os/persistentdata/persistentstorage/sql/SQLite364/mem6.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite364/mem6.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,498 @@
     1.4 +/*
     1.5 +** 2008 July 24
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +**
    1.16 +** This file contains an alternative memory allocation system for SQLite.
    1.17 +** This system is implemented as a wrapper around the system provided
    1.18 +** by the operating system - vanilla malloc(), realloc() and free().
    1.19 +**
    1.20 +** This system differentiates between requests for "small" allocations 
    1.21 +** (by default those of 128 bytes or less) and "large" allocations (all
    1.22 +** others). The 256 byte threshhold is configurable at runtime.
    1.23 +**
    1.24 +** All requests for large allocations are passed through to the 
    1.25 +** default system.
    1.26 +**
    1.27 +** Requests for small allocations are met by allocating space within
    1.28 +** one or more larger "chunks" of memory obtained from the default
    1.29 +** memory allocation system. Chunks of memory are usually 64KB or 
    1.30 +** larger. The algorithm used to manage space within each chunk is
    1.31 +** the same as that used by mem5.c. 
    1.32 +**
    1.33 +** This strategy is designed to prevent the default memory allocation
    1.34 +** system (usually the system malloc) from suffering from heap 
    1.35 +** fragmentation. On some systems, heap fragmentation can cause a 
    1.36 +** significant real-time slowdown.
    1.37 +**
    1.38 +** $Id: mem6.c,v 1.10 2008/09/02 17:52:52 danielk1977 Exp $
    1.39 +*/
    1.40 +
    1.41 +#ifdef SQLITE_ENABLE_MEMSYS6
    1.42 +
    1.43 +#include "sqliteInt.h"
    1.44 +
    1.45 +/*
    1.46 +** Maximum size of any "small" allocation is ((1<<LOGMAX)*Mem6Chunk.nAtom).
    1.47 +** Mem6Chunk.nAtom is always at least 8, so this is not a practical
    1.48 +** limitation
    1.49 +*/
    1.50 +#define LOGMAX 30
    1.51 +
    1.52 +/*
    1.53 +** Default value for the "small" allocation size threshold.
    1.54 +*/
    1.55 +#define SMALL_MALLOC_DEFAULT_THRESHOLD 256
    1.56 +
    1.57 +/*
    1.58 +** Minimum size for a memory chunk.
    1.59 +*/
    1.60 +#define MIN_CHUNKSIZE (1<<16)
    1.61 +
    1.62 +#define LOG2_MINALLOC 4
    1.63 +
    1.64 +
    1.65 +typedef struct Mem6Chunk Mem6Chunk;
    1.66 +typedef struct Mem6Link Mem6Link;
    1.67 +
    1.68 +/*
    1.69 +** A minimum allocation is an instance of the following structure.
    1.70 +** Larger allocations are an array of these structures where the
    1.71 +** size of the array is a power of 2.
    1.72 +*/
    1.73 +struct Mem6Link {
    1.74 +  int next;       /* Index of next free chunk */
    1.75 +  int prev;       /* Index of previous free chunk */
    1.76 +};
    1.77 +
    1.78 +/*
    1.79 +** Masks used for mem5.aCtrl[] elements.
    1.80 +*/
    1.81 +#define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
    1.82 +#define CTRL_FREE     0x20    /* True if not checked out */
    1.83 +
    1.84 +struct Mem6Chunk {
    1.85 +  Mem6Chunk *pNext;
    1.86 +
    1.87 +  /*
    1.88 +  ** Lists of free blocks of various sizes.
    1.89 +  */
    1.90 +  int aiFreelist[LOGMAX+1];
    1.91 +
    1.92 +  int nCheckedOut; /* Number of currently outstanding allocations */
    1.93 +
    1.94 +  /*
    1.95 +  ** Space for tracking which blocks are checked out and the size
    1.96 +  ** of each block. One byte per block.
    1.97 +  */
    1.98 +  u8 *aCtrl;
    1.99 +
   1.100 +  /*
   1.101 +  ** Memory available for allocation
   1.102 +  */
   1.103 +  int nAtom;       /* Smallest possible allocation in bytes */
   1.104 +  int nBlock;      /* Number of nAtom sized blocks in zPool */
   1.105 +  u8 *zPool;       /* Pointer to memory chunk from which allocations are made */
   1.106 +};
   1.107 +
   1.108 +#define MEM6LINK(idx) ((Mem6Link *)(&pChunk->zPool[(idx)*pChunk->nAtom]))
   1.109 +
   1.110 +static SQLITE_WSD struct Mem6Global {
   1.111 +  int nMinAlloc;                  /* Minimum allowed allocation size */
   1.112 +  int nThreshold;                 /* Allocs larger than this go to malloc() */
   1.113 +  int nLogThreshold;              /* log2 of (nThreshold/nMinAlloc) */
   1.114 +  sqlite3_mutex *mutex;
   1.115 +  Mem6Chunk *pChunk;              /* Singly linked list of all memory chunks */
   1.116 +} mem6 = { 48642791 };
   1.117 +
   1.118 +#define mem6 GLOBAL(struct Mem6Global, mem6)
   1.119 +
   1.120 +/*
   1.121 +** Unlink the chunk at pChunk->aPool[i] from list it is currently
   1.122 +** on.  It should be found on pChunk->aiFreelist[iLogsize].
   1.123 +*/
   1.124 +static void memsys6Unlink(Mem6Chunk *pChunk, int i, int iLogsize){
   1.125 +  int next, prev;
   1.126 +  assert( i>=0 && i<pChunk->nBlock );
   1.127 +  assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold );
   1.128 +  assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
   1.129 +
   1.130 +  next = MEM6LINK(i)->next;
   1.131 +  prev = MEM6LINK(i)->prev;
   1.132 +  if( prev<0 ){
   1.133 +    pChunk->aiFreelist[iLogsize] = next;
   1.134 +  }else{
   1.135 +    MEM6LINK(prev)->next = next;
   1.136 +  }
   1.137 +  if( next>=0 ){
   1.138 +    MEM6LINK(next)->prev = prev;
   1.139 +  }
   1.140 +}
   1.141 +
   1.142 +/*
   1.143 +** Link the chunk at mem5.aPool[i] so that is on the iLogsize
   1.144 +** free list.
   1.145 +*/
   1.146 +static void memsys6Link(Mem6Chunk *pChunk, int i, int iLogsize){
   1.147 +  int x;
   1.148 +  assert( i>=0 && i<pChunk->nBlock );
   1.149 +  assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold );
   1.150 +  assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
   1.151 +
   1.152 +  x = MEM6LINK(i)->next = pChunk->aiFreelist[iLogsize];
   1.153 +  MEM6LINK(i)->prev = -1;
   1.154 +  if( x>=0 ){
   1.155 +    assert( x<pChunk->nBlock );
   1.156 +    MEM6LINK(x)->prev = i;
   1.157 +  }
   1.158 +  pChunk->aiFreelist[iLogsize] = i;
   1.159 +}
   1.160 +
   1.161 +
   1.162 +/*
   1.163 +** Find the first entry on the freelist iLogsize.  Unlink that
   1.164 +** entry and return its index. 
   1.165 +*/
   1.166 +static int memsys6UnlinkFirst(Mem6Chunk *pChunk, int iLogsize){
   1.167 +  int i;
   1.168 +  int iFirst;
   1.169 +
   1.170 +  assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold );
   1.171 +  i = iFirst = pChunk->aiFreelist[iLogsize];
   1.172 +  assert( iFirst>=0 );
   1.173 +  memsys6Unlink(pChunk, iFirst, iLogsize);
   1.174 +  return iFirst;
   1.175 +}
   1.176 +
   1.177 +static int roundupLog2(int n){
   1.178 +  static const char LogTable256[256] = {
   1.179 +    0,                                                    /* 1 */
   1.180 +    1,                                                    /* 2 */
   1.181 +    2, 2,                                                 /* 3..4 */
   1.182 +    3, 3, 3, 3,                                           /* 5..8 */
   1.183 +    4, 4, 4, 4, 4, 4, 4, 4,                               /* 9..16 */
   1.184 +    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,       /* 17..32 */
   1.185 +    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
   1.186 +    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,       /* 33..64 */
   1.187 +    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
   1.188 +    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
   1.189 +    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
   1.190 +    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,       /* 65..128 */
   1.191 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.192 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.193 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.194 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.195 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.196 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.197 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
   1.198 +    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,       /* 129..256 */
   1.199 +  };
   1.200 +
   1.201 +  assert(n<=(1<<16) && n>0);
   1.202 +  if( n<=256 ) return LogTable256[n-1];
   1.203 +  return LogTable256[(n>>8) - ((n&0xFF)?0:1)] + 8;
   1.204 +}
   1.205 +
   1.206 +/*
   1.207 +** Allocate and return a block of (pChunk->nAtom << iLogsize) bytes from chunk
   1.208 +** pChunk. If the allocation request cannot be satisfied, return 0.
   1.209 +*/
   1.210 +static void *chunkMalloc(Mem6Chunk *pChunk, int iLogsize){
   1.211 +  int i;           /* Index of a mem5.aPool[] slot */
   1.212 +  int iBin;        /* Index into mem5.aiFreelist[] */
   1.213 +
   1.214 +  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
   1.215 +  ** block.  If not, then split a block of the next larger power of
   1.216 +  ** two in order to create a new free block of size iLogsize.
   1.217 +  */
   1.218 +  for(iBin=iLogsize; pChunk->aiFreelist[iBin]<0 && iBin<=mem6.nLogThreshold; iBin++){}
   1.219 +  if( iBin>mem6.nLogThreshold ) return 0;
   1.220 +  i = memsys6UnlinkFirst(pChunk, iBin);
   1.221 +  while( iBin>iLogsize ){
   1.222 +    int newSize;
   1.223 +    iBin--;
   1.224 +    newSize = 1 << iBin;
   1.225 +    pChunk->aCtrl[i+newSize] = CTRL_FREE | iBin;
   1.226 +    memsys6Link(pChunk, i+newSize, iBin);
   1.227 +  }
   1.228 +  pChunk->aCtrl[i] = iLogsize;
   1.229 +
   1.230 +  /* Return a pointer to the allocated memory. */
   1.231 +  pChunk->nCheckedOut++;
   1.232 +  return (void*)&pChunk->zPool[i*pChunk->nAtom];
   1.233 +}
   1.234 +
   1.235 +/*
   1.236 +** Free the allocation pointed to by p, which is guaranteed to be non-zero
   1.237 +** and a part of chunk object pChunk.
   1.238 +*/
   1.239 +static void chunkFree(Mem6Chunk *pChunk, void *pOld){
   1.240 +  u32 size, iLogsize;
   1.241 +  int iBlock;             
   1.242 +
   1.243 +  /* Set iBlock to the index of the block pointed to by pOld in 
   1.244 +  ** the array of pChunk->nAtom byte blocks pointed to by pChunk->zPool.
   1.245 +  */
   1.246 +  iBlock = ((u8 *)pOld-pChunk->zPool)/pChunk->nAtom;
   1.247 +
   1.248 +  /* Check that the pointer pOld points to a valid, non-free block. */
   1.249 +  assert( iBlock>=0 && iBlock<pChunk->nBlock );
   1.250 +  assert( ((u8 *)pOld-pChunk->zPool)%pChunk->nAtom==0 );
   1.251 +  assert( (pChunk->aCtrl[iBlock] & CTRL_FREE)==0 );
   1.252 +
   1.253 +  iLogsize = pChunk->aCtrl[iBlock] & CTRL_LOGSIZE;
   1.254 +  size = 1<<iLogsize;
   1.255 +  assert( iBlock+size-1<pChunk->nBlock );
   1.256 +
   1.257 +  pChunk->aCtrl[iBlock] |= CTRL_FREE;
   1.258 +  pChunk->aCtrl[iBlock+size-1] |= CTRL_FREE;
   1.259 +
   1.260 +  pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize;
   1.261 +  while( iLogsize<mem6.nLogThreshold ){
   1.262 +    int iBuddy;
   1.263 +    if( (iBlock>>iLogsize) & 1 ){
   1.264 +      iBuddy = iBlock - size;
   1.265 +    }else{
   1.266 +      iBuddy = iBlock + size;
   1.267 +    }
   1.268 +    assert( iBuddy>=0 );
   1.269 +    if( (iBuddy+(1<<iLogsize))>pChunk->nBlock ) break;
   1.270 +    if( pChunk->aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
   1.271 +    memsys6Unlink(pChunk, iBuddy, iLogsize);
   1.272 +    iLogsize++;
   1.273 +    if( iBuddy<iBlock ){
   1.274 +      pChunk->aCtrl[iBuddy] = CTRL_FREE | iLogsize;
   1.275 +      pChunk->aCtrl[iBlock] = 0;
   1.276 +      iBlock = iBuddy;
   1.277 +    }else{
   1.278 +      pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize;
   1.279 +      pChunk->aCtrl[iBuddy] = 0;
   1.280 +    }
   1.281 +    size *= 2;
   1.282 +  }
   1.283 +  pChunk->nCheckedOut--;
   1.284 +  memsys6Link(pChunk, iBlock, iLogsize);
   1.285 +}
   1.286 +
   1.287 +/*
   1.288 +** Return the actual size of the block pointed to by p, which is guaranteed
   1.289 +** to have been allocated from chunk pChunk.
   1.290 +*/
   1.291 +static int chunkSize(Mem6Chunk *pChunk, void *p){
   1.292 +  int iSize = 0;
   1.293 +  if( p ){
   1.294 +    int i = ((u8 *)p-pChunk->zPool)/pChunk->nAtom;
   1.295 +    assert( i>=0 && i<pChunk->nBlock );
   1.296 +    iSize = pChunk->nAtom * (1 << (pChunk->aCtrl[i]&CTRL_LOGSIZE));
   1.297 +  }
   1.298 +  return iSize;
   1.299 +}
   1.300 +
   1.301 +/*
   1.302 +** Return true if there are currently no outstanding allocations.
   1.303 +*/
   1.304 +static int chunkIsEmpty(Mem6Chunk *pChunk){
   1.305 +  return (pChunk->nCheckedOut==0);
   1.306 +}
   1.307 +
   1.308 +/*
   1.309 +** Initialize the buffer zChunk, which is nChunk bytes in size, as
   1.310 +** an Mem6Chunk object. Return a copy of the zChunk pointer.
   1.311 +*/
   1.312 +static Mem6Chunk *chunkInit(u8 *zChunk, int nChunk, int nMinAlloc){
   1.313 +  int ii;
   1.314 +  int iOffset;
   1.315 +  Mem6Chunk *pChunk = (Mem6Chunk *)zChunk;
   1.316 +
   1.317 +  assert( nChunk>sizeof(Mem6Chunk) );
   1.318 +  assert( nMinAlloc>sizeof(Mem6Link) );
   1.319 +
   1.320 +  memset(pChunk, 0, sizeof(Mem6Chunk));
   1.321 +  pChunk->nAtom = nMinAlloc;
   1.322 +  pChunk->nBlock = ((nChunk-sizeof(Mem6Chunk)) / (pChunk->nAtom+sizeof(u8)));
   1.323 +
   1.324 +  pChunk->zPool = (u8 *)&pChunk[1];
   1.325 +  pChunk->aCtrl = &pChunk->zPool[pChunk->nBlock*pChunk->nAtom];
   1.326 +
   1.327 +  for(ii=0; ii<=mem6.nLogThreshold; ii++){
   1.328 +    pChunk->aiFreelist[ii] = -1;
   1.329 +  }
   1.330 +
   1.331 +  iOffset = 0;
   1.332 +  for(ii=mem6.nLogThreshold; ii>=0; ii--){
   1.333 +    int nAlloc = (1<<ii);
   1.334 +    while( (iOffset+nAlloc)<=pChunk->nBlock ){
   1.335 +      pChunk->aCtrl[iOffset] = ii | CTRL_FREE;
   1.336 +      memsys6Link(pChunk, iOffset, ii);
   1.337 +      iOffset += nAlloc;
   1.338 +    }
   1.339 +  }
   1.340 +
   1.341 +  return pChunk;
   1.342 +}
   1.343 +
   1.344 +
   1.345 +static void mem6Enter(void){
   1.346 +  sqlite3_mutex_enter(mem6.mutex);
   1.347 +}
   1.348 +
   1.349 +static void mem6Leave(void){
   1.350 +  sqlite3_mutex_leave(mem6.mutex);
   1.351 +}
   1.352 +
   1.353 +/*
   1.354 +** Based on the number and size of the currently allocated chunks, return
   1.355 +** the size of the next chunk to allocate, in bytes.
   1.356 +*/
   1.357 +static int nextChunkSize(void){
   1.358 +  int iTotal = MIN_CHUNKSIZE;
   1.359 +  Mem6Chunk *p;
   1.360 +  for(p=mem6.pChunk; p; p=p->pNext){
   1.361 +    iTotal = iTotal*2;
   1.362 +  }
   1.363 +  return iTotal;
   1.364 +}
   1.365 +
   1.366 +static void freeChunk(Mem6Chunk *pChunk){
   1.367 +  Mem6Chunk **pp = &mem6.pChunk;
   1.368 +  for( pp=&mem6.pChunk; *pp!=pChunk; pp = &(*pp)->pNext );
   1.369 +  *pp = (*pp)->pNext;
   1.370 +  free(pChunk);
   1.371 +}
   1.372 +
   1.373 +static void *memsys6Malloc(int nByte){
   1.374 +  Mem6Chunk *pChunk;
   1.375 +  void *p = 0;
   1.376 +  int nTotal = nByte+8;
   1.377 +  int iOffset = 0;
   1.378 +
   1.379 +  if( nTotal>mem6.nThreshold ){
   1.380 +    p = malloc(nTotal);
   1.381 +  }else{
   1.382 +    int iLogsize = 0;
   1.383 +    if( nTotal>(1<<LOG2_MINALLOC) ){
   1.384 +      iLogsize = roundupLog2(nTotal) - LOG2_MINALLOC;
   1.385 +    }
   1.386 +    mem6Enter();
   1.387 +    for(pChunk=mem6.pChunk; pChunk; pChunk=pChunk->pNext){
   1.388 +      p = chunkMalloc(pChunk, iLogsize);
   1.389 +      if( p ){
   1.390 +        break;
   1.391 +      }
   1.392 +    }
   1.393 +    if( !p ){
   1.394 +      int iSize = nextChunkSize();
   1.395 +      p = malloc(iSize);
   1.396 +      if( p ){
   1.397 +        pChunk = chunkInit((u8 *)p, iSize, mem6.nMinAlloc);
   1.398 +        pChunk->pNext = mem6.pChunk;
   1.399 +        mem6.pChunk = pChunk;
   1.400 +        p = chunkMalloc(pChunk, iLogsize);
   1.401 +        assert(p);
   1.402 +      }
   1.403 +    }
   1.404 +    iOffset = ((u8*)p - (u8*)pChunk);
   1.405 +    mem6Leave();
   1.406 +  }
   1.407 +
   1.408 +  if( !p ){
   1.409 +    return 0;
   1.410 +  }
   1.411 +  ((u32 *)p)[0] = iOffset;
   1.412 +  ((u32 *)p)[1] = nByte;
   1.413 +  return &((u32 *)p)[2];
   1.414 +}
   1.415 +
   1.416 +static int memsys6Size(void *pPrior){
   1.417 +  if( pPrior==0 ) return 0;
   1.418 +  return ((u32*)pPrior)[-1];
   1.419 +}
   1.420 +
   1.421 +static void memsys6Free(void *pPrior){
   1.422 +  int iSlot;
   1.423 +  void *p = &((u32 *)pPrior)[-2];
   1.424 +  iSlot = ((u32 *)p)[0];
   1.425 +  if( iSlot ){
   1.426 +    Mem6Chunk *pChunk;
   1.427 +    mem6Enter();
   1.428 +    pChunk = (Mem6Chunk *)(&((u8 *)p)[-1 * iSlot]);
   1.429 +    chunkFree(pChunk, p);
   1.430 +    if( chunkIsEmpty(pChunk) ){
   1.431 +      freeChunk(pChunk);
   1.432 +    }
   1.433 +    mem6Leave();
   1.434 +  }else{
   1.435 +    free(p);
   1.436 +  }
   1.437 +}
   1.438 +
   1.439 +static void *memsys6Realloc(void *p, int nByte){
   1.440 +  void *p2;
   1.441 +
   1.442 +  if( p && nByte<=memsys6Size(p) ){
   1.443 +    p2 = p;
   1.444 +  }else{
   1.445 +    p2 = memsys6Malloc(nByte);
   1.446 +    if( p && p2 ){
   1.447 +      memcpy(p2, p, memsys6Size(p));
   1.448 +      memsys6Free(p);
   1.449 +    }
   1.450 +  }
   1.451 +
   1.452 +  return p2;
   1.453 +}
   1.454 +
   1.455 +static int memsys6Roundup(int n){
   1.456 +  if( n>mem6.nThreshold ){
   1.457 +    return n;
   1.458 +  }else{
   1.459 +    return (1<<roundupLog2(n));
   1.460 +  }
   1.461 +}
   1.462 +
   1.463 +static int memsys6Init(void *pCtx){
   1.464 +  u8 bMemstat = sqlite3GlobalConfig.bMemstat;
   1.465 +  mem6.nMinAlloc = (1 << LOG2_MINALLOC);
   1.466 +  mem6.pChunk = 0;
   1.467 +  mem6.nThreshold = sqlite3GlobalConfig.nSmall;
   1.468 +  if( mem6.nThreshold<=0 ){
   1.469 +    mem6.nThreshold = SMALL_MALLOC_DEFAULT_THRESHOLD;
   1.470 +  }
   1.471 +  mem6.nLogThreshold = roundupLog2(mem6.nThreshold) - LOG2_MINALLOC;
   1.472 +  if( !bMemstat ){
   1.473 +    mem6.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   1.474 +  }
   1.475 +  return SQLITE_OK;
   1.476 +}
   1.477 +
   1.478 +static void memsys6Shutdown(void *pCtx){
   1.479 +  memset(&mem6, 0, sizeof(mem6));
   1.480 +}
   1.481 +
   1.482 +/*
   1.483 +** This routine is the only routine in this file with external 
   1.484 +** linkage. It returns a pointer to a static sqlite3_mem_methods
   1.485 +** struct populated with the memsys6 methods.
   1.486 +*/
   1.487 +const sqlite3_mem_methods *sqlite3MemGetMemsys6(void){
   1.488 +  static const sqlite3_mem_methods memsys6Methods = {
   1.489 +     memsys6Malloc,
   1.490 +     memsys6Free,
   1.491 +     memsys6Realloc,
   1.492 +     memsys6Size,
   1.493 +     memsys6Roundup,
   1.494 +     memsys6Init,
   1.495 +     memsys6Shutdown,
   1.496 +     0
   1.497 +  };
   1.498 +  return &memsys6Methods;
   1.499 +}
   1.500 +
   1.501 +#endif