os/persistentdata/persistentstorage/sql/SQLite364/pcache.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite364/pcache.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,1283 @@
     1.4 +/*
     1.5 +** 2008 August 05
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** This file implements that page cache.
    1.16 +**
    1.17 +** @(#) $Id: pcache.c,v 1.33 2008/09/29 11:49:48 danielk1977 Exp $
    1.18 +*/
    1.19 +#include "sqliteInt.h"
    1.20 +
    1.21 +/*
    1.22 +** A complete page cache is an instance of this structure.
    1.23 +**
    1.24 +** A cache may only be deleted by its owner and while holding the
    1.25 +** SQLITE_MUTEX_STATUS_LRU mutex.
    1.26 +*/
    1.27 +struct PCache {
    1.28 +  /*********************************************************************
    1.29 +  ** The first group of elements may be read or written at any time by
    1.30 +  ** the cache owner without holding the mutex.  No thread other than the
    1.31 +  ** cache owner is permitted to access these elements at any time.
    1.32 +  */
    1.33 +  PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
    1.34 +  PgHdr *pSynced;                     /* Last synced page in dirty page list */
    1.35 +  int nRef;                           /* Number of pinned pages */
    1.36 +  int nPinned;                        /* Number of pinned and/or dirty pages */
    1.37 +  int nMax;                           /* Configured cache size */
    1.38 +  int nMin;                           /* Configured minimum cache size */
    1.39 +  /**********************************************************************
    1.40 +  ** The next group of elements are fixed when the cache is created and
    1.41 +  ** may not be changed afterwards.  These elements can read at any time by
    1.42 +  ** the cache owner or by any thread holding the the mutex.  Non-owner
    1.43 +  ** threads must hold the mutex when reading these elements to prevent
    1.44 +  ** the entire PCache object from being deleted during the read.
    1.45 +  */
    1.46 +  int szPage;                         /* Size of every page in this cache */
    1.47 +  int szExtra;                        /* Size of extra space for each page */
    1.48 +  int bPurgeable;                     /* True if pages are on backing store */
    1.49 +  int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
    1.50 +  void *pStress;                      /* Argument to xStress */
    1.51 +  /**********************************************************************
    1.52 +  ** The final group of elements can only be accessed while holding the
    1.53 +  ** mutex.  Both the cache owner and any other thread must hold the mutex
    1.54 +  ** to read or write any of these elements.
    1.55 +  */
    1.56 +  int nPage;                          /* Total number of pages in apHash */
    1.57 +  int nHash;                          /* Number of slots in apHash[] */
    1.58 +  PgHdr **apHash;                     /* Hash table for fast lookup by pgno */
    1.59 +  PgHdr *pClean;                      /* List of clean pages in use */
    1.60 +};
    1.61 +
    1.62 +/*
    1.63 +** Free slots in the page block allocator
    1.64 +*/
    1.65 +typedef struct PgFreeslot PgFreeslot;
    1.66 +struct PgFreeslot {
    1.67 +  PgFreeslot *pNext;  /* Next free slot */
    1.68 +};
    1.69 +
    1.70 +/*
    1.71 +** Global data for the page cache.
    1.72 +*/
    1.73 +static SQLITE_WSD struct PCacheGlobal {
    1.74 +  int isInit;                         /* True when initialized */
    1.75 +  sqlite3_mutex *mutex;               /* static mutex MUTEX_STATIC_LRU */
    1.76 +
    1.77 +  int nMaxPage;                       /* Sum of nMaxPage for purgeable caches */
    1.78 +  int nMinPage;                       /* Sum of nMinPage for purgeable caches */
    1.79 +  int nCurrentPage;                   /* Number of purgeable pages allocated */
    1.80 +  PgHdr *pLruHead, *pLruTail;         /* LRU list of unused clean pgs */
    1.81 +
    1.82 +  /* Variables related to SQLITE_CONFIG_PAGECACHE settings. */
    1.83 +  int szSlot;                         /* Size of each free slot */
    1.84 +  void *pStart, *pEnd;                /* Bounds of pagecache malloc range */
    1.85 +  PgFreeslot *pFree;                  /* Free page blocks */
    1.86 +} pcache = {0};
    1.87 +
    1.88 +/*
    1.89 +** All code in this file should access the global pcache structure via the
    1.90 +** alias "pcache_g". This ensures that the WSD emulation is used when
    1.91 +** compiling for systems that do not support real WSD.
    1.92 +*/
    1.93 +#define pcache_g (GLOBAL(struct PCacheGlobal, pcache))
    1.94 +
    1.95 +/*
    1.96 +** All global variables used by this module (all of which are grouped 
    1.97 +** together in global structure "pcache" above) are protected by the static 
    1.98 +** SQLITE_MUTEX_STATIC_LRU mutex. A pointer to this mutex is stored in
    1.99 +** variable "pcache.mutex".
   1.100 +**
   1.101 +** Some elements of the PCache and PgHdr structures are protected by the 
   1.102 +** SQLITE_MUTEX_STATUS_LRU mutex and other are not.  The protected
   1.103 +** elements are grouped at the end of the structures and are clearly
   1.104 +** marked.
   1.105 +**
   1.106 +** Use the following macros must surround all access (read or write)
   1.107 +** of protected elements.  The mutex is not recursive and may not be
   1.108 +** entered more than once.  The pcacheMutexHeld() macro should only be
   1.109 +** used within an assert() to verify that the mutex is being held.
   1.110 +*/
   1.111 +#define pcacheEnterMutex() sqlite3_mutex_enter(pcache_g.mutex)
   1.112 +#define pcacheExitMutex()  sqlite3_mutex_leave(pcache_g.mutex)
   1.113 +#define pcacheMutexHeld()  sqlite3_mutex_held(pcache_g.mutex)
   1.114 +
   1.115 +/*
   1.116 +** Some of the assert() macros in this code are too expensive to run
   1.117 +** even during normal debugging.  Use them only rarely on long-running
   1.118 +** tests.  Enable the expensive asserts using the
   1.119 +** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option.
   1.120 +*/
   1.121 +#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
   1.122 +# define expensive_assert(X)  assert(X)
   1.123 +#else
   1.124 +# define expensive_assert(X)
   1.125 +#endif
   1.126 +
   1.127 +/********************************** Linked List Management ********************/
   1.128 +
   1.129 +#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
   1.130 +/*
   1.131 +** This routine verifies that the number of entries in the hash table
   1.132 +** is pCache->nPage.  This routine is used within assert() statements
   1.133 +** only and is therefore disabled during production builds.
   1.134 +*/
   1.135 +static int pcacheCheckHashCount(PCache *pCache){
   1.136 +  int i;
   1.137 +  int nPage = 0;
   1.138 +  for(i=0; i<pCache->nHash; i++){
   1.139 +    PgHdr *p;
   1.140 +    for(p=pCache->apHash[i]; p; p=p->pNextHash){
   1.141 +      nPage++;
   1.142 +    }
   1.143 +  }
   1.144 +  assert( nPage==pCache->nPage );
   1.145 +  return 1;
   1.146 +}
   1.147 +#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
   1.148 +
   1.149 +
   1.150 +#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
   1.151 +/*
   1.152 +** Based on the current value of PCache.nRef and the contents of the
   1.153 +** PCache.pDirty list, return the expected value of the PCache.nPinned
   1.154 +** counter. This is only used in debugging builds, as follows:
   1.155 +**
   1.156 +**   expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
   1.157 +*/
   1.158 +static int pcachePinnedCount(PCache *pCache){
   1.159 +  PgHdr *p;
   1.160 +  int nPinned = pCache->nRef;
   1.161 +  for(p=pCache->pDirty; p; p=p->pNext){
   1.162 +    if( p->nRef==0 ){
   1.163 +      nPinned++;
   1.164 +    }
   1.165 +  }
   1.166 +  return nPinned;
   1.167 +}
   1.168 +#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
   1.169 +
   1.170 +
   1.171 +#if !defined(NDEBUG) && defined(SQLITE_ENABLE_EXPENSIVE_ASSERT)
   1.172 +/*
   1.173 +** Check that the pCache->pSynced variable is set correctly. If it
   1.174 +** is not, either fail an assert or return zero. Otherwise, return
   1.175 +** non-zero. This is only used in debugging builds, as follows:
   1.176 +**
   1.177 +**   expensive_assert( pcacheCheckSynced(pCache) );
   1.178 +*/
   1.179 +static int pcacheCheckSynced(PCache *pCache){
   1.180 +  PgHdr *p = pCache->pDirtyTail;
   1.181 +  for(p=pCache->pDirtyTail; p!=pCache->pSynced; p=p->pPrev){
   1.182 +    assert( p->nRef || (p->flags&PGHDR_NEED_SYNC) );
   1.183 +  }
   1.184 +  return (p==0 || p->nRef || (p->flags&PGHDR_NEED_SYNC)==0);
   1.185 +}
   1.186 +#endif /* !NDEBUG && SQLITE_ENABLE_EXPENSIVE_ASSERT */
   1.187 +
   1.188 +
   1.189 +
   1.190 +/*
   1.191 +** Remove a page from its hash table (PCache.apHash[]).
   1.192 +*/
   1.193 +static void pcacheRemoveFromHash(PgHdr *pPage){
   1.194 +  assert( pcacheMutexHeld() );
   1.195 +  if( pPage->pPrevHash ){
   1.196 +    pPage->pPrevHash->pNextHash = pPage->pNextHash;
   1.197 +  }else{
   1.198 +    PCache *pCache = pPage->pCache;
   1.199 +    u32 h = pPage->pgno % pCache->nHash;
   1.200 +    assert( pCache->apHash[h]==pPage );
   1.201 +    pCache->apHash[h] = pPage->pNextHash;
   1.202 +  }
   1.203 +  if( pPage->pNextHash ){
   1.204 +    pPage->pNextHash->pPrevHash = pPage->pPrevHash;
   1.205 +  }
   1.206 +  pPage->pCache->nPage--;
   1.207 +  expensive_assert( pcacheCheckHashCount(pPage->pCache) );
   1.208 +}
   1.209 +
   1.210 +/*
   1.211 +** Insert a page into the hash table
   1.212 +**
   1.213 +** The mutex must be held by the caller.
   1.214 +*/
   1.215 +static void pcacheAddToHash(PgHdr *pPage){
   1.216 +  PCache *pCache = pPage->pCache;
   1.217 +  u32 h = pPage->pgno % pCache->nHash;
   1.218 +  assert( pcacheMutexHeld() );
   1.219 +  pPage->pNextHash = pCache->apHash[h];
   1.220 +  pPage->pPrevHash = 0;
   1.221 +  if( pCache->apHash[h] ){
   1.222 +    pCache->apHash[h]->pPrevHash = pPage;
   1.223 +  }
   1.224 +  pCache->apHash[h] = pPage;
   1.225 +  pCache->nPage++;
   1.226 +  expensive_assert( pcacheCheckHashCount(pCache) );
   1.227 +}
   1.228 +
   1.229 +/*
   1.230 +** Attempt to increase the size the hash table to contain
   1.231 +** at least nHash buckets.
   1.232 +*/
   1.233 +static int pcacheResizeHash(PCache *pCache, int nHash){
   1.234 +  PgHdr *p;
   1.235 +  PgHdr **pNew;
   1.236 +  assert( pcacheMutexHeld() );
   1.237 +#ifdef SQLITE_MALLOC_SOFT_LIMIT
   1.238 +  if( nHash*sizeof(PgHdr*)>SQLITE_MALLOC_SOFT_LIMIT ){
   1.239 +    nHash = SQLITE_MALLOC_SOFT_LIMIT/sizeof(PgHdr *);
   1.240 +  }
   1.241 +#endif
   1.242 +  pcacheExitMutex();
   1.243 +  pNew = (PgHdr **)sqlite3Malloc(sizeof(PgHdr*)*nHash);
   1.244 +  pcacheEnterMutex();
   1.245 +  if( !pNew ){
   1.246 +    return SQLITE_NOMEM;
   1.247 +  }
   1.248 +  memset(pNew, 0, sizeof(PgHdr *)*nHash);
   1.249 +  sqlite3_free(pCache->apHash);
   1.250 +  pCache->apHash = pNew;
   1.251 +  pCache->nHash = nHash;
   1.252 +  pCache->nPage = 0;
   1.253 + 
   1.254 +  for(p=pCache->pClean; p; p=p->pNext){
   1.255 +    pcacheAddToHash(p);
   1.256 +  }
   1.257 +  for(p=pCache->pDirty; p; p=p->pNext){
   1.258 +    pcacheAddToHash(p);
   1.259 +  }
   1.260 +  return SQLITE_OK;
   1.261 +}
   1.262 +
   1.263 +/*
   1.264 +** Remove a page from a linked list that is headed by *ppHead.
   1.265 +** *ppHead is either PCache.pClean or PCache.pDirty.
   1.266 +*/
   1.267 +static void pcacheRemoveFromList(PgHdr **ppHead, PgHdr *pPage){
   1.268 +  int isDirtyList = (ppHead==&pPage->pCache->pDirty);
   1.269 +  assert( ppHead==&pPage->pCache->pClean || ppHead==&pPage->pCache->pDirty );
   1.270 +  assert( pcacheMutexHeld() || ppHead!=&pPage->pCache->pClean );
   1.271 +
   1.272 +  if( pPage->pPrev ){
   1.273 +    pPage->pPrev->pNext = pPage->pNext;
   1.274 +  }else{
   1.275 +    assert( *ppHead==pPage );
   1.276 +    *ppHead = pPage->pNext;
   1.277 +  }
   1.278 +  if( pPage->pNext ){
   1.279 +    pPage->pNext->pPrev = pPage->pPrev;
   1.280 +  }
   1.281 +
   1.282 +  if( isDirtyList ){
   1.283 +    PCache *pCache = pPage->pCache;
   1.284 +    assert( pPage->pNext || pCache->pDirtyTail==pPage );
   1.285 +    if( !pPage->pNext ){
   1.286 +      pCache->pDirtyTail = pPage->pPrev;
   1.287 +    }
   1.288 +    if( pCache->pSynced==pPage ){
   1.289 +      PgHdr *pSynced = pPage->pPrev;
   1.290 +      while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){
   1.291 +        pSynced = pSynced->pPrev;
   1.292 +      }
   1.293 +      pCache->pSynced = pSynced;
   1.294 +    }
   1.295 +  }
   1.296 +}
   1.297 +
   1.298 +/*
   1.299 +** Add a page from a linked list that is headed by *ppHead.
   1.300 +** *ppHead is either PCache.pClean or PCache.pDirty.
   1.301 +*/
   1.302 +static void pcacheAddToList(PgHdr **ppHead, PgHdr *pPage){
   1.303 +  int isDirtyList = (ppHead==&pPage->pCache->pDirty);
   1.304 +  assert( ppHead==&pPage->pCache->pClean || ppHead==&pPage->pCache->pDirty );
   1.305 +
   1.306 +  if( (*ppHead) ){
   1.307 +    (*ppHead)->pPrev = pPage;
   1.308 +  }
   1.309 +  pPage->pNext = *ppHead;
   1.310 +  pPage->pPrev = 0;
   1.311 +  *ppHead = pPage;
   1.312 +
   1.313 +  if( isDirtyList ){
   1.314 +    PCache *pCache = pPage->pCache;
   1.315 +    if( !pCache->pDirtyTail ){
   1.316 +      assert( pPage->pNext==0 );
   1.317 +      pCache->pDirtyTail = pPage;
   1.318 +    }
   1.319 +    if( !pCache->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){
   1.320 +      pCache->pSynced = pPage;
   1.321 +    }
   1.322 +  }
   1.323 +}
   1.324 +
   1.325 +/*
   1.326 +** Remove a page from the global LRU list
   1.327 +*/
   1.328 +static void pcacheRemoveFromLruList(PgHdr *pPage){
   1.329 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.330 +  assert( (pPage->flags&PGHDR_DIRTY)==0 );
   1.331 +  if( pPage->pCache->bPurgeable==0 ) return;
   1.332 +  if( pPage->pNextLru ){
   1.333 +    assert( pcache_g.pLruTail!=pPage );
   1.334 +    pPage->pNextLru->pPrevLru = pPage->pPrevLru;
   1.335 +  }else{
   1.336 +    assert( pcache_g.pLruTail==pPage );
   1.337 +    pcache_g.pLruTail = pPage->pPrevLru;
   1.338 +  }
   1.339 +  if( pPage->pPrevLru ){
   1.340 +    assert( pcache_g.pLruHead!=pPage );
   1.341 +    pPage->pPrevLru->pNextLru = pPage->pNextLru;
   1.342 +  }else{
   1.343 +    assert( pcache_g.pLruHead==pPage );
   1.344 +    pcache_g.pLruHead = pPage->pNextLru;
   1.345 +  }
   1.346 +}
   1.347 +
   1.348 +/*
   1.349 +** Add a page to the global LRU list.  The page is normally added
   1.350 +** to the front of the list so that it will be the last page recycled.
   1.351 +** However, if the PGHDR_REUSE_UNLIKELY bit is set, the page is added
   1.352 +** to the end of the LRU list so that it will be the next to be recycled.
   1.353 +*/
   1.354 +static void pcacheAddToLruList(PgHdr *pPage){
   1.355 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.356 +  assert( (pPage->flags&PGHDR_DIRTY)==0 );
   1.357 +  if( pPage->pCache->bPurgeable==0 ) return;
   1.358 +  if( pcache_g.pLruTail && (pPage->flags & PGHDR_REUSE_UNLIKELY)!=0 ){
   1.359 +    /* If reuse is unlikely.  Put the page at the end of the LRU list
   1.360 +    ** where it will be recycled sooner rather than later. 
   1.361 +    */
   1.362 +    assert( pcache_g.pLruHead );
   1.363 +    pPage->pNextLru = 0;
   1.364 +    pPage->pPrevLru = pcache_g.pLruTail;
   1.365 +    pcache_g.pLruTail->pNextLru = pPage;
   1.366 +    pcache_g.pLruTail = pPage;
   1.367 +    pPage->flags &= ~PGHDR_REUSE_UNLIKELY;
   1.368 +  }else{
   1.369 +    /* If reuse is possible. the page goes at the beginning of the LRU
   1.370 +    ** list so that it will be the last to be recycled.
   1.371 +    */
   1.372 +    if( pcache_g.pLruHead ){
   1.373 +      pcache_g.pLruHead->pPrevLru = pPage;
   1.374 +    }
   1.375 +    pPage->pNextLru = pcache_g.pLruHead;
   1.376 +    pcache_g.pLruHead = pPage;
   1.377 +    pPage->pPrevLru = 0;
   1.378 +    if( pcache_g.pLruTail==0 ){
   1.379 +      pcache_g.pLruTail = pPage;
   1.380 +    }
   1.381 +  }
   1.382 +}
   1.383 +
   1.384 +/*********************************************** Memory Allocation ***********
   1.385 +**
   1.386 +** Initialize the page cache memory pool.
   1.387 +**
   1.388 +** This must be called at start-time when no page cache lines are
   1.389 +** checked out. This function is not threadsafe.
   1.390 +*/
   1.391 +void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
   1.392 +  PgFreeslot *p;
   1.393 +  sz &= ~7;
   1.394 +  pcache_g.szSlot = sz;
   1.395 +  pcache_g.pStart = pBuf;
   1.396 +  pcache_g.pFree = 0;
   1.397 +  while( n-- ){
   1.398 +    p = (PgFreeslot*)pBuf;
   1.399 +    p->pNext = pcache_g.pFree;
   1.400 +    pcache_g.pFree = p;
   1.401 +    pBuf = (void*)&((char*)pBuf)[sz];
   1.402 +  }
   1.403 +  pcache_g.pEnd = pBuf;
   1.404 +}
   1.405 +
   1.406 +/*
   1.407 +** Allocate a page cache line.  Look in the page cache memory pool first
   1.408 +** and use an element from it first if available.  If nothing is available
   1.409 +** in the page cache memory pool, go to the general purpose memory allocator.
   1.410 +*/
   1.411 +static void *pcacheMalloc(int sz, PCache *pCache){
   1.412 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.413 +  if( sz<=pcache_g.szSlot && pcache_g.pFree ){
   1.414 +    PgFreeslot *p = pcache_g.pFree;
   1.415 +    pcache_g.pFree = p->pNext;
   1.416 +    sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, sz);
   1.417 +    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
   1.418 +    return (void*)p;
   1.419 +  }else{
   1.420 +    void *p;
   1.421 +
   1.422 +    /* Allocate a new buffer using sqlite3Malloc. Before doing so, exit the
   1.423 +    ** global pcache mutex and unlock the pager-cache object pCache. This is 
   1.424 +    ** so that if the attempt to allocate a new buffer causes the the 
   1.425 +    ** configured soft-heap-limit to be breached, it will be possible to
   1.426 +    ** reclaim memory from this pager-cache.
   1.427 +    */
   1.428 +    pcacheExitMutex();
   1.429 +    p = sqlite3Malloc(sz);
   1.430 +    pcacheEnterMutex();
   1.431 +
   1.432 +    if( p ){
   1.433 +      sz = sqlite3MallocSize(p);
   1.434 +      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
   1.435 +    }
   1.436 +    return p;
   1.437 +  }
   1.438 +}
   1.439 +void *sqlite3PageMalloc(int sz){
   1.440 +  void *p;
   1.441 +  pcacheEnterMutex();
   1.442 +  p = pcacheMalloc(sz, 0);
   1.443 +  pcacheExitMutex();
   1.444 +  return p;
   1.445 +}
   1.446 +
   1.447 +/*
   1.448 +** Release a pager memory allocation
   1.449 +*/
   1.450 +static void pcacheFree(void *p){
   1.451 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.452 +  if( p==0 ) return;
   1.453 +  if( p>=pcache_g.pStart && p<pcache_g.pEnd ){
   1.454 +    PgFreeslot *pSlot;
   1.455 +    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
   1.456 +    pSlot = (PgFreeslot*)p;
   1.457 +    pSlot->pNext = pcache_g.pFree;
   1.458 +    pcache_g.pFree = pSlot;
   1.459 +  }else{
   1.460 +    int iSize = sqlite3MallocSize(p);
   1.461 +    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
   1.462 +    sqlite3_free(p);
   1.463 +  }
   1.464 +}
   1.465 +void sqlite3PageFree(void *p){
   1.466 +  pcacheEnterMutex();
   1.467 +  pcacheFree(p);
   1.468 +  pcacheExitMutex();
   1.469 +}
   1.470 +
   1.471 +/*
   1.472 +** Allocate a new page.
   1.473 +*/
   1.474 +static PgHdr *pcachePageAlloc(PCache *pCache){
   1.475 +  PgHdr *p;
   1.476 +  int sz = sizeof(*p) + pCache->szPage + pCache->szExtra;
   1.477 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.478 +  p = pcacheMalloc(sz, pCache);
   1.479 +  if( p==0 ) return 0;
   1.480 +  memset(p, 0, sizeof(PgHdr));
   1.481 +  p->pData = (void*)&p[1];
   1.482 +  p->pExtra = (void*)&((char*)p->pData)[pCache->szPage];
   1.483 +  if( pCache->bPurgeable ){
   1.484 +    pcache_g.nCurrentPage++;
   1.485 +  }
   1.486 +  return p;
   1.487 +}
   1.488 +
   1.489 +/*
   1.490 +** Deallocate a page
   1.491 +*/
   1.492 +static void pcachePageFree(PgHdr *p){
   1.493 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.494 +  if( p->pCache->bPurgeable ){
   1.495 +    pcache_g.nCurrentPage--;
   1.496 +  }
   1.497 +  pcacheFree(p->apSave[0]);
   1.498 +  pcacheFree(p->apSave[1]);
   1.499 +  pcacheFree(p);
   1.500 +}
   1.501 +
   1.502 +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
   1.503 +/*
   1.504 +** Return the number of bytes that will be returned to the heap when
   1.505 +** the argument is passed to pcachePageFree().
   1.506 +*/
   1.507 +static int pcachePageSize(PgHdr *p){
   1.508 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.509 +  assert( !pcache_g.pStart );
   1.510 +  assert( p->apSave[0]==0 );
   1.511 +  assert( p->apSave[1]==0 );
   1.512 +  assert( p && p->pCache );
   1.513 +  return sqlite3MallocSize(p);
   1.514 +}
   1.515 +#endif
   1.516 +
   1.517 +/*
   1.518 +** Attempt to 'recycle' a page from the global LRU list. Only clean,
   1.519 +** unreferenced pages from purgeable caches are eligible for recycling.
   1.520 +**
   1.521 +** This function removes page pcache.pLruTail from the global LRU list,
   1.522 +** and from the hash-table and PCache.pClean list of the owner pcache.
   1.523 +** There should be no other references to the page.
   1.524 +**
   1.525 +** A pointer to the recycled page is returned, or NULL if no page is
   1.526 +** eligible for recycling.
   1.527 +*/
   1.528 +static PgHdr *pcacheRecyclePage(void){
   1.529 +  PgHdr *p = 0;
   1.530 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.531 +
   1.532 +  if( (p=pcache_g.pLruTail) ){
   1.533 +    assert( (p->flags&PGHDR_DIRTY)==0 );
   1.534 +    pcacheRemoveFromLruList(p);
   1.535 +    pcacheRemoveFromHash(p);
   1.536 +    pcacheRemoveFromList(&p->pCache->pClean, p);
   1.537 +  }
   1.538 +
   1.539 +  return p;
   1.540 +}
   1.541 +
   1.542 +/*
   1.543 +** Obtain space for a page. Try to recycle an old page if the limit on the 
   1.544 +** number of pages has been reached. If the limit has not been reached or
   1.545 +** there are no pages eligible for recycling, allocate a new page.
   1.546 +**
   1.547 +** Return a pointer to the new page, or NULL if an OOM condition occurs.
   1.548 +*/
   1.549 +static int pcacheRecycleOrAlloc(PCache *pCache, PgHdr **ppPage){
   1.550 +  PgHdr *p = 0;
   1.551 +
   1.552 +  int szPage = pCache->szPage;
   1.553 +  int szExtra = pCache->szExtra;
   1.554 +
   1.555 +  assert( pcache_g.isInit );
   1.556 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.557 +
   1.558 +  *ppPage = 0;
   1.559 +
   1.560 +  /* If we have reached either the global or the local limit for 
   1.561 +  ** pinned+dirty pages, and there is at least one dirty page,
   1.562 +  ** invoke the xStress callback to cause a page to become clean.
   1.563 +  */
   1.564 +  expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
   1.565 +  expensive_assert( pcacheCheckSynced(pCache) );
   1.566 +  if( pCache->xStress
   1.567 +   && pCache->pDirty
   1.568 +   && (pCache->nPinned>=(pcache_g.nMaxPage+pCache->nMin-pcache_g.nMinPage)
   1.569 +           || pCache->nPinned>=pCache->nMax)
   1.570 +  ){
   1.571 +    PgHdr *pPg;
   1.572 +    assert(pCache->pDirtyTail);
   1.573 +
   1.574 +    for(pPg=pCache->pSynced; 
   1.575 +        pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 
   1.576 +        pPg=pPg->pPrev
   1.577 +    );
   1.578 +    if( !pPg ){
   1.579 +      for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pPrev);
   1.580 +    }
   1.581 +    if( pPg ){
   1.582 +      int rc;
   1.583 +      pcacheExitMutex();
   1.584 +      rc = pCache->xStress(pCache->pStress, pPg);
   1.585 +      pcacheEnterMutex();
   1.586 +      if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
   1.587 +        return rc;
   1.588 +      }
   1.589 +    }
   1.590 +  }
   1.591 +
   1.592 +  /* If either the local or the global page limit has been reached, 
   1.593 +  ** try to recycle a page. 
   1.594 +  */
   1.595 +  if( pCache->bPurgeable && (pCache->nPage>=pCache->nMax-1 ||
   1.596 +                             pcache_g.nCurrentPage>=pcache_g.nMaxPage) ){
   1.597 +    p = pcacheRecyclePage();
   1.598 +  }
   1.599 +
   1.600 +  /* If a page has been recycled but it is the wrong size, free it. */
   1.601 +  if( p && (p->pCache->szPage!=szPage || p->pCache->szPage!=szExtra) ){
   1.602 +    pcachePageFree(p);
   1.603 +    p = 0;
   1.604 +  }
   1.605 +
   1.606 +  if( !p ){
   1.607 +    p = pcachePageAlloc(pCache);
   1.608 +  }
   1.609 +
   1.610 +  *ppPage = p;
   1.611 +  return (p?SQLITE_OK:SQLITE_NOMEM);
   1.612 +}
   1.613 +
   1.614 +/*************************************************** General Interfaces ******
   1.615 +**
   1.616 +** Initialize and shutdown the page cache subsystem. Neither of these 
   1.617 +** functions are threadsafe.
   1.618 +*/
   1.619 +int sqlite3PcacheInitialize(void){
   1.620 +  assert( pcache_g.isInit==0 );
   1.621 +  memset(&pcache_g, 0, sizeof(pcache));
   1.622 +  if( sqlite3GlobalConfig.bCoreMutex ){
   1.623 +    /* No need to check the return value of sqlite3_mutex_alloc(). 
   1.624 +    ** Allocating a static mutex cannot fail.
   1.625 +    */
   1.626 +    pcache_g.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
   1.627 +  }
   1.628 +  pcache_g.isInit = 1;
   1.629 +  return SQLITE_OK;
   1.630 +}
   1.631 +void sqlite3PcacheShutdown(void){
   1.632 +  memset(&pcache_g, 0, sizeof(pcache));
   1.633 +}
   1.634 +
   1.635 +/*
   1.636 +** Return the size in bytes of a PCache object.
   1.637 +*/
   1.638 +int sqlite3PcacheSize(void){ return sizeof(PCache); }
   1.639 +
   1.640 +/*
   1.641 +** Create a new PCache object.  Storage space to hold the object
   1.642 +** has already been allocated and is passed in as the p pointer.
   1.643 +*/
   1.644 +void sqlite3PcacheOpen(
   1.645 +  int szPage,                  /* Size of every page */
   1.646 +  int szExtra,                 /* Extra space associated with each page */
   1.647 +  int bPurgeable,              /* True if pages are on backing store */
   1.648 +  int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */
   1.649 +  void *pStress,               /* Argument to xStress */
   1.650 +  PCache *p                    /* Preallocated space for the PCache */
   1.651 +){
   1.652 +  assert( pcache_g.isInit );
   1.653 +  memset(p, 0, sizeof(PCache));
   1.654 +  p->szPage = szPage;
   1.655 +  p->szExtra = szExtra;
   1.656 +  p->bPurgeable = bPurgeable;
   1.657 +  p->xStress = xStress;
   1.658 +  p->pStress = pStress;
   1.659 +  p->nMax = 100;
   1.660 +  p->nMin = 10;
   1.661 +
   1.662 +  pcacheEnterMutex();
   1.663 +  if( bPurgeable ){
   1.664 +    pcache_g.nMaxPage += p->nMax;
   1.665 +    pcache_g.nMinPage += p->nMin;
   1.666 +  }
   1.667 +
   1.668 +  pcacheExitMutex();
   1.669 +}
   1.670 +
   1.671 +/*
   1.672 +** Change the page size for PCache object.  This can only happen
   1.673 +** when the cache is empty.
   1.674 +*/
   1.675 +void sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
   1.676 +  assert(pCache->nPage==0);
   1.677 +  pCache->szPage = szPage;
   1.678 +}
   1.679 +
   1.680 +/*
   1.681 +** Try to obtain a page from the cache.
   1.682 +*/
   1.683 +int sqlite3PcacheFetch(
   1.684 +  PCache *pCache,       /* Obtain the page from this cache */
   1.685 +  Pgno pgno,            /* Page number to obtain */
   1.686 +  int createFlag,       /* If true, create page if it does not exist already */
   1.687 +  PgHdr **ppPage        /* Write the page here */
   1.688 +){
   1.689 +  int rc = SQLITE_OK;
   1.690 +  PgHdr *pPage = 0;
   1.691 +
   1.692 +  assert( pcache_g.isInit );
   1.693 +  assert( pCache!=0 );
   1.694 +  assert( pgno>0 );
   1.695 +  expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
   1.696 +
   1.697 +  pcacheEnterMutex();
   1.698 +
   1.699 +  /* Search the hash table for the requested page. Exit early if it is found. */
   1.700 +  if( pCache->apHash ){
   1.701 +    u32 h = pgno % pCache->nHash;
   1.702 +    for(pPage=pCache->apHash[h]; pPage; pPage=pPage->pNextHash){
   1.703 +      if( pPage->pgno==pgno ){
   1.704 +        if( pPage->nRef==0 ){
   1.705 +          if( 0==(pPage->flags&PGHDR_DIRTY) ){
   1.706 +            pcacheRemoveFromLruList(pPage);
   1.707 +            pCache->nPinned++;
   1.708 +          }
   1.709 +          pCache->nRef++;
   1.710 +        }
   1.711 +        pPage->nRef++;
   1.712 +        break;
   1.713 +      }
   1.714 +    }
   1.715 +  }
   1.716 +
   1.717 +  if( !pPage && createFlag ){
   1.718 +    if( pCache->nHash<=pCache->nPage ){
   1.719 +      rc = pcacheResizeHash(pCache, pCache->nHash<256 ? 256 : pCache->nHash*2);
   1.720 +    }
   1.721 +    if( rc==SQLITE_OK ){
   1.722 +      rc = pcacheRecycleOrAlloc(pCache, &pPage);
   1.723 +    }
   1.724 +    if( rc==SQLITE_OK ){
   1.725 +      pPage->pPager = 0;
   1.726 +      pPage->flags = 0;
   1.727 +      pPage->pDirty = 0;
   1.728 +      pPage->pgno = pgno;
   1.729 +      pPage->pCache = pCache;
   1.730 +      pPage->nRef = 1;
   1.731 +      pCache->nRef++;
   1.732 +      pCache->nPinned++;
   1.733 +      pcacheAddToList(&pCache->pClean, pPage);
   1.734 +      pcacheAddToHash(pPage);
   1.735 +    }
   1.736 +  }
   1.737 +
   1.738 +  pcacheExitMutex();
   1.739 +
   1.740 +  *ppPage = pPage;
   1.741 +  expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
   1.742 +  assert( pPage || !createFlag || rc!=SQLITE_OK );
   1.743 +  return rc;
   1.744 +}
   1.745 +
   1.746 +/*
   1.747 +** Dereference a page.  When the reference count reaches zero,
   1.748 +** move the page to the LRU list if it is clean.
   1.749 +*/
   1.750 +void sqlite3PcacheRelease(PgHdr *p){
   1.751 +  assert( p->nRef>0 );
   1.752 +  p->nRef--;
   1.753 +  if( p->nRef==0 ){
   1.754 +    PCache *pCache = p->pCache;
   1.755 +    pCache->nRef--;
   1.756 +    if( (p->flags&PGHDR_DIRTY)==0 ){
   1.757 +      pCache->nPinned--;
   1.758 +      pcacheEnterMutex();
   1.759 +      if( pcache_g.nCurrentPage>pcache_g.nMaxPage ){
   1.760 +        pcacheRemoveFromList(&pCache->pClean, p);
   1.761 +        pcacheRemoveFromHash(p);
   1.762 +        pcachePageFree(p);
   1.763 +      }else{
   1.764 +        pcacheAddToLruList(p);
   1.765 +      }
   1.766 +      pcacheExitMutex();
   1.767 +    }else{
   1.768 +      /* Move the page to the head of the caches dirty list. */
   1.769 +      pcacheRemoveFromList(&pCache->pDirty, p);
   1.770 +      pcacheAddToList(&pCache->pDirty, p);
   1.771 +    }
   1.772 +  }
   1.773 +}
   1.774 +
   1.775 +void sqlite3PcacheRef(PgHdr *p){
   1.776 +  assert(p->nRef>0);
   1.777 +  p->nRef++;
   1.778 +}
   1.779 +
   1.780 +/*
   1.781 +** Drop a page from the cache. There must be exactly one reference to the
   1.782 +** page. This function deletes that reference, so after it returns the
   1.783 +** page pointed to by p is invalid.
   1.784 +*/
   1.785 +void sqlite3PcacheDrop(PgHdr *p){
   1.786 +  PCache *pCache;
   1.787 +  assert( p->nRef==1 );
   1.788 +  assert( 0==(p->flags&PGHDR_DIRTY) );
   1.789 +  pCache = p->pCache;
   1.790 +  pCache->nRef--;
   1.791 +  pCache->nPinned--;
   1.792 +  pcacheEnterMutex();
   1.793 +  pcacheRemoveFromList(&pCache->pClean, p);
   1.794 +  pcacheRemoveFromHash(p);
   1.795 +  pcachePageFree(p);
   1.796 +  pcacheExitMutex();
   1.797 +}
   1.798 +
   1.799 +/*
   1.800 +** Make sure the page is marked as dirty.  If it isn't dirty already,
   1.801 +** make it so.
   1.802 +*/
   1.803 +void sqlite3PcacheMakeDirty(PgHdr *p){
   1.804 +  PCache *pCache;
   1.805 +  p->flags &= ~PGHDR_DONT_WRITE;
   1.806 +  if( p->flags & PGHDR_DIRTY ) return;
   1.807 +  assert( (p->flags & PGHDR_DIRTY)==0 );
   1.808 +  assert( p->nRef>0 );
   1.809 +  pCache = p->pCache;
   1.810 +  pcacheEnterMutex();
   1.811 +  pcacheRemoveFromList(&pCache->pClean, p);
   1.812 +  pcacheAddToList(&pCache->pDirty, p);
   1.813 +  pcacheExitMutex();
   1.814 +  p->flags |= PGHDR_DIRTY;
   1.815 +}
   1.816 +
   1.817 +static void pcacheMakeClean(PgHdr *p){
   1.818 +  PCache *pCache = p->pCache;
   1.819 +  assert( p->apSave[0]==0 && p->apSave[1]==0 );
   1.820 +  assert( p->flags & PGHDR_DIRTY );
   1.821 +  pcacheRemoveFromList(&pCache->pDirty, p);
   1.822 +  pcacheAddToList(&pCache->pClean, p);
   1.823 +  p->flags &= ~PGHDR_DIRTY;
   1.824 +  if( p->nRef==0 ){
   1.825 +    pcacheAddToLruList(p);
   1.826 +    pCache->nPinned--;
   1.827 +  }
   1.828 +  expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
   1.829 +}
   1.830 +
   1.831 +/*
   1.832 +** Make sure the page is marked as clean.  If it isn't clean already,
   1.833 +** make it so.
   1.834 +*/
   1.835 +void sqlite3PcacheMakeClean(PgHdr *p){
   1.836 +  if( (p->flags & PGHDR_DIRTY) ){
   1.837 +    pcacheEnterMutex();
   1.838 +    pcacheMakeClean(p);
   1.839 +    pcacheExitMutex();
   1.840 +  }
   1.841 +}
   1.842 +
   1.843 +/*
   1.844 +** Make every page in the cache clean.
   1.845 +*/
   1.846 +void sqlite3PcacheCleanAll(PCache *pCache){
   1.847 +  PgHdr *p;
   1.848 +  pcacheEnterMutex();
   1.849 +  while( (p = pCache->pDirty)!=0 ){
   1.850 +    assert( p->apSave[0]==0 && p->apSave[1]==0 );
   1.851 +    pcacheRemoveFromList(&pCache->pDirty, p);
   1.852 +    p->flags &= ~PGHDR_DIRTY;
   1.853 +    pcacheAddToList(&pCache->pClean, p);
   1.854 +    if( p->nRef==0 ){
   1.855 +      pcacheAddToLruList(p);
   1.856 +      pCache->nPinned--;
   1.857 +    }
   1.858 +  }
   1.859 +  sqlite3PcacheAssertFlags(pCache, 0, PGHDR_DIRTY);
   1.860 +  expensive_assert( pCache->nPinned==pcachePinnedCount(pCache) );
   1.861 +  pcacheExitMutex();
   1.862 +}
   1.863 +
   1.864 +/*
   1.865 +** Change the page number of page p to newPgno. If newPgno is 0, then the
   1.866 +** page object is added to the clean-list and the PGHDR_REUSE_UNLIKELY 
   1.867 +** flag set.
   1.868 +*/
   1.869 +void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){
   1.870 +  assert( p->nRef>0 );
   1.871 +  pcacheEnterMutex();
   1.872 +  pcacheRemoveFromHash(p);
   1.873 +  p->pgno = newPgno;
   1.874 +  if( newPgno==0 ){
   1.875 +    pcacheFree(p->apSave[0]);
   1.876 +    pcacheFree(p->apSave[1]);
   1.877 +    p->apSave[0] = 0;
   1.878 +    p->apSave[1] = 0;
   1.879 +    if( (p->flags & PGHDR_DIRTY) ){
   1.880 +      pcacheMakeClean(p);
   1.881 +    }
   1.882 +    p->flags = PGHDR_REUSE_UNLIKELY;
   1.883 +  }
   1.884 +  pcacheAddToHash(p);
   1.885 +  pcacheExitMutex();
   1.886 +}
   1.887 +
   1.888 +/*
   1.889 +** Remove all content from a page cache
   1.890 +*/
   1.891 +static void pcacheClear(PCache *pCache){
   1.892 +  PgHdr *p, *pNext;
   1.893 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.894 +  for(p=pCache->pClean; p; p=pNext){
   1.895 +    pNext = p->pNext;
   1.896 +    pcacheRemoveFromLruList(p);
   1.897 +    pcachePageFree(p);
   1.898 +  }
   1.899 +  for(p=pCache->pDirty; p; p=pNext){
   1.900 +    pNext = p->pNext;
   1.901 +    pcachePageFree(p);
   1.902 +  }
   1.903 +  pCache->pClean = 0;
   1.904 +  pCache->pDirty = 0;
   1.905 +  pCache->pDirtyTail = 0;
   1.906 +  pCache->nPage = 0;
   1.907 +  pCache->nPinned = 0;
   1.908 +  memset(pCache->apHash, 0, pCache->nHash*sizeof(pCache->apHash[0]));
   1.909 +}
   1.910 +
   1.911 +
   1.912 +/*
   1.913 +** Drop every cache entry whose page number is greater than "pgno".
   1.914 +*/
   1.915 +void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){
   1.916 +  PgHdr *p, *pNext;
   1.917 +  PgHdr *pDirty = pCache->pDirty;
   1.918 +  pcacheEnterMutex();
   1.919 +  for(p=pCache->pClean; p||pDirty; p=pNext){
   1.920 +    if( !p ){
   1.921 +      p = pDirty;
   1.922 +      pDirty = 0;
   1.923 +    }
   1.924 +    pNext = p->pNext;
   1.925 +    if( p->pgno>pgno ){
   1.926 +      if( p->nRef==0 ){
   1.927 +        pcacheRemoveFromHash(p);
   1.928 +        if( p->flags&PGHDR_DIRTY ){
   1.929 +          pcacheRemoveFromList(&pCache->pDirty, p);
   1.930 +          pCache->nPinned--;
   1.931 +        }else{
   1.932 +          pcacheRemoveFromList(&pCache->pClean, p);
   1.933 +          pcacheRemoveFromLruList(p);
   1.934 +        }
   1.935 +        pcachePageFree(p);
   1.936 +      }else{
   1.937 +        /* If there are references to the page, it cannot be freed. In this
   1.938 +        ** case, zero the page content instead.
   1.939 +        */
   1.940 +        memset(p->pData, 0, pCache->szPage);
   1.941 +      }
   1.942 +    }
   1.943 +  }
   1.944 +  pcacheExitMutex();
   1.945 +}
   1.946 +
   1.947 +/*
   1.948 +** If there are currently more than pcache.nMaxPage pages allocated, try
   1.949 +** to recycle pages to reduce the number allocated to pcache.nMaxPage.
   1.950 +*/
   1.951 +static void pcacheEnforceMaxPage(void){
   1.952 +  PgHdr *p;
   1.953 +  assert( sqlite3_mutex_held(pcache_g.mutex) );
   1.954 +  while( pcache_g.nCurrentPage>pcache_g.nMaxPage && (p = pcacheRecyclePage()) ){
   1.955 +    pcachePageFree(p);
   1.956 +  }
   1.957 +}
   1.958 +
   1.959 +/*
   1.960 +** Close a cache.
   1.961 +*/
   1.962 +void sqlite3PcacheClose(PCache *pCache){
   1.963 +  pcacheEnterMutex();
   1.964 +
   1.965 +  /* Free all the pages used by this pager and remove them from the LRU list. */
   1.966 +  pcacheClear(pCache);
   1.967 +  if( pCache->bPurgeable ){
   1.968 +    pcache_g.nMaxPage -= pCache->nMax;
   1.969 +    pcache_g.nMinPage -= pCache->nMin;
   1.970 +    pcacheEnforceMaxPage();
   1.971 +  }
   1.972 +  sqlite3_free(pCache->apHash);
   1.973 +  pcacheExitMutex();
   1.974 +}
   1.975 +
   1.976 +/*
   1.977 +** Preserve the content of the page.  It is assumed that the content
   1.978 +** has not been preserved already.
   1.979 +**
   1.980 +** If idJournal==0 then this is for the overall transaction.
   1.981 +** If idJournal==1 then this is for the statement journal.
   1.982 +**
   1.983 +** This routine is used for in-memory databases only.
   1.984 +**
   1.985 +** Return SQLITE_OK or SQLITE_NOMEM if a memory allocation fails.
   1.986 +*/
   1.987 +int sqlite3PcachePreserve(PgHdr *p, int idJournal){
   1.988 +  void *x;
   1.989 +  int sz;
   1.990 +  assert( p->pCache->bPurgeable==0 );
   1.991 +  assert( p->apSave[idJournal]==0 );
   1.992 +  sz = p->pCache->szPage;
   1.993 +  p->apSave[idJournal] = x = sqlite3PageMalloc( sz );
   1.994 +  if( x==0 ) return SQLITE_NOMEM;
   1.995 +  memcpy(x, p->pData, sz);
   1.996 +  return SQLITE_OK;
   1.997 +}
   1.998 +
   1.999 +/*
  1.1000 +** Commit a change previously preserved.
  1.1001 +*/
  1.1002 +void sqlite3PcacheCommit(PCache *pCache, int idJournal){
  1.1003 +  PgHdr *p;
  1.1004 +  int mask = idJournal==0 ? ~PGHDR_IN_JOURNAL : 0xffffff;
  1.1005 +  pcacheEnterMutex();     /* Mutex is required to call pcacheFree() */
  1.1006 +  for(p=pCache->pDirty; p; p=p->pNext){
  1.1007 +    if( p->apSave[idJournal] ){
  1.1008 +      pcacheFree(p->apSave[idJournal]);
  1.1009 +      p->apSave[idJournal] = 0;
  1.1010 +    }
  1.1011 +    p->flags &= mask;
  1.1012 +  }
  1.1013 +  pcacheExitMutex();
  1.1014 +}
  1.1015 +
  1.1016 +/*
  1.1017 +** Rollback a change previously preserved.
  1.1018 +*/
  1.1019 +void sqlite3PcacheRollback(
  1.1020 +  PCache *pCache,                  /* Pager cache */
  1.1021 +  int idJournal,                   /* Which copy to rollback to */
  1.1022 +  void (*xReiniter)(PgHdr*)        /* Called on each rolled back page */
  1.1023 +){
  1.1024 +  PgHdr *p;
  1.1025 +  int sz;
  1.1026 +  int mask = idJournal==0 ? ~PGHDR_IN_JOURNAL : 0xffffff;
  1.1027 +  pcacheEnterMutex();     /* Mutex is required to call pcacheFree() */
  1.1028 +  sz = pCache->szPage;
  1.1029 +  for(p=pCache->pDirty; p; p=p->pNext){
  1.1030 +    if( p->apSave[idJournal] ){
  1.1031 +      memcpy(p->pData, p->apSave[idJournal], sz);
  1.1032 +      pcacheFree(p->apSave[idJournal]);
  1.1033 +      p->apSave[idJournal] = 0;
  1.1034 +      if( xReiniter ){
  1.1035 +        xReiniter(p);
  1.1036 +      }
  1.1037 +    }
  1.1038 +    p->flags &= mask;
  1.1039 +  }
  1.1040 +  pcacheExitMutex();
  1.1041 +}
  1.1042 +
  1.1043 +#ifndef NDEBUG
  1.1044 +/* 
  1.1045 +** Assert flags settings on all pages.  Debugging only.
  1.1046 +*/
  1.1047 +void sqlite3PcacheAssertFlags(PCache *pCache, int trueMask, int falseMask){
  1.1048 +  PgHdr *p;
  1.1049 +  for(p=pCache->pDirty; p; p=p->pNext){
  1.1050 +    assert( (p->flags&trueMask)==trueMask );
  1.1051 +    assert( (p->flags&falseMask)==0 );
  1.1052 +  }
  1.1053 +  for(p=pCache->pClean; p; p=p->pNext){
  1.1054 +    assert( (p->flags&trueMask)==trueMask );
  1.1055 +    assert( (p->flags&falseMask)==0 );
  1.1056 +  }
  1.1057 +}
  1.1058 +#endif
  1.1059 +
  1.1060 +/* 
  1.1061 +** Discard the contents of the cache.
  1.1062 +*/
  1.1063 +int sqlite3PcacheClear(PCache *pCache){
  1.1064 +  assert(pCache->nRef==0);
  1.1065 +  pcacheEnterMutex();
  1.1066 +  pcacheClear(pCache);
  1.1067 +  pcacheExitMutex();
  1.1068 +  return SQLITE_OK;
  1.1069 +}
  1.1070 +
  1.1071 +/*
  1.1072 +** Merge two lists of pages connected by pDirty and in pgno order.
  1.1073 +** Do not both fixing the pPrevDirty pointers.
  1.1074 +*/
  1.1075 +static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){
  1.1076 +  PgHdr result, *pTail;
  1.1077 +  pTail = &result;
  1.1078 +  while( pA && pB ){
  1.1079 +    if( pA->pgno<pB->pgno ){
  1.1080 +      pTail->pDirty = pA;
  1.1081 +      pTail = pA;
  1.1082 +      pA = pA->pDirty;
  1.1083 +    }else{
  1.1084 +      pTail->pDirty = pB;
  1.1085 +      pTail = pB;
  1.1086 +      pB = pB->pDirty;
  1.1087 +    }
  1.1088 +  }
  1.1089 +  if( pA ){
  1.1090 +    pTail->pDirty = pA;
  1.1091 +  }else if( pB ){
  1.1092 +    pTail->pDirty = pB;
  1.1093 +  }else{
  1.1094 +    pTail->pDirty = 0;
  1.1095 +  }
  1.1096 +  return result.pDirty;
  1.1097 +}
  1.1098 +
  1.1099 +/*
  1.1100 +** Sort the list of pages in accending order by pgno.  Pages are
  1.1101 +** connected by pDirty pointers.  The pPrevDirty pointers are
  1.1102 +** corrupted by this sort.
  1.1103 +*/
  1.1104 +#define N_SORT_BUCKET_ALLOC 25
  1.1105 +#define N_SORT_BUCKET       25
  1.1106 +#ifdef SQLITE_TEST
  1.1107 +  int sqlite3_pager_n_sort_bucket = 0;
  1.1108 +  #undef N_SORT_BUCKET
  1.1109 +  #define N_SORT_BUCKET \
  1.1110 +   (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
  1.1111 +#endif
  1.1112 +static PgHdr *pcacheSortDirtyList(PgHdr *pIn){
  1.1113 +  PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
  1.1114 +  int i;
  1.1115 +  memset(a, 0, sizeof(a));
  1.1116 +  while( pIn ){
  1.1117 +    p = pIn;
  1.1118 +    pIn = p->pDirty;
  1.1119 +    p->pDirty = 0;
  1.1120 +    for(i=0; i<N_SORT_BUCKET-1; i++){
  1.1121 +      if( a[i]==0 ){
  1.1122 +        a[i] = p;
  1.1123 +        break;
  1.1124 +      }else{
  1.1125 +        p = pcacheMergeDirtyList(a[i], p);
  1.1126 +        a[i] = 0;
  1.1127 +      }
  1.1128 +    }
  1.1129 +    if( i==N_SORT_BUCKET-1 ){
  1.1130 +      /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) 
  1.1131 +      ** elements in the input list. This is possible, but impractical.
  1.1132 +      ** Testing this line is the point of global variable
  1.1133 +      ** sqlite3_pager_n_sort_bucket.
  1.1134 +      */
  1.1135 +      a[i] = pcacheMergeDirtyList(a[i], p);
  1.1136 +    }
  1.1137 +  }
  1.1138 +  p = a[0];
  1.1139 +  for(i=1; i<N_SORT_BUCKET; i++){
  1.1140 +    p = pcacheMergeDirtyList(p, a[i]);
  1.1141 +  }
  1.1142 +  return p;
  1.1143 +}
  1.1144 +
  1.1145 +/*
  1.1146 +** Return a list of all dirty pages in the cache, sorted by page number.
  1.1147 +*/
  1.1148 +PgHdr *sqlite3PcacheDirtyList(PCache *pCache){
  1.1149 +  PgHdr *p;
  1.1150 +  for(p=pCache->pDirty; p; p=p->pNext){
  1.1151 +    p->pDirty = p->pNext;
  1.1152 +  }
  1.1153 +  return pcacheSortDirtyList(pCache->pDirty);
  1.1154 +}
  1.1155 +
  1.1156 +/* 
  1.1157 +** Return the total number of outstanding page references.
  1.1158 +*/
  1.1159 +int sqlite3PcacheRefCount(PCache *pCache){
  1.1160 +  return pCache->nRef;
  1.1161 +}
  1.1162 +
  1.1163 +int sqlite3PcachePageRefcount(PgHdr *p){
  1.1164 +  return p->nRef;
  1.1165 +}
  1.1166 +
  1.1167 +/* 
  1.1168 +** Return the total number of pages in the cache.
  1.1169 +*/
  1.1170 +int sqlite3PcachePagecount(PCache *pCache){
  1.1171 +  assert( pCache->nPage>=0 );
  1.1172 +  return pCache->nPage;
  1.1173 +}
  1.1174 +
  1.1175 +#ifdef SQLITE_CHECK_PAGES
  1.1176 +/*
  1.1177 +** This function is used by the pager.c module to iterate through all 
  1.1178 +** pages in the cache. At present, this is only required if the
  1.1179 +** SQLITE_CHECK_PAGES macro (used for debugging) is specified.
  1.1180 +*/
  1.1181 +void sqlite3PcacheIterate(PCache *pCache, void (*xIter)(PgHdr *)){
  1.1182 +  PgHdr *p;
  1.1183 +  for(p=pCache->pClean; p; p=p->pNext){
  1.1184 +    xIter(p);
  1.1185 +  }
  1.1186 +  for(p=pCache->pDirty; p; p=p->pNext){
  1.1187 +    xIter(p);
  1.1188 +  }
  1.1189 +}
  1.1190 +#endif
  1.1191 +
  1.1192 +/* 
  1.1193 +** Set flags on all pages in the page cache 
  1.1194 +*/
  1.1195 +void sqlite3PcacheClearFlags(PCache *pCache, int mask){
  1.1196 +  PgHdr *p;
  1.1197 +
  1.1198 +  /* Obtain the global mutex before modifying any PgHdr.flags variables 
  1.1199 +  ** or traversing the LRU list.
  1.1200 +  */ 
  1.1201 +  pcacheEnterMutex();
  1.1202 +
  1.1203 +  mask = ~mask;
  1.1204 +  for(p=pCache->pDirty; p; p=p->pNext){
  1.1205 +    p->flags &= mask;
  1.1206 +  }
  1.1207 +  for(p=pCache->pClean; p; p=p->pNext){
  1.1208 +    p->flags &= mask;
  1.1209 +  }
  1.1210 +
  1.1211 +  if( 0==(mask&PGHDR_NEED_SYNC) ){
  1.1212 +    pCache->pSynced = pCache->pDirtyTail;
  1.1213 +    assert( !pCache->pSynced || (pCache->pSynced->flags&PGHDR_NEED_SYNC)==0 );
  1.1214 +  }
  1.1215 +
  1.1216 +  pcacheExitMutex();
  1.1217 +}
  1.1218 +
  1.1219 +/*
  1.1220 +** Set the suggested cache-size value.
  1.1221 +*/
  1.1222 +int sqlite3PcacheGetCachesize(PCache *pCache){
  1.1223 +  return pCache->nMax;
  1.1224 +}
  1.1225 +
  1.1226 +/*
  1.1227 +** Set the suggested cache-size value.
  1.1228 +*/
  1.1229 +void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
  1.1230 +  if( mxPage<10 ){
  1.1231 +    mxPage = 10;
  1.1232 +  }
  1.1233 +  if( pCache->bPurgeable ){
  1.1234 +    pcacheEnterMutex();
  1.1235 +    pcache_g.nMaxPage -= pCache->nMax;
  1.1236 +    pcache_g.nMaxPage += mxPage;
  1.1237 +    pcacheEnforceMaxPage();
  1.1238 +    pcacheExitMutex();
  1.1239 +  }
  1.1240 +  pCache->nMax = mxPage;
  1.1241 +}
  1.1242 +
  1.1243 +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  1.1244 +/*
  1.1245 +** This function is called to free superfluous dynamically allocated memory
  1.1246 +** held by the pager system. Memory in use by any SQLite pager allocated
  1.1247 +** by the current thread may be sqlite3_free()ed.
  1.1248 +**
  1.1249 +** nReq is the number of bytes of memory required. Once this much has
  1.1250 +** been released, the function returns. The return value is the total number 
  1.1251 +** of bytes of memory released.
  1.1252 +*/
  1.1253 +int sqlite3PcacheReleaseMemory(int nReq){
  1.1254 +  int nFree = 0;
  1.1255 +  if( pcache_g.pStart==0 ){
  1.1256 +    PgHdr *p;
  1.1257 +    pcacheEnterMutex();
  1.1258 +    while( (nReq<0 || nFree<nReq) && (p=pcacheRecyclePage()) ){
  1.1259 +      nFree += pcachePageSize(p);
  1.1260 +      pcachePageFree(p);
  1.1261 +    }
  1.1262 +    pcacheExitMutex();
  1.1263 +  }
  1.1264 +  return nFree;
  1.1265 +}
  1.1266 +#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
  1.1267 +
  1.1268 +#ifdef SQLITE_TEST
  1.1269 +void sqlite3PcacheStats(
  1.1270 +  int *pnCurrent,
  1.1271 +  int *pnMax,
  1.1272 +  int *pnMin,
  1.1273 +  int *pnRecyclable
  1.1274 +){
  1.1275 +  PgHdr *p;
  1.1276 +  int nRecyclable = 0;
  1.1277 +  for(p=pcache_g.pLruHead; p; p=p->pNextLru){
  1.1278 +    nRecyclable++;
  1.1279 +  }
  1.1280 +
  1.1281 +  *pnCurrent = pcache_g.nCurrentPage;
  1.1282 +  *pnMax = pcache_g.nMaxPage;
  1.1283 +  *pnMin = pcache_g.nMinPage;
  1.1284 +  *pnRecyclable = nRecyclable;
  1.1285 +}
  1.1286 +#endif