os/persistentdata/persistentstorage/sql/SQLite364/mem4.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite364/mem4.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,393 @@
     1.4 +/*
     1.5 +** 2007 August 14
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** This file contains the C functions that implement a memory
    1.16 +** allocation subsystem for use by SQLite.  
    1.17 +**
    1.18 +** $Id: mem4.c,v 1.3 2008/06/18 17:09:10 danielk1977 Exp $
    1.19 +*/
    1.20 +#include "sqliteInt.h"
    1.21 +
    1.22 +/*
    1.23 +** This version of the memory allocator attempts to obtain memory
    1.24 +** from mmap() if the size of the allocation is close to the size
    1.25 +** of a virtual memory page.  If the size of the allocation is different
    1.26 +** from the virtual memory page size, then ordinary malloc() is used.
    1.27 +** Ordinary malloc is also used if space allocated to mmap() is
    1.28 +** exhausted.
    1.29 +**
    1.30 +** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn
    1.31 +** where nnn is the maximum number of bytes of mmap-ed memory you want 
    1.32 +** to support.   This module may choose to use less memory than requested.
    1.33 +**
    1.34 +*/
    1.35 +#ifdef SQLITE_MMAP_HEAP_SIZE
    1.36 +
    1.37 +/*
    1.38 +** This is a test version of the memory allocator that attempts to
    1.39 +** use mmap() and madvise() for allocations and frees of approximately
    1.40 +** the virtual memory page size.
    1.41 +*/
    1.42 +#include <sys/types.h>
    1.43 +#include <sys/mman.h>
    1.44 +#include <errno.h>
    1.45 +#include <unistd.h>
    1.46 +
    1.47 +
    1.48 +/*
    1.49 +** All of the static variables used by this module are collected
    1.50 +** into a single structure named "mem".  This is to keep the
    1.51 +** static variables organized and to reduce namespace pollution
    1.52 +** when this module is combined with other in the amalgamation.
    1.53 +*/
    1.54 +static struct {
    1.55 +  /*
    1.56 +  ** The alarm callback and its arguments.  The mem.mutex lock will
    1.57 +  ** be held while the callback is running.  Recursive calls into
    1.58 +  ** the memory subsystem are allowed, but no new callbacks will be
    1.59 +  ** issued.  The alarmBusy variable is set to prevent recursive
    1.60 +  ** callbacks.
    1.61 +  */
    1.62 +  sqlite3_int64 alarmThreshold;
    1.63 +  void (*alarmCallback)(void*, sqlite3_int64,int);
    1.64 +  void *alarmArg;
    1.65 +  int alarmBusy;
    1.66 +  
    1.67 +  /*
    1.68 +  ** Mutex to control access to the memory allocation subsystem.
    1.69 +  */
    1.70 +  sqlite3_mutex *mutex;
    1.71 +  
    1.72 +  /*
    1.73 +  ** Current allocation and high-water mark.
    1.74 +  */
    1.75 +  sqlite3_int64 nowUsed;
    1.76 +  sqlite3_int64 mxUsed;
    1.77 +
    1.78 +  /*
    1.79 +  ** Current allocation and high-water marks for mmap allocated memory.
    1.80 +  */
    1.81 +  sqlite3_int64 nowUsedMMap;
    1.82 +  sqlite3_int64 mxUsedMMap;
    1.83 +
    1.84 +  /*
    1.85 +  ** Size of a single mmap page.  Obtained from sysconf().
    1.86 +  */
    1.87 +  int szPage;
    1.88 +  int mnPage;
    1.89 +
    1.90 +  /*
    1.91 +  ** The number of available mmap pages.
    1.92 +  */
    1.93 +  int nPage;
    1.94 +
    1.95 +  /*
    1.96 +  ** Index of the first free page.  0 means no pages have been freed.
    1.97 +  */
    1.98 +  int firstFree;
    1.99 +
   1.100 +  /* First unused page on the top of the heap.
   1.101 +  */
   1.102 +  int firstUnused;
   1.103 +
   1.104 +  /*
   1.105 +  ** Bulk memory obtained from from mmap().
   1.106 +  */
   1.107 +  char *mmapHeap;   /* first byte of the heap */ 
   1.108 +
   1.109 +} mem;
   1.110 +
   1.111 +
   1.112 +/*
   1.113 +** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
   1.114 +** The mmap() region is initialized the first time this routine is called.
   1.115 +*/
   1.116 +static void memsys4Enter(void){
   1.117 +  if( mem.mutex==0 ){
   1.118 +    mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
   1.119 +  }
   1.120 +  sqlite3_mutex_enter(mem.mutex);
   1.121 +}
   1.122 +
   1.123 +/*
   1.124 +** Attempt to free memory to the mmap heap.  This only works if
   1.125 +** the pointer p is within the range of memory addresses that
   1.126 +** comprise the mmap heap.  Return 1 if the memory was freed
   1.127 +** successfully.  Return 0 if the pointer is out of range.
   1.128 +*/
   1.129 +static int mmapFree(void *p){
   1.130 +  char *z;
   1.131 +  int idx, *a;
   1.132 +  if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){
   1.133 +    return 0;
   1.134 +  }
   1.135 +  z = (char*)p;
   1.136 +  idx = (z - mem.mmapHeap)/mem.szPage;
   1.137 +  if( idx<1 || idx>=mem.nPage ){
   1.138 +    return 0;
   1.139 +  }
   1.140 +  a = (int*)mem.mmapHeap;
   1.141 +  a[idx] = a[mem.firstFree];
   1.142 +  mem.firstFree = idx;
   1.143 +  mem.nowUsedMMap -= mem.szPage;
   1.144 +  madvise(p, mem.szPage, MADV_DONTNEED);
   1.145 +  return 1;
   1.146 +}
   1.147 +
   1.148 +/*
   1.149 +** Attempt to allocate nBytes from the mmap heap.  Return a pointer
   1.150 +** to the allocated page.  Or, return NULL if the allocation fails.
   1.151 +** 
   1.152 +** The allocation will fail if nBytes is not the right size.
   1.153 +** Or, the allocation will fail if the mmap heap has been exhausted.
   1.154 +*/
   1.155 +static void *mmapAlloc(int nBytes){
   1.156 +  int idx = 0;
   1.157 +  if( nBytes>mem.szPage || nBytes<mem.mnPage ){
   1.158 +    return 0;
   1.159 +  }
   1.160 +  if( mem.nPage==0 ){
   1.161 +    mem.szPage = sysconf(_SC_PAGE_SIZE);
   1.162 +    mem.mnPage = mem.szPage - mem.szPage/10;
   1.163 +    mem.nPage = SQLITE_MMAP_HEAP_SIZE/mem.szPage;
   1.164 +    if( mem.nPage * sizeof(int) > mem.szPage ){
   1.165 +      mem.nPage = mem.szPage/sizeof(int);
   1.166 +    }
   1.167 +    mem.mmapHeap =  mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ,
   1.168 +                         MAP_ANONYMOUS|MAP_SHARED, -1, 0);
   1.169 +    if( mem.mmapHeap==MAP_FAILED ){
   1.170 +      mem.firstUnused = errno;
   1.171 +    }else{
   1.172 +      mem.firstUnused = 1;
   1.173 +      mem.nowUsedMMap = mem.szPage;
   1.174 +    }
   1.175 +  }
   1.176 +  if( mem.mmapHeap==MAP_FAILED ){
   1.177 +    return 0;
   1.178 +  }
   1.179 +  if( mem.firstFree ){
   1.180 +    int idx = mem.firstFree;
   1.181 +    int *a = (int*)mem.mmapHeap;
   1.182 +    mem.firstFree = a[idx];
   1.183 +  }else if( mem.firstUnused<mem.nPage ){
   1.184 +    idx = mem.firstUnused++;
   1.185 +  }
   1.186 +  if( idx ){
   1.187 +    mem.nowUsedMMap += mem.szPage;
   1.188 +    if( mem.nowUsedMMap>mem.mxUsedMMap ){
   1.189 +      mem.mxUsedMMap = mem.nowUsedMMap;
   1.190 +    }
   1.191 +    return (void*)&mem.mmapHeap[idx*mem.szPage];
   1.192 +  }else{
   1.193 +    return 0;
   1.194 +  }
   1.195 +}
   1.196 +
   1.197 +/*
   1.198 +** Release the mmap-ed memory region if it is currently allocated and
   1.199 +** is not in use.
   1.200 +*/
   1.201 +static void mmapUnmap(void){
   1.202 +  if( mem.mmapHeap==MAP_FAILED ) return;
   1.203 +  if( mem.nPage==0 ) return;
   1.204 +  if( mem.nowUsedMMap>mem.szPage ) return;
   1.205 +  munmap(mem.mmapHeap, mem.nPage*mem.szPage);
   1.206 +  mem.nowUsedMMap = 0;
   1.207 +  mem.nPage = 0;
   1.208 +}
   1.209 +    
   1.210 +
   1.211 +/*
   1.212 +** Return the amount of memory currently checked out.
   1.213 +*/
   1.214 +sqlite3_int64 sqlite3_memory_used(void){
   1.215 +  sqlite3_int64 n;
   1.216 +  memsys4Enter();
   1.217 +  n = mem.nowUsed + mem.nowUsedMMap;
   1.218 +  sqlite3_mutex_leave(mem.mutex);  
   1.219 +  return n;
   1.220 +}
   1.221 +
   1.222 +/*
   1.223 +** Return the maximum amount of memory that has ever been
   1.224 +** checked out since either the beginning of this process
   1.225 +** or since the most recent reset.
   1.226 +*/
   1.227 +sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
   1.228 +  sqlite3_int64 n;
   1.229 +  memsys4Enter();
   1.230 +  n = mem.mxUsed + mem.mxUsedMMap;
   1.231 +  if( resetFlag ){
   1.232 +    mem.mxUsed = mem.nowUsed;
   1.233 +    mem.mxUsedMMap = mem.nowUsedMMap;
   1.234 +  }
   1.235 +  sqlite3_mutex_leave(mem.mutex);  
   1.236 +  return n;
   1.237 +}
   1.238 +
   1.239 +/*
   1.240 +** Change the alarm callback
   1.241 +*/
   1.242 +int sqlite3_memory_alarm(
   1.243 +  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
   1.244 +  void *pArg,
   1.245 +  sqlite3_int64 iThreshold
   1.246 +){
   1.247 +  memsys4Enter();
   1.248 +  mem.alarmCallback = xCallback;
   1.249 +  mem.alarmArg = pArg;
   1.250 +  mem.alarmThreshold = iThreshold;
   1.251 +  sqlite3_mutex_leave(mem.mutex);
   1.252 +  return SQLITE_OK;
   1.253 +}
   1.254 +
   1.255 +/*
   1.256 +** Trigger the alarm 
   1.257 +*/
   1.258 +static void sqlite3MemsysAlarm(int nByte){
   1.259 +  void (*xCallback)(void*,sqlite3_int64,int);
   1.260 +  sqlite3_int64 nowUsed;
   1.261 +  void *pArg;
   1.262 +  if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
   1.263 +  mem.alarmBusy = 1;
   1.264 +  xCallback = mem.alarmCallback;
   1.265 +  nowUsed = mem.nowUsed;
   1.266 +  pArg = mem.alarmArg;
   1.267 +  sqlite3_mutex_leave(mem.mutex);
   1.268 +  xCallback(pArg, nowUsed, nByte);
   1.269 +  sqlite3_mutex_enter(mem.mutex);
   1.270 +  mem.alarmBusy = 0;
   1.271 +}
   1.272 +
   1.273 +/*
   1.274 +** Allocate nBytes of memory
   1.275 +*/
   1.276 +static void *memsys4Malloc(int nBytes){
   1.277 +  sqlite3_int64 *p = 0;
   1.278 +  if( mem.alarmCallback!=0
   1.279 +         && mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){
   1.280 +    sqlite3MemsysAlarm(nBytes);
   1.281 +  }
   1.282 +  if( (p = mmapAlloc(nBytes))==0 ){
   1.283 +    p = malloc(nBytes+8);
   1.284 +    if( p==0 ){
   1.285 +      sqlite3MemsysAlarm(nBytes);
   1.286 +      p = malloc(nBytes+8);
   1.287 +    }
   1.288 +    if( p ){
   1.289 +      p[0] = nBytes;
   1.290 +      p++;
   1.291 +      mem.nowUsed += nBytes;
   1.292 +      if( mem.nowUsed>mem.mxUsed ){
   1.293 +        mem.mxUsed = mem.nowUsed;
   1.294 +      }
   1.295 +    }
   1.296 +  }
   1.297 +  return (void*)p; 
   1.298 +}
   1.299 +
   1.300 +/*
   1.301 +** Return the size of a memory allocation
   1.302 +*/
   1.303 +static int memsys4Size(void *pPrior){
   1.304 +  char *z = (char*)pPrior;
   1.305 +  int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0;
   1.306 +  int nByte;
   1.307 +  if( idx>=1 && idx<mem.nPage ){
   1.308 +    nByte = mem.szPage;
   1.309 +  }else{
   1.310 +    sqlite3_int64 *p = pPrior;
   1.311 +    p--;
   1.312 +    nByte = (int)*p;
   1.313 +  }
   1.314 +  return nByte;
   1.315 +}
   1.316 +
   1.317 +/*
   1.318 +** Free memory.
   1.319 +*/
   1.320 +static void memsys4Free(void *pPrior){
   1.321 +  sqlite3_int64 *p;
   1.322 +  int nByte;
   1.323 +  if( mmapFree(pPrior)==0 ){
   1.324 +    p = pPrior;
   1.325 +    p--;
   1.326 +    nByte = (int)*p;
   1.327 +    mem.nowUsed -= nByte;
   1.328 +    free(p);
   1.329 +    if( mem.nowUsed==0 ){
   1.330 +      mmapUnmap();
   1.331 +    }      
   1.332 +  }
   1.333 +}
   1.334 +
   1.335 +/*
   1.336 +** Allocate nBytes of memory
   1.337 +*/
   1.338 +void *sqlite3_malloc(int nBytes){
   1.339 +  sqlite3_int64 *p = 0;
   1.340 +  if( nBytes>0 ){
   1.341 +    memsys4Enter();
   1.342 +    p = memsys4Malloc(nBytes);
   1.343 +    sqlite3_mutex_leave(mem.mutex);
   1.344 +  }
   1.345 +  return (void*)p; 
   1.346 +}
   1.347 +
   1.348 +/*
   1.349 +** Free memory.
   1.350 +*/
   1.351 +void sqlite3_free(void *pPrior){
   1.352 +  if( pPrior==0 ){
   1.353 +    return;
   1.354 +  }
   1.355 +  assert( mem.mutex!=0 );
   1.356 +  sqlite3_mutex_enter(mem.mutex);
   1.357 +  memsys4Free(pPrior);
   1.358 +  sqlite3_mutex_leave(mem.mutex);  
   1.359 +}
   1.360 +
   1.361 +
   1.362 +
   1.363 +/*
   1.364 +** Change the size of an existing memory allocation
   1.365 +*/
   1.366 +void *sqlite3_realloc(void *pPrior, int nBytes){
   1.367 +  int nOld;
   1.368 +  sqlite3_int64 *p;
   1.369 +  if( pPrior==0 ){
   1.370 +    return sqlite3_malloc(nBytes);
   1.371 +  }
   1.372 +  if( nBytes<=0 ){
   1.373 +    sqlite3_free(pPrior);
   1.374 +    return 0;
   1.375 +  }
   1.376 +  nOld = memsys4Size(pPrior);
   1.377 +  if( nBytes<=nOld && nBytes>=nOld-128 ){
   1.378 +    return pPrior;
   1.379 +  }
   1.380 +  assert( mem.mutex!=0 );
   1.381 +  sqlite3_mutex_enter(mem.mutex);
   1.382 +  p = memsys4Malloc(nBytes);
   1.383 +  if( p ){
   1.384 +    if( nOld<nBytes ){
   1.385 +      memcpy(p, pPrior, nOld);
   1.386 +    }else{
   1.387 +      memcpy(p, pPrior, nBytes);
   1.388 +    }
   1.389 +    memsys4Free(pPrior);
   1.390 +  }
   1.391 +  assert( mem.mutex!=0 );
   1.392 +  sqlite3_mutex_leave(mem.mutex);
   1.393 +  return (void*)p;
   1.394 +}
   1.395 +
   1.396 +#endif /* SQLITE_MMAP_HEAP_SIZE */