os/persistentdata/persistentstorage/sql/SQLite364/btree.c
changeset 0 bde4ae8d615e
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite364/btree.c	Fri Jun 15 03:10:57 2012 +0200
     1.3 @@ -0,0 +1,7414 @@
     1.4 +/*
     1.5 +** 2004 April 6
     1.6 +**
     1.7 +** The author disclaims copyright to this source code.  In place of
     1.8 +** a legal notice, here is a blessing:
     1.9 +**
    1.10 +**    May you do good and not evil.
    1.11 +**    May you find forgiveness for yourself and forgive others.
    1.12 +**    May you share freely, never taking more than you give.
    1.13 +**
    1.14 +*************************************************************************
    1.15 +** $Id: btree.c,v 1.525 2008/10/08 17:58:49 danielk1977 Exp $
    1.16 +**
    1.17 +** This file implements a external (disk-based) database using BTrees.
    1.18 +** See the header comment on "btreeInt.h" for additional information.
    1.19 +** Including a description of file format and an overview of operation.
    1.20 +*/
    1.21 +#include "btreeInt.h"
    1.22 +
    1.23 +/*
    1.24 +** The header string that appears at the beginning of every
    1.25 +** SQLite database.
    1.26 +*/
    1.27 +static const char zMagicHeader[] = SQLITE_FILE_HEADER;
    1.28 +
    1.29 +/*
    1.30 +** Set this global variable to 1 to enable tracing using the TRACE
    1.31 +** macro.
    1.32 +*/
    1.33 +#if 0
    1.34 +int sqlite3BtreeTrace=0;  /* True to enable tracing */
    1.35 +# define TRACE(X)  if(sqlite3BtreeTrace){printf X;fflush(stdout);}
    1.36 +#else
    1.37 +# define TRACE(X)
    1.38 +#endif
    1.39 +
    1.40 +/*
    1.41 +** Sometimes we need a small amount of code such as a variable initialization
    1.42 +** to setup for a later assert() statement.  We do not want this code to
    1.43 +** appear when assert() is disabled.  The following macro is therefore
    1.44 +** used to contain that setup code.  The "VVA" acronym stands for
    1.45 +** "Verification, Validation, and Accreditation".  In other words, the
    1.46 +** code within VVA_ONLY() will only run during verification processes.
    1.47 +*/
    1.48 +#ifndef NDEBUG
    1.49 +# define VVA_ONLY(X)  X
    1.50 +#else
    1.51 +# define VVA_ONLY(X)
    1.52 +#endif
    1.53 +
    1.54 +
    1.55 +
    1.56 +#ifndef SQLITE_OMIT_SHARED_CACHE
    1.57 +/*
    1.58 +** A list of BtShared objects that are eligible for participation
    1.59 +** in shared cache.  This variable has file scope during normal builds,
    1.60 +** but the test harness needs to access it so we make it global for 
    1.61 +** test builds.
    1.62 +*/
    1.63 +#ifdef SQLITE_TEST
    1.64 +BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
    1.65 +#else
    1.66 +static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
    1.67 +#endif
    1.68 +#endif /* SQLITE_OMIT_SHARED_CACHE */
    1.69 +
    1.70 +#ifndef SQLITE_OMIT_SHARED_CACHE
    1.71 +/*
    1.72 +** Enable or disable the shared pager and schema features.
    1.73 +**
    1.74 +** This routine has no effect on existing database connections.
    1.75 +** The shared cache setting effects only future calls to
    1.76 +** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
    1.77 +*/
    1.78 +int sqlite3_enable_shared_cache(int enable){
    1.79 +  sqlite3GlobalConfig.sharedCacheEnabled = enable;
    1.80 +  return SQLITE_OK;
    1.81 +}
    1.82 +#endif
    1.83 +
    1.84 +
    1.85 +/*
    1.86 +** Forward declaration
    1.87 +*/
    1.88 +static int checkReadLocks(Btree*, Pgno, BtCursor*, i64);
    1.89 +
    1.90 +
    1.91 +#ifdef SQLITE_OMIT_SHARED_CACHE
    1.92 +  /*
    1.93 +  ** The functions queryTableLock(), lockTable() and unlockAllTables()
    1.94 +  ** manipulate entries in the BtShared.pLock linked list used to store
    1.95 +  ** shared-cache table level locks. If the library is compiled with the
    1.96 +  ** shared-cache feature disabled, then there is only ever one user
    1.97 +  ** of each BtShared structure and so this locking is not necessary. 
    1.98 +  ** So define the lock related functions as no-ops.
    1.99 +  */
   1.100 +  #define queryTableLock(a,b,c) SQLITE_OK
   1.101 +  #define lockTable(a,b,c) SQLITE_OK
   1.102 +  #define unlockAllTables(a)
   1.103 +#endif
   1.104 +
   1.105 +#ifndef SQLITE_OMIT_SHARED_CACHE
   1.106 +/*
   1.107 +** Query to see if btree handle p may obtain a lock of type eLock 
   1.108 +** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
   1.109 +** SQLITE_OK if the lock may be obtained (by calling lockTable()), or
   1.110 +** SQLITE_LOCKED if not.
   1.111 +*/
   1.112 +static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){
   1.113 +  BtShared *pBt = p->pBt;
   1.114 +  BtLock *pIter;
   1.115 +
   1.116 +  assert( sqlite3BtreeHoldsMutex(p) );
   1.117 +  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
   1.118 +  assert( p->db!=0 );
   1.119 +  
   1.120 +  /* This is a no-op if the shared-cache is not enabled */
   1.121 +  if( !p->sharable ){
   1.122 +    return SQLITE_OK;
   1.123 +  }
   1.124 +
   1.125 +  /* If some other connection is holding an exclusive lock, the
   1.126 +  ** requested lock may not be obtained.
   1.127 +  */
   1.128 +  if( pBt->pExclusive && pBt->pExclusive!=p ){
   1.129 +    return SQLITE_LOCKED;
   1.130 +  }
   1.131 +
   1.132 +  /* This (along with lockTable()) is where the ReadUncommitted flag is
   1.133 +  ** dealt with. If the caller is querying for a read-lock and the flag is
   1.134 +  ** set, it is unconditionally granted - even if there are write-locks
   1.135 +  ** on the table. If a write-lock is requested, the ReadUncommitted flag
   1.136 +  ** is not considered.
   1.137 +  **
   1.138 +  ** In function lockTable(), if a read-lock is demanded and the 
   1.139 +  ** ReadUncommitted flag is set, no entry is added to the locks list 
   1.140 +  ** (BtShared.pLock).
   1.141 +  **
   1.142 +  ** To summarize: If the ReadUncommitted flag is set, then read cursors do
   1.143 +  ** not create or respect table locks. The locking procedure for a 
   1.144 +  ** write-cursor does not change.
   1.145 +  */
   1.146 +  if( 
   1.147 +    0==(p->db->flags&SQLITE_ReadUncommitted) || 
   1.148 +    eLock==WRITE_LOCK ||
   1.149 +    iTab==MASTER_ROOT
   1.150 +  ){
   1.151 +    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
   1.152 +      if( pIter->pBtree!=p && pIter->iTable==iTab && 
   1.153 +          (pIter->eLock!=eLock || eLock!=READ_LOCK) ){
   1.154 +        return SQLITE_LOCKED;
   1.155 +      }
   1.156 +    }
   1.157 +  }
   1.158 +  return SQLITE_OK;
   1.159 +}
   1.160 +#endif /* !SQLITE_OMIT_SHARED_CACHE */
   1.161 +
   1.162 +#ifndef SQLITE_OMIT_SHARED_CACHE
   1.163 +/*
   1.164 +** Add a lock on the table with root-page iTable to the shared-btree used
   1.165 +** by Btree handle p. Parameter eLock must be either READ_LOCK or 
   1.166 +** WRITE_LOCK.
   1.167 +**
   1.168 +** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
   1.169 +** SQLITE_NOMEM may also be returned.
   1.170 +*/
   1.171 +static int lockTable(Btree *p, Pgno iTable, u8 eLock){
   1.172 +  BtShared *pBt = p->pBt;
   1.173 +  BtLock *pLock = 0;
   1.174 +  BtLock *pIter;
   1.175 +
   1.176 +  assert( sqlite3BtreeHoldsMutex(p) );
   1.177 +  assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
   1.178 +  assert( p->db!=0 );
   1.179 +
   1.180 +  /* This is a no-op if the shared-cache is not enabled */
   1.181 +  if( !p->sharable ){
   1.182 +    return SQLITE_OK;
   1.183 +  }
   1.184 +
   1.185 +  assert( SQLITE_OK==queryTableLock(p, iTable, eLock) );
   1.186 +
   1.187 +  /* If the read-uncommitted flag is set and a read-lock is requested,
   1.188 +  ** return early without adding an entry to the BtShared.pLock list. See
   1.189 +  ** comment in function queryTableLock() for more info on handling 
   1.190 +  ** the ReadUncommitted flag.
   1.191 +  */
   1.192 +  if( 
   1.193 +    (p->db->flags&SQLITE_ReadUncommitted) && 
   1.194 +    (eLock==READ_LOCK) &&
   1.195 +    iTable!=MASTER_ROOT
   1.196 +  ){
   1.197 +    return SQLITE_OK;
   1.198 +  }
   1.199 +
   1.200 +  /* First search the list for an existing lock on this table. */
   1.201 +  for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
   1.202 +    if( pIter->iTable==iTable && pIter->pBtree==p ){
   1.203 +      pLock = pIter;
   1.204 +      break;
   1.205 +    }
   1.206 +  }
   1.207 +
   1.208 +  /* If the above search did not find a BtLock struct associating Btree p
   1.209 +  ** with table iTable, allocate one and link it into the list.
   1.210 +  */
   1.211 +  if( !pLock ){
   1.212 +    pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
   1.213 +    if( !pLock ){
   1.214 +      return SQLITE_NOMEM;
   1.215 +    }
   1.216 +    pLock->iTable = iTable;
   1.217 +    pLock->pBtree = p;
   1.218 +    pLock->pNext = pBt->pLock;
   1.219 +    pBt->pLock = pLock;
   1.220 +  }
   1.221 +
   1.222 +  /* Set the BtLock.eLock variable to the maximum of the current lock
   1.223 +  ** and the requested lock. This means if a write-lock was already held
   1.224 +  ** and a read-lock requested, we don't incorrectly downgrade the lock.
   1.225 +  */
   1.226 +  assert( WRITE_LOCK>READ_LOCK );
   1.227 +  if( eLock>pLock->eLock ){
   1.228 +    pLock->eLock = eLock;
   1.229 +  }
   1.230 +
   1.231 +  return SQLITE_OK;
   1.232 +}
   1.233 +#endif /* !SQLITE_OMIT_SHARED_CACHE */
   1.234 +
   1.235 +#ifndef SQLITE_OMIT_SHARED_CACHE
   1.236 +/*
   1.237 +** Release all the table locks (locks obtained via calls to the lockTable()
   1.238 +** procedure) held by Btree handle p.
   1.239 +*/
   1.240 +static void unlockAllTables(Btree *p){
   1.241 +  BtShared *pBt = p->pBt;
   1.242 +  BtLock **ppIter = &pBt->pLock;
   1.243 +
   1.244 +  assert( sqlite3BtreeHoldsMutex(p) );
   1.245 +  assert( p->sharable || 0==*ppIter );
   1.246 +
   1.247 +  while( *ppIter ){
   1.248 +    BtLock *pLock = *ppIter;
   1.249 +    assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree );
   1.250 +    if( pLock->pBtree==p ){
   1.251 +      *ppIter = pLock->pNext;
   1.252 +      sqlite3_free(pLock);
   1.253 +    }else{
   1.254 +      ppIter = &pLock->pNext;
   1.255 +    }
   1.256 +  }
   1.257 +
   1.258 +  if( pBt->pExclusive==p ){
   1.259 +    pBt->pExclusive = 0;
   1.260 +  }
   1.261 +}
   1.262 +#endif /* SQLITE_OMIT_SHARED_CACHE */
   1.263 +
   1.264 +static void releasePage(MemPage *pPage);  /* Forward reference */
   1.265 +
   1.266 +/*
   1.267 +** Verify that the cursor holds a mutex on the BtShared
   1.268 +*/
   1.269 +#ifndef NDEBUG
   1.270 +static int cursorHoldsMutex(BtCursor *p){
   1.271 +  return sqlite3_mutex_held(p->pBt->mutex);
   1.272 +}
   1.273 +#endif
   1.274 +
   1.275 +
   1.276 +#ifndef SQLITE_OMIT_INCRBLOB
   1.277 +/*
   1.278 +** Invalidate the overflow page-list cache for cursor pCur, if any.
   1.279 +*/
   1.280 +static void invalidateOverflowCache(BtCursor *pCur){
   1.281 +  assert( cursorHoldsMutex(pCur) );
   1.282 +  sqlite3_free(pCur->aOverflow);
   1.283 +  pCur->aOverflow = 0;
   1.284 +}
   1.285 +
   1.286 +/*
   1.287 +** Invalidate the overflow page-list cache for all cursors opened
   1.288 +** on the shared btree structure pBt.
   1.289 +*/
   1.290 +static void invalidateAllOverflowCache(BtShared *pBt){
   1.291 +  BtCursor *p;
   1.292 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.293 +  for(p=pBt->pCursor; p; p=p->pNext){
   1.294 +    invalidateOverflowCache(p);
   1.295 +  }
   1.296 +}
   1.297 +#else
   1.298 +  #define invalidateOverflowCache(x)
   1.299 +  #define invalidateAllOverflowCache(x)
   1.300 +#endif
   1.301 +
   1.302 +/*
   1.303 +** Save the current cursor position in the variables BtCursor.nKey 
   1.304 +** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
   1.305 +*/
   1.306 +static int saveCursorPosition(BtCursor *pCur){
   1.307 +  int rc;
   1.308 +
   1.309 +  assert( CURSOR_VALID==pCur->eState );
   1.310 +  assert( 0==pCur->pKey );
   1.311 +  assert( cursorHoldsMutex(pCur) );
   1.312 +
   1.313 +  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
   1.314 +
   1.315 +  /* If this is an intKey table, then the above call to BtreeKeySize()
   1.316 +  ** stores the integer key in pCur->nKey. In this case this value is
   1.317 +  ** all that is required. Otherwise, if pCur is not open on an intKey
   1.318 +  ** table, then malloc space for and store the pCur->nKey bytes of key 
   1.319 +  ** data.
   1.320 +  */
   1.321 +  if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
   1.322 +    void *pKey = sqlite3Malloc(pCur->nKey);
   1.323 +    if( pKey ){
   1.324 +      rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey);
   1.325 +      if( rc==SQLITE_OK ){
   1.326 +        pCur->pKey = pKey;
   1.327 +      }else{
   1.328 +        sqlite3_free(pKey);
   1.329 +      }
   1.330 +    }else{
   1.331 +      rc = SQLITE_NOMEM;
   1.332 +    }
   1.333 +  }
   1.334 +  assert( !pCur->apPage[0]->intKey || !pCur->pKey );
   1.335 +
   1.336 +  if( rc==SQLITE_OK ){
   1.337 +    int i;
   1.338 +    for(i=0; i<=pCur->iPage; i++){
   1.339 +      releasePage(pCur->apPage[i]);
   1.340 +      pCur->apPage[i] = 0;
   1.341 +    }
   1.342 +    pCur->iPage = -1;
   1.343 +    pCur->eState = CURSOR_REQUIRESEEK;
   1.344 +  }
   1.345 +
   1.346 +  invalidateOverflowCache(pCur);
   1.347 +  return rc;
   1.348 +}
   1.349 +
   1.350 +/*
   1.351 +** Save the positions of all cursors except pExcept open on the table 
   1.352 +** with root-page iRoot. Usually, this is called just before cursor
   1.353 +** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
   1.354 +*/
   1.355 +static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
   1.356 +  BtCursor *p;
   1.357 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.358 +  assert( pExcept==0 || pExcept->pBt==pBt );
   1.359 +  for(p=pBt->pCursor; p; p=p->pNext){
   1.360 +    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && 
   1.361 +        p->eState==CURSOR_VALID ){
   1.362 +      int rc = saveCursorPosition(p);
   1.363 +      if( SQLITE_OK!=rc ){
   1.364 +        return rc;
   1.365 +      }
   1.366 +    }
   1.367 +  }
   1.368 +  return SQLITE_OK;
   1.369 +}
   1.370 +
   1.371 +/*
   1.372 +** Clear the current cursor position.
   1.373 +*/
   1.374 +void sqlite3BtreeClearCursor(BtCursor *pCur){
   1.375 +  assert( cursorHoldsMutex(pCur) );
   1.376 +  sqlite3_free(pCur->pKey);
   1.377 +  pCur->pKey = 0;
   1.378 +  pCur->eState = CURSOR_INVALID;
   1.379 +}
   1.380 +
   1.381 +/*
   1.382 +** Restore the cursor to the position it was in (or as close to as possible)
   1.383 +** when saveCursorPosition() was called. Note that this call deletes the 
   1.384 +** saved position info stored by saveCursorPosition(), so there can be
   1.385 +** at most one effective restoreCursorPosition() call after each 
   1.386 +** saveCursorPosition().
   1.387 +*/
   1.388 +int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
   1.389 +  int rc;
   1.390 +  assert( cursorHoldsMutex(pCur) );
   1.391 +  assert( pCur->eState>=CURSOR_REQUIRESEEK );
   1.392 +  if( pCur->eState==CURSOR_FAULT ){
   1.393 +    return pCur->skip;
   1.394 +  }
   1.395 +  pCur->eState = CURSOR_INVALID;
   1.396 +  rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
   1.397 +  if( rc==SQLITE_OK ){
   1.398 +    sqlite3_free(pCur->pKey);
   1.399 +    pCur->pKey = 0;
   1.400 +    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
   1.401 +  }
   1.402 +  return rc;
   1.403 +}
   1.404 +
   1.405 +#define restoreCursorPosition(p) \
   1.406 +  (p->eState>=CURSOR_REQUIRESEEK ? \
   1.407 +         sqlite3BtreeRestoreCursorPosition(p) : \
   1.408 +         SQLITE_OK)
   1.409 +
   1.410 +/*
   1.411 +** Determine whether or not a cursor has moved from the position it
   1.412 +** was last placed at.  Cursor can move when the row they are pointing
   1.413 +** at is deleted out from under them.
   1.414 +**
   1.415 +** This routine returns an error code if something goes wrong.  The
   1.416 +** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
   1.417 +*/
   1.418 +int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
   1.419 +  int rc;
   1.420 +
   1.421 +  rc = restoreCursorPosition(pCur);
   1.422 +  if( rc ){
   1.423 +    *pHasMoved = 1;
   1.424 +    return rc;
   1.425 +  }
   1.426 +  if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
   1.427 +    *pHasMoved = 1;
   1.428 +  }else{
   1.429 +    *pHasMoved = 0;
   1.430 +  }
   1.431 +  return SQLITE_OK;
   1.432 +}
   1.433 +
   1.434 +#ifndef SQLITE_OMIT_AUTOVACUUM
   1.435 +/*
   1.436 +** Given a page number of a regular database page, return the page
   1.437 +** number for the pointer-map page that contains the entry for the
   1.438 +** input page number.
   1.439 +*/
   1.440 +static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
   1.441 +  int nPagesPerMapPage, iPtrMap, ret;
   1.442 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.443 +  nPagesPerMapPage = (pBt->usableSize/5)+1;
   1.444 +  iPtrMap = (pgno-2)/nPagesPerMapPage;
   1.445 +  ret = (iPtrMap*nPagesPerMapPage) + 2; 
   1.446 +  if( ret==PENDING_BYTE_PAGE(pBt) ){
   1.447 +    ret++;
   1.448 +  }
   1.449 +  return ret;
   1.450 +}
   1.451 +
   1.452 +/*
   1.453 +** Write an entry into the pointer map.
   1.454 +**
   1.455 +** This routine updates the pointer map entry for page number 'key'
   1.456 +** so that it maps to type 'eType' and parent page number 'pgno'.
   1.457 +** An error code is returned if something goes wrong, otherwise SQLITE_OK.
   1.458 +*/
   1.459 +static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
   1.460 +  DbPage *pDbPage;  /* The pointer map page */
   1.461 +  u8 *pPtrmap;      /* The pointer map data */
   1.462 +  Pgno iPtrmap;     /* The pointer map page number */
   1.463 +  int offset;       /* Offset in pointer map page */
   1.464 +  int rc;
   1.465 +
   1.466 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.467 +  /* The master-journal page number must never be used as a pointer map page */
   1.468 +  assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
   1.469 +
   1.470 +  assert( pBt->autoVacuum );
   1.471 +  if( key==0 ){
   1.472 +    return SQLITE_CORRUPT_BKPT;
   1.473 +  }
   1.474 +  iPtrmap = PTRMAP_PAGENO(pBt, key);
   1.475 +  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
   1.476 +  if( rc!=SQLITE_OK ){
   1.477 +    return rc;
   1.478 +  }
   1.479 +  offset = PTRMAP_PTROFFSET(iPtrmap, key);
   1.480 +  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
   1.481 +
   1.482 +  if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
   1.483 +    TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
   1.484 +    rc = sqlite3PagerWrite(pDbPage);
   1.485 +    if( rc==SQLITE_OK ){
   1.486 +      pPtrmap[offset] = eType;
   1.487 +      put4byte(&pPtrmap[offset+1], parent);
   1.488 +    }
   1.489 +  }
   1.490 +
   1.491 +  sqlite3PagerUnref(pDbPage);
   1.492 +  return rc;
   1.493 +}
   1.494 +
   1.495 +/*
   1.496 +** Read an entry from the pointer map.
   1.497 +**
   1.498 +** This routine retrieves the pointer map entry for page 'key', writing
   1.499 +** the type and parent page number to *pEType and *pPgno respectively.
   1.500 +** An error code is returned if something goes wrong, otherwise SQLITE_OK.
   1.501 +*/
   1.502 +static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
   1.503 +  DbPage *pDbPage;   /* The pointer map page */
   1.504 +  int iPtrmap;       /* Pointer map page index */
   1.505 +  u8 *pPtrmap;       /* Pointer map page data */
   1.506 +  int offset;        /* Offset of entry in pointer map */
   1.507 +  int rc;
   1.508 +
   1.509 +  assert( sqlite3_mutex_held(pBt->mutex) );
   1.510 +
   1.511 +  iPtrmap = PTRMAP_PAGENO(pBt, key);
   1.512 +  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
   1.513 +  if( rc!=0 ){
   1.514 +    return rc;
   1.515 +  }
   1.516 +  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
   1.517 +
   1.518 +  offset = PTRMAP_PTROFFSET(iPtrmap, key);
   1.519 +  assert( pEType!=0 );
   1.520 +  *pEType = pPtrmap[offset];
   1.521 +  if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
   1.522 +
   1.523 +  sqlite3PagerUnref(pDbPage);
   1.524 +  if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
   1.525 +  return SQLITE_OK;
   1.526 +}
   1.527 +
   1.528 +#else /* if defined SQLITE_OMIT_AUTOVACUUM */
   1.529 +  #define ptrmapPut(w,x,y,z) SQLITE_OK
   1.530 +  #define ptrmapGet(w,x,y,z) SQLITE_OK
   1.531 +  #define ptrmapPutOvfl(y,z) SQLITE_OK
   1.532 +#endif
   1.533 +
   1.534 +/*
   1.535 +** Given a btree page and a cell index (0 means the first cell on
   1.536 +** the page, 1 means the second cell, and so forth) return a pointer
   1.537 +** to the cell content.
   1.538 +**
   1.539 +** This routine works only for pages that do not contain overflow cells.
   1.540 +*/
   1.541 +#define findCell(P,I) \
   1.542 +  ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
   1.543 +
   1.544 +/*
   1.545 +** This a more complex version of findCell() that works for
   1.546 +** pages that do contain overflow cells.  See insert
   1.547 +*/
   1.548 +static u8 *findOverflowCell(MemPage *pPage, int iCell){
   1.549 +  int i;
   1.550 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.551 +  for(i=pPage->nOverflow-1; i>=0; i--){
   1.552 +    int k;
   1.553 +    struct _OvflCell *pOvfl;
   1.554 +    pOvfl = &pPage->aOvfl[i];
   1.555 +    k = pOvfl->idx;
   1.556 +    if( k<=iCell ){
   1.557 +      if( k==iCell ){
   1.558 +        return pOvfl->pCell;
   1.559 +      }
   1.560 +      iCell--;
   1.561 +    }
   1.562 +  }
   1.563 +  return findCell(pPage, iCell);
   1.564 +}
   1.565 +
   1.566 +/*
   1.567 +** Parse a cell content block and fill in the CellInfo structure.  There
   1.568 +** are two versions of this function.  sqlite3BtreeParseCell() takes a 
   1.569 +** cell index as the second argument and sqlite3BtreeParseCellPtr() 
   1.570 +** takes a pointer to the body of the cell as its second argument.
   1.571 +**
   1.572 +** Within this file, the parseCell() macro can be called instead of
   1.573 +** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
   1.574 +*/
   1.575 +void sqlite3BtreeParseCellPtr(
   1.576 +  MemPage *pPage,         /* Page containing the cell */
   1.577 +  u8 *pCell,              /* Pointer to the cell text. */
   1.578 +  CellInfo *pInfo         /* Fill in this structure */
   1.579 +){
   1.580 +  int n;                  /* Number bytes in cell content header */
   1.581 +  u32 nPayload;           /* Number of bytes of cell payload */
   1.582 +
   1.583 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.584 +
   1.585 +  pInfo->pCell = pCell;
   1.586 +  assert( pPage->leaf==0 || pPage->leaf==1 );
   1.587 +  n = pPage->childPtrSize;
   1.588 +  assert( n==4-4*pPage->leaf );
   1.589 +  if( pPage->intKey ){
   1.590 +    if( pPage->hasData ){
   1.591 +      n += getVarint32(&pCell[n], nPayload);
   1.592 +    }else{
   1.593 +      nPayload = 0;
   1.594 +    }
   1.595 +    n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
   1.596 +    pInfo->nData = nPayload;
   1.597 +  }else{
   1.598 +    pInfo->nData = 0;
   1.599 +    n += getVarint32(&pCell[n], nPayload);
   1.600 +    pInfo->nKey = nPayload;
   1.601 +  }
   1.602 +  pInfo->nPayload = nPayload;
   1.603 +  pInfo->nHeader = n;
   1.604 +  if( likely(nPayload<=pPage->maxLocal) ){
   1.605 +    /* This is the (easy) common case where the entire payload fits
   1.606 +    ** on the local page.  No overflow is required.
   1.607 +    */
   1.608 +    int nSize;          /* Total size of cell content in bytes */
   1.609 +    nSize = nPayload + n;
   1.610 +    pInfo->nLocal = nPayload;
   1.611 +    pInfo->iOverflow = 0;
   1.612 +    if( (nSize & ~3)==0 ){
   1.613 +      nSize = 4;        /* Minimum cell size is 4 */
   1.614 +    }
   1.615 +    pInfo->nSize = nSize;
   1.616 +  }else{
   1.617 +    /* If the payload will not fit completely on the local page, we have
   1.618 +    ** to decide how much to store locally and how much to spill onto
   1.619 +    ** overflow pages.  The strategy is to minimize the amount of unused
   1.620 +    ** space on overflow pages while keeping the amount of local storage
   1.621 +    ** in between minLocal and maxLocal.
   1.622 +    **
   1.623 +    ** Warning:  changing the way overflow payload is distributed in any
   1.624 +    ** way will result in an incompatible file format.
   1.625 +    */
   1.626 +    int minLocal;  /* Minimum amount of payload held locally */
   1.627 +    int maxLocal;  /* Maximum amount of payload held locally */
   1.628 +    int surplus;   /* Overflow payload available for local storage */
   1.629 +
   1.630 +    minLocal = pPage->minLocal;
   1.631 +    maxLocal = pPage->maxLocal;
   1.632 +    surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
   1.633 +    if( surplus <= maxLocal ){
   1.634 +      pInfo->nLocal = surplus;
   1.635 +    }else{
   1.636 +      pInfo->nLocal = minLocal;
   1.637 +    }
   1.638 +    pInfo->iOverflow = pInfo->nLocal + n;
   1.639 +    pInfo->nSize = pInfo->iOverflow + 4;
   1.640 +  }
   1.641 +}
   1.642 +#define parseCell(pPage, iCell, pInfo) \
   1.643 +  sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
   1.644 +void sqlite3BtreeParseCell(
   1.645 +  MemPage *pPage,         /* Page containing the cell */
   1.646 +  int iCell,              /* The cell index.  First cell is 0 */
   1.647 +  CellInfo *pInfo         /* Fill in this structure */
   1.648 +){
   1.649 +  parseCell(pPage, iCell, pInfo);
   1.650 +}
   1.651 +
   1.652 +/*
   1.653 +** Compute the total number of bytes that a Cell needs in the cell
   1.654 +** data area of the btree-page.  The return number includes the cell
   1.655 +** data header and the local payload, but not any overflow page or
   1.656 +** the space used by the cell pointer.
   1.657 +*/
   1.658 +#ifndef NDEBUG
   1.659 +static u16 cellSize(MemPage *pPage, int iCell){
   1.660 +  CellInfo info;
   1.661 +  sqlite3BtreeParseCell(pPage, iCell, &info);
   1.662 +  return info.nSize;
   1.663 +}
   1.664 +#endif
   1.665 +static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
   1.666 +  CellInfo info;
   1.667 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
   1.668 +  return info.nSize;
   1.669 +}
   1.670 +
   1.671 +#ifndef SQLITE_OMIT_AUTOVACUUM
   1.672 +/*
   1.673 +** If the cell pCell, part of page pPage contains a pointer
   1.674 +** to an overflow page, insert an entry into the pointer-map
   1.675 +** for the overflow page.
   1.676 +*/
   1.677 +static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
   1.678 +  CellInfo info;
   1.679 +  assert( pCell!=0 );
   1.680 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
   1.681 +  assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
   1.682 +  if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
   1.683 +    Pgno ovfl = get4byte(&pCell[info.iOverflow]);
   1.684 +    return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
   1.685 +  }
   1.686 +  return SQLITE_OK;
   1.687 +}
   1.688 +/*
   1.689 +** If the cell with index iCell on page pPage contains a pointer
   1.690 +** to an overflow page, insert an entry into the pointer-map
   1.691 +** for the overflow page.
   1.692 +*/
   1.693 +static int ptrmapPutOvfl(MemPage *pPage, int iCell){
   1.694 +  u8 *pCell;
   1.695 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.696 +  pCell = findOverflowCell(pPage, iCell);
   1.697 +  return ptrmapPutOvflPtr(pPage, pCell);
   1.698 +}
   1.699 +#endif
   1.700 +
   1.701 +
   1.702 +/*
   1.703 +** Defragment the page given.  All Cells are moved to the
   1.704 +** end of the page and all free space is collected into one
   1.705 +** big FreeBlk that occurs in between the header and cell
   1.706 +** pointer array and the cell content area.
   1.707 +*/
   1.708 +static int defragmentPage(MemPage *pPage){
   1.709 +  int i;                     /* Loop counter */
   1.710 +  int pc;                    /* Address of a i-th cell */
   1.711 +  int addr;                  /* Offset of first byte after cell pointer array */
   1.712 +  int hdr;                   /* Offset to the page header */
   1.713 +  int size;                  /* Size of a cell */
   1.714 +  int usableSize;            /* Number of usable bytes on a page */
   1.715 +  int cellOffset;            /* Offset to the cell pointer array */
   1.716 +  int cbrk;                  /* Offset to the cell content area */
   1.717 +  int nCell;                 /* Number of cells on the page */
   1.718 +  unsigned char *data;       /* The page data */
   1.719 +  unsigned char *temp;       /* Temp area for cell content */
   1.720 +
   1.721 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   1.722 +  assert( pPage->pBt!=0 );
   1.723 +  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
   1.724 +  assert( pPage->nOverflow==0 );
   1.725 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.726 +  temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
   1.727 +  data = pPage->aData;
   1.728 +  hdr = pPage->hdrOffset;
   1.729 +  cellOffset = pPage->cellOffset;
   1.730 +  nCell = pPage->nCell;
   1.731 +  assert( nCell==get2byte(&data[hdr+3]) );
   1.732 +  usableSize = pPage->pBt->usableSize;
   1.733 +  cbrk = get2byte(&data[hdr+5]);
   1.734 +  memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
   1.735 +  cbrk = usableSize;
   1.736 +  for(i=0; i<nCell; i++){
   1.737 +    u8 *pAddr;     /* The i-th cell pointer */
   1.738 +    pAddr = &data[cellOffset + i*2];
   1.739 +    pc = get2byte(pAddr);
   1.740 +    if( pc>=usableSize ){
   1.741 +      return SQLITE_CORRUPT_BKPT;
   1.742 +    }
   1.743 +    size = cellSizePtr(pPage, &temp[pc]);
   1.744 +    cbrk -= size;
   1.745 +    if( cbrk<cellOffset+2*nCell || pc+size>usableSize ){
   1.746 +      return SQLITE_CORRUPT_BKPT;
   1.747 +    }
   1.748 +    assert( cbrk+size<=usableSize && cbrk>=0 );
   1.749 +    memcpy(&data[cbrk], &temp[pc], size);
   1.750 +    put2byte(pAddr, cbrk);
   1.751 +  }
   1.752 +  assert( cbrk>=cellOffset+2*nCell );
   1.753 +  put2byte(&data[hdr+5], cbrk);
   1.754 +  data[hdr+1] = 0;
   1.755 +  data[hdr+2] = 0;
   1.756 +  data[hdr+7] = 0;
   1.757 +  addr = cellOffset+2*nCell;
   1.758 +  memset(&data[addr], 0, cbrk-addr);
   1.759 +  if( cbrk-addr!=pPage->nFree ){
   1.760 +    return SQLITE_CORRUPT_BKPT;
   1.761 +  }
   1.762 +  return SQLITE_OK;
   1.763 +}
   1.764 +
   1.765 +/*
   1.766 +** Allocate nByte bytes of space on a page.
   1.767 +**
   1.768 +** Return the index into pPage->aData[] of the first byte of
   1.769 +** the new allocation.  The caller guarantees that there is enough
   1.770 +** space.  This routine will never fail.
   1.771 +**
   1.772 +** If the page contains nBytes of free space but does not contain
   1.773 +** nBytes of contiguous free space, then this routine automatically
   1.774 +** calls defragementPage() to consolidate all free space before 
   1.775 +** allocating the new chunk.
   1.776 +*/
   1.777 +static int allocateSpace(MemPage *pPage, int nByte){
   1.778 +  int addr, pc, hdr;
   1.779 +  int size;
   1.780 +  int nFrag;
   1.781 +  int top;
   1.782 +  int nCell;
   1.783 +  int cellOffset;
   1.784 +  unsigned char *data;
   1.785 +  
   1.786 +  data = pPage->aData;
   1.787 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   1.788 +  assert( pPage->pBt );
   1.789 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.790 +  assert( nByte>=0 );  /* Minimum cell size is 4 */
   1.791 +  assert( pPage->nFree>=nByte );
   1.792 +  assert( pPage->nOverflow==0 );
   1.793 +  pPage->nFree -= nByte;
   1.794 +  hdr = pPage->hdrOffset;
   1.795 +
   1.796 +  nFrag = data[hdr+7];
   1.797 +  if( nFrag<60 ){
   1.798 +    /* Search the freelist looking for a slot big enough to satisfy the
   1.799 +    ** space request. */
   1.800 +    addr = hdr+1;
   1.801 +    while( (pc = get2byte(&data[addr]))>0 ){
   1.802 +      size = get2byte(&data[pc+2]);
   1.803 +      if( size>=nByte ){
   1.804 +        if( size<nByte+4 ){
   1.805 +          memcpy(&data[addr], &data[pc], 2);
   1.806 +          data[hdr+7] = nFrag + size - nByte;
   1.807 +          return pc;
   1.808 +        }else{
   1.809 +          put2byte(&data[pc+2], size-nByte);
   1.810 +          return pc + size - nByte;
   1.811 +        }
   1.812 +      }
   1.813 +      addr = pc;
   1.814 +    }
   1.815 +  }
   1.816 +
   1.817 +  /* Allocate memory from the gap in between the cell pointer array
   1.818 +  ** and the cell content area.
   1.819 +  */
   1.820 +  top = get2byte(&data[hdr+5]);
   1.821 +  nCell = get2byte(&data[hdr+3]);
   1.822 +  cellOffset = pPage->cellOffset;
   1.823 +  if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
   1.824 +    defragmentPage(pPage);
   1.825 +    top = get2byte(&data[hdr+5]);
   1.826 +  }
   1.827 +  top -= nByte;
   1.828 +  assert( cellOffset + 2*nCell <= top );
   1.829 +  put2byte(&data[hdr+5], top);
   1.830 +  return top;
   1.831 +}
   1.832 +
   1.833 +/*
   1.834 +** Return a section of the pPage->aData to the freelist.
   1.835 +** The first byte of the new free block is pPage->aDisk[start]
   1.836 +** and the size of the block is "size" bytes.
   1.837 +**
   1.838 +** Most of the effort here is involved in coalesing adjacent
   1.839 +** free blocks into a single big free block.
   1.840 +*/
   1.841 +static int freeSpace(MemPage *pPage, int start, int size){
   1.842 +  int addr, pbegin, hdr;
   1.843 +  unsigned char *data = pPage->aData;
   1.844 +
   1.845 +  assert( pPage->pBt!=0 );
   1.846 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
   1.847 +  assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
   1.848 +  assert( (start + size)<=pPage->pBt->usableSize );
   1.849 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.850 +  assert( size>=0 );   /* Minimum cell size is 4 */
   1.851 +
   1.852 +#ifdef SQLITE_SECURE_DELETE
   1.853 +  /* Overwrite deleted information with zeros when the SECURE_DELETE 
   1.854 +  ** option is enabled at compile-time */
   1.855 +  memset(&data[start], 0, size);
   1.856 +#endif
   1.857 +
   1.858 +  /* Add the space back into the linked list of freeblocks */
   1.859 +  hdr = pPage->hdrOffset;
   1.860 +  addr = hdr + 1;
   1.861 +  while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
   1.862 +    assert( pbegin<=pPage->pBt->usableSize-4 );
   1.863 +    if( pbegin<=addr ) return SQLITE_CORRUPT_BKPT;
   1.864 +    addr = pbegin;
   1.865 +  }
   1.866 +  if( pbegin>pPage->pBt->usableSize-4 ) return SQLITE_CORRUPT_BKPT;
   1.867 +  assert( pbegin>addr || pbegin==0 );
   1.868 +  put2byte(&data[addr], start);
   1.869 +  put2byte(&data[start], pbegin);
   1.870 +  put2byte(&data[start+2], size);
   1.871 +  pPage->nFree += size;
   1.872 +
   1.873 +  /* Coalesce adjacent free blocks */
   1.874 +  addr = pPage->hdrOffset + 1;
   1.875 +  while( (pbegin = get2byte(&data[addr]))>0 ){
   1.876 +    int pnext, psize;
   1.877 +    assert( pbegin>addr );
   1.878 +    assert( pbegin<=pPage->pBt->usableSize-4 );
   1.879 +    pnext = get2byte(&data[pbegin]);
   1.880 +    psize = get2byte(&data[pbegin+2]);
   1.881 +    if( pbegin + psize + 3 >= pnext && pnext>0 ){
   1.882 +      int frag = pnext - (pbegin+psize);
   1.883 +      if( frag<0 || frag>data[pPage->hdrOffset+7] ) return SQLITE_CORRUPT_BKPT;
   1.884 +      data[pPage->hdrOffset+7] -= frag;
   1.885 +      put2byte(&data[pbegin], get2byte(&data[pnext]));
   1.886 +      put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
   1.887 +    }else{
   1.888 +      addr = pbegin;
   1.889 +    }
   1.890 +  }
   1.891 +
   1.892 +  /* If the cell content area begins with a freeblock, remove it. */
   1.893 +  if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
   1.894 +    int top;
   1.895 +    pbegin = get2byte(&data[hdr+1]);
   1.896 +    memcpy(&data[hdr+1], &data[pbegin], 2);
   1.897 +    top = get2byte(&data[hdr+5]);
   1.898 +    put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
   1.899 +  }
   1.900 +  return SQLITE_OK;
   1.901 +}
   1.902 +
   1.903 +/*
   1.904 +** Decode the flags byte (the first byte of the header) for a page
   1.905 +** and initialize fields of the MemPage structure accordingly.
   1.906 +**
   1.907 +** Only the following combinations are supported.  Anything different
   1.908 +** indicates a corrupt database files:
   1.909 +**
   1.910 +**         PTF_ZERODATA
   1.911 +**         PTF_ZERODATA | PTF_LEAF
   1.912 +**         PTF_LEAFDATA | PTF_INTKEY
   1.913 +**         PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
   1.914 +*/
   1.915 +static int decodeFlags(MemPage *pPage, int flagByte){
   1.916 +  BtShared *pBt;     /* A copy of pPage->pBt */
   1.917 +
   1.918 +  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
   1.919 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.920 +  pPage->leaf = flagByte>>3;  assert( PTF_LEAF == 1<<3 );
   1.921 +  flagByte &= ~PTF_LEAF;
   1.922 +  pPage->childPtrSize = 4-4*pPage->leaf;
   1.923 +  pBt = pPage->pBt;
   1.924 +  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
   1.925 +    pPage->intKey = 1;
   1.926 +    pPage->hasData = pPage->leaf;
   1.927 +    pPage->maxLocal = pBt->maxLeaf;
   1.928 +    pPage->minLocal = pBt->minLeaf;
   1.929 +  }else if( flagByte==PTF_ZERODATA ){
   1.930 +    pPage->intKey = 0;
   1.931 +    pPage->hasData = 0;
   1.932 +    pPage->maxLocal = pBt->maxLocal;
   1.933 +    pPage->minLocal = pBt->minLocal;
   1.934 +  }else{
   1.935 +    return SQLITE_CORRUPT_BKPT;
   1.936 +  }
   1.937 +  return SQLITE_OK;
   1.938 +}
   1.939 +
   1.940 +/*
   1.941 +** Initialize the auxiliary information for a disk block.
   1.942 +**
   1.943 +** Return SQLITE_OK on success.  If we see that the page does
   1.944 +** not contain a well-formed database page, then return 
   1.945 +** SQLITE_CORRUPT.  Note that a return of SQLITE_OK does not
   1.946 +** guarantee that the page is well-formed.  It only shows that
   1.947 +** we failed to detect any corruption.
   1.948 +*/
   1.949 +int sqlite3BtreeInitPage(MemPage *pPage){
   1.950 +
   1.951 +  assert( pPage->pBt!=0 );
   1.952 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
   1.953 +  assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
   1.954 +  assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
   1.955 +  assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
   1.956 +
   1.957 +  if( !pPage->isInit ){
   1.958 +    int pc;            /* Address of a freeblock within pPage->aData[] */
   1.959 +    int hdr;           /* Offset to beginning of page header */
   1.960 +    u8 *data;          /* Equal to pPage->aData */
   1.961 +    BtShared *pBt;        /* The main btree structure */
   1.962 +    int usableSize;    /* Amount of usable space on each page */
   1.963 +    int cellOffset;    /* Offset from start of page to first cell pointer */
   1.964 +    int nFree;         /* Number of unused bytes on the page */
   1.965 +    int top;           /* First byte of the cell content area */
   1.966 +
   1.967 +    pBt = pPage->pBt;
   1.968 +
   1.969 +    hdr = pPage->hdrOffset;
   1.970 +    data = pPage->aData;
   1.971 +    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
   1.972 +    assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
   1.973 +    pPage->maskPage = pBt->pageSize - 1;
   1.974 +    pPage->nOverflow = 0;
   1.975 +    usableSize = pBt->usableSize;
   1.976 +    pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
   1.977 +    top = get2byte(&data[hdr+5]);
   1.978 +    pPage->nCell = get2byte(&data[hdr+3]);
   1.979 +    if( pPage->nCell>MX_CELL(pBt) ){
   1.980 +      /* To many cells for a single page.  The page must be corrupt */
   1.981 +      return SQLITE_CORRUPT_BKPT;
   1.982 +    }
   1.983 +  
   1.984 +    /* Compute the total free space on the page */
   1.985 +    pc = get2byte(&data[hdr+1]);
   1.986 +    nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
   1.987 +    while( pc>0 ){
   1.988 +      int next, size;
   1.989 +      if( pc>usableSize-4 ){
   1.990 +        /* Free block is off the page */
   1.991 +        return SQLITE_CORRUPT_BKPT; 
   1.992 +      }
   1.993 +      next = get2byte(&data[pc]);
   1.994 +      size = get2byte(&data[pc+2]);
   1.995 +      if( next>0 && next<=pc+size+3 ){
   1.996 +        /* Free blocks must be in accending order */
   1.997 +        return SQLITE_CORRUPT_BKPT; 
   1.998 +      }
   1.999 +      nFree += size;
  1.1000 +      pc = next;
  1.1001 +    }
  1.1002 +    pPage->nFree = nFree;
  1.1003 +    if( nFree>=usableSize ){
  1.1004 +      /* Free space cannot exceed total page size */
  1.1005 +      return SQLITE_CORRUPT_BKPT; 
  1.1006 +    }
  1.1007 +
  1.1008 +#if 0
  1.1009 +  /* Check that all the offsets in the cell offset array are within range. 
  1.1010 +  ** 
  1.1011 +  ** Omitting this consistency check and using the pPage->maskPage mask
  1.1012 +  ** to prevent overrunning the page buffer in findCell() results in a
  1.1013 +  ** 2.5% performance gain.
  1.1014 +  */
  1.1015 +  {
  1.1016 +    u8 *pOff;        /* Iterator used to check all cell offsets are in range */
  1.1017 +    u8 *pEnd;        /* Pointer to end of cell offset array */
  1.1018 +    u8 mask;         /* Mask of bits that must be zero in MSB of cell offsets */
  1.1019 +    mask = ~(((u8)(pBt->pageSize>>8))-1);
  1.1020 +    pEnd = &data[cellOffset + pPage->nCell*2];
  1.1021 +    for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
  1.1022 +    if( pOff!=pEnd ){
  1.1023 +      return SQLITE_CORRUPT_BKPT;
  1.1024 +    }
  1.1025 +  }
  1.1026 +#endif
  1.1027 +
  1.1028 +    pPage->isInit = 1;
  1.1029 +  }
  1.1030 +  return SQLITE_OK;
  1.1031 +}
  1.1032 +
  1.1033 +/*
  1.1034 +** Set up a raw page so that it looks like a database page holding
  1.1035 +** no entries.
  1.1036 +*/
  1.1037 +static void zeroPage(MemPage *pPage, int flags){
  1.1038 +  unsigned char *data = pPage->aData;
  1.1039 +  BtShared *pBt = pPage->pBt;
  1.1040 +  int hdr = pPage->hdrOffset;
  1.1041 +  int first;
  1.1042 +
  1.1043 +  assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
  1.1044 +  assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  1.1045 +  assert( sqlite3PagerGetData(pPage->pDbPage) == data );
  1.1046 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1.1047 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1048 +  /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
  1.1049 +  data[hdr] = flags;
  1.1050 +  first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
  1.1051 +  memset(&data[hdr+1], 0, 4);
  1.1052 +  data[hdr+7] = 0;
  1.1053 +  put2byte(&data[hdr+5], pBt->usableSize);
  1.1054 +  pPage->nFree = pBt->usableSize - first;
  1.1055 +  decodeFlags(pPage, flags);
  1.1056 +  pPage->hdrOffset = hdr;
  1.1057 +  pPage->cellOffset = first;
  1.1058 +  pPage->nOverflow = 0;
  1.1059 +  assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
  1.1060 +  pPage->maskPage = pBt->pageSize - 1;
  1.1061 +  pPage->nCell = 0;
  1.1062 +  pPage->isInit = 1;
  1.1063 +}
  1.1064 +
  1.1065 +
  1.1066 +/*
  1.1067 +** Convert a DbPage obtained from the pager into a MemPage used by
  1.1068 +** the btree layer.
  1.1069 +*/
  1.1070 +static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  1.1071 +  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  1.1072 +  pPage->aData = sqlite3PagerGetData(pDbPage);
  1.1073 +  pPage->pDbPage = pDbPage;
  1.1074 +  pPage->pBt = pBt;
  1.1075 +  pPage->pgno = pgno;
  1.1076 +  pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
  1.1077 +  return pPage; 
  1.1078 +}
  1.1079 +
  1.1080 +/*
  1.1081 +** Get a page from the pager.  Initialize the MemPage.pBt and
  1.1082 +** MemPage.aData elements if needed.
  1.1083 +**
  1.1084 +** If the noContent flag is set, it means that we do not care about
  1.1085 +** the content of the page at this time.  So do not go to the disk
  1.1086 +** to fetch the content.  Just fill in the content with zeros for now.
  1.1087 +** If in the future we call sqlite3PagerWrite() on this page, that
  1.1088 +** means we have started to be concerned about content and the disk
  1.1089 +** read should occur at that point.
  1.1090 +*/
  1.1091 +int sqlite3BtreeGetPage(
  1.1092 +  BtShared *pBt,       /* The btree */
  1.1093 +  Pgno pgno,           /* Number of the page to fetch */
  1.1094 +  MemPage **ppPage,    /* Return the page in this parameter */
  1.1095 +  int noContent        /* Do not load page content if true */
  1.1096 +){
  1.1097 +  int rc;
  1.1098 +  DbPage *pDbPage;
  1.1099 +
  1.1100 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1101 +  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
  1.1102 +  if( rc ) return rc;
  1.1103 +  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  1.1104 +  return SQLITE_OK;
  1.1105 +}
  1.1106 +
  1.1107 +/*
  1.1108 +** Return the size of the database file in pages.  Or return -1 if
  1.1109 +** there is any kind of error.
  1.1110 +*/
  1.1111 +static int pagerPagecount(Pager *pPager){
  1.1112 +  int rc;
  1.1113 +  int nPage;
  1.1114 +  rc = sqlite3PagerPagecount(pPager, &nPage);
  1.1115 +  return (rc==SQLITE_OK?nPage:-1);
  1.1116 +}
  1.1117 +
  1.1118 +/*
  1.1119 +** Get a page from the pager and initialize it.  This routine
  1.1120 +** is just a convenience wrapper around separate calls to
  1.1121 +** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
  1.1122 +*/
  1.1123 +static int getAndInitPage(
  1.1124 +  BtShared *pBt,          /* The database file */
  1.1125 +  Pgno pgno,           /* Number of the page to get */
  1.1126 +  MemPage **ppPage     /* Write the page pointer here */
  1.1127 +){
  1.1128 +  int rc;
  1.1129 +  DbPage *pDbPage;
  1.1130 +  MemPage *pPage;
  1.1131 +
  1.1132 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1133 +  if( pgno==0 ){
  1.1134 +    return SQLITE_CORRUPT_BKPT; 
  1.1135 +  }
  1.1136 +
  1.1137 +  /* It is often the case that the page we want is already in cache.
  1.1138 +  ** If so, get it directly.  This saves us from having to call
  1.1139 +  ** pagerPagecount() to make sure pgno is within limits, which results
  1.1140 +  ** in a measureable performance improvements.
  1.1141 +  */
  1.1142 +  pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
  1.1143 +  if( pDbPage ){
  1.1144 +    /* Page is already in cache */
  1.1145 +    *ppPage = pPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  1.1146 +    rc = SQLITE_OK;
  1.1147 +  }else{
  1.1148 +    /* Page not in cache.  Acquire it. */
  1.1149 +    if( pgno>pagerPagecount(pBt->pPager) ){
  1.1150 +      return SQLITE_CORRUPT_BKPT; 
  1.1151 +    }
  1.1152 +    rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
  1.1153 +    if( rc ) return rc;
  1.1154 +    pPage = *ppPage;
  1.1155 +  }
  1.1156 +  if( !pPage->isInit ){
  1.1157 +    rc = sqlite3BtreeInitPage(pPage);
  1.1158 +  }
  1.1159 +  if( rc!=SQLITE_OK ){
  1.1160 +    releasePage(pPage);
  1.1161 +    *ppPage = 0;
  1.1162 +  }
  1.1163 +  return rc;
  1.1164 +}
  1.1165 +
  1.1166 +/*
  1.1167 +** Release a MemPage.  This should be called once for each prior
  1.1168 +** call to sqlite3BtreeGetPage.
  1.1169 +*/
  1.1170 +static void releasePage(MemPage *pPage){
  1.1171 +  if( pPage ){
  1.1172 +    assert( pPage->aData );
  1.1173 +    assert( pPage->pBt );
  1.1174 +    assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
  1.1175 +    assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
  1.1176 +    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.1177 +    sqlite3PagerUnref(pPage->pDbPage);
  1.1178 +  }
  1.1179 +}
  1.1180 +
  1.1181 +/*
  1.1182 +** During a rollback, when the pager reloads information into the cache
  1.1183 +** so that the cache is restored to its original state at the start of
  1.1184 +** the transaction, for each page restored this routine is called.
  1.1185 +**
  1.1186 +** This routine needs to reset the extra data section at the end of the
  1.1187 +** page to agree with the restored data.
  1.1188 +*/
  1.1189 +static void pageReinit(DbPage *pData){
  1.1190 +  MemPage *pPage;
  1.1191 +  pPage = (MemPage *)sqlite3PagerGetExtra(pData);
  1.1192 +  if( pPage->isInit ){
  1.1193 +    assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.1194 +    pPage->isInit = 0;
  1.1195 +    if( sqlite3PagerPageRefcount(pData)>0 ){
  1.1196 +      sqlite3BtreeInitPage(pPage);
  1.1197 +    }
  1.1198 +  }
  1.1199 +}
  1.1200 +
  1.1201 +/*
  1.1202 +** Invoke the busy handler for a btree.
  1.1203 +*/
  1.1204 +static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){
  1.1205 +  BtShared *pBt = (BtShared*)pArg;
  1.1206 +  assert( pBt->db );
  1.1207 +  assert( sqlite3_mutex_held(pBt->db->mutex) );
  1.1208 +  return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
  1.1209 +}
  1.1210 +
  1.1211 +/*
  1.1212 +** Open a database file.
  1.1213 +** 
  1.1214 +** zFilename is the name of the database file.  If zFilename is NULL
  1.1215 +** a new database with a random name is created.  This randomly named
  1.1216 +** database file will be deleted when sqlite3BtreeClose() is called.
  1.1217 +** If zFilename is ":memory:" then an in-memory database is created
  1.1218 +** that is automatically destroyed when it is closed.
  1.1219 +*/
  1.1220 +int sqlite3BtreeOpen(
  1.1221 +  const char *zFilename,  /* Name of the file containing the BTree database */
  1.1222 +  sqlite3 *db,            /* Associated database handle */
  1.1223 +  Btree **ppBtree,        /* Pointer to new Btree object written here */
  1.1224 +  int flags,              /* Options */
  1.1225 +  int vfsFlags            /* Flags passed through to sqlite3_vfs.xOpen() */
  1.1226 +){
  1.1227 +  sqlite3_vfs *pVfs;      /* The VFS to use for this btree */
  1.1228 +  BtShared *pBt = 0;      /* Shared part of btree structure */
  1.1229 +  Btree *p;               /* Handle to return */
  1.1230 +  int rc = SQLITE_OK;
  1.1231 +  int nReserve;
  1.1232 +  unsigned char zDbHeader[100];
  1.1233 +
  1.1234 +  /* Set the variable isMemdb to true for an in-memory database, or 
  1.1235 +  ** false for a file-based database. This symbol is only required if
  1.1236 +  ** either of the shared-data or autovacuum features are compiled 
  1.1237 +  ** into the library.
  1.1238 +  */
  1.1239 +#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
  1.1240 +  #ifdef SQLITE_OMIT_MEMORYDB
  1.1241 +    const int isMemdb = 0;
  1.1242 +  #else
  1.1243 +    const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
  1.1244 +  #endif
  1.1245 +#endif
  1.1246 +
  1.1247 +  assert( db!=0 );
  1.1248 +  assert( sqlite3_mutex_held(db->mutex) );
  1.1249 +
  1.1250 +  pVfs = db->pVfs;
  1.1251 +  p = sqlite3MallocZero(sizeof(Btree));
  1.1252 +  if( !p ){
  1.1253 +    return SQLITE_NOMEM;
  1.1254 +  }
  1.1255 +  p->inTrans = TRANS_NONE;
  1.1256 +  p->db = db;
  1.1257 +
  1.1258 +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1.1259 +  /*
  1.1260 +  ** If this Btree is a candidate for shared cache, try to find an
  1.1261 +  ** existing BtShared object that we can share with
  1.1262 +  */
  1.1263 +  if( isMemdb==0
  1.1264 +   && (db->flags & SQLITE_Vtab)==0
  1.1265 +   && zFilename && zFilename[0]
  1.1266 +  ){
  1.1267 +    if( sqlite3GlobalConfig.sharedCacheEnabled ){
  1.1268 +      int nFullPathname = pVfs->mxPathname+1;
  1.1269 +      char *zFullPathname = sqlite3Malloc(nFullPathname);
  1.1270 +      sqlite3_mutex *mutexShared;
  1.1271 +      p->sharable = 1;
  1.1272 +      db->flags |= SQLITE_SharedCache;
  1.1273 +      if( !zFullPathname ){
  1.1274 +        sqlite3_free(p);
  1.1275 +        return SQLITE_NOMEM;
  1.1276 +      }
  1.1277 +      sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
  1.1278 +      mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1.1279 +      sqlite3_mutex_enter(mutexShared);
  1.1280 +      for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
  1.1281 +        assert( pBt->nRef>0 );
  1.1282 +        if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
  1.1283 +                 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
  1.1284 +          p->pBt = pBt;
  1.1285 +          pBt->nRef++;
  1.1286 +          break;
  1.1287 +        }
  1.1288 +      }
  1.1289 +      sqlite3_mutex_leave(mutexShared);
  1.1290 +      sqlite3_free(zFullPathname);
  1.1291 +    }
  1.1292 +#ifdef SQLITE_DEBUG
  1.1293 +    else{
  1.1294 +      /* In debug mode, we mark all persistent databases as sharable
  1.1295 +      ** even when they are not.  This exercises the locking code and
  1.1296 +      ** gives more opportunity for asserts(sqlite3_mutex_held())
  1.1297 +      ** statements to find locking problems.
  1.1298 +      */
  1.1299 +      p->sharable = 1;
  1.1300 +    }
  1.1301 +#endif
  1.1302 +  }
  1.1303 +#endif
  1.1304 +  if( pBt==0 ){
  1.1305 +    /*
  1.1306 +    ** The following asserts make sure that structures used by the btree are
  1.1307 +    ** the right size.  This is to guard against size changes that result
  1.1308 +    ** when compiling on a different architecture.
  1.1309 +    */
  1.1310 +    assert( sizeof(i64)==8 || sizeof(i64)==4 );
  1.1311 +    assert( sizeof(u64)==8 || sizeof(u64)==4 );
  1.1312 +    assert( sizeof(u32)==4 );
  1.1313 +    assert( sizeof(u16)==2 );
  1.1314 +    assert( sizeof(Pgno)==4 );
  1.1315 +  
  1.1316 +    pBt = sqlite3MallocZero( sizeof(*pBt) );
  1.1317 +    if( pBt==0 ){
  1.1318 +      rc = SQLITE_NOMEM;
  1.1319 +      goto btree_open_out;
  1.1320 +    }
  1.1321 +    pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler;
  1.1322 +    pBt->busyHdr.pArg = pBt;
  1.1323 +    rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
  1.1324 +                          EXTRA_SIZE, flags, vfsFlags);
  1.1325 +    if( rc==SQLITE_OK ){
  1.1326 +      rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
  1.1327 +    }
  1.1328 +    if( rc!=SQLITE_OK ){
  1.1329 +      goto btree_open_out;
  1.1330 +    }
  1.1331 +    sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr);
  1.1332 +    p->pBt = pBt;
  1.1333 +  
  1.1334 +    sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
  1.1335 +    pBt->pCursor = 0;
  1.1336 +    pBt->pPage1 = 0;
  1.1337 +    pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
  1.1338 +    pBt->pageSize = get2byte(&zDbHeader[16]);
  1.1339 +    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
  1.1340 +         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
  1.1341 +      pBt->pageSize = 0;
  1.1342 +      sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1343 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1344 +      /* If the magic name ":memory:" will create an in-memory database, then
  1.1345 +      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
  1.1346 +      ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
  1.1347 +      ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
  1.1348 +      ** regular file-name. In this case the auto-vacuum applies as per normal.
  1.1349 +      */
  1.1350 +      if( zFilename && !isMemdb ){
  1.1351 +        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
  1.1352 +        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
  1.1353 +      }
  1.1354 +#endif
  1.1355 +      nReserve = 0;
  1.1356 +    }else{
  1.1357 +      nReserve = zDbHeader[20];
  1.1358 +      pBt->pageSizeFixed = 1;
  1.1359 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1360 +      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
  1.1361 +      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
  1.1362 +#endif
  1.1363 +    }
  1.1364 +    pBt->usableSize = pBt->pageSize - nReserve;
  1.1365 +    assert( (pBt->pageSize & 7)==0 );  /* 8-byte alignment of pageSize */
  1.1366 +    sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1367 +   
  1.1368 +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1.1369 +    /* Add the new BtShared object to the linked list sharable BtShareds.
  1.1370 +    */
  1.1371 +    if( p->sharable ){
  1.1372 +      sqlite3_mutex *mutexShared;
  1.1373 +      pBt->nRef = 1;
  1.1374 +      mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1.1375 +      if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
  1.1376 +        pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
  1.1377 +        if( pBt->mutex==0 ){
  1.1378 +          rc = SQLITE_NOMEM;
  1.1379 +          db->mallocFailed = 0;
  1.1380 +          goto btree_open_out;
  1.1381 +        }
  1.1382 +      }
  1.1383 +      sqlite3_mutex_enter(mutexShared);
  1.1384 +      pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
  1.1385 +      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
  1.1386 +      sqlite3_mutex_leave(mutexShared);
  1.1387 +    }
  1.1388 +#endif
  1.1389 +  }
  1.1390 +
  1.1391 +#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  1.1392 +  /* If the new Btree uses a sharable pBtShared, then link the new
  1.1393 +  ** Btree into the list of all sharable Btrees for the same connection.
  1.1394 +  ** The list is kept in ascending order by pBt address.
  1.1395 +  */
  1.1396 +  if( p->sharable ){
  1.1397 +    int i;
  1.1398 +    Btree *pSib;
  1.1399 +    for(i=0; i<db->nDb; i++){
  1.1400 +      if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
  1.1401 +        while( pSib->pPrev ){ pSib = pSib->pPrev; }
  1.1402 +        if( p->pBt<pSib->pBt ){
  1.1403 +          p->pNext = pSib;
  1.1404 +          p->pPrev = 0;
  1.1405 +          pSib->pPrev = p;
  1.1406 +        }else{
  1.1407 +          while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
  1.1408 +            pSib = pSib->pNext;
  1.1409 +          }
  1.1410 +          p->pNext = pSib->pNext;
  1.1411 +          p->pPrev = pSib;
  1.1412 +          if( p->pNext ){
  1.1413 +            p->pNext->pPrev = p;
  1.1414 +          }
  1.1415 +          pSib->pNext = p;
  1.1416 +        }
  1.1417 +        break;
  1.1418 +      }
  1.1419 +    }
  1.1420 +  }
  1.1421 +#endif
  1.1422 +  *ppBtree = p;
  1.1423 +
  1.1424 +btree_open_out:
  1.1425 +  if( rc!=SQLITE_OK ){
  1.1426 +    if( pBt && pBt->pPager ){
  1.1427 +      sqlite3PagerClose(pBt->pPager);
  1.1428 +    }
  1.1429 +    sqlite3_free(pBt);
  1.1430 +    sqlite3_free(p);
  1.1431 +    *ppBtree = 0;
  1.1432 +  }
  1.1433 +  return rc;
  1.1434 +}
  1.1435 +
  1.1436 +/*
  1.1437 +** Decrement the BtShared.nRef counter.  When it reaches zero,
  1.1438 +** remove the BtShared structure from the sharing list.  Return
  1.1439 +** true if the BtShared.nRef counter reaches zero and return
  1.1440 +** false if it is still positive.
  1.1441 +*/
  1.1442 +static int removeFromSharingList(BtShared *pBt){
  1.1443 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.1444 +  sqlite3_mutex *pMaster;
  1.1445 +  BtShared *pList;
  1.1446 +  int removed = 0;
  1.1447 +
  1.1448 +  assert( sqlite3_mutex_notheld(pBt->mutex) );
  1.1449 +  pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
  1.1450 +  sqlite3_mutex_enter(pMaster);
  1.1451 +  pBt->nRef--;
  1.1452 +  if( pBt->nRef<=0 ){
  1.1453 +    if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
  1.1454 +      GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
  1.1455 +    }else{
  1.1456 +      pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
  1.1457 +      while( ALWAYS(pList) && pList->pNext!=pBt ){
  1.1458 +        pList=pList->pNext;
  1.1459 +      }
  1.1460 +      if( ALWAYS(pList) ){
  1.1461 +        pList->pNext = pBt->pNext;
  1.1462 +      }
  1.1463 +    }
  1.1464 +    if( SQLITE_THREADSAFE ){
  1.1465 +      sqlite3_mutex_free(pBt->mutex);
  1.1466 +    }
  1.1467 +    removed = 1;
  1.1468 +  }
  1.1469 +  sqlite3_mutex_leave(pMaster);
  1.1470 +  return removed;
  1.1471 +#else
  1.1472 +  return 1;
  1.1473 +#endif
  1.1474 +}
  1.1475 +
  1.1476 +/*
  1.1477 +** Make sure pBt->pTmpSpace points to an allocation of 
  1.1478 +** MX_CELL_SIZE(pBt) bytes.
  1.1479 +*/
  1.1480 +static void allocateTempSpace(BtShared *pBt){
  1.1481 +  if( !pBt->pTmpSpace ){
  1.1482 +    pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
  1.1483 +  }
  1.1484 +}
  1.1485 +
  1.1486 +/*
  1.1487 +** Free the pBt->pTmpSpace allocation
  1.1488 +*/
  1.1489 +static void freeTempSpace(BtShared *pBt){
  1.1490 +  sqlite3PageFree( pBt->pTmpSpace);
  1.1491 +  pBt->pTmpSpace = 0;
  1.1492 +}
  1.1493 +
  1.1494 +/*
  1.1495 +** Close an open database and invalidate all cursors.
  1.1496 +*/
  1.1497 +int sqlite3BtreeClose(Btree *p){
  1.1498 +  BtShared *pBt = p->pBt;
  1.1499 +  BtCursor *pCur;
  1.1500 +
  1.1501 +  /* Close all cursors opened via this handle.  */
  1.1502 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.1503 +  sqlite3BtreeEnter(p);
  1.1504 +  pBt->db = p->db;
  1.1505 +  pCur = pBt->pCursor;
  1.1506 +  while( pCur ){
  1.1507 +    BtCursor *pTmp = pCur;
  1.1508 +    pCur = pCur->pNext;
  1.1509 +    if( pTmp->pBtree==p ){
  1.1510 +      sqlite3BtreeCloseCursor(pTmp);
  1.1511 +    }
  1.1512 +  }
  1.1513 +
  1.1514 +  /* Rollback any active transaction and free the handle structure.
  1.1515 +  ** The call to sqlite3BtreeRollback() drops any table-locks held by
  1.1516 +  ** this handle.
  1.1517 +  */
  1.1518 +  sqlite3BtreeRollback(p);
  1.1519 +  sqlite3BtreeLeave(p);
  1.1520 +
  1.1521 +  /* If there are still other outstanding references to the shared-btree
  1.1522 +  ** structure, return now. The remainder of this procedure cleans 
  1.1523 +  ** up the shared-btree.
  1.1524 +  */
  1.1525 +  assert( p->wantToLock==0 && p->locked==0 );
  1.1526 +  if( !p->sharable || removeFromSharingList(pBt) ){
  1.1527 +    /* The pBt is no longer on the sharing list, so we can access
  1.1528 +    ** it without having to hold the mutex.
  1.1529 +    **
  1.1530 +    ** Clean out and delete the BtShared object.
  1.1531 +    */
  1.1532 +    assert( !pBt->pCursor );
  1.1533 +    sqlite3PagerClose(pBt->pPager);
  1.1534 +    if( pBt->xFreeSchema && pBt->pSchema ){
  1.1535 +      pBt->xFreeSchema(pBt->pSchema);
  1.1536 +    }
  1.1537 +    sqlite3_free(pBt->pSchema);
  1.1538 +    freeTempSpace(pBt);
  1.1539 +    sqlite3_free(pBt);
  1.1540 +  }
  1.1541 +
  1.1542 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.1543 +  assert( p->wantToLock==0 );
  1.1544 +  assert( p->locked==0 );
  1.1545 +  if( p->pPrev ) p->pPrev->pNext = p->pNext;
  1.1546 +  if( p->pNext ) p->pNext->pPrev = p->pPrev;
  1.1547 +#endif
  1.1548 +
  1.1549 +  sqlite3_free(p);
  1.1550 +  return SQLITE_OK;
  1.1551 +}
  1.1552 +
  1.1553 +/*
  1.1554 +** Change the limit on the number of pages allowed in the cache.
  1.1555 +**
  1.1556 +** The maximum number of cache pages is set to the absolute
  1.1557 +** value of mxPage.  If mxPage is negative, the pager will
  1.1558 +** operate asynchronously - it will not stop to do fsync()s
  1.1559 +** to insure data is written to the disk surface before
  1.1560 +** continuing.  Transactions still work if synchronous is off,
  1.1561 +** and the database cannot be corrupted if this program
  1.1562 +** crashes.  But if the operating system crashes or there is
  1.1563 +** an abrupt power failure when synchronous is off, the database
  1.1564 +** could be left in an inconsistent and unrecoverable state.
  1.1565 +** Synchronous is on by default so database corruption is not
  1.1566 +** normally a worry.
  1.1567 +*/
  1.1568 +int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  1.1569 +  BtShared *pBt = p->pBt;
  1.1570 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.1571 +  sqlite3BtreeEnter(p);
  1.1572 +  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  1.1573 +  sqlite3BtreeLeave(p);
  1.1574 +  return SQLITE_OK;
  1.1575 +}
  1.1576 +
  1.1577 +/*
  1.1578 +** Change the way data is synced to disk in order to increase or decrease
  1.1579 +** how well the database resists damage due to OS crashes and power
  1.1580 +** failures.  Level 1 is the same as asynchronous (no syncs() occur and
  1.1581 +** there is a high probability of damage)  Level 2 is the default.  There
  1.1582 +** is a very low but non-zero probability of damage.  Level 3 reduces the
  1.1583 +** probability of damage to near zero but with a write performance reduction.
  1.1584 +*/
  1.1585 +#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  1.1586 +int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
  1.1587 +  BtShared *pBt = p->pBt;
  1.1588 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.1589 +  sqlite3BtreeEnter(p);
  1.1590 +  sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
  1.1591 +  sqlite3BtreeLeave(p);
  1.1592 +  return SQLITE_OK;
  1.1593 +}
  1.1594 +#endif
  1.1595 +
  1.1596 +/*
  1.1597 +** Return TRUE if the given btree is set to safety level 1.  In other
  1.1598 +** words, return TRUE if no sync() occurs on the disk files.
  1.1599 +*/
  1.1600 +int sqlite3BtreeSyncDisabled(Btree *p){
  1.1601 +  BtShared *pBt = p->pBt;
  1.1602 +  int rc;
  1.1603 +  assert( sqlite3_mutex_held(p->db->mutex) );  
  1.1604 +  sqlite3BtreeEnter(p);
  1.1605 +  assert( pBt && pBt->pPager );
  1.1606 +  rc = sqlite3PagerNosync(pBt->pPager);
  1.1607 +  sqlite3BtreeLeave(p);
  1.1608 +  return rc;
  1.1609 +}
  1.1610 +
  1.1611 +#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
  1.1612 +/*
  1.1613 +** Change the default pages size and the number of reserved bytes per page.
  1.1614 +**
  1.1615 +** The page size must be a power of 2 between 512 and 65536.  If the page
  1.1616 +** size supplied does not meet this constraint then the page size is not
  1.1617 +** changed.
  1.1618 +**
  1.1619 +** Page sizes are constrained to be a power of two so that the region
  1.1620 +** of the database file used for locking (beginning at PENDING_BYTE,
  1.1621 +** the first byte past the 1GB boundary, 0x40000000) needs to occur
  1.1622 +** at the beginning of a page.
  1.1623 +**
  1.1624 +** If parameter nReserve is less than zero, then the number of reserved
  1.1625 +** bytes per page is left unchanged.
  1.1626 +*/
  1.1627 +int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){
  1.1628 +  int rc = SQLITE_OK;
  1.1629 +  BtShared *pBt = p->pBt;
  1.1630 +  sqlite3BtreeEnter(p);
  1.1631 +  if( pBt->pageSizeFixed ){
  1.1632 +    sqlite3BtreeLeave(p);
  1.1633 +    return SQLITE_READONLY;
  1.1634 +  }
  1.1635 +  if( nReserve<0 ){
  1.1636 +    nReserve = pBt->pageSize - pBt->usableSize;
  1.1637 +  }
  1.1638 +  if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
  1.1639 +        ((pageSize-1)&pageSize)==0 ){
  1.1640 +    assert( (pageSize & 7)==0 );
  1.1641 +    assert( !pBt->pPage1 && !pBt->pCursor );
  1.1642 +    pBt->pageSize = pageSize;
  1.1643 +    freeTempSpace(pBt);
  1.1644 +    rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1645 +  }
  1.1646 +  pBt->usableSize = pBt->pageSize - nReserve;
  1.1647 +  sqlite3BtreeLeave(p);
  1.1648 +  return rc;
  1.1649 +}
  1.1650 +
  1.1651 +/*
  1.1652 +** Return the currently defined page size
  1.1653 +*/
  1.1654 +int sqlite3BtreeGetPageSize(Btree *p){
  1.1655 +  return p->pBt->pageSize;
  1.1656 +}
  1.1657 +int sqlite3BtreeGetReserve(Btree *p){
  1.1658 +  int n;
  1.1659 +  sqlite3BtreeEnter(p);
  1.1660 +  n = p->pBt->pageSize - p->pBt->usableSize;
  1.1661 +  sqlite3BtreeLeave(p);
  1.1662 +  return n;
  1.1663 +}
  1.1664 +
  1.1665 +/*
  1.1666 +** Set the maximum page count for a database if mxPage is positive.
  1.1667 +** No changes are made if mxPage is 0 or negative.
  1.1668 +** Regardless of the value of mxPage, return the maximum page count.
  1.1669 +*/
  1.1670 +int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
  1.1671 +  int n;
  1.1672 +  sqlite3BtreeEnter(p);
  1.1673 +  n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
  1.1674 +  sqlite3BtreeLeave(p);
  1.1675 +  return n;
  1.1676 +}
  1.1677 +#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
  1.1678 +
  1.1679 +/*
  1.1680 +** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
  1.1681 +** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
  1.1682 +** is disabled. The default value for the auto-vacuum property is 
  1.1683 +** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
  1.1684 +*/
  1.1685 +int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
  1.1686 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.1687 +  return SQLITE_READONLY;
  1.1688 +#else
  1.1689 +  BtShared *pBt = p->pBt;
  1.1690 +  int rc = SQLITE_OK;
  1.1691 +  int av = (autoVacuum?1:0);
  1.1692 +
  1.1693 +  sqlite3BtreeEnter(p);
  1.1694 +  if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){
  1.1695 +    rc = SQLITE_READONLY;
  1.1696 +  }else{
  1.1697 +    pBt->autoVacuum = av;
  1.1698 +  }
  1.1699 +  sqlite3BtreeLeave(p);
  1.1700 +  return rc;
  1.1701 +#endif
  1.1702 +}
  1.1703 +
  1.1704 +/*
  1.1705 +** Return the value of the 'auto-vacuum' property. If auto-vacuum is 
  1.1706 +** enabled 1 is returned. Otherwise 0.
  1.1707 +*/
  1.1708 +int sqlite3BtreeGetAutoVacuum(Btree *p){
  1.1709 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.1710 +  return BTREE_AUTOVACUUM_NONE;
  1.1711 +#else
  1.1712 +  int rc;
  1.1713 +  sqlite3BtreeEnter(p);
  1.1714 +  rc = (
  1.1715 +    (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
  1.1716 +    (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
  1.1717 +    BTREE_AUTOVACUUM_INCR
  1.1718 +  );
  1.1719 +  sqlite3BtreeLeave(p);
  1.1720 +  return rc;
  1.1721 +#endif
  1.1722 +}
  1.1723 +
  1.1724 +
  1.1725 +/*
  1.1726 +** Get a reference to pPage1 of the database file.  This will
  1.1727 +** also acquire a readlock on that file.
  1.1728 +**
  1.1729 +** SQLITE_OK is returned on success.  If the file is not a
  1.1730 +** well-formed database file, then SQLITE_CORRUPT is returned.
  1.1731 +** SQLITE_BUSY is returned if the database is locked.  SQLITE_NOMEM
  1.1732 +** is returned if we run out of memory. 
  1.1733 +*/
  1.1734 +static int lockBtree(BtShared *pBt){
  1.1735 +  int rc;
  1.1736 +  MemPage *pPage1;
  1.1737 +  int nPage;
  1.1738 +
  1.1739 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1740 +  if( pBt->pPage1 ) return SQLITE_OK;
  1.1741 +  rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
  1.1742 +  if( rc!=SQLITE_OK ) return rc;
  1.1743 +
  1.1744 +  /* Do some checking to help insure the file we opened really is
  1.1745 +  ** a valid database file. 
  1.1746 +  */
  1.1747 +  rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
  1.1748 +  if( rc!=SQLITE_OK ){
  1.1749 +    goto page1_init_failed;
  1.1750 +  }else if( nPage>0 ){
  1.1751 +    int pageSize;
  1.1752 +    int usableSize;
  1.1753 +    u8 *page1 = pPage1->aData;
  1.1754 +    rc = SQLITE_NOTADB;
  1.1755 +    if( memcmp(page1, zMagicHeader, 16)!=0 ){
  1.1756 +      goto page1_init_failed;
  1.1757 +    }
  1.1758 +    if( page1[18]>1 ){
  1.1759 +      pBt->readOnly = 1;
  1.1760 +    }
  1.1761 +    if( page1[19]>1 ){
  1.1762 +      goto page1_init_failed;
  1.1763 +    }
  1.1764 +
  1.1765 +    /* The maximum embedded fraction must be exactly 25%.  And the minimum
  1.1766 +    ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
  1.1767 +    ** The original design allowed these amounts to vary, but as of
  1.1768 +    ** version 3.6.0, we require them to be fixed.
  1.1769 +    */
  1.1770 +    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
  1.1771 +      goto page1_init_failed;
  1.1772 +    }
  1.1773 +    pageSize = get2byte(&page1[16]);
  1.1774 +    if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
  1.1775 +        (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
  1.1776 +    ){
  1.1777 +      goto page1_init_failed;
  1.1778 +    }
  1.1779 +    assert( (pageSize & 7)==0 );
  1.1780 +    usableSize = pageSize - page1[20];
  1.1781 +    if( pageSize!=pBt->pageSize ){
  1.1782 +      /* After reading the first page of the database assuming a page size
  1.1783 +      ** of BtShared.pageSize, we have discovered that the page-size is
  1.1784 +      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
  1.1785 +      ** zero and return SQLITE_OK. The caller will call this function
  1.1786 +      ** again with the correct page-size.
  1.1787 +      */
  1.1788 +      releasePage(pPage1);
  1.1789 +      pBt->usableSize = usableSize;
  1.1790 +      pBt->pageSize = pageSize;
  1.1791 +      freeTempSpace(pBt);
  1.1792 +      sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
  1.1793 +      return SQLITE_OK;
  1.1794 +    }
  1.1795 +    if( usableSize<500 ){
  1.1796 +      goto page1_init_failed;
  1.1797 +    }
  1.1798 +    pBt->pageSize = pageSize;
  1.1799 +    pBt->usableSize = usableSize;
  1.1800 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1801 +    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
  1.1802 +    pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
  1.1803 +#endif
  1.1804 +  }
  1.1805 +
  1.1806 +  /* maxLocal is the maximum amount of payload to store locally for
  1.1807 +  ** a cell.  Make sure it is small enough so that at least minFanout
  1.1808 +  ** cells can will fit on one page.  We assume a 10-byte page header.
  1.1809 +  ** Besides the payload, the cell must store:
  1.1810 +  **     2-byte pointer to the cell
  1.1811 +  **     4-byte child pointer
  1.1812 +  **     9-byte nKey value
  1.1813 +  **     4-byte nData value
  1.1814 +  **     4-byte overflow page pointer
  1.1815 +  ** So a cell consists of a 2-byte poiner, a header which is as much as
  1.1816 +  ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
  1.1817 +  ** page pointer.
  1.1818 +  */
  1.1819 +  pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
  1.1820 +  pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
  1.1821 +  pBt->maxLeaf = pBt->usableSize - 35;
  1.1822 +  pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
  1.1823 +  assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
  1.1824 +  pBt->pPage1 = pPage1;
  1.1825 +  return SQLITE_OK;
  1.1826 +
  1.1827 +page1_init_failed:
  1.1828 +  releasePage(pPage1);
  1.1829 +  pBt->pPage1 = 0;
  1.1830 +  return rc;
  1.1831 +}
  1.1832 +
  1.1833 +/*
  1.1834 +** This routine works like lockBtree() except that it also invokes the
  1.1835 +** busy callback if there is lock contention.
  1.1836 +*/
  1.1837 +static int lockBtreeWithRetry(Btree *pRef){
  1.1838 +  int rc = SQLITE_OK;
  1.1839 +
  1.1840 +  assert( sqlite3BtreeHoldsMutex(pRef) );
  1.1841 +  if( pRef->inTrans==TRANS_NONE ){
  1.1842 +    u8 inTransaction = pRef->pBt->inTransaction;
  1.1843 +    btreeIntegrity(pRef);
  1.1844 +    rc = sqlite3BtreeBeginTrans(pRef, 0);
  1.1845 +    pRef->pBt->inTransaction = inTransaction;
  1.1846 +    pRef->inTrans = TRANS_NONE;
  1.1847 +    if( rc==SQLITE_OK ){
  1.1848 +      pRef->pBt->nTransaction--;
  1.1849 +    }
  1.1850 +    btreeIntegrity(pRef);
  1.1851 +  }
  1.1852 +  return rc;
  1.1853 +}
  1.1854 +       
  1.1855 +
  1.1856 +/*
  1.1857 +** If there are no outstanding cursors and we are not in the middle
  1.1858 +** of a transaction but there is a read lock on the database, then
  1.1859 +** this routine unrefs the first page of the database file which 
  1.1860 +** has the effect of releasing the read lock.
  1.1861 +**
  1.1862 +** If there are any outstanding cursors, this routine is a no-op.
  1.1863 +**
  1.1864 +** If there is a transaction in progress, this routine is a no-op.
  1.1865 +*/
  1.1866 +static void unlockBtreeIfUnused(BtShared *pBt){
  1.1867 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1868 +  if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
  1.1869 +    if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
  1.1870 +      assert( pBt->pPage1->aData );
  1.1871 +#if 0
  1.1872 +      if( pBt->pPage1->aData==0 ){
  1.1873 +        MemPage *pPage = pBt->pPage1;
  1.1874 +        pPage->aData = sqlite3PagerGetData(pPage->pDbPage);
  1.1875 +        pPage->pBt = pBt;
  1.1876 +        pPage->pgno = 1;
  1.1877 +      }
  1.1878 +#endif
  1.1879 +      releasePage(pBt->pPage1);
  1.1880 +    }
  1.1881 +    pBt->pPage1 = 0;
  1.1882 +    pBt->inStmt = 0;
  1.1883 +  }
  1.1884 +}
  1.1885 +
  1.1886 +/*
  1.1887 +** Create a new database by initializing the first page of the
  1.1888 +** file.
  1.1889 +*/
  1.1890 +static int newDatabase(BtShared *pBt){
  1.1891 +  MemPage *pP1;
  1.1892 +  unsigned char *data;
  1.1893 +  int rc;
  1.1894 +  int nPage;
  1.1895 +
  1.1896 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.1897 +  rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
  1.1898 +  if( rc!=SQLITE_OK || nPage>0 ){
  1.1899 +    return rc;
  1.1900 +  }
  1.1901 +  pP1 = pBt->pPage1;
  1.1902 +  assert( pP1!=0 );
  1.1903 +  data = pP1->aData;
  1.1904 +  rc = sqlite3PagerWrite(pP1->pDbPage);
  1.1905 +  if( rc ) return rc;
  1.1906 +  memcpy(data, zMagicHeader, sizeof(zMagicHeader));
  1.1907 +  assert( sizeof(zMagicHeader)==16 );
  1.1908 +  put2byte(&data[16], pBt->pageSize);
  1.1909 +  data[18] = 1;
  1.1910 +  data[19] = 1;
  1.1911 +  data[20] = pBt->pageSize - pBt->usableSize;
  1.1912 +  data[21] = 64;
  1.1913 +  data[22] = 32;
  1.1914 +  data[23] = 32;
  1.1915 +  memset(&data[24], 0, 100-24);
  1.1916 +  zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
  1.1917 +  pBt->pageSizeFixed = 1;
  1.1918 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.1919 +  assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
  1.1920 +  assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
  1.1921 +  put4byte(&data[36 + 4*4], pBt->autoVacuum);
  1.1922 +  put4byte(&data[36 + 7*4], pBt->incrVacuum);
  1.1923 +#endif
  1.1924 +  return SQLITE_OK;
  1.1925 +}
  1.1926 +
  1.1927 +/*
  1.1928 +** Attempt to start a new transaction. A write-transaction
  1.1929 +** is started if the second argument is nonzero, otherwise a read-
  1.1930 +** transaction.  If the second argument is 2 or more and exclusive
  1.1931 +** transaction is started, meaning that no other process is allowed
  1.1932 +** to access the database.  A preexisting transaction may not be
  1.1933 +** upgraded to exclusive by calling this routine a second time - the
  1.1934 +** exclusivity flag only works for a new transaction.
  1.1935 +**
  1.1936 +** A write-transaction must be started before attempting any 
  1.1937 +** changes to the database.  None of the following routines 
  1.1938 +** will work unless a transaction is started first:
  1.1939 +**
  1.1940 +**      sqlite3BtreeCreateTable()
  1.1941 +**      sqlite3BtreeCreateIndex()
  1.1942 +**      sqlite3BtreeClearTable()
  1.1943 +**      sqlite3BtreeDropTable()
  1.1944 +**      sqlite3BtreeInsert()
  1.1945 +**      sqlite3BtreeDelete()
  1.1946 +**      sqlite3BtreeUpdateMeta()
  1.1947 +**
  1.1948 +** If an initial attempt to acquire the lock fails because of lock contention
  1.1949 +** and the database was previously unlocked, then invoke the busy handler
  1.1950 +** if there is one.  But if there was previously a read-lock, do not
  1.1951 +** invoke the busy handler - just return SQLITE_BUSY.  SQLITE_BUSY is 
  1.1952 +** returned when there is already a read-lock in order to avoid a deadlock.
  1.1953 +**
  1.1954 +** Suppose there are two processes A and B.  A has a read lock and B has
  1.1955 +** a reserved lock.  B tries to promote to exclusive but is blocked because
  1.1956 +** of A's read lock.  A tries to promote to reserved but is blocked by B.
  1.1957 +** One or the other of the two processes must give way or there can be
  1.1958 +** no progress.  By returning SQLITE_BUSY and not invoking the busy callback
  1.1959 +** when A already has a read lock, we encourage A to give up and let B
  1.1960 +** proceed.
  1.1961 +*/
  1.1962 +int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
  1.1963 +  BtShared *pBt = p->pBt;
  1.1964 +  int rc = SQLITE_OK;
  1.1965 +
  1.1966 +  sqlite3BtreeEnter(p);
  1.1967 +  pBt->db = p->db;
  1.1968 +  btreeIntegrity(p);
  1.1969 +
  1.1970 +  /* If the btree is already in a write-transaction, or it
  1.1971 +  ** is already in a read-transaction and a read-transaction
  1.1972 +  ** is requested, this is a no-op.
  1.1973 +  */
  1.1974 +  if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
  1.1975 +    goto trans_begun;
  1.1976 +  }
  1.1977 +
  1.1978 +  /* Write transactions are not possible on a read-only database */
  1.1979 +  if( pBt->readOnly && wrflag ){
  1.1980 +    rc = SQLITE_READONLY;
  1.1981 +    goto trans_begun;
  1.1982 +  }
  1.1983 +
  1.1984 +  /* If another database handle has already opened a write transaction 
  1.1985 +  ** on this shared-btree structure and a second write transaction is
  1.1986 +  ** requested, return SQLITE_BUSY.
  1.1987 +  */
  1.1988 +  if( pBt->inTransaction==TRANS_WRITE && wrflag ){
  1.1989 +    rc = SQLITE_BUSY;
  1.1990 +    goto trans_begun;
  1.1991 +  }
  1.1992 +
  1.1993 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.1994 +  if( wrflag>1 ){
  1.1995 +    BtLock *pIter;
  1.1996 +    for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
  1.1997 +      if( pIter->pBtree!=p ){
  1.1998 +        rc = SQLITE_BUSY;
  1.1999 +        goto trans_begun;
  1.2000 +      }
  1.2001 +    }
  1.2002 +  }
  1.2003 +#endif
  1.2004 +
  1.2005 +  do {
  1.2006 +    if( pBt->pPage1==0 ){
  1.2007 +      do{
  1.2008 +        rc = lockBtree(pBt);
  1.2009 +      }while( pBt->pPage1==0 && rc==SQLITE_OK );
  1.2010 +    }
  1.2011 +
  1.2012 +    if( rc==SQLITE_OK && wrflag ){
  1.2013 +      if( pBt->readOnly ){
  1.2014 +        rc = SQLITE_READONLY;
  1.2015 +      }else{
  1.2016 +        rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1);
  1.2017 +        if( rc==SQLITE_OK ){
  1.2018 +          rc = newDatabase(pBt);
  1.2019 +        }
  1.2020 +      }
  1.2021 +    }
  1.2022 +  
  1.2023 +    if( rc==SQLITE_OK ){
  1.2024 +      if( wrflag ) pBt->inStmt = 0;
  1.2025 +    }else{
  1.2026 +      unlockBtreeIfUnused(pBt);
  1.2027 +    }
  1.2028 +  }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
  1.2029 +          sqlite3BtreeInvokeBusyHandler(pBt, 0) );
  1.2030 +
  1.2031 +  if( rc==SQLITE_OK ){
  1.2032 +    if( p->inTrans==TRANS_NONE ){
  1.2033 +      pBt->nTransaction++;
  1.2034 +    }
  1.2035 +    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
  1.2036 +    if( p->inTrans>pBt->inTransaction ){
  1.2037 +      pBt->inTransaction = p->inTrans;
  1.2038 +    }
  1.2039 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.2040 +    if( wrflag>1 ){
  1.2041 +      assert( !pBt->pExclusive );
  1.2042 +      pBt->pExclusive = p;
  1.2043 +    }
  1.2044 +#endif
  1.2045 +  }
  1.2046 +
  1.2047 +
  1.2048 +trans_begun:
  1.2049 +  btreeIntegrity(p);
  1.2050 +  sqlite3BtreeLeave(p);
  1.2051 +  return rc;
  1.2052 +}
  1.2053 +
  1.2054 +
  1.2055 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.2056 +
  1.2057 +/*
  1.2058 +** Set the pointer-map entries for all children of page pPage. Also, if
  1.2059 +** pPage contains cells that point to overflow pages, set the pointer
  1.2060 +** map entries for the overflow pages as well.
  1.2061 +*/
  1.2062 +static int setChildPtrmaps(MemPage *pPage){
  1.2063 +  int i;                             /* Counter variable */
  1.2064 +  int nCell;                         /* Number of cells in page pPage */
  1.2065 +  int rc;                            /* Return code */
  1.2066 +  BtShared *pBt = pPage->pBt;
  1.2067 +  int isInitOrig = pPage->isInit;
  1.2068 +  Pgno pgno = pPage->pgno;
  1.2069 +
  1.2070 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.2071 +  rc = sqlite3BtreeInitPage(pPage);
  1.2072 +  if( rc!=SQLITE_OK ){
  1.2073 +    goto set_child_ptrmaps_out;
  1.2074 +  }
  1.2075 +  nCell = pPage->nCell;
  1.2076 +
  1.2077 +  for(i=0; i<nCell; i++){
  1.2078 +    u8 *pCell = findCell(pPage, i);
  1.2079 +
  1.2080 +    rc = ptrmapPutOvflPtr(pPage, pCell);
  1.2081 +    if( rc!=SQLITE_OK ){
  1.2082 +      goto set_child_ptrmaps_out;
  1.2083 +    }
  1.2084 +
  1.2085 +    if( !pPage->leaf ){
  1.2086 +      Pgno childPgno = get4byte(pCell);
  1.2087 +      rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  1.2088 +      if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
  1.2089 +    }
  1.2090 +  }
  1.2091 +
  1.2092 +  if( !pPage->leaf ){
  1.2093 +    Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.2094 +    rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
  1.2095 +  }
  1.2096 +
  1.2097 +set_child_ptrmaps_out:
  1.2098 +  pPage->isInit = isInitOrig;
  1.2099 +  return rc;
  1.2100 +}
  1.2101 +
  1.2102 +/*
  1.2103 +** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow
  1.2104 +** page, is a pointer to page iFrom. Modify this pointer so that it points to
  1.2105 +** iTo. Parameter eType describes the type of pointer to be modified, as 
  1.2106 +** follows:
  1.2107 +**
  1.2108 +** PTRMAP_BTREE:     pPage is a btree-page. The pointer points at a child 
  1.2109 +**                   page of pPage.
  1.2110 +**
  1.2111 +** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
  1.2112 +**                   page pointed to by one of the cells on pPage.
  1.2113 +**
  1.2114 +** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
  1.2115 +**                   overflow page in the list.
  1.2116 +*/
  1.2117 +static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
  1.2118 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.2119 +  if( eType==PTRMAP_OVERFLOW2 ){
  1.2120 +    /* The pointer is always the first 4 bytes of the page in this case.  */
  1.2121 +    if( get4byte(pPage->aData)!=iFrom ){
  1.2122 +      return SQLITE_CORRUPT_BKPT;
  1.2123 +    }
  1.2124 +    put4byte(pPage->aData, iTo);
  1.2125 +  }else{
  1.2126 +    int isInitOrig = pPage->isInit;
  1.2127 +    int i;
  1.2128 +    int nCell;
  1.2129 +
  1.2130 +    sqlite3BtreeInitPage(pPage);
  1.2131 +    nCell = pPage->nCell;
  1.2132 +
  1.2133 +    for(i=0; i<nCell; i++){
  1.2134 +      u8 *pCell = findCell(pPage, i);
  1.2135 +      if( eType==PTRMAP_OVERFLOW1 ){
  1.2136 +        CellInfo info;
  1.2137 +        sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.2138 +        if( info.iOverflow ){
  1.2139 +          if( iFrom==get4byte(&pCell[info.iOverflow]) ){
  1.2140 +            put4byte(&pCell[info.iOverflow], iTo);
  1.2141 +            break;
  1.2142 +          }
  1.2143 +        }
  1.2144 +      }else{
  1.2145 +        if( get4byte(pCell)==iFrom ){
  1.2146 +          put4byte(pCell, iTo);
  1.2147 +          break;
  1.2148 +        }
  1.2149 +      }
  1.2150 +    }
  1.2151 +  
  1.2152 +    if( i==nCell ){
  1.2153 +      if( eType!=PTRMAP_BTREE || 
  1.2154 +          get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
  1.2155 +        return SQLITE_CORRUPT_BKPT;
  1.2156 +      }
  1.2157 +      put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
  1.2158 +    }
  1.2159 +
  1.2160 +    pPage->isInit = isInitOrig;
  1.2161 +  }
  1.2162 +  return SQLITE_OK;
  1.2163 +}
  1.2164 +
  1.2165 +
  1.2166 +/*
  1.2167 +** Move the open database page pDbPage to location iFreePage in the 
  1.2168 +** database. The pDbPage reference remains valid.
  1.2169 +*/
  1.2170 +static int relocatePage(
  1.2171 +  BtShared *pBt,           /* Btree */
  1.2172 +  MemPage *pDbPage,        /* Open page to move */
  1.2173 +  u8 eType,                /* Pointer map 'type' entry for pDbPage */
  1.2174 +  Pgno iPtrPage,           /* Pointer map 'page-no' entry for pDbPage */
  1.2175 +  Pgno iFreePage,          /* The location to move pDbPage to */
  1.2176 +  int isCommit
  1.2177 +){
  1.2178 +  MemPage *pPtrPage;   /* The page that contains a pointer to pDbPage */
  1.2179 +  Pgno iDbPage = pDbPage->pgno;
  1.2180 +  Pager *pPager = pBt->pPager;
  1.2181 +  int rc;
  1.2182 +
  1.2183 +  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
  1.2184 +      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  1.2185 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.2186 +  assert( pDbPage->pBt==pBt );
  1.2187 +
  1.2188 +  /* Move page iDbPage from its current location to page number iFreePage */
  1.2189 +  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
  1.2190 +      iDbPage, iFreePage, iPtrPage, eType));
  1.2191 +  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  1.2192 +  if( rc!=SQLITE_OK ){
  1.2193 +    return rc;
  1.2194 +  }
  1.2195 +  pDbPage->pgno = iFreePage;
  1.2196 +
  1.2197 +  /* If pDbPage was a btree-page, then it may have child pages and/or cells
  1.2198 +  ** that point to overflow pages. The pointer map entries for all these
  1.2199 +  ** pages need to be changed.
  1.2200 +  **
  1.2201 +  ** If pDbPage is an overflow page, then the first 4 bytes may store a
  1.2202 +  ** pointer to a subsequent overflow page. If this is the case, then
  1.2203 +  ** the pointer map needs to be updated for the subsequent overflow page.
  1.2204 +  */
  1.2205 +  if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
  1.2206 +    rc = setChildPtrmaps(pDbPage);
  1.2207 +    if( rc!=SQLITE_OK ){
  1.2208 +      return rc;
  1.2209 +    }
  1.2210 +  }else{
  1.2211 +    Pgno nextOvfl = get4byte(pDbPage->aData);
  1.2212 +    if( nextOvfl!=0 ){
  1.2213 +      rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
  1.2214 +      if( rc!=SQLITE_OK ){
  1.2215 +        return rc;
  1.2216 +      }
  1.2217 +    }
  1.2218 +  }
  1.2219 +
  1.2220 +  /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
  1.2221 +  ** that it points at iFreePage. Also fix the pointer map entry for
  1.2222 +  ** iPtrPage.
  1.2223 +  */
  1.2224 +  if( eType!=PTRMAP_ROOTPAGE ){
  1.2225 +    rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
  1.2226 +    if( rc!=SQLITE_OK ){
  1.2227 +      return rc;
  1.2228 +    }
  1.2229 +    rc = sqlite3PagerWrite(pPtrPage->pDbPage);
  1.2230 +    if( rc!=SQLITE_OK ){
  1.2231 +      releasePage(pPtrPage);
  1.2232 +      return rc;
  1.2233 +    }
  1.2234 +    rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
  1.2235 +    releasePage(pPtrPage);
  1.2236 +    if( rc==SQLITE_OK ){
  1.2237 +      rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
  1.2238 +    }
  1.2239 +  }
  1.2240 +  return rc;
  1.2241 +}
  1.2242 +
  1.2243 +/* Forward declaration required by incrVacuumStep(). */
  1.2244 +static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
  1.2245 +
  1.2246 +/*
  1.2247 +** Perform a single step of an incremental-vacuum. If successful,
  1.2248 +** return SQLITE_OK. If there is no work to do (and therefore no
  1.2249 +** point in calling this function again), return SQLITE_DONE.
  1.2250 +**
  1.2251 +** More specificly, this function attempts to re-organize the 
  1.2252 +** database so that the last page of the file currently in use
  1.2253 +** is no longer in use.
  1.2254 +**
  1.2255 +** If the nFin parameter is non-zero, the implementation assumes
  1.2256 +** that the caller will keep calling incrVacuumStep() until
  1.2257 +** it returns SQLITE_DONE or an error, and that nFin is the
  1.2258 +** number of pages the database file will contain after this 
  1.2259 +** process is complete.
  1.2260 +*/
  1.2261 +static int incrVacuumStep(BtShared *pBt, Pgno nFin){
  1.2262 +  Pgno iLastPg;             /* Last page in the database */
  1.2263 +  Pgno nFreeList;           /* Number of pages still on the free-list */
  1.2264 +
  1.2265 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.2266 +  iLastPg = pBt->nTrunc;
  1.2267 +  if( iLastPg==0 ){
  1.2268 +    iLastPg = pagerPagecount(pBt->pPager);
  1.2269 +  }
  1.2270 +
  1.2271 +  if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
  1.2272 +    int rc;
  1.2273 +    u8 eType;
  1.2274 +    Pgno iPtrPage;
  1.2275 +
  1.2276 +    nFreeList = get4byte(&pBt->pPage1->aData[36]);
  1.2277 +    if( nFreeList==0 || nFin==iLastPg ){
  1.2278 +      return SQLITE_DONE;
  1.2279 +    }
  1.2280 +
  1.2281 +    rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
  1.2282 +    if( rc!=SQLITE_OK ){
  1.2283 +      return rc;
  1.2284 +    }
  1.2285 +    if( eType==PTRMAP_ROOTPAGE ){
  1.2286 +      return SQLITE_CORRUPT_BKPT;
  1.2287 +    }
  1.2288 +
  1.2289 +    if( eType==PTRMAP_FREEPAGE ){
  1.2290 +      if( nFin==0 ){
  1.2291 +        /* Remove the page from the files free-list. This is not required
  1.2292 +        ** if nFin is non-zero. In that case, the free-list will be
  1.2293 +        ** truncated to zero after this function returns, so it doesn't 
  1.2294 +        ** matter if it still contains some garbage entries.
  1.2295 +        */
  1.2296 +        Pgno iFreePg;
  1.2297 +        MemPage *pFreePg;
  1.2298 +        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
  1.2299 +        if( rc!=SQLITE_OK ){
  1.2300 +          return rc;
  1.2301 +        }
  1.2302 +        assert( iFreePg==iLastPg );
  1.2303 +        releasePage(pFreePg);
  1.2304 +      }
  1.2305 +    } else {
  1.2306 +      Pgno iFreePg;             /* Index of free page to move pLastPg to */
  1.2307 +      MemPage *pLastPg;
  1.2308 +
  1.2309 +      rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
  1.2310 +      if( rc!=SQLITE_OK ){
  1.2311 +        return rc;
  1.2312 +      }
  1.2313 +
  1.2314 +      /* If nFin is zero, this loop runs exactly once and page pLastPg
  1.2315 +      ** is swapped with the first free page pulled off the free list.
  1.2316 +      **
  1.2317 +      ** On the other hand, if nFin is greater than zero, then keep
  1.2318 +      ** looping until a free-page located within the first nFin pages
  1.2319 +      ** of the file is found.
  1.2320 +      */
  1.2321 +      do {
  1.2322 +        MemPage *pFreePg;
  1.2323 +        rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
  1.2324 +        if( rc!=SQLITE_OK ){
  1.2325 +          releasePage(pLastPg);
  1.2326 +          return rc;
  1.2327 +        }
  1.2328 +        releasePage(pFreePg);
  1.2329 +      }while( nFin!=0 && iFreePg>nFin );
  1.2330 +      assert( iFreePg<iLastPg );
  1.2331 +      
  1.2332 +      rc = sqlite3PagerWrite(pLastPg->pDbPage);
  1.2333 +      if( rc==SQLITE_OK ){
  1.2334 +        rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
  1.2335 +      }
  1.2336 +      releasePage(pLastPg);
  1.2337 +      if( rc!=SQLITE_OK ){
  1.2338 +        return rc;
  1.2339 +      }
  1.2340 +    }
  1.2341 +  }
  1.2342 +
  1.2343 +  pBt->nTrunc = iLastPg - 1;
  1.2344 +  while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){
  1.2345 +    pBt->nTrunc--;
  1.2346 +  }
  1.2347 +  return SQLITE_OK;
  1.2348 +}
  1.2349 +
  1.2350 +/*
  1.2351 +** A write-transaction must be opened before calling this function.
  1.2352 +** It performs a single unit of work towards an incremental vacuum.
  1.2353 +**
  1.2354 +** If the incremental vacuum is finished after this function has run,
  1.2355 +** SQLITE_DONE is returned. If it is not finished, but no error occured,
  1.2356 +** SQLITE_OK is returned. Otherwise an SQLite error code. 
  1.2357 +*/
  1.2358 +int sqlite3BtreeIncrVacuum(Btree *p){
  1.2359 +  int rc;
  1.2360 +  BtShared *pBt = p->pBt;
  1.2361 +
  1.2362 +  sqlite3BtreeEnter(p);
  1.2363 +  pBt->db = p->db;
  1.2364 +  assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
  1.2365 +  if( !pBt->autoVacuum ){
  1.2366 +    rc = SQLITE_DONE;
  1.2367 +  }else{
  1.2368 +    invalidateAllOverflowCache(pBt);
  1.2369 +    rc = incrVacuumStep(pBt, 0);
  1.2370 +  }
  1.2371 +  sqlite3BtreeLeave(p);
  1.2372 +  return rc;
  1.2373 +}
  1.2374 +
  1.2375 +/*
  1.2376 +** This routine is called prior to sqlite3PagerCommit when a transaction
  1.2377 +** is commited for an auto-vacuum database.
  1.2378 +**
  1.2379 +** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
  1.2380 +** the database file should be truncated to during the commit process. 
  1.2381 +** i.e. the database has been reorganized so that only the first *pnTrunc
  1.2382 +** pages are in use.
  1.2383 +*/
  1.2384 +static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){
  1.2385 +  int rc = SQLITE_OK;
  1.2386 +  Pager *pPager = pBt->pPager;
  1.2387 +  VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
  1.2388 +
  1.2389 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.2390 +  invalidateAllOverflowCache(pBt);
  1.2391 +  assert(pBt->autoVacuum);
  1.2392 +  if( !pBt->incrVacuum ){
  1.2393 +    Pgno nFin = 0;
  1.2394 +
  1.2395 +    if( pBt->nTrunc==0 ){
  1.2396 +      Pgno nFree;
  1.2397 +      Pgno nPtrmap;
  1.2398 +      const int pgsz = pBt->pageSize;
  1.2399 +      int nOrig = pagerPagecount(pBt->pPager);
  1.2400 +
  1.2401 +      if( PTRMAP_ISPAGE(pBt, nOrig) ){
  1.2402 +        return SQLITE_CORRUPT_BKPT;
  1.2403 +      }
  1.2404 +      if( nOrig==PENDING_BYTE_PAGE(pBt) ){
  1.2405 +        nOrig--;
  1.2406 +      }
  1.2407 +      nFree = get4byte(&pBt->pPage1->aData[36]);
  1.2408 +      nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
  1.2409 +      nFin = nOrig - nFree - nPtrmap;
  1.2410 +      if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
  1.2411 +        nFin--;
  1.2412 +      }
  1.2413 +      while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
  1.2414 +        nFin--;
  1.2415 +      }
  1.2416 +    }
  1.2417 +
  1.2418 +    while( rc==SQLITE_OK ){
  1.2419 +      rc = incrVacuumStep(pBt, nFin);
  1.2420 +    }
  1.2421 +    if( rc==SQLITE_DONE ){
  1.2422 +      assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc);
  1.2423 +      rc = SQLITE_OK;
  1.2424 +      if( pBt->nTrunc && nFin ){
  1.2425 +        rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  1.2426 +        put4byte(&pBt->pPage1->aData[32], 0);
  1.2427 +        put4byte(&pBt->pPage1->aData[36], 0);
  1.2428 +        pBt->nTrunc = nFin;
  1.2429 +      }
  1.2430 +    }
  1.2431 +    if( rc!=SQLITE_OK ){
  1.2432 +      sqlite3PagerRollback(pPager);
  1.2433 +    }
  1.2434 +  }
  1.2435 +
  1.2436 +  if( rc==SQLITE_OK ){
  1.2437 +    *pnTrunc = pBt->nTrunc;
  1.2438 +    pBt->nTrunc = 0;
  1.2439 +  }
  1.2440 +  assert( nRef==sqlite3PagerRefcount(pPager) );
  1.2441 +  return rc;
  1.2442 +}
  1.2443 +
  1.2444 +#endif
  1.2445 +
  1.2446 +/*
  1.2447 +** This routine does the first phase of a two-phase commit.  This routine
  1.2448 +** causes a rollback journal to be created (if it does not already exist)
  1.2449 +** and populated with enough information so that if a power loss occurs
  1.2450 +** the database can be restored to its original state by playing back
  1.2451 +** the journal.  Then the contents of the journal are flushed out to
  1.2452 +** the disk.  After the journal is safely on oxide, the changes to the
  1.2453 +** database are written into the database file and flushed to oxide.
  1.2454 +** At the end of this call, the rollback journal still exists on the
  1.2455 +** disk and we are still holding all locks, so the transaction has not
  1.2456 +** committed.  See sqlite3BtreeCommit() for the second phase of the
  1.2457 +** commit process.
  1.2458 +**
  1.2459 +** This call is a no-op if no write-transaction is currently active on pBt.
  1.2460 +**
  1.2461 +** Otherwise, sync the database file for the btree pBt. zMaster points to
  1.2462 +** the name of a master journal file that should be written into the
  1.2463 +** individual journal file, or is NULL, indicating no master journal file 
  1.2464 +** (single database transaction).
  1.2465 +**
  1.2466 +** When this is called, the master journal should already have been
  1.2467 +** created, populated with this journal pointer and synced to disk.
  1.2468 +**
  1.2469 +** Once this is routine has returned, the only thing required to commit
  1.2470 +** the write-transaction for this database file is to delete the journal.
  1.2471 +*/
  1.2472 +int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
  1.2473 +  int rc = SQLITE_OK;
  1.2474 +  if( p->inTrans==TRANS_WRITE ){
  1.2475 +    BtShared *pBt = p->pBt;
  1.2476 +    Pgno nTrunc = 0;
  1.2477 +    sqlite3BtreeEnter(p);
  1.2478 +    pBt->db = p->db;
  1.2479 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.2480 +    if( pBt->autoVacuum ){
  1.2481 +      rc = autoVacuumCommit(pBt, &nTrunc); 
  1.2482 +      if( rc!=SQLITE_OK ){
  1.2483 +        sqlite3BtreeLeave(p);
  1.2484 +        return rc;
  1.2485 +      }
  1.2486 +    }
  1.2487 +#endif
  1.2488 +    rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0);
  1.2489 +    sqlite3BtreeLeave(p);
  1.2490 +  }
  1.2491 +  return rc;
  1.2492 +}
  1.2493 +
  1.2494 +/*
  1.2495 +** Commit the transaction currently in progress.
  1.2496 +**
  1.2497 +** This routine implements the second phase of a 2-phase commit.  The
  1.2498 +** sqlite3BtreeSync() routine does the first phase and should be invoked
  1.2499 +** prior to calling this routine.  The sqlite3BtreeSync() routine did
  1.2500 +** all the work of writing information out to disk and flushing the
  1.2501 +** contents so that they are written onto the disk platter.  All this
  1.2502 +** routine has to do is delete or truncate the rollback journal
  1.2503 +** (which causes the transaction to commit) and drop locks.
  1.2504 +**
  1.2505 +** This will release the write lock on the database file.  If there
  1.2506 +** are no active cursors, it also releases the read lock.
  1.2507 +*/
  1.2508 +int sqlite3BtreeCommitPhaseTwo(Btree *p){
  1.2509 +  BtShared *pBt = p->pBt;
  1.2510 +
  1.2511 +  sqlite3BtreeEnter(p);
  1.2512 +  pBt->db = p->db;
  1.2513 +  btreeIntegrity(p);
  1.2514 +
  1.2515 +  /* If the handle has a write-transaction open, commit the shared-btrees 
  1.2516 +  ** transaction and set the shared state to TRANS_READ.
  1.2517 +  */
  1.2518 +  if( p->inTrans==TRANS_WRITE ){
  1.2519 +    int rc;
  1.2520 +    assert( pBt->inTransaction==TRANS_WRITE );
  1.2521 +    assert( pBt->nTransaction>0 );
  1.2522 +    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
  1.2523 +    if( rc!=SQLITE_OK ){
  1.2524 +      sqlite3BtreeLeave(p);
  1.2525 +      return rc;
  1.2526 +    }
  1.2527 +    pBt->inTransaction = TRANS_READ;
  1.2528 +    pBt->inStmt = 0;
  1.2529 +  }
  1.2530 +  unlockAllTables(p);
  1.2531 +
  1.2532 +  /* If the handle has any kind of transaction open, decrement the transaction
  1.2533 +  ** count of the shared btree. If the transaction count reaches 0, set
  1.2534 +  ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
  1.2535 +  ** will unlock the pager.
  1.2536 +  */
  1.2537 +  if( p->inTrans!=TRANS_NONE ){
  1.2538 +    pBt->nTransaction--;
  1.2539 +    if( 0==pBt->nTransaction ){
  1.2540 +      pBt->inTransaction = TRANS_NONE;
  1.2541 +    }
  1.2542 +  }
  1.2543 +
  1.2544 +  /* Set the handles current transaction state to TRANS_NONE and unlock
  1.2545 +  ** the pager if this call closed the only read or write transaction.
  1.2546 +  */
  1.2547 +  p->inTrans = TRANS_NONE;
  1.2548 +  unlockBtreeIfUnused(pBt);
  1.2549 +
  1.2550 +  btreeIntegrity(p);
  1.2551 +  sqlite3BtreeLeave(p);
  1.2552 +  return SQLITE_OK;
  1.2553 +}
  1.2554 +
  1.2555 +/*
  1.2556 +** Do both phases of a commit.
  1.2557 +*/
  1.2558 +int sqlite3BtreeCommit(Btree *p){
  1.2559 +  int rc;
  1.2560 +  sqlite3BtreeEnter(p);
  1.2561 +  rc = sqlite3BtreeCommitPhaseOne(p, 0);
  1.2562 +  if( rc==SQLITE_OK ){
  1.2563 +    rc = sqlite3BtreeCommitPhaseTwo(p);
  1.2564 +  }
  1.2565 +  sqlite3BtreeLeave(p);
  1.2566 +  return rc;
  1.2567 +}
  1.2568 +
  1.2569 +#ifndef NDEBUG
  1.2570 +/*
  1.2571 +** Return the number of write-cursors open on this handle. This is for use
  1.2572 +** in assert() expressions, so it is only compiled if NDEBUG is not
  1.2573 +** defined.
  1.2574 +**
  1.2575 +** For the purposes of this routine, a write-cursor is any cursor that
  1.2576 +** is capable of writing to the databse.  That means the cursor was
  1.2577 +** originally opened for writing and the cursor has not be disabled
  1.2578 +** by having its state changed to CURSOR_FAULT.
  1.2579 +*/
  1.2580 +static int countWriteCursors(BtShared *pBt){
  1.2581 +  BtCursor *pCur;
  1.2582 +  int r = 0;
  1.2583 +  for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
  1.2584 +    if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; 
  1.2585 +  }
  1.2586 +  return r;
  1.2587 +}
  1.2588 +#endif
  1.2589 +
  1.2590 +/*
  1.2591 +** This routine sets the state to CURSOR_FAULT and the error
  1.2592 +** code to errCode for every cursor on BtShared that pBtree
  1.2593 +** references.
  1.2594 +**
  1.2595 +** Every cursor is tripped, including cursors that belong
  1.2596 +** to other database connections that happen to be sharing
  1.2597 +** the cache with pBtree.
  1.2598 +**
  1.2599 +** This routine gets called when a rollback occurs.
  1.2600 +** All cursors using the same cache must be tripped
  1.2601 +** to prevent them from trying to use the btree after
  1.2602 +** the rollback.  The rollback may have deleted tables
  1.2603 +** or moved root pages, so it is not sufficient to
  1.2604 +** save the state of the cursor.  The cursor must be
  1.2605 +** invalidated.
  1.2606 +*/
  1.2607 +void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
  1.2608 +  BtCursor *p;
  1.2609 +  sqlite3BtreeEnter(pBtree);
  1.2610 +  for(p=pBtree->pBt->pCursor; p; p=p->pNext){
  1.2611 +    sqlite3BtreeClearCursor(p);
  1.2612 +    p->eState = CURSOR_FAULT;
  1.2613 +    p->skip = errCode;
  1.2614 +  }
  1.2615 +  sqlite3BtreeLeave(pBtree);
  1.2616 +}
  1.2617 +
  1.2618 +/*
  1.2619 +** Rollback the transaction in progress.  All cursors will be
  1.2620 +** invalided by this operation.  Any attempt to use a cursor
  1.2621 +** that was open at the beginning of this operation will result
  1.2622 +** in an error.
  1.2623 +**
  1.2624 +** This will release the write lock on the database file.  If there
  1.2625 +** are no active cursors, it also releases the read lock.
  1.2626 +*/
  1.2627 +int sqlite3BtreeRollback(Btree *p){
  1.2628 +  int rc;
  1.2629 +  BtShared *pBt = p->pBt;
  1.2630 +  MemPage *pPage1;
  1.2631 +
  1.2632 +  sqlite3BtreeEnter(p);
  1.2633 +  pBt->db = p->db;
  1.2634 +  rc = saveAllCursors(pBt, 0, 0);
  1.2635 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.2636 +  if( rc!=SQLITE_OK ){
  1.2637 +    /* This is a horrible situation. An IO or malloc() error occured whilst
  1.2638 +    ** trying to save cursor positions. If this is an automatic rollback (as
  1.2639 +    ** the result of a constraint, malloc() failure or IO error) then 
  1.2640 +    ** the cache may be internally inconsistent (not contain valid trees) so
  1.2641 +    ** we cannot simply return the error to the caller. Instead, abort 
  1.2642 +    ** all queries that may be using any of the cursors that failed to save.
  1.2643 +    */
  1.2644 +    sqlite3BtreeTripAllCursors(p, rc);
  1.2645 +  }
  1.2646 +#endif
  1.2647 +  btreeIntegrity(p);
  1.2648 +  unlockAllTables(p);
  1.2649 +
  1.2650 +  if( p->inTrans==TRANS_WRITE ){
  1.2651 +    int rc2;
  1.2652 +
  1.2653 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.2654 +    pBt->nTrunc = 0;
  1.2655 +#endif
  1.2656 +
  1.2657 +    assert( TRANS_WRITE==pBt->inTransaction );
  1.2658 +    rc2 = sqlite3PagerRollback(pBt->pPager);
  1.2659 +    if( rc2!=SQLITE_OK ){
  1.2660 +      rc = rc2;
  1.2661 +    }
  1.2662 +
  1.2663 +    /* The rollback may have destroyed the pPage1->aData value.  So
  1.2664 +    ** call sqlite3BtreeGetPage() on page 1 again to make
  1.2665 +    ** sure pPage1->aData is set correctly. */
  1.2666 +    if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
  1.2667 +      releasePage(pPage1);
  1.2668 +    }
  1.2669 +    assert( countWriteCursors(pBt)==0 );
  1.2670 +    pBt->inTransaction = TRANS_READ;
  1.2671 +  }
  1.2672 +
  1.2673 +  if( p->inTrans!=TRANS_NONE ){
  1.2674 +    assert( pBt->nTransaction>0 );
  1.2675 +    pBt->nTransaction--;
  1.2676 +    if( 0==pBt->nTransaction ){
  1.2677 +      pBt->inTransaction = TRANS_NONE;
  1.2678 +    }
  1.2679 +  }
  1.2680 +
  1.2681 +  p->inTrans = TRANS_NONE;
  1.2682 +  pBt->inStmt = 0;
  1.2683 +  unlockBtreeIfUnused(pBt);
  1.2684 +
  1.2685 +  btreeIntegrity(p);
  1.2686 +  sqlite3BtreeLeave(p);
  1.2687 +  return rc;
  1.2688 +}
  1.2689 +
  1.2690 +/*
  1.2691 +** Start a statement subtransaction.  The subtransaction can
  1.2692 +** can be rolled back independently of the main transaction.
  1.2693 +** You must start a transaction before starting a subtransaction.
  1.2694 +** The subtransaction is ended automatically if the main transaction
  1.2695 +** commits or rolls back.
  1.2696 +**
  1.2697 +** Only one subtransaction may be active at a time.  It is an error to try
  1.2698 +** to start a new subtransaction if another subtransaction is already active.
  1.2699 +**
  1.2700 +** Statement subtransactions are used around individual SQL statements
  1.2701 +** that are contained within a BEGIN...COMMIT block.  If a constraint
  1.2702 +** error occurs within the statement, the effect of that one statement
  1.2703 +** can be rolled back without having to rollback the entire transaction.
  1.2704 +*/
  1.2705 +int sqlite3BtreeBeginStmt(Btree *p){
  1.2706 +  int rc;
  1.2707 +  BtShared *pBt = p->pBt;
  1.2708 +  sqlite3BtreeEnter(p);
  1.2709 +  pBt->db = p->db;
  1.2710 +  if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){
  1.2711 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.2712 +  }else{
  1.2713 +    assert( pBt->inTransaction==TRANS_WRITE );
  1.2714 +    rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager);
  1.2715 +    pBt->inStmt = 1;
  1.2716 +  }
  1.2717 +  sqlite3BtreeLeave(p);
  1.2718 +  return rc;
  1.2719 +}
  1.2720 +
  1.2721 +
  1.2722 +/*
  1.2723 +** Commit the statment subtransaction currently in progress.  If no
  1.2724 +** subtransaction is active, this is a no-op.
  1.2725 +*/
  1.2726 +int sqlite3BtreeCommitStmt(Btree *p){
  1.2727 +  int rc;
  1.2728 +  BtShared *pBt = p->pBt;
  1.2729 +  sqlite3BtreeEnter(p);
  1.2730 +  pBt->db = p->db;
  1.2731 +  if( pBt->inStmt && !pBt->readOnly ){
  1.2732 +    rc = sqlite3PagerStmtCommit(pBt->pPager);
  1.2733 +  }else{
  1.2734 +    rc = SQLITE_OK;
  1.2735 +  }
  1.2736 +  pBt->inStmt = 0;
  1.2737 +  sqlite3BtreeLeave(p);
  1.2738 +  return rc;
  1.2739 +}
  1.2740 +
  1.2741 +/*
  1.2742 +** Rollback the active statement subtransaction.  If no subtransaction
  1.2743 +** is active this routine is a no-op.
  1.2744 +**
  1.2745 +** All cursors will be invalidated by this operation.  Any attempt
  1.2746 +** to use a cursor that was open at the beginning of this operation
  1.2747 +** will result in an error.
  1.2748 +*/
  1.2749 +int sqlite3BtreeRollbackStmt(Btree *p){
  1.2750 +  int rc = SQLITE_OK;
  1.2751 +  BtShared *pBt = p->pBt;
  1.2752 +  sqlite3BtreeEnter(p);
  1.2753 +  pBt->db = p->db;
  1.2754 +  if( pBt->inStmt && !pBt->readOnly ){
  1.2755 +    rc = sqlite3PagerStmtRollback(pBt->pPager);
  1.2756 +    pBt->inStmt = 0;
  1.2757 +  }
  1.2758 +  sqlite3BtreeLeave(p);
  1.2759 +  return rc;
  1.2760 +}
  1.2761 +
  1.2762 +/*
  1.2763 +** Create a new cursor for the BTree whose root is on the page
  1.2764 +** iTable.  The act of acquiring a cursor gets a read lock on 
  1.2765 +** the database file.
  1.2766 +**
  1.2767 +** If wrFlag==0, then the cursor can only be used for reading.
  1.2768 +** If wrFlag==1, then the cursor can be used for reading or for
  1.2769 +** writing if other conditions for writing are also met.  These
  1.2770 +** are the conditions that must be met in order for writing to
  1.2771 +** be allowed:
  1.2772 +**
  1.2773 +** 1:  The cursor must have been opened with wrFlag==1
  1.2774 +**
  1.2775 +** 2:  Other database connections that share the same pager cache
  1.2776 +**     but which are not in the READ_UNCOMMITTED state may not have
  1.2777 +**     cursors open with wrFlag==0 on the same table.  Otherwise
  1.2778 +**     the changes made by this write cursor would be visible to
  1.2779 +**     the read cursors in the other database connection.
  1.2780 +**
  1.2781 +** 3:  The database must be writable (not on read-only media)
  1.2782 +**
  1.2783 +** 4:  There must be an active transaction.
  1.2784 +**
  1.2785 +** No checking is done to make sure that page iTable really is the
  1.2786 +** root page of a b-tree.  If it is not, then the cursor acquired
  1.2787 +** will not work correctly.
  1.2788 +**
  1.2789 +** It is assumed that the sqlite3BtreeCursorSize() bytes of memory 
  1.2790 +** pointed to by pCur have been zeroed by the caller.
  1.2791 +*/
  1.2792 +static int btreeCursor(
  1.2793 +  Btree *p,                              /* The btree */
  1.2794 +  int iTable,                            /* Root page of table to open */
  1.2795 +  int wrFlag,                            /* 1 to write. 0 read-only */
  1.2796 +  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  1.2797 +  BtCursor *pCur                         /* Space for new cursor */
  1.2798 +){
  1.2799 +  int rc;
  1.2800 +  BtShared *pBt = p->pBt;
  1.2801 +
  1.2802 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.2803 +  if( wrFlag ){
  1.2804 +    if( pBt->readOnly ){
  1.2805 +      return SQLITE_READONLY;
  1.2806 +    }
  1.2807 +    if( checkReadLocks(p, iTable, 0, 0) ){
  1.2808 +      return SQLITE_LOCKED;
  1.2809 +    }
  1.2810 +  }
  1.2811 +
  1.2812 +  if( pBt->pPage1==0 ){
  1.2813 +    rc = lockBtreeWithRetry(p);
  1.2814 +    if( rc!=SQLITE_OK ){
  1.2815 +      return rc;
  1.2816 +    }
  1.2817 +    if( pBt->readOnly && wrFlag ){
  1.2818 +      return SQLITE_READONLY;
  1.2819 +    }
  1.2820 +  }
  1.2821 +  pCur->pgnoRoot = (Pgno)iTable;
  1.2822 +  if( iTable==1 && pagerPagecount(pBt->pPager)==0 ){
  1.2823 +    rc = SQLITE_EMPTY;
  1.2824 +    goto create_cursor_exception;
  1.2825 +  }
  1.2826 +  rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
  1.2827 +  if( rc!=SQLITE_OK ){
  1.2828 +    goto create_cursor_exception;
  1.2829 +  }
  1.2830 +
  1.2831 +  /* Now that no other errors can occur, finish filling in the BtCursor
  1.2832 +  ** variables, link the cursor into the BtShared list and set *ppCur (the
  1.2833 +  ** output argument to this function).
  1.2834 +  */
  1.2835 +  pCur->pKeyInfo = pKeyInfo;
  1.2836 +  pCur->pBtree = p;
  1.2837 +  pCur->pBt = pBt;
  1.2838 +  pCur->wrFlag = wrFlag;
  1.2839 +  pCur->pNext = pBt->pCursor;
  1.2840 +  if( pCur->pNext ){
  1.2841 +    pCur->pNext->pPrev = pCur;
  1.2842 +  }
  1.2843 +  pBt->pCursor = pCur;
  1.2844 +  pCur->eState = CURSOR_INVALID;
  1.2845 +
  1.2846 +  return SQLITE_OK;
  1.2847 +
  1.2848 +create_cursor_exception:
  1.2849 +  releasePage(pCur->apPage[0]);
  1.2850 +  unlockBtreeIfUnused(pBt);
  1.2851 +  return rc;
  1.2852 +}
  1.2853 +int sqlite3BtreeCursor(
  1.2854 +  Btree *p,                                   /* The btree */
  1.2855 +  int iTable,                                 /* Root page of table to open */
  1.2856 +  int wrFlag,                                 /* 1 to write. 0 read-only */
  1.2857 +  struct KeyInfo *pKeyInfo,                   /* First arg to xCompare() */
  1.2858 +  BtCursor *pCur                              /* Write new cursor here */
  1.2859 +){
  1.2860 +  int rc;
  1.2861 +  sqlite3BtreeEnter(p);
  1.2862 +  p->pBt->db = p->db;
  1.2863 +  rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
  1.2864 +  sqlite3BtreeLeave(p);
  1.2865 +  return rc;
  1.2866 +}
  1.2867 +int sqlite3BtreeCursorSize(){
  1.2868 +  return sizeof(BtCursor);
  1.2869 +}
  1.2870 +
  1.2871 +
  1.2872 +
  1.2873 +/*
  1.2874 +** Close a cursor.  The read lock on the database file is released
  1.2875 +** when the last cursor is closed.
  1.2876 +*/
  1.2877 +int sqlite3BtreeCloseCursor(BtCursor *pCur){
  1.2878 +  Btree *pBtree = pCur->pBtree;
  1.2879 +  if( pBtree ){
  1.2880 +    int i;
  1.2881 +    BtShared *pBt = pCur->pBt;
  1.2882 +    sqlite3BtreeEnter(pBtree);
  1.2883 +    pBt->db = pBtree->db;
  1.2884 +    sqlite3BtreeClearCursor(pCur);
  1.2885 +    if( pCur->pPrev ){
  1.2886 +      pCur->pPrev->pNext = pCur->pNext;
  1.2887 +    }else{
  1.2888 +      pBt->pCursor = pCur->pNext;
  1.2889 +    }
  1.2890 +    if( pCur->pNext ){
  1.2891 +      pCur->pNext->pPrev = pCur->pPrev;
  1.2892 +    }
  1.2893 +    for(i=0; i<=pCur->iPage; i++){
  1.2894 +      releasePage(pCur->apPage[i]);
  1.2895 +    }
  1.2896 +    unlockBtreeIfUnused(pBt);
  1.2897 +    invalidateOverflowCache(pCur);
  1.2898 +    /* sqlite3_free(pCur); */
  1.2899 +    sqlite3BtreeLeave(pBtree);
  1.2900 +  }
  1.2901 +  return SQLITE_OK;
  1.2902 +}
  1.2903 +
  1.2904 +/*
  1.2905 +** Make a temporary cursor by filling in the fields of pTempCur.
  1.2906 +** The temporary cursor is not on the cursor list for the Btree.
  1.2907 +*/
  1.2908 +void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
  1.2909 +  int i;
  1.2910 +  assert( cursorHoldsMutex(pCur) );
  1.2911 +  memcpy(pTempCur, pCur, sizeof(BtCursor));
  1.2912 +  pTempCur->pNext = 0;
  1.2913 +  pTempCur->pPrev = 0;
  1.2914 +  for(i=0; i<=pTempCur->iPage; i++){
  1.2915 +    sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
  1.2916 +  }
  1.2917 +}
  1.2918 +
  1.2919 +/*
  1.2920 +** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
  1.2921 +** function above.
  1.2922 +*/
  1.2923 +void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
  1.2924 +  int i;
  1.2925 +  assert( cursorHoldsMutex(pCur) );
  1.2926 +  for(i=0; i<=pCur->iPage; i++){
  1.2927 +    sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
  1.2928 +  }
  1.2929 +}
  1.2930 +
  1.2931 +/*
  1.2932 +** Make sure the BtCursor* given in the argument has a valid
  1.2933 +** BtCursor.info structure.  If it is not already valid, call
  1.2934 +** sqlite3BtreeParseCell() to fill it in.
  1.2935 +**
  1.2936 +** BtCursor.info is a cache of the information in the current cell.
  1.2937 +** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
  1.2938 +**
  1.2939 +** 2007-06-25:  There is a bug in some versions of MSVC that cause the
  1.2940 +** compiler to crash when getCellInfo() is implemented as a macro.
  1.2941 +** But there is a measureable speed advantage to using the macro on gcc
  1.2942 +** (when less compiler optimizations like -Os or -O0 are used and the
  1.2943 +** compiler is not doing agressive inlining.)  So we use a real function
  1.2944 +** for MSVC and a macro for everything else.  Ticket #2457.
  1.2945 +*/
  1.2946 +#ifndef NDEBUG
  1.2947 +  static void assertCellInfo(BtCursor *pCur){
  1.2948 +    CellInfo info;
  1.2949 +    int iPage = pCur->iPage;
  1.2950 +    memset(&info, 0, sizeof(info));
  1.2951 +    sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
  1.2952 +    assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
  1.2953 +  }
  1.2954 +#else
  1.2955 +  #define assertCellInfo(x)
  1.2956 +#endif
  1.2957 +#ifdef _MSC_VER
  1.2958 +  /* Use a real function in MSVC to work around bugs in that compiler. */
  1.2959 +  static void getCellInfo(BtCursor *pCur){
  1.2960 +    if( pCur->info.nSize==0 ){
  1.2961 +      int iPage = pCur->iPage;
  1.2962 +      sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
  1.2963 +      pCur->validNKey = 1;
  1.2964 +    }else{
  1.2965 +      assertCellInfo(pCur);
  1.2966 +    }
  1.2967 +  }
  1.2968 +#else /* if not _MSC_VER */
  1.2969 +  /* Use a macro in all other compilers so that the function is inlined */
  1.2970 +#define getCellInfo(pCur)                                                      \
  1.2971 +  if( pCur->info.nSize==0 ){                                                   \
  1.2972 +    int iPage = pCur->iPage;                                                   \
  1.2973 +    sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
  1.2974 +    pCur->validNKey = 1;                                                       \
  1.2975 +  }else{                                                                       \
  1.2976 +    assertCellInfo(pCur);                                                      \
  1.2977 +  }
  1.2978 +#endif /* _MSC_VER */
  1.2979 +
  1.2980 +/*
  1.2981 +** Set *pSize to the size of the buffer needed to hold the value of
  1.2982 +** the key for the current entry.  If the cursor is not pointing
  1.2983 +** to a valid entry, *pSize is set to 0. 
  1.2984 +**
  1.2985 +** For a table with the INTKEY flag set, this routine returns the key
  1.2986 +** itself, not the number of bytes in the key.
  1.2987 +*/
  1.2988 +int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
  1.2989 +  int rc;
  1.2990 +
  1.2991 +  assert( cursorHoldsMutex(pCur) );
  1.2992 +  rc = restoreCursorPosition(pCur);
  1.2993 +  if( rc==SQLITE_OK ){
  1.2994 +    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  1.2995 +    if( pCur->eState==CURSOR_INVALID ){
  1.2996 +      *pSize = 0;
  1.2997 +    }else{
  1.2998 +      getCellInfo(pCur);
  1.2999 +      *pSize = pCur->info.nKey;
  1.3000 +    }
  1.3001 +  }
  1.3002 +  return rc;
  1.3003 +}
  1.3004 +
  1.3005 +/*
  1.3006 +** Set *pSize to the number of bytes of data in the entry the
  1.3007 +** cursor currently points to.  Always return SQLITE_OK.
  1.3008 +** Failure is not possible.  If the cursor is not currently
  1.3009 +** pointing to an entry (which can happen, for example, if
  1.3010 +** the database is empty) then *pSize is set to 0.
  1.3011 +*/
  1.3012 +int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  1.3013 +  int rc;
  1.3014 +
  1.3015 +  assert( cursorHoldsMutex(pCur) );
  1.3016 +  rc = restoreCursorPosition(pCur);
  1.3017 +  if( rc==SQLITE_OK ){
  1.3018 +    assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
  1.3019 +    if( pCur->eState==CURSOR_INVALID ){
  1.3020 +      /* Not pointing at a valid entry - set *pSize to 0. */
  1.3021 +      *pSize = 0;
  1.3022 +    }else{
  1.3023 +      getCellInfo(pCur);
  1.3024 +      *pSize = pCur->info.nData;
  1.3025 +    }
  1.3026 +  }
  1.3027 +  return rc;
  1.3028 +}
  1.3029 +
  1.3030 +/*
  1.3031 +** Given the page number of an overflow page in the database (parameter
  1.3032 +** ovfl), this function finds the page number of the next page in the 
  1.3033 +** linked list of overflow pages. If possible, it uses the auto-vacuum
  1.3034 +** pointer-map data instead of reading the content of page ovfl to do so. 
  1.3035 +**
  1.3036 +** If an error occurs an SQLite error code is returned. Otherwise:
  1.3037 +**
  1.3038 +** Unless pPgnoNext is NULL, the page number of the next overflow 
  1.3039 +** page in the linked list is written to *pPgnoNext. If page ovfl
  1.3040 +** is the last page in its linked list, *pPgnoNext is set to zero. 
  1.3041 +**
  1.3042 +** If ppPage is not NULL, *ppPage is set to the MemPage* handle
  1.3043 +** for page ovfl. The underlying pager page may have been requested
  1.3044 +** with the noContent flag set, so the page data accessable via
  1.3045 +** this handle may not be trusted.
  1.3046 +*/
  1.3047 +static int getOverflowPage(
  1.3048 +  BtShared *pBt, 
  1.3049 +  Pgno ovfl,                   /* Overflow page */
  1.3050 +  MemPage **ppPage,            /* OUT: MemPage handle */
  1.3051 +  Pgno *pPgnoNext              /* OUT: Next overflow page number */
  1.3052 +){
  1.3053 +  Pgno next = 0;
  1.3054 +  int rc;
  1.3055 +
  1.3056 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.3057 +  /* One of these must not be NULL. Otherwise, why call this function? */
  1.3058 +  assert(ppPage || pPgnoNext);
  1.3059 +
  1.3060 +  /* If pPgnoNext is NULL, then this function is being called to obtain
  1.3061 +  ** a MemPage* reference only. No page-data is required in this case.
  1.3062 +  */
  1.3063 +  if( !pPgnoNext ){
  1.3064 +    return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1);
  1.3065 +  }
  1.3066 +
  1.3067 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.3068 +  /* Try to find the next page in the overflow list using the
  1.3069 +  ** autovacuum pointer-map pages. Guess that the next page in 
  1.3070 +  ** the overflow list is page number (ovfl+1). If that guess turns 
  1.3071 +  ** out to be wrong, fall back to loading the data of page 
  1.3072 +  ** number ovfl to determine the next page number.
  1.3073 +  */
  1.3074 +  if( pBt->autoVacuum ){
  1.3075 +    Pgno pgno;
  1.3076 +    Pgno iGuess = ovfl+1;
  1.3077 +    u8 eType;
  1.3078 +
  1.3079 +    while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
  1.3080 +      iGuess++;
  1.3081 +    }
  1.3082 +
  1.3083 +    if( iGuess<=pagerPagecount(pBt->pPager) ){
  1.3084 +      rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
  1.3085 +      if( rc!=SQLITE_OK ){
  1.3086 +        return rc;
  1.3087 +      }
  1.3088 +      if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
  1.3089 +        next = iGuess;
  1.3090 +      }
  1.3091 +    }
  1.3092 +  }
  1.3093 +#endif
  1.3094 +
  1.3095 +  if( next==0 || ppPage ){
  1.3096 +    MemPage *pPage = 0;
  1.3097 +
  1.3098 +    rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0);
  1.3099 +    assert(rc==SQLITE_OK || pPage==0);
  1.3100 +    if( next==0 && rc==SQLITE_OK ){
  1.3101 +      next = get4byte(pPage->aData);
  1.3102 +    }
  1.3103 +
  1.3104 +    if( ppPage ){
  1.3105 +      *ppPage = pPage;
  1.3106 +    }else{
  1.3107 +      releasePage(pPage);
  1.3108 +    }
  1.3109 +  }
  1.3110 +  *pPgnoNext = next;
  1.3111 +
  1.3112 +  return rc;
  1.3113 +}
  1.3114 +
  1.3115 +/*
  1.3116 +** Copy data from a buffer to a page, or from a page to a buffer.
  1.3117 +**
  1.3118 +** pPayload is a pointer to data stored on database page pDbPage.
  1.3119 +** If argument eOp is false, then nByte bytes of data are copied
  1.3120 +** from pPayload to the buffer pointed at by pBuf. If eOp is true,
  1.3121 +** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
  1.3122 +** of data are copied from the buffer pBuf to pPayload.
  1.3123 +**
  1.3124 +** SQLITE_OK is returned on success, otherwise an error code.
  1.3125 +*/
  1.3126 +static int copyPayload(
  1.3127 +  void *pPayload,           /* Pointer to page data */
  1.3128 +  void *pBuf,               /* Pointer to buffer */
  1.3129 +  int nByte,                /* Number of bytes to copy */
  1.3130 +  int eOp,                  /* 0 -> copy from page, 1 -> copy to page */
  1.3131 +  DbPage *pDbPage           /* Page containing pPayload */
  1.3132 +){
  1.3133 +  if( eOp ){
  1.3134 +    /* Copy data from buffer to page (a write operation) */
  1.3135 +    int rc = sqlite3PagerWrite(pDbPage);
  1.3136 +    if( rc!=SQLITE_OK ){
  1.3137 +      return rc;
  1.3138 +    }
  1.3139 +    memcpy(pPayload, pBuf, nByte);
  1.3140 +  }else{
  1.3141 +    /* Copy data from page to buffer (a read operation) */
  1.3142 +    memcpy(pBuf, pPayload, nByte);
  1.3143 +  }
  1.3144 +  return SQLITE_OK;
  1.3145 +}
  1.3146 +
  1.3147 +/*
  1.3148 +** This function is used to read or overwrite payload information
  1.3149 +** for the entry that the pCur cursor is pointing to. If the eOp
  1.3150 +** parameter is 0, this is a read operation (data copied into
  1.3151 +** buffer pBuf). If it is non-zero, a write (data copied from
  1.3152 +** buffer pBuf).
  1.3153 +**
  1.3154 +** A total of "amt" bytes are read or written beginning at "offset".
  1.3155 +** Data is read to or from the buffer pBuf.
  1.3156 +**
  1.3157 +** This routine does not make a distinction between key and data.
  1.3158 +** It just reads or writes bytes from the payload area.  Data might 
  1.3159 +** appear on the main page or be scattered out on multiple overflow 
  1.3160 +** pages.
  1.3161 +**
  1.3162 +** If the BtCursor.isIncrblobHandle flag is set, and the current
  1.3163 +** cursor entry uses one or more overflow pages, this function
  1.3164 +** allocates space for and lazily popluates the overflow page-list 
  1.3165 +** cache array (BtCursor.aOverflow). Subsequent calls use this
  1.3166 +** cache to make seeking to the supplied offset more efficient.
  1.3167 +**
  1.3168 +** Once an overflow page-list cache has been allocated, it may be
  1.3169 +** invalidated if some other cursor writes to the same table, or if
  1.3170 +** the cursor is moved to a different row. Additionally, in auto-vacuum
  1.3171 +** mode, the following events may invalidate an overflow page-list cache.
  1.3172 +**
  1.3173 +**   * An incremental vacuum,
  1.3174 +**   * A commit in auto_vacuum="full" mode,
  1.3175 +**   * Creating a table (may require moving an overflow page).
  1.3176 +*/
  1.3177 +static int accessPayload(
  1.3178 +  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  1.3179 +  int offset,          /* Begin reading this far into payload */
  1.3180 +  int amt,             /* Read this many bytes */
  1.3181 +  unsigned char *pBuf, /* Write the bytes into this buffer */ 
  1.3182 +  int skipKey,         /* offset begins at data if this is true */
  1.3183 +  int eOp              /* zero to read. non-zero to write. */
  1.3184 +){
  1.3185 +  unsigned char *aPayload;
  1.3186 +  int rc = SQLITE_OK;
  1.3187 +  u32 nKey;
  1.3188 +  int iIdx = 0;
  1.3189 +  MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
  1.3190 +  BtShared *pBt = pCur->pBt;                  /* Btree this cursor belongs to */
  1.3191 +
  1.3192 +  assert( pPage );
  1.3193 +  assert( pCur->eState==CURSOR_VALID );
  1.3194 +  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  1.3195 +  assert( offset>=0 );
  1.3196 +  assert( cursorHoldsMutex(pCur) );
  1.3197 +
  1.3198 +  getCellInfo(pCur);
  1.3199 +  aPayload = pCur->info.pCell + pCur->info.nHeader;
  1.3200 +  nKey = (pPage->intKey ? 0 : pCur->info.nKey);
  1.3201 +
  1.3202 +  if( skipKey ){
  1.3203 +    offset += nKey;
  1.3204 +  }
  1.3205 +  if( offset+amt > nKey+pCur->info.nData 
  1.3206 +   || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
  1.3207 +  ){
  1.3208 +    /* Trying to read or write past the end of the data is an error */
  1.3209 +    return SQLITE_CORRUPT_BKPT;
  1.3210 +  }
  1.3211 +
  1.3212 +  /* Check if data must be read/written to/from the btree page itself. */
  1.3213 +  if( offset<pCur->info.nLocal ){
  1.3214 +    int a = amt;
  1.3215 +    if( a+offset>pCur->info.nLocal ){
  1.3216 +      a = pCur->info.nLocal - offset;
  1.3217 +    }
  1.3218 +    rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
  1.3219 +    offset = 0;
  1.3220 +    pBuf += a;
  1.3221 +    amt -= a;
  1.3222 +  }else{
  1.3223 +    offset -= pCur->info.nLocal;
  1.3224 +  }
  1.3225 +
  1.3226 +  pBt = pCur->pBt;
  1.3227 +  if( rc==SQLITE_OK && amt>0 ){
  1.3228 +    const int ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
  1.3229 +    Pgno nextPage;
  1.3230 +
  1.3231 +    nextPage = get4byte(&aPayload[pCur->info.nLocal]);
  1.3232 +
  1.3233 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3234 +    /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
  1.3235 +    ** has not been allocated, allocate it now. The array is sized at
  1.3236 +    ** one entry for each overflow page in the overflow chain. The
  1.3237 +    ** page number of the first overflow page is stored in aOverflow[0],
  1.3238 +    ** etc. A value of 0 in the aOverflow[] array means "not yet known"
  1.3239 +    ** (the cache is lazily populated).
  1.3240 +    */
  1.3241 +    if( pCur->isIncrblobHandle && !pCur->aOverflow ){
  1.3242 +      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
  1.3243 +      pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
  1.3244 +      if( nOvfl && !pCur->aOverflow ){
  1.3245 +        rc = SQLITE_NOMEM;
  1.3246 +      }
  1.3247 +    }
  1.3248 +
  1.3249 +    /* If the overflow page-list cache has been allocated and the
  1.3250 +    ** entry for the first required overflow page is valid, skip
  1.3251 +    ** directly to it.
  1.3252 +    */
  1.3253 +    if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
  1.3254 +      iIdx = (offset/ovflSize);
  1.3255 +      nextPage = pCur->aOverflow[iIdx];
  1.3256 +      offset = (offset%ovflSize);
  1.3257 +    }
  1.3258 +#endif
  1.3259 +
  1.3260 +    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
  1.3261 +
  1.3262 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3263 +      /* If required, populate the overflow page-list cache. */
  1.3264 +      if( pCur->aOverflow ){
  1.3265 +        assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
  1.3266 +        pCur->aOverflow[iIdx] = nextPage;
  1.3267 +      }
  1.3268 +#endif
  1.3269 +
  1.3270 +      if( offset>=ovflSize ){
  1.3271 +        /* The only reason to read this page is to obtain the page
  1.3272 +        ** number for the next page in the overflow chain. The page
  1.3273 +        ** data is not required. So first try to lookup the overflow
  1.3274 +        ** page-list cache, if any, then fall back to the getOverflowPage()
  1.3275 +        ** function.
  1.3276 +        */
  1.3277 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3278 +        if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
  1.3279 +          nextPage = pCur->aOverflow[iIdx+1];
  1.3280 +        } else 
  1.3281 +#endif
  1.3282 +          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
  1.3283 +        offset -= ovflSize;
  1.3284 +      }else{
  1.3285 +        /* Need to read this page properly. It contains some of the
  1.3286 +        ** range of data that is being read (eOp==0) or written (eOp!=0).
  1.3287 +        */
  1.3288 +        DbPage *pDbPage;
  1.3289 +        int a = amt;
  1.3290 +        rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
  1.3291 +        if( rc==SQLITE_OK ){
  1.3292 +          aPayload = sqlite3PagerGetData(pDbPage);
  1.3293 +          nextPage = get4byte(aPayload);
  1.3294 +          if( a + offset > ovflSize ){
  1.3295 +            a = ovflSize - offset;
  1.3296 +          }
  1.3297 +          rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
  1.3298 +          sqlite3PagerUnref(pDbPage);
  1.3299 +          offset = 0;
  1.3300 +          amt -= a;
  1.3301 +          pBuf += a;
  1.3302 +        }
  1.3303 +      }
  1.3304 +    }
  1.3305 +  }
  1.3306 +
  1.3307 +  if( rc==SQLITE_OK && amt>0 ){
  1.3308 +    return SQLITE_CORRUPT_BKPT;
  1.3309 +  }
  1.3310 +  return rc;
  1.3311 +}
  1.3312 +
  1.3313 +/*
  1.3314 +** Read part of the key associated with cursor pCur.  Exactly
  1.3315 +** "amt" bytes will be transfered into pBuf[].  The transfer
  1.3316 +** begins at "offset".
  1.3317 +**
  1.3318 +** Return SQLITE_OK on success or an error code if anything goes
  1.3319 +** wrong.  An error is returned if "offset+amt" is larger than
  1.3320 +** the available payload.
  1.3321 +*/
  1.3322 +int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  1.3323 +  int rc;
  1.3324 +
  1.3325 +  assert( cursorHoldsMutex(pCur) );
  1.3326 +  rc = restoreCursorPosition(pCur);
  1.3327 +  if( rc==SQLITE_OK ){
  1.3328 +    assert( pCur->eState==CURSOR_VALID );
  1.3329 +    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  1.3330 +    if( pCur->apPage[0]->intKey ){
  1.3331 +      return SQLITE_CORRUPT_BKPT;
  1.3332 +    }
  1.3333 +    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  1.3334 +    rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
  1.3335 +  }
  1.3336 +  return rc;
  1.3337 +}
  1.3338 +
  1.3339 +/*
  1.3340 +** Read part of the data associated with cursor pCur.  Exactly
  1.3341 +** "amt" bytes will be transfered into pBuf[].  The transfer
  1.3342 +** begins at "offset".
  1.3343 +**
  1.3344 +** Return SQLITE_OK on success or an error code if anything goes
  1.3345 +** wrong.  An error is returned if "offset+amt" is larger than
  1.3346 +** the available payload.
  1.3347 +*/
  1.3348 +int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
  1.3349 +  int rc;
  1.3350 +
  1.3351 +#ifndef SQLITE_OMIT_INCRBLOB
  1.3352 +  if ( pCur->eState==CURSOR_INVALID ){
  1.3353 +    return SQLITE_ABORT;
  1.3354 +  }
  1.3355 +#endif
  1.3356 +
  1.3357 +  assert( cursorHoldsMutex(pCur) );
  1.3358 +  rc = restoreCursorPosition(pCur);
  1.3359 +  if( rc==SQLITE_OK ){
  1.3360 +    assert( pCur->eState==CURSOR_VALID );
  1.3361 +    assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
  1.3362 +    assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  1.3363 +    rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
  1.3364 +  }
  1.3365 +  return rc;
  1.3366 +}
  1.3367 +
  1.3368 +/*
  1.3369 +** Return a pointer to payload information from the entry that the 
  1.3370 +** pCur cursor is pointing to.  The pointer is to the beginning of
  1.3371 +** the key if skipKey==0 and it points to the beginning of data if
  1.3372 +** skipKey==1.  The number of bytes of available key/data is written
  1.3373 +** into *pAmt.  If *pAmt==0, then the value returned will not be
  1.3374 +** a valid pointer.
  1.3375 +**
  1.3376 +** This routine is an optimization.  It is common for the entire key
  1.3377 +** and data to fit on the local page and for there to be no overflow
  1.3378 +** pages.  When that is so, this routine can be used to access the
  1.3379 +** key and data without making a copy.  If the key and/or data spills
  1.3380 +** onto overflow pages, then accessPayload() must be used to reassembly
  1.3381 +** the key/data and copy it into a preallocated buffer.
  1.3382 +**
  1.3383 +** The pointer returned by this routine looks directly into the cached
  1.3384 +** page of the database.  The data might change or move the next time
  1.3385 +** any btree routine is called.
  1.3386 +*/
  1.3387 +static const unsigned char *fetchPayload(
  1.3388 +  BtCursor *pCur,      /* Cursor pointing to entry to read from */
  1.3389 +  int *pAmt,           /* Write the number of available bytes here */
  1.3390 +  int skipKey          /* read beginning at data if this is true */
  1.3391 +){
  1.3392 +  unsigned char *aPayload;
  1.3393 +  MemPage *pPage;
  1.3394 +  u32 nKey;
  1.3395 +  int nLocal;
  1.3396 +
  1.3397 +  assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
  1.3398 +  assert( pCur->eState==CURSOR_VALID );
  1.3399 +  assert( cursorHoldsMutex(pCur) );
  1.3400 +  pPage = pCur->apPage[pCur->iPage];
  1.3401 +  assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  1.3402 +  getCellInfo(pCur);
  1.3403 +  aPayload = pCur->info.pCell;
  1.3404 +  aPayload += pCur->info.nHeader;
  1.3405 +  if( pPage->intKey ){
  1.3406 +    nKey = 0;
  1.3407 +  }else{
  1.3408 +    nKey = pCur->info.nKey;
  1.3409 +  }
  1.3410 +  if( skipKey ){
  1.3411 +    aPayload += nKey;
  1.3412 +    nLocal = pCur->info.nLocal - nKey;
  1.3413 +  }else{
  1.3414 +    nLocal = pCur->info.nLocal;
  1.3415 +    if( nLocal>nKey ){
  1.3416 +      nLocal = nKey;
  1.3417 +    }
  1.3418 +  }
  1.3419 +  *pAmt = nLocal;
  1.3420 +  return aPayload;
  1.3421 +}
  1.3422 +
  1.3423 +
  1.3424 +/*
  1.3425 +** For the entry that cursor pCur is point to, return as
  1.3426 +** many bytes of the key or data as are available on the local
  1.3427 +** b-tree page.  Write the number of available bytes into *pAmt.
  1.3428 +**
  1.3429 +** The pointer returned is ephemeral.  The key/data may move
  1.3430 +** or be destroyed on the next call to any Btree routine,
  1.3431 +** including calls from other threads against the same cache.
  1.3432 +** Hence, a mutex on the BtShared should be held prior to calling
  1.3433 +** this routine.
  1.3434 +**
  1.3435 +** These routines is used to get quick access to key and data
  1.3436 +** in the common case where no overflow pages are used.
  1.3437 +*/
  1.3438 +const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
  1.3439 +  assert( cursorHoldsMutex(pCur) );
  1.3440 +  if( pCur->eState==CURSOR_VALID ){
  1.3441 +    return (const void*)fetchPayload(pCur, pAmt, 0);
  1.3442 +  }
  1.3443 +  return 0;
  1.3444 +}
  1.3445 +const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
  1.3446 +  assert( cursorHoldsMutex(pCur) );
  1.3447 +  if( pCur->eState==CURSOR_VALID ){
  1.3448 +    return (const void*)fetchPayload(pCur, pAmt, 1);
  1.3449 +  }
  1.3450 +  return 0;
  1.3451 +}
  1.3452 +
  1.3453 +
  1.3454 +/*
  1.3455 +** Move the cursor down to a new child page.  The newPgno argument is the
  1.3456 +** page number of the child page to move to.
  1.3457 +*/
  1.3458 +static int moveToChild(BtCursor *pCur, u32 newPgno){
  1.3459 +  int rc;
  1.3460 +  int i = pCur->iPage;
  1.3461 +  MemPage *pNewPage;
  1.3462 +  BtShared *pBt = pCur->pBt;
  1.3463 +
  1.3464 +  assert( cursorHoldsMutex(pCur) );
  1.3465 +  assert( pCur->eState==CURSOR_VALID );
  1.3466 +  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  1.3467 +  if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
  1.3468 +    return SQLITE_CORRUPT_BKPT;
  1.3469 +  }
  1.3470 +  rc = getAndInitPage(pBt, newPgno, &pNewPage);
  1.3471 +  if( rc ) return rc;
  1.3472 +  pCur->apPage[i+1] = pNewPage;
  1.3473 +  pCur->aiIdx[i+1] = 0;
  1.3474 +  pCur->iPage++;
  1.3475 +
  1.3476 +  pCur->info.nSize = 0;
  1.3477 +  pCur->validNKey = 0;
  1.3478 +  if( pNewPage->nCell<1 ){
  1.3479 +    return SQLITE_CORRUPT_BKPT;
  1.3480 +  }
  1.3481 +  return SQLITE_OK;
  1.3482 +}
  1.3483 +
  1.3484 +#ifndef NDEBUG
  1.3485 +/*
  1.3486 +** Page pParent is an internal (non-leaf) tree page. This function 
  1.3487 +** asserts that page number iChild is the left-child if the iIdx'th
  1.3488 +** cell in page pParent. Or, if iIdx is equal to the total number of
  1.3489 +** cells in pParent, that page number iChild is the right-child of
  1.3490 +** the page.
  1.3491 +*/
  1.3492 +static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
  1.3493 +  assert( iIdx<=pParent->nCell );
  1.3494 +  if( iIdx==pParent->nCell ){
  1.3495 +    assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
  1.3496 +  }else{
  1.3497 +    assert( get4byte(findCell(pParent, iIdx))==iChild );
  1.3498 +  }
  1.3499 +}
  1.3500 +#else
  1.3501 +#  define assertParentIndex(x,y,z) 
  1.3502 +#endif
  1.3503 +
  1.3504 +/*
  1.3505 +** Move the cursor up to the parent page.
  1.3506 +**
  1.3507 +** pCur->idx is set to the cell index that contains the pointer
  1.3508 +** to the page we are coming from.  If we are coming from the
  1.3509 +** right-most child page then pCur->idx is set to one more than
  1.3510 +** the largest cell index.
  1.3511 +*/
  1.3512 +void sqlite3BtreeMoveToParent(BtCursor *pCur){
  1.3513 +  assert( cursorHoldsMutex(pCur) );
  1.3514 +  assert( pCur->eState==CURSOR_VALID );
  1.3515 +  assert( pCur->iPage>0 );
  1.3516 +  assert( pCur->apPage[pCur->iPage] );
  1.3517 +  assertParentIndex(
  1.3518 +    pCur->apPage[pCur->iPage-1], 
  1.3519 +    pCur->aiIdx[pCur->iPage-1], 
  1.3520 +    pCur->apPage[pCur->iPage]->pgno
  1.3521 +  );
  1.3522 +  releasePage(pCur->apPage[pCur->iPage]);
  1.3523 +  pCur->iPage--;
  1.3524 +  pCur->info.nSize = 0;
  1.3525 +  pCur->validNKey = 0;
  1.3526 +}
  1.3527 +
  1.3528 +/*
  1.3529 +** Move the cursor to the root page
  1.3530 +*/
  1.3531 +static int moveToRoot(BtCursor *pCur){
  1.3532 +  MemPage *pRoot;
  1.3533 +  int rc = SQLITE_OK;
  1.3534 +  Btree *p = pCur->pBtree;
  1.3535 +  BtShared *pBt = p->pBt;
  1.3536 +
  1.3537 +  assert( cursorHoldsMutex(pCur) );
  1.3538 +  assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
  1.3539 +  assert( CURSOR_VALID   < CURSOR_REQUIRESEEK );
  1.3540 +  assert( CURSOR_FAULT   > CURSOR_REQUIRESEEK );
  1.3541 +  if( pCur->eState>=CURSOR_REQUIRESEEK ){
  1.3542 +    if( pCur->eState==CURSOR_FAULT ){
  1.3543 +      return pCur->skip;
  1.3544 +    }
  1.3545 +    sqlite3BtreeClearCursor(pCur);
  1.3546 +  }
  1.3547 +
  1.3548 +  if( pCur->iPage>=0 ){
  1.3549 +    int i;
  1.3550 +    for(i=1; i<=pCur->iPage; i++){
  1.3551 +      releasePage(pCur->apPage[i]);
  1.3552 +    }
  1.3553 +  }else{
  1.3554 +    if( 
  1.3555 +      SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
  1.3556 +    ){
  1.3557 +      pCur->eState = CURSOR_INVALID;
  1.3558 +      return rc;
  1.3559 +    }
  1.3560 +  }
  1.3561 +
  1.3562 +  pRoot = pCur->apPage[0];
  1.3563 +  assert( pRoot->pgno==pCur->pgnoRoot );
  1.3564 +  pCur->iPage = 0;
  1.3565 +  pCur->aiIdx[0] = 0;
  1.3566 +  pCur->info.nSize = 0;
  1.3567 +  pCur->atLast = 0;
  1.3568 +  pCur->validNKey = 0;
  1.3569 +
  1.3570 +  if( pRoot->nCell==0 && !pRoot->leaf ){
  1.3571 +    Pgno subpage;
  1.3572 +    assert( pRoot->pgno==1 );
  1.3573 +    subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
  1.3574 +    assert( subpage>0 );
  1.3575 +    pCur->eState = CURSOR_VALID;
  1.3576 +    rc = moveToChild(pCur, subpage);
  1.3577 +  }else{
  1.3578 +    pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
  1.3579 +  }
  1.3580 +  return rc;
  1.3581 +}
  1.3582 +
  1.3583 +/*
  1.3584 +** Move the cursor down to the left-most leaf entry beneath the
  1.3585 +** entry to which it is currently pointing.
  1.3586 +**
  1.3587 +** The left-most leaf is the one with the smallest key - the first
  1.3588 +** in ascending order.
  1.3589 +*/
  1.3590 +static int moveToLeftmost(BtCursor *pCur){
  1.3591 +  Pgno pgno;
  1.3592 +  int rc = SQLITE_OK;
  1.3593 +  MemPage *pPage;
  1.3594 +
  1.3595 +  assert( cursorHoldsMutex(pCur) );
  1.3596 +  assert( pCur->eState==CURSOR_VALID );
  1.3597 +  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
  1.3598 +    assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
  1.3599 +    pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
  1.3600 +    rc = moveToChild(pCur, pgno);
  1.3601 +  }
  1.3602 +  return rc;
  1.3603 +}
  1.3604 +
  1.3605 +/*
  1.3606 +** Move the cursor down to the right-most leaf entry beneath the
  1.3607 +** page to which it is currently pointing.  Notice the difference
  1.3608 +** between moveToLeftmost() and moveToRightmost().  moveToLeftmost()
  1.3609 +** finds the left-most entry beneath the *entry* whereas moveToRightmost()
  1.3610 +** finds the right-most entry beneath the *page*.
  1.3611 +**
  1.3612 +** The right-most entry is the one with the largest key - the last
  1.3613 +** key in ascending order.
  1.3614 +*/
  1.3615 +static int moveToRightmost(BtCursor *pCur){
  1.3616 +  Pgno pgno;
  1.3617 +  int rc = SQLITE_OK;
  1.3618 +  MemPage *pPage;
  1.3619 +
  1.3620 +  assert( cursorHoldsMutex(pCur) );
  1.3621 +  assert( pCur->eState==CURSOR_VALID );
  1.3622 +  while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
  1.3623 +    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.3624 +    pCur->aiIdx[pCur->iPage] = pPage->nCell;
  1.3625 +    rc = moveToChild(pCur, pgno);
  1.3626 +  }
  1.3627 +  if( rc==SQLITE_OK ){
  1.3628 +    pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
  1.3629 +    pCur->info.nSize = 0;
  1.3630 +    pCur->validNKey = 0;
  1.3631 +  }
  1.3632 +  return rc;
  1.3633 +}
  1.3634 +
  1.3635 +/* Move the cursor to the first entry in the table.  Return SQLITE_OK
  1.3636 +** on success.  Set *pRes to 0 if the cursor actually points to something
  1.3637 +** or set *pRes to 1 if the table is empty.
  1.3638 +*/
  1.3639 +int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
  1.3640 +  int rc;
  1.3641 +
  1.3642 +  assert( cursorHoldsMutex(pCur) );
  1.3643 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3644 +  rc = moveToRoot(pCur);
  1.3645 +  if( rc==SQLITE_OK ){
  1.3646 +    if( pCur->eState==CURSOR_INVALID ){
  1.3647 +      assert( pCur->apPage[pCur->iPage]->nCell==0 );
  1.3648 +      *pRes = 1;
  1.3649 +      rc = SQLITE_OK;
  1.3650 +    }else{
  1.3651 +      assert( pCur->apPage[pCur->iPage]->nCell>0 );
  1.3652 +      *pRes = 0;
  1.3653 +      rc = moveToLeftmost(pCur);
  1.3654 +    }
  1.3655 +  }
  1.3656 +  return rc;
  1.3657 +}
  1.3658 +
  1.3659 +/* Move the cursor to the last entry in the table.  Return SQLITE_OK
  1.3660 +** on success.  Set *pRes to 0 if the cursor actually points to something
  1.3661 +** or set *pRes to 1 if the table is empty.
  1.3662 +*/
  1.3663 +int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
  1.3664 +  int rc;
  1.3665 + 
  1.3666 +  assert( cursorHoldsMutex(pCur) );
  1.3667 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3668 +  rc = moveToRoot(pCur);
  1.3669 +  if( rc==SQLITE_OK ){
  1.3670 +    if( CURSOR_INVALID==pCur->eState ){
  1.3671 +      assert( pCur->apPage[pCur->iPage]->nCell==0 );
  1.3672 +      *pRes = 1;
  1.3673 +    }else{
  1.3674 +      assert( pCur->eState==CURSOR_VALID );
  1.3675 +      *pRes = 0;
  1.3676 +      rc = moveToRightmost(pCur);
  1.3677 +      getCellInfo(pCur);
  1.3678 +      pCur->atLast = rc==SQLITE_OK;
  1.3679 +    }
  1.3680 +  }
  1.3681 +  return rc;
  1.3682 +}
  1.3683 +
  1.3684 +/* Move the cursor so that it points to an entry near the key 
  1.3685 +** specified by pIdxKey or intKey.   Return a success code.
  1.3686 +**
  1.3687 +** For INTKEY tables, the intKey parameter is used.  pIdxKey 
  1.3688 +** must be NULL.  For index tables, pIdxKey is used and intKey
  1.3689 +** is ignored.
  1.3690 +**
  1.3691 +** If an exact match is not found, then the cursor is always
  1.3692 +** left pointing at a leaf page which would hold the entry if it
  1.3693 +** were present.  The cursor might point to an entry that comes
  1.3694 +** before or after the key.
  1.3695 +**
  1.3696 +** The result of comparing the key with the entry to which the
  1.3697 +** cursor is written to *pRes if pRes!=NULL.  The meaning of
  1.3698 +** this value is as follows:
  1.3699 +**
  1.3700 +**     *pRes<0      The cursor is left pointing at an entry that
  1.3701 +**                  is smaller than pKey or if the table is empty
  1.3702 +**                  and the cursor is therefore left point to nothing.
  1.3703 +**
  1.3704 +**     *pRes==0     The cursor is left pointing at an entry that
  1.3705 +**                  exactly matches pKey.
  1.3706 +**
  1.3707 +**     *pRes>0      The cursor is left pointing at an entry that
  1.3708 +**                  is larger than pKey.
  1.3709 +**
  1.3710 +*/
  1.3711 +int sqlite3BtreeMovetoUnpacked(
  1.3712 +  BtCursor *pCur,          /* The cursor to be moved */
  1.3713 +  UnpackedRecord *pIdxKey, /* Unpacked index key */
  1.3714 +  i64 intKey,              /* The table key */
  1.3715 +  int biasRight,           /* If true, bias the search to the high end */
  1.3716 +  int *pRes                /* Write search results here */
  1.3717 +){
  1.3718 +  int rc;
  1.3719 +
  1.3720 +  assert( cursorHoldsMutex(pCur) );
  1.3721 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3722 +
  1.3723 +  /* If the cursor is already positioned at the point we are trying
  1.3724 +  ** to move to, then just return without doing any work */
  1.3725 +  if( pCur->eState==CURSOR_VALID && pCur->validNKey 
  1.3726 +   && pCur->apPage[0]->intKey 
  1.3727 +  ){
  1.3728 +    if( pCur->info.nKey==intKey ){
  1.3729 +      *pRes = 0;
  1.3730 +      return SQLITE_OK;
  1.3731 +    }
  1.3732 +    if( pCur->atLast && pCur->info.nKey<intKey ){
  1.3733 +      *pRes = -1;
  1.3734 +      return SQLITE_OK;
  1.3735 +    }
  1.3736 +  }
  1.3737 +
  1.3738 +  rc = moveToRoot(pCur);
  1.3739 +  if( rc ){
  1.3740 +    return rc;
  1.3741 +  }
  1.3742 +  assert( pCur->apPage[pCur->iPage] );
  1.3743 +  assert( pCur->apPage[pCur->iPage]->isInit );
  1.3744 +  if( pCur->eState==CURSOR_INVALID ){
  1.3745 +    *pRes = -1;
  1.3746 +    assert( pCur->apPage[pCur->iPage]->nCell==0 );
  1.3747 +    return SQLITE_OK;
  1.3748 +  }
  1.3749 +  assert( pCur->apPage[0]->intKey || pIdxKey );
  1.3750 +  for(;;){
  1.3751 +    int lwr, upr;
  1.3752 +    Pgno chldPg;
  1.3753 +    MemPage *pPage = pCur->apPage[pCur->iPage];
  1.3754 +    int c = -1;  /* pRes return if table is empty must be -1 */
  1.3755 +    lwr = 0;
  1.3756 +    upr = pPage->nCell-1;
  1.3757 +    if( !pPage->intKey && pIdxKey==0 ){
  1.3758 +      rc = SQLITE_CORRUPT_BKPT;
  1.3759 +      goto moveto_finish;
  1.3760 +    }
  1.3761 +    if( biasRight ){
  1.3762 +      pCur->aiIdx[pCur->iPage] = upr;
  1.3763 +    }else{
  1.3764 +      pCur->aiIdx[pCur->iPage] = (upr+lwr)/2;
  1.3765 +    }
  1.3766 +    if( lwr<=upr ) for(;;){
  1.3767 +      void *pCellKey;
  1.3768 +      i64 nCellKey;
  1.3769 +      int idx = pCur->aiIdx[pCur->iPage];
  1.3770 +      pCur->info.nSize = 0;
  1.3771 +      pCur->validNKey = 1;
  1.3772 +      if( pPage->intKey ){
  1.3773 +        u8 *pCell;
  1.3774 +        pCell = findCell(pPage, idx) + pPage->childPtrSize;
  1.3775 +        if( pPage->hasData ){
  1.3776 +          u32 dummy;
  1.3777 +          pCell += getVarint32(pCell, dummy);
  1.3778 +        }
  1.3779 +        getVarint(pCell, (u64*)&nCellKey);
  1.3780 +        if( nCellKey==intKey ){
  1.3781 +          c = 0;
  1.3782 +        }else if( nCellKey<intKey ){
  1.3783 +          c = -1;
  1.3784 +        }else{
  1.3785 +          assert( nCellKey>intKey );
  1.3786 +          c = +1;
  1.3787 +        }
  1.3788 +      }else{
  1.3789 +        int available;
  1.3790 +        pCellKey = (void *)fetchPayload(pCur, &available, 0);
  1.3791 +        nCellKey = pCur->info.nKey;
  1.3792 +        if( available>=nCellKey ){
  1.3793 +          c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pIdxKey);
  1.3794 +        }else{
  1.3795 +          pCellKey = sqlite3Malloc( nCellKey );
  1.3796 +          if( pCellKey==0 ){
  1.3797 +            rc = SQLITE_NOMEM;
  1.3798 +            goto moveto_finish;
  1.3799 +          }
  1.3800 +          rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
  1.3801 +          c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pIdxKey);
  1.3802 +          sqlite3_free(pCellKey);
  1.3803 +          if( rc ) goto moveto_finish;
  1.3804 +        }
  1.3805 +      }
  1.3806 +      if( c==0 ){
  1.3807 +        pCur->info.nKey = nCellKey;
  1.3808 +        if( pPage->intKey && !pPage->leaf ){
  1.3809 +          lwr = idx;
  1.3810 +          upr = lwr - 1;
  1.3811 +          break;
  1.3812 +        }else{
  1.3813 +          if( pRes ) *pRes = 0;
  1.3814 +          rc = SQLITE_OK;
  1.3815 +          goto moveto_finish;
  1.3816 +        }
  1.3817 +      }
  1.3818 +      if( c<0 ){
  1.3819 +        lwr = idx+1;
  1.3820 +      }else{
  1.3821 +        upr = idx-1;
  1.3822 +      }
  1.3823 +      if( lwr>upr ){
  1.3824 +        pCur->info.nKey = nCellKey;
  1.3825 +        break;
  1.3826 +      }
  1.3827 +      pCur->aiIdx[pCur->iPage] = (lwr+upr)/2;
  1.3828 +    }
  1.3829 +    assert( lwr==upr+1 );
  1.3830 +    assert( pPage->isInit );
  1.3831 +    if( pPage->leaf ){
  1.3832 +      chldPg = 0;
  1.3833 +    }else if( lwr>=pPage->nCell ){
  1.3834 +      chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.3835 +    }else{
  1.3836 +      chldPg = get4byte(findCell(pPage, lwr));
  1.3837 +    }
  1.3838 +    if( chldPg==0 ){
  1.3839 +      assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
  1.3840 +      if( pRes ) *pRes = c;
  1.3841 +      rc = SQLITE_OK;
  1.3842 +      goto moveto_finish;
  1.3843 +    }
  1.3844 +    pCur->aiIdx[pCur->iPage] = lwr;
  1.3845 +    pCur->info.nSize = 0;
  1.3846 +    pCur->validNKey = 0;
  1.3847 +    rc = moveToChild(pCur, chldPg);
  1.3848 +    if( rc ) goto moveto_finish;
  1.3849 +  }
  1.3850 +moveto_finish:
  1.3851 +  return rc;
  1.3852 +}
  1.3853 +
  1.3854 +/*
  1.3855 +** In this version of BtreeMoveto, pKey is a packed index record
  1.3856 +** such as is generated by the OP_MakeRecord opcode.  Unpack the
  1.3857 +** record and then call BtreeMovetoUnpacked() to do the work.
  1.3858 +*/
  1.3859 +int sqlite3BtreeMoveto(
  1.3860 +  BtCursor *pCur,     /* Cursor open on the btree to be searched */
  1.3861 +  const void *pKey,   /* Packed key if the btree is an index */
  1.3862 +  i64 nKey,           /* Integer key for tables.  Size of pKey for indices */
  1.3863 +  int bias,           /* Bias search to the high end */
  1.3864 +  int *pRes           /* Write search results here */
  1.3865 +){
  1.3866 +  int rc;                    /* Status code */
  1.3867 +  UnpackedRecord *pIdxKey;   /* Unpacked index key */
  1.3868 +  UnpackedRecord aSpace[16]; /* Temp space for pIdxKey - to avoid a malloc */
  1.3869 +
  1.3870 +  if( pKey ){
  1.3871 +    pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey,
  1.3872 +                                      aSpace, sizeof(aSpace));
  1.3873 +    if( pIdxKey==0 ) return SQLITE_NOMEM;
  1.3874 +  }else{
  1.3875 +    pIdxKey = 0;
  1.3876 +  }
  1.3877 +  rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
  1.3878 +  if( pKey ){
  1.3879 +    sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
  1.3880 +  }
  1.3881 +  return rc;
  1.3882 +}
  1.3883 +
  1.3884 +
  1.3885 +/*
  1.3886 +** Return TRUE if the cursor is not pointing at an entry of the table.
  1.3887 +**
  1.3888 +** TRUE will be returned after a call to sqlite3BtreeNext() moves
  1.3889 +** past the last entry in the table or sqlite3BtreePrev() moves past
  1.3890 +** the first entry.  TRUE is also returned if the table is empty.
  1.3891 +*/
  1.3892 +int sqlite3BtreeEof(BtCursor *pCur){
  1.3893 +  /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
  1.3894 +  ** have been deleted? This API will need to change to return an error code
  1.3895 +  ** as well as the boolean result value.
  1.3896 +  */
  1.3897 +  return (CURSOR_VALID!=pCur->eState);
  1.3898 +}
  1.3899 +
  1.3900 +/*
  1.3901 +** Return the database connection handle for a cursor.
  1.3902 +*/
  1.3903 +sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){
  1.3904 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.3905 +  return pCur->pBtree->db;
  1.3906 +}
  1.3907 +
  1.3908 +/*
  1.3909 +** Advance the cursor to the next entry in the database.  If
  1.3910 +** successful then set *pRes=0.  If the cursor
  1.3911 +** was already pointing to the last entry in the database before
  1.3912 +** this routine was called, then set *pRes=1.
  1.3913 +*/
  1.3914 +int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
  1.3915 +  int rc;
  1.3916 +  int idx;
  1.3917 +  MemPage *pPage;
  1.3918 +
  1.3919 +  assert( cursorHoldsMutex(pCur) );
  1.3920 +  rc = restoreCursorPosition(pCur);
  1.3921 +  if( rc!=SQLITE_OK ){
  1.3922 +    return rc;
  1.3923 +  }
  1.3924 +  assert( pRes!=0 );
  1.3925 +  if( CURSOR_INVALID==pCur->eState ){
  1.3926 +    *pRes = 1;
  1.3927 +    return SQLITE_OK;
  1.3928 +  }
  1.3929 +  if( pCur->skip>0 ){
  1.3930 +    pCur->skip = 0;
  1.3931 +    *pRes = 0;
  1.3932 +    return SQLITE_OK;
  1.3933 +  }
  1.3934 +  pCur->skip = 0;
  1.3935 +
  1.3936 +  pPage = pCur->apPage[pCur->iPage];
  1.3937 +  idx = ++pCur->aiIdx[pCur->iPage];
  1.3938 +  assert( pPage->isInit );
  1.3939 +  assert( idx<=pPage->nCell );
  1.3940 +
  1.3941 +  pCur->info.nSize = 0;
  1.3942 +  pCur->validNKey = 0;
  1.3943 +  if( idx>=pPage->nCell ){
  1.3944 +    if( !pPage->leaf ){
  1.3945 +      rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
  1.3946 +      if( rc ) return rc;
  1.3947 +      rc = moveToLeftmost(pCur);
  1.3948 +      *pRes = 0;
  1.3949 +      return rc;
  1.3950 +    }
  1.3951 +    do{
  1.3952 +      if( pCur->iPage==0 ){
  1.3953 +        *pRes = 1;
  1.3954 +        pCur->eState = CURSOR_INVALID;
  1.3955 +        return SQLITE_OK;
  1.3956 +      }
  1.3957 +      sqlite3BtreeMoveToParent(pCur);
  1.3958 +      pPage = pCur->apPage[pCur->iPage];
  1.3959 +    }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
  1.3960 +    *pRes = 0;
  1.3961 +    if( pPage->intKey ){
  1.3962 +      rc = sqlite3BtreeNext(pCur, pRes);
  1.3963 +    }else{
  1.3964 +      rc = SQLITE_OK;
  1.3965 +    }
  1.3966 +    return rc;
  1.3967 +  }
  1.3968 +  *pRes = 0;
  1.3969 +  if( pPage->leaf ){
  1.3970 +    return SQLITE_OK;
  1.3971 +  }
  1.3972 +  rc = moveToLeftmost(pCur);
  1.3973 +  return rc;
  1.3974 +}
  1.3975 +
  1.3976 +
  1.3977 +/*
  1.3978 +** Step the cursor to the back to the previous entry in the database.  If
  1.3979 +** successful then set *pRes=0.  If the cursor
  1.3980 +** was already pointing to the first entry in the database before
  1.3981 +** this routine was called, then set *pRes=1.
  1.3982 +*/
  1.3983 +int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
  1.3984 +  int rc;
  1.3985 +  MemPage *pPage;
  1.3986 +
  1.3987 +  assert( cursorHoldsMutex(pCur) );
  1.3988 +  rc = restoreCursorPosition(pCur);
  1.3989 +  if( rc!=SQLITE_OK ){
  1.3990 +    return rc;
  1.3991 +  }
  1.3992 +  pCur->atLast = 0;
  1.3993 +  if( CURSOR_INVALID==pCur->eState ){
  1.3994 +    *pRes = 1;
  1.3995 +    return SQLITE_OK;
  1.3996 +  }
  1.3997 +  if( pCur->skip<0 ){
  1.3998 +    pCur->skip = 0;
  1.3999 +    *pRes = 0;
  1.4000 +    return SQLITE_OK;
  1.4001 +  }
  1.4002 +  pCur->skip = 0;
  1.4003 +
  1.4004 +  pPage = pCur->apPage[pCur->iPage];
  1.4005 +  assert( pPage->isInit );
  1.4006 +  if( !pPage->leaf ){
  1.4007 +    int idx = pCur->aiIdx[pCur->iPage];
  1.4008 +    rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
  1.4009 +    if( rc ){
  1.4010 +      return rc;
  1.4011 +    }
  1.4012 +    rc = moveToRightmost(pCur);
  1.4013 +  }else{
  1.4014 +    while( pCur->aiIdx[pCur->iPage]==0 ){
  1.4015 +      if( pCur->iPage==0 ){
  1.4016 +        pCur->eState = CURSOR_INVALID;
  1.4017 +        *pRes = 1;
  1.4018 +        return SQLITE_OK;
  1.4019 +      }
  1.4020 +      sqlite3BtreeMoveToParent(pCur);
  1.4021 +    }
  1.4022 +    pCur->info.nSize = 0;
  1.4023 +    pCur->validNKey = 0;
  1.4024 +
  1.4025 +    pCur->aiIdx[pCur->iPage]--;
  1.4026 +    pPage = pCur->apPage[pCur->iPage];
  1.4027 +    if( pPage->intKey && !pPage->leaf ){
  1.4028 +      rc = sqlite3BtreePrevious(pCur, pRes);
  1.4029 +    }else{
  1.4030 +      rc = SQLITE_OK;
  1.4031 +    }
  1.4032 +  }
  1.4033 +  *pRes = 0;
  1.4034 +  return rc;
  1.4035 +}
  1.4036 +
  1.4037 +/*
  1.4038 +** Allocate a new page from the database file.
  1.4039 +**
  1.4040 +** The new page is marked as dirty.  (In other words, sqlite3PagerWrite()
  1.4041 +** has already been called on the new page.)  The new page has also
  1.4042 +** been referenced and the calling routine is responsible for calling
  1.4043 +** sqlite3PagerUnref() on the new page when it is done.
  1.4044 +**
  1.4045 +** SQLITE_OK is returned on success.  Any other return value indicates
  1.4046 +** an error.  *ppPage and *pPgno are undefined in the event of an error.
  1.4047 +** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
  1.4048 +**
  1.4049 +** If the "nearby" parameter is not 0, then a (feeble) effort is made to 
  1.4050 +** locate a page close to the page number "nearby".  This can be used in an
  1.4051 +** attempt to keep related pages close to each other in the database file,
  1.4052 +** which in turn can make database access faster.
  1.4053 +**
  1.4054 +** If the "exact" parameter is not 0, and the page-number nearby exists 
  1.4055 +** anywhere on the free-list, then it is guarenteed to be returned. This
  1.4056 +** is only used by auto-vacuum databases when allocating a new table.
  1.4057 +*/
  1.4058 +static int allocateBtreePage(
  1.4059 +  BtShared *pBt, 
  1.4060 +  MemPage **ppPage, 
  1.4061 +  Pgno *pPgno, 
  1.4062 +  Pgno nearby,
  1.4063 +  u8 exact
  1.4064 +){
  1.4065 +  MemPage *pPage1;
  1.4066 +  int rc;
  1.4067 +  int n;     /* Number of pages on the freelist */
  1.4068 +  int k;     /* Number of leaves on the trunk of the freelist */
  1.4069 +  MemPage *pTrunk = 0;
  1.4070 +  MemPage *pPrevTrunk = 0;
  1.4071 +
  1.4072 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.4073 +  pPage1 = pBt->pPage1;
  1.4074 +  n = get4byte(&pPage1->aData[36]);
  1.4075 +  if( n>0 ){
  1.4076 +    /* There are pages on the freelist.  Reuse one of those pages. */
  1.4077 +    Pgno iTrunk;
  1.4078 +    u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
  1.4079 +    
  1.4080 +    /* If the 'exact' parameter was true and a query of the pointer-map
  1.4081 +    ** shows that the page 'nearby' is somewhere on the free-list, then
  1.4082 +    ** the entire-list will be searched for that page.
  1.4083 +    */
  1.4084 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4085 +    if( exact && nearby<=pagerPagecount(pBt->pPager) ){
  1.4086 +      u8 eType;
  1.4087 +      assert( nearby>0 );
  1.4088 +      assert( pBt->autoVacuum );
  1.4089 +      rc = ptrmapGet(pBt, nearby, &eType, 0);
  1.4090 +      if( rc ) return rc;
  1.4091 +      if( eType==PTRMAP_FREEPAGE ){
  1.4092 +        searchList = 1;
  1.4093 +      }
  1.4094 +      *pPgno = nearby;
  1.4095 +    }
  1.4096 +#endif
  1.4097 +
  1.4098 +    /* Decrement the free-list count by 1. Set iTrunk to the index of the
  1.4099 +    ** first free-list trunk page. iPrevTrunk is initially 1.
  1.4100 +    */
  1.4101 +    rc = sqlite3PagerWrite(pPage1->pDbPage);
  1.4102 +    if( rc ) return rc;
  1.4103 +    put4byte(&pPage1->aData[36], n-1);
  1.4104 +
  1.4105 +    /* The code within this loop is run only once if the 'searchList' variable
  1.4106 +    ** is not true. Otherwise, it runs once for each trunk-page on the
  1.4107 +    ** free-list until the page 'nearby' is located.
  1.4108 +    */
  1.4109 +    do {
  1.4110 +      pPrevTrunk = pTrunk;
  1.4111 +      if( pPrevTrunk ){
  1.4112 +        iTrunk = get4byte(&pPrevTrunk->aData[0]);
  1.4113 +      }else{
  1.4114 +        iTrunk = get4byte(&pPage1->aData[32]);
  1.4115 +      }
  1.4116 +      rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
  1.4117 +      if( rc ){
  1.4118 +        pTrunk = 0;
  1.4119 +        goto end_allocate_page;
  1.4120 +      }
  1.4121 +
  1.4122 +      k = get4byte(&pTrunk->aData[4]);
  1.4123 +      if( k==0 && !searchList ){
  1.4124 +        /* The trunk has no leaves and the list is not being searched. 
  1.4125 +        ** So extract the trunk page itself and use it as the newly 
  1.4126 +        ** allocated page */
  1.4127 +        assert( pPrevTrunk==0 );
  1.4128 +        rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4129 +        if( rc ){
  1.4130 +          goto end_allocate_page;
  1.4131 +        }
  1.4132 +        *pPgno = iTrunk;
  1.4133 +        memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
  1.4134 +        *ppPage = pTrunk;
  1.4135 +        pTrunk = 0;
  1.4136 +        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
  1.4137 +      }else if( k>pBt->usableSize/4 - 2 ){
  1.4138 +        /* Value of k is out of range.  Database corruption */
  1.4139 +        rc = SQLITE_CORRUPT_BKPT;
  1.4140 +        goto end_allocate_page;
  1.4141 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4142 +      }else if( searchList && nearby==iTrunk ){
  1.4143 +        /* The list is being searched and this trunk page is the page
  1.4144 +        ** to allocate, regardless of whether it has leaves.
  1.4145 +        */
  1.4146 +        assert( *pPgno==iTrunk );
  1.4147 +        *ppPage = pTrunk;
  1.4148 +        searchList = 0;
  1.4149 +        rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4150 +        if( rc ){
  1.4151 +          goto end_allocate_page;
  1.4152 +        }
  1.4153 +        if( k==0 ){
  1.4154 +          if( !pPrevTrunk ){
  1.4155 +            memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
  1.4156 +          }else{
  1.4157 +            memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
  1.4158 +          }
  1.4159 +        }else{
  1.4160 +          /* The trunk page is required by the caller but it contains 
  1.4161 +          ** pointers to free-list leaves. The first leaf becomes a trunk
  1.4162 +          ** page in this case.
  1.4163 +          */
  1.4164 +          MemPage *pNewTrunk;
  1.4165 +          Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
  1.4166 +          rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
  1.4167 +          if( rc!=SQLITE_OK ){
  1.4168 +            goto end_allocate_page;
  1.4169 +          }
  1.4170 +          rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
  1.4171 +          if( rc!=SQLITE_OK ){
  1.4172 +            releasePage(pNewTrunk);
  1.4173 +            goto end_allocate_page;
  1.4174 +          }
  1.4175 +          memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
  1.4176 +          put4byte(&pNewTrunk->aData[4], k-1);
  1.4177 +          memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
  1.4178 +          releasePage(pNewTrunk);
  1.4179 +          if( !pPrevTrunk ){
  1.4180 +            put4byte(&pPage1->aData[32], iNewTrunk);
  1.4181 +          }else{
  1.4182 +            rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
  1.4183 +            if( rc ){
  1.4184 +              goto end_allocate_page;
  1.4185 +            }
  1.4186 +            put4byte(&pPrevTrunk->aData[0], iNewTrunk);
  1.4187 +          }
  1.4188 +        }
  1.4189 +        pTrunk = 0;
  1.4190 +        TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
  1.4191 +#endif
  1.4192 +      }else{
  1.4193 +        /* Extract a leaf from the trunk */
  1.4194 +        int closest;
  1.4195 +        Pgno iPage;
  1.4196 +        unsigned char *aData = pTrunk->aData;
  1.4197 +        rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4198 +        if( rc ){
  1.4199 +          goto end_allocate_page;
  1.4200 +        }
  1.4201 +        if( nearby>0 ){
  1.4202 +          int i, dist;
  1.4203 +          closest = 0;
  1.4204 +          dist = get4byte(&aData[8]) - nearby;
  1.4205 +          if( dist<0 ) dist = -dist;
  1.4206 +          for(i=1; i<k; i++){
  1.4207 +            int d2 = get4byte(&aData[8+i*4]) - nearby;
  1.4208 +            if( d2<0 ) d2 = -d2;
  1.4209 +            if( d2<dist ){
  1.4210 +              closest = i;
  1.4211 +              dist = d2;
  1.4212 +            }
  1.4213 +          }
  1.4214 +        }else{
  1.4215 +          closest = 0;
  1.4216 +        }
  1.4217 +
  1.4218 +        iPage = get4byte(&aData[8+closest*4]);
  1.4219 +        if( !searchList || iPage==nearby ){
  1.4220 +          int nPage;
  1.4221 +          *pPgno = iPage;
  1.4222 +          nPage = pagerPagecount(pBt->pPager);
  1.4223 +          if( *pPgno>nPage ){
  1.4224 +            /* Free page off the end of the file */
  1.4225 +            rc = SQLITE_CORRUPT_BKPT;
  1.4226 +            goto end_allocate_page;
  1.4227 +          }
  1.4228 +          TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
  1.4229 +                 ": %d more free pages\n",
  1.4230 +                 *pPgno, closest+1, k, pTrunk->pgno, n-1));
  1.4231 +          if( closest<k-1 ){
  1.4232 +            memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
  1.4233 +          }
  1.4234 +          put4byte(&aData[4], k-1);
  1.4235 +          rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 1);
  1.4236 +          if( rc==SQLITE_OK ){
  1.4237 +            sqlite3PagerDontRollback((*ppPage)->pDbPage);
  1.4238 +            rc = sqlite3PagerWrite((*ppPage)->pDbPage);
  1.4239 +            if( rc!=SQLITE_OK ){
  1.4240 +              releasePage(*ppPage);
  1.4241 +            }
  1.4242 +          }
  1.4243 +          searchList = 0;
  1.4244 +        }
  1.4245 +      }
  1.4246 +      releasePage(pPrevTrunk);
  1.4247 +      pPrevTrunk = 0;
  1.4248 +    }while( searchList );
  1.4249 +  }else{
  1.4250 +    /* There are no pages on the freelist, so create a new page at the
  1.4251 +    ** end of the file */
  1.4252 +    int nPage = pagerPagecount(pBt->pPager);
  1.4253 +    *pPgno = nPage + 1;
  1.4254 +
  1.4255 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4256 +    if( pBt->nTrunc ){
  1.4257 +      /* An incr-vacuum has already run within this transaction. So the
  1.4258 +      ** page to allocate is not from the physical end of the file, but
  1.4259 +      ** at pBt->nTrunc. 
  1.4260 +      */
  1.4261 +      *pPgno = pBt->nTrunc+1;
  1.4262 +      if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
  1.4263 +        (*pPgno)++;
  1.4264 +      }
  1.4265 +    }
  1.4266 +    if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
  1.4267 +      /* If *pPgno refers to a pointer-map page, allocate two new pages
  1.4268 +      ** at the end of the file instead of one. The first allocated page
  1.4269 +      ** becomes a new pointer-map page, the second is used by the caller.
  1.4270 +      */
  1.4271 +      TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
  1.4272 +      assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  1.4273 +      (*pPgno)++;
  1.4274 +      if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
  1.4275 +    }
  1.4276 +    if( pBt->nTrunc ){
  1.4277 +      pBt->nTrunc = *pPgno;
  1.4278 +    }
  1.4279 +#endif
  1.4280 +
  1.4281 +    assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  1.4282 +    rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
  1.4283 +    if( rc ) return rc;
  1.4284 +    rc = sqlite3PagerWrite((*ppPage)->pDbPage);
  1.4285 +    if( rc!=SQLITE_OK ){
  1.4286 +      releasePage(*ppPage);
  1.4287 +    }
  1.4288 +    TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
  1.4289 +  }
  1.4290 +
  1.4291 +  assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
  1.4292 +
  1.4293 +end_allocate_page:
  1.4294 +  releasePage(pTrunk);
  1.4295 +  releasePage(pPrevTrunk);
  1.4296 +  if( rc==SQLITE_OK ){
  1.4297 +    if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
  1.4298 +      releasePage(*ppPage);
  1.4299 +      return SQLITE_CORRUPT_BKPT;
  1.4300 +    }
  1.4301 +    (*ppPage)->isInit = 0;
  1.4302 +  }
  1.4303 +  return rc;
  1.4304 +}
  1.4305 +
  1.4306 +/*
  1.4307 +** Add a page of the database file to the freelist.
  1.4308 +**
  1.4309 +** sqlite3PagerUnref() is NOT called for pPage.
  1.4310 +*/
  1.4311 +static int freePage(MemPage *pPage){
  1.4312 +  BtShared *pBt = pPage->pBt;
  1.4313 +  MemPage *pPage1 = pBt->pPage1;
  1.4314 +  int rc, n, k;
  1.4315 +
  1.4316 +  /* Prepare the page for freeing */
  1.4317 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4318 +  assert( pPage->pgno>1 );
  1.4319 +  pPage->isInit = 0;
  1.4320 +
  1.4321 +  /* Increment the free page count on pPage1 */
  1.4322 +  rc = sqlite3PagerWrite(pPage1->pDbPage);
  1.4323 +  if( rc ) return rc;
  1.4324 +  n = get4byte(&pPage1->aData[36]);
  1.4325 +  put4byte(&pPage1->aData[36], n+1);
  1.4326 +
  1.4327 +#ifdef SQLITE_SECURE_DELETE
  1.4328 +  /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
  1.4329 +  ** always fully overwrite deleted information with zeros.
  1.4330 +  */
  1.4331 +  rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4332 +  if( rc ) return rc;
  1.4333 +  memset(pPage->aData, 0, pPage->pBt->pageSize);
  1.4334 +#endif
  1.4335 +
  1.4336 +  /* If the database supports auto-vacuum, write an entry in the pointer-map
  1.4337 +  ** to indicate that the page is free.
  1.4338 +  */
  1.4339 +  if( ISAUTOVACUUM ){
  1.4340 +    rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0);
  1.4341 +    if( rc ) return rc;
  1.4342 +  }
  1.4343 +
  1.4344 +  if( n==0 ){
  1.4345 +    /* This is the first free page */
  1.4346 +    rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4347 +    if( rc ) return rc;
  1.4348 +    memset(pPage->aData, 0, 8);
  1.4349 +    put4byte(&pPage1->aData[32], pPage->pgno);
  1.4350 +    TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
  1.4351 +  }else{
  1.4352 +    /* Other free pages already exist.  Retrive the first trunk page
  1.4353 +    ** of the freelist and find out how many leaves it has. */
  1.4354 +    MemPage *pTrunk;
  1.4355 +    rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0);
  1.4356 +    if( rc ) return rc;
  1.4357 +    k = get4byte(&pTrunk->aData[4]);
  1.4358 +    if( k>=pBt->usableSize/4 - 8 ){
  1.4359 +      /* The trunk is full.  Turn the page being freed into a new
  1.4360 +      ** trunk page with no leaves.
  1.4361 +      **
  1.4362 +      ** Note that the trunk page is not really full until it contains
  1.4363 +      ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
  1.4364 +      ** coded.  But due to a coding error in versions of SQLite prior to
  1.4365 +      ** 3.6.0, databases with freelist trunk pages holding more than
  1.4366 +      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
  1.4367 +      ** to maintain backwards compatibility with older versions of SQLite,
  1.4368 +      ** we will contain to restrict the number of entries to usableSize/4 - 8
  1.4369 +      ** for now.  At some point in the future (once everyone has upgraded
  1.4370 +      ** to 3.6.0 or later) we should consider fixing the conditional above
  1.4371 +      ** to read "usableSize/4-2" instead of "usableSize/4-8".
  1.4372 +      */
  1.4373 +      rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4374 +      if( rc==SQLITE_OK ){
  1.4375 +        put4byte(pPage->aData, pTrunk->pgno);
  1.4376 +        put4byte(&pPage->aData[4], 0);
  1.4377 +        put4byte(&pPage1->aData[32], pPage->pgno);
  1.4378 +        TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
  1.4379 +                pPage->pgno, pTrunk->pgno));
  1.4380 +      }
  1.4381 +    }else if( k<0 ){
  1.4382 +      rc = SQLITE_CORRUPT;
  1.4383 +    }else{
  1.4384 +      /* Add the newly freed page as a leaf on the current trunk */
  1.4385 +      rc = sqlite3PagerWrite(pTrunk->pDbPage);
  1.4386 +      if( rc==SQLITE_OK ){
  1.4387 +        put4byte(&pTrunk->aData[4], k+1);
  1.4388 +        put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
  1.4389 +#ifndef SQLITE_SECURE_DELETE
  1.4390 +        rc = sqlite3PagerDontWrite(pPage->pDbPage);
  1.4391 +#endif
  1.4392 +      }
  1.4393 +      TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
  1.4394 +    }
  1.4395 +    releasePage(pTrunk);
  1.4396 +  }
  1.4397 +  return rc;
  1.4398 +}
  1.4399 +
  1.4400 +/*
  1.4401 +** Free any overflow pages associated with the given Cell.
  1.4402 +*/
  1.4403 +static int clearCell(MemPage *pPage, unsigned char *pCell){
  1.4404 +  BtShared *pBt = pPage->pBt;
  1.4405 +  CellInfo info;
  1.4406 +  Pgno ovflPgno;
  1.4407 +  int rc;
  1.4408 +  int nOvfl;
  1.4409 +  int ovflPageSize;
  1.4410 +
  1.4411 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4412 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4413 +  if( info.iOverflow==0 ){
  1.4414 +    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  1.4415 +  }
  1.4416 +  ovflPgno = get4byte(&pCell[info.iOverflow]);
  1.4417 +  ovflPageSize = pBt->usableSize - 4;
  1.4418 +  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  1.4419 +  assert( ovflPgno==0 || nOvfl>0 );
  1.4420 +  while( nOvfl-- ){
  1.4421 +    MemPage *pOvfl;
  1.4422 +    if( ovflPgno==0 || ovflPgno>pagerPagecount(pBt->pPager) ){
  1.4423 +      return SQLITE_CORRUPT_BKPT;
  1.4424 +    }
  1.4425 +
  1.4426 +    rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno);
  1.4427 +    if( rc ) return rc;
  1.4428 +    rc = freePage(pOvfl);
  1.4429 +    sqlite3PagerUnref(pOvfl->pDbPage);
  1.4430 +    if( rc ) return rc;
  1.4431 +  }
  1.4432 +  return SQLITE_OK;
  1.4433 +}
  1.4434 +
  1.4435 +/*
  1.4436 +** Create the byte sequence used to represent a cell on page pPage
  1.4437 +** and write that byte sequence into pCell[].  Overflow pages are
  1.4438 +** allocated and filled in as necessary.  The calling procedure
  1.4439 +** is responsible for making sure sufficient space has been allocated
  1.4440 +** for pCell[].
  1.4441 +**
  1.4442 +** Note that pCell does not necessary need to point to the pPage->aData
  1.4443 +** area.  pCell might point to some temporary storage.  The cell will
  1.4444 +** be constructed in this temporary area then copied into pPage->aData
  1.4445 +** later.
  1.4446 +*/
  1.4447 +static int fillInCell(
  1.4448 +  MemPage *pPage,                /* The page that contains the cell */
  1.4449 +  unsigned char *pCell,          /* Complete text of the cell */
  1.4450 +  const void *pKey, i64 nKey,    /* The key */
  1.4451 +  const void *pData,int nData,   /* The data */
  1.4452 +  int nZero,                     /* Extra zero bytes to append to pData */
  1.4453 +  int *pnSize                    /* Write cell size here */
  1.4454 +){
  1.4455 +  int nPayload;
  1.4456 +  const u8 *pSrc;
  1.4457 +  int nSrc, n, rc;
  1.4458 +  int spaceLeft;
  1.4459 +  MemPage *pOvfl = 0;
  1.4460 +  MemPage *pToRelease = 0;
  1.4461 +  unsigned char *pPrior;
  1.4462 +  unsigned char *pPayload;
  1.4463 +  BtShared *pBt = pPage->pBt;
  1.4464 +  Pgno pgnoOvfl = 0;
  1.4465 +  int nHeader;
  1.4466 +  CellInfo info;
  1.4467 +
  1.4468 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4469 +
  1.4470 +  /* Fill in the header. */
  1.4471 +  nHeader = 0;
  1.4472 +  if( !pPage->leaf ){
  1.4473 +    nHeader += 4;
  1.4474 +  }
  1.4475 +  if( pPage->hasData ){
  1.4476 +    nHeader += putVarint(&pCell[nHeader], nData+nZero);
  1.4477 +  }else{
  1.4478 +    nData = nZero = 0;
  1.4479 +  }
  1.4480 +  nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
  1.4481 +  sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4482 +  assert( info.nHeader==nHeader );
  1.4483 +  assert( info.nKey==nKey );
  1.4484 +  assert( info.nData==nData+nZero );
  1.4485 +  
  1.4486 +  /* Fill in the payload */
  1.4487 +  nPayload = nData + nZero;
  1.4488 +  if( pPage->intKey ){
  1.4489 +    pSrc = pData;
  1.4490 +    nSrc = nData;
  1.4491 +    nData = 0;
  1.4492 +  }else{
  1.4493 +    nPayload += nKey;
  1.4494 +    pSrc = pKey;
  1.4495 +    nSrc = nKey;
  1.4496 +  }
  1.4497 +  *pnSize = info.nSize;
  1.4498 +  spaceLeft = info.nLocal;
  1.4499 +  pPayload = &pCell[nHeader];
  1.4500 +  pPrior = &pCell[info.iOverflow];
  1.4501 +
  1.4502 +  while( nPayload>0 ){
  1.4503 +    if( spaceLeft==0 ){
  1.4504 +      int isExact = 0;
  1.4505 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4506 +      Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
  1.4507 +      if( pBt->autoVacuum ){
  1.4508 +        do{
  1.4509 +          pgnoOvfl++;
  1.4510 +        } while( 
  1.4511 +          PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) 
  1.4512 +        );
  1.4513 +        if( pgnoOvfl>1 ){
  1.4514 +          /* isExact = 1; */
  1.4515 +        }
  1.4516 +      }
  1.4517 +#endif
  1.4518 +      rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact);
  1.4519 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4520 +      /* If the database supports auto-vacuum, and the second or subsequent
  1.4521 +      ** overflow page is being allocated, add an entry to the pointer-map
  1.4522 +      ** for that page now. 
  1.4523 +      **
  1.4524 +      ** If this is the first overflow page, then write a partial entry 
  1.4525 +      ** to the pointer-map. If we write nothing to this pointer-map slot,
  1.4526 +      ** then the optimistic overflow chain processing in clearCell()
  1.4527 +      ** may misinterpret the uninitialised values and delete the
  1.4528 +      ** wrong pages from the database.
  1.4529 +      */
  1.4530 +      if( pBt->autoVacuum && rc==SQLITE_OK ){
  1.4531 +        u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
  1.4532 +        rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
  1.4533 +        if( rc ){
  1.4534 +          releasePage(pOvfl);
  1.4535 +        }
  1.4536 +      }
  1.4537 +#endif
  1.4538 +      if( rc ){
  1.4539 +        releasePage(pToRelease);
  1.4540 +        return rc;
  1.4541 +      }
  1.4542 +      put4byte(pPrior, pgnoOvfl);
  1.4543 +      releasePage(pToRelease);
  1.4544 +      pToRelease = pOvfl;
  1.4545 +      pPrior = pOvfl->aData;
  1.4546 +      put4byte(pPrior, 0);
  1.4547 +      pPayload = &pOvfl->aData[4];
  1.4548 +      spaceLeft = pBt->usableSize - 4;
  1.4549 +    }
  1.4550 +    n = nPayload;
  1.4551 +    if( n>spaceLeft ) n = spaceLeft;
  1.4552 +    if( nSrc>0 ){
  1.4553 +      if( n>nSrc ) n = nSrc;
  1.4554 +      assert( pSrc );
  1.4555 +      memcpy(pPayload, pSrc, n);
  1.4556 +    }else{
  1.4557 +      memset(pPayload, 0, n);
  1.4558 +    }
  1.4559 +    nPayload -= n;
  1.4560 +    pPayload += n;
  1.4561 +    pSrc += n;
  1.4562 +    nSrc -= n;
  1.4563 +    spaceLeft -= n;
  1.4564 +    if( nSrc==0 ){
  1.4565 +      nSrc = nData;
  1.4566 +      pSrc = pData;
  1.4567 +    }
  1.4568 +  }
  1.4569 +  releasePage(pToRelease);
  1.4570 +  return SQLITE_OK;
  1.4571 +}
  1.4572 +
  1.4573 +/*
  1.4574 +** Remove the i-th cell from pPage.  This routine effects pPage only.
  1.4575 +** The cell content is not freed or deallocated.  It is assumed that
  1.4576 +** the cell content has been copied someplace else.  This routine just
  1.4577 +** removes the reference to the cell from pPage.
  1.4578 +**
  1.4579 +** "sz" must be the number of bytes in the cell.
  1.4580 +*/
  1.4581 +static int dropCell(MemPage *pPage, int idx, int sz){
  1.4582 +  int i;          /* Loop counter */
  1.4583 +  int pc;         /* Offset to cell content of cell being deleted */
  1.4584 +  u8 *data;       /* pPage->aData */
  1.4585 +  u8 *ptr;        /* Used to move bytes around within data[] */
  1.4586 +  int rc;         /* Return code */
  1.4587 +
  1.4588 +  assert( idx>=0 && idx<pPage->nCell );
  1.4589 +  assert( sz==cellSize(pPage, idx) );
  1.4590 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1.4591 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4592 +  data = pPage->aData;
  1.4593 +  ptr = &data[pPage->cellOffset + 2*idx];
  1.4594 +  pc = get2byte(ptr);
  1.4595 +  if( pc<pPage->hdrOffset+6+(pPage->leaf?0:4)
  1.4596 +   || pc+sz>pPage->pBt->usableSize
  1.4597 +  ){
  1.4598 +     return SQLITE_CORRUPT_BKPT;
  1.4599 +  }
  1.4600 +  rc = freeSpace(pPage, pc, sz);
  1.4601 +  if( rc ) return rc;
  1.4602 +  for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
  1.4603 +    ptr[0] = ptr[2];
  1.4604 +    ptr[1] = ptr[3];
  1.4605 +  }
  1.4606 +  pPage->nCell--;
  1.4607 +  put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
  1.4608 +  pPage->nFree += 2;
  1.4609 +  return SQLITE_OK;
  1.4610 +}
  1.4611 +
  1.4612 +/*
  1.4613 +** Insert a new cell on pPage at cell index "i".  pCell points to the
  1.4614 +** content of the cell.
  1.4615 +**
  1.4616 +** If the cell content will fit on the page, then put it there.  If it
  1.4617 +** will not fit, then make a copy of the cell content into pTemp if
  1.4618 +** pTemp is not null.  Regardless of pTemp, allocate a new entry
  1.4619 +** in pPage->aOvfl[] and make it point to the cell content (either
  1.4620 +** in pTemp or the original pCell) and also record its index. 
  1.4621 +** Allocating a new entry in pPage->aCell[] implies that 
  1.4622 +** pPage->nOverflow is incremented.
  1.4623 +**
  1.4624 +** If nSkip is non-zero, then do not copy the first nSkip bytes of the
  1.4625 +** cell. The caller will overwrite them after this function returns. If
  1.4626 +** nSkip is non-zero, then pCell may not point to an invalid memory location 
  1.4627 +** (but pCell+nSkip is always valid).
  1.4628 +*/
  1.4629 +static int insertCell(
  1.4630 +  MemPage *pPage,   /* Page into which we are copying */
  1.4631 +  int i,            /* New cell becomes the i-th cell of the page */
  1.4632 +  u8 *pCell,        /* Content of the new cell */
  1.4633 +  int sz,           /* Bytes of content in pCell */
  1.4634 +  u8 *pTemp,        /* Temp storage space for pCell, if needed */
  1.4635 +  u8 nSkip          /* Do not write the first nSkip bytes of the cell */
  1.4636 +){
  1.4637 +  int idx;          /* Where to write new cell content in data[] */
  1.4638 +  int j;            /* Loop counter */
  1.4639 +  int top;          /* First byte of content for any cell in data[] */
  1.4640 +  int end;          /* First byte past the last cell pointer in data[] */
  1.4641 +  int ins;          /* Index in data[] where new cell pointer is inserted */
  1.4642 +  int hdr;          /* Offset into data[] of the page header */
  1.4643 +  int cellOffset;   /* Address of first cell pointer in data[] */
  1.4644 +  u8 *data;         /* The content of the whole page */
  1.4645 +  u8 *ptr;          /* Used for moving information around in data[] */
  1.4646 +
  1.4647 +  assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
  1.4648 +  assert( sz==cellSizePtr(pPage, pCell) );
  1.4649 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4650 +  if( pPage->nOverflow || sz+2>pPage->nFree ){
  1.4651 +    if( pTemp ){
  1.4652 +      memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
  1.4653 +      pCell = pTemp;
  1.4654 +    }
  1.4655 +    j = pPage->nOverflow++;
  1.4656 +    assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
  1.4657 +    pPage->aOvfl[j].pCell = pCell;
  1.4658 +    pPage->aOvfl[j].idx = i;
  1.4659 +    pPage->nFree = 0;
  1.4660 +  }else{
  1.4661 +    int rc = sqlite3PagerWrite(pPage->pDbPage);
  1.4662 +    if( rc!=SQLITE_OK ){
  1.4663 +      return rc;
  1.4664 +    }
  1.4665 +    assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  1.4666 +    data = pPage->aData;
  1.4667 +    hdr = pPage->hdrOffset;
  1.4668 +    top = get2byte(&data[hdr+5]);
  1.4669 +    cellOffset = pPage->cellOffset;
  1.4670 +    end = cellOffset + 2*pPage->nCell + 2;
  1.4671 +    ins = cellOffset + 2*i;
  1.4672 +    if( end > top - sz ){
  1.4673 +      rc = defragmentPage(pPage);
  1.4674 +      if( rc ) return rc;
  1.4675 +      top = get2byte(&data[hdr+5]);
  1.4676 +      assert( end + sz <= top );
  1.4677 +    }
  1.4678 +    idx = allocateSpace(pPage, sz);
  1.4679 +    assert( idx>0 );
  1.4680 +    assert( end <= get2byte(&data[hdr+5]) );
  1.4681 +    if( idx+sz > pPage->pBt->usableSize ){
  1.4682 +      return SQLITE_CORRUPT_BKPT;
  1.4683 +    }
  1.4684 +    pPage->nCell++;
  1.4685 +    pPage->nFree -= 2;
  1.4686 +    memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
  1.4687 +    for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
  1.4688 +      ptr[0] = ptr[-2];
  1.4689 +      ptr[1] = ptr[-1];
  1.4690 +    }
  1.4691 +    put2byte(&data[ins], idx);
  1.4692 +    put2byte(&data[hdr+3], pPage->nCell);
  1.4693 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.4694 +    if( pPage->pBt->autoVacuum ){
  1.4695 +      /* The cell may contain a pointer to an overflow page. If so, write
  1.4696 +      ** the entry for the overflow page into the pointer map.
  1.4697 +      */
  1.4698 +      CellInfo info;
  1.4699 +      sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4700 +      assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
  1.4701 +      if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
  1.4702 +        Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
  1.4703 +        rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
  1.4704 +        if( rc!=SQLITE_OK ) return rc;
  1.4705 +      }
  1.4706 +    }
  1.4707 +#endif
  1.4708 +  }
  1.4709 +
  1.4710 +  return SQLITE_OK;
  1.4711 +}
  1.4712 +
  1.4713 +/*
  1.4714 +** Add a list of cells to a page.  The page should be initially empty.
  1.4715 +** The cells are guaranteed to fit on the page.
  1.4716 +*/
  1.4717 +static void assemblePage(
  1.4718 +  MemPage *pPage,   /* The page to be assemblied */
  1.4719 +  int nCell,        /* The number of cells to add to this page */
  1.4720 +  u8 **apCell,      /* Pointers to cell bodies */
  1.4721 +  u16 *aSize        /* Sizes of the cells */
  1.4722 +){
  1.4723 +  int i;            /* Loop counter */
  1.4724 +  int totalSize;    /* Total size of all cells */
  1.4725 +  int hdr;          /* Index of page header */
  1.4726 +  int cellptr;      /* Address of next cell pointer */
  1.4727 +  int cellbody;     /* Address of next cell body */
  1.4728 +  u8 *data;         /* Data for the page */
  1.4729 +
  1.4730 +  assert( pPage->nOverflow==0 );
  1.4731 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4732 +  totalSize = 0;
  1.4733 +  for(i=0; i<nCell; i++){
  1.4734 +    totalSize += aSize[i];
  1.4735 +  }
  1.4736 +  assert( totalSize+2*nCell<=pPage->nFree );
  1.4737 +  assert( pPage->nCell==0 );
  1.4738 +  cellptr = pPage->cellOffset;
  1.4739 +  data = pPage->aData;
  1.4740 +  hdr = pPage->hdrOffset;
  1.4741 +  put2byte(&data[hdr+3], nCell);
  1.4742 +  if( nCell ){
  1.4743 +    cellbody = allocateSpace(pPage, totalSize);
  1.4744 +    assert( cellbody>0 );
  1.4745 +    assert( pPage->nFree >= 2*nCell );
  1.4746 +    pPage->nFree -= 2*nCell;
  1.4747 +    for(i=0; i<nCell; i++){
  1.4748 +      put2byte(&data[cellptr], cellbody);
  1.4749 +      memcpy(&data[cellbody], apCell[i], aSize[i]);
  1.4750 +      cellptr += 2;
  1.4751 +      cellbody += aSize[i];
  1.4752 +    }
  1.4753 +    assert( cellbody==pPage->pBt->usableSize );
  1.4754 +  }
  1.4755 +  pPage->nCell = nCell;
  1.4756 +}
  1.4757 +
  1.4758 +/*
  1.4759 +** The following parameters determine how many adjacent pages get involved
  1.4760 +** in a balancing operation.  NN is the number of neighbors on either side
  1.4761 +** of the page that participate in the balancing operation.  NB is the
  1.4762 +** total number of pages that participate, including the target page and
  1.4763 +** NN neighbors on either side.
  1.4764 +**
  1.4765 +** The minimum value of NN is 1 (of course).  Increasing NN above 1
  1.4766 +** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
  1.4767 +** in exchange for a larger degradation in INSERT and UPDATE performance.
  1.4768 +** The value of NN appears to give the best results overall.
  1.4769 +*/
  1.4770 +#define NN 1             /* Number of neighbors on either side of pPage */
  1.4771 +#define NB (NN*2+1)      /* Total pages involved in the balance */
  1.4772 +
  1.4773 +/* Forward reference */
  1.4774 +static int balance(BtCursor*, int);
  1.4775 +
  1.4776 +#ifndef SQLITE_OMIT_QUICKBALANCE
  1.4777 +/*
  1.4778 +** This version of balance() handles the common special case where
  1.4779 +** a new entry is being inserted on the extreme right-end of the
  1.4780 +** tree, in other words, when the new entry will become the largest
  1.4781 +** entry in the tree.
  1.4782 +**
  1.4783 +** Instead of trying balance the 3 right-most leaf pages, just add
  1.4784 +** a new page to the right-hand side and put the one new entry in
  1.4785 +** that page.  This leaves the right side of the tree somewhat
  1.4786 +** unbalanced.  But odds are that we will be inserting new entries
  1.4787 +** at the end soon afterwards so the nearly empty page will quickly
  1.4788 +** fill up.  On average.
  1.4789 +**
  1.4790 +** pPage is the leaf page which is the right-most page in the tree.
  1.4791 +** pParent is its parent.  pPage must have a single overflow entry
  1.4792 +** which is also the right-most entry on the page.
  1.4793 +*/
  1.4794 +static int balance_quick(BtCursor *pCur){
  1.4795 +  int rc;
  1.4796 +  MemPage *pNew = 0;
  1.4797 +  Pgno pgnoNew;
  1.4798 +  u8 *pCell;
  1.4799 +  u16 szCell;
  1.4800 +  CellInfo info;
  1.4801 +  MemPage *pPage = pCur->apPage[pCur->iPage];
  1.4802 +  MemPage *pParent = pCur->apPage[pCur->iPage-1];
  1.4803 +  BtShared *pBt = pPage->pBt;
  1.4804 +  int parentIdx = pParent->nCell;   /* pParent new divider cell index */
  1.4805 +  int parentSize;                   /* Size of new divider cell */
  1.4806 +  u8 parentCell[64];                /* Space for the new divider cell */
  1.4807 +
  1.4808 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4809 +
  1.4810 +  /* Allocate a new page. Insert the overflow cell from pPage
  1.4811 +  ** into it. Then remove the overflow cell from pPage.
  1.4812 +  */
  1.4813 +  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
  1.4814 +  if( rc==SQLITE_OK ){
  1.4815 +    pCell = pPage->aOvfl[0].pCell;
  1.4816 +    szCell = cellSizePtr(pPage, pCell);
  1.4817 +    zeroPage(pNew, pPage->aData[0]);
  1.4818 +    assemblePage(pNew, 1, &pCell, &szCell);
  1.4819 +    pPage->nOverflow = 0;
  1.4820 +  
  1.4821 +    /* pPage is currently the right-child of pParent. Change this
  1.4822 +    ** so that the right-child is the new page allocated above and
  1.4823 +    ** pPage is the next-to-right child. 
  1.4824 +    **
  1.4825 +    ** Ignore the return value of the call to fillInCell(). fillInCell()
  1.4826 +    ** may only return other than SQLITE_OK if it is required to allocate
  1.4827 +    ** one or more overflow pages. Since an internal table B-Tree cell 
  1.4828 +    ** may never spill over onto an overflow page (it is a maximum of 
  1.4829 +    ** 13 bytes in size), it is not neccessary to check the return code.
  1.4830 +    **
  1.4831 +    ** Similarly, the insertCell() function cannot fail if the page
  1.4832 +    ** being inserted into is already writable and the cell does not 
  1.4833 +    ** contain an overflow pointer. So ignore this return code too.
  1.4834 +    */
  1.4835 +    assert( pPage->nCell>0 );
  1.4836 +    pCell = findCell(pPage, pPage->nCell-1);
  1.4837 +    sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.4838 +    fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize);
  1.4839 +    assert( parentSize<64 );
  1.4840 +    assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  1.4841 +    insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4);
  1.4842 +    put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno);
  1.4843 +    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
  1.4844 +  
  1.4845 +    /* If this is an auto-vacuum database, update the pointer map
  1.4846 +    ** with entries for the new page, and any pointer from the 
  1.4847 +    ** cell on the page to an overflow page.
  1.4848 +    */
  1.4849 +    if( ISAUTOVACUUM ){
  1.4850 +      rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
  1.4851 +      if( rc==SQLITE_OK ){
  1.4852 +        rc = ptrmapPutOvfl(pNew, 0);
  1.4853 +      }
  1.4854 +    }
  1.4855 +
  1.4856 +    /* Release the reference to the new page. */
  1.4857 +    releasePage(pNew);
  1.4858 +  }
  1.4859 +
  1.4860 +  /* At this point the pPage->nFree variable is not set correctly with
  1.4861 +  ** respect to the content of the page (because it was set to 0 by 
  1.4862 +  ** insertCell). So call sqlite3BtreeInitPage() to make sure it is
  1.4863 +  ** correct.
  1.4864 +  **
  1.4865 +  ** This has to be done even if an error will be returned. Normally, if
  1.4866 +  ** an error occurs during tree balancing, the contents of MemPage are
  1.4867 +  ** not important, as they will be recalculated when the page is rolled
  1.4868 +  ** back. But here, in balance_quick(), it is possible that pPage has 
  1.4869 +  ** not yet been marked dirty or written into the journal file. Therefore
  1.4870 +  ** it will not be rolled back and so it is important to make sure that
  1.4871 +  ** the page data and contents of MemPage are consistent.
  1.4872 +  */
  1.4873 +  pPage->isInit = 0;
  1.4874 +  sqlite3BtreeInitPage(pPage);
  1.4875 +
  1.4876 +  /* If everything else succeeded, balance the parent page, in 
  1.4877 +  ** case the divider cell inserted caused it to become overfull.
  1.4878 +  */
  1.4879 +  if( rc==SQLITE_OK ){
  1.4880 +    releasePage(pPage);
  1.4881 +    pCur->iPage--;
  1.4882 +    rc = balance(pCur, 0);
  1.4883 +  }
  1.4884 +  return rc;
  1.4885 +}
  1.4886 +#endif /* SQLITE_OMIT_QUICKBALANCE */
  1.4887 +
  1.4888 +/*
  1.4889 +** This routine redistributes Cells on pPage and up to NN*2 siblings
  1.4890 +** of pPage so that all pages have about the same amount of free space.
  1.4891 +** Usually NN siblings on either side of pPage is used in the balancing,
  1.4892 +** though more siblings might come from one side if pPage is the first
  1.4893 +** or last child of its parent.  If pPage has fewer than 2*NN siblings
  1.4894 +** (something which can only happen if pPage is the root page or a 
  1.4895 +** child of root) then all available siblings participate in the balancing.
  1.4896 +**
  1.4897 +** The number of siblings of pPage might be increased or decreased by one or
  1.4898 +** two in an effort to keep pages nearly full but not over full. The root page
  1.4899 +** is special and is allowed to be nearly empty. If pPage is 
  1.4900 +** the root page, then the depth of the tree might be increased
  1.4901 +** or decreased by one, as necessary, to keep the root page from being
  1.4902 +** overfull or completely empty.
  1.4903 +**
  1.4904 +** Note that when this routine is called, some of the Cells on pPage
  1.4905 +** might not actually be stored in pPage->aData[].  This can happen
  1.4906 +** if the page is overfull.  Part of the job of this routine is to
  1.4907 +** make sure all Cells for pPage once again fit in pPage->aData[].
  1.4908 +**
  1.4909 +** In the course of balancing the siblings of pPage, the parent of pPage
  1.4910 +** might become overfull or underfull.  If that happens, then this routine
  1.4911 +** is called recursively on the parent.
  1.4912 +**
  1.4913 +** If this routine fails for any reason, it might leave the database
  1.4914 +** in a corrupted state.  So if this routine fails, the database should
  1.4915 +** be rolled back.
  1.4916 +*/
  1.4917 +static int balance_nonroot(BtCursor *pCur){
  1.4918 +  MemPage *pPage;              /* The over or underfull page to balance */
  1.4919 +  MemPage *pParent;            /* The parent of pPage */
  1.4920 +  BtShared *pBt;               /* The whole database */
  1.4921 +  int nCell = 0;               /* Number of cells in apCell[] */
  1.4922 +  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  1.4923 +  int nOld;                    /* Number of pages in apOld[] */
  1.4924 +  int nNew;                    /* Number of pages in apNew[] */
  1.4925 +  int nDiv;                    /* Number of cells in apDiv[] */
  1.4926 +  int i, j, k;                 /* Loop counters */
  1.4927 +  int idx;                     /* Index of pPage in pParent->aCell[] */
  1.4928 +  int nxDiv;                   /* Next divider slot in pParent->aCell[] */
  1.4929 +  int rc;                      /* The return code */
  1.4930 +  int leafCorrection;          /* 4 if pPage is a leaf.  0 if not */
  1.4931 +  int leafData;                /* True if pPage is a leaf of a LEAFDATA tree */
  1.4932 +  int usableSpace;             /* Bytes in pPage beyond the header */
  1.4933 +  int pageFlags;               /* Value of pPage->aData[0] */
  1.4934 +  int subtotal;                /* Subtotal of bytes in cells on one page */
  1.4935 +  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  1.4936 +  int iSpace2 = 0;             /* First unused byte of aSpace2[] */
  1.4937 +  int szScratch;               /* Size of scratch memory requested */
  1.4938 +  MemPage *apOld[NB];          /* pPage and up to two siblings */
  1.4939 +  Pgno pgnoOld[NB];            /* Page numbers for each page in apOld[] */
  1.4940 +  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  1.4941 +  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  1.4942 +  Pgno pgnoNew[NB+2];          /* Page numbers for each page in apNew[] */
  1.4943 +  u8 *apDiv[NB];               /* Divider cells in pParent */
  1.4944 +  int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
  1.4945 +  int szNew[NB+2];             /* Combined size of cells place on i-th page */
  1.4946 +  u8 **apCell = 0;             /* All cells begin balanced */
  1.4947 +  u16 *szCell;                 /* Local size of all cells in apCell[] */
  1.4948 +  u8 *aCopy[NB];         /* Space for holding data of apCopy[] */
  1.4949 +  u8 *aSpace1;           /* Space for copies of dividers cells before balance */
  1.4950 +  u8 *aSpace2 = 0;       /* Space for overflow dividers cells after balance */
  1.4951 +  u8 *aFrom = 0;
  1.4952 +
  1.4953 +  pPage = pCur->apPage[pCur->iPage];
  1.4954 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.4955 +  VVA_ONLY( pCur->pagesShuffled = 1 );
  1.4956 +
  1.4957 +  /* 
  1.4958 +  ** Find the parent page.
  1.4959 +  */
  1.4960 +  assert( pCur->iPage>0 );
  1.4961 +  assert( pPage->isInit );
  1.4962 +  assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 );
  1.4963 +  pBt = pPage->pBt;
  1.4964 +  pParent = pCur->apPage[pCur->iPage-1];
  1.4965 +  assert( pParent );
  1.4966 +  if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){
  1.4967 +    return rc;
  1.4968 +  }
  1.4969 +
  1.4970 +  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
  1.4971 +
  1.4972 +#ifndef SQLITE_OMIT_QUICKBALANCE
  1.4973 +  /*
  1.4974 +  ** A special case:  If a new entry has just been inserted into a
  1.4975 +  ** table (that is, a btree with integer keys and all data at the leaves)
  1.4976 +  ** and the new entry is the right-most entry in the tree (it has the
  1.4977 +  ** largest key) then use the special balance_quick() routine for
  1.4978 +  ** balancing.  balance_quick() is much faster and results in a tighter
  1.4979 +  ** packing of data in the common case.
  1.4980 +  */
  1.4981 +  if( pPage->leaf &&
  1.4982 +      pPage->intKey &&
  1.4983 +      pPage->nOverflow==1 &&
  1.4984 +      pPage->aOvfl[0].idx==pPage->nCell &&
  1.4985 +      pParent->pgno!=1 &&
  1.4986 +      get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno
  1.4987 +  ){
  1.4988 +    assert( pPage->intKey );
  1.4989 +    /*
  1.4990 +    ** TODO: Check the siblings to the left of pPage. It may be that
  1.4991 +    ** they are not full and no new page is required.
  1.4992 +    */
  1.4993 +    return balance_quick(pCur);
  1.4994 +  }
  1.4995 +#endif
  1.4996 +
  1.4997 +  if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){
  1.4998 +    return rc;
  1.4999 +  }
  1.5000 +
  1.5001 +  /*
  1.5002 +  ** Find the cell in the parent page whose left child points back
  1.5003 +  ** to pPage.  The "idx" variable is the index of that cell.  If pPage
  1.5004 +  ** is the rightmost child of pParent then set idx to pParent->nCell 
  1.5005 +  */
  1.5006 +  idx = pCur->aiIdx[pCur->iPage-1];
  1.5007 +  assertParentIndex(pParent, idx, pPage->pgno);
  1.5008 +
  1.5009 +  /*
  1.5010 +  ** Initialize variables so that it will be safe to jump
  1.5011 +  ** directly to balance_cleanup at any moment.
  1.5012 +  */
  1.5013 +  nOld = nNew = 0;
  1.5014 +
  1.5015 +  /*
  1.5016 +  ** Find sibling pages to pPage and the cells in pParent that divide
  1.5017 +  ** the siblings.  An attempt is made to find NN siblings on either
  1.5018 +  ** side of pPage.  More siblings are taken from one side, however, if
  1.5019 +  ** pPage there are fewer than NN siblings on the other side.  If pParent
  1.5020 +  ** has NB or fewer children then all children of pParent are taken.
  1.5021 +  */
  1.5022 +  nxDiv = idx - NN;
  1.5023 +  if( nxDiv + NB > pParent->nCell ){
  1.5024 +    nxDiv = pParent->nCell - NB + 1;
  1.5025 +  }
  1.5026 +  if( nxDiv<0 ){
  1.5027 +    nxDiv = 0;
  1.5028 +  }
  1.5029 +  nDiv = 0;
  1.5030 +  for(i=0, k=nxDiv; i<NB; i++, k++){
  1.5031 +    if( k<pParent->nCell ){
  1.5032 +      apDiv[i] = findCell(pParent, k);
  1.5033 +      nDiv++;
  1.5034 +      assert( !pParent->leaf );
  1.5035 +      pgnoOld[i] = get4byte(apDiv[i]);
  1.5036 +    }else if( k==pParent->nCell ){
  1.5037 +      pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
  1.5038 +    }else{
  1.5039 +      break;
  1.5040 +    }
  1.5041 +    rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i]);
  1.5042 +    if( rc ) goto balance_cleanup;
  1.5043 +    /* apOld[i]->idxParent = k; */
  1.5044 +    apCopy[i] = 0;
  1.5045 +    assert( i==nOld );
  1.5046 +    nOld++;
  1.5047 +    nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
  1.5048 +  }
  1.5049 +
  1.5050 +  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  1.5051 +  ** alignment */
  1.5052 +  nMaxCells = (nMaxCells + 3)&~3;
  1.5053 +
  1.5054 +  /*
  1.5055 +  ** Allocate space for memory structures
  1.5056 +  */
  1.5057 +  szScratch =
  1.5058 +       nMaxCells*sizeof(u8*)                       /* apCell */
  1.5059 +     + nMaxCells*sizeof(u16)                       /* szCell */
  1.5060 +     + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB  /* aCopy */
  1.5061 +     + pBt->pageSize                               /* aSpace1 */
  1.5062 +     + (ISAUTOVACUUM ? nMaxCells : 0);             /* aFrom */
  1.5063 +  apCell = sqlite3ScratchMalloc( szScratch ); 
  1.5064 +  if( apCell==0 ){
  1.5065 +    rc = SQLITE_NOMEM;
  1.5066 +    goto balance_cleanup;
  1.5067 +  }
  1.5068 +  szCell = (u16*)&apCell[nMaxCells];
  1.5069 +  aCopy[0] = (u8*)&szCell[nMaxCells];
  1.5070 +  assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  1.5071 +  for(i=1; i<NB; i++){
  1.5072 +    aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  1.5073 +    assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  1.5074 +  }
  1.5075 +  aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
  1.5076 +  assert( ((aSpace1 - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */
  1.5077 +  if( ISAUTOVACUUM ){
  1.5078 +    aFrom = &aSpace1[pBt->pageSize];
  1.5079 +  }
  1.5080 +  aSpace2 = sqlite3PageMalloc(pBt->pageSize);
  1.5081 +  if( aSpace2==0 ){
  1.5082 +    rc = SQLITE_NOMEM;
  1.5083 +    goto balance_cleanup;
  1.5084 +  }
  1.5085 +  
  1.5086 +  /*
  1.5087 +  ** Make copies of the content of pPage and its siblings into aOld[].
  1.5088 +  ** The rest of this function will use data from the copies rather
  1.5089 +  ** that the original pages since the original pages will be in the
  1.5090 +  ** process of being overwritten.
  1.5091 +  */
  1.5092 +  for(i=0; i<nOld; i++){
  1.5093 +    MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
  1.5094 +    memcpy(p, apOld[i], sizeof(MemPage));
  1.5095 +    p->aData = (void*)&p[1];
  1.5096 +    memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
  1.5097 +  }
  1.5098 +
  1.5099 +  /*
  1.5100 +  ** Load pointers to all cells on sibling pages and the divider cells
  1.5101 +  ** into the local apCell[] array.  Make copies of the divider cells
  1.5102 +  ** into space obtained form aSpace1[] and remove the the divider Cells
  1.5103 +  ** from pParent.
  1.5104 +  **
  1.5105 +  ** If the siblings are on leaf pages, then the child pointers of the
  1.5106 +  ** divider cells are stripped from the cells before they are copied
  1.5107 +  ** into aSpace1[].  In this way, all cells in apCell[] are without
  1.5108 +  ** child pointers.  If siblings are not leaves, then all cell in
  1.5109 +  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  1.5110 +  ** are alike.
  1.5111 +  **
  1.5112 +  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  1.5113 +  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  1.5114 +  */
  1.5115 +  nCell = 0;
  1.5116 +  leafCorrection = pPage->leaf*4;
  1.5117 +  leafData = pPage->hasData;
  1.5118 +  for(i=0; i<nOld; i++){
  1.5119 +    MemPage *pOld = apCopy[i];
  1.5120 +    int limit = pOld->nCell+pOld->nOverflow;
  1.5121 +    for(j=0; j<limit; j++){
  1.5122 +      assert( nCell<nMaxCells );
  1.5123 +      apCell[nCell] = findOverflowCell(pOld, j);
  1.5124 +      szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
  1.5125 +      if( ISAUTOVACUUM ){
  1.5126 +        int a;
  1.5127 +        aFrom[nCell] = i;
  1.5128 +        for(a=0; a<pOld->nOverflow; a++){
  1.5129 +          if( pOld->aOvfl[a].pCell==apCell[nCell] ){
  1.5130 +            aFrom[nCell] = 0xFF;
  1.5131 +            break;
  1.5132 +          }
  1.5133 +        }
  1.5134 +      }
  1.5135 +      nCell++;
  1.5136 +    }
  1.5137 +    if( i<nOld-1 ){
  1.5138 +      u16 sz = cellSizePtr(pParent, apDiv[i]);
  1.5139 +      if( leafData ){
  1.5140 +        /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
  1.5141 +        ** are duplicates of keys on the child pages.  We need to remove
  1.5142 +        ** the divider cells from pParent, but the dividers cells are not
  1.5143 +        ** added to apCell[] because they are duplicates of child cells.
  1.5144 +        */
  1.5145 +        dropCell(pParent, nxDiv, sz);
  1.5146 +      }else{
  1.5147 +        u8 *pTemp;
  1.5148 +        assert( nCell<nMaxCells );
  1.5149 +        szCell[nCell] = sz;
  1.5150 +        pTemp = &aSpace1[iSpace1];
  1.5151 +        iSpace1 += sz;
  1.5152 +        assert( sz<=pBt->pageSize/4 );
  1.5153 +        assert( iSpace1<=pBt->pageSize );
  1.5154 +        memcpy(pTemp, apDiv[i], sz);
  1.5155 +        apCell[nCell] = pTemp+leafCorrection;
  1.5156 +        if( ISAUTOVACUUM ){
  1.5157 +          aFrom[nCell] = 0xFF;
  1.5158 +        }
  1.5159 +        dropCell(pParent, nxDiv, sz);
  1.5160 +        szCell[nCell] -= leafCorrection;
  1.5161 +        assert( get4byte(pTemp)==pgnoOld[i] );
  1.5162 +        if( !pOld->leaf ){
  1.5163 +          assert( leafCorrection==0 );
  1.5164 +          /* The right pointer of the child page pOld becomes the left
  1.5165 +          ** pointer of the divider cell */
  1.5166 +          memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
  1.5167 +        }else{
  1.5168 +          assert( leafCorrection==4 );
  1.5169 +          if( szCell[nCell]<4 ){
  1.5170 +            /* Do not allow any cells smaller than 4 bytes. */
  1.5171 +            szCell[nCell] = 4;
  1.5172 +          }
  1.5173 +        }
  1.5174 +        nCell++;
  1.5175 +      }
  1.5176 +    }
  1.5177 +  }
  1.5178 +
  1.5179 +  /*
  1.5180 +  ** Figure out the number of pages needed to hold all nCell cells.
  1.5181 +  ** Store this number in "k".  Also compute szNew[] which is the total
  1.5182 +  ** size of all cells on the i-th page and cntNew[] which is the index
  1.5183 +  ** in apCell[] of the cell that divides page i from page i+1.  
  1.5184 +  ** cntNew[k] should equal nCell.
  1.5185 +  **
  1.5186 +  ** Values computed by this block:
  1.5187 +  **
  1.5188 +  **           k: The total number of sibling pages
  1.5189 +  **    szNew[i]: Spaced used on the i-th sibling page.
  1.5190 +  **   cntNew[i]: Index in apCell[] and szCell[] for the first cell to
  1.5191 +  **              the right of the i-th sibling page.
  1.5192 +  ** usableSpace: Number of bytes of space available on each sibling.
  1.5193 +  ** 
  1.5194 +  */
  1.5195 +  usableSpace = pBt->usableSize - 12 + leafCorrection;
  1.5196 +  for(subtotal=k=i=0; i<nCell; i++){
  1.5197 +    assert( i<nMaxCells );
  1.5198 +    subtotal += szCell[i] + 2;
  1.5199 +    if( subtotal > usableSpace ){
  1.5200 +      szNew[k] = subtotal - szCell[i];
  1.5201 +      cntNew[k] = i;
  1.5202 +      if( leafData ){ i--; }
  1.5203 +      subtotal = 0;
  1.5204 +      k++;
  1.5205 +    }
  1.5206 +  }
  1.5207 +  szNew[k] = subtotal;
  1.5208 +  cntNew[k] = nCell;
  1.5209 +  k++;
  1.5210 +
  1.5211 +  /*
  1.5212 +  ** The packing computed by the previous block is biased toward the siblings
  1.5213 +  ** on the left side.  The left siblings are always nearly full, while the
  1.5214 +  ** right-most sibling might be nearly empty.  This block of code attempts
  1.5215 +  ** to adjust the packing of siblings to get a better balance.
  1.5216 +  **
  1.5217 +  ** This adjustment is more than an optimization.  The packing above might
  1.5218 +  ** be so out of balance as to be illegal.  For example, the right-most
  1.5219 +  ** sibling might be completely empty.  This adjustment is not optional.
  1.5220 +  */
  1.5221 +  for(i=k-1; i>0; i--){
  1.5222 +    int szRight = szNew[i];  /* Size of sibling on the right */
  1.5223 +    int szLeft = szNew[i-1]; /* Size of sibling on the left */
  1.5224 +    int r;              /* Index of right-most cell in left sibling */
  1.5225 +    int d;              /* Index of first cell to the left of right sibling */
  1.5226 +
  1.5227 +    r = cntNew[i-1] - 1;
  1.5228 +    d = r + 1 - leafData;
  1.5229 +    assert( d<nMaxCells );
  1.5230 +    assert( r<nMaxCells );
  1.5231 +    while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
  1.5232 +      szRight += szCell[d] + 2;
  1.5233 +      szLeft -= szCell[r] + 2;
  1.5234 +      cntNew[i-1]--;
  1.5235 +      r = cntNew[i-1] - 1;
  1.5236 +      d = r + 1 - leafData;
  1.5237 +    }
  1.5238 +    szNew[i] = szRight;
  1.5239 +    szNew[i-1] = szLeft;
  1.5240 +  }
  1.5241 +
  1.5242 +  /* Either we found one or more cells (cntnew[0])>0) or we are the
  1.5243 +  ** a virtual root page.  A virtual root page is when the real root
  1.5244 +  ** page is page 1 and we are the only child of that page.
  1.5245 +  */
  1.5246 +  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
  1.5247 +
  1.5248 +  /*
  1.5249 +  ** Allocate k new pages.  Reuse old pages where possible.
  1.5250 +  */
  1.5251 +  assert( pPage->pgno>1 );
  1.5252 +  pageFlags = pPage->aData[0];
  1.5253 +  for(i=0; i<k; i++){
  1.5254 +    MemPage *pNew;
  1.5255 +    if( i<nOld ){
  1.5256 +      pNew = apNew[i] = apOld[i];
  1.5257 +      pgnoNew[i] = pgnoOld[i];
  1.5258 +      apOld[i] = 0;
  1.5259 +      rc = sqlite3PagerWrite(pNew->pDbPage);
  1.5260 +      nNew++;
  1.5261 +      if( rc ) goto balance_cleanup;
  1.5262 +    }else{
  1.5263 +      assert( i>0 );
  1.5264 +      rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
  1.5265 +      if( rc ) goto balance_cleanup;
  1.5266 +      apNew[i] = pNew;
  1.5267 +      nNew++;
  1.5268 +    }
  1.5269 +  }
  1.5270 +
  1.5271 +  /* Free any old pages that were not reused as new pages.
  1.5272 +  */
  1.5273 +  while( i<nOld ){
  1.5274 +    rc = freePage(apOld[i]);
  1.5275 +    if( rc ) goto balance_cleanup;
  1.5276 +    releasePage(apOld[i]);
  1.5277 +    apOld[i] = 0;
  1.5278 +    i++;
  1.5279 +  }
  1.5280 +
  1.5281 +  /*
  1.5282 +  ** Put the new pages in accending order.  This helps to
  1.5283 +  ** keep entries in the disk file in order so that a scan
  1.5284 +  ** of the table is a linear scan through the file.  That
  1.5285 +  ** in turn helps the operating system to deliver pages
  1.5286 +  ** from the disk more rapidly.
  1.5287 +  **
  1.5288 +  ** An O(n^2) insertion sort algorithm is used, but since
  1.5289 +  ** n is never more than NB (a small constant), that should
  1.5290 +  ** not be a problem.
  1.5291 +  **
  1.5292 +  ** When NB==3, this one optimization makes the database
  1.5293 +  ** about 25% faster for large insertions and deletions.
  1.5294 +  */
  1.5295 +  for(i=0; i<k-1; i++){
  1.5296 +    int minV = pgnoNew[i];
  1.5297 +    int minI = i;
  1.5298 +    for(j=i+1; j<k; j++){
  1.5299 +      if( pgnoNew[j]<(unsigned)minV ){
  1.5300 +        minI = j;
  1.5301 +        minV = pgnoNew[j];
  1.5302 +      }
  1.5303 +    }
  1.5304 +    if( minI>i ){
  1.5305 +      int t;
  1.5306 +      MemPage *pT;
  1.5307 +      t = pgnoNew[i];
  1.5308 +      pT = apNew[i];
  1.5309 +      pgnoNew[i] = pgnoNew[minI];
  1.5310 +      apNew[i] = apNew[minI];
  1.5311 +      pgnoNew[minI] = t;
  1.5312 +      apNew[minI] = pT;
  1.5313 +    }
  1.5314 +  }
  1.5315 +  TRACE(("BALANCE: old: %d %d %d  new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
  1.5316 +    pgnoOld[0], 
  1.5317 +    nOld>=2 ? pgnoOld[1] : 0,
  1.5318 +    nOld>=3 ? pgnoOld[2] : 0,
  1.5319 +    pgnoNew[0], szNew[0],
  1.5320 +    nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
  1.5321 +    nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
  1.5322 +    nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
  1.5323 +    nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
  1.5324 +
  1.5325 +  /*
  1.5326 +  ** Evenly distribute the data in apCell[] across the new pages.
  1.5327 +  ** Insert divider cells into pParent as necessary.
  1.5328 +  */
  1.5329 +  j = 0;
  1.5330 +  for(i=0; i<nNew; i++){
  1.5331 +    /* Assemble the new sibling page. */
  1.5332 +    MemPage *pNew = apNew[i];
  1.5333 +    assert( j<nMaxCells );
  1.5334 +    assert( pNew->pgno==pgnoNew[i] );
  1.5335 +    zeroPage(pNew, pageFlags);
  1.5336 +    assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
  1.5337 +    assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
  1.5338 +    assert( pNew->nOverflow==0 );
  1.5339 +
  1.5340 +    /* If this is an auto-vacuum database, update the pointer map entries
  1.5341 +    ** that point to the siblings that were rearranged. These can be: left
  1.5342 +    ** children of cells, the right-child of the page, or overflow pages
  1.5343 +    ** pointed to by cells.
  1.5344 +    */
  1.5345 +    if( ISAUTOVACUUM ){
  1.5346 +      for(k=j; k<cntNew[i]; k++){
  1.5347 +        assert( k<nMaxCells );
  1.5348 +        if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
  1.5349 +          rc = ptrmapPutOvfl(pNew, k-j);
  1.5350 +          if( rc==SQLITE_OK && leafCorrection==0 ){
  1.5351 +            rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
  1.5352 +          }
  1.5353 +          if( rc!=SQLITE_OK ){
  1.5354 +            goto balance_cleanup;
  1.5355 +          }
  1.5356 +        }
  1.5357 +      }
  1.5358 +    }
  1.5359 +
  1.5360 +    j = cntNew[i];
  1.5361 +
  1.5362 +    /* If the sibling page assembled above was not the right-most sibling,
  1.5363 +    ** insert a divider cell into the parent page.
  1.5364 +    */
  1.5365 +    if( i<nNew-1 && j<nCell ){
  1.5366 +      u8 *pCell;
  1.5367 +      u8 *pTemp;
  1.5368 +      int sz;
  1.5369 +
  1.5370 +      assert( j<nMaxCells );
  1.5371 +      pCell = apCell[j];
  1.5372 +      sz = szCell[j] + leafCorrection;
  1.5373 +      pTemp = &aSpace2[iSpace2];
  1.5374 +      if( !pNew->leaf ){
  1.5375 +        memcpy(&pNew->aData[8], pCell, 4);
  1.5376 +        if( ISAUTOVACUUM 
  1.5377 +         && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
  1.5378 +        ){
  1.5379 +          rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
  1.5380 +          if( rc!=SQLITE_OK ){
  1.5381 +            goto balance_cleanup;
  1.5382 +          }
  1.5383 +        }
  1.5384 +      }else if( leafData ){
  1.5385 +        /* If the tree is a leaf-data tree, and the siblings are leaves, 
  1.5386 +        ** then there is no divider cell in apCell[]. Instead, the divider 
  1.5387 +        ** cell consists of the integer key for the right-most cell of 
  1.5388 +        ** the sibling-page assembled above only.
  1.5389 +        */
  1.5390 +        CellInfo info;
  1.5391 +        j--;
  1.5392 +        sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
  1.5393 +        pCell = pTemp;
  1.5394 +        fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz);
  1.5395 +        pTemp = 0;
  1.5396 +      }else{
  1.5397 +        pCell -= 4;
  1.5398 +        /* Obscure case for non-leaf-data trees: If the cell at pCell was
  1.5399 +        ** previously stored on a leaf node, and its reported size was 4
  1.5400 +        ** bytes, then it may actually be smaller than this 
  1.5401 +        ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
  1.5402 +        ** any cell). But it is important to pass the correct size to 
  1.5403 +        ** insertCell(), so reparse the cell now.
  1.5404 +        **
  1.5405 +        ** Note that this can never happen in an SQLite data file, as all
  1.5406 +        ** cells are at least 4 bytes. It only happens in b-trees used
  1.5407 +        ** to evaluate "IN (SELECT ...)" and similar clauses.
  1.5408 +        */
  1.5409 +        if( szCell[j]==4 ){
  1.5410 +          assert(leafCorrection==4);
  1.5411 +          sz = cellSizePtr(pParent, pCell);
  1.5412 +        }
  1.5413 +      }
  1.5414 +      iSpace2 += sz;
  1.5415 +      assert( sz<=pBt->pageSize/4 );
  1.5416 +      assert( iSpace2<=pBt->pageSize );
  1.5417 +      rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
  1.5418 +      if( rc!=SQLITE_OK ) goto balance_cleanup;
  1.5419 +      put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
  1.5420 +
  1.5421 +      /* If this is an auto-vacuum database, and not a leaf-data tree,
  1.5422 +      ** then update the pointer map with an entry for the overflow page
  1.5423 +      ** that the cell just inserted points to (if any).
  1.5424 +      */
  1.5425 +      if( ISAUTOVACUUM && !leafData ){
  1.5426 +        rc = ptrmapPutOvfl(pParent, nxDiv);
  1.5427 +        if( rc!=SQLITE_OK ){
  1.5428 +          goto balance_cleanup;
  1.5429 +        }
  1.5430 +      }
  1.5431 +      j++;
  1.5432 +      nxDiv++;
  1.5433 +    }
  1.5434 +
  1.5435 +    /* Set the pointer-map entry for the new sibling page. */
  1.5436 +    if( ISAUTOVACUUM ){
  1.5437 +      rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
  1.5438 +      if( rc!=SQLITE_OK ){
  1.5439 +        goto balance_cleanup;
  1.5440 +      }
  1.5441 +    }
  1.5442 +  }
  1.5443 +  assert( j==nCell );
  1.5444 +  assert( nOld>0 );
  1.5445 +  assert( nNew>0 );
  1.5446 +  if( (pageFlags & PTF_LEAF)==0 ){
  1.5447 +    u8 *zChild = &apCopy[nOld-1]->aData[8];
  1.5448 +    memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
  1.5449 +    if( ISAUTOVACUUM ){
  1.5450 +      rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
  1.5451 +      if( rc!=SQLITE_OK ){
  1.5452 +        goto balance_cleanup;
  1.5453 +      }
  1.5454 +    }
  1.5455 +  }
  1.5456 +  if( nxDiv==pParent->nCell+pParent->nOverflow ){
  1.5457 +    /* Right-most sibling is the right-most child of pParent */
  1.5458 +    put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
  1.5459 +  }else{
  1.5460 +    /* Right-most sibling is the left child of the first entry in pParent
  1.5461 +    ** past the right-most divider entry */
  1.5462 +    put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
  1.5463 +  }
  1.5464 +
  1.5465 +  /*
  1.5466 +  ** Balance the parent page.  Note that the current page (pPage) might
  1.5467 +  ** have been added to the freelist so it might no longer be initialized.
  1.5468 +  ** But the parent page will always be initialized.
  1.5469 +  */
  1.5470 +  assert( pParent->isInit );
  1.5471 +  sqlite3ScratchFree(apCell);
  1.5472 +  apCell = 0;
  1.5473 +  releasePage(pPage);
  1.5474 +  pCur->iPage--;
  1.5475 +  rc = balance(pCur, 0);
  1.5476 +  
  1.5477 +  /*
  1.5478 +  ** Cleanup before returning.
  1.5479 +  */
  1.5480 +balance_cleanup:
  1.5481 +  sqlite3PageFree(aSpace2);
  1.5482 +  sqlite3ScratchFree(apCell);
  1.5483 +  for(i=0; i<nOld; i++){
  1.5484 +    releasePage(apOld[i]);
  1.5485 +  }
  1.5486 +  for(i=0; i<nNew; i++){
  1.5487 +    releasePage(apNew[i]);
  1.5488 +  }
  1.5489 +
  1.5490 +  /* releasePage(pParent); */
  1.5491 +  TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
  1.5492 +          pPage->pgno, nOld, nNew, nCell));
  1.5493 +
  1.5494 +  return rc;
  1.5495 +}
  1.5496 +
  1.5497 +/*
  1.5498 +** This routine is called for the root page of a btree when the root
  1.5499 +** page contains no cells.  This is an opportunity to make the tree
  1.5500 +** shallower by one level.
  1.5501 +*/
  1.5502 +static int balance_shallower(BtCursor *pCur){
  1.5503 +  MemPage *pPage;              /* Root page of B-Tree */
  1.5504 +  MemPage *pChild;             /* The only child page of pPage */
  1.5505 +  Pgno pgnoChild;              /* Page number for pChild */
  1.5506 +  int rc = SQLITE_OK;          /* Return code from subprocedures */
  1.5507 +  BtShared *pBt;                  /* The main BTree structure */
  1.5508 +  int mxCellPerPage;           /* Maximum number of cells per page */
  1.5509 +  u8 **apCell;                 /* All cells from pages being balanced */
  1.5510 +  u16 *szCell;                 /* Local size of all cells */
  1.5511 +
  1.5512 +  assert( pCur->iPage==0 );
  1.5513 +  pPage = pCur->apPage[0];
  1.5514 +
  1.5515 +  assert( pPage->nCell==0 );
  1.5516 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.5517 +  pBt = pPage->pBt;
  1.5518 +  mxCellPerPage = MX_CELL(pBt);
  1.5519 +  apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) );
  1.5520 +  if( apCell==0 ) return SQLITE_NOMEM;
  1.5521 +  szCell = (u16*)&apCell[mxCellPerPage];
  1.5522 +  if( pPage->leaf ){
  1.5523 +    /* The table is completely empty */
  1.5524 +    TRACE(("BALANCE: empty table %d\n", pPage->pgno));
  1.5525 +  }else{
  1.5526 +    /* The root page is empty but has one child.  Transfer the
  1.5527 +    ** information from that one child into the root page if it 
  1.5528 +    ** will fit.  This reduces the depth of the tree by one.
  1.5529 +    **
  1.5530 +    ** If the root page is page 1, it has less space available than
  1.5531 +    ** its child (due to the 100 byte header that occurs at the beginning
  1.5532 +    ** of the database fle), so it might not be able to hold all of the 
  1.5533 +    ** information currently contained in the child.  If this is the 
  1.5534 +    ** case, then do not do the transfer.  Leave page 1 empty except
  1.5535 +    ** for the right-pointer to the child page.  The child page becomes
  1.5536 +    ** the virtual root of the tree.
  1.5537 +    */
  1.5538 +    VVA_ONLY( pCur->pagesShuffled = 1 );
  1.5539 +    pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.5540 +    assert( pgnoChild>0 );
  1.5541 +    assert( pgnoChild<=pagerPagecount(pPage->pBt->pPager) );
  1.5542 +    rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0);
  1.5543 +    if( rc ) goto end_shallow_balance;
  1.5544 +    if( pPage->pgno==1 ){
  1.5545 +      rc = sqlite3BtreeInitPage(pChild);
  1.5546 +      if( rc ) goto end_shallow_balance;
  1.5547 +      assert( pChild->nOverflow==0 );
  1.5548 +      if( pChild->nFree>=100 ){
  1.5549 +        /* The child information will fit on the root page, so do the
  1.5550 +        ** copy */
  1.5551 +        int i;
  1.5552 +        zeroPage(pPage, pChild->aData[0]);
  1.5553 +        for(i=0; i<pChild->nCell; i++){
  1.5554 +          apCell[i] = findCell(pChild,i);
  1.5555 +          szCell[i] = cellSizePtr(pChild, apCell[i]);
  1.5556 +        }
  1.5557 +        assemblePage(pPage, pChild->nCell, apCell, szCell);
  1.5558 +        /* Copy the right-pointer of the child to the parent. */
  1.5559 +        put4byte(&pPage->aData[pPage->hdrOffset+8], 
  1.5560 +            get4byte(&pChild->aData[pChild->hdrOffset+8]));
  1.5561 +        freePage(pChild);
  1.5562 +        TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
  1.5563 +      }else{
  1.5564 +        /* The child has more information that will fit on the root.
  1.5565 +        ** The tree is already balanced.  Do nothing. */
  1.5566 +        TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
  1.5567 +      }
  1.5568 +    }else{
  1.5569 +      memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
  1.5570 +      pPage->isInit = 0;
  1.5571 +      rc = sqlite3BtreeInitPage(pPage);
  1.5572 +      assert( rc==SQLITE_OK );
  1.5573 +      freePage(pChild);
  1.5574 +      TRACE(("BALANCE: transfer child %d into root %d\n",
  1.5575 +              pChild->pgno, pPage->pgno));
  1.5576 +    }
  1.5577 +    assert( pPage->nOverflow==0 );
  1.5578 +    if( ISAUTOVACUUM ){
  1.5579 +      rc = setChildPtrmaps(pPage);
  1.5580 +    }
  1.5581 +    releasePage(pChild);
  1.5582 +  }
  1.5583 +end_shallow_balance:
  1.5584 +  sqlite3_free(apCell);
  1.5585 +  return rc;
  1.5586 +}
  1.5587 +
  1.5588 +
  1.5589 +/*
  1.5590 +** The root page is overfull
  1.5591 +**
  1.5592 +** When this happens, Create a new child page and copy the
  1.5593 +** contents of the root into the child.  Then make the root
  1.5594 +** page an empty page with rightChild pointing to the new
  1.5595 +** child.   Finally, call balance_internal() on the new child
  1.5596 +** to cause it to split.
  1.5597 +*/
  1.5598 +static int balance_deeper(BtCursor *pCur){
  1.5599 +  int rc;             /* Return value from subprocedures */
  1.5600 +  MemPage *pPage;     /* Pointer to the root page */
  1.5601 +  MemPage *pChild;    /* Pointer to a new child page */
  1.5602 +  Pgno pgnoChild;     /* Page number of the new child page */
  1.5603 +  BtShared *pBt;         /* The BTree */
  1.5604 +  int usableSize;     /* Total usable size of a page */
  1.5605 +  u8 *data;           /* Content of the parent page */
  1.5606 +  u8 *cdata;          /* Content of the child page */
  1.5607 +  int hdr;            /* Offset to page header in parent */
  1.5608 +  int cbrk;           /* Offset to content of first cell in parent */
  1.5609 +
  1.5610 +  assert( pCur->iPage==0 );
  1.5611 +  assert( pCur->apPage[0]->nOverflow>0 );
  1.5612 +
  1.5613 +  VVA_ONLY( pCur->pagesShuffled = 1 );
  1.5614 +  pPage = pCur->apPage[0];
  1.5615 +  pBt = pPage->pBt;
  1.5616 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.5617 +  rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0);
  1.5618 +  if( rc ) return rc;
  1.5619 +  assert( sqlite3PagerIswriteable(pChild->pDbPage) );
  1.5620 +  usableSize = pBt->usableSize;
  1.5621 +  data = pPage->aData;
  1.5622 +  hdr = pPage->hdrOffset;
  1.5623 +  cbrk = get2byte(&data[hdr+5]);
  1.5624 +  cdata = pChild->aData;
  1.5625 +  memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
  1.5626 +  memcpy(&cdata[cbrk], &data[cbrk], usableSize-cbrk);
  1.5627 +  
  1.5628 +  rc = sqlite3BtreeInitPage(pChild);
  1.5629 +  if( rc==SQLITE_OK ){
  1.5630 +    int nCopy = pPage->nOverflow*sizeof(pPage->aOvfl[0]);
  1.5631 +    memcpy(pChild->aOvfl, pPage->aOvfl, nCopy);
  1.5632 +    pChild->nOverflow = pPage->nOverflow;
  1.5633 +    if( pChild->nOverflow ){
  1.5634 +      pChild->nFree = 0;
  1.5635 +    }
  1.5636 +    assert( pChild->nCell==pPage->nCell );
  1.5637 +    zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
  1.5638 +    put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
  1.5639 +    TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
  1.5640 +    if( ISAUTOVACUUM ){
  1.5641 +      rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno);
  1.5642 +      if( rc==SQLITE_OK ){
  1.5643 +        rc = setChildPtrmaps(pChild);
  1.5644 +      }
  1.5645 +    }
  1.5646 +  }
  1.5647 +
  1.5648 +  if( rc==SQLITE_OK ){
  1.5649 +    pCur->iPage++;
  1.5650 +    pCur->apPage[1] = pChild;
  1.5651 +    pCur->aiIdx[0] = 0;
  1.5652 +    rc = balance_nonroot(pCur);
  1.5653 +  }else{
  1.5654 +    releasePage(pChild);
  1.5655 +  }
  1.5656 +
  1.5657 +  return rc;
  1.5658 +}
  1.5659 +
  1.5660 +/*
  1.5661 +** The page that pCur currently points to has just been modified in
  1.5662 +** some way. This function figures out if this modification means the
  1.5663 +** tree needs to be balanced, and if so calls the appropriate balancing 
  1.5664 +** routine.
  1.5665 +** 
  1.5666 +** Parameter isInsert is true if a new cell was just inserted into the
  1.5667 +** page, or false otherwise.
  1.5668 +*/
  1.5669 +static int balance(BtCursor *pCur, int isInsert){
  1.5670 +  int rc = SQLITE_OK;
  1.5671 +  MemPage *pPage = pCur->apPage[pCur->iPage];
  1.5672 +
  1.5673 +  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  1.5674 +  if( pCur->iPage==0 ){
  1.5675 +    rc = sqlite3PagerWrite(pPage->pDbPage);
  1.5676 +    if( rc==SQLITE_OK && pPage->nOverflow>0 ){
  1.5677 +      rc = balance_deeper(pCur);
  1.5678 +    }
  1.5679 +    if( rc==SQLITE_OK && pPage->nCell==0 ){
  1.5680 +      rc = balance_shallower(pCur);
  1.5681 +    }
  1.5682 +  }else{
  1.5683 +    if( pPage->nOverflow>0 || 
  1.5684 +        (!isInsert && pPage->nFree>pPage->pBt->usableSize*2/3) ){
  1.5685 +      rc = balance_nonroot(pCur);
  1.5686 +    }
  1.5687 +  }
  1.5688 +  return rc;
  1.5689 +}
  1.5690 +
  1.5691 +/*
  1.5692 +** This routine checks all cursors that point to table pgnoRoot.
  1.5693 +** If any of those cursors were opened with wrFlag==0 in a different
  1.5694 +** database connection (a database connection that shares the pager
  1.5695 +** cache with the current connection) and that other connection 
  1.5696 +** is not in the ReadUncommmitted state, then this routine returns 
  1.5697 +** SQLITE_LOCKED.
  1.5698 +**
  1.5699 +** As well as cursors with wrFlag==0, cursors with wrFlag==1 and 
  1.5700 +** isIncrblobHandle==1 are also considered 'read' cursors. Incremental 
  1.5701 +** blob cursors are used for both reading and writing.
  1.5702 +**
  1.5703 +** When pgnoRoot is the root page of an intkey table, this function is also
  1.5704 +** responsible for invalidating incremental blob cursors when the table row
  1.5705 +** on which they are opened is deleted or modified. Cursors are invalidated
  1.5706 +** according to the following rules:
  1.5707 +**
  1.5708 +**   1) When BtreeClearTable() is called to completely delete the contents
  1.5709 +**      of a B-Tree table, pExclude is set to zero and parameter iRow is 
  1.5710 +**      set to non-zero. In this case all incremental blob cursors open
  1.5711 +**      on the table rooted at pgnoRoot are invalidated.
  1.5712 +**
  1.5713 +**   2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to 
  1.5714 +**      modify a table row via an SQL statement, pExclude is set to the 
  1.5715 +**      write cursor used to do the modification and parameter iRow is set
  1.5716 +**      to the integer row id of the B-Tree entry being modified. Unless
  1.5717 +**      pExclude is itself an incremental blob cursor, then all incremental
  1.5718 +**      blob cursors open on row iRow of the B-Tree are invalidated.
  1.5719 +**
  1.5720 +**   3) If both pExclude and iRow are set to zero, no incremental blob 
  1.5721 +**      cursors are invalidated.
  1.5722 +*/
  1.5723 +static int checkReadLocks(
  1.5724 +  Btree *pBtree, 
  1.5725 +  Pgno pgnoRoot, 
  1.5726 +  BtCursor *pExclude,
  1.5727 +  i64 iRow
  1.5728 +){
  1.5729 +  BtCursor *p;
  1.5730 +  BtShared *pBt = pBtree->pBt;
  1.5731 +  sqlite3 *db = pBtree->db;
  1.5732 +  assert( sqlite3BtreeHoldsMutex(pBtree) );
  1.5733 +  for(p=pBt->pCursor; p; p=p->pNext){
  1.5734 +    if( p==pExclude ) continue;
  1.5735 +    if( p->pgnoRoot!=pgnoRoot ) continue;
  1.5736 +#ifndef SQLITE_OMIT_INCRBLOB
  1.5737 +    if( p->isIncrblobHandle && ( 
  1.5738 +         (!pExclude && iRow)
  1.5739 +      || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
  1.5740 +    )){
  1.5741 +      p->eState = CURSOR_INVALID;
  1.5742 +    }
  1.5743 +#endif
  1.5744 +    if( p->eState!=CURSOR_VALID ) continue;
  1.5745 +    if( p->wrFlag==0 
  1.5746 +#ifndef SQLITE_OMIT_INCRBLOB
  1.5747 +     || p->isIncrblobHandle
  1.5748 +#endif
  1.5749 +    ){
  1.5750 +      sqlite3 *dbOther = p->pBtree->db;
  1.5751 +      if( dbOther==0 ||
  1.5752 +         (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){
  1.5753 +        return SQLITE_LOCKED;
  1.5754 +      }
  1.5755 +    }
  1.5756 +  }
  1.5757 +  return SQLITE_OK;
  1.5758 +}
  1.5759 +
  1.5760 +/*
  1.5761 +** Insert a new record into the BTree.  The key is given by (pKey,nKey)
  1.5762 +** and the data is given by (pData,nData).  The cursor is used only to
  1.5763 +** define what table the record should be inserted into.  The cursor
  1.5764 +** is left pointing at a random location.
  1.5765 +**
  1.5766 +** For an INTKEY table, only the nKey value of the key is used.  pKey is
  1.5767 +** ignored.  For a ZERODATA table, the pData and nData are both ignored.
  1.5768 +*/
  1.5769 +int sqlite3BtreeInsert(
  1.5770 +  BtCursor *pCur,                /* Insert data into the table of this cursor */
  1.5771 +  const void *pKey, i64 nKey,    /* The key of the new record */
  1.5772 +  const void *pData, int nData,  /* The data of the new record */
  1.5773 +  int nZero,                     /* Number of extra 0 bytes to append to data */
  1.5774 +  int appendBias                 /* True if this is likely an append */
  1.5775 +){
  1.5776 +  int rc;
  1.5777 +  int loc;
  1.5778 +  int szNew;
  1.5779 +  int idx;
  1.5780 +  MemPage *pPage;
  1.5781 +  Btree *p = pCur->pBtree;
  1.5782 +  BtShared *pBt = p->pBt;
  1.5783 +  unsigned char *oldCell;
  1.5784 +  unsigned char *newCell = 0;
  1.5785 +
  1.5786 +  assert( cursorHoldsMutex(pCur) );
  1.5787 +  if( pBt->inTransaction!=TRANS_WRITE ){
  1.5788 +    /* Must start a transaction before doing an insert */
  1.5789 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.5790 +    return rc;
  1.5791 +  }
  1.5792 +  assert( !pBt->readOnly );
  1.5793 +  if( !pCur->wrFlag ){
  1.5794 +    return SQLITE_PERM;   /* Cursor not open for writing */
  1.5795 +  }
  1.5796 +  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, nKey) ){
  1.5797 +    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  1.5798 +  }
  1.5799 +  if( pCur->eState==CURSOR_FAULT ){
  1.5800 +    return pCur->skip;
  1.5801 +  }
  1.5802 +
  1.5803 +  /* Save the positions of any other cursors open on this table */
  1.5804 +  sqlite3BtreeClearCursor(pCur);
  1.5805 +  if( 
  1.5806 +    SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) ||
  1.5807 +    SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
  1.5808 +  ){
  1.5809 +    return rc;
  1.5810 +  }
  1.5811 +
  1.5812 +  pPage = pCur->apPage[pCur->iPage];
  1.5813 +  assert( pPage->intKey || nKey>=0 );
  1.5814 +  assert( pPage->leaf || !pPage->intKey );
  1.5815 +  TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
  1.5816 +          pCur->pgnoRoot, nKey, nData, pPage->pgno,
  1.5817 +          loc==0 ? "overwrite" : "new entry"));
  1.5818 +  assert( pPage->isInit );
  1.5819 +  allocateTempSpace(pBt);
  1.5820 +  newCell = pBt->pTmpSpace;
  1.5821 +  if( newCell==0 ) return SQLITE_NOMEM;
  1.5822 +  rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
  1.5823 +  if( rc ) goto end_insert;
  1.5824 +  assert( szNew==cellSizePtr(pPage, newCell) );
  1.5825 +  assert( szNew<=MX_CELL_SIZE(pBt) );
  1.5826 +  idx = pCur->aiIdx[pCur->iPage];
  1.5827 +  if( loc==0 && CURSOR_VALID==pCur->eState ){
  1.5828 +    u16 szOld;
  1.5829 +    assert( idx<pPage->nCell );
  1.5830 +    rc = sqlite3PagerWrite(pPage->pDbPage);
  1.5831 +    if( rc ){
  1.5832 +      goto end_insert;
  1.5833 +    }
  1.5834 +    oldCell = findCell(pPage, idx);
  1.5835 +    if( !pPage->leaf ){
  1.5836 +      memcpy(newCell, oldCell, 4);
  1.5837 +    }
  1.5838 +    szOld = cellSizePtr(pPage, oldCell);
  1.5839 +    rc = clearCell(pPage, oldCell);
  1.5840 +    if( rc ) goto end_insert;
  1.5841 +    rc = dropCell(pPage, idx, szOld);
  1.5842 +    if( rc ) goto end_insert;
  1.5843 +  }else if( loc<0 && pPage->nCell>0 ){
  1.5844 +    assert( pPage->leaf );
  1.5845 +    idx = ++pCur->aiIdx[pCur->iPage];
  1.5846 +    pCur->info.nSize = 0;
  1.5847 +    pCur->validNKey = 0;
  1.5848 +  }else{
  1.5849 +    assert( pPage->leaf );
  1.5850 +  }
  1.5851 +  rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
  1.5852 +  if( rc!=SQLITE_OK ) goto end_insert;
  1.5853 +  rc = balance(pCur, 1);
  1.5854 +  if( rc==SQLITE_OK ){
  1.5855 +    moveToRoot(pCur);
  1.5856 +  }
  1.5857 +end_insert:
  1.5858 +  return rc;
  1.5859 +}
  1.5860 +
  1.5861 +/*
  1.5862 +** Delete the entry that the cursor is pointing to.  The cursor
  1.5863 +** is left pointing at a arbitrary location.
  1.5864 +*/
  1.5865 +int sqlite3BtreeDelete(BtCursor *pCur){
  1.5866 +  MemPage *pPage = pCur->apPage[pCur->iPage];
  1.5867 +  int idx;
  1.5868 +  unsigned char *pCell;
  1.5869 +  int rc;
  1.5870 +  Pgno pgnoChild = 0;
  1.5871 +  Btree *p = pCur->pBtree;
  1.5872 +  BtShared *pBt = p->pBt;
  1.5873 +
  1.5874 +  assert( cursorHoldsMutex(pCur) );
  1.5875 +  assert( pPage->isInit );
  1.5876 +  if( pBt->inTransaction!=TRANS_WRITE ){
  1.5877 +    /* Must start a transaction before doing a delete */
  1.5878 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.5879 +    return rc;
  1.5880 +  }
  1.5881 +  assert( !pBt->readOnly );
  1.5882 +  if( pCur->eState==CURSOR_FAULT ){
  1.5883 +    return pCur->skip;
  1.5884 +  }
  1.5885 +  if( pCur->aiIdx[pCur->iPage]>=pPage->nCell ){
  1.5886 +    return SQLITE_ERROR;  /* The cursor is not pointing to anything */
  1.5887 +  }
  1.5888 +  if( !pCur->wrFlag ){
  1.5889 +    return SQLITE_PERM;   /* Did not open this cursor for writing */
  1.5890 +  }
  1.5891 +  if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, pCur->info.nKey) ){
  1.5892 +    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  1.5893 +  }
  1.5894 +
  1.5895 +  /* Restore the current cursor position (a no-op if the cursor is not in 
  1.5896 +  ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors 
  1.5897 +  ** open on the same table. Then call sqlite3PagerWrite() on the page
  1.5898 +  ** that the entry will be deleted from.
  1.5899 +  */
  1.5900 +  if( 
  1.5901 +    (rc = restoreCursorPosition(pCur))!=0 ||
  1.5902 +    (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
  1.5903 +    (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
  1.5904 +  ){
  1.5905 +    return rc;
  1.5906 +  }
  1.5907 +
  1.5908 +  /* Locate the cell within its page and leave pCell pointing to the
  1.5909 +  ** data. The clearCell() call frees any overflow pages associated with the
  1.5910 +  ** cell. The cell itself is still intact.
  1.5911 +  */
  1.5912 +  idx = pCur->aiIdx[pCur->iPage];
  1.5913 +  pCell = findCell(pPage, idx);
  1.5914 +  if( !pPage->leaf ){
  1.5915 +    pgnoChild = get4byte(pCell);
  1.5916 +  }
  1.5917 +  rc = clearCell(pPage, pCell);
  1.5918 +  if( rc ){
  1.5919 +    return rc;
  1.5920 +  }
  1.5921 +
  1.5922 +  if( !pPage->leaf ){
  1.5923 +    /*
  1.5924 +    ** The entry we are about to delete is not a leaf so if we do not
  1.5925 +    ** do something we will leave a hole on an internal page.
  1.5926 +    ** We have to fill the hole by moving in a cell from a leaf.  The
  1.5927 +    ** next Cell after the one to be deleted is guaranteed to exist and
  1.5928 +    ** to be a leaf so we can use it.
  1.5929 +    */
  1.5930 +    BtCursor leafCur;
  1.5931 +    MemPage *pLeafPage;
  1.5932 +
  1.5933 +    unsigned char *pNext;
  1.5934 +    int notUsed;
  1.5935 +    unsigned char *tempCell = 0;
  1.5936 +    assert( !pPage->intKey );
  1.5937 +    sqlite3BtreeGetTempCursor(pCur, &leafCur);
  1.5938 +    rc = sqlite3BtreeNext(&leafCur, &notUsed);
  1.5939 +    if( rc==SQLITE_OK ){
  1.5940 +      assert( leafCur.aiIdx[leafCur.iPage]==0 );
  1.5941 +      pLeafPage = leafCur.apPage[leafCur.iPage];
  1.5942 +      rc = sqlite3PagerWrite(pLeafPage->pDbPage);
  1.5943 +    }
  1.5944 +    if( rc==SQLITE_OK ){
  1.5945 +      int leafCursorInvalid = 0;
  1.5946 +      u16 szNext;
  1.5947 +      TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
  1.5948 +         pCur->pgnoRoot, pPage->pgno, pLeafPage->pgno));
  1.5949 +      dropCell(pPage, idx, cellSizePtr(pPage, pCell));
  1.5950 +      pNext = findCell(pLeafPage, 0);
  1.5951 +      szNext = cellSizePtr(pLeafPage, pNext);
  1.5952 +      assert( MX_CELL_SIZE(pBt)>=szNext+4 );
  1.5953 +      allocateTempSpace(pBt);
  1.5954 +      tempCell = pBt->pTmpSpace;
  1.5955 +      if( tempCell==0 ){
  1.5956 +        rc = SQLITE_NOMEM;
  1.5957 +      }
  1.5958 +      if( rc==SQLITE_OK ){
  1.5959 +        rc = insertCell(pPage, idx, pNext-4, szNext+4, tempCell, 0);
  1.5960 +      }
  1.5961 +
  1.5962 +
  1.5963 +      /* The "if" statement in the next code block is critical.  The
  1.5964 +      ** slightest error in that statement would allow SQLite to operate
  1.5965 +      ** correctly most of the time but produce very rare failures.  To
  1.5966 +      ** guard against this, the following macros help to verify that
  1.5967 +      ** the "if" statement is well tested.
  1.5968 +      */
  1.5969 +      testcase( pPage->nOverflow==0 && pPage->nFree<pBt->usableSize*2/3 
  1.5970 +                 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
  1.5971 +      testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3 
  1.5972 +                 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
  1.5973 +      testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3+1 
  1.5974 +                 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
  1.5975 +      testcase( pPage->nOverflow>0 && pPage->nFree<=pBt->usableSize*2/3
  1.5976 +                 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
  1.5977 +      testcase( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3))
  1.5978 +                 && pLeafPage->nFree+2+szNext == pBt->usableSize*2/3 );
  1.5979 +
  1.5980 +
  1.5981 +      if( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) &&
  1.5982 +          (pLeafPage->nFree+2+szNext > pBt->usableSize*2/3)
  1.5983 +      ){
  1.5984 +        /* This branch is taken if the internal node is now either overflowing
  1.5985 +        ** or underfull and the leaf node will be underfull after the just cell 
  1.5986 +        ** copied to the internal node is deleted from it. This is a special
  1.5987 +        ** case because the call to balance() to correct the internal node
  1.5988 +        ** may change the tree structure and invalidate the contents of
  1.5989 +        ** the leafCur.apPage[] and leafCur.aiIdx[] arrays, which will be
  1.5990 +        ** used by the balance() required to correct the underfull leaf
  1.5991 +        ** node.
  1.5992 +        **
  1.5993 +        ** The formula used in the expression above are based on facets of
  1.5994 +        ** the SQLite file-format that do not change over time.
  1.5995 +        */
  1.5996 +        testcase( pPage->nFree==pBt->usableSize*2/3+1 );
  1.5997 +        testcase( pLeafPage->nFree+2+szNext==pBt->usableSize*2/3+1 );
  1.5998 +        leafCursorInvalid = 1;
  1.5999 +      }        
  1.6000 +
  1.6001 +      if( rc==SQLITE_OK ){
  1.6002 +        put4byte(findOverflowCell(pPage, idx), pgnoChild);
  1.6003 +        VVA_ONLY( pCur->pagesShuffled = 0 );
  1.6004 +        rc = balance(pCur, 0);
  1.6005 +      }
  1.6006 +
  1.6007 +      if( rc==SQLITE_OK && leafCursorInvalid ){
  1.6008 +        /* The leaf-node is now underfull and so the tree needs to be 
  1.6009 +        ** rebalanced. However, the balance() operation on the internal
  1.6010 +        ** node above may have modified the structure of the B-Tree and
  1.6011 +        ** so the current contents of leafCur.apPage[] and leafCur.aiIdx[]
  1.6012 +        ** may not be trusted.
  1.6013 +        **
  1.6014 +        ** It is not possible to copy the ancestry from pCur, as the same
  1.6015 +        ** balance() call has invalidated the pCur->apPage[] and aiIdx[]
  1.6016 +        ** arrays. 
  1.6017 +        **
  1.6018 +        ** The call to saveCursorPosition() below internally saves the 
  1.6019 +        ** key that leafCur is currently pointing to. Currently, there
  1.6020 +        ** are two copies of that key in the tree - one here on the leaf
  1.6021 +        ** page and one on some internal node in the tree. The copy on
  1.6022 +        ** the leaf node is always the next key in tree-order after the 
  1.6023 +        ** copy on the internal node. So, the call to sqlite3BtreeNext()
  1.6024 +        ** calls restoreCursorPosition() to point the cursor to the copy
  1.6025 +        ** stored on the internal node, then advances to the next entry,
  1.6026 +        ** which happens to be the copy of the key on the internal node.
  1.6027 +        ** Net effect: leafCur is pointing back to the duplicate cell
  1.6028 +        ** that needs to be removed, and the leafCur.apPage[] and
  1.6029 +        ** leafCur.aiIdx[] arrays are correct.
  1.6030 +        */
  1.6031 +        VVA_ONLY( Pgno leafPgno = pLeafPage->pgno );
  1.6032 +        rc = saveCursorPosition(&leafCur);
  1.6033 +        if( rc==SQLITE_OK ){
  1.6034 +          rc = sqlite3BtreeNext(&leafCur, &notUsed);
  1.6035 +        }
  1.6036 +        pLeafPage = leafCur.apPage[leafCur.iPage];
  1.6037 +        assert( pLeafPage->pgno==leafPgno );
  1.6038 +        assert( leafCur.aiIdx[leafCur.iPage]==0 );
  1.6039 +      }
  1.6040 +
  1.6041 +      if( rc==SQLITE_OK ){
  1.6042 +        dropCell(pLeafPage, 0, szNext);
  1.6043 +        VVA_ONLY( leafCur.pagesShuffled = 0 );
  1.6044 +        rc = balance(&leafCur, 0);
  1.6045 +        assert( leafCursorInvalid || !leafCur.pagesShuffled
  1.6046 +                                   || !pCur->pagesShuffled );
  1.6047 +      }
  1.6048 +    }
  1.6049 +    sqlite3BtreeReleaseTempCursor(&leafCur);
  1.6050 +  }else{
  1.6051 +    TRACE(("DELETE: table=%d delete from leaf %d\n",
  1.6052 +       pCur->pgnoRoot, pPage->pgno));
  1.6053 +    rc = dropCell(pPage, idx, cellSizePtr(pPage, pCell));
  1.6054 +    if( rc==SQLITE_OK ){
  1.6055 +      rc = balance(pCur, 0);
  1.6056 +    }
  1.6057 +  }
  1.6058 +  if( rc==SQLITE_OK ){
  1.6059 +    moveToRoot(pCur);
  1.6060 +  }
  1.6061 +  return rc;
  1.6062 +}
  1.6063 +
  1.6064 +/*
  1.6065 +** Create a new BTree table.  Write into *piTable the page
  1.6066 +** number for the root page of the new table.
  1.6067 +**
  1.6068 +** The type of type is determined by the flags parameter.  Only the
  1.6069 +** following values of flags are currently in use.  Other values for
  1.6070 +** flags might not work:
  1.6071 +**
  1.6072 +**     BTREE_INTKEY|BTREE_LEAFDATA     Used for SQL tables with rowid keys
  1.6073 +**     BTREE_ZERODATA                  Used for SQL indices
  1.6074 +*/
  1.6075 +static int btreeCreateTable(Btree *p, int *piTable, int flags){
  1.6076 +  BtShared *pBt = p->pBt;
  1.6077 +  MemPage *pRoot;
  1.6078 +  Pgno pgnoRoot;
  1.6079 +  int rc;
  1.6080 +
  1.6081 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.6082 +  if( pBt->inTransaction!=TRANS_WRITE ){
  1.6083 +    /* Must start a transaction first */
  1.6084 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6085 +    return rc;
  1.6086 +  }
  1.6087 +  assert( !pBt->readOnly );
  1.6088 +
  1.6089 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6090 +  rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  1.6091 +  if( rc ){
  1.6092 +    return rc;
  1.6093 +  }
  1.6094 +#else
  1.6095 +  if( pBt->autoVacuum ){
  1.6096 +    Pgno pgnoMove;      /* Move a page here to make room for the root-page */
  1.6097 +    MemPage *pPageMove; /* The page to move to. */
  1.6098 +
  1.6099 +    /* Creating a new table may probably require moving an existing database
  1.6100 +    ** to make room for the new tables root page. In case this page turns
  1.6101 +    ** out to be an overflow page, delete all overflow page-map caches
  1.6102 +    ** held by open cursors.
  1.6103 +    */
  1.6104 +    invalidateAllOverflowCache(pBt);
  1.6105 +
  1.6106 +    /* Read the value of meta[3] from the database to determine where the
  1.6107 +    ** root page of the new table should go. meta[3] is the largest root-page
  1.6108 +    ** created so far, so the new root-page is (meta[3]+1).
  1.6109 +    */
  1.6110 +    rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot);
  1.6111 +    if( rc!=SQLITE_OK ){
  1.6112 +      return rc;
  1.6113 +    }
  1.6114 +    pgnoRoot++;
  1.6115 +
  1.6116 +    /* The new root-page may not be allocated on a pointer-map page, or the
  1.6117 +    ** PENDING_BYTE page.
  1.6118 +    */
  1.6119 +    while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
  1.6120 +        pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
  1.6121 +      pgnoRoot++;
  1.6122 +    }
  1.6123 +    assert( pgnoRoot>=3 );
  1.6124 +
  1.6125 +    /* Allocate a page. The page that currently resides at pgnoRoot will
  1.6126 +    ** be moved to the allocated page (unless the allocated page happens
  1.6127 +    ** to reside at pgnoRoot).
  1.6128 +    */
  1.6129 +    rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
  1.6130 +    if( rc!=SQLITE_OK ){
  1.6131 +      return rc;
  1.6132 +    }
  1.6133 +
  1.6134 +    if( pgnoMove!=pgnoRoot ){
  1.6135 +      /* pgnoRoot is the page that will be used for the root-page of
  1.6136 +      ** the new table (assuming an error did not occur). But we were
  1.6137 +      ** allocated pgnoMove. If required (i.e. if it was not allocated
  1.6138 +      ** by extending the file), the current page at position pgnoMove
  1.6139 +      ** is already journaled.
  1.6140 +      */
  1.6141 +      u8 eType;
  1.6142 +      Pgno iPtrPage;
  1.6143 +
  1.6144 +      releasePage(pPageMove);
  1.6145 +
  1.6146 +      /* Move the page currently at pgnoRoot to pgnoMove. */
  1.6147 +      rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
  1.6148 +      if( rc!=SQLITE_OK ){
  1.6149 +        return rc;
  1.6150 +      }
  1.6151 +      rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
  1.6152 +      if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
  1.6153 +        releasePage(pRoot);
  1.6154 +        return rc;
  1.6155 +      }
  1.6156 +      assert( eType!=PTRMAP_ROOTPAGE );
  1.6157 +      assert( eType!=PTRMAP_FREEPAGE );
  1.6158 +      rc = sqlite3PagerWrite(pRoot->pDbPage);
  1.6159 +      if( rc!=SQLITE_OK ){
  1.6160 +        releasePage(pRoot);
  1.6161 +        return rc;
  1.6162 +      }
  1.6163 +      rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
  1.6164 +      releasePage(pRoot);
  1.6165 +
  1.6166 +      /* Obtain the page at pgnoRoot */
  1.6167 +      if( rc!=SQLITE_OK ){
  1.6168 +        return rc;
  1.6169 +      }
  1.6170 +      rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
  1.6171 +      if( rc!=SQLITE_OK ){
  1.6172 +        return rc;
  1.6173 +      }
  1.6174 +      rc = sqlite3PagerWrite(pRoot->pDbPage);
  1.6175 +      if( rc!=SQLITE_OK ){
  1.6176 +        releasePage(pRoot);
  1.6177 +        return rc;
  1.6178 +      }
  1.6179 +    }else{
  1.6180 +      pRoot = pPageMove;
  1.6181 +    } 
  1.6182 +
  1.6183 +    /* Update the pointer-map and meta-data with the new root-page number. */
  1.6184 +    rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
  1.6185 +    if( rc ){
  1.6186 +      releasePage(pRoot);
  1.6187 +      return rc;
  1.6188 +    }
  1.6189 +    rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
  1.6190 +    if( rc ){
  1.6191 +      releasePage(pRoot);
  1.6192 +      return rc;
  1.6193 +    }
  1.6194 +
  1.6195 +  }else{
  1.6196 +    rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
  1.6197 +    if( rc ) return rc;
  1.6198 +  }
  1.6199 +#endif
  1.6200 +  assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
  1.6201 +  zeroPage(pRoot, flags | PTF_LEAF);
  1.6202 +  sqlite3PagerUnref(pRoot->pDbPage);
  1.6203 +  *piTable = (int)pgnoRoot;
  1.6204 +  return SQLITE_OK;
  1.6205 +}
  1.6206 +int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
  1.6207 +  int rc;
  1.6208 +  sqlite3BtreeEnter(p);
  1.6209 +  p->pBt->db = p->db;
  1.6210 +  rc = btreeCreateTable(p, piTable, flags);
  1.6211 +  sqlite3BtreeLeave(p);
  1.6212 +  return rc;
  1.6213 +}
  1.6214 +
  1.6215 +/*
  1.6216 +** Erase the given database page and all its children.  Return
  1.6217 +** the page to the freelist.
  1.6218 +*/
  1.6219 +static int clearDatabasePage(
  1.6220 +  BtShared *pBt,           /* The BTree that contains the table */
  1.6221 +  Pgno pgno,            /* Page number to clear */
  1.6222 +  MemPage *pParent,     /* Parent page.  NULL for the root */
  1.6223 +  int freePageFlag      /* Deallocate page if true */
  1.6224 +){
  1.6225 +  MemPage *pPage = 0;
  1.6226 +  int rc;
  1.6227 +  unsigned char *pCell;
  1.6228 +  int i;
  1.6229 +
  1.6230 +  assert( sqlite3_mutex_held(pBt->mutex) );
  1.6231 +  if( pgno>pagerPagecount(pBt->pPager) ){
  1.6232 +    return SQLITE_CORRUPT_BKPT;
  1.6233 +  }
  1.6234 +
  1.6235 +  rc = getAndInitPage(pBt, pgno, &pPage);
  1.6236 +  if( rc ) goto cleardatabasepage_out;
  1.6237 +  for(i=0; i<pPage->nCell; i++){
  1.6238 +    pCell = findCell(pPage, i);
  1.6239 +    if( !pPage->leaf ){
  1.6240 +      rc = clearDatabasePage(pBt, get4byte(pCell), pPage, 1);
  1.6241 +      if( rc ) goto cleardatabasepage_out;
  1.6242 +    }
  1.6243 +    rc = clearCell(pPage, pCell);
  1.6244 +    if( rc ) goto cleardatabasepage_out;
  1.6245 +  }
  1.6246 +  if( !pPage->leaf ){
  1.6247 +    rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage, 1);
  1.6248 +    if( rc ) goto cleardatabasepage_out;
  1.6249 +  }
  1.6250 +  if( freePageFlag ){
  1.6251 +    rc = freePage(pPage);
  1.6252 +  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
  1.6253 +    zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
  1.6254 +  }
  1.6255 +
  1.6256 +cleardatabasepage_out:
  1.6257 +  releasePage(pPage);
  1.6258 +  return rc;
  1.6259 +}
  1.6260 +
  1.6261 +/*
  1.6262 +** Delete all information from a single table in the database.  iTable is
  1.6263 +** the page number of the root of the table.  After this routine returns,
  1.6264 +** the root page is empty, but still exists.
  1.6265 +**
  1.6266 +** This routine will fail with SQLITE_LOCKED if there are any open
  1.6267 +** read cursors on the table.  Open write cursors are moved to the
  1.6268 +** root of the table.
  1.6269 +*/
  1.6270 +int sqlite3BtreeClearTable(Btree *p, int iTable){
  1.6271 +  int rc;
  1.6272 +  BtShared *pBt = p->pBt;
  1.6273 +  sqlite3BtreeEnter(p);
  1.6274 +  pBt->db = p->db;
  1.6275 +  if( p->inTrans!=TRANS_WRITE ){
  1.6276 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6277 +  }else if( (rc = checkReadLocks(p, iTable, 0, 1))!=SQLITE_OK ){
  1.6278 +    /* nothing to do */
  1.6279 +  }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
  1.6280 +    /* nothing to do */
  1.6281 +  }else{
  1.6282 +    rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
  1.6283 +  }
  1.6284 +  sqlite3BtreeLeave(p);
  1.6285 +  return rc;
  1.6286 +}
  1.6287 +
  1.6288 +/*
  1.6289 +** Erase all information in a table and add the root of the table to
  1.6290 +** the freelist.  Except, the root of the principle table (the one on
  1.6291 +** page 1) is never added to the freelist.
  1.6292 +**
  1.6293 +** This routine will fail with SQLITE_LOCKED if there are any open
  1.6294 +** cursors on the table.
  1.6295 +**
  1.6296 +** If AUTOVACUUM is enabled and the page at iTable is not the last
  1.6297 +** root page in the database file, then the last root page 
  1.6298 +** in the database file is moved into the slot formerly occupied by
  1.6299 +** iTable and that last slot formerly occupied by the last root page
  1.6300 +** is added to the freelist instead of iTable.  In this say, all
  1.6301 +** root pages are kept at the beginning of the database file, which
  1.6302 +** is necessary for AUTOVACUUM to work right.  *piMoved is set to the 
  1.6303 +** page number that used to be the last root page in the file before
  1.6304 +** the move.  If no page gets moved, *piMoved is set to 0.
  1.6305 +** The last root page is recorded in meta[3] and the value of
  1.6306 +** meta[3] is updated by this procedure.
  1.6307 +*/
  1.6308 +static int btreeDropTable(Btree *p, int iTable, int *piMoved){
  1.6309 +  int rc;
  1.6310 +  MemPage *pPage = 0;
  1.6311 +  BtShared *pBt = p->pBt;
  1.6312 +
  1.6313 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.6314 +  if( p->inTrans!=TRANS_WRITE ){
  1.6315 +    return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6316 +  }
  1.6317 +
  1.6318 +  /* It is illegal to drop a table if any cursors are open on the
  1.6319 +  ** database. This is because in auto-vacuum mode the backend may
  1.6320 +  ** need to move another root-page to fill a gap left by the deleted
  1.6321 +  ** root page. If an open cursor was using this page a problem would 
  1.6322 +  ** occur.
  1.6323 +  */
  1.6324 +  if( pBt->pCursor ){
  1.6325 +    return SQLITE_LOCKED;
  1.6326 +  }
  1.6327 +
  1.6328 +  rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
  1.6329 +  if( rc ) return rc;
  1.6330 +  rc = sqlite3BtreeClearTable(p, iTable);
  1.6331 +  if( rc ){
  1.6332 +    releasePage(pPage);
  1.6333 +    return rc;
  1.6334 +  }
  1.6335 +
  1.6336 +  *piMoved = 0;
  1.6337 +
  1.6338 +  if( iTable>1 ){
  1.6339 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6340 +    rc = freePage(pPage);
  1.6341 +    releasePage(pPage);
  1.6342 +#else
  1.6343 +    if( pBt->autoVacuum ){
  1.6344 +      Pgno maxRootPgno;
  1.6345 +      rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno);
  1.6346 +      if( rc!=SQLITE_OK ){
  1.6347 +        releasePage(pPage);
  1.6348 +        return rc;
  1.6349 +      }
  1.6350 +
  1.6351 +      if( iTable==maxRootPgno ){
  1.6352 +        /* If the table being dropped is the table with the largest root-page
  1.6353 +        ** number in the database, put the root page on the free list. 
  1.6354 +        */
  1.6355 +        rc = freePage(pPage);
  1.6356 +        releasePage(pPage);
  1.6357 +        if( rc!=SQLITE_OK ){
  1.6358 +          return rc;
  1.6359 +        }
  1.6360 +      }else{
  1.6361 +        /* The table being dropped does not have the largest root-page
  1.6362 +        ** number in the database. So move the page that does into the 
  1.6363 +        ** gap left by the deleted root-page.
  1.6364 +        */
  1.6365 +        MemPage *pMove;
  1.6366 +        releasePage(pPage);
  1.6367 +        rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
  1.6368 +        if( rc!=SQLITE_OK ){
  1.6369 +          return rc;
  1.6370 +        }
  1.6371 +        rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
  1.6372 +        releasePage(pMove);
  1.6373 +        if( rc!=SQLITE_OK ){
  1.6374 +          return rc;
  1.6375 +        }
  1.6376 +        rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
  1.6377 +        if( rc!=SQLITE_OK ){
  1.6378 +          return rc;
  1.6379 +        }
  1.6380 +        rc = freePage(pMove);
  1.6381 +        releasePage(pMove);
  1.6382 +        if( rc!=SQLITE_OK ){
  1.6383 +          return rc;
  1.6384 +        }
  1.6385 +        *piMoved = maxRootPgno;
  1.6386 +      }
  1.6387 +
  1.6388 +      /* Set the new 'max-root-page' value in the database header. This
  1.6389 +      ** is the old value less one, less one more if that happens to
  1.6390 +      ** be a root-page number, less one again if that is the
  1.6391 +      ** PENDING_BYTE_PAGE.
  1.6392 +      */
  1.6393 +      maxRootPgno--;
  1.6394 +      if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
  1.6395 +        maxRootPgno--;
  1.6396 +      }
  1.6397 +      if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
  1.6398 +        maxRootPgno--;
  1.6399 +      }
  1.6400 +      assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
  1.6401 +
  1.6402 +      rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
  1.6403 +    }else{
  1.6404 +      rc = freePage(pPage);
  1.6405 +      releasePage(pPage);
  1.6406 +    }
  1.6407 +#endif
  1.6408 +  }else{
  1.6409 +    /* If sqlite3BtreeDropTable was called on page 1. */
  1.6410 +    zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
  1.6411 +    releasePage(pPage);
  1.6412 +  }
  1.6413 +  return rc;  
  1.6414 +}
  1.6415 +int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
  1.6416 +  int rc;
  1.6417 +  sqlite3BtreeEnter(p);
  1.6418 +  p->pBt->db = p->db;
  1.6419 +  rc = btreeDropTable(p, iTable, piMoved);
  1.6420 +  sqlite3BtreeLeave(p);
  1.6421 +  return rc;
  1.6422 +}
  1.6423 +
  1.6424 +
  1.6425 +/*
  1.6426 +** Read the meta-information out of a database file.  Meta[0]
  1.6427 +** is the number of free pages currently in the database.  Meta[1]
  1.6428 +** through meta[15] are available for use by higher layers.  Meta[0]
  1.6429 +** is read-only, the others are read/write.
  1.6430 +** 
  1.6431 +** The schema layer numbers meta values differently.  At the schema
  1.6432 +** layer (and the SetCookie and ReadCookie opcodes) the number of
  1.6433 +** free pages is not visible.  So Cookie[0] is the same as Meta[1].
  1.6434 +*/
  1.6435 +int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  1.6436 +  DbPage *pDbPage;
  1.6437 +  int rc;
  1.6438 +  unsigned char *pP1;
  1.6439 +  BtShared *pBt = p->pBt;
  1.6440 +
  1.6441 +  sqlite3BtreeEnter(p);
  1.6442 +  pBt->db = p->db;
  1.6443 +
  1.6444 +  /* Reading a meta-data value requires a read-lock on page 1 (and hence
  1.6445 +  ** the sqlite_master table. We grab this lock regardless of whether or
  1.6446 +  ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
  1.6447 +  ** 1 is treated as a special case by queryTableLock() and lockTable()).
  1.6448 +  */
  1.6449 +  rc = queryTableLock(p, 1, READ_LOCK);
  1.6450 +  if( rc!=SQLITE_OK ){
  1.6451 +    sqlite3BtreeLeave(p);
  1.6452 +    return rc;
  1.6453 +  }
  1.6454 +
  1.6455 +  assert( idx>=0 && idx<=15 );
  1.6456 +  if( pBt->pPage1 ){
  1.6457 +    /* The b-tree is already holding a reference to page 1 of the database
  1.6458 +    ** file. In this case the required meta-data value can be read directly
  1.6459 +    ** from the page data of this reference. This is slightly faster than
  1.6460 +    ** requesting a new reference from the pager layer.
  1.6461 +    */
  1.6462 +    pP1 = (unsigned char *)pBt->pPage1->aData;
  1.6463 +  }else{
  1.6464 +    /* The b-tree does not have a reference to page 1 of the database file.
  1.6465 +    ** Obtain one from the pager layer.
  1.6466 +    */
  1.6467 +    rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
  1.6468 +    if( rc ){
  1.6469 +      sqlite3BtreeLeave(p);
  1.6470 +      return rc;
  1.6471 +    }
  1.6472 +    pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
  1.6473 +  }
  1.6474 +  *pMeta = get4byte(&pP1[36 + idx*4]);
  1.6475 +
  1.6476 +  /* If the b-tree is not holding a reference to page 1, then one was 
  1.6477 +  ** requested from the pager layer in the above block. Release it now.
  1.6478 +  */
  1.6479 +  if( !pBt->pPage1 ){
  1.6480 +    sqlite3PagerUnref(pDbPage);
  1.6481 +  }
  1.6482 +
  1.6483 +  /* If autovacuumed is disabled in this build but we are trying to 
  1.6484 +  ** access an autovacuumed database, then make the database readonly. 
  1.6485 +  */
  1.6486 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6487 +  if( idx==4 && *pMeta>0 ) pBt->readOnly = 1;
  1.6488 +#endif
  1.6489 +
  1.6490 +  /* Grab the read-lock on page 1. */
  1.6491 +  rc = lockTable(p, 1, READ_LOCK);
  1.6492 +  sqlite3BtreeLeave(p);
  1.6493 +  return rc;
  1.6494 +}
  1.6495 +
  1.6496 +/*
  1.6497 +** Write meta-information back into the database.  Meta[0] is
  1.6498 +** read-only and may not be written.
  1.6499 +*/
  1.6500 +int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
  1.6501 +  BtShared *pBt = p->pBt;
  1.6502 +  unsigned char *pP1;
  1.6503 +  int rc;
  1.6504 +  assert( idx>=1 && idx<=15 );
  1.6505 +  sqlite3BtreeEnter(p);
  1.6506 +  pBt->db = p->db;
  1.6507 +  if( p->inTrans!=TRANS_WRITE ){
  1.6508 +    rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
  1.6509 +  }else{
  1.6510 +    assert( pBt->pPage1!=0 );
  1.6511 +    pP1 = pBt->pPage1->aData;
  1.6512 +    rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
  1.6513 +    if( rc==SQLITE_OK ){
  1.6514 +      put4byte(&pP1[36 + idx*4], iMeta);
  1.6515 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6516 +      if( idx==7 ){
  1.6517 +        assert( pBt->autoVacuum || iMeta==0 );
  1.6518 +        assert( iMeta==0 || iMeta==1 );
  1.6519 +        pBt->incrVacuum = iMeta;
  1.6520 +      }
  1.6521 +#endif
  1.6522 +    }
  1.6523 +  }
  1.6524 +  sqlite3BtreeLeave(p);
  1.6525 +  return rc;
  1.6526 +}
  1.6527 +
  1.6528 +/*
  1.6529 +** Return the flag byte at the beginning of the page that the cursor
  1.6530 +** is currently pointing to.
  1.6531 +*/
  1.6532 +int sqlite3BtreeFlags(BtCursor *pCur){
  1.6533 +  /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
  1.6534 +  ** restoreCursorPosition() here.
  1.6535 +  */
  1.6536 +  MemPage *pPage;
  1.6537 +  restoreCursorPosition(pCur);
  1.6538 +  pPage = pCur->apPage[pCur->iPage];
  1.6539 +  assert( cursorHoldsMutex(pCur) );
  1.6540 +  assert( pPage->pBt==pCur->pBt );
  1.6541 +  return pPage ? pPage->aData[pPage->hdrOffset] : 0;
  1.6542 +}
  1.6543 +
  1.6544 +
  1.6545 +/*
  1.6546 +** Return the pager associated with a BTree.  This routine is used for
  1.6547 +** testing and debugging only.
  1.6548 +*/
  1.6549 +Pager *sqlite3BtreePager(Btree *p){
  1.6550 +  return p->pBt->pPager;
  1.6551 +}
  1.6552 +
  1.6553 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6554 +/*
  1.6555 +** Append a message to the error message string.
  1.6556 +*/
  1.6557 +static void checkAppendMsg(
  1.6558 +  IntegrityCk *pCheck,
  1.6559 +  char *zMsg1,
  1.6560 +  const char *zFormat,
  1.6561 +  ...
  1.6562 +){
  1.6563 +  va_list ap;
  1.6564 +  if( !pCheck->mxErr ) return;
  1.6565 +  pCheck->mxErr--;
  1.6566 +  pCheck->nErr++;
  1.6567 +  va_start(ap, zFormat);
  1.6568 +  if( pCheck->errMsg.nChar ){
  1.6569 +    sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
  1.6570 +  }
  1.6571 +  if( zMsg1 ){
  1.6572 +    sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
  1.6573 +  }
  1.6574 +  sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
  1.6575 +  va_end(ap);
  1.6576 +  if( pCheck->errMsg.mallocFailed ){
  1.6577 +    pCheck->mallocFailed = 1;
  1.6578 +  }
  1.6579 +}
  1.6580 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6581 +
  1.6582 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6583 +/*
  1.6584 +** Add 1 to the reference count for page iPage.  If this is the second
  1.6585 +** reference to the page, add an error message to pCheck->zErrMsg.
  1.6586 +** Return 1 if there are 2 ore more references to the page and 0 if
  1.6587 +** if this is the first reference to the page.
  1.6588 +**
  1.6589 +** Also check that the page number is in bounds.
  1.6590 +*/
  1.6591 +static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
  1.6592 +  if( iPage==0 ) return 1;
  1.6593 +  if( iPage>pCheck->nPage || iPage<0 ){
  1.6594 +    checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
  1.6595 +    return 1;
  1.6596 +  }
  1.6597 +  if( pCheck->anRef[iPage]==1 ){
  1.6598 +    checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
  1.6599 +    return 1;
  1.6600 +  }
  1.6601 +  return  (pCheck->anRef[iPage]++)>1;
  1.6602 +}
  1.6603 +
  1.6604 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6605 +/*
  1.6606 +** Check that the entry in the pointer-map for page iChild maps to 
  1.6607 +** page iParent, pointer type ptrType. If not, append an error message
  1.6608 +** to pCheck.
  1.6609 +*/
  1.6610 +static void checkPtrmap(
  1.6611 +  IntegrityCk *pCheck,   /* Integrity check context */
  1.6612 +  Pgno iChild,           /* Child page number */
  1.6613 +  u8 eType,              /* Expected pointer map type */
  1.6614 +  Pgno iParent,          /* Expected pointer map parent page number */
  1.6615 +  char *zContext         /* Context description (used for error msg) */
  1.6616 +){
  1.6617 +  int rc;
  1.6618 +  u8 ePtrmapType;
  1.6619 +  Pgno iPtrmapParent;
  1.6620 +
  1.6621 +  rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
  1.6622 +  if( rc!=SQLITE_OK ){
  1.6623 +    checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
  1.6624 +    return;
  1.6625 +  }
  1.6626 +
  1.6627 +  if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
  1.6628 +    checkAppendMsg(pCheck, zContext, 
  1.6629 +      "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", 
  1.6630 +      iChild, eType, iParent, ePtrmapType, iPtrmapParent);
  1.6631 +  }
  1.6632 +}
  1.6633 +#endif
  1.6634 +
  1.6635 +/*
  1.6636 +** Check the integrity of the freelist or of an overflow page list.
  1.6637 +** Verify that the number of pages on the list is N.
  1.6638 +*/
  1.6639 +static void checkList(
  1.6640 +  IntegrityCk *pCheck,  /* Integrity checking context */
  1.6641 +  int isFreeList,       /* True for a freelist.  False for overflow page list */
  1.6642 +  int iPage,            /* Page number for first page in the list */
  1.6643 +  int N,                /* Expected number of pages in the list */
  1.6644 +  char *zContext        /* Context for error messages */
  1.6645 +){
  1.6646 +  int i;
  1.6647 +  int expected = N;
  1.6648 +  int iFirst = iPage;
  1.6649 +  while( N-- > 0 && pCheck->mxErr ){
  1.6650 +    DbPage *pOvflPage;
  1.6651 +    unsigned char *pOvflData;
  1.6652 +    if( iPage<1 ){
  1.6653 +      checkAppendMsg(pCheck, zContext,
  1.6654 +         "%d of %d pages missing from overflow list starting at %d",
  1.6655 +          N+1, expected, iFirst);
  1.6656 +      break;
  1.6657 +    }
  1.6658 +    if( checkRef(pCheck, iPage, zContext) ) break;
  1.6659 +    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
  1.6660 +      checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
  1.6661 +      break;
  1.6662 +    }
  1.6663 +    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
  1.6664 +    if( isFreeList ){
  1.6665 +      int n = get4byte(&pOvflData[4]);
  1.6666 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6667 +      if( pCheck->pBt->autoVacuum ){
  1.6668 +        checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
  1.6669 +      }
  1.6670 +#endif
  1.6671 +      if( n>pCheck->pBt->usableSize/4-2 ){
  1.6672 +        checkAppendMsg(pCheck, zContext,
  1.6673 +           "freelist leaf count too big on page %d", iPage);
  1.6674 +        N--;
  1.6675 +      }else{
  1.6676 +        for(i=0; i<n; i++){
  1.6677 +          Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
  1.6678 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6679 +          if( pCheck->pBt->autoVacuum ){
  1.6680 +            checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
  1.6681 +          }
  1.6682 +#endif
  1.6683 +          checkRef(pCheck, iFreePage, zContext);
  1.6684 +        }
  1.6685 +        N -= n;
  1.6686 +      }
  1.6687 +    }
  1.6688 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6689 +    else{
  1.6690 +      /* If this database supports auto-vacuum and iPage is not the last
  1.6691 +      ** page in this overflow list, check that the pointer-map entry for
  1.6692 +      ** the following page matches iPage.
  1.6693 +      */
  1.6694 +      if( pCheck->pBt->autoVacuum && N>0 ){
  1.6695 +        i = get4byte(pOvflData);
  1.6696 +        checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
  1.6697 +      }
  1.6698 +    }
  1.6699 +#endif
  1.6700 +    iPage = get4byte(pOvflData);
  1.6701 +    sqlite3PagerUnref(pOvflPage);
  1.6702 +  }
  1.6703 +}
  1.6704 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6705 +
  1.6706 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6707 +/*
  1.6708 +** Do various sanity checks on a single page of a tree.  Return
  1.6709 +** the tree depth.  Root pages return 0.  Parents of root pages
  1.6710 +** return 1, and so forth.
  1.6711 +** 
  1.6712 +** These checks are done:
  1.6713 +**
  1.6714 +**      1.  Make sure that cells and freeblocks do not overlap
  1.6715 +**          but combine to completely cover the page.
  1.6716 +**  NO  2.  Make sure cell keys are in order.
  1.6717 +**  NO  3.  Make sure no key is less than or equal to zLowerBound.
  1.6718 +**  NO  4.  Make sure no key is greater than or equal to zUpperBound.
  1.6719 +**      5.  Check the integrity of overflow pages.
  1.6720 +**      6.  Recursively call checkTreePage on all children.
  1.6721 +**      7.  Verify that the depth of all children is the same.
  1.6722 +**      8.  Make sure this page is at least 33% full or else it is
  1.6723 +**          the root of the tree.
  1.6724 +*/
  1.6725 +static int checkTreePage(
  1.6726 +  IntegrityCk *pCheck,  /* Context for the sanity check */
  1.6727 +  int iPage,            /* Page number of the page to check */
  1.6728 +  MemPage *pParent,     /* Parent page */
  1.6729 +  char *zParentContext  /* Parent context */
  1.6730 +){
  1.6731 +  MemPage *pPage;
  1.6732 +  int i, rc, depth, d2, pgno, cnt;
  1.6733 +  int hdr, cellStart;
  1.6734 +  int nCell;
  1.6735 +  u8 *data;
  1.6736 +  BtShared *pBt;
  1.6737 +  int usableSize;
  1.6738 +  char zContext[100];
  1.6739 +  char *hit = 0;
  1.6740 +
  1.6741 +  sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
  1.6742 +
  1.6743 +  /* Check that the page exists
  1.6744 +  */
  1.6745 +  pBt = pCheck->pBt;
  1.6746 +  usableSize = pBt->usableSize;
  1.6747 +  if( iPage==0 ) return 0;
  1.6748 +  if( checkRef(pCheck, iPage, zParentContext) ) return 0;
  1.6749 +  if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
  1.6750 +    checkAppendMsg(pCheck, zContext,
  1.6751 +       "unable to get the page. error code=%d", rc);
  1.6752 +    return 0;
  1.6753 +  }
  1.6754 +  if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
  1.6755 +    checkAppendMsg(pCheck, zContext, 
  1.6756 +                   "sqlite3BtreeInitPage() returns error code %d", rc);
  1.6757 +    releasePage(pPage);
  1.6758 +    return 0;
  1.6759 +  }
  1.6760 +
  1.6761 +  /* Check out all the cells.
  1.6762 +  */
  1.6763 +  depth = 0;
  1.6764 +  for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
  1.6765 +    u8 *pCell;
  1.6766 +    int sz;
  1.6767 +    CellInfo info;
  1.6768 +
  1.6769 +    /* Check payload overflow pages
  1.6770 +    */
  1.6771 +    sqlite3_snprintf(sizeof(zContext), zContext,
  1.6772 +             "On tree page %d cell %d: ", iPage, i);
  1.6773 +    pCell = findCell(pPage,i);
  1.6774 +    sqlite3BtreeParseCellPtr(pPage, pCell, &info);
  1.6775 +    sz = info.nData;
  1.6776 +    if( !pPage->intKey ) sz += info.nKey;
  1.6777 +    assert( sz==info.nPayload );
  1.6778 +    if( sz>info.nLocal ){
  1.6779 +      int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
  1.6780 +      Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
  1.6781 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6782 +      if( pBt->autoVacuum ){
  1.6783 +        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
  1.6784 +      }
  1.6785 +#endif
  1.6786 +      checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
  1.6787 +    }
  1.6788 +
  1.6789 +    /* Check sanity of left child page.
  1.6790 +    */
  1.6791 +    if( !pPage->leaf ){
  1.6792 +      pgno = get4byte(pCell);
  1.6793 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6794 +      if( pBt->autoVacuum ){
  1.6795 +        checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
  1.6796 +      }
  1.6797 +#endif
  1.6798 +      d2 = checkTreePage(pCheck,pgno,pPage,zContext);
  1.6799 +      if( i>0 && d2!=depth ){
  1.6800 +        checkAppendMsg(pCheck, zContext, "Child page depth differs");
  1.6801 +      }
  1.6802 +      depth = d2;
  1.6803 +    }
  1.6804 +  }
  1.6805 +  if( !pPage->leaf ){
  1.6806 +    pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
  1.6807 +    sqlite3_snprintf(sizeof(zContext), zContext, 
  1.6808 +                     "On page %d at right child: ", iPage);
  1.6809 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6810 +    if( pBt->autoVacuum ){
  1.6811 +      checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
  1.6812 +    }
  1.6813 +#endif
  1.6814 +    checkTreePage(pCheck, pgno, pPage, zContext);
  1.6815 +  }
  1.6816 + 
  1.6817 +  /* Check for complete coverage of the page
  1.6818 +  */
  1.6819 +  data = pPage->aData;
  1.6820 +  hdr = pPage->hdrOffset;
  1.6821 +  hit = sqlite3PageMalloc( pBt->pageSize );
  1.6822 +  if( hit==0 ){
  1.6823 +    pCheck->mallocFailed = 1;
  1.6824 +  }else{
  1.6825 +    u16 contentOffset = get2byte(&data[hdr+5]);
  1.6826 +    if (contentOffset > usableSize) {
  1.6827 +      checkAppendMsg(pCheck, 0, 
  1.6828 +                     "Corruption detected in header on page %d",iPage,0);
  1.6829 +      goto check_page_abort;
  1.6830 +    }
  1.6831 +    memset(hit, 0, usableSize );
  1.6832 +    memset(hit, 1, get2byte(&data[hdr+5]));
  1.6833 +    nCell = get2byte(&data[hdr+3]);
  1.6834 +    cellStart = hdr + 12 - 4*pPage->leaf;
  1.6835 +    for(i=0; i<nCell; i++){
  1.6836 +      int pc = get2byte(&data[cellStart+i*2]);
  1.6837 +      u16 size = 1024;
  1.6838 +      int j;
  1.6839 +      if( pc<=usableSize ){
  1.6840 +        size = cellSizePtr(pPage, &data[pc]);
  1.6841 +      }
  1.6842 +      if( (pc+size-1)>=usableSize || pc<0 ){
  1.6843 +        checkAppendMsg(pCheck, 0, 
  1.6844 +            "Corruption detected in cell %d on page %d",i,iPage,0);
  1.6845 +      }else{
  1.6846 +        for(j=pc+size-1; j>=pc; j--) hit[j]++;
  1.6847 +      }
  1.6848 +    }
  1.6849 +    for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; 
  1.6850 +           cnt++){
  1.6851 +      int size = get2byte(&data[i+2]);
  1.6852 +      int j;
  1.6853 +      if( (i+size-1)>=usableSize || i<0 ){
  1.6854 +        checkAppendMsg(pCheck, 0,  
  1.6855 +            "Corruption detected in cell %d on page %d",i,iPage,0);
  1.6856 +      }else{
  1.6857 +        for(j=i+size-1; j>=i; j--) hit[j]++;
  1.6858 +      }
  1.6859 +      i = get2byte(&data[i]);
  1.6860 +    }
  1.6861 +    for(i=cnt=0; i<usableSize; i++){
  1.6862 +      if( hit[i]==0 ){
  1.6863 +        cnt++;
  1.6864 +      }else if( hit[i]>1 ){
  1.6865 +        checkAppendMsg(pCheck, 0,
  1.6866 +          "Multiple uses for byte %d of page %d", i, iPage);
  1.6867 +        break;
  1.6868 +      }
  1.6869 +    }
  1.6870 +    if( cnt!=data[hdr+7] ){
  1.6871 +      checkAppendMsg(pCheck, 0, 
  1.6872 +          "Fragmented space is %d byte reported as %d on page %d",
  1.6873 +          cnt, data[hdr+7], iPage);
  1.6874 +    }
  1.6875 +  }
  1.6876 +
  1.6877 +check_page_abort:
  1.6878 +  if( hit ) sqlite3PageFree(hit);
  1.6879 +
  1.6880 +  releasePage(pPage);
  1.6881 +  return depth+1;
  1.6882 +}
  1.6883 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.6884 +
  1.6885 +#ifndef SQLITE_OMIT_INTEGRITY_CHECK
  1.6886 +/*
  1.6887 +** This routine does a complete check of the given BTree file.  aRoot[] is
  1.6888 +** an array of pages numbers were each page number is the root page of
  1.6889 +** a table.  nRoot is the number of entries in aRoot.
  1.6890 +**
  1.6891 +** Write the number of error seen in *pnErr.  Except for some memory
  1.6892 +** allocation errors,  nn error message is held in memory obtained from
  1.6893 +** malloc is returned if *pnErr is non-zero.  If *pnErr==0 then NULL is
  1.6894 +** returned.
  1.6895 +*/
  1.6896 +char *sqlite3BtreeIntegrityCheck(
  1.6897 +  Btree *p,     /* The btree to be checked */
  1.6898 +  int *aRoot,   /* An array of root pages numbers for individual trees */
  1.6899 +  int nRoot,    /* Number of entries in aRoot[] */
  1.6900 +  int mxErr,    /* Stop reporting errors after this many */
  1.6901 +  int *pnErr    /* Write number of errors seen to this variable */
  1.6902 +){
  1.6903 +  int i;
  1.6904 +  int nRef;
  1.6905 +  IntegrityCk sCheck;
  1.6906 +  BtShared *pBt = p->pBt;
  1.6907 +  char zErr[100];
  1.6908 +
  1.6909 +  sqlite3BtreeEnter(p);
  1.6910 +  pBt->db = p->db;
  1.6911 +  nRef = sqlite3PagerRefcount(pBt->pPager);
  1.6912 +  if( lockBtreeWithRetry(p)!=SQLITE_OK ){
  1.6913 +    *pnErr = 1;
  1.6914 +    sqlite3BtreeLeave(p);
  1.6915 +    return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
  1.6916 +  }
  1.6917 +  sCheck.pBt = pBt;
  1.6918 +  sCheck.pPager = pBt->pPager;
  1.6919 +  sCheck.nPage = pagerPagecount(sCheck.pPager);
  1.6920 +  sCheck.mxErr = mxErr;
  1.6921 +  sCheck.nErr = 0;
  1.6922 +  sCheck.mallocFailed = 0;
  1.6923 +  *pnErr = 0;
  1.6924 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6925 +  if( pBt->nTrunc!=0 ){
  1.6926 +    sCheck.nPage = pBt->nTrunc;
  1.6927 +  }
  1.6928 +#endif
  1.6929 +  if( sCheck.nPage==0 ){
  1.6930 +    unlockBtreeIfUnused(pBt);
  1.6931 +    sqlite3BtreeLeave(p);
  1.6932 +    return 0;
  1.6933 +  }
  1.6934 +  sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
  1.6935 +  if( !sCheck.anRef ){
  1.6936 +    unlockBtreeIfUnused(pBt);
  1.6937 +    *pnErr = 1;
  1.6938 +    sqlite3BtreeLeave(p);
  1.6939 +    return 0;
  1.6940 +  }
  1.6941 +  for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
  1.6942 +  i = PENDING_BYTE_PAGE(pBt);
  1.6943 +  if( i<=sCheck.nPage ){
  1.6944 +    sCheck.anRef[i] = 1;
  1.6945 +  }
  1.6946 +  sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
  1.6947 +
  1.6948 +  /* Check the integrity of the freelist
  1.6949 +  */
  1.6950 +  checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
  1.6951 +            get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
  1.6952 +
  1.6953 +  /* Check all the tables.
  1.6954 +  */
  1.6955 +  for(i=0; i<nRoot && sCheck.mxErr; i++){
  1.6956 +    if( aRoot[i]==0 ) continue;
  1.6957 +#ifndef SQLITE_OMIT_AUTOVACUUM
  1.6958 +    if( pBt->autoVacuum && aRoot[i]>1 ){
  1.6959 +      checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
  1.6960 +    }
  1.6961 +#endif
  1.6962 +    checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ");
  1.6963 +  }
  1.6964 +
  1.6965 +  /* Make sure every page in the file is referenced
  1.6966 +  */
  1.6967 +  for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
  1.6968 +#ifdef SQLITE_OMIT_AUTOVACUUM
  1.6969 +    if( sCheck.anRef[i]==0 ){
  1.6970 +      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
  1.6971 +    }
  1.6972 +#else
  1.6973 +    /* If the database supports auto-vacuum, make sure no tables contain
  1.6974 +    ** references to pointer-map pages.
  1.6975 +    */
  1.6976 +    if( sCheck.anRef[i]==0 && 
  1.6977 +       (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
  1.6978 +      checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
  1.6979 +    }
  1.6980 +    if( sCheck.anRef[i]!=0 && 
  1.6981 +       (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
  1.6982 +      checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
  1.6983 +    }
  1.6984 +#endif
  1.6985 +  }
  1.6986 +
  1.6987 +  /* Make sure this analysis did not leave any unref() pages
  1.6988 +  */
  1.6989 +  unlockBtreeIfUnused(pBt);
  1.6990 +  if( nRef != sqlite3PagerRefcount(pBt->pPager) ){
  1.6991 +    checkAppendMsg(&sCheck, 0, 
  1.6992 +      "Outstanding page count goes from %d to %d during this analysis",
  1.6993 +      nRef, sqlite3PagerRefcount(pBt->pPager)
  1.6994 +    );
  1.6995 +  }
  1.6996 +
  1.6997 +  /* Clean  up and report errors.
  1.6998 +  */
  1.6999 +  sqlite3BtreeLeave(p);
  1.7000 +  sqlite3_free(sCheck.anRef);
  1.7001 +  if( sCheck.mallocFailed ){
  1.7002 +    sqlite3StrAccumReset(&sCheck.errMsg);
  1.7003 +    *pnErr = sCheck.nErr+1;
  1.7004 +    return 0;
  1.7005 +  }
  1.7006 +  *pnErr = sCheck.nErr;
  1.7007 +  if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
  1.7008 +  return sqlite3StrAccumFinish(&sCheck.errMsg);
  1.7009 +}
  1.7010 +#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
  1.7011 +
  1.7012 +/*
  1.7013 +** Return the full pathname of the underlying database file.
  1.7014 +**
  1.7015 +** The pager filename is invariant as long as the pager is
  1.7016 +** open so it is safe to access without the BtShared mutex.
  1.7017 +*/
  1.7018 +const char *sqlite3BtreeGetFilename(Btree *p){
  1.7019 +  assert( p->pBt->pPager!=0 );
  1.7020 +  return sqlite3PagerFilename(p->pBt->pPager);
  1.7021 +}
  1.7022 +
  1.7023 +/*
  1.7024 +** Return the pathname of the directory that contains the database file.
  1.7025 +**
  1.7026 +** The pager directory name is invariant as long as the pager is
  1.7027 +** open so it is safe to access without the BtShared mutex.
  1.7028 +*/
  1.7029 +const char *sqlite3BtreeGetDirname(Btree *p){
  1.7030 +  assert( p->pBt->pPager!=0 );
  1.7031 +  return sqlite3PagerDirname(p->pBt->pPager);
  1.7032 +}
  1.7033 +
  1.7034 +/*
  1.7035 +** Return the pathname of the journal file for this database. The return
  1.7036 +** value of this routine is the same regardless of whether the journal file
  1.7037 +** has been created or not.
  1.7038 +**
  1.7039 +** The pager journal filename is invariant as long as the pager is
  1.7040 +** open so it is safe to access without the BtShared mutex.
  1.7041 +*/
  1.7042 +const char *sqlite3BtreeGetJournalname(Btree *p){
  1.7043 +  assert( p->pBt->pPager!=0 );
  1.7044 +  return sqlite3PagerJournalname(p->pBt->pPager);
  1.7045 +}
  1.7046 +
  1.7047 +#ifndef SQLITE_OMIT_VACUUM
  1.7048 +/*
  1.7049 +** Copy the complete content of pBtFrom into pBtTo.  A transaction
  1.7050 +** must be active for both files.
  1.7051 +**
  1.7052 +** The size of file pTo may be reduced by this operation.
  1.7053 +** If anything goes wrong, the transaction on pTo is rolled back. 
  1.7054 +**
  1.7055 +** If successful, CommitPhaseOne() may be called on pTo before returning. 
  1.7056 +** The caller should finish committing the transaction on pTo by calling
  1.7057 +** sqlite3BtreeCommit().
  1.7058 +*/
  1.7059 +static int btreeCopyFile(Btree *pTo, Btree *pFrom){
  1.7060 +  int rc = SQLITE_OK;
  1.7061 +  Pgno i;
  1.7062 +
  1.7063 +  Pgno nFromPage;     /* Number of pages in pFrom */
  1.7064 +  Pgno nToPage;       /* Number of pages in pTo */
  1.7065 +  Pgno nNewPage;      /* Number of pages in pTo after the copy */
  1.7066 +
  1.7067 +  Pgno iSkip;         /* Pending byte page in pTo */
  1.7068 +  int nToPageSize;    /* Page size of pTo in bytes */
  1.7069 +  int nFromPageSize;  /* Page size of pFrom in bytes */
  1.7070 +
  1.7071 +  BtShared *pBtTo = pTo->pBt;
  1.7072 +  BtShared *pBtFrom = pFrom->pBt;
  1.7073 +  pBtTo->db = pTo->db;
  1.7074 +  pBtFrom->db = pFrom->db;
  1.7075 +
  1.7076 +  nToPageSize = pBtTo->pageSize;
  1.7077 +  nFromPageSize = pBtFrom->pageSize;
  1.7078 +
  1.7079 +  if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){
  1.7080 +    return SQLITE_ERROR;
  1.7081 +  }
  1.7082 +  if( pBtTo->pCursor ){
  1.7083 +    return SQLITE_BUSY;
  1.7084 +  }
  1.7085 +
  1.7086 +  nToPage = pagerPagecount(pBtTo->pPager);
  1.7087 +  nFromPage = pagerPagecount(pBtFrom->pPager);
  1.7088 +  iSkip = PENDING_BYTE_PAGE(pBtTo);
  1.7089 +
  1.7090 +  /* Variable nNewPage is the number of pages required to store the
  1.7091 +  ** contents of pFrom using the current page-size of pTo.
  1.7092 +  */
  1.7093 +  nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) / 
  1.7094 +      (i64)nToPageSize;
  1.7095 +
  1.7096 +  for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){
  1.7097 +
  1.7098 +    /* Journal the original page.
  1.7099 +    **
  1.7100 +    ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE)
  1.7101 +    ** in database *pTo (before the copy). This page is never written 
  1.7102 +    ** into the journal file. Unless i==iSkip or the page was not
  1.7103 +    ** present in pTo before the copy operation, journal page i from pTo.
  1.7104 +    */
  1.7105 +    if( i!=iSkip && i<=nToPage ){
  1.7106 +      DbPage *pDbPage = 0;
  1.7107 +      rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage);
  1.7108 +      if( rc==SQLITE_OK ){
  1.7109 +        rc = sqlite3PagerWrite(pDbPage);
  1.7110 +        if( rc==SQLITE_OK && i>nFromPage ){
  1.7111 +          /* Yeah.  It seems wierd to call DontWrite() right after Write(). But
  1.7112 +          ** that is because the names of those procedures do not exactly 
  1.7113 +          ** represent what they do.  Write() really means "put this page in the
  1.7114 +          ** rollback journal and mark it as dirty so that it will be written
  1.7115 +          ** to the database file later."  DontWrite() undoes the second part of
  1.7116 +          ** that and prevents the page from being written to the database. The
  1.7117 +          ** page is still on the rollback journal, though.  And that is the 
  1.7118 +          ** whole point of this block: to put pages on the rollback journal. 
  1.7119 +          */
  1.7120 +          rc = sqlite3PagerDontWrite(pDbPage);
  1.7121 +        }
  1.7122 +        sqlite3PagerUnref(pDbPage);
  1.7123 +      }
  1.7124 +    }
  1.7125 +
  1.7126 +    /* Overwrite the data in page i of the target database */
  1.7127 +    if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){
  1.7128 +
  1.7129 +      DbPage *pToPage = 0;
  1.7130 +      sqlite3_int64 iOff;
  1.7131 +
  1.7132 +      rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage);
  1.7133 +      if( rc==SQLITE_OK ){
  1.7134 +        rc = sqlite3PagerWrite(pToPage);
  1.7135 +      }
  1.7136 +
  1.7137 +      for(
  1.7138 +        iOff=(i-1)*nToPageSize; 
  1.7139 +        rc==SQLITE_OK && iOff<i*nToPageSize; 
  1.7140 +        iOff += nFromPageSize
  1.7141 +      ){
  1.7142 +        DbPage *pFromPage = 0;
  1.7143 +        Pgno iFrom = (iOff/nFromPageSize)+1;
  1.7144 +
  1.7145 +        if( iFrom==PENDING_BYTE_PAGE(pBtFrom) ){
  1.7146 +          continue;
  1.7147 +        }
  1.7148 +
  1.7149 +        rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
  1.7150 +        if( rc==SQLITE_OK ){
  1.7151 +          char *zTo = sqlite3PagerGetData(pToPage);
  1.7152 +          char *zFrom = sqlite3PagerGetData(pFromPage);
  1.7153 +          int nCopy;
  1.7154 +
  1.7155 +          if( nFromPageSize>=nToPageSize ){
  1.7156 +            zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize));
  1.7157 +            nCopy = nToPageSize;
  1.7158 +          }else{
  1.7159 +            zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize);
  1.7160 +            nCopy = nFromPageSize;
  1.7161 +          }
  1.7162 +
  1.7163 +          memcpy(zTo, zFrom, nCopy);
  1.7164 +          sqlite3PagerUnref(pFromPage);
  1.7165 +        }
  1.7166 +      }
  1.7167 +
  1.7168 +      if( pToPage ){
  1.7169 +        MemPage *p = (MemPage *)sqlite3PagerGetExtra(pToPage);
  1.7170 +        p->isInit = 0;
  1.7171 +        sqlite3PagerUnref(pToPage);
  1.7172 +      }
  1.7173 +    }
  1.7174 +  }
  1.7175 +
  1.7176 +  /* If things have worked so far, the database file may need to be 
  1.7177 +  ** truncated. The complex part is that it may need to be truncated to
  1.7178 +  ** a size that is not an integer multiple of nToPageSize - the current
  1.7179 +  ** page size used by the pager associated with B-Tree pTo.
  1.7180 +  **
  1.7181 +  ** For example, say the page-size of pTo is 2048 bytes and the original 
  1.7182 +  ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024 
  1.7183 +  ** bytes and 9 pages, then the file needs to be truncated to 9KB.
  1.7184 +  */
  1.7185 +  if( rc==SQLITE_OK ){
  1.7186 +    if( nFromPageSize!=nToPageSize ){
  1.7187 +      sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager);
  1.7188 +      i64 iSize = (i64)nFromPageSize * (i64)nFromPage;
  1.7189 +      i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize; 
  1.7190 +      i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize;
  1.7191 +  
  1.7192 +      assert( iSize<=iNow );
  1.7193 +  
  1.7194 +      /* Commit phase one syncs the journal file associated with pTo 
  1.7195 +      ** containing the original data. It does not sync the database file
  1.7196 +      ** itself. After doing this it is safe to use OsTruncate() and other
  1.7197 +      ** file APIs on the database file directly.
  1.7198 +      */
  1.7199 +      pBtTo->db = pTo->db;
  1.7200 +      rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1);
  1.7201 +      if( iSize<iNow && rc==SQLITE_OK ){
  1.7202 +        rc = sqlite3OsTruncate(pFile, iSize);
  1.7203 +      }
  1.7204 +  
  1.7205 +      /* The loop that copied data from database pFrom to pTo did not
  1.7206 +      ** populate the locking page of database pTo. If the page-size of
  1.7207 +      ** pFrom is smaller than that of pTo, this means some data will
  1.7208 +      ** not have been copied. 
  1.7209 +      **
  1.7210 +      ** This block copies the missing data from database pFrom to pTo 
  1.7211 +      ** using file APIs. This is safe because at this point we know that
  1.7212 +      ** all of the original data from pTo has been synced into the 
  1.7213 +      ** journal file. At this point it would be safe to do anything at
  1.7214 +      ** all to the database file except truncate it to zero bytes.
  1.7215 +      */
  1.7216 +      if( rc==SQLITE_OK && nFromPageSize<nToPageSize && iSize>iPending){
  1.7217 +        i64 iOff;
  1.7218 +        for(
  1.7219 +          iOff=iPending; 
  1.7220 +          rc==SQLITE_OK && iOff<(iPending+nToPageSize); 
  1.7221 +          iOff += nFromPageSize
  1.7222 +        ){
  1.7223 +          DbPage *pFromPage = 0;
  1.7224 +          Pgno iFrom = (iOff/nFromPageSize)+1;
  1.7225 +  
  1.7226 +          if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){
  1.7227 +            continue;
  1.7228 +          }
  1.7229 +  
  1.7230 +          rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage);
  1.7231 +          if( rc==SQLITE_OK ){
  1.7232 +            char *zFrom = sqlite3PagerGetData(pFromPage);
  1.7233 +            rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff);
  1.7234 +            sqlite3PagerUnref(pFromPage);
  1.7235 +          }
  1.7236 +        }
  1.7237 +      }
  1.7238 +  
  1.7239 +      /* Sync the database file */
  1.7240 +      if( rc==SQLITE_OK ){
  1.7241 +        rc = sqlite3PagerSync(pBtTo->pPager);
  1.7242 +      }
  1.7243 +    }else{
  1.7244 +      rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage);
  1.7245 +    }
  1.7246 +    if( rc==SQLITE_OK ){
  1.7247 +      pBtTo->pageSizeFixed = 0;
  1.7248 +    }
  1.7249 +  }
  1.7250 +
  1.7251 +  if( rc ){
  1.7252 +    sqlite3BtreeRollback(pTo);
  1.7253 +  }
  1.7254 +
  1.7255 +  return rc;  
  1.7256 +}
  1.7257 +int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){
  1.7258 +  int rc;
  1.7259 +  sqlite3BtreeEnter(pTo);
  1.7260 +  sqlite3BtreeEnter(pFrom);
  1.7261 +  rc = btreeCopyFile(pTo, pFrom);
  1.7262 +  sqlite3BtreeLeave(pFrom);
  1.7263 +  sqlite3BtreeLeave(pTo);
  1.7264 +  return rc;
  1.7265 +}
  1.7266 +
  1.7267 +#endif /* SQLITE_OMIT_VACUUM */
  1.7268 +
  1.7269 +/*
  1.7270 +** Return non-zero if a transaction is active.
  1.7271 +*/
  1.7272 +int sqlite3BtreeIsInTrans(Btree *p){
  1.7273 +  assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
  1.7274 +  return (p && (p->inTrans==TRANS_WRITE));
  1.7275 +}
  1.7276 +
  1.7277 +/*
  1.7278 +** Return non-zero if a statement transaction is active.
  1.7279 +*/
  1.7280 +int sqlite3BtreeIsInStmt(Btree *p){
  1.7281 +  assert( sqlite3BtreeHoldsMutex(p) );
  1.7282 +  return (p->pBt && p->pBt->inStmt);
  1.7283 +}
  1.7284 +
  1.7285 +/*
  1.7286 +** Return non-zero if a read (or write) transaction is active.
  1.7287 +*/
  1.7288 +int sqlite3BtreeIsInReadTrans(Btree *p){
  1.7289 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.7290 +  return (p && (p->inTrans!=TRANS_NONE));
  1.7291 +}
  1.7292 +
  1.7293 +/*
  1.7294 +** This function returns a pointer to a blob of memory associated with
  1.7295 +** a single shared-btree. The memory is used by client code for its own
  1.7296 +** purposes (for example, to store a high-level schema associated with 
  1.7297 +** the shared-btree). The btree layer manages reference counting issues.
  1.7298 +**
  1.7299 +** The first time this is called on a shared-btree, nBytes bytes of memory
  1.7300 +** are allocated, zeroed, and returned to the caller. For each subsequent 
  1.7301 +** call the nBytes parameter is ignored and a pointer to the same blob
  1.7302 +** of memory returned. 
  1.7303 +**
  1.7304 +** If the nBytes parameter is 0 and the blob of memory has not yet been
  1.7305 +** allocated, a null pointer is returned. If the blob has already been
  1.7306 +** allocated, it is returned as normal.
  1.7307 +**
  1.7308 +** Just before the shared-btree is closed, the function passed as the 
  1.7309 +** xFree argument when the memory allocation was made is invoked on the 
  1.7310 +** blob of allocated memory. This function should not call sqlite3_free()
  1.7311 +** on the memory, the btree layer does that.
  1.7312 +*/
  1.7313 +void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
  1.7314 +  BtShared *pBt = p->pBt;
  1.7315 +  sqlite3BtreeEnter(p);
  1.7316 +  if( !pBt->pSchema && nBytes ){
  1.7317 +    pBt->pSchema = sqlite3MallocZero(nBytes);
  1.7318 +    pBt->xFreeSchema = xFree;
  1.7319 +  }
  1.7320 +  sqlite3BtreeLeave(p);
  1.7321 +  return pBt->pSchema;
  1.7322 +}
  1.7323 +
  1.7324 +/*
  1.7325 +** Return true if another user of the same shared btree as the argument
  1.7326 +** handle holds an exclusive lock on the sqlite_master table.
  1.7327 +*/
  1.7328 +int sqlite3BtreeSchemaLocked(Btree *p){
  1.7329 +  int rc;
  1.7330 +  assert( sqlite3_mutex_held(p->db->mutex) );
  1.7331 +  sqlite3BtreeEnter(p);
  1.7332 +  rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK);
  1.7333 +  sqlite3BtreeLeave(p);
  1.7334 +  return rc;
  1.7335 +}
  1.7336 +
  1.7337 +
  1.7338 +#ifndef SQLITE_OMIT_SHARED_CACHE
  1.7339 +/*
  1.7340 +** Obtain a lock on the table whose root page is iTab.  The
  1.7341 +** lock is a write lock if isWritelock is true or a read lock
  1.7342 +** if it is false.
  1.7343 +*/
  1.7344 +int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
  1.7345 +  int rc = SQLITE_OK;
  1.7346 +  if( p->sharable ){
  1.7347 +    u8 lockType = READ_LOCK + isWriteLock;
  1.7348 +    assert( READ_LOCK+1==WRITE_LOCK );
  1.7349 +    assert( isWriteLock==0 || isWriteLock==1 );
  1.7350 +    sqlite3BtreeEnter(p);
  1.7351 +    rc = queryTableLock(p, iTab, lockType);
  1.7352 +    if( rc==SQLITE_OK ){
  1.7353 +      rc = lockTable(p, iTab, lockType);
  1.7354 +    }
  1.7355 +    sqlite3BtreeLeave(p);
  1.7356 +  }
  1.7357 +  return rc;
  1.7358 +}
  1.7359 +#endif
  1.7360 +
  1.7361 +#ifndef SQLITE_OMIT_INCRBLOB
  1.7362 +/*
  1.7363 +** Argument pCsr must be a cursor opened for writing on an 
  1.7364 +** INTKEY table currently pointing at a valid table entry. 
  1.7365 +** This function modifies the data stored as part of that entry.
  1.7366 +** Only the data content may only be modified, it is not possible
  1.7367 +** to change the length of the data stored.
  1.7368 +*/
  1.7369 +int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
  1.7370 +  assert( cursorHoldsMutex(pCsr) );
  1.7371 +  assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
  1.7372 +  assert(pCsr->isIncrblobHandle);
  1.7373 +
  1.7374 +  restoreCursorPosition(pCsr);
  1.7375 +  assert( pCsr->eState!=CURSOR_REQUIRESEEK );
  1.7376 +  if( pCsr->eState!=CURSOR_VALID ){
  1.7377 +    return SQLITE_ABORT;
  1.7378 +  }
  1.7379 +
  1.7380 +  /* Check some preconditions: 
  1.7381 +  **   (a) the cursor is open for writing,
  1.7382 +  **   (b) there is no read-lock on the table being modified and
  1.7383 +  **   (c) the cursor points at a valid row of an intKey table.
  1.7384 +  */
  1.7385 +  if( !pCsr->wrFlag ){
  1.7386 +    return SQLITE_READONLY;
  1.7387 +  }
  1.7388 +  assert( !pCsr->pBt->readOnly 
  1.7389 +          && pCsr->pBt->inTransaction==TRANS_WRITE );
  1.7390 +  if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0) ){
  1.7391 +    return SQLITE_LOCKED; /* The table pCur points to has a read lock */
  1.7392 +  }
  1.7393 +  if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){
  1.7394 +    return SQLITE_ERROR;
  1.7395 +  }
  1.7396 +
  1.7397 +  return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
  1.7398 +}
  1.7399 +
  1.7400 +/* 
  1.7401 +** Set a flag on this cursor to cache the locations of pages from the 
  1.7402 +** overflow list for the current row. This is used by cursors opened
  1.7403 +** for incremental blob IO only.
  1.7404 +**
  1.7405 +** This function sets a flag only. The actual page location cache
  1.7406 +** (stored in BtCursor.aOverflow[]) is allocated and used by function
  1.7407 +** accessPayload() (the worker function for sqlite3BtreeData() and
  1.7408 +** sqlite3BtreePutData()).
  1.7409 +*/
  1.7410 +void sqlite3BtreeCacheOverflow(BtCursor *pCur){
  1.7411 +  assert( cursorHoldsMutex(pCur) );
  1.7412 +  assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
  1.7413 +  assert(!pCur->isIncrblobHandle);
  1.7414 +  assert(!pCur->aOverflow);
  1.7415 +  pCur->isIncrblobHandle = 1;
  1.7416 +}
  1.7417 +#endif