1.1 --- /dev/null Thu Jan 01 00:00:00 1970 +0000
1.2 +++ b/os/persistentdata/persistentstorage/sql/SQLite/bitvec.c Fri Jun 15 03:10:57 2012 +0200
1.3 @@ -0,0 +1,325 @@
1.4 +/*
1.5 +** 2008 February 16
1.6 +**
1.7 +** The author disclaims copyright to this source code. In place of
1.8 +** a legal notice, here is a blessing:
1.9 +**
1.10 +** May you do good and not evil.
1.11 +** May you find forgiveness for yourself and forgive others.
1.12 +** May you share freely, never taking more than you give.
1.13 +**
1.14 +*************************************************************************
1.15 +** This file implements an object that represents a fixed-length
1.16 +** bitmap. Bits are numbered starting with 1.
1.17 +**
1.18 +** A bitmap is used to record what pages a database file have been
1.19 +** journalled during a transaction. Usually only a few pages are
1.20 +** journalled. So the bitmap is usually sparse and has low cardinality.
1.21 +** But sometimes (for example when during a DROP of a large table) most
1.22 +** or all of the pages get journalled. In those cases, the bitmap becomes
1.23 +** dense. The algorithm needs to handle both cases well.
1.24 +**
1.25 +** The size of the bitmap is fixed when the object is created.
1.26 +**
1.27 +** All bits are clear when the bitmap is created. Individual bits
1.28 +** may be set or cleared one at a time.
1.29 +**
1.30 +** Test operations are about 100 times more common that set operations.
1.31 +** Clear operations are exceedingly rare. There are usually between
1.32 +** 5 and 500 set operations per Bitvec object, though the number of sets can
1.33 +** sometimes grow into tens of thousands or larger. The size of the
1.34 +** Bitvec object is the number of pages in the database file at the
1.35 +** start of a transaction, and is thus usually less than a few thousand,
1.36 +** but can be as large as 2 billion for a really big database.
1.37 +**
1.38 +** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
1.39 +*/
1.40 +#include "sqliteInt.h"
1.41 +
1.42 +#define BITVEC_SZ 512
1.43 +/* Round the union size down to the nearest pointer boundary, since that's how
1.44 +** it will be aligned within the Bitvec struct. */
1.45 +#define BITVEC_USIZE (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
1.46 +#define BITVEC_NCHAR BITVEC_USIZE
1.47 +#define BITVEC_NBIT (BITVEC_NCHAR*8)
1.48 +#define BITVEC_NINT (BITVEC_USIZE/4)
1.49 +#define BITVEC_MXHASH (BITVEC_NINT/2)
1.50 +#define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
1.51 +
1.52 +#define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT)
1.53 +
1.54 +/*
1.55 +** A bitmap is an instance of the following structure.
1.56 +**
1.57 +** This bitmap records the existance of zero or more bits
1.58 +** with values between 1 and iSize, inclusive.
1.59 +**
1.60 +** There are three possible representations of the bitmap.
1.61 +** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
1.62 +** bitmap. The least significant bit is bit 1.
1.63 +**
1.64 +** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
1.65 +** a hash table that will hold up to BITVEC_MXHASH distinct values.
1.66 +**
1.67 +** Otherwise, the value i is redirected into one of BITVEC_NPTR
1.68 +** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
1.69 +** handles up to iDivisor separate values of i. apSub[0] holds
1.70 +** values between 1 and iDivisor. apSub[1] holds values between
1.71 +** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
1.72 +** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
1.73 +** to hold deal with values between 1 and iDivisor.
1.74 +*/
1.75 +struct Bitvec {
1.76 + u32 iSize; /* Maximum bit index */
1.77 + u32 nSet; /* Number of bits that are set */
1.78 + u32 iDivisor; /* Number of bits handled by each apSub[] entry */
1.79 + union {
1.80 + u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */
1.81 + u32 aHash[BITVEC_NINT]; /* Hash table representation */
1.82 + Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
1.83 + } u;
1.84 +};
1.85 +
1.86 +/*
1.87 +** Create a new bitmap object able to handle bits between 0 and iSize,
1.88 +** inclusive. Return a pointer to the new object. Return NULL if
1.89 +** malloc fails.
1.90 +*/
1.91 +Bitvec *sqlite3BitvecCreate(u32 iSize){
1.92 + Bitvec *p;
1.93 + assert( sizeof(*p)==BITVEC_SZ );
1.94 + p = sqlite3MallocZero( sizeof(*p) );
1.95 + if( p ){
1.96 + p->iSize = iSize;
1.97 + }
1.98 + return p;
1.99 +}
1.100 +
1.101 +/*
1.102 +** Check to see if the i-th bit is set. Return true or false.
1.103 +** If p is NULL (if the bitmap has not been created) or if
1.104 +** i is out of range, then return false.
1.105 +*/
1.106 +int sqlite3BitvecTest(Bitvec *p, u32 i){
1.107 + if( p==0 ) return 0;
1.108 + if( i>p->iSize || i==0 ) return 0;
1.109 + if( p->iSize<=BITVEC_NBIT ){
1.110 + i--;
1.111 + return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
1.112 + }
1.113 + if( p->iDivisor>0 ){
1.114 + u32 bin = (i-1)/p->iDivisor;
1.115 + i = (i-1)%p->iDivisor + 1;
1.116 + return sqlite3BitvecTest(p->u.apSub[bin], i);
1.117 + }else{
1.118 + u32 h = BITVEC_HASH(i);
1.119 + while( p->u.aHash[h] ){
1.120 + if( p->u.aHash[h]==i ) return 1;
1.121 + h++;
1.122 + if( h>=BITVEC_NINT ) h = 0;
1.123 + }
1.124 + return 0;
1.125 + }
1.126 +}
1.127 +
1.128 +/*
1.129 +** Set the i-th bit. Return 0 on success and an error code if
1.130 +** anything goes wrong.
1.131 +*/
1.132 +int sqlite3BitvecSet(Bitvec *p, u32 i){
1.133 + u32 h;
1.134 + assert( p!=0 );
1.135 + assert( i>0 );
1.136 + assert( i<=p->iSize );
1.137 + if( p->iSize<=BITVEC_NBIT ){
1.138 + i--;
1.139 + p->u.aBitmap[i/8] |= 1 << (i&7);
1.140 + return SQLITE_OK;
1.141 + }
1.142 + if( p->iDivisor ){
1.143 + u32 bin = (i-1)/p->iDivisor;
1.144 + i = (i-1)%p->iDivisor + 1;
1.145 + if( p->u.apSub[bin]==0 ){
1.146 + sqlite3BeginBenignMalloc();
1.147 + p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
1.148 + sqlite3EndBenignMalloc();
1.149 + if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
1.150 + }
1.151 + return sqlite3BitvecSet(p->u.apSub[bin], i);
1.152 + }
1.153 + h = BITVEC_HASH(i);
1.154 + while( p->u.aHash[h] ){
1.155 + if( p->u.aHash[h]==i ) return SQLITE_OK;
1.156 + h++;
1.157 + if( h==BITVEC_NINT ) h = 0;
1.158 + }
1.159 + p->nSet++;
1.160 + if( p->nSet>=BITVEC_MXHASH ){
1.161 + int j, rc;
1.162 + u32 aiValues[BITVEC_NINT];
1.163 + memcpy(aiValues, p->u.aHash, sizeof(aiValues));
1.164 + memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
1.165 + p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
1.166 + rc = sqlite3BitvecSet(p, i);
1.167 + for(j=0; j<BITVEC_NINT; j++){
1.168 + if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
1.169 + }
1.170 + return rc;
1.171 + }
1.172 + p->u.aHash[h] = i;
1.173 + return SQLITE_OK;
1.174 +}
1.175 +
1.176 +/*
1.177 +** Clear the i-th bit. Return 0 on success and an error code if
1.178 +** anything goes wrong.
1.179 +*/
1.180 +void sqlite3BitvecClear(Bitvec *p, u32 i){
1.181 + assert( p!=0 );
1.182 + assert( i>0 );
1.183 + if( p->iSize<=BITVEC_NBIT ){
1.184 + i--;
1.185 + p->u.aBitmap[i/8] &= ~(1 << (i&7));
1.186 + }else if( p->iDivisor ){
1.187 + u32 bin = (i-1)/p->iDivisor;
1.188 + i = (i-1)%p->iDivisor + 1;
1.189 + if( p->u.apSub[bin] ){
1.190 + sqlite3BitvecClear(p->u.apSub[bin], i);
1.191 + }
1.192 + }else{
1.193 + int j;
1.194 + u32 aiValues[BITVEC_NINT];
1.195 + memcpy(aiValues, p->u.aHash, sizeof(aiValues));
1.196 + memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
1.197 + p->nSet = 0;
1.198 + for(j=0; j<BITVEC_NINT; j++){
1.199 + if( aiValues[j] && aiValues[j]!=i ){
1.200 + sqlite3BitvecSet(p, aiValues[j]);
1.201 + }
1.202 + }
1.203 + }
1.204 +}
1.205 +
1.206 +/*
1.207 +** Destroy a bitmap object. Reclaim all memory used.
1.208 +*/
1.209 +void sqlite3BitvecDestroy(Bitvec *p){
1.210 + if( p==0 ) return;
1.211 + if( p->iDivisor ){
1.212 + int i;
1.213 + for(i=0; i<BITVEC_NPTR; i++){
1.214 + sqlite3BitvecDestroy(p->u.apSub[i]);
1.215 + }
1.216 + }
1.217 + sqlite3_free(p);
1.218 +}
1.219 +
1.220 +#ifndef SQLITE_OMIT_BUILTIN_TEST
1.221 +/*
1.222 +** Let V[] be an array of unsigned characters sufficient to hold
1.223 +** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
1.224 +** Then the following macros can be used to set, clear, or test
1.225 +** individual bits within V.
1.226 +*/
1.227 +#define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
1.228 +#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
1.229 +#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
1.230 +
1.231 +/*
1.232 +** This routine runs an extensive test of the Bitvec code.
1.233 +**
1.234 +** The input is an array of integers that acts as a program
1.235 +** to test the Bitvec. The integers are opcodes followed
1.236 +** by 0, 1, or 3 operands, depending on the opcode. Another
1.237 +** opcode follows immediately after the last operand.
1.238 +**
1.239 +** There are 6 opcodes numbered from 0 through 5. 0 is the
1.240 +** "halt" opcode and causes the test to end.
1.241 +**
1.242 +** 0 Halt and return the number of errors
1.243 +** 1 N S X Set N bits beginning with S and incrementing by X
1.244 +** 2 N S X Clear N bits beginning with S and incrementing by X
1.245 +** 3 N Set N randomly chosen bits
1.246 +** 4 N Clear N randomly chosen bits
1.247 +** 5 N S X Set N bits from S increment X in array only, not in bitvec
1.248 +**
1.249 +** The opcodes 1 through 4 perform set and clear operations are performed
1.250 +** on both a Bitvec object and on a linear array of bits obtained from malloc.
1.251 +** Opcode 5 works on the linear array only, not on the Bitvec.
1.252 +** Opcode 5 is used to deliberately induce a fault in order to
1.253 +** confirm that error detection works.
1.254 +**
1.255 +** At the conclusion of the test the linear array is compared
1.256 +** against the Bitvec object. If there are any differences,
1.257 +** an error is returned. If they are the same, zero is returned.
1.258 +**
1.259 +** If a memory allocation error occurs, return -1.
1.260 +*/
1.261 +int sqlite3BitvecBuiltinTest(int sz, int *aOp){
1.262 + Bitvec *pBitvec = 0;
1.263 + unsigned char *pV = 0;
1.264 + int rc = -1;
1.265 + int i, nx, pc, op;
1.266 +
1.267 + /* Allocate the Bitvec to be tested and a linear array of
1.268 + ** bits to act as the reference */
1.269 + pBitvec = sqlite3BitvecCreate( sz );
1.270 + pV = sqlite3_malloc( (sz+7)/8 + 1 );
1.271 + if( pBitvec==0 || pV==0 ) goto bitvec_end;
1.272 + memset(pV, 0, (sz+7)/8 + 1);
1.273 +
1.274 + /* Run the program */
1.275 + pc = 0;
1.276 + while( (op = aOp[pc])!=0 ){
1.277 + switch( op ){
1.278 + case 1:
1.279 + case 2:
1.280 + case 5: {
1.281 + nx = 4;
1.282 + i = aOp[pc+2] - 1;
1.283 + aOp[pc+2] += aOp[pc+3];
1.284 + break;
1.285 + }
1.286 + case 3:
1.287 + case 4:
1.288 + default: {
1.289 + nx = 2;
1.290 + sqlite3_randomness(sizeof(i), &i);
1.291 + break;
1.292 + }
1.293 + }
1.294 + if( (--aOp[pc+1]) > 0 ) nx = 0;
1.295 + pc += nx;
1.296 + i = (i & 0x7fffffff)%sz;
1.297 + if( (op & 1)!=0 ){
1.298 + SETBIT(pV, (i+1));
1.299 + if( op!=5 ){
1.300 + if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
1.301 + }
1.302 + }else{
1.303 + CLEARBIT(pV, (i+1));
1.304 + sqlite3BitvecClear(pBitvec, i+1);
1.305 + }
1.306 + }
1.307 +
1.308 + /* Test to make sure the linear array exactly matches the
1.309 + ** Bitvec object. Start with the assumption that they do
1.310 + ** match (rc==0). Change rc to non-zero if a discrepancy
1.311 + ** is found.
1.312 + */
1.313 + rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
1.314 + + sqlite3BitvecTest(pBitvec, 0);
1.315 + for(i=1; i<=sz; i++){
1.316 + if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
1.317 + rc = i;
1.318 + break;
1.319 + }
1.320 + }
1.321 +
1.322 + /* Free allocated structure */
1.323 +bitvec_end:
1.324 + sqlite3_free(pV);
1.325 + sqlite3BitvecDestroy(pBitvec);
1.326 + return rc;
1.327 +}
1.328 +#endif /* SQLITE_OMIT_BUILTIN_TEST */