
  1.5464 +    int rc;
  1.5465 +    if( pReader->rootData.pData ){
  1.5466 +      pReader->eof = 1;
  1.5467 +      return SQLITE_OK;
  1.5468 +    }
  1.5469 +    rc = sqlite3_step(pReader->pStmt);
  1.5470 +    if( rc!=SQLITE_ROW ){
  1.5471 +      pReader->eof = 1;
  1.5472 +      return rc==SQLITE_DONE ? SQLITE_OK : rc;
  1.5473 +    }
  1.5474 +    leafReaderDestroy(&pReader->leafReader);
  1.5475 +    leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0),
  1.5476 +                   sqlite3_column_bytes(pReader->pStmt, 0),
  1.5477 +                   &pReader->leafReader);
  1.5478 +  }
  1.5479 +  return SQLITE_OK;
  1.5480 +}
  1.5481 +
  1.5482 +/* Order LeavesReaders by their term, ignoring idx.  Readers at eof
  1.5483 +** always sort to the end.
  1.5484 +*/
  1.5485 +static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){
  1.5486 +  if( leavesReaderAtEnd(lr1) ){
  1.5487 +    if( leavesReaderAtEnd(lr2) ) return 0;
  1.5488 +    return 1;
  1.5489 +  }
  1.5490 +  if( leavesReaderAtEnd(lr2) ) return -1;
  1.5491 +
  1.5492 +  return leafReaderTermCmp(&lr1->leafReader,
  1.5493 +                           leavesReaderTerm(lr2), leavesReaderTermBytes(lr2),
  1.5494 +                           0);
  1.5495 +}
  1.5496 +
  1.5497 +/* Similar to leavesReaderTermCmp(), with additional ordering by idx
  1.5498 +** so that older segments sort before newer segments.
  1.5499 +*/
  1.5500 +static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){
  1.5501 +  int c = leavesReaderTermCmp(lr1, lr2);
  1.5502 +  if( c!=0 ) return c;
  1.5503 +  return lr1->idx-lr2->idx;
  1.5504 +}
  1.5505 +
  1.5506 +/* Assume that pLr[1]..pLr[nLr] are sorted.  Bubble pLr[0] into its
  1.5507 +** sorted position.
  1.5508 +*/
  1.5509 +static void leavesReaderReorder(LeavesReader *pLr, int nLr){
  1.5510 +  while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){
  1.5511 +    LeavesReader tmp = pLr[0];
  1.5512 +    pLr[0] = pLr[1];
  1.5513 +    pLr[1] = tmp;
  1.5514 +    nLr--;
  1.5515 +    pLr++;
  1.5516 +  }
  1.5517 +}
  1.5518 +
  1.5519 +/* Initializes pReaders with the segments from level iLevel, returning
  1.5520 +** the number of segments in *piReaders.  Leaves pReaders in sorted
  1.5521 +** order.
  1.5522 +*/
  1.5523 +static int leavesReadersInit(fulltext_vtab *v, int iLevel,
  1.5524 +                             LeavesReader *pReaders, int *piReaders){
  1.5525 +  sqlite3_stmt *s;
  1.5526 +  int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s);
  1.5527 +  if( rc!=SQLITE_OK ) return rc;
  1.5528 +
  1.5529 +  rc = sqlite3_bind_int(s, 1, iLevel);
  1.5530 +  if( rc!=SQLITE_OK ) return rc;
  1.5531 +
  1.5532 +  i = 0;
  1.5533 +  while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  1.5534 +    sqlite_int64 iStart = sqlite3_column_int64(s, 0);
  1.5535 +    sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
  1.5536 +    const char *pRootData = sqlite3_column_blob(s, 2);
  1.5537 +    int nRootData = sqlite3_column_bytes(s, 2);
  1.5538 +
  1.5539 +    assert( i<MERGE_COUNT );
  1.5540 +    rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData,
  1.5541 +                          &pReaders[i]);
  1.5542 +    if( rc!=SQLITE_OK ) break;
  1.5543 +
  1.5544 +    i++;
  1.5545 +  }
  1.5546 +  if( rc!=SQLITE_DONE ){
  1.5547 +    while( i-->0 ){
  1.5548 +      leavesReaderDestroy(&pReaders[i]);
  1.5549 +    }
  1.5550 +    return rc;
  1.5551 +  }
  1.5552 +
  1.5553 +  *piReaders = i;
  1.5554 +
  1.5555 +  /* Leave our results sorted by term, then age. */
  1.5556 +  while( i-- ){
  1.5557 +    leavesReaderReorder(pReaders+i, *piReaders-i);
  1.5558 +  }
  1.5559 +  return SQLITE_OK;
  1.5560 +}
  1.5561 +
  1.5562 +/* Merge doclists from pReaders[nReaders] into a single doclist, which
  1.5563 +** is written to pWriter.  Assumes pReaders is ordered oldest to
  1.5564 +** newest.
  1.5565 +*/
  1.5566 +/* TODO(shess) Consider putting this inline in segmentMerge(). */
  1.5567 +static int leavesReadersMerge(fulltext_vtab *v,
  1.5568 +                              LeavesReader *pReaders, int nReaders,
  1.5569 +                              LeafWriter *pWriter){
  1.5570 +  DLReader dlReaders[MERGE_COUNT];
  1.5571 +  const char *pTerm = leavesReaderTerm(pReaders);
  1.5572 +  int i, nTerm = leavesReaderTermBytes(pReaders);
  1.5573 +
  1.5574 +  assert( nReaders<=MERGE_COUNT );
  1.5575 +
  1.5576 +  for(i=0; i<nReaders; i++){
  1.5577 +    dlrInit(&dlReaders[i], DL_DEFAULT,
  1.5578 +            leavesReaderData(pReaders+i),
  1.5579 +            leavesReaderDataBytes(pReaders+i));
  1.5580 +  }
  1.5581 +
  1.5582 +  return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders);
  1.5583 +}
  1.5584 +
  1.5585 +/* Forward ref due to mutual recursion with segdirNextIndex(). */
  1.5586 +static int segmentMerge(fulltext_vtab *v, int iLevel);
  1.5587 +
  1.5588 +/* Put the next available index at iLevel into *pidx.  If iLevel
  1.5589 +** already has MERGE_COUNT segments, they are merged to a higher
  1.5590 +** level to make room.
  1.5591 +*/
  1.5592 +static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){
  1.5593 +  int rc = segdir_max_index(v, iLevel, pidx);
  1.5594 +  if( rc==SQLITE_DONE ){              /* No segments at iLevel. */
  1.5595 +    *pidx = 0;
  1.5596 +  }else if( rc==SQLITE_ROW ){
  1.5597 +    if( *pidx==(MERGE_COUNT-1) ){
  1.5598 +      rc = segmentMerge(v, iLevel);
  1.5599 +      if( rc!=SQLITE_OK ) return rc;
  1.5600 +      *pidx = 0;
  1.5601 +    }else{
  1.5602 +      (*pidx)++;
  1.5603 +    }
  1.5604 +  }else{
  1.5605 +    return rc;
  1.5606 +  }
  1.5607 +  return SQLITE_OK;
  1.5608 +}
  1.5609 +
  1.5610 +/* Merge MERGE_COUNT segments at iLevel into a new segment at
  1.5611 +** iLevel+1.  If iLevel+1 is already full of segments, those will be
  1.5612 +** merged to make room.
  1.5613 +*/
  1.5614 +static int segmentMerge(fulltext_vtab *v, int iLevel){
  1.5615 +  LeafWriter writer;
  1.5616 +  LeavesReader lrs[MERGE_COUNT];
  1.5617 +  int i, rc, idx = 0;
  1.5618 +
  1.5619 +  /* Determine the next available segment index at the next level,
  1.5620 +  ** merging as necessary.
  1.5621 +  */
  1.5622 +  rc = segdirNextIndex(v, iLevel+1, &idx);
  1.5623 +  if( rc!=SQLITE_OK ) return rc;
  1.5624 +
  1.5625 +  /* TODO(shess) This assumes that we'll always see exactly
  1.5626 +  ** MERGE_COUNT segments to merge at a given level.  That will be
  1.5627 +  ** broken if we allow the developer to request preemptive or
  1.5628 +  ** deferred merging.
  1.5629 +  */
  1.5630 +  memset(&lrs, '\0', sizeof(lrs));
  1.5631 +  rc = leavesReadersInit(v, iLevel, lrs, &i);
  1.5632 +  if( rc!=SQLITE_OK ) return rc;
  1.5633 +  assert( i==MERGE_COUNT );
  1.5634 +
  1.5635 +  leafWriterInit(iLevel+1, idx, &writer);
  1.5636 +
  1.5637 +  /* Since leavesReaderReorder() pushes readers at eof to the end,
  1.5638 +  ** when the first reader is empty, all will be empty.
  1.5639 +  */
  1.5640 +  while( !leavesReaderAtEnd(lrs) ){
  1.5641 +    /* Figure out how many readers share their next term. */
  1.5642 +    for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){
  1.5643 +      if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break;
  1.5644 +    }
  1.5645 +
  1.5646 +    rc = leavesReadersMerge(v, lrs, i, &writer);
  1.5647 +    if( rc!=SQLITE_OK ) goto err;
  1.5648 +
  1.5649 +    /* Step forward those that were merged. */
  1.5650 +    while( i-->0 ){
  1.5651 +      rc = leavesReaderStep(v, lrs+i);
  1.5652 +      if( rc!=SQLITE_OK ) goto err;
  1.5653 +
  1.5654 +      /* Reorder by term, then by age. */
  1.5655 +      leavesReaderReorder(lrs+i, MERGE_COUNT-i);
  1.5656 +    }
  1.5657 +  }
  1.5658 +
  1.5659 +  for(i=0; i<MERGE_COUNT; i++){
  1.5660 +    leavesReaderDestroy(&lrs[i]);
  1.5661 +  }
  1.5662 +
  1.5663 +  rc = leafWriterFinalize(v, &writer);
  1.5664 +  leafWriterDestroy(&writer);
  1.5665 +  if( rc!=SQLITE_OK ) return rc;
  1.5666 +
  1.5667 +  /* Delete the merged segment data. */
  1.5668 +  return segdir_delete(v, iLevel);
  1.5669 +
  1.5670 + err:
  1.5671 +  for(i=0; i<MERGE_COUNT; i++){
  1.5672 +    leavesReaderDestroy(&lrs[i]);
  1.5673 +  }
  1.5674 +  leafWriterDestroy(&writer);
  1.5675 +  return rc;
  1.5676 +}
  1.5677 +
  1.5678 +/* Accumulate the union of *acc and *pData into *acc. */
  1.5679 +static void docListAccumulateUnion(DataBuffer *acc,
  1.5680 +                                   const char *pData, int nData) {
  1.5681 +  DataBuffer tmp = *acc;
  1.5682 +  dataBufferInit(acc, tmp.nData+nData);
  1.5683 +  docListUnion(tmp.pData, tmp.nData, pData, nData, acc);
  1.5684 +  dataBufferDestroy(&tmp);
  1.5685 +}
  1.5686 +
  1.5687 +/* TODO(shess) It might be interesting to explore different merge
  1.5688 +** strategies, here.  For instance, since this is a sorted merge, we
  1.5689 +** could easily merge many doclists in parallel.  With some
  1.5690 +** comprehension of the storage format, we could merge all of the
  1.5691 +** doclists within a leaf node directly from the leaf node's storage.
  1.5692 +** It may be worthwhile to merge smaller doclists before larger
  1.5693 +** doclists, since they can be traversed more quickly - but the
  1.5694 +** results may have less overlap, making them more expensive in a
  1.5695 +** different way.
  1.5696 +*/
  1.5697 +
  1.5698 +/* Scan pReader for pTerm/nTerm, and merge the term's doclist over
  1.5699 +** *out (any doclists with duplicate docids overwrite those in *out).
  1.5700 +** Internal function for loadSegmentLeaf().
  1.5701 +*/
  1.5702 +static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader,
  1.5703 +                                const char *pTerm, int nTerm, int isPrefix,
  1.5704 +                                DataBuffer *out){
  1.5705 +  /* doclist data is accumulated into pBuffers similar to how one does
  1.5706 +  ** increment in binary arithmetic.  If index 0 is empty, the data is
  1.5707 +  ** stored there.  If there is data there, it is merged and the
  1.5708 +  ** results carried into position 1, with further merge-and-carry
  1.5709 +  ** until an empty position is found.
  1.5710 +  */
  1.5711 +  DataBuffer *pBuffers = NULL;
  1.5712 +  int nBuffers = 0, nMaxBuffers = 0, rc;
  1.5713 +
  1.5714 +  assert( nTerm>0 );
  1.5715 +
  1.5716 +  for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader);
  1.5717 +      rc=leavesReaderStep(v, pReader)){
  1.5718 +    /* TODO(shess) Really want leavesReaderTermCmp(), but that name is
  1.5719 +    ** already taken to compare the terms of two LeavesReaders.  Think
  1.5720 +    ** on a better name.  [Meanwhile, break encapsulation rather than
  1.5721 +    ** use a confusing name.]
  1.5722 +    */
  1.5723 +    int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix);
  1.5724 +    if( c>0 ) break;      /* Past any possible matches. */
  1.5725 +    if( c==0 ){
  1.5726 +      const char *pData = leavesReaderData(pReader);
  1.5727 +      int iBuffer, nData = leavesReaderDataBytes(pReader);
  1.5728 +
  1.5729 +      /* Find the first empty buffer. */
  1.5730 +      for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
  1.5731 +        if( 0==pBuffers[iBuffer].nData ) break;
  1.5732 +      }
  1.5733 +
  1.5734 +      /* Out of buffers, add an empty one. */
  1.5735 +      if( iBuffer==nBuffers ){
  1.5736 +        if( nBuffers==nMaxBuffers ){
  1.5737 +          DataBuffer *p;
  1.5738 +          nMaxBuffers += 20;
  1.5739 +
  1.5740 +          /* Manual realloc so we can handle NULL appropriately. */
  1.5741 +          p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers));
  1.5742 +          if( p==NULL ){
  1.5743 +            rc = SQLITE_NOMEM;
  1.5744 +            break;
  1.5745 +          }
  1.5746 +
  1.5747 +          if( nBuffers>0 ){
  1.5748 +            assert(pBuffers!=NULL);
  1.5749 +            memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers));
  1.5750 +            sqlite3_free(pBuffers);
  1.5751 +          }
  1.5752 +          pBuffers = p;
  1.5753 +        }
  1.5754 +        dataBufferInit(&(pBuffers[nBuffers]), 0);
  1.5755 +        nBuffers++;
  1.5756 +      }
  1.5757 +
  1.5758 +      /* At this point, must have an empty at iBuffer. */
  1.5759 +      assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0);
  1.5760 +
  1.5761 +      /* If empty was first buffer, no need for merge logic. */
  1.5762 +      if( iBuffer==0 ){
  1.5763 +        dataBufferReplace(&(pBuffers[0]), pData, nData);
  1.5764 +      }else{
  1.5765 +        /* pAcc is the empty buffer the merged data will end up in. */
  1.5766 +        DataBuffer *pAcc = &(pBuffers[iBuffer]);
  1.5767 +        DataBuffer *p = &(pBuffers[0]);
  1.5768 +
  1.5769 +        /* Handle position 0 specially to avoid need to prime pAcc
  1.5770 +        ** with pData/nData.
  1.5771 +        */
  1.5772 +        dataBufferSwap(p, pAcc);
  1.5773 +        docListAccumulateUnion(pAcc, pData, nData);
  1.5774 +
  1.5775 +        /* Accumulate remaining doclists into pAcc. */
  1.5776 +        for(++p; p<pAcc; ++p){
  1.5777 +          docListAccumulateUnion(pAcc, p->pData, p->nData);
  1.5778 +
  1.5779 +          /* dataBufferReset() could allow a large doclist to blow up
  1.5780 +          ** our memory requirements.
  1.5781 +          */
  1.5782 +          if( p->nCapacity<1024 ){
  1.5783 +            dataBufferReset(p);
  1.5784 +          }else{
  1.5785 +            dataBufferDestroy(p);
  1.5786 +            dataBufferInit(p, 0);
  1.5787 +          }
  1.5788 +        }
  1.5789 +      }
  1.5790 +    }
  1.5791 +  }
  1.5792 +
  1.5793 +  /* Union all the doclists together into *out. */
  1.5794 +  /* TODO(shess) What if *out is big?  Sigh. */
  1.5795 +  if( rc==SQLITE_OK && nBuffers>0 ){
  1.5796 +    int iBuffer;
  1.5797 +    for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){
  1.5798 +      if( pBuffers[iBuffer].nData>0 ){
  1.5799 +        if( out->nData==0 ){
  1.5800 +          dataBufferSwap(out, &(pBuffers[iBuffer]));
  1.5801 +        }else{
  1.5802 +          docListAccumulateUnion(out, pBuffers[iBuffer].pData,
  1.5803 +                                 pBuffers[iBuffer].nData);
  1.5804 +        }
  1.5805 +      }
  1.5806 +    }
  1.5807 +  }
  1.5808 +
  1.5809 +  while( nBuffers-- ){
  1.5810 +    dataBufferDestroy(&(pBuffers[nBuffers]));
  1.5811 +  }
  1.5812 +  if( pBuffers!=NULL ) sqlite3_free(pBuffers);
  1.5813 +
  1.5814 +  return rc;
  1.5815 +}
  1.5816 +
  1.5817 +/* Call loadSegmentLeavesInt() with pData/nData as input. */
  1.5818 +static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData,
  1.5819 +                           const char *pTerm, int nTerm, int isPrefix,
  1.5820 +                           DataBuffer *out){
  1.5821 +  LeavesReader reader;
  1.5822 +  int rc;
  1.5823 +
  1.5824 +  assert( nData>1 );
  1.5825 +  assert( *pData=='\0' );
  1.5826 +  rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader);
  1.5827 +  if( rc!=SQLITE_OK ) return rc;
  1.5828 +
  1.5829 +  rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
  1.5830 +  leavesReaderReset(&reader);
  1.5831 +  leavesReaderDestroy(&reader);
  1.5832 +  return rc;
  1.5833 +}
  1.5834 +
  1.5835 +/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to
  1.5836 +** iEndLeaf (inclusive) as input, and merge the resulting doclist into
  1.5837 +** out.
  1.5838 +*/
  1.5839 +static int loadSegmentLeaves(fulltext_vtab *v,
  1.5840 +                             sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf,
  1.5841 +                             const char *pTerm, int nTerm, int isPrefix,
  1.5842 +                             DataBuffer *out){
  1.5843 +  int rc;
  1.5844 +  LeavesReader reader;
  1.5845 +
  1.5846 +  assert( iStartLeaf<=iEndLeaf );
  1.5847 +  rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader);
  1.5848 +  if( rc!=SQLITE_OK ) return rc;
  1.5849 +
  1.5850 +  rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out);
  1.5851 +  leavesReaderReset(&reader);
  1.5852 +  leavesReaderDestroy(&reader);
  1.5853 +  return rc;
  1.5854 +}
  1.5855 +
  1.5856 +/* Taking pData/nData as an interior node, find the sequence of child
  1.5857 +** nodes which could include pTerm/nTerm/isPrefix.  Note that the
  1.5858 +** interior node terms logically come between the blocks, so there is
  1.5859 +** one more blockid than there are terms (that block contains terms >=
  1.5860 +** the last interior-node term).
  1.5861 +*/
  1.5862 +/* TODO(shess) The calling code may already know that the end child is
  1.5863 +** not worth calculating, because the end may be in a later sibling
  1.5864 +** node.  Consider whether breaking symmetry is worthwhile.  I suspect
  1.5865 +** it is not worthwhile.
  1.5866 +*/
  1.5867 +static void getChildrenContaining(const char *pData, int nData,
  1.5868 +                                  const char *pTerm, int nTerm, int isPrefix,
  1.5869 +                                  sqlite_int64 *piStartChild,
  1.5870 +                                  sqlite_int64 *piEndChild){
  1.5871 +  InteriorReader reader;
  1.5872 +
  1.5873 +  assert( nData>1 );
  1.5874 +  assert( *pData!='\0' );
  1.5875 +  interiorReaderInit(pData, nData, &reader);
  1.5876 +
  1.5877 +  /* Scan for the first child which could contain pTerm/nTerm. */
  1.5878 +  while( !interiorReaderAtEnd(&reader) ){
  1.5879 +    if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break;
  1.5880 +    interiorReaderStep(&reader);
  1.5881 +  }
  1.5882 +  *piStartChild = interiorReaderCurrentBlockid(&reader);
  1.5883 +
  1.5884 +  /* Keep scanning to find a term greater than our term, using prefix
  1.5885 +  ** comparison if indicated.  If isPrefix is false, this will be the
  1.5886 +  ** same blockid as the starting block.
  1.5887 +  */
  1.5888 +  while( !interiorReaderAtEnd(&reader) ){
  1.5889 +    if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break;
  1.5890 +    interiorReaderStep(&reader);
  1.5891 +  }
  1.5892 +  *piEndChild = interiorReaderCurrentBlockid(&reader);
  1.5893 +
  1.5894 +  interiorReaderDestroy(&reader);
  1.5895 +
  1.5896 +  /* Children must ascend, and if !prefix, both must be the same. */
  1.5897 +  assert( *piEndChild>=*piStartChild );
  1.5898 +  assert( isPrefix || *piStartChild==*piEndChild );
  1.5899 +}
  1.5900 +
  1.5901 +/* Read block at iBlockid and pass it with other params to
  1.5902 +** getChildrenContaining().
  1.5903 +*/
  1.5904 +static int loadAndGetChildrenContaining(
  1.5905 +  fulltext_vtab *v,
  1.5906 +  sqlite_int64 iBlockid,
  1.5907 +  const char *pTerm, int nTerm, int isPrefix,
  1.5908 +  sqlite_int64 *piStartChild, sqlite_int64 *piEndChild
  1.5909 +){
  1.5910 +  sqlite3_stmt *s = NULL;
  1.5911 +  int rc;
  1.5912 +
  1.5913 +  assert( iBlockid!=0 );
  1.5914 +  assert( pTerm!=NULL );
  1.5915 +  assert( nTerm!=0 );        /* TODO(shess) Why not allow this? */
  1.5916 +  assert( piStartChild!=NULL );
  1.5917 +  assert( piEndChild!=NULL );
  1.5918 +
  1.5919 +  rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s);
  1.5920 +  if( rc!=SQLITE_OK ) return rc;
  1.5921 +
  1.5922 +  rc = sqlite3_bind_int64(s, 1, iBlockid);
  1.5923 +  if( rc!=SQLITE_OK ) return rc;
  1.5924 +
  1.5925 +  rc = sqlite3_step(s);
  1.5926 +  if( rc==SQLITE_DONE ) return SQLITE_ERROR;
  1.5927 +  if( rc!=SQLITE_ROW ) return rc;
  1.5928 +
  1.5929 +  getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0),
  1.5930 +                        pTerm, nTerm, isPrefix, piStartChild, piEndChild);
  1.5931 +
  1.5932 +  /* We expect only one row.  We must execute another sqlite3_step()
  1.5933 +   * to complete the iteration; otherwise the table will remain
  1.5934 +   * locked. */
  1.5935 +  rc = sqlite3_step(s);
  1.5936 +  if( rc==SQLITE_ROW ) return SQLITE_ERROR;
  1.5937 +  if( rc!=SQLITE_DONE ) return rc;
  1.5938 +
  1.5939 +  return SQLITE_OK;
  1.5940 +}
  1.5941 +
  1.5942 +/* Traverse the tree represented by pData[nData] looking for
  1.5943 +** pTerm[nTerm], placing its doclist into *out.  This is internal to
  1.5944 +** loadSegment() to make error-handling cleaner.
  1.5945 +*/
  1.5946 +static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData,
  1.5947 +                          sqlite_int64 iLeavesEnd,
  1.5948 +                          const char *pTerm, int nTerm, int isPrefix,
  1.5949 +                          DataBuffer *out){
  1.5950 +  /* Special case where root is a leaf. */
  1.5951 +  if( *pData=='\0' ){
  1.5952 +    return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out);
  1.5953 +  }else{
  1.5954 +    int rc;
  1.5955 +    sqlite_int64 iStartChild, iEndChild;
  1.5956 +
  1.5957 +    /* Process pData as an interior node, then loop down the tree
  1.5958 +    ** until we find the set of leaf nodes to scan for the term.
  1.5959 +    */
  1.5960 +    getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix,
  1.5961 +                          &iStartChild, &iEndChild);
  1.5962 +    while( iStartChild>iLeavesEnd ){
  1.5963 +      sqlite_int64 iNextStart, iNextEnd;
  1.5964 +      rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix,
  1.5965 +                                        &iNextStart, &iNextEnd);
  1.5966 +      if( rc!=SQLITE_OK ) return rc;
  1.5967 +
  1.5968 +      /* If we've branched, follow the end branch, too. */
  1.5969 +      if( iStartChild!=iEndChild ){
  1.5970 +        sqlite_int64 iDummy;
  1.5971 +        rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix,
  1.5972 +                                          &iDummy, &iNextEnd);
  1.5973 +        if( rc!=SQLITE_OK ) return rc;
  1.5974 +      }
  1.5975 +
  1.5976 +      assert( iNextStart<=iNextEnd );
  1.5977 +      iStartChild = iNextStart;
  1.5978 +      iEndChild = iNextEnd;
  1.5979 +    }
  1.5980 +    assert( iStartChild<=iLeavesEnd );
  1.5981 +    assert( iEndChild<=iLeavesEnd );
  1.5982 +
  1.5983 +    /* Scan through the leaf segments for doclists. */
  1.5984 +    return loadSegmentLeaves(v, iStartChild, iEndChild,
  1.5985 +                             pTerm, nTerm, isPrefix, out);
  1.5986 +  }
  1.5987 +}
  1.5988 +
  1.5989 +/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then
  1.5990 +** merge its doclist over *out (any duplicate doclists read from the
  1.5991 +** segment rooted at pData will overwrite those in *out).
  1.5992 +*/
  1.5993 +/* TODO(shess) Consider changing this to determine the depth of the
  1.5994 +** leaves using either the first characters of interior nodes (when
  1.5995 +** ==1, we're one level above the leaves), or the first character of
  1.5996 +** the root (which will describe the height of the tree directly).
  1.5997 +** Either feels somewhat tricky to me.
  1.5998 +*/
  1.5999 +/* TODO(shess) The current merge is likely to be slow for large
  1.6000 +** doclists (though it should process from newest/smallest to
  1.6001 +** oldest/largest, so it may not be that bad).  It might be useful to
  1.6002 +** modify things to allow for N-way merging.  This could either be
  1.6003 +** within a segment, with pairwise merges across segments, or across
  1.6004 +** all segments at once.
  1.6005 +*/
  1.6006 +static int loadSegment(fulltext_vtab *v, const char *pData, int nData,
  1.6007 +                       sqlite_int64 iLeavesEnd,
  1.6008 +                       const char *pTerm, int nTerm, int isPrefix,
  1.6009 +                       DataBuffer *out){
  1.6010 +  DataBuffer result;
  1.6011 +  int rc;
  1.6012 +
  1.6013 +  assert( nData>1 );
  1.6014 +
  1.6015 +  /* This code should never be called with buffered updates. */
  1.6016 +  assert( v->nPendingData<0 );
  1.6017 +
  1.6018 +  dataBufferInit(&result, 0);
  1.6019 +  rc = loadSegmentInt(v, pData, nData, iLeavesEnd,
  1.6020 +                      pTerm, nTerm, isPrefix, &result);
  1.6021 +  if( rc==SQLITE_OK && result.nData>0 ){
  1.6022 +    if( out->nData==0 ){
  1.6023 +      DataBuffer tmp = *out;
  1.6024 +      *out = result;
  1.6025 +      result = tmp;
  1.6026 +    }else{
  1.6027 +      DataBuffer merged;
  1.6028 +      DLReader readers[2];
  1.6029 +
  1.6030 +      dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData);
  1.6031 +      dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData);
  1.6032 +      dataBufferInit(&merged, out->nData+result.nData);
  1.6033 +      docListMerge(&merged, readers, 2);
  1.6034 +      dataBufferDestroy(out);
  1.6035 +      *out = merged;
  1.6036 +      dlrDestroy(&readers[0]);
  1.6037 +      dlrDestroy(&readers[1]);
  1.6038 +    }
  1.6039 +  }
  1.6040 +  dataBufferDestroy(&result);
  1.6041 +  return rc;
  1.6042 +}
  1.6043 +
  1.6044 +/* Scan the database and merge together the posting lists for the term
  1.6045 +** into *out.
  1.6046 +*/
  1.6047 +static int termSelect(fulltext_vtab *v, int iColumn,
  1.6048 +                      const char *pTerm, int nTerm, int isPrefix,
  1.6049 +                      DocListType iType, DataBuffer *out){
  1.6050 +  DataBuffer doclist;
  1.6051 +  sqlite3_stmt *s;
  1.6052 +  int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  1.6053 +  if( rc!=SQLITE_OK ) return rc;
  1.6054 +
  1.6055 +  /* This code should never be called with buffered updates. */
  1.6056 +  assert( v->nPendingData<0 );
  1.6057 +
  1.6058 +  dataBufferInit(&doclist, 0);
  1.6059 +
  1.6060 +  /* Traverse the segments from oldest to newest so that newer doclist
  1.6061 +  ** elements for given docids overwrite older elements.
  1.6062 +  */
  1.6063 +  while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  1.6064 +    const char *pData = sqlite3_column_blob(s, 2);
  1.6065 +    const int nData = sqlite3_column_bytes(s, 2);
  1.6066 +    const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
  1.6067 +    rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix,
  1.6068 +                     &doclist);
  1.6069 +    if( rc!=SQLITE_OK ) goto err;
  1.6070 +  }
  1.6071 +  if( rc==SQLITE_DONE ){
  1.6072 +    if( doclist.nData!=0 ){
  1.6073 +      /* TODO(shess) The old term_select_all() code applied the column
  1.6074 +      ** restrict as we merged segments, leading to smaller buffers.
  1.6075 +      ** This is probably worthwhile to bring back, once the new storage
  1.6076 +      ** system is checked in.
  1.6077 +      */
  1.6078 +      if( iColumn==v->nColumn) iColumn = -1;
  1.6079 +      docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
  1.6080 +                  iColumn, iType, out);
  1.6081 +    }
  1.6082 +    rc = SQLITE_OK;
  1.6083 +  }
  1.6084 +
  1.6085 + err:
  1.6086 +  dataBufferDestroy(&doclist);
  1.6087 +  return rc;
  1.6088 +}
  1.6089 +
  1.6090 +/****************************************************************/
  1.6091 +/* Used to hold hashtable data for sorting. */
  1.6092 +typedef struct TermData {
  1.6093 +  const char *pTerm;
  1.6094 +  int nTerm;
  1.6095 +  DLCollector *pCollector;
  1.6096 +} TermData;
  1.6097 +
  1.6098 +/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0
  1.6099 +** for equal, >0 for greater-than).
  1.6100 +*/
  1.6101 +static int termDataCmp(const void *av, const void *bv){
  1.6102 +  const TermData *a = (const TermData *)av;
  1.6103 +  const TermData *b = (const TermData *)bv;
  1.6104 +  int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm;
  1.6105 +  int c = memcmp(a->pTerm, b->pTerm, n);
  1.6106 +  if( c!=0 ) return c;
  1.6107 +  return a->nTerm-b->nTerm;
  1.6108 +}
  1.6109 +
  1.6110 +/* Order pTerms data by term, then write a new level 0 segment using
  1.6111 +** LeafWriter.
  1.6112 +*/
  1.6113 +static int writeZeroSegment(fulltext_vtab *v, fts3Hash *pTerms){
  1.6114 +  fts3HashElem *e;
  1.6115 +  int idx, rc, i, n;
  1.6116 +  TermData *pData;
  1.6117 +  LeafWriter writer;
  1.6118 +  DataBuffer dl;
  1.6119 +
  1.6120 +  /* Determine the next index at level 0, merging as necessary. */
  1.6121 +  rc = segdirNextIndex(v, 0, &idx);
  1.6122 +  if( rc!=SQLITE_OK ) return rc;
  1.6123 +
  1.6124 +  n = fts3HashCount(pTerms);
  1.6125 +  pData = sqlite3_malloc(n*sizeof(TermData));
  1.6126 +
  1.6127 +  for(i = 0, e = fts3HashFirst(pTerms); e; i++, e = fts3HashNext(e)){
  1.6128 +    assert( i<n );
  1.6129 +    pData[i].pTerm = fts3HashKey(e);
  1.6130 +    pData[i].nTerm = fts3HashKeysize(e);
  1.6131 +    pData[i].pCollector = fts3HashData(e);
  1.6132 +  }
  1.6133 +  assert( i==n );
  1.6134 +
  1.6135 +  /* TODO(shess) Should we allow user-defined collation sequences,
  1.6136 +  ** here?  I think we only need that once we support prefix searches.
  1.6137 +  */
  1.6138 +  if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp);
  1.6139 +
  1.6140 +  /* TODO(shess) Refactor so that we can write directly to the segment
  1.6141 +  ** DataBuffer, as happens for segment merges.
  1.6142 +  */
  1.6143 +  leafWriterInit(0, idx, &writer);
  1.6144 +  dataBufferInit(&dl, 0);
  1.6145 +  for(i=0; i<n; i++){
  1.6146 +    dataBufferReset(&dl);
  1.6147 +    dlcAddDoclist(pData[i].pCollector, &dl);
  1.6148 +    rc = leafWriterStep(v, &writer,
  1.6149 +                        pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData);
  1.6150 +    if( rc!=SQLITE_OK ) goto err;
  1.6151 +  }
  1.6152 +  rc = leafWriterFinalize(v, &writer);
  1.6153 +
  1.6154 + err:
  1.6155 +  dataBufferDestroy(&dl);
  1.6156 +  sqlite3_free(pData);
  1.6157 +  leafWriterDestroy(&writer);
  1.6158 +  return rc;
  1.6159 +}
  1.6160 +
  1.6161 +/* If pendingTerms has data, free it. */
  1.6162 +static int clearPendingTerms(fulltext_vtab *v){
  1.6163 +  if( v->nPendingData>=0 ){
  1.6164 +    fts3HashElem *e;
  1.6165 +    for(e=fts3HashFirst(&v->pendingTerms); e; e=fts3HashNext(e)){
  1.6166 +      dlcDelete(fts3HashData(e));
  1.6167 +    }
  1.6168 +    fts3HashClear(&v->pendingTerms);
  1.6169 +    v->nPendingData = -1;
  1.6170 +  }
  1.6171 +  return SQLITE_OK;
  1.6172 +}
  1.6173 +
  1.6174 +/* If pendingTerms has data, flush it to a level-zero segment, and
  1.6175 +** free it.
  1.6176 +*/
  1.6177 +static int flushPendingTerms(fulltext_vtab *v){
  1.6178 +  if( v->nPendingData>=0 ){
  1.6179 +    int rc = writeZeroSegment(v, &v->pendingTerms);
  1.6180 +    if( rc==SQLITE_OK ) clearPendingTerms(v);
  1.6181 +    return rc;
  1.6182 +  }
  1.6183 +  return SQLITE_OK;
  1.6184 +}
  1.6185 +
  1.6186 +/* If pendingTerms is "too big", or docid is out of order, flush it.
  1.6187 +** Regardless, be certain that pendingTerms is initialized for use.
  1.6188 +*/
  1.6189 +static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){
  1.6190 +  /* TODO(shess) Explore whether partially flushing the buffer on
  1.6191 +  ** forced-flush would provide better performance.  I suspect that if
  1.6192 +  ** we ordered the doclists by size and flushed the largest until the
  1.6193 +  ** buffer was half empty, that would let the less frequent terms
  1.6194 +  ** generate longer doclists.
  1.6195 +  */
  1.6196 +  if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){
  1.6197 +    int rc = flushPendingTerms(v);
  1.6198 +    if( rc!=SQLITE_OK ) return rc;
  1.6199 +  }
  1.6200 +  if( v->nPendingData<0 ){
  1.6201 +    fts3HashInit(&v->pendingTerms, FTS3_HASH_STRING, 1);
  1.6202 +    v->nPendingData = 0;
  1.6203 +  }
  1.6204 +  v->iPrevDocid = iDocid;
  1.6205 +  return SQLITE_OK;
  1.6206 +}
  1.6207 +
  1.6208 +/* This function implements the xUpdate callback; it is the top-level entry
  1.6209 + * point for inserting, deleting or updating a row in a full-text table. */
  1.6210 +static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg,
  1.6211 +                          sqlite_int64 *pRowid){
  1.6212 +  fulltext_vtab *v = (fulltext_vtab *) pVtab;
  1.6213 +  int rc;
  1.6214 +
  1.6215 +  FTSTRACE(("FTS3 Update %p\n", pVtab));
  1.6216 +
  1.6217 +  if( nArg<2 ){
  1.6218 +    rc = index_delete(v, sqlite3_value_int64(ppArg[0]));
  1.6219 +    if( rc==SQLITE_OK ){
  1.6220 +      /* If we just deleted the last row in the table, clear out the
  1.6221 +      ** index data.
  1.6222 +      */
  1.6223 +      rc = content_exists(v);
  1.6224 +      if( rc==SQLITE_ROW ){
  1.6225 +        rc = SQLITE_OK;
  1.6226 +      }else if( rc==SQLITE_DONE ){
  1.6227 +        /* Clear the pending terms so we don't flush a useless level-0
  1.6228 +        ** segment when the transaction closes.
  1.6229 +        */
  1.6230 +        rc = clearPendingTerms(v);
  1.6231 +        if( rc==SQLITE_OK ){
  1.6232 +          rc = segdir_delete_all(v);
  1.6233 +        }
  1.6234 +      }
  1.6235 +    }
  1.6236 +  } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){
  1.6237 +    /* An update:
  1.6238 +     * ppArg[0] = old rowid
  1.6239 +     * ppArg[1] = new rowid
  1.6240 +     * ppArg[2..2+v->nColumn-1] = values
  1.6241 +     * ppArg[2+v->nColumn] = value for magic column (we ignore this)
  1.6242 +     * ppArg[2+v->nColumn+1] = value for docid
  1.6243 +     */
  1.6244 +    sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]);
  1.6245 +    if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER ||
  1.6246 +        sqlite3_value_int64(ppArg[1]) != rowid ){
  1.6247 +      rc = SQLITE_ERROR;  /* we don't allow changing the rowid */
  1.6248 +    }else if( sqlite3_value_type(ppArg[2+v->nColumn+1]) != SQLITE_INTEGER ||
  1.6249 +              sqlite3_value_int64(ppArg[2+v->nColumn+1]) != rowid ){
  1.6250 +      rc = SQLITE_ERROR;  /* we don't allow changing the docid */
  1.6251 +    }else{
  1.6252 +      assert( nArg==2+v->nColumn+2);
  1.6253 +      rc = index_update(v, rowid, &ppArg[2]);
  1.6254 +    }
  1.6255 +  } else {
  1.6256 +    /* An insert:
  1.6257 +     * ppArg[1] = requested rowid
  1.6258 +     * ppArg[2..2+v->nColumn-1] = values
  1.6259 +     * ppArg[2+v->nColumn] = value for magic column (we ignore this)
  1.6260 +     * ppArg[2+v->nColumn+1] = value for docid
  1.6261 +     */
  1.6262 +    sqlite3_value *pRequestDocid = ppArg[2+v->nColumn+1];
  1.6263 +    assert( nArg==2+v->nColumn+2);
  1.6264 +    if( SQLITE_NULL != sqlite3_value_type(pRequestDocid) &&
  1.6265 +        SQLITE_NULL != sqlite3_value_type(ppArg[1]) ){
  1.6266 +      /* TODO(shess) Consider allowing this to work if the values are
  1.6267 +      ** identical.  I'm inclined to discourage that usage, though,
  1.6268 +      ** given that both rowid and docid are special columns.  Better
  1.6269 +      ** would be to define one or the other as the default winner,
  1.6270 +      ** but should it be fts3-centric (docid) or SQLite-centric
  1.6271 +      ** (rowid)?
  1.6272 +      */
  1.6273 +      rc = SQLITE_ERROR;
  1.6274 +    }else{
  1.6275 +      if( SQLITE_NULL == sqlite3_value_type(pRequestDocid) ){
  1.6276 +        pRequestDocid = ppArg[1];
  1.6277 +      }
  1.6278 +      rc = index_insert(v, pRequestDocid, &ppArg[2], pRowid);
  1.6279 +    }
  1.6280 +  }
  1.6281 +
  1.6282 +  return rc;
  1.6283 +}
  1.6284 +
  1.6285 +static int fulltextSync(sqlite3_vtab *pVtab){
  1.6286 +  FTSTRACE(("FTS3 xSync()\n"));
  1.6287 +  return flushPendingTerms((fulltext_vtab *)pVtab);
  1.6288 +}
  1.6289 +
  1.6290 +static int fulltextBegin(sqlite3_vtab *pVtab){
  1.6291 +  fulltext_vtab *v = (fulltext_vtab *) pVtab;
  1.6292 +  FTSTRACE(("FTS3 xBegin()\n"));
  1.6293 +
  1.6294 +  /* Any buffered updates should have been cleared by the previous
  1.6295 +  ** transaction.
  1.6296 +  */
  1.6297 +  assert( v->nPendingData<0 );
  1.6298 +  return clearPendingTerms(v);
  1.6299 +}
  1.6300 +
  1.6301 +static int fulltextCommit(sqlite3_vtab *pVtab){
  1.6302 +  fulltext_vtab *v = (fulltext_vtab *) pVtab;
  1.6303 +  FTSTRACE(("FTS3 xCommit()\n"));
  1.6304 +
  1.6305 +  /* Buffered updates should have been cleared by fulltextSync(). */
  1.6306 +  assert( v->nPendingData<0 );
  1.6307 +  return clearPendingTerms(v);
  1.6308 +}
  1.6309 +
  1.6310 +static int fulltextRollback(sqlite3_vtab *pVtab){
  1.6311 +  FTSTRACE(("FTS3 xRollback()\n"));
  1.6312 +  return clearPendingTerms((fulltext_vtab *)pVtab);
  1.6313 +}
  1.6314 +
  1.6315 +/*
  1.6316 +** Implementation of the snippet() function for FTS3
  1.6317 +*/
  1.6318 +static void snippetFunc(
  1.6319 +  sqlite3_context *pContext,
  1.6320 +  int argc,
  1.6321 +  sqlite3_value **argv
  1.6322 +){
  1.6323 +  fulltext_cursor *pCursor;
  1.6324 +  if( argc<1 ) return;
  1.6325 +  if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  1.6326 +      sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  1.6327 +    sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1);
  1.6328 +  }else{
  1.6329 +    const char *zStart = "<b>";
  1.6330 +    const char *zEnd = "</b>";
  1.6331 +    const char *zEllipsis = "<b>...</b>";
  1.6332 +    memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  1.6333 +    if( argc>=2 ){
  1.6334 +      zStart = (const char*)sqlite3_value_text(argv[1]);
  1.6335 +      if( argc>=3 ){
  1.6336 +        zEnd = (const char*)sqlite3_value_text(argv[2]);
  1.6337 +        if( argc>=4 ){
  1.6338 +          zEllipsis = (const char*)sqlite3_value_text(argv[3]);
  1.6339 +        }
  1.6340 +      }
  1.6341 +    }
  1.6342 +    snippetAllOffsets(pCursor);
  1.6343 +    snippetText(pCursor, zStart, zEnd, zEllipsis);
  1.6344 +    sqlite3_result_text(pContext, pCursor->snippet.zSnippet,
  1.6345 +                        pCursor->snippet.nSnippet, SQLITE_STATIC);
  1.6346 +  }
  1.6347 +}
  1.6348 +
  1.6349 +/*
  1.6350 +** Implementation of the offsets() function for FTS3
  1.6351 +*/
  1.6352 +static void snippetOffsetsFunc(
  1.6353 +  sqlite3_context *pContext,
  1.6354 +  int argc,
  1.6355 +  sqlite3_value **argv
  1.6356 +){
  1.6357 +  fulltext_cursor *pCursor;
  1.6358 +  if( argc<1 ) return;
  1.6359 +  if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  1.6360 +      sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  1.6361 +    sqlite3_result_error(pContext, "illegal first argument to offsets",-1);
  1.6362 +  }else{
  1.6363 +    memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  1.6364 +    snippetAllOffsets(pCursor);
  1.6365 +    snippetOffsetText(&pCursor->snippet);
  1.6366 +    sqlite3_result_text(pContext,
  1.6367 +                        pCursor->snippet.zOffset, pCursor->snippet.nOffset,
  1.6368 +                        SQLITE_STATIC);
  1.6369 +  }
  1.6370 +}
  1.6371 +
  1.6372 +/* OptLeavesReader is nearly identical to LeavesReader, except that
  1.6373 +** where LeavesReader is geared towards the merging of complete
  1.6374 +** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader
  1.6375 +** is geared towards implementation of the optimize() function, and
  1.6376 +** can merge all segments simultaneously.  This version may be
  1.6377 +** somewhat less efficient than LeavesReader because it merges into an
  1.6378 +** accumulator rather than doing an N-way merge, but since segment
  1.6379 +** size grows exponentially (so segment count logrithmically) this is
  1.6380 +** probably not an immediate problem.
  1.6381 +*/
  1.6382 +/* TODO(shess): Prove that assertion, or extend the merge code to
  1.6383 +** merge tree fashion (like the prefix-searching code does).
  1.6384 +*/
  1.6385 +/* TODO(shess): OptLeavesReader and LeavesReader could probably be
  1.6386 +** merged with little or no loss of performance for LeavesReader.  The
  1.6387 +** merged code would need to handle >MERGE_COUNT segments, and would
  1.6388 +** also need to be able to optionally optimize away deletes.
  1.6389 +*/
  1.6390 +typedef struct OptLeavesReader {
  1.6391 +  /* Segment number, to order readers by age. */
  1.6392 +  int segment;
  1.6393 +  LeavesReader reader;
  1.6394 +} OptLeavesReader;
  1.6395 +
  1.6396 +static int optLeavesReaderAtEnd(OptLeavesReader *pReader){
  1.6397 +  return leavesReaderAtEnd(&pReader->reader);
  1.6398 +}
  1.6399 +static int optLeavesReaderTermBytes(OptLeavesReader *pReader){
  1.6400 +  return leavesReaderTermBytes(&pReader->reader);
  1.6401 +}
  1.6402 +static const char *optLeavesReaderData(OptLeavesReader *pReader){
  1.6403 +  return leavesReaderData(&pReader->reader);
  1.6404 +}
  1.6405 +static int optLeavesReaderDataBytes(OptLeavesReader *pReader){
  1.6406 +  return leavesReaderDataBytes(&pReader->reader);
  1.6407 +}
  1.6408 +static const char *optLeavesReaderTerm(OptLeavesReader *pReader){
  1.6409 +  return leavesReaderTerm(&pReader->reader);
  1.6410 +}
  1.6411 +static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){
  1.6412 +  return leavesReaderStep(v, &pReader->reader);
  1.6413 +}
  1.6414 +static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
  1.6415 +  return leavesReaderTermCmp(&lr1->reader, &lr2->reader);
  1.6416 +}
  1.6417 +/* Order by term ascending, segment ascending (oldest to newest), with
  1.6418 +** exhausted readers to the end.
  1.6419 +*/
  1.6420 +static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){
  1.6421 +  int c = optLeavesReaderTermCmp(lr1, lr2);
  1.6422 +  if( c!=0 ) return c;
  1.6423 +  return lr1->segment-lr2->segment;
  1.6424 +}
  1.6425 +/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1].  Assumes that
  1.6426 +** pLr[1..nLr-1] is already sorted.
  1.6427 +*/
  1.6428 +static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){
  1.6429 +  while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){
  1.6430 +    OptLeavesReader tmp = pLr[0];
  1.6431 +    pLr[0] = pLr[1];
  1.6432 +    pLr[1] = tmp;
  1.6433 +    nLr--;
  1.6434 +    pLr++;
  1.6435 +  }
  1.6436 +}
  1.6437 +
  1.6438 +/* optimize() helper function.  Put the readers in order and iterate
  1.6439 +** through them, merging doclists for matching terms into pWriter.
  1.6440 +** Returns SQLITE_OK on success, or the SQLite error code which
  1.6441 +** prevented success.
  1.6442 +*/
  1.6443 +static int optimizeInternal(fulltext_vtab *v,
  1.6444 +                            OptLeavesReader *readers, int nReaders,
  1.6445 +                            LeafWriter *pWriter){
  1.6446 +  int i, rc = SQLITE_OK;
  1.6447 +  DataBuffer doclist, merged, tmp;
  1.6448 +
  1.6449 +  /* Order the readers. */
  1.6450 +  i = nReaders;
  1.6451 +  while( i-- > 0 ){
  1.6452 +    optLeavesReaderReorder(&readers[i], nReaders-i);
  1.6453 +  }
  1.6454 +
  1.6455 +  dataBufferInit(&doclist, LEAF_MAX);
  1.6456 +  dataBufferInit(&merged, LEAF_MAX);
  1.6457 +
  1.6458 +  /* Exhausted readers bubble to the end, so when the first reader is
  1.6459 +  ** at eof, all are at eof.
  1.6460 +  */
  1.6461 +  while( !optLeavesReaderAtEnd(&readers[0]) ){
  1.6462 +
  1.6463 +    /* Figure out how many readers share the next term. */
  1.6464 +    for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){
  1.6465 +      if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break;
  1.6466 +    }
  1.6467 +
  1.6468 +    /* Special-case for no merge. */
  1.6469 +    if( i==1 ){
  1.6470 +      /* Trim deletions from the doclist. */
  1.6471 +      dataBufferReset(&merged);
  1.6472 +      docListTrim(DL_DEFAULT,
  1.6473 +                  optLeavesReaderData(&readers[0]),
  1.6474 +                  optLeavesReaderDataBytes(&readers[0]),
  1.6475 +                  -1, DL_DEFAULT, &merged);
  1.6476 +    }else{
  1.6477 +      DLReader dlReaders[MERGE_COUNT];
  1.6478 +      int iReader, nReaders;
  1.6479 +
  1.6480 +      /* Prime the pipeline with the first reader's doclist.  After
  1.6481 +      ** one pass index 0 will reference the accumulated doclist.
  1.6482 +      */
  1.6483 +      dlrInit(&dlReaders[0], DL_DEFAULT,
  1.6484 +              optLeavesReaderData(&readers[0]),
  1.6485 +              optLeavesReaderDataBytes(&readers[0]));
  1.6486 +      iReader = 1;
  1.6487 +
  1.6488 +      assert( iReader<i );  /* Must execute the loop at least once. */
  1.6489 +      while( iReader<i ){
  1.6490 +        /* Merge 16 inputs per pass. */
  1.6491 +        for( nReaders=1; iReader<i && nReaders<MERGE_COUNT;
  1.6492 +             iReader++, nReaders++ ){
  1.6493 +          dlrInit(&dlReaders[nReaders], DL_DEFAULT,
  1.6494 +                  optLeavesReaderData(&readers[iReader]),
  1.6495 +                  optLeavesReaderDataBytes(&readers[iReader]));
  1.6496 +        }
  1.6497 +
  1.6498 +        /* Merge doclists and swap result into accumulator. */
  1.6499 +        dataBufferReset(&merged);
  1.6500 +        docListMerge(&merged, dlReaders, nReaders);
  1.6501 +        tmp = merged;
  1.6502 +        merged = doclist;
  1.6503 +        doclist = tmp;
  1.6504 +
  1.6505 +        while( nReaders-- > 0 ){
  1.6506 +          dlrDestroy(&dlReaders[nReaders]);
  1.6507 +        }
  1.6508 +
  1.6509 +        /* Accumulated doclist to reader 0 for next pass. */
  1.6510 +        dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData);
  1.6511 +      }
  1.6512 +
  1.6513 +      /* Destroy reader that was left in the pipeline. */
  1.6514 +      dlrDestroy(&dlReaders[0]);
  1.6515 +
  1.6516 +      /* Trim deletions from the doclist. */
  1.6517 +      dataBufferReset(&merged);
  1.6518 +      docListTrim(DL_DEFAULT, doclist.pData, doclist.nData,
  1.6519 +                  -1, DL_DEFAULT, &merged);
  1.6520 +    }
  1.6521 +
  1.6522 +    /* Only pass doclists with hits (skip if all hits deleted). */
  1.6523 +    if( merged.nData>0 ){
  1.6524 +      rc = leafWriterStep(v, pWriter,
  1.6525 +                          optLeavesReaderTerm(&readers[0]),
  1.6526 +                          optLeavesReaderTermBytes(&readers[0]),
  1.6527 +                          merged.pData, merged.nData);
  1.6528 +      if( rc!=SQLITE_OK ) goto err;
  1.6529 +    }
  1.6530 +
  1.6531 +    /* Step merged readers to next term and reorder. */
  1.6532 +    while( i-- > 0 ){
  1.6533 +      rc = optLeavesReaderStep(v, &readers[i]);
  1.6534 +      if( rc!=SQLITE_OK ) goto err;
  1.6535 +
  1.6536 +      optLeavesReaderReorder(&readers[i], nReaders-i);
  1.6537 +    }
  1.6538 +  }
  1.6539 +
  1.6540 + err:
  1.6541 +  dataBufferDestroy(&doclist);
  1.6542 +  dataBufferDestroy(&merged);
  1.6543 +  return rc;
  1.6544 +}
  1.6545 +
  1.6546 +/* Implement optimize() function for FTS3.  optimize(t) merges all
  1.6547 +** segments in the fts index into a single segment.  't' is the magic
  1.6548 +** table-named column.
  1.6549 +*/
  1.6550 +static void optimizeFunc(sqlite3_context *pContext,
  1.6551 +                         int argc, sqlite3_value **argv){
  1.6552 +  fulltext_cursor *pCursor;
  1.6553 +  if( argc>1 ){
  1.6554 +    sqlite3_result_error(pContext, "excess arguments to optimize()",-1);
  1.6555 +  }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  1.6556 +            sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  1.6557 +    sqlite3_result_error(pContext, "illegal first argument to optimize",-1);
  1.6558 +  }else{
  1.6559 +    fulltext_vtab *v;
  1.6560 +    int i, rc, iMaxLevel;
  1.6561 +    OptLeavesReader *readers;
  1.6562 +    int nReaders;
  1.6563 +    LeafWriter writer;
  1.6564 +    sqlite3_stmt *s;
  1.6565 +
  1.6566 +    memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  1.6567 +    v = cursor_vtab(pCursor);
  1.6568 +
  1.6569 +    /* Flush any buffered updates before optimizing. */
  1.6570 +    rc = flushPendingTerms(v);
  1.6571 +    if( rc!=SQLITE_OK ) goto err;
  1.6572 +
  1.6573 +    rc = segdir_count(v, &nReaders, &iMaxLevel);
  1.6574 +    if( rc!=SQLITE_OK ) goto err;
  1.6575 +    if( nReaders==0 || nReaders==1 ){
  1.6576 +      sqlite3_result_text(pContext, "Index already optimal", -1,
  1.6577 +                          SQLITE_STATIC);
  1.6578 +      return;
  1.6579 +    }
  1.6580 +
  1.6581 +    rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  1.6582 +    if( rc!=SQLITE_OK ) goto err;
  1.6583 +
  1.6584 +    readers = sqlite3_malloc(nReaders*sizeof(readers[0]));
  1.6585 +    if( readers==NULL ) goto err;
  1.6586 +
  1.6587 +    /* Note that there will already be a segment at this position
  1.6588 +    ** until we call segdir_delete() on iMaxLevel.
  1.6589 +    */
  1.6590 +    leafWriterInit(iMaxLevel, 0, &writer);
  1.6591 +
  1.6592 +    i = 0;
  1.6593 +    while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  1.6594 +      sqlite_int64 iStart = sqlite3_column_int64(s, 0);
  1.6595 +      sqlite_int64 iEnd = sqlite3_column_int64(s, 1);
  1.6596 +      const char *pRootData = sqlite3_column_blob(s, 2);
  1.6597 +      int nRootData = sqlite3_column_bytes(s, 2);
  1.6598 +
  1.6599 +      assert( i<nReaders );
  1.6600 +      rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData,
  1.6601 +                            &readers[i].reader);
  1.6602 +      if( rc!=SQLITE_OK ) break;
  1.6603 +
  1.6604 +      readers[i].segment = i;
  1.6605 +      i++;
  1.6606 +    }
  1.6607 +
  1.6608 +    /* If we managed to succesfully read them all, optimize them. */
  1.6609 +    if( rc==SQLITE_DONE ){
  1.6610 +      assert( i==nReaders );
  1.6611 +      rc = optimizeInternal(v, readers, nReaders, &writer);
  1.6612 +    }
  1.6613 +
  1.6614 +    while( i-- > 0 ){
  1.6615 +      leavesReaderDestroy(&readers[i].reader);
  1.6616 +    }
  1.6617 +    sqlite3_free(readers);
  1.6618 +
  1.6619 +    /* If we've successfully gotten to here, delete the old segments
  1.6620 +    ** and flush the interior structure of the new segment.
  1.6621 +    */
  1.6622 +    if( rc==SQLITE_OK ){
  1.6623 +      for( i=0; i<=iMaxLevel; i++ ){
  1.6624 +        rc = segdir_delete(v, i);
  1.6625 +        if( rc!=SQLITE_OK ) break;
  1.6626 +      }
  1.6627 +
  1.6628 +      if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer);
  1.6629 +    }
  1.6630 +
  1.6631 +    leafWriterDestroy(&writer);
  1.6632 +
  1.6633 +    if( rc!=SQLITE_OK ) goto err;
  1.6634 +
  1.6635 +    sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
  1.6636 +    return;
  1.6637 +
  1.6638 +    /* TODO(shess): Error-handling needs to be improved along the
  1.6639 +    ** lines of the dump_ functions.
  1.6640 +    */
  1.6641 + err:
  1.6642 +    {
  1.6643 +      char buf[512];
  1.6644 +      sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s",
  1.6645 +                       sqlite3_errmsg(sqlite3_context_db_handle(pContext)));
  1.6646 +      sqlite3_result_error(pContext, buf, -1);
  1.6647 +    }
  1.6648 +  }
  1.6649 +}
  1.6650 +
  1.6651 +#ifdef SQLITE_TEST
  1.6652 +/* Generate an error of the form "<prefix>: <msg>".  If msg is NULL,
  1.6653 +** pull the error from the context's db handle.
  1.6654 +*/
  1.6655 +static void generateError(sqlite3_context *pContext,
  1.6656 +                          const char *prefix, const char *msg){
  1.6657 +  char buf[512];
  1.6658 +  if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext));
  1.6659 +  sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg);
  1.6660 +  sqlite3_result_error(pContext, buf, -1);
  1.6661 +}
  1.6662 +
  1.6663 +/* Helper function to collect the set of terms in the segment into
  1.6664 +** pTerms.  The segment is defined by the leaf nodes between
  1.6665 +** iStartBlockid and iEndBlockid, inclusive, or by the contents of
  1.6666 +** pRootData if iStartBlockid is 0 (in which case the entire segment
  1.6667 +** fit in a leaf).
  1.6668 +*/
  1.6669 +static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s,
  1.6670 +                               fts3Hash *pTerms){
  1.6671 +  const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0);
  1.6672 +  const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1);
  1.6673 +  const char *pRootData = sqlite3_column_blob(s, 2);
  1.6674 +  const int nRootData = sqlite3_column_bytes(s, 2);
  1.6675 +  LeavesReader reader;
  1.6676 +  int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid,
  1.6677 +                            pRootData, nRootData, &reader);
  1.6678 +  if( rc!=SQLITE_OK ) return rc;
  1.6679 +
  1.6680 +  while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){
  1.6681 +    const char *pTerm = leavesReaderTerm(&reader);
  1.6682 +    const int nTerm = leavesReaderTermBytes(&reader);
  1.6683 +    void *oldValue = sqlite3Fts3HashFind(pTerms, pTerm, nTerm);
  1.6684 +    void *newValue = (void *)((char *)oldValue+1);
  1.6685 +
  1.6686 +    /* From the comment before sqlite3Fts3HashInsert in fts3_hash.c,
  1.6687 +    ** the data value passed is returned in case of malloc failure.
  1.6688 +    */
  1.6689 +    if( newValue==sqlite3Fts3HashInsert(pTerms, pTerm, nTerm, newValue) ){
  1.6690 +      rc = SQLITE_NOMEM;
  1.6691 +    }else{
  1.6692 +      rc = leavesReaderStep(v, &reader);
  1.6693 +    }
  1.6694 +  }
  1.6695 +
  1.6696 +  leavesReaderDestroy(&reader);
  1.6697 +  return rc;
  1.6698 +}
  1.6699 +
  1.6700 +/* Helper function to build the result string for dump_terms(). */
  1.6701 +static int generateTermsResult(sqlite3_context *pContext, fts3Hash *pTerms){
  1.6702 +  int iTerm, nTerms, nResultBytes, iByte;
  1.6703 +  char *result;
  1.6704 +  TermData *pData;
  1.6705 +  fts3HashElem *e;
  1.6706 +
  1.6707 +  /* Iterate pTerms to generate an array of terms in pData for
  1.6708 +  ** sorting.
  1.6709 +  */
  1.6710 +  nTerms = fts3HashCount(pTerms);
  1.6711 +  assert( nTerms>0 );
  1.6712 +  pData = sqlite3_malloc(nTerms*sizeof(TermData));
  1.6713 +  if( pData==NULL ) return SQLITE_NOMEM;
  1.6714 +
  1.6715 +  nResultBytes = 0;
  1.6716 +  for(iTerm = 0, e = fts3HashFirst(pTerms); e; iTerm++, e = fts3HashNext(e)){
  1.6717 +    nResultBytes += fts3HashKeysize(e)+1;   /* Term plus trailing space */
  1.6718 +    assert( iTerm<nTerms );
  1.6719 +    pData[iTerm].pTerm = fts3HashKey(e);
  1.6720 +    pData[iTerm].nTerm = fts3HashKeysize(e);
  1.6721 +    pData[iTerm].pCollector = fts3HashData(e);  /* unused */
  1.6722 +  }
  1.6723 +  assert( iTerm==nTerms );
  1.6724 +
  1.6725 +  assert( nResultBytes>0 );   /* nTerms>0, nResultsBytes must be, too. */
  1.6726 +  result = sqlite3_malloc(nResultBytes);
  1.6727 +  if( result==NULL ){
  1.6728 +    sqlite3_free(pData);
  1.6729 +    return SQLITE_NOMEM;
  1.6730 +  }
  1.6731 +
  1.6732 +  if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp);
  1.6733 +
  1.6734 +  /* Read the terms in order to build the result. */
  1.6735 +  iByte = 0;
  1.6736 +  for(iTerm=0; iTerm<nTerms; ++iTerm){
  1.6737 +    memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm);
  1.6738 +    iByte += pData[iTerm].nTerm;
  1.6739 +    result[iByte++] = ' ';
  1.6740 +  }
  1.6741 +  assert( iByte==nResultBytes );
  1.6742 +  assert( result[nResultBytes-1]==' ' );
  1.6743 +  result[nResultBytes-1] = '\0';
  1.6744 +
  1.6745 +  /* Passes away ownership of result. */
  1.6746 +  sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free);
  1.6747 +  sqlite3_free(pData);
  1.6748 +  return SQLITE_OK;
  1.6749 +}
  1.6750 +
  1.6751 +/* Implements dump_terms() for use in inspecting the fts3 index from
  1.6752 +** tests.  TEXT result containing the ordered list of terms joined by
  1.6753 +** spaces.  dump_terms(t, level, idx) dumps the terms for the segment
  1.6754 +** specified by level, idx (in %_segdir), while dump_terms(t) dumps
  1.6755 +** all terms in the index.  In both cases t is the fts table's magic
  1.6756 +** table-named column.
  1.6757 +*/
  1.6758 +static void dumpTermsFunc(
  1.6759 +  sqlite3_context *pContext,
  1.6760 +  int argc, sqlite3_value **argv
  1.6761 +){
  1.6762 +  fulltext_cursor *pCursor;
  1.6763 +  if( argc!=3 && argc!=1 ){
  1.6764 +    generateError(pContext, "dump_terms", "incorrect arguments");
  1.6765 +  }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  1.6766 +            sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  1.6767 +    generateError(pContext, "dump_terms", "illegal first argument");
  1.6768 +  }else{
  1.6769 +    fulltext_vtab *v;
  1.6770 +    fts3Hash terms;
  1.6771 +    sqlite3_stmt *s = NULL;
  1.6772 +    int rc;
  1.6773 +
  1.6774 +    memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  1.6775 +    v = cursor_vtab(pCursor);
  1.6776 +
  1.6777 +    /* If passed only the cursor column, get all segments.  Otherwise
  1.6778 +    ** get the segment described by the following two arguments.
  1.6779 +    */
  1.6780 +    if( argc==1 ){
  1.6781 +      rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s);
  1.6782 +    }else{
  1.6783 +      rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
  1.6784 +      if( rc==SQLITE_OK ){
  1.6785 +        rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1]));
  1.6786 +        if( rc==SQLITE_OK ){
  1.6787 +          rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2]));
  1.6788 +        }
  1.6789 +      }
  1.6790 +    }
  1.6791 +
  1.6792 +    if( rc!=SQLITE_OK ){
  1.6793 +      generateError(pContext, "dump_terms", NULL);
  1.6794 +      return;
  1.6795 +    }
  1.6796 +
  1.6797 +    /* Collect the terms for each segment. */
  1.6798 +    sqlite3Fts3HashInit(&terms, FTS3_HASH_STRING, 1);
  1.6799 +    while( (rc = sqlite3_step(s))==SQLITE_ROW ){
  1.6800 +      rc = collectSegmentTerms(v, s, &terms);
  1.6801 +      if( rc!=SQLITE_OK ) break;
  1.6802 +    }
  1.6803 +
  1.6804 +    if( rc!=SQLITE_DONE ){
  1.6805 +      sqlite3_reset(s);
  1.6806 +      generateError(pContext, "dump_terms", NULL);
  1.6807 +    }else{
  1.6808 +      const int nTerms = fts3HashCount(&terms);
  1.6809 +      if( nTerms>0 ){
  1.6810 +        rc = generateTermsResult(pContext, &terms);
  1.6811 +        if( rc==SQLITE_NOMEM ){
  1.6812 +          generateError(pContext, "dump_terms", "out of memory");
  1.6813 +        }else{
  1.6814 +          assert( rc==SQLITE_OK );
  1.6815 +        }
  1.6816 +      }else if( argc==3 ){
  1.6817 +        /* The specific segment asked for could not be found. */
  1.6818 +        generateError(pContext, "dump_terms", "segment not found");
  1.6819 +      }else{
  1.6820 +        /* No segments found. */
  1.6821 +        /* TODO(shess): It should be impossible to reach this.  This
  1.6822 +        ** case can only happen for an empty table, in which case
  1.6823 +        ** SQLite has no rows to call this function on.
  1.6824 +        */
  1.6825 +        sqlite3_result_null(pContext);
  1.6826 +      }
  1.6827 +    }
  1.6828 +    sqlite3Fts3HashClear(&terms);
  1.6829 +  }
  1.6830 +}
  1.6831 +
  1.6832 +/* Expand the DL_DEFAULT doclist in pData into a text result in
  1.6833 +** pContext.
  1.6834 +*/
  1.6835 +static void createDoclistResult(sqlite3_context *pContext,
  1.6836 +                                const char *pData, int nData){
  1.6837 +  DataBuffer dump;
  1.6838 +  DLReader dlReader;
  1.6839 +
  1.6840 +  assert( pData!=NULL && nData>0 );
  1.6841 +
  1.6842 +  dataBufferInit(&dump, 0);
  1.6843 +  dlrInit(&dlReader, DL_DEFAULT, pData, nData);
  1.6844 +  for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){
  1.6845 +    char buf[256];
  1.6846 +    PLReader plReader;
  1.6847 +
  1.6848 +    plrInit(&plReader, &dlReader);
  1.6849 +    if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){
  1.6850 +      sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader));
  1.6851 +      dataBufferAppend(&dump, buf, strlen(buf));
  1.6852 +    }else{
  1.6853 +      int iColumn = plrColumn(&plReader);
  1.6854 +
  1.6855 +      sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[",
  1.6856 +                       dlrDocid(&dlReader), iColumn);
  1.6857 +      dataBufferAppend(&dump, buf, strlen(buf));
  1.6858 +
  1.6859 +      for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){
  1.6860 +        if( plrColumn(&plReader)!=iColumn ){
  1.6861 +          iColumn = plrColumn(&plReader);
  1.6862 +          sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn);
  1.6863 +          assert( dump.nData>0 );
  1.6864 +          dump.nData--;                     /* Overwrite trailing space. */
  1.6865 +          assert( dump.pData[dump.nData]==' ');
  1.6866 +          dataBufferAppend(&dump, buf, strlen(buf));
  1.6867 +        }
  1.6868 +        if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){
  1.6869 +          sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ",
  1.6870 +                           plrPosition(&plReader),
  1.6871 +                           plrStartOffset(&plReader), plrEndOffset(&plReader));
  1.6872 +        }else if( DL_DEFAULT==DL_POSITIONS ){
  1.6873 +          sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader));
  1.6874 +        }else{
  1.6875 +          assert( NULL=="Unhandled DL_DEFAULT value");
  1.6876 +        }
  1.6877 +        dataBufferAppend(&dump, buf, strlen(buf));
  1.6878 +      }
  1.6879 +      plrDestroy(&plReader);
  1.6880 +
  1.6881 +      assert( dump.nData>0 );
  1.6882 +      dump.nData--;                     /* Overwrite trailing space. */
  1.6883 +      assert( dump.pData[dump.nData]==' ');
  1.6884 +      dataBufferAppend(&dump, "]] ", 3);
  1.6885 +    }
  1.6886 +  }
  1.6887 +  dlrDestroy(&dlReader);
  1.6888 +
  1.6889 +  assert( dump.nData>0 );
  1.6890 +  dump.nData--;                     /* Overwrite trailing space. */
  1.6891 +  assert( dump.pData[dump.nData]==' ');
  1.6892 +  dump.pData[dump.nData] = '\0';
  1.6893 +  assert( dump.nData>0 );
  1.6894 +
  1.6895 +  /* Passes ownership of dump's buffer to pContext. */
  1.6896 +  sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free);
  1.6897 +  dump.pData = NULL;
  1.6898 +  dump.nData = dump.nCapacity = 0;
  1.6899 +}
  1.6900 +
  1.6901 +/* Implements dump_doclist() for use in inspecting the fts3 index from
  1.6902 +** tests.  TEXT result containing a string representation of the
  1.6903 +** doclist for the indicated term.  dump_doclist(t, term, level, idx)
  1.6904 +** dumps the doclist for term from the segment specified by level, idx
  1.6905 +** (in %_segdir), while dump_doclist(t, term) dumps the logical
  1.6906 +** doclist for the term across all segments.  The per-segment doclist
  1.6907 +** can contain deletions, while the full-index doclist will not
  1.6908 +** (deletions are omitted).
  1.6909 +**
  1.6910 +** Result formats differ with the setting of DL_DEFAULTS.  Examples:
  1.6911 +**
  1.6912 +** DL_DOCIDS: [1] [3] [7]
  1.6913 +** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]]
  1.6914 +** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]]
  1.6915 +**
  1.6916 +** In each case the number after the outer '[' is the docid.  In the
  1.6917 +** latter two cases, the number before the inner '[' is the column
  1.6918 +** associated with the values within.  For DL_POSITIONS the numbers
  1.6919 +** within are the positions, for DL_POSITIONS_OFFSETS they are the
  1.6920 +** position, the start offset, and the end offset.
  1.6921 +*/
  1.6922 +static void dumpDoclistFunc(
  1.6923 +  sqlite3_context *pContext,
  1.6924 +  int argc, sqlite3_value **argv
  1.6925 +){
  1.6926 +  fulltext_cursor *pCursor;
  1.6927 +  if( argc!=2 && argc!=4 ){
  1.6928 +    generateError(pContext, "dump_doclist", "incorrect arguments");
  1.6929 +  }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB ||
  1.6930 +            sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){
  1.6931 +    generateError(pContext, "dump_doclist", "illegal first argument");
  1.6932 +  }else if( sqlite3_value_text(argv[1])==NULL ||
  1.6933 +            sqlite3_value_text(argv[1])[0]=='\0' ){
  1.6934 +    generateError(pContext, "dump_doclist", "empty second argument");
  1.6935 +  }else{
  1.6936 +    const char *pTerm = (const char *)sqlite3_value_text(argv[1]);
  1.6937 +    const int nTerm = strlen(pTerm);
  1.6938 +    fulltext_vtab *v;
  1.6939 +    int rc;
  1.6940 +    DataBuffer doclist;
  1.6941 +
  1.6942 +    memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor));
  1.6943 +    v = cursor_vtab(pCursor);
  1.6944 +
  1.6945 +    dataBufferInit(&doclist, 0);
  1.6946 +
  1.6947 +    /* termSelect() yields the same logical doclist that queries are
  1.6948 +    ** run against.
  1.6949 +    */
  1.6950 +    if( argc==2 ){
  1.6951 +      rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist);
  1.6952 +    }else{
  1.6953 +      sqlite3_stmt *s = NULL;
  1.6954 +
  1.6955 +      /* Get our specific segment's information. */
  1.6956 +      rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s);
  1.6957 +      if( rc==SQLITE_OK ){
  1.6958 +        rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2]));
  1.6959 +        if( rc==SQLITE_OK ){
  1.6960 +          rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3]));
  1.6961 +        }
  1.6962 +      }
  1.6963 +
  1.6964 +      if( rc==SQLITE_OK ){
  1.6965 +        rc = sqlite3_step(s);
  1.6966 +
  1.6967 +        if( rc==SQLITE_DONE ){
  1.6968 +          dataBufferDestroy(&doclist);
  1.6969 +          generateError(pContext, "dump_doclist", "segment not found");
  1.6970 +          return;
  1.6971 +        }
  1.6972 +
  1.6973 +        /* Found a segment, load it into doclist. */
  1.6974 +        if( rc==SQLITE_ROW ){
  1.6975 +          const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1);
  1.6976 +          const char *pData = sqlite3_column_blob(s, 2);
  1.6977 +          const int nData = sqlite3_column_bytes(s, 2);
  1.6978 +
  1.6979 +          /* loadSegment() is used by termSelect() to load each
  1.6980 +          ** segment's data.
  1.6981 +          */
  1.6982 +          rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0,
  1.6983 +                           &doclist);
  1.6984 +          if( rc==SQLITE_OK ){
  1.6985 +            rc = sqlite3_step(s);
  1.6986 +
  1.6987 +            /* Should not have more than one matching segment. */
  1.6988 +            if( rc!=SQLITE_DONE ){
  1.6989 +              sqlite3_reset(s);
  1.6990 +              dataBufferDestroy(&doclist);
  1.6991 +              generateError(pContext, "dump_doclist", "invalid segdir");
  1.6992 +              return;
  1.6993 +            }
  1.6994 +            rc = SQLITE_OK;
  1.6995 +          }
  1.6996 +        }
  1.6997 +      }
  1.6998 +
  1.6999 +      sqlite3_reset(s);
  1.7000 +    }
  1.7001 +
  1.7002 +    if( rc==SQLITE_OK ){
  1.7003 +      if( doclist.nData>0 ){
  1.7004 +        createDoclistResult(pContext, doclist.pData, doclist.nData);
  1.7005 +      }else{
  1.7006 +        /* TODO(shess): This can happen if the term is not present, or
  1.7007 +        ** if all instances of the term have been deleted and this is
  1.7008 +        ** an all-index dump.  It may be interesting to distinguish
  1.7009 +        ** these cases.
  1.7010 +        */
  1.7011 +        sqlite3_result_text(pContext, "", 0, SQLITE_STATIC);
  1.7012 +      }
  1.7013 +    }else if( rc==SQLITE_NOMEM ){
  1.7014 +      /* Handle out-of-memory cases specially because if they are
  1.7015 +      ** generated in fts3 code they may not be reflected in the db
  1.7016 +      ** handle.
  1.7017 +      */
  1.7018 +      /* TODO(shess): Handle this more comprehensively.
  1.7019 +      ** sqlite3ErrStr() has what I need, but is internal.
  1.7020 +      */
  1.7021 +      generateError(pContext, "dump_doclist", "out of memory");
  1.7022 +    }else{
  1.7023 +      generateError(pContext, "dump_doclist", NULL);
  1.7024 +    }
  1.7025 +
  1.7026 +    dataBufferDestroy(&doclist);
  1.7027 +  }
  1.7028 +}
  1.7029 +#endif
  1.7030 +
  1.7031 +/*
  1.7032 +** This routine implements the xFindFunction method for the FTS3
  1.7033 +** virtual table.
  1.7034 +*/
  1.7035 +static int fulltextFindFunction(
  1.7036 +  sqlite3_vtab *pVtab,
  1.7037 +  int nArg,
  1.7038 +  const char *zName,
  1.7039 +  void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
  1.7040 +  void **ppArg
  1.7041 +){
  1.7042 +  if( strcmp(zName,"snippet")==0 ){
  1.7043 +    *pxFunc = snippetFunc;
  1.7044 +    return 1;
  1.7045 +  }else if( strcmp(zName,"offsets")==0 ){
  1.7046 +    *pxFunc = snippetOffsetsFunc;
  1.7047 +    return 1;
  1.7048 +  }else if( strcmp(zName,"optimize")==0 ){
  1.7049 +    *pxFunc = optimizeFunc;
  1.7050 +    return 1;
  1.7051 +#ifdef SQLITE_TEST
  1.7052 +    /* NOTE(shess): These functions are present only for testing
  1.7053 +    ** purposes.  No particular effort is made to optimize their
  1.7054 +    ** execution or how they build their results.
  1.7055 +    */
  1.7056 +  }else if( strcmp(zName,"dump_terms")==0 ){
  1.7057 +    /* fprintf(stderr, "Found dump_terms\n"); */
  1.7058 +    *pxFunc = dumpTermsFunc;
  1.7059 +    return 1;
  1.7060 +  }else if( strcmp(zName,"dump_doclist")==0 ){
  1.7061 +    /* fprintf(stderr, "Found dump_doclist\n"); */
  1.7062 +    *pxFunc = dumpDoclistFunc;
  1.7063 +    return 1;
  1.7064 +#endif
  1.7065 +  }
  1.7066 +  return 0;
  1.7067 +}
  1.7068 +
  1.7069 +/*
  1.7070 +** Rename an fts3 table.
  1.7071 +*/
  1.7072 +static int fulltextRename(
  1.7073 +  sqlite3_vtab *pVtab,
  1.7074 +  const char *zName
  1.7075 +){
  1.7076 +  fulltext_vtab *p = (fulltext_vtab *)pVtab;
  1.7077 +  int rc = SQLITE_NOMEM;
  1.7078 +  char *zSql = sqlite3_mprintf(
  1.7079 +    "ALTER TABLE %Q.'%q_content'  RENAME TO '%q_content';"
  1.7080 +    "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';"
  1.7081 +    "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';"
  1.7082 +    , p->zDb, p->zName, zName 
  1.7083 +    , p->zDb, p->zName, zName 
  1.7084 +    , p->zDb, p->zName, zName
  1.7085 +  );
  1.7086 +  if( zSql ){
  1.7087 +    rc = sqlite3_exec(p->db, zSql, 0, 0, 0);
  1.7088 +    sqlite3_free(zSql);
  1.7089 +  }
  1.7090 +  return rc;
  1.7091 +}
  1.7092 +
  1.7093 +static const sqlite3_module fts3Module = {
  1.7094 +  /* iVersion      */ 0,
  1.7095 +  /* xCreate       */ fulltextCreate,
  1.7096 +  /* xConnect      */ fulltextConnect,
  1.7097 +  /* xBestIndex    */ fulltextBestIndex,
  1.7098 +  /* xDisconnect   */ fulltextDisconnect,
  1.7099 +  /* xDestroy      */ fulltextDestroy,
  1.7100 +  /* xOpen         */ fulltextOpen,
  1.7101 +  /* xClose        */ fulltextClose,
  1.7102 +  /* xFilter       */ fulltextFilter,
  1.7103 +  /* xNext         */ fulltextNext,
  1.7104 +  /* xEof          */ fulltextEof,
  1.7105 +  /* xColumn       */ fulltextColumn,
  1.7106 +  /* xRowid        */ fulltextRowid,
  1.7107 +  /* xUpdate       */ fulltextUpdate,
  1.7108 +  /* xBegin        */ fulltextBegin,
  1.7109 +  /* xSync         */ fulltextSync,
  1.7110 +  /* xCommit       */ fulltextCommit,
  1.7111 +  /* xRollback     */ fulltextRollback,
  1.7112 +  /* xFindFunction */ fulltextFindFunction,
  1.7113 +  /* xRename */       fulltextRename,
  1.7114 +};
  1.7115 +
  1.7116 +static void hashDestroy(void *p){
  1.7117 +  fts3Hash *pHash = (fts3Hash *)p;
  1.7118 +  sqlite3Fts3HashClear(pHash);
  1.7119 +  sqlite3_free(pHash);
  1.7120 +}
  1.7121 +
  1.7122 +/*
  1.7123 +** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
  1.7124 +** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
  1.7125 +** two forward declarations are for functions declared in these files
  1.7126 +** used to retrieve the respective implementations.
  1.7127 +**
  1.7128 +** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
  1.7129 +** to by the argument to point a the "simple" tokenizer implementation.
  1.7130 +** Function ...PorterTokenizerModule() sets *pModule to point to the
  1.7131 +** porter tokenizer/stemmer implementation.
  1.7132 +*/
  1.7133 +void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  1.7134 +void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  1.7135 +void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
  1.7136 +
  1.7137 +int sqlite3Fts3InitHashTable(sqlite3 *, fts3Hash *, const char *);
  1.7138 +
  1.7139 +/*
  1.7140 +** Initialise the fts3 extension. If this extension is built as part
  1.7141 +** of the sqlite library, then this function is called directly by
  1.7142 +** SQLite. If fts3 is built as a dynamically loadable extension, this
  1.7143 +** function is called by the sqlite3_extension_init() entry point.
  1.7144 +*/
  1.7145 +int sqlite3Fts3Init(sqlite3 *db){
  1.7146 +  int rc = SQLITE_OK;
  1.7147 +  fts3Hash *pHash = 0;
  1.7148 +  const sqlite3_tokenizer_module *pSimple = 0;
  1.7149 +  const sqlite3_tokenizer_module *pPorter = 0;
  1.7150 +  const sqlite3_tokenizer_module *pIcu = 0;
  1.7151 +
  1.7152 +  sqlite3Fts3SimpleTokenizerModule(&pSimple);
  1.7153 +  sqlite3Fts3PorterTokenizerModule(&pPorter);
  1.7154 +#ifdef SQLITE_ENABLE_ICU
  1.7155 +  sqlite3Fts3IcuTokenizerModule(&pIcu);
  1.7156 +#endif
  1.7157 +
  1.7158 +  /* Allocate and initialise the hash-table used to store tokenizers. */
  1.7159 +  pHash = sqlite3_malloc(sizeof(fts3Hash));
  1.7160 +  if( !pHash ){
  1.7161 +    rc = SQLITE_NOMEM;
  1.7162 +  }else{
  1.7163 +    sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
  1.7164 +  }
  1.7165 +
  1.7166 +  /* Load the built-in tokenizers into the hash table */
  1.7167 +  if( rc==SQLITE_OK ){
  1.7168 +    if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
  1.7169 +     || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) 
  1.7170 +     || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
  1.7171 +    ){
  1.7172 +      rc = SQLITE_NOMEM;
  1.7173 +    }
  1.7174 +  }
  1.7175 +
  1.7176 +  /* Create the virtual table wrapper around the hash-table and overload 
  1.7177 +  ** the two scalar functions. If this is successful, register the
  1.7178 +  ** module with sqlite.
  1.7179 +  */
  1.7180 +  if( SQLITE_OK==rc 
  1.7181 +   && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
  1.7182 +   && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
  1.7183 +   && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1))
  1.7184 +   && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1))
  1.7185 +#ifdef SQLITE_TEST
  1.7186 +   && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1))
  1.7187 +   && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1))
  1.7188 +#endif
  1.7189 +  ){
  1.7190 +    return sqlite3_create_module_v2(
  1.7191 +        db, "fts3", &fts3Module, (void *)pHash, hashDestroy
  1.7192 +    );
  1.7193 +  }
  1.7194 +
  1.7195 +  /* An error has occured. Delete the hash table and return the error code. */
  1.7196 +  assert( rc!=SQLITE_OK );
  1.7197 +  if( pHash ){
  1.7198 +    sqlite3Fts3HashClear(pHash);
  1.7199 +    sqlite3_free(pHash);
  1.7200 +  }
  1.7201 +  return rc;
  1.7202 +}
  1.7203 +
  1.7204 +#if !SQLITE_CORE
  1.7205 +int sqlite3_extension_init(
  1.7206 +  sqlite3 *db, 
  1.7207 +  char **pzErrMsg,
  1.7208 +  const sqlite3_api_routines *pApi
  1.7209 +){
  1.7210 +  SQLITE_EXTENSION_INIT2(pApi)
  1.7211 +  return sqlite3Fts3Init(db);
  1.7212 +}
  1.7213 +#endif
  1.7214 +
  1.7215 +#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */